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STOCHASTIC HEAT EQUATION LIMIT OF A (2 + 1)D GROWTH MODEL

ALEXEI BORODIN, IVAN CORWIN, AND FABIO LUCIO TONINELLI

Abstract. We determine a q → 1 limit of the two-dimensional q-Whittaker driven particle sys-
tem on the torus studied previously in [4]. This has an interpretation as a (2 + 1)-dimensional
stochastic interface growth model, that is believed to belong to the so-called anisotropic Kardar-
Parisi-Zhang (KPZ) class. This limit falls into a general class of two-dimensional systems of driven
linear SDEs which have stationary measures on gradients. Taking the number of particles to infinity
we demonstrate Gaussian free field type fluctuations for the stationary measure. Considering the
temporal evolution of the stationary measure, we determine that along characteristics, correlations
are asymptotically given by those of the (2+1)-dimensional additive stochastic heat equation. This
confirms (for this model) the prediction that the non-linearity for the anisotropic KPZ equation in
(2 + 1)-dimension is irrelevant.

2010 Mathematics Subject Classification: 82C20, 60J10, 60K35, 82C24
Keywords: Interacting particle system, Interface growth, Anisotropic KPZ equation, Stochastic Heat
Equation

1. Introduction

The two-dimensional q-Whittaker particle system on the torus was introduced by Corwin and
Toninelli [4]. The state of this system is interlacing collections of particles on the two-dimensional
torus. Particles jump right by one on their row according to exponential clocks whose rates are
determined by certain nearest neighbor inter-particle distances – see (2.8) – as well as a parameter
q ∈ [0, 1). As discussed in [4], the dynamics can be seen also as a stochastic growth process for a
random discrete (2 + 1)-dimensional interface. The mapping is based on the fact that interlacing
particle configurations correspond to perfect matchings (dimer coverings) of the hexagonal lattice,
and the associated integer-valued height function provides the discrete interface. In the present
work, we adopt the point of view of the particle system rather than that of the growth model.

These dynamics originated in Borodin and Corwin’s study of Macdonald processes [1] wherein
they were defined on certain triangular arrays of interlacing particles. Based on that inspiration
as well as a recent treatment by Toninelli in [14] of the q = 0 case of this system, [4] proposed
and then verified that certain local Gibbs measures are stationary for the dynamics – see (2.9) and
Proposition 1 for a summary of those results.

When q = 0, [14] determined that stationary measures are simply uniform measures on particle
configurations, which are known to enjoy a relation to determinantal point processes and to have
Gaussian Free Field type fluctuations in the infinite volume limit for the torus. In [14] it was also
shown that the dynamics remain well-defined in the infinite volume limit and bounds on the scale
of fluctuations of the associated height function for the system were determined. In particular, it
was shown that height function fluctuations grow at a smaller rate than any polynomial in time t
(and that the bound can be improved to O(

√
log t) in a certain range of particle densities).

The q = 0 model is predicted (cf. [3]) to be in the anisotropic (2 + 1)-dimensional Kardar-Parisi-
Zhang universality class which is represented by the stochastic PDE

∂h

∂t
(t;x, y) =

1

2
∆h(t;x, y) + (∇h,Q∇h)(t;x, y) + ξ(t;x, y) (1.1)
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2 ALEXEI BORODIN, IVAN CORWIN, AND FABIO LUCIO TONINELLI

where h(t;x, y) represents a height function at time t and position (x, y), ∆ is the Laplacian in x and
y, Q is a 2×2 matrix with signature (+,−) and ξ(t;x, y) is a space-time white noise. This is called
anisotropic because of the mixed signature on the non-linearity, whereas when the signature of Q is
(+,+) or (−,−) the model is called “isotropic”. In 1991, Wolf [15] predicted that the fluctuations
of the anisotropic equation should grow like

√
log t and moreover that the non-linearity should be

irrelevant and the long-time behavior of the system should be exactly as that of the two-dimensional
additive stochastic heat equation (i.e., the equation with Q set to zero).

Wolf’s prediction of
√

log t fluctuations was demonstrated numerically soon after by Halpin-Healy
and Assdah [10]. Prähofer and Spohn [12] considered a microscopic model related to the Gates-
Westcott model, and demonstrated through exact calculation this fluctuation scaling. Borodin and
Ferrari [3] studied a (non-periodic) triangular array variant of the q = 0 case of the q-Whittaker
particle system and, using the technology of Schur processes they proved the

√
log t scaling and

further demonstrated convergence to a Gaussian free field as time goes to infinity. The occurrence
of a Gaussian free field is consistent with the prediction of convergence to the additive stochastic
heat equation since the Gaussian free field is stationary for the time evolution of that stochastic
PDE. It should be noted that since [3] dealt with dynamics on a triangular array of particles, the
Gaussian Free Field fluctuations only appear after a suitable coordinate change. This coordinate
change is not visible from the renormalization group arguments of Wolff. In this paper we focus on
translation invariant models for which no coordinate change is necessary.

We should note that (1.1) is not, a priori, well-defined because of the non-linearity and the fact
that solutions are not function valued, but rather generalized functions (like the Gaussian free
field). We are not aware of any rigorous treatment of this equation, though it may eventually fall
into the class of systems which can be defined through Hairer’s regularity structures [9]. As such,
none of Wolf’s predictions have been proved for (1.1) itself. Let us also note that the story is quite
different when the model is isotropic – see recent numerical studied of Halpin-Healy [11].

To our knowledge, the present paper, together with the forthcoming work of Borodin, Corwin
and Ferrari [2] in the context of these dynamics on triangular arrays, is the first instance in which
the full space-time picture has been rigorously established for a model in the (2 + 1)-dimensional
anisotropic KPZ class converging to the additive stochastic heat equation. To be upfront about
things, we do not prove this convergence as a process (which would require some additional tightness
estimates), but rather in terms of the correlation structure for Gaussian processes.

The initial motivation for this paper was the desire to extend the study of [3, 14] to the q 6= 0
case. In that case the Schur / determinantal point process structure is lost. To overcome this
impediment, we decided to consider a Gaussian limit of the model, hoping that calculations there
would become sufficiently doable without said structure. In particular, we consider the q = e−ε → 1
limit of the particle system, as we simultaneously scale the torus width and height like ε−1. We
start particles spaced on the ε−1 scale according to a certain crystalline configuration (see the

beginning of Section 3) with smaller ε−1/2 scale fluctuations. Speeding time up by ε−1, we prove
(Theorem 1) that particle positions (multiplied by ε) have asymptotically a constant speed v and

that fluctuations (multiplied by ε1/2) converge (as a space-time process) to a limiting system of
SDEs. Likewise, under this scaling the stationary measure on the q-Whittaker system converges to
a Gaussian measure (Lemma 3). (Note: we do not prove that the stationary measure concentrates
on the crystalline configuration, though it is certainly compelling to conjecture this).

Once in the setting of SDEs with Gaussian stationary measures (in fact, the stationary mea-
sures are on gradients) we are able to use Fourier transforms to explicitly compute the space-time
correlations as the number of particles goes to infinity (Theorem 2) as well as the correlations and
Gaussian free field limit of the stationary measure (Theorem 3). Theorem 2 has a number of corol-
laries. Corollary 1 shows that for fixed, large time t, fluctuations grow like

√
log t and correlations

decay in a spatial range of order t1/2. Corollary 2 considers the correlations along space-time lines.
There exists a distinguished direction U along which correlations exist in a temporal scale of order
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t and a spatial scale of order t1/2. In fact, Corollary 3 shows that in this scale, the correlations
converge to those of the (2 + 1)-dimensional additive stochastic heat equation – thus validating
Wolf’s prediction for this model. On the other hand, Corollary 2 also shows that for space-time
direction not equal to U , the correlations decay to zero on a t1/2 time-scale, thus much faster than
along U .

We call the direction U the “characteristic” direction. The reason is that the lines y = Ut are
the characteristic curves of a PDE that we conjecture to describe the hydrodynamic limit of our
model when the initial condition is not crystalline, see Section 3.2. There is a close analogy with
what happens in the context of (1 + 1)-dimensional particle systems. In that setting, the hydro-
dynamics are described by Hamilton-Jacobi conservation laws which can be solved by computing
the characteristics and propagating initial data along them. Characteristics are computed as the
derivative of the flux with respect to the local slope. At a more microscopic level, initial data
fluctuations are propagated along characteristics. In particular, one has “slow decorrelation” [7, 5]
along characteristics whereby fluctuations along these space-time directions decorrelate far slower
than along other space-time directions. The phenomenon of slow decorrelation along characteristics
was conjectured (with some supporting evidence) in [3] to hold for the two-dimensional q-Whittaker
particle system at q = 0.

The aforementioned results concerning correlations of two-dimensional systems of SDEs are ac-
tually proved below in much broader generality. In particular, all results are proved provided that
the SDEs take the form of (3.6) with the matrix A satisfying the conditions of Proposition 2. This
could reflect the expected universality of the (2 + 1)-dimensional anisotropic KPZ class. It would
be compelling to see if any of these universality results can be proved directly for the general q
system, without first taking the SDE limit. Without the Gaussian structure, though, it is unclear
how to proceed in this goal.

As mentioned above, in the q = 0 case, there exists a triangular array variant of the q-Whittaker
particle system which was studied at length in [3] using Schur processes. The triangular variant
of the general q case relates to q-Whittaker processes [1] and though the system is no longer
determinantal, there are many useful formulas provided through the technology of Macdonald
processes. In a parallel paper to this, Borodin, Corwin and Ferrari [2] develop the analogous q → 1
limit of this triangular variant of the particle system and explore the limits of the exact formulas and
their applications (in particular, concerning the asymptotic behavior of correlations along certain
space-time directions).

1.1. Acknowledgements. The authors wish to thank Patrik Ferrari for conversations on this
work and the related work [2]. A. B. was partially supported by the NSF grant DMS-1056390.
I. C. was partially supported by the NSF DMS-1208998, by a Clay Research Fellowship, by the
Poincaré Chair, and by a Packard Fellowship for Science and Engineering. F. T. was partially
funded by Marie Curie IEF Action DMCP- Dimers, Markov chains and Critical Phenomena, grant
agreement n. 621894. This work was initiated during the Statistical Mechanics, Integrability and
Combinatorics program at Galileo Galilei Institute (Arcetri). We appreciate the hospitality and
support of these institutes.

2. Model and notation

We start by recalling the definition of the q-Whittaker particle system on the torus, and its
stationary measure as defined in [4]. We consider an interacting particle system in which particles
live on the L×N discrete torus TL,N = Z/(LZ)×Z/(NZ). The horizontal size is L and the vertical
size is N .
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The particle configuration space will be denoted ΩL,N ;m1,m2 , and it depends on two integers
1 < m1 < L and 1 ≤ m2 < N such that

m1/L+m2/N < 1. (2.1)

At each site x = (x1, x2) ∈ TL,N there is at most one particle. On each row there are exactly m1

particles. We exclude m1 = 1 and m1 = L to avoid trivialities. The parameter m2 has a more
topological nature and its meaning will be explained below.

The horizontal position of particle p is denoted xp ∈ Z/(LZ). Particle positions are interlaced,
in the following sense. Given particle p (say on row i), we let p1, p4 denote its right/left neighbor
on the same row (note that if m1 = 2 then p1 = p4). Then, we require that in row i − 1 there is
exactly one particle, labeled p2, whose position satisfies

xp2 ∈ {xp + 1, xp + 2, . . . , xp1} (2.2)

and exactly one particle, labeled p3, satisfying

xp3 ∈ {xp4 + 1, xp4 + 2, . . . , xp}. (2.3)

See Figure 1. Note that, automatically, in row i + 1 there are exactly one particle p5 and one
particle p6 satisfying respectively

xp5 ∈ {xp4 , . . . , xp − 1}, xp6 ∈ {xp, . . . , xp1 − 1}. (2.4)

p p1p4

p6p5

p3 p2

row i

row i+1

row i-1

Figure 1. The neighbors p1, . . . , p6 of particle labeled p. Note that conditions
(2.2), (2.3) allow Cp := xp − xp3 = 0 but they impose Bp + 1 := xp2 − xp ≥ 1.

We define non-negative integers Ap, . . . , Fp as

Ap = xp1 − xp − 1; Bp = xp2 − xp − 1; Cp = xp − xp3 (2.5)

Dp = xp − xp4 − 1; Ep = xp − xp5 − 1; Fp = xp6 − xp.

The particles p1, . . . , p6 are the six neighbors of p, labeled clockwise starting from the one on the
right. The definition of the dynamics will be such that the labels of the neighbors of a particle p
do not change with time (particles will not jump over each other or change interlacements).

Let ΩL,N ;m1 be the set of particle occupation functions, i.e. of functions η : TL,N 7→ {0, 1}, with
m1 particles (i.e. occupation variables equal to 1) per row, whose positions satisfy the constraints
(2.2)-(2.4). The set ΩL,N ;m1 decomposes into disjoint “sectors”:

ΩL,N ;m1 =
⋃
m2

ΩL,N ;m1,m2 (2.6)

as follows. Given any particle p, connect p to its up-right neighbor p6, then p6 with its own up-right
neighbor and repeat the operation until the path Γ thus obtained gets back to the starting particle
p. Note that Γ forms a simple loop: otherwise, there would be a particle r which is reached along Γ
from two different particles r′, r′′. This is impossible, since both r′ and r′′ would be the lower-left
neighbor r3 of r. Call Nv ∈ N∪{0}, Nh ∈ N∪{0} the vertical and horizontal winding numbers of Γ
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around the torus TL,N . It is easy to see that Nh, Nv are independent of the chosen initial particle
p. As discussed in [4, Remark 2],

m2 := m1
Nh

Nv
(2.7)

is an integer and it satisfies (2.1). The set ΩL,N ;m1,k is defined as the subset of ΩL,N ;m1 with
m2 = k. Each sector ΩL,N ;m1,m2 will remain invariant under our dynamics.

Let us briefly remark that the particle configurations we are considering can also be mapped
onto dimers on the periodized L × N hexagonal lattice. This perspective is explained in [4] (see
in particular Fig. 2 there) wherein n1 := m1N corresponds to the number of vertical dimers,
n2 := m2L to the number of north-west dimers and n3 := NL− n1 − n2 the number of north-east
dimers. We will not pursue this perspective any further here.

Given a configuration η ∈ ΩL,N ;m1,m2 , draw a directed upward edge from any particle label r
to its up-right neighbor r6 if Fr = 0 (in which case r and r6 have the same horizontal position).
For the particle labeled by p let V +

p be the set that includes p plus the particle labels that can be
reached from p by following upward oriented edges. The dynamics we consider is a continuous-time
Markov chain on ΩL,N ;m1,m2 . For each p, there is an exponential clock of rate

(1− qBp)(1− qDp+1)

(1− qCp+1)
(2.8)

with q ∈ [0, 1). When said clock rings, all particles with label r ∈ V +
p shift by (1, 0). Note that

the rate is zero if Bp = 0. This prevents particles from overlapping after the move. Note also
that after the move, the configuration is still in ΩL,N ;m1,m2 . This is discussed in more detail in
[4]. Another way to understand the dynamics is that when particle p moves, provided its up-right
neighbor p6 ∈ V +

p , then Cp6 becomes −1 and the jump rate for p6 becomes infinite, and hence it

immediately moves (and so on for all other r ∈ V +
p ). These dynamics are called the q-Whittaker

particle system on the torus. As a side remark, let us add that, in terms of dimer model, shift
to the right by +1 of a family V +

p corresponds to increasing the height by 1 in |V +
p | faces of the

hexagonal lattice.
Given q ∈ [0, 1), let π be the probability measure on ΩL,N ;m1,m2 defined as

π(σ) :=
1

ZL,N ;m1,m2

∏
p

(q; q)Ap
(q; q)Bp(q; q)Cp

1{σ∈ΩL,N ;m1,m2
} (2.9)

where (q; q)n = (1− q)(1− q2) . . . (1− qn) and ZL,N ;m1,m2 is the normalizing constant necessary to
make this a probability measure. The main result of [4] (Theorem 1 therein) is:

Proposition 1. The probability law π is stationary in time for q-Whittaker particle system on the
torus.

Clearly, the measure π is not reversible, since the process is totally asymmetric.

We will consider a certain q → 1 limit of the particle system. To fix scalings, for ε > 0 let
q = exp(−ε). For simplicity (to avoid a plethora of b·c), we will assume ε−1 is an integer, though
all results hold for arbitrary ε. Further, let L = ε−1` for some integer `. On each row there are
m := m1 = n1/N particles, with m an integer of order `. Also for simplicity we take N = m, so
altogether we have n1 = m2 = O(`2) particles. Taking N to be another multiple of m would not
change our results qualitatively.

Remark 1. On Z2, introduce the equivalence relation ∼ such that p ∼ p′ iff p = p′ + (j1m −
j2m2, j2m) for some j1, j2 ∈ Z. Observe that if we take N = m steps along Γ starting from p,
we get a particle p′ that is the jth right neighbor of p on the same row, for some 0 ≤ j ≤ m.
Actually, one has j = m2, since Nvj = Nhm. Particles will be given a label p ∈ Z2 such that
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p1 = p + (1, 0), p2 = p + (1,−1), p3 = p + (0,−1), p4 = p − (1, 0), p5 = p + (−1, 1), p6 = p + (0, 1),
with an arbitrary choice of which particle is labeled p = (0, 0). Thanks to the above observation,
given integers j1, j2, particle p+ (j1m1, j2N) is to be identified with p+ (j2m2, 0). In other words,
particles are labeled by p ∈ Rm := Z2/ ∼ (the quotient set of Z2 by ∼, which contains m2 equivalence
classes).

We will first take the limit ε→ 0 with m and m2 fixed, and then m→∞ with the ratio m2/m
bounded away from 0 and 1 if we want to take an infinite-volume limit (m2/m ≤ 1 by definition,
recall (2.1) and m = N).

The average inter-particle distance along a row is

D

ε
:=

L

m
=

`

εm
(2.10)

so that, with reference to (2.5), the average value of Dp is ε−1D.
The average value of Cp is instead fixed by choosing m2 suitably, as follows. Let C ∈ (0, D) be

defined by

C

D
=
m2

m
(2.11)

and let B = D − C. (Note that, as long as the integers m,m2 are kept finite, C can take only a
finite set of values in (0, D); such set becomes dense in (0, D) if we allow m,m2 to diverge with a
fixed ratio).

We claim that the average value of Cp in any particle configuration is ε−1C. Indeed, take the
path Γ defined after (2.6). It visits exactly Nv ×N = mNv particles and its total displacement to
the right equals Nh × L. On the other hand, Nh × L is also the sum of the Cp over all particles in
Γ. From this, we see that the average value of Cp is

NhL

Nvm
=
m2L

m2
= ε−1m2

m

εL

m
= ε−1m2

m
D (2.12)

where in the first equality we used (2.7), and in the third (2.10). Eq. (2.11) then allows to conclude.
Similarly, we see that the average of Bp is ε−1B. On the other hand, the averages of Dp, Ep, Fp

equal by definition the averages of Ap, Bp, Cp respectively.

3. Convergence to a system of SDEs

We will start the dynamics from an initial condition where each particle p ∈ Rm is within
distance O(ε−1/2) from its “ideal position” Xp in a perfect “crystalline configuration” where Dp =
ε−1D,Bp = ε−1B,Cp = ε−1C for every p. Assuming without loss of generality that X0 = 0, we

have for p = (p(1), p(2))

Xp = p(1)ε−1D + p(2)ε−1C (3.1)

where the r.h.s. has to be taken modulo ε−1`.
Our first result (proven in Section 5) says that particles move macroscopically with a deterministic

speed v(C,D) > 0 and that, in the time-scale of order ε−1, fluctuations around such hydrodynamic

limit are of order ε−1/2 and converge to a system of linear SDEs.

Theorem 1. Fix N = m and `, so that the lattice ΛL,N depends only on ε. Let {ξ̄p}p∈Rm ∈ RRm.
Consider an initial configuration σ0 such that, defining

ηp := ηp,ε =
√
ε(xp −Xp), (3.2)

one has

lim
ε→0

ηp = ξ̄p ∀p ∈ Rm. (3.3)
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Define

v(C,D) =
(1− exp(−B))(1− exp(−D))

1− exp(−C)
(3.4)

(recall that B = D − C) and

ηp,t =
√
ε
(
xp(t/ε)−Xp − ε−1vt

)
, t ≥ 0. (3.5)

Then, the random process {ηp,·}p∈Rm converges weakly as ε → 0 to the solution of the system of
linear stochastic differential equations{

dξp,t =
√
v dWp,t +

∑
p′ Ap,p′ξp′,tdt

ξp,0 = ξ̄p
(3.6)

with

Ap,p′ = δp′=p

(
e−D(1− e−B)

1− e−C
− e−B(1− e−D)

1− e−C
− e−C(1− e−B)(1− e−D)

(1− e−C)2

)
(3.7)

+δp′=p+(1,−1)
e−B(1− e−D)

1− e−C
− δp′=p−(1,0)

e−D(1− e−B)

1− e−C
(3.8)

+δp′=p−(0,1)
e−C(1− e−B)(1− e−D)

(1− e−C)2
(3.9)

and where dWp,t are independent white noises indexed by p, and one-dimensional in time t.

Remark 2. Note that the matrix A is not symmetric, so that the diffusion (3.6) is not reversible
with respect to its stationary measure described by Theorem 3. In other words, the irreversibility of
the microscopic dynamics survives also in the Gaussian limit.

3.1. Properties of the matrix A. It is convenient to work in Fourier space. For this purpose,
let

fk : Rm 7→ C, fk : p 7→ 1

m
e−ipk. (3.10)

The set {fk}k∈Km , where

Km = {((2π/m)r1, (2π/m)

(
C

D
r1 + r2

)
, r1, r2 ∈ Z,−m/2 ≤ r1, r2 < m/2}, (3.11)

forms an orthonormal basis of CRm .

Remark 3. Note that Km was chosen such that, if we define fk(p) = (1/m)e−ipk for every p ∈ Z2,
then fk(p) = fk(p

′) if p ∼ p′ (use that m2/m = C/D, see (2.11)). Also, observe that |Km| = m2.

Define

ξ̂k,t =
∑
p∈Rm

ξp,tfk(p), (3.12)

so that

ξp,t =
∑
k∈Km

ξ̂k,tfk(p), and ξ̂−k,t = ξ̂k,t. (3.13)

Let also

Â(k) =
∑
p

Ap,0e
−ipk, k ∈ R2. (3.14)
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In our specific case, one sees that

Â(k) = A0,0 +A0,(1,−1)e
−i(k1−k2) +A0,(−1,0)e

ik1 +A0,(0,−1)e
ik2 (3.15)

Â(k) + Â(−k) = 2[A0,0 +A0,(1,−1) cos(k1 − k2) (3.16)

+ A0,(−1,0) cos(k1) +A0,(0,−1) cos(k2)]. (3.17)

Observe that we defined Â(k) for any k ∈ R2 and not just for k ∈ Km.

Proposition 2. The matrix A satisfies the following properties:

(1) Translation invariance: Ap,p′ = Ap+r,p′+r for every r;

(2) Â(0) =
∑

p′ Ap,p′ = 0;

(3)

R̂(k) := Â(k) + Â(−k) ≤ 0 (3.18)

and the only zero of R̂(k) on [−π, π]2 is at k = 0;
(4)

R̂(k) = Ŵ (k) +O(|k|3) = (k, Ŵk) +O(|k|3), k → 0, (3.19)

with Ŵ a strictly negative definite 2× 2 matrix and Ŵ (k) the associated quadratic form.

(5) The function Â(·) is 2π-periodic and C∞ on [−π, π]2.

All properties are trivial to check, except for (3) which is proven in Appendix B. The fact that

Ŵ (k) := −A0,(1,−1)(k1 − k2)2 −A0,(−1,0)k
2
1 −A0,(0,−1)k

2
2 (3.20)

is a strictly negative definite quadratic form follows from negativity of R̂(k), together with the fact
that

det(Ŵ ) =
e−D(1− e−D)(1− e−B)2

(1− e−C)2
=: w2 > 0. (3.21)

For later convenience, let the 2× 2 matrix V be such that

V ŴV T = −I. (3.22)

Let us also define

U := i∇Â(0) =
∑
p

pA0,p = (A0,(1,−1) −A0,(−1,0),−A0,(1,−1) −A0,(0,−1)) ∈ R2, (3.23)

and note that U 6= 0 for any choice of B,C,D = B + C.

Remark 4. A few comments are in order:

• Property (1) (translation invariance of A) originates from the fact that we are considering
fluctuations around a “trivial”, translation invariant hydrodynamic limit where particles
have positions Xp + ε−1vt and are therefore equi-spaced at all times. This is the property
that makes it convenient to work in Fourier space (e.g., property (1) is behind the fact that
Eq. (6.1) is diagonal in k);
• Property (2) means that the drift of a particle p is unchanged if all particles are globally

shifted by the same amount. This is a consequence of the fact that transition rates (2.8)
of the microscopic particle process depend only on inter-particle distances, and would hold
even if we studied fluctuations w.r.t. a non-translation invariant hydrodynamic limit (cf.
Section 3.2);
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• Property (3) guarantees that there exists a stationary measure for gradients ξp − ξp′, see

Theorem 3 and formula (6.9). Negative-definiteness of Â(k) + Â(−k) corresponds to the
fact that in the hydrodynamic scaling the particle configuration is “crystalline” at all times,
and that crystalline configurations are an (at least local) maximum of the stationary measure
π(·), see Lemma 3.

3.2. A conjectural hydrodynamic equation. We will briefly consider the hydrodynamic be-
havior of the q-Whittaker particle system with general initial data (which may not be close to the
crystalline configurations considered above). We provide a heuristic derivation of the hydrodynamic
(law of large numbers) PDE satisfied by the limit. For us, the purpose of this derivation is to justify
and explain our use of the word ”characteristic” to describe the direction U of slow decorrelation.
In this hydrodynamic limit we will first take ε → 0 and then m → ∞. With this in mind, let us
rescale space and time by m/ε and define

h(τ, y) = (ε/m)xbymc(τm/ε)

with y ∈ [0, 1]2, τ ≥ 0, and where the r.h.s. has to be taken modulo (`/ε)× (ε/m) = D because xp
is defined modulo L = `/ε. Note that, as a consequence of Remark 1, h(τ, ·) satisfies

h(τ, y + (j1, j2)) = h(τ, y + (Cj2/D, 0)), j1, j2 ∈ Z.

If at time zero the configuration satisfies the conditions of Theorem 1, then h(0, y) is close to a
linear function:

H(0, y) := lim
m→∞

lim
ε→0

h(0, y) = Dy1 + Cy2.

In this case, it follows from Theorem 1 that, for τ > 0, the limit

H(τ, y) := lim
m→∞

lim
ε→0

h(τ, y) (3.24)

exists and solves

∂τH = v (3.25)

with v(C,D) as in (3.4). Given that D = ∂y1H and C = ∂y2H, and using B = D −C, we see that

v(C,D) = v(∇H) =
(1− exp(∂y2H − ∂y1H))(1− exp(−∂y1H))

(1− exp(−∂y2H))
. (3.26)

If we assume instead that the initial condition satisfies

lim
m→∞

lim
ε→0

h(0, y) = H(0, y),

with H(0, ·) some smooth enough but non-linear function, then it is natural to conjecture that the
limit (3.24) exists and still satisfies (3.25), with v = v(∇H) equal to the r.h.s. of (3.26). It is easy
to see that the characteristic lines of the PDE (3.25) are the straight lines y = Ut with U as in
(3.23). In fact, the characteristic lines are determined by

yi(t) = t∇iv, i = 1, 2

with ∇iv the derivative of v = v(∇h) with respect to its i-th argument. Explicitly,

∇1v =
e∂y2H−∂y1H(1− e−∂y1H)

1− e−∂y2H
+
e−∂y1H(1− e∂y2H−∂y1H)

1− e−∂y2H
= A0,(1,−1) −A0,(−1,0) = U1

and similarly ∇2v = U2. We emphasize that the identity ∂iv = Ui is not a coincidence. Indeed, view
the hydrodynamic speed v as a function of the relative horizontal distances between particle, say, 0
and the other particles p (in our case, the dependence is only through the three neighbors p2, p3, p4

of 0). On one hand, since the SDEs (3.6) describe a linearization of the stochastic dynamics around
the hydrodynamic limit, A0,p is obtained taking the derivative of v w.r.t. the position xp of particle
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p, with the others kept fixed. On the other hand, if the slope ∇iH is changed by ε, the distance
between particles 0 and p = (p(1), p(2)) changes by ε× p(i). Therefore,

∇iv =
∑

p=(p(1),p(2))

p(i)A0,p = Ui. (3.27)

This shows that the identity Ui = ∇iv is not related to the particular form of the function
v(·). If we had another interacting particle process for which we could prove convergence to a
hydrodynamic equation and convergence of fluctuations to a system of linear SDEs with a matrix
A satisfying the conditions in Proposition 2, we would have automatically that the direction of slow
decay of correlations would coincide with the characteristic lines of the PDE.

4. Correlations of the Gaussian system

In this section we study the space-time correlations of the SDE system (3.6). Since the equations
are linear, they can be solved explicitly.

We formulate the results in wider generality. Again, the solution to (3.6) with initial condition ξ̄
is denoted {ξp,t}t≥0,p∈Rm and we let Pξ̄ be its law. The matrix A = {Ap,p′}p,p′∈Rm is not necessarily

given by (3.7) but is required to satisfy properties (1)–(5) of Proposition 2. Theorems 2 and 3 hold
in this generality.

Let C ξ̄(t, s) be the m2 ×m2 symmetric matrix

C ξ̄p,p′(t, s) = Eξ̄[ξp,tξp′,s], p, p′ ∈ Rm (4.1)

and Mξ̄(t) ∈ Rm be the vector

Mξ̄
p(t) = Eξ̄[ξp,t], p ∈ Rm (4.2)

with of course C ξ̄p,p′(0, 0) = ξ̄pξ̄p′ , Mξ̄
p(0) = ξ̄p. By Itō’s lemma,

d

dt
Mξ̄

p =
∑
p′

Ap,p′Mξ̄
p′(t), (4.3)

d

dt
C ξ̄(t, t) = vI + C ξ̄(t, t)AT +AC ξ̄(t, t),

d

dt
C(t, s) = AC(t, s), t > s,

with AT the transpose of A and I the identity matrix.
Let also

W ξ̄
p,p′(t, s) := C ξ̄p,p′(t, s)−M

ξ̄
p(t)M

ξ̄
p′(s). (4.4)

Theorem 2. Let A satisfy the properties of Proposition 2. Then, W ξ̄
p,p+y does not depend on ξ̄ or

p and the limit

Wy(t, s) = lim
m→∞

W ξ̄
p,p+y(t, s) (4.5)

exists for any given y ∈ Z2. Moreover,

Wy(t, s) =
v

4πw

∫ 1+(t+s)/2

1+(t−s)/2

e−|H|
2/(4a)

a
da+ j(t, s, y), (4.6)

where w > 0 is defined in (3.21), H = V y + (t− s)V U , V is defined in (3.22), U = i∇Â(0), and j
satisfies

sup
t,s,y
|j(t, s, y)| <∞, lim

max(t−s,|y|)→∞
j(t, s, y) = 0. (4.7)
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If the matrix A is the one given in (3.7), using (3.21) and (3.4), one sees that

v

w
=
√
eD − 1. (4.8)

From (4.6) one can obtain all desired asymptotics. For instance, one can obtain equal-time
correlations.

Corollary 1 (Equal-time correlations). For y = 0 one has

lim sup
t→∞

∣∣∣W0(t, t)− v

4πw
log t

∣∣∣ <∞. (4.9)

For y 6= 0 one finds, with Y = V y and after the change of variables a = |Y |2/(4x),

Wy(t, t) =
v

4πw

∫ |Y |2/4
|Y |2/4(1+t)

e−x

x
dx+ j(t, t, y). (4.10)

This implies that

lim
|y|→∞,t→∞
|y|=O(

√
t)

(
Wy(t, t)−

v

4πw
log(4(t+ 1)/|Y |2)

)
= 0 (4.11)

where we used the fact that

c− ≤
|Y |
|y|
≤ c+ (4.12)

for some non-zero constants c± (the lower bound holds because the determinant of V is not zero).
If instead both |y|, t diverge and |y| �

√
t, then Wy(t, t) = o(1).

The same results hold if t− s = O(1).

As for correlations at different times, the following result shows that the behavior is special
along the space-time lines y = tU (that will be called “characteristics”, in view of the discussion

in Section 3.2), with U = i∇Â(0) =
∑

p pAp,0 ∈ R2. We will assume that t− s� 1, since the case

t− s = O(1) is effectively covered by the previous Corollary.

Corollary 2 (Correlations along the characteristics). We deduce from (4.6)

lim sup
t−s→∞

(
WbU(t−s)c(t, s)−

v

4πw
log

t+ s

t− s

)
= 0, (4.13)

in particular WbU(t−s)c(t, s) is large if t− s� t.
If instead u 6= U , we have

lim sup
t−s→∞

(
Wbu(t−s)c(t, s)−

v

4πw

∫ ∞
(t−s)2|V (U−u)|2

2(t+s)

e−x

x
dx

)
= 0; (4.14)

from this we deduce that

lim sup
t→∞,(t−s)/

√
t→∞

Wbu(t−s)c(t, s) = 0, (4.15)

while

lim sup
t−s→∞,t−s=O(

√
t)

∣∣∣Wbu(t−s)c(t, s)−
v

4πw
[log t− 2 log(t− s)]

∣∣∣ <∞. (4.16)
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Summarizing: along the characteristic correlations are large as soon as (t − s) � t and grow
proportionally to log t if t− s ≤ ta, a < 1. For all other space-time directions, correlations are large
only if t− s�

√
t.

Equation (4.13) shows that, along the characteristic, there is a limit for the correlation as t, s→
∞ with t− s and t+ s of comparable size. This suggests that in this scaling the whole fluctuation
field near the characteristic has a non-trivial limit process which, in the following statement, we
identify as being related to the Stochastic Heat Equation.

Corollary 3. Define

hx,t = aξbtU+V −1xc,t, a =

√
4πw

8v
. (4.17)

Then, for any given x, y, 0 < s < t, from (4.6) we get

lim
δ→0

[
Eξ̄(hδ−1/2x,δ−1t hδ−1/2y,δ−1s)− Eξ̄(hδ−1/2x,δ−1t)Eξ̄(hδ−1/2y,δ−1s)

]
(4.18)

=
1

8

∫ (t+s)/2

(t−s)/2

e−|x−y|
2/(4a)

a
da. (4.19)

In other words, in this limit the randomly evolving height field h·,· has the same space-time corre-
lations as the additive stochastic heat equation in 2 spatial dimensions,

∂th = ∆h+ Ẇ (4.20)

with Ẇ the (2 + 1)-dimensional space-time white noise (compare (4.18) with the formal expression
derived in [8, Formula (2.8)] for the covariance of the stochastic heat equation).

Remark 5. If the particle label p is d-dimensional, d 6= 2, and the matrix A satisfies the analog
the properties (1)–(5) of Proposition 2 (with [−π, π]2 replaced by [−π, π]d), then one can check that
Theorem 2 still holds, with (4.6) replaced by

Wy(t, s) =
πv

(2π)dw

∫ 1+(t+s)/2

1+(t−s)/2

e−|H|
2/(4a)

ad/2
da+ j(t, s, y), y ∈ Zd. (4.21)

We leave it to an interested reader to derive the analogs of Corollaries 1–3 for d 6= 2.

4.1. Stationary measure. We cannot expect that there is a stationary measure for {ξp}p: since
there is invariance by global shifts on R of all positions ξp, the inverse covariance matrix will have
a zero mode (like a Gaussian Free Field not pinned to zero anywhere). However, the stationary
measure on gradients of ξ will be well-defined. Not surprisingly, its scaling limit (which requires
letting m → ∞) is the standard massless Gaussian Free Field (see e.g. [13] for definitions), up to
an affine transformation of coordinates by the matrix V (cf. (4.29)).

Theorem 3. Let A satisfy the properties of Proposition 2. There exists a unique stationary measure
µ for the gradients (ξp − ξp′)p,p′∈Rm. This measure is Gaussian and its mean and covariances are
given by

Eµ(ξp − ξp′) = 0 ∀p, p′ (4.22)

and

Covµ [(ξy1 − ξy2); (ξy3 − ξy4)] = − v

m2

∑
k∈Km

(eiky1 − eiky2)(e−iky3 − e−iky4)

R̂(k)
(4.23)

m→∞→ − v

(2π)2

∫
[−π,π]2

dk
(eiky1 − eiky2)(e−iky3 − e−iky4)

R̂(k)
(4.24)

≡ Covµ∞ [(ξy1 − ξy2); (ξy3 − ξy4)] . (4.25)
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Moreover, one has

Covµ∞ [(ξy1 − ξy2); (ξy3 − ξy4)] =
v

2πw
log

1 + |V (y1 − y4)||V (y3 − y2)|
1 + |V (y1 − y3)||V (y2 − y4)|

+Ry1,y2,y3,y4 (4.26)

where V is the matrix in (3.22) and1

Ry1,y2,y3,y4 = O(1/(1 + min(|y1 − y3|, |y2 − y4|, |y1 − y4|, |y2 − y3|))). (4.27)

From this we deduce a convergence to a massless GFF on R2, of covariance proportional to

− log |V (x− y)|,

in the following sense: Let φ : R2 7→ R be a C∞, compactly supported function such that
∫
R2 φ(x)dx =

0. Then, the zero-average random function

ξφ := δ2
∑
p

φ(δp)(ξp − ξ0) (4.28)

converges in law, in the limit limδ→0 limm→∞, to a centered Gaussian random variable of variance

− v

2πw

∫
φ(x)φ(y) log |V (x− y)|dxdy. (4.29)

Remark that, given φ(i), i = 1, 2 satisfying the same assumptions as φ above, the limit covariance
limδ→0 limm→∞ Eµ(ξφ(1)ξφ(2)) can be simply deduced via

2Eµ(ξφ(1)ξφ(2)) = Eµ(ξ2
φ(1)

) + Eµ(ξ2
φ(2)

)− Eµ((ξφ(1)−φ(2))
2). (4.30)

In particular, (4.26) gives

lim sup
|y|→∞

∣∣∣Varµ∞ [ξ0 − ξy]−
v

πw
log |V y|

∣∣∣ <∞ (4.31)

(using (4.12), one can replace V y with y).

5. Convergence to the SDEs: Proof of Theorem 1

5.1. A tightness estimate. Let

G =

{
σ ∈ ΩL,N ;m1,m2 : ∀p,

∣∣∣∣Bp − B

ε

∣∣∣∣ ≤ log(1/ε)√
ε

,

∣∣∣∣Dp −
D

ε

∣∣∣∣ ≤ log(1/ε)√
ε

}
. (5.1)

Note that the initial condition σ0 is well inside G, cf. (3.3). The crucial ingredient in the proof of
Theorem 1 is the following a-priori tightness estimate:

Lemma 1. Let ∂G ⊂ G denote the inner boundary of G (the set of configurations from which the
dynamics can exit G with a single update) and define the stopping time

τG = inf{t > 0 : σ(t) ∈ ∂G}. (5.2)

Then,

lim
ε→0

Pσ0(τG ≤ ε−2) = 0. (5.3)

The time ε−2 could be replaced by any ε−a. What we need is that a > 1, so that this time is
much larger than 1/ε, the time-scale of convergence to the SDEs.

Proof of Lemma 1. Let us start with the following:

1here, |yi − yj | denotes the Euclidean distance between yi and yj on Z2 and not on the “torus” Rm (recall that
the limit m→∞ has already been taken).
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Lemma 2. Let a = ε−1b+X with b > 0 and
√
ε|X| � ε−1/10. The following asymptotic expansion

holds as ε→ 0:

(q; q)a = exp

1

ε

∑
n≥1

1

n2
e−bn − 1

2

∑
n≥1

1

n
e−bn (5.4)

−X
∑
n≥1

1

n
e−bn + ε

X2

2

e−b

1− e−b
+ C(ε) + o(1)

 (5.5)

with C(ε) independent of b and X.

See Appendix A for the proof.

Lemma 3. If σ ∈ G and if as in (3.3) we let ηp :=
√
ε(xp − ε−1Pp), then

π(σ) =
1

Z
exp

v ∑
k∈Km

R̂(k)|η̂k|2 + o(1)

 (5.6)

where π(·) is defined in (2.9) and, as in (3.12), we set

η̂k =
∑
p∈Rm

ηpfk(p), ηp =
∑
k∈Km

η̂kfk(p). (5.7)

We recall from Proposition 2 that R̂(k) ≤ 0 and vanishes only for k = 0.

Proof of Lemma 3. From Lemma 2 we see that

π(σ) =
1

Z
exp

(
−1

2
(η,Qη) + o(1)

)
(5.8)

with Z a normalization constant independent of σ and

−(η,Qη) =
∑
p

(ηp − ηp+(1,0))
2 e−D

1− e−D
(5.9)

−
∑
p

(ηp − ηp+(1,−1))
2 e−B

1− e−B
−
∑
p

(ηp − ηp+(0,−1))
2 e−C

1− e−C
. (5.10)

This can be rewritten in Fourier space as

−1

2
(η,Qη) =

∑
k

|η̂k|2Q̂(k) (5.11)

Q̂(k) =
e−D

1− e−D
(1− cos(k1))− e−B

1− e−B
(1− cos(k1 − k2)) (5.12)

− e−C

1− e−C
(1− cos(k2)). (5.13)

Here, we use for instance that∑
p

(ηp − ηp+(1,0))
2 =

∑
p

∑
k,k′∈Km

η̂kη̂−k′fk(p)fk′(p)(1− eik1)(1− e−ik′1) (5.14)

=
∑
k∈Km

|η̂k|2(2− 2 cos(k1)) (5.15)

where we used orthonormality of {fk(·)}k∈Km and the second of (3.13). One checks that

Q̂(k) = v(Â(k) + Â(−k)) = vR̂(k) (5.16)
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and the proof is concluded. �

Given any Markov chain with stationary measure π, generator L and two states x, y, we have
for any t > 0

Pt(x, y) ≤ π(y)

π(x)
. (5.17)

To see this, write

Pt(x, y) = [δxe
tL](y) ≤

[
π

π(x)
etL
]

(y) =
π(y)

π(x)
(5.18)

where we used π(·)/π(x) ≥ δx(·). For the initial configuration, one has from (5.8)

π(σ0) ≥ 1

Z
e−K1 (5.19)

for some finite constant K1 depending on ξ̄ (and, typically, of order m2). If instead σ ∈ ∂G, then
one has

π(σ) ≤ 1

Z
e−K2(log ε)2 (5.20)

for some strictly positive K2 (this is proven below). Finally, observe that

|∂G| = O(ε−K3) (5.21)

for some constant K3 depending on m. This is trivial: indeed, the total number of configurations

is bounded by (`/ε)m
2

(recall the definition of the model, the fact that ` is independent of ε and
that there are m2 particles). Using (5.17), (5.19), (5.20) and (5.21), we deduce

P(σ(t) ∈ ∂G) ≤ exp(−K4(log ε)2). (5.22)

As a consequence,

E

[∫ ε−2+1

0
1{σ(t)∈∂G} dt

]
≤ (ε−2 + 1) exp(−K4(log ε)2). (5.23)

Next observe that, if τG < ε−2, then there exists a probability at least δ > 0 independent of ε that
the total time spent in ∂G up to time ε−2 + 1 is at least δ× ε. This is simply because the maximal
transition rate of the Markov chain is of order ε−1 (this is the case when Cp in (2.8) is of order 1).
In conclusion,

E

[∫ ε−2+1

0
1σ(t)∈∂Gdt

∣∣∣∣∣ τG ≤ ε−2

]
≥ δ2ε. (5.24)

Together with (5.23) we deduce

P(τG ≤ ε−2) ≤ 1

δ2ε
E

[∫ ε−2+1

0
1{σ(t)∈∂G} dt

]
≤ exp(−K5(log ε)2) (5.25)

and (5.3) is proven.

It remains to prove (5.20). Recall that (Â(k)+ Â(−k)) is negative for every k ∈ Km and vanishes
only for k = 0, so that

− 1

2
(η,Qη) ≤ −δ

∑
k∈Km,k 6=0

|η̂k|2 (5.26)

for some positive δ that depends only on the number of particles m2.
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If σ ∈ ∂G we must have either |ηp − ηp+(1,0)| ≥ (1/2) log(1/ε) or |ηp − ηp+(1,−1)| ≥ (1/2) log(1/ε)
for some p. Assume to fix ideas that the former is the case. Then, from (5.7) (and writing

∑
k

instead of
∑

k∈Km)

1

2
log(1/ε) ≤ |ηp − ηp+(1,0)| = |

∑
k

η̂kfk(p)(e
ik1 − 1)| (5.27)

= |
∑
k 6=0

η̂kfk(p)(e
ik1 − 1)| ≤ 2

√∑
k 6=0

|η̂k|2
√∑

k

|fk(p)|2 = 2

√∑
k 6=0

|η̂k|2. (5.28)

Then, (5.20) immediately follows. �

5.2. Proof of Theorem 1. Let U(t) = {Up(t)}p∈Rm be defined as

Up(t) =
1√
ε

∫ t

0
[−v + rp(σ(s/ε)] ds (5.29)

where rp(σ) is the rate at which particle p jumps +1 to the right in the configuration σ (this includes
the event that it jumps because it is pushed by another particle, i.e. because clock of particle p′

rings and p ∈ V +
p′ ). Note that {Mp(t)}t ≡ {ηp,t − Up(t)}t is a martingale, since we have

d

dt
Up(t) = ∂sE[ηp,t+s|{ηp′,t}p′ ]

∣∣
s=0+

. (5.30)

Next, define V (t) = {Vp,p′(t)}p,p′ as solution to

d

dt
Vp,p′(t) = ∂sE[Mp,t+sMp′,t+s|{ηr,t}r]

∣∣
s=0+

Vp,p′(0) = 0, (5.31)

so that {Mp(t)Mp′(t)− Vp,p′(t)}t is again a martingale for every (p, p′).
We will apply [6, Theorem 4.1, Chapter 7], that gives a set of sufficient conditions on the processes

η, U and V that imply that {ηp,t}t≥0,p∈Rm converges weakly to the solution of (3.6)2. In particular,
conditions (4.3)–(4.5) in [6] are trivial. For (4.6), we have to check that, for any T > 0,

sup
t≤T

∣∣∣∣∣∣Up(t)−
∫ t

0

∑
p′

Ap,p′ηp′,sds

∣∣∣∣∣∣ P→ 0 (5.32)

as ε → 0. On the event {τG > ε−2}, whose probability tends to 1 as ε → 0 thanks to Lemma 1,
no particle can push any other in configuration σ(s/ε) for any s/ε ≤ ε−2 (particles are far away
from each other and all the families V +

p defined just before (2.8)) include only the particle p itself).
Then, rp(σ(s/ε)) equals the r.h.s. of (2.8) for any s ≤ T . We have

rp(σ(s/ε)) =
(1− e−B−

√
ε(ηp+(1,−1),s−ηp,s))(1− e−D−

√
ε(ηp,s−ηp−(1,0),s)−ε)

1− e−C−
√
ε(ηp,s−ηp−(0,1),s)−ε

(5.33)

= v +
√
ε

[
e−B

1− e−D

1− e−C
(ηp+(1,−1),s − ηp,s) + e−D

1− e−B

1− e−C
(ηp,s/ε − ηp−(1,0),s) (5.34)

−e−C (1− e−B)(1− e−D)

(1− e−C)2
(ηp,s − ηp−(0,1),s)

]
+O(ε log(1/ε)) (5.35)

= v +
√
ε
∑
p′

Ap,p′ηp′,s +O(ε log(1/ε)) (5.36)

where O(ε log(1/ε)) is uniform on s ≤ T . We used that, on G, |ηp−b − ηp| ≤ log(1/ε), b ∈
{(−1, 1), (1, 0), (0, 1)}. Plugging this into (5.29) we get (5.32).

2A warning on notations: in [6], η is called X, U is called B and V is called A
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Finally, condition (4.7) in [6, Theorem 4.1, Chapter 7] amounts in our case to requiring that

sup
t≤T

∣∣Vp,p′(t)− vtδp,p′∣∣ P→ 0. (5.37)

Indeed, one has (using that {Mp,t}t≥0 is a martingale)

d

dt
Vp,p′(t) = ∂sE

[
Np,t+sNp′,t+s|{ηr,t}r

]
|s=0+ (5.38)

where

Np,t+s =
√
εxp(ε

−1(t+ s))− 1√
ε

∫ t+s

0
rp(σ(ε−1u))du.

Note that, by definition of the jump rate rp(σ),

∂sE
[
xp(ε

−1(t+ s))

∫ t+s

0
rp′(σ(ε−1u))du

∣∣∣∣ {ηr,t}r]
s=0+

(5.39)

= ε−1rp(ε
−1t)

∫ t

0
rp′(σ(ε−1u)du+ xp(σ(ε−1t)rp′(σ(ε−1t)). (5.40)

Therefore, one sees that

d

dt
Vp,p′(t) = −xp(t/ε)rp′(σ(t/ε))− xp′(t/ε)rp(σ(t/ε)) (5.41)

+ε ∂sE[xp((t+ s)/ε)xp′((t+ s)/ε)|{ηr,t}r]
∣∣
s=0+

. (5.42)

If p = p′, this gives

d

dt
Vp,p′(t) = −2xp(t/ε)rp(σ(t/ε)) + rp(σ(t/ε))(1 + 2xp(t/ε)) (5.43)

= rp(σ(t/ε)) (5.44)

where in the first step we used the fact that when xp jumps +1 (which happens with rate rp), x
2
p

increases by (xp + 1)2 − x2
p = 1 + 2xp. Recall that, on the event {τG ≥ ε−2}, we have rp(σ(t/ε)) =

v + o(1), cf. (5.33). Since the probability of {τG ≥ ε−2} tends to 1, this implies (5.37) for p = p′.
As for p 6= p′, on the event {τG ≥ ε−2} the particles p and p′ cannot jump simultaneously since all
particles are well spaced all the time so that no particle can push any other. Then, on this event,

ε ∂sE[xp((t+ s)/ε)xp′((t+ s)/ε)|{ηr,t}r]
∣∣
s=0+

(5.45)

= rp′(σ(t/ε))xp(t/ε) + rp(σ(t/ε))xp′(t/ε) (5.46)

so that d
dtVp,p′(t) = 0 for every t ≤ T and (5.37) follows.

6. Space-time correlations of the SDEs

6.1. Proof of Theorems 2. In Fourier space, Eqs. (4.3) give

d

dt
Eξ̄(ξ̂k,t) = Â(k)Eξ̄(ξ̂k,t), (6.1)

d

dt
Eξ̄(ξ̂k,tξ̂k′,t) = vδk+k′=0 + Eξ̄(ξ̂k,tξ̂k′,t)(Â(k′) + Â(k)) (6.2)

d

dt
Eξ̄(ξ̂k,tξ̂k′,s) = Â(k)Eξ̄(ξ̂k,tξ̂k′,s), t > s (6.3)
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whose solution is (just differentiate w.r.t. t to check)

Eξ̄(ξ̂k,t) = eÂ(k)tξ̂k,0 (6.4)

Eξ̄(ξ̂k,tξ̂k′,t) = vδk=−k′
eR̂(k)t − 1

R̂(k)
+ Eξ̄(ξ̂k,t)Eξ̄(ξ̂k′,t), (6.5)

Eξ̄(ξ̂k,tξ̂k′,s) = vδk=−k′e
Â(k)(t−s) e

R̂(k)s − 1

R̂(k)
+ Eξ̄(ξ̂k,t)Eξ̄(ξ̂k′,s), t ≥ s. (6.6)

Note that it immediately follows that Eξ̄(ξ̂k,tξ̂k′,s) − Eξ̄(ξ̂k,t)Eξ̄(ξ̂k′,s) (and therefore W ξ̄
p,p′(t, s)) is

independent of the initial condition ξ̄.
Using the first of (3.13) together with (6.6) we find, for t ≥ s,

W ξ̄
p,p+y(t, s) =

v

m2

∑
k∈Km

e−ikyeÂ(k)(t−s) e
R̂(k)s − 1

R̂(k)
(6.7)

m→∞→ v

(2π)2

∫
[−π,π]2

dk
eR̂(k)s − 1

R̂(k)
e(t−s)Â(k)e−iky. (6.8)

Observe that, as m→∞, the set Km fills the parallelogram

K∞ := {(k1, k2) ∈ R2 : |k1| ≤ π, |k2 − (C/D)k1| ≤ π}.

However, since the integrand of (6.8) is 2π-periodic, integrating over K∞ or on [−π, π]2 gives the
same result.

Recall property (3) in Proposition 2. The singularity at (0, 0) is integrable and the dominant
contribution to the integral comes from k ∼ 0. From (6.8) one deduces (4.6), see Appendix C.1 for
details.

6.2. Proof of Theorem 3. The gradients ξp,t−ξp′,t can be written via (3.13) as linear combinations

of the Fourier components {ξ̂k,t}k∈Km,k 6=0. Since the random variables ξ̂k,t solve a set of linear SDEs,
their invariant measure µ (if it exists) is Gaussian. Stationarity of µ implies, via (6.1) and (6.2),
that for every k, k′ ∈ Km, k, k′ 6= 0,

Eµ(ξ̂k) = 0 (6.9)

Eµ(ξ̂kξ̂k′) = −δk=−k′
v

Â(k) + Â(−k)
. (6.10)

where in the first equality we used that the fact that Â(k) 6= 0 whenever k 6= 0. Since a Gaussian
measure is uniquely characterized by mean and variance, uniqueness of the invariant measure also
follows. Using (3.13) we see that (4.22) and (4.24) hold. Again, the dominant contribution comes
from k ∼ 0 and one obtains the asymptotics (4.26), see Appendix C.2.

Next we prove the claim about the limit behavior of the random variable ξφ. Since ξφ is Gaussian
and centered for any δ,m, it suffices to prove that its variance converges to (4.29). Note that the
support Sφ of the function φ(δ·) has a diameter of order δ−1 � m. Let p0 be a point outside Sφ,
at distance of order 1/δ from the origin. Write

Eµ(ξ2
φ) = δ4

∑
p,p′

φ(δp)φ(δp′)Eµ((ξp − ξ0)(ξp′ − ξp0)) + o(1) (6.11)

where we used

δ2
∑
p′

φ(δp′) = O(δ) (6.12)
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(because the integral of φ is zero and the function is smooth) together with Covµ∞((ξp − ξ0); (ξ0 −
ξp0)) ≤ C log(δ−1) for p in the support of φ(δ·), which follows from (4.31) and Cauchy-Schwarz.
Using (4.26) we have

Eµ(ξ2
φ) =

v

2πw
δ4
∑
p,p′

φ(δp)φ(δp′) log
|V (p− p0)||V q|
|V (p− p′)||V p0|

+ o(1) (6.13)

=
v

2πw
δ4
∑
p,p′

φ(δp)φ(δp′) log
|V δ(p− p0)||V δp′|
|V δ(p− p′)||V δp0|

+ o(1) (6.14)

where in the first step we used

‖φ‖2∞δ4
∑

p,p′∈Sφ

1

min(1, |p− p0|, |p′|, |p− p′|, |p0|)
δ→0
= o(1) (6.15)

The sum in (6.14) can be written as

− v

2πw
δ4
∑
p,p′

φ(δp)φ(δp′) log |V δ(p− p′)|+ o(1). (6.16)

Indeed, the terms proportional to log |V (p − p0)|, log |V p′| and log |V p0| are independent of at
least one of the two summation variables p, p′: then, using once more (6.12) together with e.g.
| log |V δp′|| = O(log(1/δ)), (6.16) follows.

The sum in (6.16) is the Riemann approximation of the convergent integral (4.29).

Appendix A. Proof of Lemma 2

Set δ = 1/10. To get the asymptotics of (q; q)a, write

log(q; q)a =

a∑
i=1

log(1− qi) = −
∞∑
n=1

1

n

a∑
i=1

qni = −
∞∑
n=1

1

n

qn

1− qn
(1− qna). (A.1)

Then we recall that a = ε−1b+X and that q = e−ε and we write

log(q; q)a = R1 +R2 := −
∞∑
n=1

1

n

qn

1− qn
(1− e−bn) +

∞∑
n=1

1

n

qn

1− qn
e−bn(e−nXε − 1). (A.2)

We have, using qn/(1− qn) ∼ (1− εn/2)/(εn) for εn� 1,

R1 = C(ε) +

∞∑
n=1

1

n

qn

1− qn
e−bn = C(ε) +

1

ε

∞∑
n=1

1

n2
e−bn − 1

2

∞∑
n=1

e−bn

n
+ o(1) (A.3)

with C(ε) = −
∑

n(1/n)qn/(1− qn) independent of b,X. As for R2, we claim that

R2 = −X
∞∑
n=1

e−bn

n
+ ε

X2

2

∞∑
n=1

e−bn + o(1) (A.4)

which, together with (A.3), concludes the proof of the Lemma.
To get (A.4), remark first of all that

∞∑
n=ε−1/2+δ

1

n

e−εn

1− e−εn
e−bn(e−nXε − 1) = o(1) (A.5)
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because b > 0 and Xε = o(1). Next, for n ≤ ε−1/2+δ one has |Xnε| = o(1). Then,

ε−1/2+δ∑
n=1

1

n

e−εn

1− e−εn
e−bn(e−nXε − 1) (A.6)

∼
ε−1/2+δ∑
n=1

1− εn/2
εn2

e−bn(−Xnε+
(Xnε)2

2
+O(|Xnε|3)). (A.7)

The terms proportional to X and X2 give the r.h.s. of (A.4). As for the rest, it is o(1): just recall
that δ = 1/10 and observe that

|X|3ε2 � ε2−3/2−3δ = o(1). (A.8)

Appendix B. Negativity of R̂(k)

Recall (cf. (5.16)) that R̂(k) = (1/v)Q̂(k). We claim that the only stationary points of Q̂(k)

are k(1) = (0, 0), k(2) = (0, π), k(3) = (π, 0), k(4) = (π, π) (modulo 2π). It is trivial to check that

Q̂(k(i)) < 0 for i = 2, 3, 4 (use that B,C < D and that x 7→ f(x) := e−x/(1− e−x) is decreasing on

R+) while of course Q̂(0, 0) = 0. Recall also (cf. (3.21)) that the Hessian of R̂ at k = 0 is not zero,

which implies that R̂(k) is strictly negative outside k = 0.

Letting X = sin(k1), Y = sin(k2), the stationary points of Q̂ must satisfy

f(D)X = f(C)Y (B.1)

f(D)X = ±f(B)(X
√

1− Y 2 ± Y
√

1−X2). (B.2)

If we exclude the solution X = Y = 0 (which corresponds to k = k(i), i = 1, . . . , 4), (B.1) implies
that

X = ±
√

∆

2f(D − C)f(C)f(D)2
(B.3)

∆ = −(1 + eC)(eC + eD)(−3eC + e2C + eD + eC+D)

(1− eC)2(eC − eD)2(1− eD)4
(B.4)

where we used B = D−C. However, one sees immediately that ∆ < 0, since C < D, so that (B.1)
does not give real solutions.

Appendix C. Integral asymptotics

C.1. Proof of (4.6). Let χ : [−π, π]2 → [0, 1] be a C∞ cutoff function such that χ(k) = 1 for
|k| < 1/2 and χ(k) = 0 for |k| ≥ 1. We first write the r.h.s. of (6.8) as

v

(2π)2

∫
R2

dkχ(k)
eR̂(k)s − 1

R̂(k)
e(t−s)Â(k)e−iky + j1(t, s, y) (C.1)

where j1, as well as the error terms j2, j3, . . . below, satisfies

j1 = O(1) and |j1| → 0 if max(|y|, t− s)→∞. (C.2)

To see this, remark first of all that

Â(k) =
1

2
R̂(k) +

1

2
(Â(k)− Â(−k)) (C.3)

and

Â(k)− Â(−k) ∈ iR, R̂(k) < 0, k 6= 0. (C.4)
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Actually,

Â(k)− Â(−k)

2

k→0
= −i(k, U) +O(|k|3). (C.5)

The function (1− χ(k))/R̂(k) is a C∞ function on [−π, π]2, so that∫
[−π,π]2

dk
e(t−s)Â(k)

R̂(k)
e−iky(1− χ(k))

is o(1) when either t − s → ∞ (using R̂(k) < 0) or when t − s = O(1) and |y| → ∞ (the Fourier
coefficients of a C∞ function on the torus decay faster than any inverse power). Also,∫

[−π,π]2
dk(1− χ(k))

eR̂(k)s

R̂(k)
e(t−s)Â(k)e−iky (C.6)

is o(1) when either s or t− s diverge; when s, t− s = O(1) the integral in (C.6) is again o(1) when
|y| → ∞ by decay of Fourier coefficients. Eq. (C.1) follows.

Next, the integral in (C.1) gives

v

(2π)2

∫
R2

dkχ(k)
eR̂(k)s − 1

Ŵ (k)
e(t−s)Â(k)e−iky + j2(t, s, y). (C.7)

For this, just note that, since R̂(k) is smooth and even in k,

Ŵ (k)− R̂(k)

Ŵ (k)R̂(k)
= O(1)

and

∇k
Ŵ (k)− R̂(k)

Ŵ (k)R̂(k)
= O(1/|k|).

This immediately implies∫
R2

dkχ(k)eR̂(k)s+Â(k)(t−s)

(
1

Ŵ (k)
− 1

R̂(k)

)
e−iky = o(1) (C.8)

if max(t, t− s)→∞ (use dominated convergence, together with

eR̂(k)s+Â(k)(t−s) → 0 for all k 6= 0 if max(t, t− s)→∞).

When max(t, t− s) = O(1) then the l.h.s. of (C.8) is (1/|y|) (just do an integration by parts). One
bounds ∫

R2

dkχ(k)eÂ(k)(t−s)

(
1

Ŵ (k)
− 1

R̂(k)

)
e−iky (C.9)

similarly and (C.7) follows.
As a third step, write the integral in (C.7) as

v

(2π)2

∫
R2

dkχ(k)
eŴ (k)s − 1

Ŵ (k)
e(t−s)Â(k)e−iky + j3(t, s, y). (C.10)

In fact, assume first that s→∞. Then, the contribution to the integral∫
R2

dkχ(k)
eR̂(k)s − eŴ (k)s

Ŵ (k)
e(t−s)Â(k)e−iky (C.11)
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from the region |k| ≥ s−1/2+ε, ε > 0 is negligible because we have R̂(k), Ŵ (k) ≤ −C|k|2. The

contribution from |k| ≤ s−1/2+ε is also negligible, this time because

eŴ (k)s − eR̂(k)s

Ŵ (k)
= eŴ (k)s 1− e(R̂(k)−Ŵ (k))s

Ŵ (k)
= O(s|k|) = O(s1/2+ε)

(use that s(R̂(k)− Ŵ (k)) = O(s|k|3) = o(1) and exp(Ŵ (k)s) ≤ 1) so that the contribution to the

integral is O(s−1/2+3ε) = o(1) if ε is small enough. The proof of (C.10) in the case s = O(1) is
simpler and follows that of (C.1) or (C.7).

With similar considerations, one rewrites (C.10) as

v

(2π)2

∫
R2

dkχ(k)
eŴ (k)s − 1

Ŵ (k)
e(t−s)Ŵ (k)/2e−iky−i(k,U)(t−s) + j4(t, s, y) (C.12)

=
v

(2π)2

∫
R2

dkχ(k)
eŴ (k)s − 1

Ŵ (k)
eŴ (k)+(t−s)Ŵ (k)/2e−iky−i(k,U)(t−s) + j5(t, s, y) (C.13)

=
v

(2π)2

∫
R2

dk
eŴ (k)s − 1

Ŵ (k)
eŴ (k)+(t−s)Ŵ (k)/2e−iky−i(k,U)(t−s) + j6(t, s, y). (C.14)

In the first step, we used (C.3)–(C.5) to replace Â(k) with its second-order Taylor expansion

Ŵ (k)/2 − i(k, U). In the second, we used that (exp(Ŵ (k)) − 1)/Ŵ (k) is smooth at k ∼ 0 in

order to multiply by exp(Ŵ (k)). In the third we remove the cutoff function: the integral with
χ(·) replaced by 1 − χ(·) is o(1) either because |y| → ∞ (integrate by parts w.r.t. k) or because

(t− s)→∞, so that exp((t− s)Ŵ (k))→ 0 (apply dominated convergence).

Remark 6. The reason why in the second step in (C.12) we multiplied by exp(Ŵ (k)) is that
otherwise we could not remove the cutoff function χ(·) since for t = s the integrand would decay
only as O(|k|−2) at infinity and the integral would not converge.

The integral can now be computed explicitly. Recall that Ŵ (k) = (k, Ŵk) with Ŵ a strictly
negative definite symmetric matrix. From definition (3.22) we have

|det(V )| = 1

w
. (C.15)

Changing variables as k = V Tw and putting H = V y + (t − s)V U , the integral in the r.h.s. of
(C.12) becomes

−|det(V )| v

(2π)2

∫
R2

e−i(w,H) e
−s|w|2 − 1

|w|2
e−|w|

2(1+(t−s)/2)dw (C.16)

= −|det(V )| v

(2π)2

∫ ∞
1

da

∫
R2

e−i(w,H)(e−s|w|
2 − 1)e−(a+(t−s)/2)|w|2dw (C.17)

= −π|det(V )| v

(2π)2

∫ ∞
1

[
e−|H|

2/(4(a+(t+s)/2))

a+ (t+ s)/2
− e−|H|

2/(4(a+(t−s)/2))

a+ (t− s)/2

]
da (C.18)

= | det(V )| v
4π

∫ 1+(t+s)/2

1+(t−s)/2

e−|H|
2/(4a)

a
da (C.19)

Together with (C.15), Eq. (4.6) then follows.
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C.2. Proof of (4.26). Similar (actually simpler) arguments as those leading to (C.12) show that
the integral in (4.24) equals

− v

(2π)2

∫
R2

dk
(eiky1 − eiky2)(e−iky3 − e−iky4)

Ŵ (k)
eŴ (k) +Ry1,y2,y3,y4 (C.20)

with R satisfying (4.27). The factor exp(Ŵ (k)) appears for the same reasons as in Remark 6. With
the same change of coordinates k = V Tw as before, the integral in (C.20) becomes

v

(2π)2w

∫
R2

(ei(w,Y1) − ei(w,Y2))(e−i(w,Y3) − e−i(w,Y4))

|w|2
e−|w|

2
dw (C.21)

with Yi = V yi. This equals

v

4πw

∫ ∞
1

da
e−|Y1−Y3|

2/(4a) − e−|Y1−Y4|2/(4a) + e−|Y2−Y4|
2/(4a) − e−|Y2−Y3|2/(4a)

a
(C.22)

=
v

(2π)2w

[
−Γ

(
0,
|Y1 − Y3|2

4

)
+ Γ

(
0,
|Y1 − Y4|2

4

)
(C.23)

−Γ

(
0,
|Y2 − Y4|2

4

)
+ Γ

(
0,
|Y2 − Y3|2

4

)
+ 2 log

|Y1 − Y4||Y2 − Y3|
|Y1 − Y3||Y2 − Y4|

]
, (C.24)

where Γ(0, x) :=
∫∞
x e−t/t dt is the incomplete Gamma function. Using the exponential decay of

Γ(0, x) as x → ∞, we get immediately (4.26) (the “+1”s in (4.26) takes care of the case where
Y1 = Y3 and/or Y2 = Y4: in fact, −Γ(0, x2/4) + log(1/x2) has a finite limit as x→ 0).
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48 (2012), 134–150.
[6] S. N. Ethier, T. G. Kurtz, Markov Processes. Characterization and convergence, John Wiley & Sons, 1986.
[7] P. L. Ferrari, Slow decorrelations in Kardar-Parisi-Zhang growth, J. Stat. Mech. (2008), P07022.
[8] M. Hairer, An introduction to stochastic PDEs, www.hairer.org/notes/SPDEs.pdf
[9] M. Hairer, A theory of regularity structures, Inventiones Math. 198 (2014), 269–504.

[10] T. Halpin-Healy and A. Assdah, On the kinetic roughening of vicinal surfaces, Phys. Rev. A 46 (1992), 3527–
3530.

[11] T. Halpin-Healy, G. Palasantzas, Universal correlators and distributions as experimental signatures of 2 + 1
Kardar-Parisi-Zhang growth, Europhys. Lett. 105 (2014), 50001.

[12] M. Prähofer, H. Spohn, An exactly solved model of three dimensional surface growth in the anisotropic KPZ
regime, J. Stat. Phys. 88 (1997), 999–1012.

[13] S. Sheffield, Gaussian free fields for mathematicians, Probab. Theory Rel. Fields 139 (2007), 521–541.
[14] F. Toninelli, A (2 + 1)-dimensional growth process with explicit stationary measures, arXiv:1503.05339.
[15] D. E. Wolf, Kinetic roughening of vicinal surfaces, Phys. Rev. Lett. 67 (1991), 1783–1786.

http://arxiv.org/abs/1509.01605
http://arxiv.org/abs/1503.05339


24 ALEXEI BORODIN, IVAN CORWIN, AND FABIO LUCIO TONINELLI

Massachusetts Institute of Technology, Department of Mathematics, 77 Massachusetts Avenue,
Cambridge, MA 02139-4307, USA, and Institute for Information Transmission Problems, Bolshoy
Karetny per. 19, Moscow 127994, Russia

E-mail address: borodin@math.mit.edu

Columbia University, Department of Mathematics, 2990 Broadway, New York, NY 10027, USA, and
Clay Mathematics Institute, 10 Memorial Blvd. Suite 902, Providence, RI 02903, USA

E-mail address: ivan.corwin@gmail.com
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