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ABSTRACT

It is often desireble to maeke a detailed study of lattice
vibrations in crystals. The well-known ultrasonic pulse methods
yield precise information concerning the velocities of propagation
of the elastic waves and the elastic constants in the ultrasonic
region. These methods are adequate provided one is interested in
a few principal directions of propagation only.

A technique is described here which makes use of the process
of 3rillouin scattering using a laser light source to make
feasible a detailed and precise study of lattice vibrations in
the hypersonic region (2 = S0 kMc)., The main advantages of this
method are:

(1) Ability to go to very high frequencies
(2) Absence of acoustic excitation

(3) Simplicity of obtaining the angular dependence of
the sound velocities

(4) Possibility of measuring the polsrization fraction
of mixed modes

U
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Using a low power laser the Brillouin spectra of light scattered
inelastically from lattice vibrations were observed in three cubic
crystals (KI, KCl1 and RbCl) for many directions of propagation of
the elastic waves in the {110} planes. From this set of data the
velocities of the elastic waves were calculated as a function of
the direction of propagation. A computer was used to render those
values for the three cubic elastic constants which made the root
mean square deviation between the theoretical curve for the velocity
and the experimental values a minimum,

Thesis Supervisor: George B. Benedek

Associate Professor of Physics
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Chapter I

BRILLOUIN SCATTERING

1.1 Introduction

This thesis presents a study of inelastic scattering of light
oy thermal phonons in cubic crystals using a laser as source of the
incident radiation.

A study of Brillouin spectra in sclids is instructive because

; it yields information on the elastic properties and the lattice
vibrations in the solid entirely in the absence of accoustic exci-
tation. For example, R. S. Krishnanl used Brillouin scattering to
find effective elastic constants for a number of crystals for several
simple propagation directions.

In this thesis I will undertake a more detailed study of the
Brillouin spectrum as a function of the propagation direction in
several cubic crystals. This will immediately give information on
the velocities as a function of the propagaiicn direction and hence
information concerning the elastic constants.

1.2 Comparison with previous work

Brillouin scattering, & type of scattering analogous to thermal

diffuse scattering of x ray32 and coherent inelastic scattering of
I
neutrons3, was first described by L. Brillouin in 1922. It was

first observed experimentally in a solid, crystalline quartz, bv

5

E. Gross” in 1930.
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In the vears following 1930 many Indian physicists studied the
Brillouin spectra of liquids and solidss. With solids, exposure
times of the order of eighty hours using a mercury arc source vere
not exceptional due to the weak scattering of most solids. Cleerly,
this exposure time had to be shortened drastically for a rroject
requiring many data points. Recently, it was shown by . B. Benedek
et a.l7 and simultaneously by R. Y. Chiao and B. P. Stoicheff8 that
spectra of this type can be recorded in minutes with photoelectric
equipment provided a laser is used as source of the incident
radiation.

1.3 Choice of crvstals

This research was limited to cubic crystals because of theoreti-
cal simplicity (only three independent elastic constants enter the
calculations) and because there were transparent compounds available
in large single crwvstals which show moderatelv strong spectira and
are sufficiently hard. The latter requirement is necessitated by
the fact that the resolution of the equipment was limited to about
1.3 parts in 106 in wavelength. Therefore, for results of the desired
sccuracy, the Brillouin peaks had to te separated from the unshifted
Rayleigh component by a certain minimum wvavelength interval. It was
found that the alkali halides fulfilled both requirements.

1.4 TFrequency change in the scattered radiation

We may describe Brillouin scattering of light by the following

two processes:
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1) Phonon annihilation - An incident photon of frequency v,
and wave vector 51 annihilates a thermal phonon of freqﬁency Vg and
wave vector 50 propagating in the solid. The incident photcn has
gained energy and emerges with increased frequency Vg (vs > vi) and

wave vector 55. This process is referred to as Anti-Stokes scattering

in the Raman effect.

2) Phonon creation - An incident photon of frequency vy and
wave vector 51 creates a phnonon of frequency Vg and wave vector'go.
The scattered photon has lost energy and emerges with decreased
frequency v_ (vs < vi) and wave vector k_. This is referred to as
Stokes scattering in the Raman effect. Clearly, in the absence of
thermal excitation, only the second process can occur.

If the scattering phonon belongs to one of the acoustic branches
of the phonon spectrum of the solid, the scattering is called
Brillouin scattering. This is the process we will consider here. If
the scattering phonon belongs to an optical branch, the scattering is
usually called Raman scattering.

Let us now derive the frequency shift. Energy and momentum con-

servation yields:

= +
Vs \)i hat \Jc
(1.1)
=k, + Kk
~S ~] ~Q0
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If we call the scattering angle 6, we have
k =k + k,” =2 k k, cos 6 (1.2)
i s i

The dispersion relation for elastic waves is

o 2n Vo
ko === T (§ = 1, 2, 3 indicates the
g J '~ @

branch)

(1.3)

where vJ is the velocity of the acoustic wave in the macerial. This

is, in general, a function of the frequency and the propagation

direction. The dispersion relation for light is

2r n, v

= en _ i 4
ks T %7 T2
i
(1.4)
k =glr.=2‘" ns \’s
s A c
s

where ni and ns are the indices of refraction of the crystal at
frequency vy and Vg respectively.
After substitution of Eqs. (1.3) and (1.4) into Eq. (1.2) we

i obtain
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3 But v ° = (v_ = v,)° from Eq. (1.1) and
E 2 2 2
K 2 ,¢c 2 2 ,¢ 2 c
g — —— - — - = Q0
: Vg (v2 n ) +wv (v2 n, ) 2vs vy (v2 n.,n_ cos 8)

Since c¢/v is of the order of 105,
v + vie - 2v_v N0

N .
and we see that vy ~ vy Therefore, 53 and ki are almost equal in

magnitude and we may approximate:

k . 2k 2 (L - cos 68) = bk k 2 sin2 (8/2)
G i i
(1.5)
k= 2k, sin (8/2)
c i
Using Eqs. (1.3) and (1.4)
2v, (k v)n, v
_ 3 ‘g gl i .
B < sin 8/2
and upon substitution into Eq. (1.1) we finally get
v, (k , vV ) n,
v = v, (14 —ter@ 9 L g5 6/2] (1.6)
s i - e
J=1,2, 3

| R pp—rrm i
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3 This result can be derived in a very simple manner by considering
the frequency change of the incident photon caused by scattering off
a moving soundwave. The frequency shift is Jjust the Doppler shift
of the incident photon as it is "reflected" from the wavefront of

a sound wave moving with velocity v toward the photon or away from
it.

There is also the unshifted component at frequency v, .
Calculation of the scattered intensity shows that if the polariza-
bility is & scalar, then only the longitudinal component of the
ohonon polarization contributes to the scattering (see Ch. IV, 4,5).

To get an idea of the instrumental resolution necessary for
observing the frequency shifts indicated by Eq. (l.6) let us make
a calculation using some representative numbers. Since v/c is of

Q
the order of lOs, n~ 1 and v, v 5 x lOlh cps (6328 A),

av= | v, 2V | =2 (v/e) n v, sin (8/2)

~v2x lO5 x 5«x 10lh x 0,707 ~ T kMe

for 90° scattering. Depending upon the particular crystal and the
mode of propagation under consideration we expect the frequency shift
to vary between about 5 end 15 kMc for 90° sceattering.

We notice that by changing the gscattering angle 6 we can sweep
through the whole frequency range between 2 and 20 kMc for the alkali

halides, up to 50 kMc for narder materials. Since the laser employed

e R T
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o
in this experiment has a line width of ~ 1 kMc at 6328 A, we are

RERENE 1S

able to resolve the scattering with good precision.




Chapter II

ELASTIC WAVES IN CUBIC CRYSTALS

2.1 Dependence of the velocity on the frequency and on the

direction of propagation of the wave,

We would like to find a theoretical expression for the
velocities vy (J =1, 2, 3) as a function of ko and v _. Let us
consider the dispersion relation for elastic waves, Eq. (l1.3), in
greater detail, For experimental reasons we will limit ourselves
to the {110} planes (the experimental setup for 90 degree scattering
is relatively uncomplicated, passable intensities are attained and
the shifts are big enough to be resolved).

The samples were mounted in such a way that 51' 55, and,l\go lie
in the {110} plane. As the crystal is rotated, the magnitude of 50
remains constant and only its direction changes so that 50 sweeps
out all directiors in the {110} plane. The wavelength of the phonons
observed for the alkali halides was of the order of 3000 Z.

Reference to Figs. 2.1 and 2.2 illuminates the above remarks.
Fig. 2.1 shows the frequency Vg of the elastic waves, plotted as a
function of the magnitude of 50 for 50 in the <001l> direction. By
studying the dependence of v, on the scattering angle® for a conétant

direction of propagation of the elastic waves one could map out
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the dispersion relation, Eq. (1.3), in the hypersonic region
indicated in Fig. 2.1. Of course, the maximum frequency ob-
servable in a particular crystal is limited to-vo =2 v vy ni/c
for backscattering (8 = 180°). Therefore, one can go to higher
frequencies in materials that have a high index of refraction

and a low compressibility (large bulk modulus). From the dis-
persion curve one would then be able to find 2 « dvo/dkc, the
group velocity. From neutron spectrometry experiments9 one can
get information on the dispersion curve between roughly 0.2 times
the distance to the zone edge all the way up to the zone edge.
The general shape of the dispersion curve for this region is shown

for the alkali halides in Fig. 2.1.

Since the straight line extrapolation of the ultrasonic data

joins up very well with the neutron spectrometry data one expects
little dispersion in the hypersonic region.

In the experiment described here I have limited myself to
90 degree scattering. Therefore, the frequency shifts of the
scattering in the {110} plane are measured as a function of the
angle y from the <00l> direction. Since i§0| is fixed, the
experimental points fall on a cylinder of radius Ibcl perpendicular
to the {110} plane. This is shown in Fig. 2.2 for potassium

iodide. Voo vT’ and v,, indicate the longitudinal, transverse,

M

and mixed branch, respectively.
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It was pointed out earlier that the sound frequencies are typ-
ically T kMc. Inasmuch as the cutoff frequency of the lattice is
in the 3 x 103 kMc region, we may expect to be in the linear part
of the phonon spectrum and may assume that the velocity is inde-
pendent of the frequency (for a variation in frequency of about
a factor of two). Then, the phase velocity will be equal to the
group velocity, vp = vg = 2vvo/ko. Of course, if there should be
a small amount of dispersion one would not be able to fit the
experimental data to the theoretical curves which have been obtained
with the assumption of no dispersion. This will be discussed more
completely in Chapter IV.

We will now discuss the dependence of vJ on the propagation
direction 50. At the same time the relation between vj and the
three cubic elastic constants Cy19 Cpys and Cip will become clear.

In a cubic crystal we may write the generalized form of Hooke's

law and the matrix of elastic stiffness constants (cim)lO as follows:

Si = g Cim m (2.1)
and
- -
cll c12 ch 0] 0
¢i2 ®11 ‘12 o 0
(e, ) =] 2 12 ‘n © 0o 0 (2.2)
° 0 0 ¢, 0 0
0o 0 0 0 ¢ O
o 0 o 00 ey
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where i, m = 1, +eu., O. €, are the strain components and Si the

stress components,

™
]
o

l
(1]
1

x - du/dx, €5 = = ey = 3w/dy + 3v/3z, etc.

wn
"
>
-
0
"
<
-
wn
n
N
®
ct
0

where the capital letter indicates the direction of the force and the
subscript indicates the normal to the plane to which the force is
applied.

In the kinetic case we must equate the inertial forces
o aeu/atQ. o 32v/at2, o a2w/at2 (o0 = density) to the surface forces,

The equations of motion for the "elasto-kinetic case" are of the form
2 2
p 9 u/3t” = SSl/ax + 386/8y + SSS/BZ (2.3)

and similarly for v and w. Upon substitution of relations for plane

wvaves
u = A1 exp i (K = x = wt) . etc., {(2.4)
into Eq. (2.3) we obtain a secular equation, a determinant determining

the velocities of the three polarizations of waves of the acoustic

branches:
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2 2
c 1@ + chhs a.B(c12 + chh) ay(clg + chh)

. 2 2
CppY =PV

2 2
GB(C12 + chl&) chha + 0118 BY(c12 + chu)
+ chhy2 - ov2 =0
ay(c,, + ¢,,) By(c,, + c,,) ¢ a + e 82 (2.5)
12 Ly 12 Ly Ly Ll *
2
+ cY - ov

vhere p is the density of the crystal and a, 8, and y are the
cosines of the angles which the propagation direction makes

with the x-, y-, and z-axis, respectively. This is treated in
detail in a review article by Jules de Launay, '"The Theory of

Specific Heats and Lattice Vibrations" in Solid State Physics,

Advances in Research and App;icationsll. t was pointed out

before that k_ will always lie in the {110} plane, since we
have limited ourselves to the {110} planes. Let y be the cosine
of the angle which k makes with the <00l1> direction. Obviously,

then

and the velocity determinant (2.5) reduces to:
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2 2
1 2 1~y 1-
> [cll+chh+y (chh'cll)] 5 (c11+chh) Y —51;(c12+chh)
- oV

1-12( 1 2 /1- 2
5 ey *ey,) 3 leprren*y (ey,=eyy)] v/ Tt Lo
: - v
2 /72
J 1l- J 1=y 2
Y / T {epreny) v/ T {eptey,) ety (egy=eyy,)
| 2
% - ov

(2.6)
The three roots of this determinant are derived in the appendix.
They are VT, VL’ and VM :
_ (1 ,1/2 2 1/2
ve (¥) = [291 [e)) = oqp * Y (2 ey +cypy = cqy)] (2.7)
and
1l ,1/2 2
VI.‘, M (Y) [ D] [14 chh + cll + C12 + Y (cll - 2 c’-&h - Cl2)
(+’ -)
+
- ((cll + c12) + (2 ¢y, + ey, - cll)[Y (8 ¢y +1bc ,+ 6 cll)
S 6 ey + 15 ey, + 9 oI 1IRIYR (2.8)
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where T, M, and L are the branch indices (referred to previously
by 3 =1, 2, 3). T, M, and L indicate respectively that <e are
dealing with a completely transverse mode, a mixed modi, and an
almost completely longitudinal mode. The longitudinal mode in
Eq. (2.8) corresponds to the plus sign, the mixed mode to the
minus sign. The curves obtained by plotting Egs. (2.7) and (2.8)
as a function of y are shown in Fig. 2.2 for KI.

By using Eqs. (2.7) and (2.8) one can get the useful relation
between the three velocity roots for any direction in the {110}
planes (this is true for a wave-triplet in any direction):

E: 2 2,

Y ov e (vl v, 4w
Wy T M L

=cyy + 2 ChLy
Egs. (2.7) and (2.8) reduce to simple formulas along the <001>,

<110>, and <111> direction. These velocities along with the corre-
sponding polarizations of the modes are presented in Table I. In

these directions, L is completely longitudinal, T and M are com~

pletely transverse waves., &Vis the polarization vector of the waves
with comporents Ax’ Ay, and Az. It is a unit vector. The fact that

in the <001> and <111> directions éM and AT can be any two perpendicular
unit vectors in the plane at right angles to 5L is satisfied by using
the variables S, M, and N in Table I which are arbitrary except for

the constraint on their magnitude noted in Table I.
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2.2 Dependence of the velocity of propagation on the elastic constants

To obtain the best experimental values of the three cubic elastic
constants inherent in the data we would like to find out how sensitive
the velocity is to changes in cll’ chh and c12 in the different
directions of propagation. Consider Eq. (2.8). Since we are interested
in the producticn of an error in the velocity by an error in the three

elastic constants, we will investigate the following derivative:

% vy (v) a(1ln vL(y)] ey avL(Y)
M - M _ M
% dcyy (v) = 3lln e, ] T v (Y) se, (2.9)
M

Then, the larger (% av (y)/(% Acll)' the more sensitive the velocity

is to a change in cll' Clearly, if we want to determine the elastic
constants to good precision we should make use of the directions where

(3 In v (y))/(3a 1n cij) is a maximum. In Figs., 2.3 and 2.4 the quantities
(3 In v (v))/(3 1n cll)’ (3 1n v (¥))/(3 1n ¢ ), (3 1n v)/(3 1n c12)'
and (3 1n v (v))/(3 1ln c) are displayed for the longitudinal root and

for the mixed root as a function of y (c = 2 cyy * c12)' The figures
clearly show where the velocities are most sensitive to each of the

three elastic constants. Consider Fig. 2.3. If we wanted to extract
information on the elastic constants from a few directions of propagation
using the longitudinal branch only, we would choose y = cos (0°), for

since v (0°) depends only on ¢+ ©p cen be obtained from

€11° 12

v (55°) provided we know cL and vice versa. Starting values for the

three constants were obtained from these angles, Better values were
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obtained by means of a least root mean square fit to the data.
This will be discussed more fully in Chapter IV.

By studying Fig. 2.3 one realizes that cll can be determined to
2% for an error of 1% in VL(Y) if just one data point (0°) is used.

Since the sensitivity of VL (vy) to ¢ never drops below 1/4 in the

11
{110} plane, one can see that a least root mean squares fit should
improve the accuracy in cyq substantially, apprcximately by a factor
of VN for N data points, provided, there is no dispersion. Fig. 2.3
indicates that ¢y cen be obtained to fairly good accuracy but even
the least squares fitting procedure will not improve the accuracy of

very much, since v_ (v) is significantly dependent on c,, only

€12
between 50 and 60 degrees, and hence, only two data points are
effective in determining Cype The significance of the effective

elastic constant ¢ = 2 cpy * ¢ 5 will be discussed in Chapter IV,

1
One might think that the partially transverse branch VM would

yield better results for c and Chye However, this branch was

12
observed only for longitudinal admixtures greater than 20%. This
corresponds to the region between y = cos (25°) and y = cos (ks°).,
Since the precision in locating the position of this root was worse
than that in locating the position of the longitudinel root, it would

seem that nothing is gained in trying to get information on i p and

c)), from vy. This point will be clarified in 4.2,
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2.3 Polarization of the phonons

It is important to know something about the polarization of
the phonons, since only the longitudinal part of the polarization
will contribute to the scattering. This can be understood in &
rudimentary way by realizing that the light is scattered by local
fluctuations in the density of the medium. Since a transverse wave
will cause no first order changes in the density of the medium, we
expect scattering only from longitudinal phonons.

Clearly, the polarizations for the three roots of the velocity
determinantal equation as & function of y are of considerable interest.
These, of course, are just the eigenvectors corresponding to the
eigenvalues im? Voo and VL' A derivation is given in the appendix.
Only the results will be presented here. We define the polarization
vectors as unit vectors A = (Ax’ Ay, Az). The polarization for the

transverse wave with velocity VT is
An = (1/v2, - 1/¥2, Q) (2.10)

This polarization is transverse, perpendicular to the z-axis, i.e.
always perpendicular to the propagation direction for waves in the

{110} planes. For v, and vy Ve have

Ap = (1, 1, P (v))

M M /2 + 2.2(y)

(2.11)
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where

vy v 2 (1~ Y2)(012 + chh)

P (y) = (2.11)
L v e, + 2 (e -c..)
M oV = Sy T Y Lk 11
M
and ‘LPM = - 2
We will define percentage of longitudinal admixture as
Atk
%L = 100 x —TE—
Hence
gn. = —=200 (/o(1 - v2) + yP) (2.12)
L —5" L
M V2 + P M
L
M

The percentage of longitudinal admixture is displayed in Fig. 2.5

for

¢yp = 2.68
_ 11 dynes
¢ip = O.lk x 10 __xn_z_
cm
ey 0.39 |

o = 3.13 gm/cm3.

These numbers are approximately correct for potassium iodide.
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Chapter III

EXPERIMENTAL SETUP

3.1 Description of the equipment

3.1,1 Optical equipment

The experimental setup is shown schematically in Fig. 3.1.
A Spectra-Physics 10 milliwatt helium-neon laser (Model 115) is
used as source of the incident radiation. The actual power entering
the sample varies between 8 milliwatts for multimode operation and
2 milliwatts for uniphase operation of the laser. By use of the
spectrograph it was determined that this laser power is concentrated
into a 1 kMc wide spectral line at 6328 Z (the resolution of the
spectrograph is about 600 Mc). The light leaving the laser with an
angular divergence of less than 10 arc minutes is reflected up
vertically by the prism P (see Fig. 3.1) and is focussed inside the

sample by means of the short focal length lens L The barely

1.
visible line of scattered light inside the sample, varying in diameter
between approximately 0.05 mm and 0.5 mm, is then focussed onto the

entrance slit Sl of the spectrograph by the 25 cm focal length lens L2.

Best placement of the sample and the lens L_, is determined by two

2

requirements. On the one hand one waants to send & maximum amount of
scattered light into the spectrograph within a cone whose solid angle

is determined by the aperture of mirror M On the other hand, since

l.
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one is considering 90 degree scattering only, one wants to arrange
the crystal and the lens L2 such that a minimum of light scattered
at angles other than 90 degrees is admitted into the spectrograpn.

Let us look at the first requirement. So that the grating may
gather a maximum amount of scattered light, the light beam entering
the spectrograph should ideally be ccneshaped with solid angle
3.4 x lO-h sterradians. Actually, at high angles of diffraction
the projected width of the grating is substantially smaller than
the diameter of mirror Ml, and the solid angle will be correspondingly
smaller. The basic area of the grating is 5" x 10" and the projected
area of the grating is 5" x 10" x cos 6, where 6 is the angle at which
the grating is being used, Hence, the width of the incident beam
should be 10" x cos & and the height of the beam 5 inches. 1In this
experiment the grating was used at T2 degrees corresponding to a
solid angle of 2.2 x 107 « 0.309 sterradians, i.e. 0.68 x lO‘h
sterradians. Since the light entering the spectrograph has to pass

through the entrance slit S the requirement on the solid angle of

1?
the entering beam is to be interpreted as follows. In the horizontal
plane the width of the beam inside the spectrograph is determined by
the diffraction pattern due to the slit., Therefore, ideally, the
entrance slit should be chosen such that the first diffraction minimum

on either side of the center will fall at the edge of the projected

grating area, Using this criterionsthe ideal slit size is given by

S1it width = fA/(2W cos 6)
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where f is the focal length of the spectrograph, W is the width of
the grating (10 inches), and 8 is the grating angle. Hence with a
10 inch grating used at T2 degrees in a 1208 cm focal length spectro-
graph the ideal slit size would be 0,05 mm. In practice it is found
that bigger slits have to be used for intensity reasons. As a matter
of fact, in this experiment, a 0.25 mm slit had to be used throughout.

In the vertical plane the solid angle requirement can be satisfied
by use of a lens L2 which will give just the right divergence. The
solid angle of light picked up can be changed by moving the crystal
with respect to the lens L2, whose focal length has to be chosen properly
for every case, of course, so that the scattering line is focussed on
the entrance slit. But another constraint enters. Inasmuch as the
scattering line is focussed onto the entrance slit, light is lost unless
the projected image has the size of the slit or is smaller, Since the
width of the slit is 0.25 mm and the diameter of the beam roughly
0.1 mm in the case of good alignment, one needs a magnification of
about 2.5. Use of a field lens directly in front of the entrance slit
vas not successful.

In eligning the optical system one has to remember that
optimization of the solid angle of scattered light admitted into lens
L2 and best position as far as projection size is concerned, conflict,
This can be understood quite simply. As the sample is brought closer
to lens L2, while at the same time the lens is moved further away from

the entrance slit, the solid angle of scattered light admitted into

the spectrograph is increased. At the same time, however, the
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magnification increases and the image of the scattering line on

the entrance slit becomes so big that a lot of light does not get

into the spectrograph., If we call the (slit Sl - lens L2) distance

p and the (lens L, - sample) distance q, (see Fig. 3.1) the magni-
fication is given by M = p/q when the scattering line is focussed

on the slit. Let us call the solid angle of light admitted into

the spectrograph Q. Then, the solid angle picked up by the lens L2

and arriving at the mirror Ml is Q' = Qpe/q2 = Q(p - f)2/f2 for

a lens of focal length f. We want to choose the position of the lens
L2 and that of the sample so that the projected image of the scattering
line on the slit is barely larger than the slit, so that we get a
clean-edged source. For a scattering line of 0.1l mm diameter and

1.0 cm length a magnification of 2.5 will yield an image 0.25 mm in
diameter and 2.5 cm high. But this is exactly the size of the entrance

slit. This is why the distances p and q were chosen in the ratio 10 : 3

as indicated in Fig. 3.1. The focal length is then obtained from

f:-—PA—

el One must ask whether it would be profitable to increase

the magnification further thus preventing a substantial amount of
light focussed on the entrance slit from entering the spectrograph,
but maybe increasing the solid angle accepted by lens L2 sufficiently
to overcome this loss. For example, if the magnification is increased
by a factor of 2, only one fourthof the total light focussed onto

the entrance slit enters the spectrograph. On the other hand the
solid angle seen by lens L2 increases by a factor of L, roughly

speaking. Actually, this is strictly true only for asdlit of small
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height. For the slit of 1 inch height used in this experiment
the total solid angle of light picked up by the lens L2 is smaller
than indicated above. A good compromise position for lens L2
and the sample can often only be found by experiment. A panel of
six auto bulbs was constructed to fit over mirror Ml' With this
it was possible to follow backward the six beams emerging from the
entrance slit (each one due to one of the six bulbs), falling onto
lens L2 and being focussed as a line image of the slit inside the
sample. This was very useful in the alignment, especially in the
case of KCl where intensities were low.

It was explained before that the solid angle of scattered
light seen by the spectrograph is roughly Q' = p2/q2Q . Wor
p/q = 2.5 this is approximately 4.3 x 10‘“ sterradians, where
Q = 0.68 x 10‘“ sterradians. Since the spectrograph accepts only
a very small solid angle of the incident radiation about 90 degrees,
the spectrograph sees mainly light scattered at 90 degrees. However,
light is admitted through the circumference of the lens L2 which
vields a maximum deviation of the scattering angle from 90 degrees
of about 3 degrees. It is easy to show that for 90 degree scatter-
ing Av = (v/2) 46 where Av is the frequency broadening associated
with an acceptance angle A8 centered about 90 degrees. Therefore,
the total lineshape will be a convolution of the instrumental line
shape, the shape due to the slits, the natural line shape and the
broadening due to a large acceptance angle. This latter broadening

for an opening angle of 6 degrees will be about T80 Mc for KCl,
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580 Mc for KI, and 640 Mc for RbCl along the <COl> direction.
Since the sample is centered with respect to the spectrograph,
this distribution about 90 degrees should be completely symmetri-~
cal., The expected natural width of the Brillouin components
broadened by the above amount in frequency is not observable in
this experiment, since the biggest contribution to the line shape
was the rather wide 0.25 mm slit size (1.5 kMc),

The M,I.T., 1208 cm focal length grating spectrograph was used
for the experiment with grating # 97, a 5" x 10" echelle with
300 lines/mm, blazed at 63 1/2 degrees (‘can-l 2). The order of
the spectrograph components is that of the "uncrossed" Czerny-
Turner arrangement known for low astimatism, In this mounting a
parallel beam of light impinges on the grating and the parallel

diffracted beam is focussed by mirror V¥, in its focal plane.

2
The grating used in the experiment is one of the best ones ruled

at M.I.T. under interferometric control. Unfortunately, it produces
a sharp satellite, whose intensity is roughly 1% of the parent line
intensity, on the low wavelength side of the spectral lines. This
satellite is probably caused by a "satellite grating", i.e. an ex-
tended area of the grating where the rulings are displaced collec-
tively from their proper position. The probtlems caused by this
satellite and their solution are discussed in 3.2.2. The grating

is used at an angle of about 72 degrees in auto collimation (angles

of incidence and diffrasction are nearly equal) and in the tenth order.

Since the grating is blazed at 63 1/2 degrees, it would have been
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advantageous to use the grating at this angle. The grating is most
efficient near the blaze angle and grating defects are less bother-
some at this lower angle, Some preliminary experiments were done
which indicated that at 59 degrees (ninth order) the efficiency was
L0% as opposed to only 7% at 72 degrees. Nevertheless it was
vreferable to work in tenth order, since the dispersion is greater
and alignment of the large slits and accuracy of the exit slit
drive is not as critical as it would be in ninth order.

The diffracted light beam falls on the exit slit 82. This slit
is mounted on a carriage which can be driven horizontally along the
focal plane of the spectrograph by means of a variaeble speed drive,
The slit moves across the surface of a stationary vhoto-multiplier
tube (RCA 7265, S=20 surface) which produces small anode currents
proportional to the intensity of the impinging light.

3.1.2. Electronics

The anode current from the photo-nultiplier tube is typically
of the order of 3 millimicroamperes. This small current is ampli-
fied by a Hewlett-Packard 425 A d.c. amplifier., Its output is
further amplified by a transistor amplifier used mainly to match
the impedance of the strip-chart recorder., It is possible to buck
out the d.c. part of the dark current of the photo-multiplier tube
by means of a direct biasing circuit. This enables one to use the
d.c. amplifier on a more sensitive scale. An integrating network
is supplied vetween the transistor amplifier and the strip-chart

recorder allowing integration times between 0,3 and 30 seconds.
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3,1.3 S=ample holder

In preliminary experiments it was found that there is a lot of
extraneous scattering from the surface of the crystal at the
locations where the laser beam enters the sample and where it
leaves the sample. This scattering is detrimental because part
of the scattered light will enter the spectrograph and give a
strong signal at the laser frequency. In bad cases this signal
can be five hundred times as strong as the Brillcuin components.
Even though the half width of the line at the laser frequency
will only be 1.5 kMc, there will be quite a bit of signal left
10 kMc away from the center of the unshifted line. This will
completely swamp the Brillouin components. A highly polished
finish will reduce this scattering substantially. IHowever, even
with a good surface polish, the sample can be used only in those
positions in which the beam enters and leaves the sample perpen-
dicular to a surface., In addition the intensity of the scattered
light seen by the spectrograph is reduced considerably unless the
surface through which the scattering is observed is almost
serpendicular to the observation direction. It would seem necessary
that the sample has to be recut many times to enable one to cover
21l propagation directions in & certain set of planes, the {110}
planes in our case. In addition, the alkali nalides present anotner
oroblem, They are hydroscopic and crystals tend to get clouded
surfaces rapidly in humid surroundings. This increases the unwanted
scattering at the frequency of the incident radiation by an intolerable

amount .
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As a solution to both these problems Prof. G. B. Benedek
suggested that the samples could be submerged in a mixture of
liquids which matches the index of refraction of the particular
crystal under observation. After a few preliminary experiments
it was found that it is indeed possible to match the indices of
refraction of some of the alkali halides well enough so that just
one cleaved crystel of each material can be used for observation
of the Brillouin spectrum for any vpropagation direction. It was
determined that small surface imperfections can be tolerated and
that, as long as the surfaces are smooth, a general wavyness does
not cause any problems. Liquids used to match the indices of
refraction were diiodomethane, toluene, and methanol with indices
of refraction 1.76, 1.50, and 1.33, respectively. The proper
mixture was found by the following procedure, KI, for example,
nas an index of refraction 1.66. The sample was submerged in
diiodomethane (methylene iodide) with index of refraction 1.76.

A large diameter diverging laser beam was sent through the cube-
shaped crystal along its body diagonal. There were then five spots
visible on a piece of paper some distance away from the sample,

since there was the undeflected part of the beam going through the
two corners lying on the body diagonal that is being used and the
four beams refracted in going through the faces of the cube. The
second liquid (toluene, in the case of KI) was added slowly ty means
of a hypodermic and the mixture was stirred from time to time. After

the constituents had mixed, the spots were observed. This was
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continued until only one spot could be seen, at which time all
parts of the incident laser beam passed through the crystal
undeflected. If one wants to start with an approximate mixture

one assumes that the refractivity of the mixture (nm - 1) is equal
to the sum of the refractivities of its pure constituents

- 1l; n_ - 1) each multiplied by the ratio of its mass per unit

1 2

volume of the mixture to its own density when pure. We have

{n

n -1=(n

n 1 - 1) MI(Vbl> + (n2 - 1) M2/(V02)

where M, and !, are the total masses of the constituents, V is the

1 2
total volume of the mixture and ol and 02 are the densities. Since
=M = M = i i
0y Ll/Vl, 05 M2/V2, and V, + V, = V for a mixture, we find

Vl/V = (nm - n2)/(nl - ng).

rrom this we find the approximate mixtures for the three crystals

treated in this thesis:

Crystal index of refraction % Vl 7 V2
XCl 1.488 93% toluene 7% methanol
I 1.661 02% diiodomethane 38% toluene

RbCl 1.h492 95% toluene 5% methanol
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As the proportions are temperature dependent and as the liquids
evaporate at different rates, it was found more convenient to deter-
mine the proportions experimentally. By just adding a few drops
at a time it was easy to obtain a vroper mixture and to replenish
evaporated liquid.

A sanple holder was constructed which makes possible observation
of elastic waves in the {110} planes with one cleaved sample of the
compound being investigated (see Fig. 3.2). There are two advantages
in using a cleaved sample rather than one cut at some angle with
respect to the cleaved planes: i) cleaved crystals are easily ob-
tainable, ii) with a cleaved sample there is no question as to the
angle of the faces and the direction of the <100> axes (usually the
cleaved angle is within 20 minutes of arc from the <100> axes ).

3,2 Limitations of the equipment

3.2.1 Alignment procedure and discussion cf errors

Limitations in the accuracy and precision imposed by the equip-
ment and/or the operating procedure can be best understood by dis-
cussing the zlignment procedure,

1) Alignment of the incident bpeam. - First it was determined
with the aid of the laser and a precision level that the plane of
“he spectrograph comprising the entrance slit Sl’ the exit slit S2,
the grating and the two spherical mirrors Ml and M2 (see Fig. 3.1),
was horizontal. The laser was then adjusted by means of the
precision level until the laser beam fell into a plane parallel to

the plane of the spectrograph. The laser beam was then reflected
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back into itself from the face of the prism P by rotating this
prism, This automatically lined up the incident beam perpendicular
to the spectrograph plane, as it should be for 90 degree scattering.
In addition, the verticality of the laser beam was checked with a
9 foot plumb line, After these two adjustments the location of
the spot formed by the laser beam on the ceiling (9 feet away from
the ;ample) was marked., The lens Ll was introduced into the beam
and adjusted using a pair of micrometers until the beam followed
its original path and hit the marked spot on the ceiling.

Due to the fact that the beam now left the sample diverging

rapidly because of lens L this last adjustment introduced some

l’
error in the scattering angle. The uncertainty in placing the spot
on the ceiling correctly was roughly 0.5 inches over a distance of

9 feet corresponding to an uncertainty in the scattering angle of
about 0.3 degrees, This is equivalent to an error in frequency of
about 0.3%.

2) Alignment of the sample holder. - The sample holder was first
made horizontal with the aid of the precision level. Then, the
glass front surface of the sample holder (see Fig., 3.2) was lined
up perpendicular to the spectrograph in both the horiéontal and
the wvertical planes by reflection of a laser beam off this surface.
This laser beam had been aligned previously to follow the entrance
axis of the spectrograph, defined by the entrance slit Sl and the
mirror M, in Fig. 3.1l. The maximum error in this adjustment was a

1

displacement of the reflected beam amounting to 3 inches in Ls reet,
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i,e. an error in angle of about 0.2 degrees. This is small
compared to some of the other errors introduced and can be
completely neglected.

However, a systematic error was introduced at this place in
the procedure by the fact that the edges of the sample were not
aligned completely with the indicated O degree and 90 degree
directions on the protractor. This was caused by machining
problems. Correction for this "zero-error" was simple, since the
correction angle could be measured by letting the aligned laser
beam graze the sample and by determining when a sample face was
parallel to the beanm.

A more serious problem arose when the sample was removed during
the experiment. Conceivably it might not have been seated properly
when it was replaced. This possibility was eliminated by rechecking
some angles for agreement, If the agreement was satisfactory, it
was assumed that the crystal had taken up its original position.
The sample had to te removed more or less regularly because the
liquids had become discolored or dirty. Although the mixed liquids
nad been cleared of any water by use of some potassium metal, water
seemed to be taken up by the mixture after some time. If this was
not removed by use of some potassium, the sample started clouding
over, It was found that the sample could be wiped with pieces of
cotton under the liquid and partially cleaned. 3But the treatment
with potassium and the cleaning procedure introduced small specks

of dirt and potassium metal into the liquid. In the case of KI,
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diiodomethane had to be used. This liquid becomes discolored
after exposure to light.

3) Maximization of intensity. - Whenever the lens L2 was
adjusted to maximize the intensity of the Brillouin components,
the angle at which the spectrograph observed the sample was changed
slightly in the horizontal plane, If the scattering line originally
was not quite in line with the spectrograph axis defined by slit Sl
and mirror M,, then, the lens L2 could be moved in the horizontal
plane to maximize the intensity. In this case, the light passing
through the lens would be refracted slightly and although one is
still observing 90 degree scattering, 55 instead of being in a (110}
plane might be slightly awey from it causing 50 to fall just out-
side a {110} plane. Let us compute the possible error. At the

start of the experiment, L. was removed and the laser was moved

2

until the incident beam coincided with the spectrograph axis defined

by slit S, and mirror Ml' The lens L, was then revlaced and moved

1l 2

until the scattered light went into the spectrograph undeflected,

So far everything was lined up properly. But in some runs the lens
L2 had to be moved off the spectrograph axis to give maximum inten-
sity. In that case the scattered light was (a) refracted in going
through the glass window and (b) refracted in passing through the
lens L2. Let us assume the biggest displacement c¢f the lens from

the dead center was no more than 3 mm, Since this lens was separated

from the sample by about 30 cm, the corresponding change in angle

was 0.6 degrees. Because the index of refraction of the liquid was
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typically between 1.4 and 1.7, this angle was reduced to 0.3
degrees measured from the perpendicular inside the sanple upon
crossing the air-glass-liquid boundary. Since the slope of the
velocity versus direction of propagation curve is never steep,
this error is not important. The adjustment was only necessary
in a few cases, where the intensities were rather low and best
geometrical alignment had to be sacrificed for alignment for
maximum intensity. We may assume then that the error of 0.3%
due to the error in the sine of the scattering angle dominates
all the other errors except the zero-error of the sample position,
for which one can correct.

4) Calibration of the spectrograph. - The object of an accurate
calibration of the spectrograph was to find an accurate value for
the dispersion dv/ds of the instrument, where dv is the shift in
wavenumbers (V = 1/).) and ds is the corresponding displacement along
the focal plane in mm. For the calibration we tried to use two
spectral lines falling within the scanning range of the exit slit
drive. However, this was made difficult by the fact that at 6328 X
in the tenth order the scanning range of the drive covers only about
three to four Cm—l. Finally, two neon lines were found which fall
close together, one lying in the ninth order and one in the tenth
order.

Using these two lines for calibration purpcses proved unwise,
nowever, for the following two reasons:

a) The lines fall so close together that accuracy in the wave-

length difference between them in tenth order is not good, inasmuch
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as one is subtracting two large numbers differing only in the last
four decimal places.

b) The lines fall into two different orders. Since line pro-
files vary sharply in different orders, the maximum of a line can
shift to a different wavelength in different orders. Hence, one
can expect a discrepancy in wavelength measurements if standards
from a lower order are used to derive higher order wavelengths.

To get a correct value for the dispersion we replaced the .
photoelectric equipment by a photographic plate covering mi from
63200 Z to 63380 K , Where m = order, A = wavelength. In this
wavelength range eight neon lines produced by a 60 cycles a.c.
neon discharge at L4000 volts were photographed. A traveling
microscope was used to find the accurate distances between various
linesAalong the plate. The average of ten readings for the distance
between each pair of lines was used in the calculations. The
following wavelengths, determined interferometrically by Burns12

were used for the photogrephic calibration:

7024 ,0500 Z 9th order
5748.2985 A 11th order
L865.5009 R 13th order
3515.1900 Z 18th order
©328.16L6 Z 10th order
7032.4127 Z 9th order
6334.4279 A 10th order
3520,471L A 18th order



- 53 =

Since the instrument was to be calibrated in the tenth order,

all other order lines appearing above will give rise to errors,
the error in wavelength being bigger as the order is higher

(lower wavelength). Since errors introduced in this way can

vary from 0.001 X to 0,01 Z depending upon the quality of the
grating, only the two lines in the tenth order were used. To a
good approximation Av/As given by these two lines will be the
slope of the dispersion curve at the midpoint, i.e. at 6331,2962 Z.
By use of the grating formula the quadratic part of the dispersion
was found and using this correction the slope d¥/ds at 6328 Z was
found. This slope was used as linear dispersion in eveluating

the experimental results. The error incurred in using a linear
dispersion formula is approximately 0.08 % / em™! near 6328 X.
Since the biggest shifts measured in this experiment were about
lcm ~, we are justified in using the linear dispersion formula.

To double check on this procedure a quadratic dispersion curve
was fitted to all the spectral lines given abcve using the theoreti-
cal quadratic term and the linear slope at 6331.2962 R found from
the two lines in tenth order. The position of the lines agreed with
the predicted position within the 0.0l K error limit set by use of
"other order" lines.

It should be mentioned at this point that both exit slit carriage
and photo plate were aligned perpendicular to the light beam dif-
fracted by the grating into the tenth order by reflection of the

laser beam back into itself. The reflecting surface consisted of &



- S4 -

small mirror mounted onto the exit slit in the one case and of
the front surface of the photo plate in the other case. The error
caused due to misalignment here was certainly less than 0.1%.

The results of the calibration measurements are:

a) Calibration obtained from photoelectric scanning

dv/ds = (0.2036 + .0010) em™t /mm
b) Calibration obtained from the photo plate
dv/ds = (0,2040 + .0005) cm™t /mm

The photoelectric calibration is based on the assumption that the
two neon lines used are known in wavelength to the indicated accuracy:

ile I T032,4127 + 0.0001 X recorded in the 9th order

Ne I  ©328.1646 + 0,0001 Z recorded in the 10th ordert?,
Since we are interested in the tenth order spectrum, the effective
wavelengths and accuracies are:

Ne T ©329.1714 + 0.0010 K (= 0.9 x 7032.4127 Z)

e I 5328.16L46 + 0.0001 Z
The error of 0.0010 Z is assigned to the 7032 R line as an estimate
of the possible error introduced by using lines of different orders
for calibration purposes. Although the error can amount to almost
0.01 Z in the worst case for average quality gratings, it should bde
much smaller for the exceptional quality grating employed in this
experiment, especially, since the two calibration lines were in
adjacent orders,

An error of 0.,25% is assigned to the photo plate calibration to

take care of errors induced by the roughness in the driving screw.
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This fluctuation was measured by using a dial depth indicator to
measure actual displacement of the slit versus number of turns of the
driving screw.
The value of the calibration used to evaluate the frequency
shifts of the data was that obtained photographically, i.e.
dv/ds = (0.2040 + .0005) cm'l/mm (0.25% accuracy)

3.2.2 Improvement of the signal to noise ratio

In the search for good data two problems appeared:

1) Low signal to noise ratio due to extremely small anode
currents.

2) Too much signal at the frequency of the incident radiation.
The two problems are related and will be treated at the same time.

The easiest way to improve the signal to noise ratio would
have been to employ a more powerful laser, inasmuch as the noise
originated mainly in the photo-multiplier tube., A 30 milliwatt
laser was therefore used. !owever this particular laser could only
be operated in a configuration giving a beam with a non-spherical
wavefront, It was found that

a) there was no gain in signal, since the beam cannot be
focussed well enough inside the sample thus giving an image pro-
jected on the entrance slit which is many times bigger than the
entrance slit with consequent light losses (see 3.1.1) and

b) scattering from inclusions was increased due to the rapid

divergence of the beam resulting in a wide central line.
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It should be remarked that no chopping was used and the phototube
was not cooled. Larger integration times combined with slowver
sweep speeds would undoubtedly have increased the signal to noise
ratio., However, it was not feasible to modify the equipment to
obtain slower speeds. In addition, it would have taken an un-
reasonable amount of time to record the spectra.

The second problem to be discussed is that of the wide central
unshifted component of the spectra, After the first few traces
had been recorded it was noticed that the central line showed
pronounced asymmetry on its wings. It should be pointed out that
for most of the traces the Brillouin components had an intensity
roughly 1 to 2% that of the unshifted line, The line shape produced
by the grating was examined closely by looking at the laser output
directly with the spectrograph. The line shape obtained with a
0.25 mm slit under conditions duplicating those existing at the
time of the experiment is shown in Fig. 3.3. In addition to the
evenly spaced Rowland ghosts one can see a strong (approximately
1%) satellite on the low wavelength side of the line. The ghosts
are spurious lines produced by periodic errors in the ruling
approximately 1/500 as intense as the parent line while the
satellites are spurious lines produced by non-periodic ruling errors,
approximately 1/100 as intense as the parent line. In addition, often,
15% of the total intensity goes into grass, scattered light which is
not focussed into distinct lines but is spread around the parent lines.

This is also caused by noneperiodic errors in the ruling.
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For comparison we find from the intensity formula for the

Fraunhofer diffraction pattern from an ideal gratingl3

T« (sin2 0] c>)/(sin2 é) (3.1)

that the secondary maxima next to all spectral lines occur

approximately at distances As, from the center of the parent

ks

line

1 D)
= = + ——e (3.2
as, = 5 (2k 1) = e (3.2)
where k = 1, 2, 3, teeeey « = width of the ruled grating area
o
and 9 = grating angle, Of course, the factor ;—é%;—a is Jjust

the helf width of the principal maximum. This is €00 Mc, i.e.

the resolution limit of the grating. Hence the first few secondary
maxima fall quite close to the parent line, approximately 900 Mc,
1.5 i, and 2.1 kMc away from the center. Using Eq. (3.1) the
ratio of the intensities of the secondary maxima to the intensity

of the parent line can be written as

- .2 ,

I sin 4 ¢

secondary _ sec.

T . T2 L2

primery ¥ sin ¢

= sec.

2k + 1 2

T = 3 = I8 1 > = 1
vhere asec. LT s K 1, 2, 3, +ee. Hence, sin U ¢sec. 1

for all Qsec and since ésec is very small here we may approximate
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. 2 _ 2 _ 2 (2k + 1)2
sin ¢ =9 =T —————— .
sec., sec. 2H2

of the intensities is approximately

Therefore, the ratio of

I
secondary _ i

=
“orimary n2 (2k + l)2

The locations of the first secondary maxima in relation to the
primary maximum are given here with intensities relative to the
varent line in parentheses:

Q0 Mc (1), 900 Mc (0.05), 1.5 kMc (0.02), 2.1 kMc (0,008).
In comparison, the satellite occurs at 3 kMc (0,01) and the
orimary ghosts shown in Fig. 3.3 are located at 7.2 kiic (0.002).
At 5.9 kMc the secondary diffraction meximum has a relative in-
tensity of only (0.0008). It is seen that the diffraction pattern
is relatively unimportant as far as the lineshape 1is concerned and
that the ghosts and the satellite are stronger than the secondary
maxima of the diffraction pattern.

The satellite seen in Fig. 3.3 may be especially pronounced
vecause the grating was used at 72 degrees in auto collimation,
well in excess of the 64 degree blaze angle, Masking and refocussing
did not improve matters substantially. In addition to this satellite
there were other factors responsible for the broad central line.
Amongst these one should mention the presence of crystal inclusions,
a bad matching of the index of refraction of the liquid mixture and

the crystal, use of contaminated liquids and use of badly mixed
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liquids. Contamination of the liquids was discussed before.

If the mixture hzd been left for a few days it was found
necessary to stir it to mix the components well., Evidently

the liquids used did not mix well, Contaminated and badly mixed
liquids are bothersome in that particles floating around or
density fluctustions in the mixture change the intensity of the
light seen by the spectrograph whenever they occur in the
incident or scattered beam, therefore making the signal to noise
ratio low. It was found that to obtain good traces of the
spectra the following points had to be followed closely:

1) A crystal as free from inclusions as possible should De
used.

2) Care should be taken in minimizing the dark current and
dark current fluctuations in the phototube.

3) The liquids used for matching the index of refraction
should be filtered and the sample must be handled so that it will
not pick up any moisture.

L) 1In some cases it is preferable to operate the laser in the
nemispherical configuration yielding a uniphase wavefront so that
the incident beam is very small in diamter and the number of in-
clusions illurminated is a minimum.

5) Alignment of the system and maximization of the intensities
has to be done very carefully.

3.2.3 Processing of the traces

There was no real problem in resolving the Brillouin components
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due to the heavily longitudinal waves. The completely transverse
waves were not observable, However, the mixed modes presented a
oroblem. The grating satellite mentioned before fell between the
partially transverse peak and the central peak making it difficult
to resolve the mixed mode on the low wavelength side of the line.
Tn RbCl it was possible to lower the central line intensity
sufficiently so that all five peaks were resolved. However, in KI
there was too much scattering from inclusions and the Stokes com-
oonent was not resolved. In XCl, intensities were so low that the
ghosts actually masked the mixed modes., However, by taking a trace
of the line shepe of the incident laser line directly using the
oroper integration time and by subtracting this line shape from the
unresolved traces, both partially transverse 3rillouin peaks were
clearly resolved in XI and FbCl (see Fig. 2.4). This tedious
subtrection procedure was used on all traces which showed mixed
mode peaks.

3.2.4 Data processing

Generally about ten traces were taken for every data point with
a maximum number of twentyfive traces for data points yielding low
precision. The ten to twentyfive traces for each angle were averaged
and their root mean square error was calculated. Ffrom the frequency
shifts found in this manner the velocities were found by use of
Zq. (1.6). The error due to the uncertainty in the scattering angle
was included here along with statistical and calibration uncertainties.

The indices of refraction and the densities at the temperature at
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which the experiment was carried out were calculated from values

given in Landolt-B8rnstein, Zahlenwerte und Funktionenlh and in

the International Critical Tablesls.

3.2.5 Determination of the elastic constants

Starting values for the elastic constants were obtained from
the velocities in a few directionswhere the velocities are most
sensitive to a particular constant (outlined in 2.2) and from
literature values of the constants in the ultrasonic region. A
set of from six to ten values for each constant around the starting
values was made up. An IBM TO9 computer was programmed to comvute
the root mean square deviation between the experimental velocities
and the theoretical curve for all possible combinations of the
elastic constants contained in the set mentioned above. After a
rough minimum of the root mean square deviation had been located,
the finesse of the grid of elastic constants was increased.

Some problems encountered in this procedure will be discussed
in the following chapter., Finally, the theoretical curve was

plotted using the "best'" values of s Sy and c,, as found by
4

12

the computer. The experimental values are then shown in comparison.
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Chagter IV

RESULTS

L,1 Introduction

The Brillouin spectra for the three alkali halides
potassium chloride (KCl), potassium iodide (XI), and
rubidium chloride (RbCl) were recorded as a function of
propagation direction in the {110} planes. Some of the
qualitative features of the spectra can be explained by
considering the lattice sizes and physical constants of the
crystals.

The three crystals are cubic of the WaCl type with

5

space group 0h

- m3m. The molecular weights, densities,
indices of refraction, lattice constants and compressibilities
are listed in Table II, There are four molecules per unit
cell in each of the three crystals, The crystal structure

is shown in Fig. 4.1,

The intensity of the light scattered by the adiabatic

fluctuations in the density can be written in the form
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INTERIONIC DISTANCE (~3.5 A)

LATTICE - A~ ~
CONSTANT =

IN RbCI, KI, and KCI

FIG. 41 CRYSTAL STRUCTURE OF THE
ALKALI HALIDES
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where € is the dielectric constant, p the density, and Ss the

adiabatic compressibilitylé. If one assumes that (————-—g Jl'g z

for the three crystals, the measured ratio of the intensities

) v 1

in KI: RbCl:KCl (2 1/k : 1 1/k : 1) agree fairly well with the
intensities expected from Eq. (4.1). This is explained more
fully in 4,5. The crystals with higher compressibility will
be softer and have smaller sound velocities, since

3, = /(o v2(1)) = e o (v) (4.2)

f

where Copr is the effective elastic constant for a particular

direction of propagation. c is defined by Eq. (4.2). For

eff
example, the sound velocities of longitudinal waves in the <00l>
direction are found to be 2980, 3650, and 4510 meters per second

for KI, RbCl, and KCl, respectively.

L.,2 Potassium chloride (KCLl)

A single crystal of potassium chloride, 1/2" x 1/2" x 1/2",
provided by Prof. Smakule at M.I.T.,was used. The sample had
transparent faces which became somewhat cloudy after some hand-
ling. As expected, the scattering was rather weak and the
traces had a low signal to noise ratio compared to those obtained
for KI and RbCl. Inasmuch as the sound velocities are highest
along the <00l1> direction, the intensities presented the biggest
problem in that direction, since the intensity is proportional

to l/v2.
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Even though this sample contained few inclusions, the
scattering from these inclusions was approximately 150 times
as strong in intensity as the 3rillouin scattering. As a
result, the mixed modes could not be resolved clearly. In
some propagation directions the intensities of the Brillouin
components were so low that they were hard to distinguish
from the grating ghosts (see Fig. 3.3). Only one point on
the mixed branch was tabulated in the results, A trace with
good cignal to noise is repro'uced in Fig. 4,2. One can see
the longitudinal modes, the strong central line, the grating
satellite and the two vprimary ghosts.

Approximately seventy traces were recorded for seven data
points for this crystal. Integration times up to twentyone
seconds were used., In Table III the phonon frequency Vg and
the hyperscnic phase velocity v of the sound waves are tabulated
as a function of the propagation direction in the {110} planes.
The angle tabulated in Table III is measured from the <001>
direction.

The sound velocities given in Table III were fed to an
IBM 709 computer., The computer found the velocity as a function

of vy = cos 0 using Eq. (2.8) for the following set of values of

Cyps Cule and P
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TABLE III

v_and v_ for KC1l
a s

Density at 22.8°C = 1,9873 gm/cm3

o

Index of refraction at 6328 A and 22.8°C = 1.4879
o
Wavelength of phonons = 3007.4 A

Angle Temperature Phonon frequency Error Hypersonic Mode
(degrees) (°c) vy (kMc) (%) phase velocity
(90° scattering) Ve (meters/sec)

0 22.7 14,993 + 0,116 0.78 k509 + 35 L
25 22,6 14,090 + 0,128 0.91 L237 + 38 L
35 22,7 13.283 + 0.101 0.76 3995 + 30 L

8.134 + 0.112 1.k 2kLé + 34 M
45 22.7 12.453 + 0,082 0.66 3745 + 25 L
55 22.8 12,121 + 0,065 0.5k 3645 + 20 L
70 22.6 12.571 + 0,061 0.k9 3780 + 18 L
90 23.1 12,931 + 0.063 0.49 3889 + 19 L

The percentage error quoted in the table for Vg and v is composed
of the root mean square deviation of the traces from the average
for each angle (i.e. the statistical fluctuation), of the error

in the dispersion (i.e. roughness of the screw, 0.25%), and of the
error due to aligmment difficulties (approximately 0.30%).

Judging by the fit of the theoretical values to the experimental

values, the error is actually smaller,
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Batch number 1:

cyy = L,02, 4,03, 4,04, 4,05, 4,06, 4,07, 4.08, 4,09, k.10
¢y, = 0.66, 0.67, 0.68, 0.69, 0.70, 0.71, 0.72, 0.73, 0.7k
c1p = 0.47, 0,49, 0,51, 0.53, 0.55, 0.57, 0.59, 0.61, 0.63

Batch number 2:

cyy = 4.050, L,055, L.060, 4.065, 4.070

¢, = 0.58, 0.59, 0.60, 0.61, 0.62, 0.63, 0.6k, 0.65, 0.66

¢y, = 0.63, 0.65, 0.67, 0.69, 0.71, 0.73, 0.75, 0.77, 0.79
(all c's in units of lOll dyne/cm2)

For each possible combination of elastic constants in these two
groups the computer calculated first the velocities for all vy

where experimental measurements had been made. Then the computer
found the deviation between the experimentally measured velocities
and the computed velocities for each y where an experimental ob-
servation had been made, The deviations were squared and added

up. This number was divided by m ~ 1 where m is the number of
experimental points. Finally the square root was taken, In the
following discussion of the results this procedure will be referred
to as finding the root mean square deviation (between the experi-

mental points and the theoretical curve):

(4.3)

The minimum root mean square deviation in batch number 1 occurred

at ¢, = L,06 x lOll dyne/cmg, for the longitudinal root. The
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minimum root mean square deviation in batch number 2 was found

11

. _ - 2 11
to lie between ey = L,06 x 107" dyne/cm“ and c

11 = k,065 x 10

dyne/cm2, also for the longitudinal root. Since this particular

root 1s very sensitive to ¢ in all directions in the {110}

11
planes (see Fig. 2.3), the error should be quite small. It was

found that although there is only one absolute minimum found by
the computer, the root mean square deviation between the experi-
mental points and the theoretical curve of the velocities stays
almost constant near the minimum value for all combinations of
the elastic constants for which 2 cLy t S5 is approximastely
constant, for the longitudinal branch., This should rot sur-
prise us. By looking at Table I one observes that along the

<111> and <110> directions the velocities contain Ly and Cip

in the form 2 cy, * ¢ One might expect that, at least

12°

between 55 degrees and 90 degrees, these two constants enter

in the form a WA + Db 5 where a differs not much from 2 and

b is approximately 1, both a and b varying slightly with vy.

In the appendix it is shown that this is indeed the case, This
would imply that a least root mean square fit of the theoretical

curve to the data points would only give c and 2 SR + c to

11 12

good accuracy, but not CLy and c¢ separately. 3By reference to

12

Fig. 2.3 one can see that c and 2 cL + c can be found with

11 12

very good accuracy, inasmuch as v_ is very sensitive to these

L

combinations of constants.



With data on the mixed branch it becomes vossible to find

the individual masnitudes of c¢ and Chle 3y reference to

12

Fig., 2.4 we see that the mixed mode is quite sensitive to ¢

Lk

near 30 degrees, Therefore, c),), vas determined from this branch

and then used to pick out the proper c from the longitudinal

12

branch. As a result, those values of Cyys Cpio and cip giving
the minimum root mean square deviation for the longitudinal
branch were selected as the best values for the elastic constants
contained in the data, with the constraint that ) had to give
a good fit to the mixed mode.

To show more graphically the dependence of the deviation on

the combination of elastic constants 2 CLL +c I have vlotted

12

the root mean square deviation for KCl (c,, = L.06 x lOll dyne/cma)

11

in Fig. 4.3 as a function of Sy and c One observes no really

12°

pronounced minimum but rather a valley at 2 cyy * ¢ = 1.95 x lOll

12

dyne/cm2. In Table IV the rcot mean square error is tabulated

for ¢y = L,060, L,065 x 10t dyne/cm2 as a function of c)y, in the

o]
bottom of the wvalley, i.e. for 2 ey * ¢ip = 1.95 x lOll dyne/cen®,

11

2

Tt is seen that for the 17 entries between s = 0.58 x 10 dyne/cm2

and Sy = 0.Th x loll dyne/cm2 the root mean sguare deviation
changes only by 25%. However, by reference to Table V one sees
that as one goes away from the valley along either the ¢y, or the

c axis by Jjust one entry, the deviation increases by the same

12

amount. Hence, the constraint on 2 Sy * C1o is quite strong but

the longitudinal branch gives us no clue to the separate magnitudes
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TABLE IV

RMS deviations for v

L
¢y = L,06 (L.065) x lOll dyne/cmg, 2c) + cip = 1.95 x lOll dyne/cm2
Elastic constant RMS deviations (meters/second)
CIWA P ¢, = L,06 ¢y = 4,065
0.58 0.79 10.3 10.0
0.59 0.7T7 10.1 9.92
0.60 0.75 9.94 9.78
0.61 0.73 9.77 9.66
0.62 0.71 9.62 9.53
0.63...--.0.69...-.-..-........9.h6....---..oo9-hl
0.64 0.67 9.30 9.29
0.65 0.65 9.15 9,18
0.66 0.63 9.00 9.07
0.67 0.61 8.86
0.68 0.59 8.72
0.69 0.5T 8.58
0,70 0.55 8.46
0.7T1 0.53 8.32
0.72 0.51 8.21
0.73 0.49 8.10
0.7k 0.47 T.99

RMS deviation =/ £s? m=7T
m- 1"
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TABLE V

RMS deviations for VL

Sherpness of minimum along cll' Chy e and 5 axes

¢, = 0.69 ¢y, = L, 06 ¢y, T L.,06
cyy = 0.63 ¢ip = 0.69 ) = 0.63
T (a/sec) W (asec) 12 (a/sec)
4,050 10.8 0.58 35.4 0.63 22,2
L,055 9.9k 0.59 29.0 0.65 16.6
4L.060¢,00..9.46 0.60 22,8 0.67 11.8
L,065..00009.41 0.61 17.0 0.690eesssad. lib
k.070 9.79 0.62 12.0 0.71 11.1
0e630anseeed lib 0.73 15.6
0.6k 11.1 0.75 21.1
0.65 15.6 0.77 27T.1

0.66 21l.2 0.79 33.2
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of c12 and chh'

We know iy is between 4,060 and 4,065 x lOll dyne/mm2
and 2 ¢)) * ¢, 1.95 x lOll dyne/cmz. Unfortunately, we
have only one data point on the mixed branch for this crystal.
3y using the grids described before we can find the absolute
least root mean square deviation between the one data point
and the computed mixed branch. Inasmuch as we know to good
accuracy C

and 2 ¢yt ¢y from the longitudinal branch we

11 2

will use those two pieces of information. With these two
constraints we get the root mean square errors tabulated in
Table VI as a function of ¢,, and c_,.
Ly 12
3y inspection of Table VI one sees that there is a

11

fairly sharp minimum for c,, = 0.69 and cy), = 0.63 x 10

12
2 .

dyne/cm”. So that one can get an idea of the sharpness of

the minimum, the root mean square deviations have been given

along the c,)» and c., axes in Table V. In Fig. 4.4 the

“120 11

, 11
root mean square deviation has been plotted for cll = 4,06 x 10

dyne/cm2 as a function of Sy and cio for the mixed mode, It is
seen that there is again some sort of valley rather than a
minimum, However, this valley is at right angles to the one
from the longitudinal branch. Hence, the best fit to both
branches will occur where the constraint 2 Ly + ¢, crosses the
valley in Fig. 4.4, The point of intersection is indicated in

the figure and corresponds to the SN and 15 already given.
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TABLE VI

Deviations for VM

= L,06 (4.,065) x lOll dyne/cmz, 2 ey * S = 1.95 x 10

11 dyne/cm2

Deviation (meters/second) = §

Ly €15 ¢y = 4,06 ¢, = L,065
0.58 0.79 46.8 Ls,7

0.59 0.7T7 37.1 35.9

0.60 0.75 2T .4 26,2

0.61 0.73 17.7 16,6

0.62 0.TL 8.09 6.94
Ol63.'.0..0.6901011lI‘O'l'....ll'u9000000'00002.63

0.6k 0.67 11.0 12.2

0.65 0.65 20,5 21.6

0.66 0.63 30.0 31.1

TABLE VII

Deviations for VM

Sharpness of minimum along Cyys Syl and c,, axes

cip = 0.69
chh = 0063
c Deviation
11 (m/sec)
L,050 0.789
L,055 0.352
h00600 oooulahg
hoOGS. 00..2.63
L,070 3.76

¢y = L, 06
Cip = 0.69
c Deviatiocn
bl (m/sec)
0.58 31.4
0.59 24,7
0.60 18.1
0.61 11.5
0.62 4.98
00630 ] .-.l.)-"g
0.64 7.91
0.65 14.3
0,66 20.6

¢y = L,06
Cyy = 0.63
c Deviation
12 (m/sec)
0.63 10.5
0.65 T«55
0.67 L.56
0.69010--l¢h9
0.7T1 1.65
0.73 4,87
Q.75 8.17
.77 11.5
0.79 15.0
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In Table VII the deviations along the elastic constant
axes are given for the mixed mode, The minimum cccurs at

cpy = 4.055 x 1011 dyne/cm®, but this branch is not as

sensitive to ¢,y as the longitudinal branch. Therefore, we

will use only the longitudinal branch to find c From Table V

11
s 11 2 .
the minimum occurs at c.. = L,06L4 x 107~ dyne/cm”. Using

11
= L,06k x 10ll

11

11

Ea. (2.8) with ¢ dyne/cmg, cyy = 0.63 x 10

11

dyne/cmz, and ¢,, = 0.69 x 10 dyne/cm2 one obtains the

12
velocities of sound given in Teble VIII. In Figs. 4.5 and 4.6

I have displayed the values for v_, v, and v, as a function of
L -

M
Yy fer these values of the elastic constants along with the
corresponding experimental velocities,

Inasmuch as the mixed branch data point has big error bars,
one can say without qualifications only that

il

ey, = (b,06k + 0.010) x 10 dyne /em® (+ 0.25%) and

11

2 cyy tC = (1.95 + 0.02) x lOll dyne/cm2

12
The magnitude of the error is estimated qualitatively on the
basis of the mesh size of the grid, on the basis of the sharpness
of the minimum, and by examination of Figs. 2.3 and 2..4,

If one assumes that the one mixed branch point is centered

on the actual velocity curve, one can furthermore say that
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TABLE VIII

Sound velocities in KC1l

p = 1.9873 gm/cm3, ¢y = L,o6kL, ey = 0.63, ¢ip = 0.69

(cll, cyy» 8nd ¢i, in units of 101t dyne/cma)
Angle ' Experimental velocity Theoretical velocity
(degrees) (meters/sec) (meters/sec)

L MY L M Vr

0 4509 + 35 L522 1780 1780
T.5 Lhol 1825 1806
15 Lhi2 1948 1878
25 L237 + 38 L2o28 2189 2030
30 L111 2322 2121
35 3995 + 30 24ké + 34 3985 2LL8 2218
4o 3859 2556 2317
k5 3Tk5 + 25 3750 2627 2L1L
50 3677 26k2 2508
55 3645 + 20 3655 2587 2596
65 3722 2325 2746
T0 3780 + 18 3774 2165 2805
75 3821 2015 2852
80 3857 1891 2886
90 3889 + 19 3890 1780 291k

The root mean square deviation between the experimental points
and the theoretical curve for the longitudinal branch is 9.2k

meters per second.
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11

¢y = (0.63 + 0.01) x 10 dyne/cmz(: 1.6%) ard

11

0.04) x 107" dyne/em®(+ 5.8%)

0
L[}
o

.
Oy

\O
+

These errors are on the conservative side. In Table IX the ultra-
sonic values of the elastic constants have been presented along
with the present results, It is seen that the elastic constants
obtained from this experiment are in good agreement with the
ultrasonic values., There does not seem to be a significant amount
of dispersion between 9 Mc and 15 kMc,

It should be noted that no attempt was made to weight the
data according to the precision with which the various frequency
shifts had been determined, since the percentage errors varied at
most by a factor of two.

4,3 PRubidium Chloride (PRbCl)

A single crystal of rubidium chloride, 3/8" x 3/8" x 5/8",
was used in the experiment., The traces obtained for RbCl were
generally of higher quality than those for KCl and along some
directions they showed a signal to noise ratio that compared
favorably with that of the traces for KI.

The intensity of the central line, due largely to reflection
of the incident beam from inclusions into the spectrograph, was
weaker than in KCl1 so that the mixed modes were resolved in
certain directions of propagation. A trace with comparatively

low signal to noise ratio is reproduced in Fig. 4.7. This trace
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was chosen because the longitudinal and mixed modes are
clearly resolved.

Seventy traces were recorded for nine directions of
propagation in this particular crystal., Integration times
of up to twentytwo seconds were employed. In Table X the
phonon frequency Vo and the hypersonic phase velocity vs ot
the sound waves are given as a function of the propagation
direction in the {110} planes.

The sound velocities given in Table X were again given
to the IBM 709 computer so that it could find the root mean
square deviation between the experimental velocities in Table
X and those velocities found by use of Eq. (2.&) for the

following values of c, c,,s and c

1’ 123

c,; = 3.71, 3.72, 3.73, 3.74, 3.75, 3.76, 3.77, 3.78, 3.79

), = 0.520, 0.525, 0.530, 0.535, 0.540, 0.545, 0.550
0.555, 0.560

¢y, = 0.62, 0.6k, 0.66, 0.68, 0.70, 0.72, 0.7k, 0.76, 0.78

2

]
(all e¢'s in units of lO‘l dyne/cm”)

For the longitudinal branch the minimum root mean square

.
deviation occurred at ¢y = 3.740 x 107 dyne/cm2 and did not
change much along the bottom of the valley defined by 2 eyt
¢ = 1.79 x lOll dyne/cmg. In Teble XI the values of the root

12

mean square deviation in the bottom of the valley are given., In

Table XII the root mean square deviation is tabulated for v,, with
L

t
= 1.79

1 ~
constraints ¢y = 3.7h x lOLl dyne/cn” and 2 Cuy * Sy
2

X lOll dyne/cm . It is seen that the minimum in the mixed mode
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TABLE X

v_and v for RbCLl
o s

Density at 22.6°C = 2,7986 gm/cm>
[e]
Index of refraction at 6328 A and 22.6°C = 1,4916
(o]
Wavelength of vhonons = 2999,9 A

Angle Temperature Phonon frequency Error Hypersonic Mode
(degrees) (°c) vy (kte) (%) phase velocity
(90° scettering) A (meters/sec)

0 23.1 12.154 + 0,071 0.59 36L6 + 21 L

25 22.5 11,419 + 0.059 0.52 3426 + 18 L

5.840 + 0,103 1.8 1752 + 31 M

30 22.5 11.103 + 0.071 0.6L4 3331 + 21 L

6.210 + 0,163 2.6 1863 + 49 M

35 22,5 10.722 + 0.071 0.67 3216 + 21 L

6.46L + 0,004 1.k 1939 + 26 M

Lo 22.8 10.331 + 0.072 0.70 3099 + 22 L

?  6.752 + 0,157 2.3 2025 £+ 4T M

k5 22.3 10,100 + 0,066 0.65 3030 + 20 L

6.752 + 0.177 2.6 2025 + 53 M

55 2.k 9.800 + 0.054 0.55 29L0 + 16 L

70 22,4 10.194 + 0,055 0.5k4 3058 + 16 L

90 22,4 10.511 + 0.062 0.59 3153 + 18 L

The percentage error is composed of the root mean square deviation
of the traces from the average for each angle, of the error in dis-

persion, and of the error due to alignment difficulties.
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TABLE XI

fMS deviations for v

L
11 2 _ 11 2
1= 3.7k x 1077 dyne/em™, 2 ¢ + ¢, = 1.79 x 107" dyne/cm
Elastic constant RMS deviations (meters/second)
L 5 ¢y = 3.74
0.555 0.68 10.926
0.545 0.70 10,922
O.S3S‘l.‘.0.72..6".C‘.".I...'."lIOlO.923
0.525 0.Th 10.930
e T8
RMS deviation = e m=9
TABLE XII

RMS deviations for v

M
% 3.7T4 x lOll dyne/cmz, 2 ey * ¢, = 1.79 x loll dyne/cm2
Elastic constant RMS deviations (meters/second)
Chh cl2 Cll = 307)4
0.555 0.68 u7.8
0.545 0.70 k3.9
00535."..0.72'..‘..'..".'...'...lIih2.2
0.525 0.7k k3,0
£§2

RMS deviation = / m =4

ma-21"7?



- 90 -

is by no means very sharp. Assuming that the actual minimum
is within an area where the root mean square deviation is
between the minimum given by the computer and a value 20%

higher we find a maximum uncertainty in )l of + 0.02 x loll

dyne/cm2 and a maximum uncertainty in c,, of + 0.0L4 x lOll
dyne/cm2. Of course, these errors are better defined by the
11

fact that 2 ey * S0 T 1.79 x 10 dyne/cm2 and hence if c 5

is too large by amount d, then Syl must be too small by d/2,
Again, the root mean square deviations are given along the Cyqps

c))s and c,, axes for the "best fit" point, so that one can get

12
an idea of the sharpness of the minimum. This data is presented
in Table XIII.

Again it was determined by a semi-quantitative study of
the sharpness of the minimum and of Figs. 2.3 and 2.4 what the
possible uncertainties in the determination of the three elastic
constants are. The results are

~

(3.74 + 0.01) x 10™" dyne/em®

(¢
1]

11
¢y, = (0.535 + 0.,020) x 10™ ayne/em®
ey, = (0,72 + 0.04) x 10Mt dyne /cm?
= 11 2
2 ey, *cyp = (1.79 + 0.02) x 107~ dyne/cm

Using Eq. (2.8) with these elastic constants one obtains the

velocities of sound given in Table XIV. In Figs. L.8 and 4.9
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TABLE XIII

RMS deviations for v

Sharpness of minimum along Cyys Sy and ¢y, axes

Ci1p = 0.72

¢y = 0.535

1 (mﬁgzc)
3.71 15.2
3.72 13.0
3.73 11.5
3.Tkeeee..10.9
3.75 1l.5
3.76 13.0
3.77 15.2
3.78 17.9
3.79 20.8

¢y = 3.7
¢ip = 0.72

c RMS
Lk (m/sec)

0.520 13.3

0.525 11.9

0.530 11.1

00535010 001009

0.5k40 11.b
0.545 12.5
0.550 14,1
0.555 15.9

0.560 18.0

€11
Sk
€12
0.62
0.64
0.66
0.68

0.70

3.7k
0.535

RMS
(m/sec)
28,1
23.3
18.8
14,8

11.8

0.72- e 00-1009

0.7k

0076

12,4
15.8

20.0
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TABLE XIV

Sound velocities in RBCl

o = 2.7986 gn/en’, c . = 3.7k, ¢, = 0,535, ¢l = 0.72
(cll’ c,),s and c,, in units of 10t dyne/cmz)
Angle | Experimental velocities Theoretical velocities
(degrees) (meters/sec) (meters/sec)

VL Y YL MY Vo
0 3646 + 21 3656 1383 1383
T.5 3633 1420 1kob
15 3566 1524 1L6L
25 3426 + 18 1752 + 31 3416 1726 1592
30 3331 + 21 1863 + L9 3321 1837 1668
35 3216 + 21 1939 + 28 3218 1942 1749
k0 3099 + 22 2025 + 47 3117 2031 1831
ks 3030 + 20 2025 + 53 3029 2088 1912
50 2970 2099 1989
55 29L0 + 16 2953 2054 2061
65 3006 1837 2185
70 3058 + 16 3048 1705 2233
75 3087 1580 2272
80 3117 1L76 2300
90 3153 + 18 3143 1383 2323

The root mean square deviation between the experimental points
and the theoretical curve for the longitudinal branch is 11

meters per second.



1994 NI NOILD3YIG NOILVOVJOMd NO A 40 3ON3IAN343A 8'b old

<Ol (S334934) 3TONY <I00>
06 oe 0l 09 (0]} ot (0] 02 (0] ] 0
T T T T T 9T T~ 17 17T 717 77

e /m { oot
2 /m 4 ooig

m /m 4 00z¢e

ooce

v

< 00be

41 00Ss¢

— TVYIJ113H03HL ,
O TVIN3WIN3IEX3 /1m Go9¢

J ooLe

(puodas isad siajaw) ALIDOTIA 3ISVHL




- 9k -

1994 NI NOILO3YIG NOILYOVHOHdd NO 1A OGNV

WA 40 3IDON3AN343A 6t 9ld

I (S33¥930) 3TNV <100»
06 08 oL 09 (]~ ob oe 02 ol 0
r-rr 1+ +~1 "¢/ "¢ 7> 17

009!

oos8l|

0002

0o02e¢

— VIILIYO3HL
O IVLIN3WIYILIX3

-l 00ve

(puooas Jad siajdw) ALIDOT3IA  3ISVHI




- 95 -

I have plotted the values for v and v, as a function of

L, ‘M T

vy for these values of the elastic constants along with the
corresponding experimental velocities. The fit between the
experimental points and the theoretical curve is again quite
good for the longitudinal mode. The root mean square deviation
is 11 meters per second, about half as big as the uncertainty
in the individual experimental points. The fit of the experi=-
mental points for the mixed branch is not so good., The root
mean square deviation for all five experimental points on the
mixed root is approximately 37 meters per second, apout the
size of the individual uncertainties.

For comparison with elastic constants determined
previously the ultrasonic values have been listed along with
the present results in Table XV, It is seen that with respect
to the size of the uncertainties the agreement is not too good.
The hypersonic values are too high by about 2.8%, 12%, and

18% for 1y Cpyo and c respectively, The sample of RbCl

12?2
was compared with a sample obtaired from the Hational 3ureau of
Standards by x ray diffraction techniques. Unfortunately, the
Jdational Bureau of Standards sample was not quite pure with

the main impurity being 0.1% to 1.0% potassium. Hence, there
are two possible explanations for the large discrepancies
petween the ultirasonic and the hypersonic elastic coastants.

Zither the sample is very impure. Or there is a significant

amount of dispersion present in RbCl. 3y repeating the ex-
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periment at a different scattering angle one would be able to
determine whether there is dispersion, i.e. whether the group
velocity is different from the phase velocity.

L,b Potassium iodide (KI)

A single crystal of potassium iodide, 5/8" x 5/8" x 5/8",
supplied by the Harshaw Chemical Company, with window glass
polish, was used., The sample originally had completely trans-
varent faces when it was delivered but after some handling the
fac2s became somewhat cloudy, In this respect, XI was the
trickiest crystal of the three used in the experiment described
here. As expected, potassium iodide was the strongest scetterer
of the three crystals., Unfortunately, the sample contained a
large number of inclusions giving rise to an extremely strong
central line. KI seems to be especially hard to grow in
large single crystals without inclusions. It turned out that
this particular crystal had one very bad (111] plane cutting
across a corner of the cube which contained en impressive
number of bubble-like inclusions. This plane was avoided when-
ever possible but in some directions of propagatioa the scat-
tering beam had to pass through this plane. Since the central
line was sc strong and as the splittings in XI are small, it
was not possible to resolve the mixed mode on both sides of the
central line because the grating satellite overlapped the low

wavelength Brillouin component.
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So that good measurements of the location of the mixed
mode could be obtained, the incident laser line profile as
modified by the grating was subtracted out. This procedure
was illustrated in Fig. 3.4 for KI. Since the intensity of
the unshifted component varied substantially from trace to
trace, the laser line had to be fitted to the trace by
bringing the base lines in coincidence and by adjusting the
intensity axis until there was a good fit between the two
curves at all points where the Brillouin spectrum contributed
little to the line shape, i,e. between the location of the
mixed modes and the center of the spectrum. This procedure
worked remarkably well. However, errors could conceivably
occur, It was found, that due to the large number of traces
analyzed, systematic errors in the location of the mixed
modes were minimal. It should be understood that this sub-
traction procedure was very important, even for the longitu-
dinal mode, since the subtraction procedure shifted these modes
slightly away from the center. In Fig., 4,10 four more traces
of KI at various propagation directions are shown. Cne can
see how the character of the central line changes with vy
and how the mixed modes can be seen at y = cos 30°.

Cne should note that the centrul line in the <001l>
direction is maybe five times stronger then in the other
directions shown. This is caused by the fact that for obser-

vation in this direction the crystal had to be held in a
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position where one of its surfaces made a 45 degree angle with
both the incident beam and the direction of observation. There-
fore, even if the index of refraction was perfectly matched, if
the crystal surfaces were clouded over somewhat, some porticn
of the incident light was reflected directly into the spectro-
graph. Since the incident beam is very strong compared 1o the
scattered light, not rmuch light had to be reflected to give
rise to an extremely strong central line.
The position of the grating satellite is also indicated
in Fig. 4.10. One can see how the grating line profile
{dotted curve) has to be adjusted in the intensity "direction"
to fit the observed line profile. On the actual traces, the
amplification was changed near the center of the spectrum so
that the position of the maximum of the central line could be
recorded. It was found in all cases after corrections for the
E amount of integration that the Stokes and Anti-Stokes compo-
nents were shifted equally to either side of the central line
within experimental accuracy.

It is also seen that the signal to noise ratio is better

for the traces at 65 degrees and at 20 degrees than those at
0 degrees and 30 degrees. This is Just a reflection of the

l/v2 factor in the intensity formula, EZq. (4.1). All peaks

nave a width at one half maximum height (half width) of

between 0.3L4 and 0.37 mm compared to a slit size of 0.25 mm.

The problems of line width will be discussed in L.o,
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The procedure used in evaluating the traces is the same
as that used for KCl and RbCl. 170 traces (at 10 minutes each!)
were recorded for eleven directions of propagation in the {110}
planes. Integration times for the most part were nine seconds.
In Table XVI the phonon frequency vy and the hypersonic phase
velocity Ve of the sound waves are given as a function of the
propagation direction in the {110} planes.

The velocities presented in Table XVI were analyzed by
means of the IBM T09 computer and the root mean square devi-
ation between the experimental velocities and the calculated

velocities was found for these elastic constants:

c,; = 2.710, 2.715, 2.720, 2.725, 2.730, 2.735, 2.740,
2.745, 2.750

ey, = 0.350, 0.355, 0.360, 0.365, 0.370, 0.375, 0.380,
0.385, 0.390

¢y = 0.38, 0.39, 0.40, 0,41, 0,42, 0,43, 0.4k, 0,45, 0,46

(all c¢'s in units of lOll dyne/cmz)

For the longitudinal branch the minimum root mean square devi-

2
ation was found to occur at Cyq T 2.73 x lOll dyne/cm~. In

Table XVII the values of the root mean square deviation in

the bottom of the valley defined bty 2 ) + ¢yp = 1.15 x lOll
d:,'ne/cm2 are listed, In Table XVIII the root mean square
deviations are tabulated for v,, with the constraints c = 2,73

M 11

x lOll dyne/cm2 and 2 Cyy * Cyp = 1.15 x lOll dyne/cm2 imposed.

It is seen that the minimum in the mixed mode is not very sharp.
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TABLE XVI

v and v_ for KI
g s

Density at 22.4°C = 3.1245 gm/cm’
o
Index of refraction at 6328 A and 22.4°% = 1.6607

o
Wavelength of phonons = 269L.5 A

Angle Temperature Phonon frequency Error Hypersonic Mode
(degrees) (°C) Vg (kMc) (%) vhase velocity
(90° scattering) Ve (meters/sec)
0 22.6 11,051 + 0.061 0.55 2978 + 16 L
15 22,6 10.738 + 0,065 0.60 2693 + 17 L
25 22.5 10,156 + 0.069 0.68 2736 + 19 L
5.242 + 0,091 1.7 12 + 24 M
30 22.3 9,81k + 0,06k 0.66 26Lk + 17 L
5.568 + 0,067 1.2 1500 + 18 M
35 22.3 9.493 + 0.058 0.61 2558 + 16 L
5.810 + 0,063 1.1 1565 + 17 M
40 22.k4 9,128 + 0.043 0.48 2L60 + 12 L
6.066 + 0.078 1.3 1635 + 21 M
Ls 22.5 8.899 + 0.04T 0.53 2398 + 13 L
5,334 + 0,123 1.9 1707 # 33 M
55 22,4 8.6L0 + 0.045 0.52 2328 + 12 LU
65 22.2 8.828 + 0.042 0,8 2379 + 11 L
75 22,4 9.087 + 0.041 0.L5 2kk8 + 11 L
90 22.6 9,257 + 0.0k2 0.k45 2ok + 11 L

The percentage error is composed of the root mean square deviation
of the traces from the average for each angle, of the error in dis-

persion, and of the error due to alignment difficulties.
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TABLE XVII

RMS deviations for vL

c = 2,73 x lOll a e/cm2 2 c + c = 1.15 x lOll dvne/cm2
11 . ya J Lk 12 ‘ )
Elastic constant RMS deviations (meters/second)
Ly ¢i5 ¢ = 2.73
0.350C 0. 45 1k,1
0.355 0.kl 14,2
0.360 0.43 14.3
1.365 0.2 b4
0.370 0.4l 14,5
0.375.'l.lo'hoiﬁ.ti.l...'.".'l.ll'l.lhl6
0.380 0.39 4.7
0.385 0.38 14,8
RMS deviation = £6°2 _
F eviation = , m =11
m -1
TABLE XVIII

RMS deviations for vM

o
¢y = 2.73 x lOll dyne/cme, 2 ey * Cyp T 1.15 x 10"'l dyne/cm2
Elastic constant RMS deviations (meters/second)
Chl 1o ¢q; = 2.73
0.350 0.k45 33.2
0.355 0.4l 29.0
0.360 .43 25.3
0.365 0.k42 22.3
0.370 0.4l 20.3
0.3750.'..0.“0.......'l.').'ll..'.l.019.6
0.380 0.39 20.h4
0.385 0.38 22.3
_ /162 -
RMS deviation = m=5
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The minimum occurs at ey = 0.375 x lOll dyne/cm2 and

i, = 0.k0 x 10tt dyne/cmg. If we assume that the actual
minimum can occur anyplace where the deviation is between the
minimum found by the computer and a value 207 higher, the errors
are for ey, X 0,015 x lOll dyne/cm2 and for 5 + 0.03 x lOll
dyne/cmz. Here again the possible errors are constrained by

2 ¢y * Cyp = (1.15 + 0.02) x lOll dyne/cmg. The root mean
square deviations along the Cyys s and ci, axes for the

best fit point are given in Table XIX,

The elastic constants and errors are

c (2.73 + 0.01) x 10'! dyne/em?

11

(0.375 + 0.015) x 10T dyne/em®

Cul
€10 (0.k0 + 0.03) x lOll dyne/cm2

2 Cuy * Cp (1.15 # 0.02) x ].OJ'l dyne/cm2

Using Eq. (2.0) with these elastic constants one obtains the
velocities of sound given in Table XX.

In Figs. 4.11 and 4,12 the values for Yoy Vi and v, are
vlotted as a function of y for the above values of the elastic
constants and the corresponding experimental velocities are
shown, The fit between the experimental points and the theore-
tical curve is seen to be very good for both the longitudinal

and the mixed mode, Due to the good quality of the traces and

to the small statistical fluctuations, the error bars are quite
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TABLE XIX

RMS deviations for VL

Sharpness of minimum along cll’ )0 and c12 axes

cip = 0.40 ¢y, T 2.73 ¢y = 2.73
ey, = 0.375 ¢i1p = 0.ko )y = 0.375
‘1 (mtxic) Sl (m};i{zc ) ‘12 (m?:zc)
2.710 16.9 0.350 21.h4 0.38 16.2
2.71% 16.0 0.355 19.3 0.39 15.1
2,720 15.2 0.360 17.5 0.40,400s 1k, 6
2.725 14,8 0.365 16.1 0.41 1k, 7
2.730.....14.6 0.370 15.1 0.42 15.2
2.7T35 14,7 0.375¢0...1L4.6 0.43 16.3
2.Tk0O 15.1 0.380 14.8 O.Lk 17.9
2.7h5 15.7 0.385 15.5 0.ksS 19.7

2.750 16.5 0.390 16.7 0.46 21.7
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TABLE XX

Sound velocities in KI

= 3
p = 3.1245 gm/cm”, €y = 2.73, ¢, = 0.375, ¢,, = 0.40

. . 11 2
(cll' cyys @nd c,, in units of 107~ dyne/cm )

Angle Experimental velocities Theoretical velocities
(degrees) (meters/sec) (neters/sec)
L M L M r
0 2978 + 16 2956 1095 1095
T.5 2936 1128 1115
15 2893 + 17 2879 1216 1170
25 2736 + 19 1412 + 24 2749 1389 1285
30 26k + 17 1500 + 18 2665 1484 1354
35 2558 + 16 1565 + 17 257z 577 1425
Lo 2k60 + 12 1635 + 21 2478 1658 1498
Ls 2398 + 13 1707 + 33 2394 1716 1570
50 2335 1733 1638
55 2328 + 12 2316 1696 1702
65 2379 + 11 2368 1501 1810
T0 2kot 1382 1853
5 2LLE + 11 2kk2 1271 1886
80 2Lk69 1178 1911
90 2hoh + 11 2kg2 1095 1931

The root mean square deviation between the experimental points
and the theoretical curve is + 1l4.6 meters per second for the

longitudinal mode and + 19.6 meters per second for the mixed mode.
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small,

Previous results for the elastic constants in KI in the
ultrasonic region are given in Table XXI. One sees that the
general agreement with results presented in this thesis is
quite good and there is no indication of any significant
amount of dispersion.

4,5 Intensities

Since the symmetry of the experimental setuv varied
slightly from crystal to crystal and since the amount of
scattered light received by the spectrograph was dependent
on the orientation of the crystal, one can make only semi-
quantitative observations concerning the relative intensi-
ties of the Brillouin components at various angles for the
three crystals. It is somewhat easier, on the other hand,
to get an idea of the relative intensity of the mixed and
longitudinal modes by measuring the ratio in all the traces
showing mixed modes. Of course, the ratios of the intensi-
ties were measured on the traces after the incident line
profile had been subtracted.

For all three crystals the intensity was uniformly nigh
vetween SO and 90 degrees and fell off considerably from 50
to 0 degrees for the longitudinal mode. Cne has to remember
that as the crystal is rotated the scattered light is observed

through different parts of the surface of the crvstal and if
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the crystal has clouded areas the intensity seen is dependent
on the cloudiness of a particular area on the surface. !Hence,
one can only say that there seems to be a general behavior of
the intensity following Eq. (k.1) in that the intensity drops
of £ at high velocities.

It was pointed out before that the average intensities
sor the three crystals (averaged over all angles) are in the
ratio 2 1/4 : 1 1/4 : 1 for KI : RbCl : HCl, respectively.
Since the intensity is dependent upon the oropagation direction,
it is more useful to compare the relative intensities in a few
specific directions of propagation. The intensity, Za. (b.1),

can be rewritten as

N
- 3 In €2 n - ,
- = (a ln 0) 2 k-‘“ ‘.h.h’)
ov
9 1ln € .
~f we assume (z==———) ~ 1 for the three crystals, the ratio

3 1ln o

of the intensities of the longitudinal modes in XI : RbCl :
XCl should be given by the ratios of nl‘/ov2 for the three
crystals. In Table XXII these ratiocs are presented along
with the measured ratios for the three directions of propa-

gation.
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TABLE XXII

I(KI) : I(RoCl) : I(KCl)

Direction of <001> <111> <110>
provagation

L 2
n /ov 2.3 : 1.1 : 1.0 2.4 : 1,1 : 1,0 2.4 : 1.1 : 1.0
Measured 2.7 ¢+ 1.0 : 1.0 2.0 : 1.3 : 1.0 1.7 « 1.1 : 1.0

where the intensity of KCl has been set equal to 1.0 in the three
cases. On the same intensity scale, I[CsI] = 2.9 (<110>),

I(Water] = 9.7, I[c(Cl),] = 13, and I{Toluene] = 32.

Of considerable interest is the behavior of the ratioc of
the intensities of the longitudinal mode to the mixed mode as a
function of y. This information, unfortunately, is not very com=
plete, since data could be obtained only between 25 degrees and
LS degrees. The ratios are presented here for X1 and RbCl as a
f~unction of y in Table XXIII.

Tt can be shown that the intensity of the 3rillouin-scat-
tered light is proportional to (50 . ﬁz)g where k_ is the propa-

gation vector of the elastic wave and 4. is the polarization
L

vector of the mode j (j = L, T, ¥). This is exactly the same

7

factor that appears in the theory of diffraction of x rays™ '.
n other words, as we said before, only the longitudinal compo-
nent of the phonon polarization contributes to the scattering.

Hence, the complete intensity formula should be of the form
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TABLE XXIII

Experimental ratio IM/IL as a function of vy

RbCL Angle 6 = cos Ly Experimental I, /I
(degrees) :
25 0.6k + 0.06
30 0.61 + 0.08
35 0.50 + 0.06
Lo 0.3k + 0.10
45 0.24 + 0,0k
KI Angle 8 = cos-ly Experimental IM/IL
(degrees) -
25 0.49 + 0.06
30 0.48 + 0.03
35 0.46 + 0,05
40 0.34 + 0.04

L5 0.28 + 0,02
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2

I«e (3 1n e)2

: a1 )2
) KT 8 (L) (5.5)

where (%L)j is the percentage longitudinal admixture in
mode j. These admixtures are found by use of Egs. (2.11) and
(2.12). The values for RbCl and KI are presented in Table XXIV,
Tt should be noted that the longitudinal admixture
in the mixed mcde is smaller for RbCl than for KI. Tn KCl
it has about the same magnitude as in RbCl. This low relative
intensity together with a strong central line made 1t so
difficult in XCl to observe the mixed modes. Only the point
at 35 degrees was recorded. This is the angle at which the
longitudinal admixture in the mixed mode is a maximum,
Using Eq. (L.5) we expect +he ratioc of the intensities of
the mixed mode to the longitudinal mode at a given Yy to be

given by

2,2 : 2 2 .
I/I. = vV (2L)5/(3L)¢ {L.e)
. . d 1ln € 5 - .
if we again assume that (S_TE—F) ~ 1, The relevant numbers are

given in Table XXV. It is seen that I‘T/IT is indeed pronortional

‘ 2,2 = R~ R . . .

to v-/v“ (ZL)”/(hL)L but the constant of proportionality 1is
M I ;

A = 2.65 “or EbCl and A = 1,05 Tor XI, where A is defined bty

(.I.?E) = A (._E ?_:ZLMF
:L expt- vfi ,‘:LL *
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TABLE XXIV

Longitudinal admixtures

mcL Anele o iL, AL, FL/BL (RL/%L.)°

25 97.3 23.1 0.237 0.0562

30 96.7 25.5 0.26k4 0.0697

35 96.5 26.0 0.269 0.072k

Lo 97.1 24,0 0.2LT 0.0610

L5 98.3 18,54 0.187 0.0350
KI  Angle © Ly, Ty L,/ AL, (%LM/%LL)2

(degrees)

25 96.2 26.2 0.272 0.07k0

30 95. k4 29.3 0.307 0.0942

35 9k.9 31.3 0.330 0.109

L0 95.4 29.3 0.307 0.0942

ks 97.2 23.5 0.2L2 0.0586
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30th the experimental IM/IL and the computed values of IM/IL
for RbCl and XI are plotted in Figs. 4.13 and b1k, It is
seen that there is good agreement between experiment and
theory except for the vpoint at L5 degrees., The fact that the
constant of proportionality A is not 1 seems to indicate that
there is attenuation of the sound waves.,
4.6 Line widths

The line widths were largely independent of angle and

averaged to

Woale = (0.35 +# 0.02) mm for KI

= f
Wials (0.36 + 0,03) mm for KC1
Wiate = (0.38 + 0.0L) mm for RBC1

Clearly, the same factors seem to be determining the half width
in the three crystals. We have mentioned before that the half
width of the line is a function cf a number of factors. More
explicitly, the observed half width is the half width of &
complex profile formed from the convolution of five separate
functions. They are expressions representing

a) the entrance slit

b) tihe exit slit

c) the diffracted line profile of the grating

d) the line width of the source

e) and the errors of the spectrometer mirrors,
In this experiment the entrance slit and the exit slit both had

a 0,25 mm width. The natural line width of the source was 1 kMc.
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However due to the fact that a large solid angle of light was
admitted into the spectrograph the natural line width of the
laser was effectively broadened. This broadening is roughly
780 Mc for KCl, 580 Mc for KI, and 640 Mc for RbCl. the vari-
ation in broadening with propagation directicn due to the large
acceptance angle is only about 20% between O degrees and 55
degreeé. Hence we would not expect to see this, It is not obvious
how this broadening will affect the line width of the scattering.
Let us assume that the square of the final source line width is
equal to the sum of the squares of the laser line width and of
the broadening. This gives a broadened line width of 1.2 kMc.
We will treat the diffracted line profile and the errors of the
spectrograph together as instrumental line width. This is 600 Mc
corresponding to the resolving limit of the grating spectrograph
in tenth order at 6328 X.

It has been shown by Jaquinot18 that under normal condi-
tions it is a good approximation to assume that the total
observed half width can be evaluated as the square root of the

sum of the squares of the constituent half widths:

2 _ 2 2 2 ' 2
(Wtotal) - (wslit l) * (wslit 2) * (Winstrum.) * (wsource)
= 0,098 mm = 600 Mc
winstrumental 0.09
W = 0.20mm = 1.2 kMc
source
and hence W ~v 0.b2 mm = 2,6 kMe, in good agreement with

total ~

the measured half widths.
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Chapter V

PROPOSED FURTHER WORK

5.1 Limitations of the present work

This thesis was limited to the discussion of a particular
application of Brillouin scattering using a new technigue with
possibilities which are becoming more obvious every day. Inasmuch
as the treatment given here was limited to a small problem and as
the techniques are still in their infancy, there are two obvious
ways of continuing from here., One way of going on would be to use
the present equipment with minor modifications to investigate the
dispersion curve in the hypersonic region by changing the scat-
tering angle and to continue work in other crvstals with possi-
bly a different choice of crystal planes, The other way of conti-
nuing would consist of either a major modification of the equipment
to make it possible to see line widths for an investigation of
acoustic phonon lifetimes or of a switch to different equipment
such as a Fabry-Perot interferometer with its inherently higher
resolving power.

If a spectrograph is to be used for future work in this area
it should be kept in mind that in this experiment intensities were

marginal dictating the rather wide slit sizes. In other words,
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equipment with higher efficiency and better resolution is de-~
sirable.

Since either a modification of the present equipment or a
switch to a Fabry-Perot interfercmeter will simplify future

experiments, the steps necessary for such modifications will be

described next.

5.2 Improvements in the apparatus and technique

5.2.1 Alignment

It was found that alignment is extremely critical. Hence,
it is suggested that before any further work is undertaken,

a) the spectrograph should be realigned so that the theo-
retical resolving power is utilized even in lower orders and so
that light is not lost inside the svectrograph due to bad align-
ment.

b) a practical system be devised for aligning the scatterer
and for positioning the various lenses used in sending the scat-
tered light into the spectrograph.

5.,2.2 Improvement in the resolving power and the luminosity of

the spectrograph

The resolving power of the spectrograph can be increased by
a factor of two by using two gratings in series or by using a
double pass arrangement, This method has been discussed by
Jenkins and Alva.rez19 for an n-pass arrangement (n = l,...,7).
If two gratings are used and if both are blazed at 64 degrees,

this has the added advantage of making it possible to use both
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gratings at 64 degrees thus raising the luminosity considerably,
since the efficiency of the grating is highest near the blaze
angle.

Another possibility would be to have a grating blazed at 72
degrees so that it could be used there in tenth order most effi-
ciently. This was suggested by C. W, Strokezo.

The M.I.T. spectrograph has especially large light losses
because of its long focal length. This large (12 meters) pro-
Jection distance is required if one wants to take photographic
plates due to the limitations imposed by grain size. However, with
photoelectric equipment projection distances may be shortened
with a resultant gain in luminosity. This is brought about, since
the luminosity decreases with the square of the projection distance
and the slit size increases linearly with projection distance as
the distance is increased.

Unfortunately, alignment problems become more acute as the slit
sizes become smaller when one wants better resolving power. By
using two gratings in series one could obtain an instrumental
resolution of about 300 Mc at 6328 :. This may be good enough
for observing phonon lifetimes.

Another problem encountered was that of grating satellites.
Recent advances in the quality of gratings2l make one believe

that gratings will be available soon that are superior in many

respects to the grating which has been used in this experiment.
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5.2.3 Screw drive

The drive was found to be rather deficient in accuracy
and reproducibility. It is my feeling that with a better driving
screw the statistical errors between the traces could be reduced
considerably thus necessitating fewer traces and cutting the errors
in the frequencies and in the velocities to maybe 0.1%.

It should be pointed out here that the phototube was found
sufficient in every respect. Cocling might improve the signal
to noise ratio, & help in getting gocod traces.

5.2.4 Fabry-Perot interferometer

In most respects the Fabry-Perot interferometer is suited
to this work ideally. Since one is working with one particular
wavelength of light one does not mneed to employ a premonochro-
mator. The free spectral range can present problems but the
resolving power available does sound attractive (possibility of
resolving 150 Mc with not toc much difficulty). Furthermore, the
efficiency of the Fabry-Perot is very high. Alignment, however,
may present even more problems than the alignment of the spectro-
graph did.

5.3 Behavior of the dispersion curve

It is certainly a simple extension of the work presented
here to plot out the dispersion curve in the hypersonic region
and to find dv/dk, the group velocity. One must ask whether this
would be very fruitful inasmuch as there is little indication of
any significant amount of dispersion in this region. Inasmuch

as RbCl shows large discrepancies between the ultrasonic and
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hypersonic elastic constants, this is recommended as a first

candidate,

It might alsoc be useful to work out the roots of the velocity

determinant for all directions in cubic crystals to find out
wvhether there are any more useful planes than the {110} planes
as far as determination of the elastic constants is concerned.
5.4 Conclusion

It is hoped that this treatment has lined out the possi-
bilities of this new method in a rapidly expanding field. As
more powerful lasers become available (at lower wavelengths),
more and more experiments will become feasible.

With some refinement in technique this could be a powerful
method of determining elastic constants and their temperature

dependence in the hypersonic region.
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APPENDIX

Solution of the velocity determinant in the {110} planes

The velocity determinant, Eq. (2.6), can be written

A - E C D
o A -E D =0 (A.1)
D D B - E
2
where A= 1/2 [cll +op) v Y (chh - cll)]

_ 2
B =y, + v ley - eyl

1/2 (1 - ¥%) (e, + ¢yy) (4.2)

Q
L]

(W]
1}

/
y v1/2 (1 - Y2) (c12 + chh)

&}
1]

oV

By rearranging rows and columns we vbtain:

2(A - C - E) -(A - C - E) 0

-(A - C - E) A -E D 0 (A.3)

0 D B -E
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2

(A-C-E)[(B=-E)(A+C~E)=-2D]=0
The three roots of this polynomial are:
Ep = A-C (A.4)
and
EL(+)" 1/2A+B+cCZ /fA +B+C)2 - L(AB + BC - 2 D%)]
M(=) (A.5)
But

2 )
A+ B+C=1/2 [k Cuy * Syt S Y (cll -2¢c), - clz)]

(A.6)

/fA + B + c)2 - 4(AB + BC =2 D2)

{l/h(cll + c12)2 + y2(h cﬁh - 3/2 cil + 7/2 ciz +c %yt Q I
-2 ept)
Yo efy - 3 oy - 157k eTp = 3 oypfuy = 9 S1p0y, * 372 °12°11)}l/2
(A7)
and
A=-C=1/2 [cll R IP 72(2 ey * S1o - Cll)] (A.8)

Using Egs. (A.6) and (A.7), (A.8) in Egs. (A.4) and (A.5) we find

the velocities

2 ;
Vo = /é/(2p) [cll - + vy (2 ey, * G - ¢ )] (A.9)

€12 11
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and

= VI (%) 2 _
VLE+; = VI7Co) (4o +cgg *+epp +vleg; = 2¢ - cyp)
M( -

+ 2 - 2
= {(eyy +ep)” #(2ey *+cpp - e )T (B ey + 2hcyy ¥ 6 cpyp)

- yk(6 ey t 15 e, 9c¢ 1/2]1/2

12 ll)]} (A.10)

Eigenvectors of the velocity determinant

Let us now consider the polarizations corresponding to the

velocities, Eqs. (A.9) and (A.10). Consider Eq. (A.4). Upon

substitution of (A.4) into (A.l) we find

- -‘ R
C o D Al
C C 9] A2 =0
D D B -A+C A

L J L3

By inspection we see that the eigenvector having components Al,

A,, and A3 must be of the form (after normalization):
Ap = (L/v2, - 1/Y2, 0) (A.11)
This is a transverse polarizaticn alweys perpendicular to the

Z=8XK1iS.

Secondly consider the root EL’ Eq. (A.5). If we let
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K=(A+B+c)2-u(AB+Bc-2D2)

E. =1/2 (A + B+ C + ¥K)

L

After letting M = 1/2 (A - B) and N = ~ 1/2 (C + vK), Eq. (A.1l)

reduces to

C M + N

M+ N

and the unnormalized eigenvector is

A

This is a mixed longitudinal and transverse mode with volarization

in the {110} plane.

Finally consider E,, Eq. (A.5).

{(A.1) reduces to

M+ P C
C M+ P
L D D

= (1, 1, /(A = B + C + ¥K))

Let P

= - 1/2 (C - vK) and

and the unnormalized eigenvector is
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A= (1, 1, /(A =B +C - /K) ) (A.13)

This is another longitudinal and transverse mixed mode with volariza-

tion in the {110} plane, perpendicular to A

Let us rewrite (A.12) and (A.13) in normalized form. Write

. 2 -1/2 .
= P
AL, y (1, 1, °L, M) (2 + PL’ M) (A.14)
where
P, = UD/(A - B+ C /K
e 0 -
("'9 ")
However,
Ep, g = 1/2 (A+ B+ C + vK)
(+9 -)
and so
P = -
Pl M up/(2 EL’ w = 2 B)
2
v2(1 = ¥v%) (e , + cy))
o - 12 Lb (A.15)
L, M 2 ‘

v ey - vole cyy)
OVe, m T Suk T Y MT11 T Sl

and P_P_ = - 2, easily shown by substitution.

Of course, along the <110> and <00l> directions there is
degeneracy and the two polarization vectors perpendicular to éL
are not fixed in the plane perpendicular to éﬁf Nevertheless,.
it is useful to choose the two vectors such that AT is always
perpendicular to the {110} planes, gL and gM alwayvs teing in those
planes. It turns out that the L-root is almost completely longi-

tudinal, the M-root shows longitudinal admixtures from 0% to 30%
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depending upon the propagation direction, and An is always

completely transverse,

The percentage longitudinal admixture is defined by

where A is the unit polarization vector and

k= k(/1/2 (1-v2) 2+ /172 (1= v) 7+ v2)

with Eq. (A.l4) we find

——n

%LL’ y = 100 (V2(1 - ¥°) + YPL, v (2 + Pi, M)‘l/2 (A.16)

and the angle 8 which the volarization makes with the propagation

direction § is given by

8 = cos™! (%L/100) = cos™t (A.k/ (k1) (A.1T)
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Sensitivity of vL to the combination of elastic constants 2 Cy) + P

The object is to show that v_ is sensitive only to the com-

L
bination of elastic constants 2 ey * S0 and to Cyqe We have
found that 2 cyy * Cio = constant will give approximately the

same velocity regardless of the individual values of )L and Cipe

We want to show that this is consistent with the derivatives of VL
with respect to the elastic constants. We deduce 2 dchh + dc12 = 0.
If this condition is to be obeyed, then if Ly increases by the

amount 2, P mist decrease by the amount 2a. Sc that the velocity

does not change in this process,

de/dc12 =1/2 de/dchh (A.18)
We can say that if we find Eq. (A.18) to hold fairly well for all
vy, we expect 2 Sy + c12 to be approximately constant. In Table
XXVI I have presented the percentage difference between 2 de/dc12
and de/dchh as a function of y. 3y studying Fig. 2.3 one finds
that vy, is most sensitive to 2 chy * S0 between 40 and 80 degrees
so that in the region where VL is sensitive to the above combi-~
nation, 2 S + c12 = constant is obeyed quite well. This relation

does not hold for the mixed mode and, therefore, we may use that

mode to determine 1o and Sy separately.
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TABLE XXVI

Per t 2]
ercentage difference between de/dc12 and 1/2 de/dchh as a

function of propagation direztion

Angle Percentage discrepancy between

de/dc12 and 1/2 de/dchh

0 0%
15 20%
25 17%
35 12%
45 4%
55 0%
65 1.b4%
75 1.3%

90 0%




-
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