

MIT Open Access Articles

Fourier dimension and spectral gaps for hyperbolic surfaces

The MIT Faculty has made this article openly available. *[Please](https://libraries.mit.edu/forms/dspace-oa-articles.html) share* how this access benefits you. Your story matters.

As Published: 10.1007/S00039-017-0412-0

Publisher: Springer Nature

Persistent URL: <https://hdl.handle.net/1721.1/133910>

Version: Author's final manuscript: final author's manuscript post peer review, without publisher's formatting or copy editing

Terms of use: Creative Commons [Attribution-Noncommercial-Share](http://creativecommons.org/licenses/by-nc-sa/4.0/) Alike

arXiv:1704.02909v2 [math.CA] 17 May 2017 arXiv:1704.02909v2 [math.CA] 17 May 2017

FOURIER DIMENSION AND SPECTRAL GAPS FOR HYPERBOLIC SURFACES

JEAN BOURGAIN AND SEMYON DYATLOV

Abstract. We obtain an essential spectral gap for a convex co-compact hyperbolic surface $M = \Gamma \backslash \mathbb{H}^2$ which depends only on the dimension δ of the limit set. More precisely, we show that when $\delta > 0$ there exists $\varepsilon_0 = \varepsilon_0(\delta) > 0$ such that the Selberg zeta function has only finitely many zeroes s with Re $s > \delta - \varepsilon_0$.

The proof uses the fractal uncertainty principle approach developed in Dyatlov– Zahl [\[DZ16\]](#page-27-0). The key new component is a Fourier decay bound for the Patterson– Sullivan measure, which may be of independent interest. This bound uses the fact that transformations in the group Γ are nonlinear, together with estimates on exponential sums due to Bourgain [\[Bou10\]](#page-27-1) which follow from the discretized sum-product theorem in R.

Let $M = \Gamma \backslash \mathbb{H}^2$ be a (noncompact) convex co-compact hyperbolic surface. The Selberg zeta function $Z_M(s)$ is a product over the set \mathcal{L}_M of all primitive closed geodesics

$$
Z_M(s) = \prod_{\ell \in \mathcal{L}_M} \prod_{k=0}^{\infty} \left(1 - e^{-(s+k)\ell}\right), \quad \text{Re } s \gg 1,
$$

and extends meromorphically to $s \in \mathbb{C}$. Patterson [\[Pa76\]](#page-28-0) and Sullivan [\[Su79\]](#page-28-1) proved that Z_M has a simple zero at the exponent of convergence of Poincaré series, denoted δ , and no other zeroes in $\{ \text{Re } s \geq \delta \}$. Naud [\[Na05\]](#page-28-2), using the method originating in the work of Dolgopyat [\[Do98\]](#page-27-2), showed that for $\delta > 0$, Z_M has only finitely many zeroes in ${Re s \ge \delta - \varepsilon}$ for some $\varepsilon > 0$ depending on the surface. (See also Petkov– Stoyanov [\[PS10\]](#page-28-3), Stoyanov [\[St11\]](#page-28-4), and Oh–Winter [\[OW16\]](#page-28-5).)

Our result removes the dependence of the improvement ε on the surface:

Theorem 1. Let M be a convex co-compact hyperbolic surface with $\delta > 0$. Then there exists $\varepsilon_0 > 0$ depending only on δ such that $Z_M(s)$ has only finitely many zeroes in $\{\mathop{\mathrm{Re}} s > \delta - \varepsilon_0\}.$

Remarks. 1. The proof of Theorem [1](#page-1-0) uses the results of Dyatlov–Zahl [\[DZ16\]](#page-27-0) and thus gives a resonance free strip with a polynomial resolvent bound, see $[DZ16, (1.3)]$. In the terminology used in [\[DZ16\]](#page-27-0), Theorem [1](#page-1-0) gives an *essential spectral gap* of size $\frac{1}{2} - \delta + \varepsilon_0$, improving over the Patterson–Sullivan gap $\frac{1}{2} - \delta$.

2. The Selberg zeta function Z_M has only finitely many zeroes in $\{ \text{Re } s > \frac{1}{2} \}$; that is, M has an essential spectral gap of size 0. Therefore, Theorem [1](#page-1-0) only gives new

FIGURE 1. The dependence on δ of the essential spectral gap β (that is, a number such that Z_M has only finitely many zeroes in $\{\text{Re } s > \frac{1}{2} - \beta\},\$ showing curves representing the bounds of Theorem [1](#page-1-0) and of [\[BD16\]](#page-27-3). These curves are for illustration purposes only, the actual size of the improvement is expected to be much smaller. The value of β from [\[BD16\]](#page-27-3) depends on the surface M but the value given by Theorem [1](#page-1-0) only depends on δ . The solid black line is the standard (Patterson–Sullivan and Lax– Phillips) gap $\beta = \max(0, \frac{1}{2} - \delta)$.

information when $\delta \leq \frac{1}{2} + \tilde{\varepsilon}$ for a small global constant $\tilde{\varepsilon} > 0$. In [\[BD16\]](#page-27-3) the authors proved that there exists $\varepsilon > 0$ (depending on the surface M) such that Z_M only has finitely many zeroes in $\{\text{Re } s > \frac{1}{2} - \varepsilon\}$. The latter result is only interesting when $\delta \ge \frac{1}{2}$ $\frac{1}{2}$. Therefore [\[BD16\]](#page-27-3) and the present paper overlap only when $\delta \approx \frac{1}{2}$ $\frac{1}{2}$, and in the latter case the present paper gives a stronger result (since ε_0 depends only on δ). In view of the methods used in [\[BD16\]](#page-27-3) a higher-dimensional extension of that result seems difficult at the present. See Figure [1.](#page-2-0)

3. The constant ε_1 can be chosen increasing in δ , and thus can be made continuous in δ – see the paragraph preceding §[1.1.](#page-3-0)

4. In the more general setting of scattering on manifolds with hyperbolic trapped sets, the Patterson–Sullivan gap is replaced by the pressure gap, established by Ikawa [\[Ik88\]](#page-28-6), Gaspard–Rice [\[GR89\]](#page-27-4), and Nonnenmacher–Zworski [\[NZ09\]](#page-28-7). See the reviews of Nonnenmacher [\[No11\]](#page-28-8) and Zworski [\[Zw17\]](#page-28-9) for the history of the spectral gap question and [\[DZ16,](#page-27-0) [DJ17\]](#page-27-5) for an overview of more recent developments.

5. Dyatlov–Jin [\[DJ17\]](#page-27-5) gave a bound on ε_0 depending only on δ and the regularity constant (that is, the constant C_{Γ} in Lemma [2.12\)](#page-12-0), proving a fractal uncertainty principle for more general Ahlfors–David regular sets. Our proof removes the dependence of ε_0 on C_{Γ} by using the nonlinear nature of the transformations in the group Γ. In fact, the earlier work of Dyatlov–Jin [\[DJ16,](#page-27-6) Proposition 3.17] gives examples of Cantor sets with $\delta \in (0, 1/2]$ which are invariant under a group of linear transformations and do not satisfy the fractal uncertainty principle we derive for hyperbolic limit sets here (Propositions [4.1](#page-24-0) and [4.3\)](#page-25-0).

The key new component of the proof of Theorem [1,](#page-1-0) established in $\S3$, is the following generalized Fourier decay bound for the Patterson–Sullivan measure:

Theorem 2. Let M, δ be as in Theorem [1](#page-1-0) and denote by μ the Patterson–Sullivan measure on the limit set $\Lambda_{\Gamma} \subset \mathbb{R}$. Assume that

$$
\varphi \in C^2(\mathbb{R}; \mathbb{R}), \quad g \in C^1(\mathbb{R}; \mathbb{C})
$$

are functions satisfying the following bounds for some constant $C_{\varphi,q}$:

$$
\|\varphi\|_{C^2} + \|g\|_{C^1} \le C_{\varphi, g}, \quad \inf_{\Lambda_{\Gamma}} |\varphi'| \ge C_{\varphi, g}^{-1}.
$$
 (1.1)

Then there exists $\varepsilon_1 > 0$ depending only on δ and there exists $C > 0$ depending on $M, C_{\varphi,g}$ such that

$$
\left| \int_{\Lambda_{\Gamma}} \exp\left(i\xi \varphi(x)\right) g(x) \, d\mu(x) \right| \le C|\xi|^{-\varepsilon_1} \quad \text{for all } \xi, \quad |\xi| > 1. \tag{1.2}
$$

Remarks. 1. By taking $\varphi(x) = x$, $g \equiv 1$ on Λ_{Γ} , we obtain the Fourier decay bound $\hat{\mu}(\xi) = \mathcal{O}(|\xi|^{-\varepsilon_1})$. This implies that the Fourier dimension $\dim_F \Lambda_{\Gamma}$ is positive, specifically dim_F $\Lambda_{\Gamma} \geq 2\varepsilon_1$. The nonlinearity of transformations in Γ is crucial for obtaining Fourier decay, since there exist limit sets of linear transformations (for instance, the mid-third Cantor set) whose Fourier dimension is equal to zero – see [\[Ma95,](#page-28-10) §12.17]. Previously Jordan–Sahlsten [\[JS13\]](#page-28-11) used a similar nonlinearity property to obtain Fourier decay for Gibbs measures for the Gauss map which have dimension greater than 1/2. (The method of the present paper can be adapted to prove [\[JS13,](#page-28-11) Theorem 1.3] without the dimensional assumption.)

2. The key tool in the proof of Theorem [2](#page-3-1) is an estimate on decay of exponential sums established by the first author [\[Bou10\]](#page-27-1), see Proposition [3.1](#page-17-0) and the following remark. In particular our proof relies on the discretized sum-product theorem for R.

3. The constant ε_1 can be chosen an increasing function of δ . Indeed, it is determined by the constants $\varepsilon_3, \varepsilon_4, k$ from Proposition [3.1,](#page-17-0) see [\(3.28\)](#page-23-0) and the proof of Proposi-tion [3.2.](#page-17-1) However, Proposition [3.1](#page-17-0) holds for same ε_3 , ε_4 , k and all larger values of δ since the condition (3.1) is stronger for larger values of δ_1 and we apply this proposition with $\delta_1 = \delta/24$.

Given Theorem [2,](#page-3-1) we establish a fractal uncertainty principle for the limit set Λ_{Γ} , see Propositions [4.1](#page-24-0) and [4.3.](#page-25-0) Then Theorem [1](#page-1-0) follows by combining the fractal uncertainty principle with the results of [\[DZ16\]](#page-27-0), see §[4.](#page-23-1) The value of ε_0 in Theorem [1](#page-1-0) can be any number strictly less than $\varepsilon_1/4$, where ε_1 is obtained in Theorem [2,](#page-3-1) and thus can be chosen increasing as a function of δ .

1.1. Extensions to higher dimensional situations. While we do not pursue the case of higher-dimensional convex co-compact hyperbolic quotients in this paper, we

briefly discuss a possible generalization of Theorem [1](#page-1-0) to the case of three-dimensional quotients $M = \Gamma \backslash \mathbb{H}^3$ with $\Gamma \subset SL(2, \mathbb{C})$ a Kleinian group.

The limit set Λ_{Γ} is contained in $\dot{\mathbb{C}} := \mathbb{C} \cup \{\infty\}$ and it is invariant under the action of Γ on C by complex Möbius transformations. The Patterson–Sullivan measure is equivariant under Γ similarly to (2.29) .

Linearizing Möbius transformations leads to complex multiplication and the need of a complex analogue of our main tool, Proposition [3.1.](#page-17-0) In this analogue the measure μ_0 is supported on the annulus $\{z \in \mathbb{C} : 1/2 \le |z| \le 2\}$, the box dimension estimate [\(3.1\)](#page-17-2) is replaced by

$$
\sup_{x,\theta \in \mathbb{R}} \mu_0 \{ z \colon \operatorname{Im}(e^{i\theta} z) \in [x - \sigma, x + \sigma] \} < \sigma^{\delta_1} \tag{1.3}
$$

and the conclusion [\(3.2\)](#page-17-3) is replaced by

$$
\left| \int \exp\left(2\pi i \eta \operatorname{Im} (e^{i\theta} z_1 \cdots z_k)\right) d\mu_0(z_1) \cdots d\mu_0(z_k) \right| \leq N^{-\varepsilon_4}, \quad \theta \in \mathbb{R}.
$$

This complex analogue of Proposition [3.1](#page-17-0) can be shown by following the proof of $[Bou10,$ Lemma 8.43] and replacing the real version of the sum-product theorem [\[Bou10,](#page-27-1) Theorem 1] by its complex version established in [\[BG12,](#page-27-7) Proposition 2].

However, the box dimension bound [\(1.3\)](#page-4-0) is more subtle than in the case of surfaces. Indeed, in the case of a hyperbolic cylinder (i.e. when Γ is a co-compact subgroup of $SL(2,\mathbb{R})$, with $\delta = 1$) the limit set Λ_{Γ} is equal to $\mathbb{R} \subset \mathbb{C}$ and the Patterson–Sullivan measure equals the Poisson measure $\pi^{-1}(1+x^2)^{-1} dx$. In this case, both [\(1.3\)](#page-4-0) and the Fourier decay bound [\(1.2\)](#page-3-2) fail.

In fact, for hyperbolic cylinders the specific fractal uncertainty principle [\[DZ16,](#page-27-0) Definition 1.1] used to establish the spectral gap still holds (and does recover the correct size of the spectral gap, equal to $\frac{1}{2}$), however the general fractal uncertainty principle (Proposition [4.1\)](#page-24-0) fails if we take the phase function $\Phi(z, w) = \text{Im}(zw)$ which restricts to 0 on $\Lambda_{\Gamma} \times \Lambda_{\Gamma} = \mathbb{R}^2 \subset \mathbb{C}^2$ but has nondegenerate matrix of mixed derivatives $\partial_{(z,\bar{z})}\partial_{(w,\bar{w})}\Phi.$

2. Structure of the limit set

In this section, we study limit sets of convex co-compact quotients, as well as the associated group action and Patterson–Sullivan measure, establishing their properties which form the basis for the proof of the Fourier decay bound in $\S3$.

Let $M = \Gamma \backslash \mathbb{H}^2$ be a convex co-compact hyperbolic surface. Here \mathbb{H}^2 is the upper half-plane model of the hyperbolic plane and Γ is a convex co-compact (in particular, discrete) subgroup of $SL(2,\mathbb{R})$ acting isometrically on \mathbb{H}^2 by Möbius transformations:

$$
\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2, \mathbb{R}), \quad z \in \mathbb{H}^2 = \{ z \in \mathbb{C} \mid \text{Im } z > 0 \} \implies \gamma(z) = \frac{az + b}{cz + d}.
$$

The action of $SL(2,\mathbb{R})$ extends continuously to the compactified hyperbolic plane

$$
\overline{\mathbb{H}^2} := \mathbb{H}^2 \cup \dot{\mathbb{R}}, \quad \dot{\mathbb{R}} := \mathbb{R} \cup \{\infty\}.
$$

See for instance the book of Borthwick [\[Bor16,](#page-27-8) Chapter 2] for more details.

We assume that M is nonelementary and noncompact and introduce the following notation:

- $\delta \in (0, 1)$, the exponent of convergence of Poincaré series, see [\[Bor16,](#page-27-8) §2.5.2];
- $\Lambda_{\Gamma} \subset \mathbb{R}$, the limit set of the group Γ , see [\[Bor16,](#page-27-8) §2.2.1];
- μ , the Patterson–Sullivan measure (centered at $i \in \mathbb{H}^2$) which is a probability measure on R supported on Λ_{Γ} , see [\[Bor16,](#page-27-8) §14.1].

2.1. Schottky groups. A *Schottky group* is a convex co-compact subgroup $\Gamma \subset$ $SL(2,\mathbb{R})$ constructed in the following way (see [\[Bor16,](#page-27-8) §15.1] and Figure [2\)](#page-6-0):

- Fix nonintersecting closed half-disks $D_1, \ldots, D_{2r} \subset \overline{\mathbb{H}^2}$ centered on the real line. Here $r \in \mathbb{N}$ and for the nonelementary cases studied here, we have $r \geq 2$.
- Put $\mathcal{A} := \{1, \ldots, 2r\}$ and for each $a \in \mathcal{A}$, denote

$$
\overline{a} := \begin{cases} a+r, & 1 \le a \le r; \\ a-r, & r+1 \le a \le 2r. \end{cases}
$$

• Fix transformations $\gamma_1, \ldots, \gamma_{2r} \in SL(2, \mathbb{R})$ such that for all $a \in \mathcal{A}$,

$$
\gamma_a(\overline{\mathbb{H}^2} \setminus D_{\overline{a}}^\circ) = D_a, \quad \gamma_{\overline{a}} = \gamma_a^{-1}.
$$
\n(2.1)

• Let $\Gamma \subset SL(2,\mathbb{R})$ be the free group generated by γ_1,\ldots,γ_r .

Each convex co-compact group $\Gamma \subset SL(2,\mathbb{R})$ can be represented in the above way for some choice of $D_1, \ldots, D_{2r}, \gamma_1, \ldots, \gamma_{2r}$, see [\[Bor16,](#page-27-8) Theorem 15.3]. We henceforth fix a Schottky structure for Γ.

Notation: In the rest of the paper, C_Γ denotes constants which only depend on the Schottky data $D_1, \ldots, D_{2r}, \gamma_1, \ldots, \gamma_{2r}$, whose exact value may differ in different places. The elements of Γ are indexed by words on the generators $\gamma_1, \ldots, \gamma_{2r}$. We introduce some useful combinatorial notation:

• For $n \in \mathbb{N}_0$, define \mathcal{W}_n , the set of words of length n, by

$$
\mathcal{W}_n := \{a_1 \dots a_n \mid a_1, \dots, a_n \in \mathcal{A}, \quad a_{j+1} \neq \overline{a_j} \quad \text{for } j = 1, \dots, n-1\}.
$$

Denote by $W := \bigcup_n \mathcal{W}_n$ the set of all words, and for $\mathbf{a} \in \mathcal{W}_n$, put $|\mathbf{a}| := n$. Denote the empty word by \emptyset and put $\mathcal{W}^{\circ} := \mathcal{W} \setminus \{\emptyset\}$. For $\mathbf{a} = a_1 \dots a_n \in \mathcal{W}$, put $\overline{\mathbf{a}} := \overline{a_n} \dots \overline{a_1} \in \mathcal{W}$. If $\mathbf{a} \in \mathcal{W}^{\circ}$, put $\mathbf{a}' := a_1 \dots a_{n-1} \in \mathcal{W}$. Note that \mathcal{W} forms a tree with root \emptyset and each $\mathbf{a} \in \mathcal{W}^{\circ}$ having parent \mathbf{a}' .

• For $\mathbf{a} = a_1 \dots a_n, \mathbf{b} = b_1 \dots b_m \in \mathcal{W}$, we write $\mathbf{a} \to \mathbf{b}$ if either at least one of **a**, **b** is empty or $a_n \neq b_1$. Under this condition the concatenation **ab** is a word.

FIGURE 2. A Schottky structure with $r = 2$.

- For $a, b \in \mathcal{W}$, we write $a \prec b$ if a is a prefix of b, that is $b = ac$ for some $\mathbf{c}\in\mathcal{W}.$
- For $\mathbf{a} = a_1 \dots a_n$, $\mathbf{b} = b_1 \dots b_m \in \mathcal{W}^\circ$, we write $\mathbf{a} \leadsto \mathbf{b}$ if $a_n = b_1$. Note that when $\mathbf{a} \rightarrow \mathbf{b}$, the concatenation $\mathbf{a}'\mathbf{b}$ is a word of length $n + m - 1$.
- A finite set $Z \subset \mathcal{W}^{\circ}$ is called a *partition* if there exists N such that for each $\mathbf{a} \in \mathcal{W}$ with $|\mathbf{a}| \geq N$, there exists unique $\mathbf{b} \in \mathbb{Z}$ such that $\mathbf{b} \prec \mathbf{a}$.

For each $\mathbf{a} = a_1 \dots a_n \in \mathcal{W}$, define the group element $\gamma_{\mathbf{a}} \in \Gamma$ by

$$
\gamma_{\mathbf{a}}:=\gamma_{a_1}\ldots\gamma_{a_n}.
$$

Note that each element of Γ is equal to $\gamma_{\mathbf{a}}$ for a unique choice of **a** and $\gamma_{\overline{\mathbf{a}}} = \gamma_{\mathbf{a}}^{-1}$, $\gamma_{ab} = \gamma_a \gamma_b$ when $a \rightarrow b$.

To study the action of Γ on $\dot{\mathbb{R}}$, consider the intervals

$$
I_a := D_a \cap \dot{\mathbb{R}} \ \subset \ \mathbb{R}.
$$

For each $\mathbf{a} = a_1 \dots a_n \in \mathcal{W}^{\circ}$, define the interval $I_{\mathbf{a}}$ as follows (see Figure [2\)](#page-6-0):

$$
I_{\mathbf{a}}:=\gamma_{\mathbf{a}'}(I_{a_n}).
$$

By [\(2.1\)](#page-5-0), we have $I_{\mathbf{b}} \subset I_{\mathbf{a}}$ when $\mathbf{a} \prec \mathbf{b}$ and $I_{\mathbf{a}} \cap I_{\mathbf{b}} = \emptyset$ when $|\mathbf{a}| = |\mathbf{b}|$, $\mathbf{a} \neq \mathbf{b}$. The limit set is given by

$$
\Lambda_{\Gamma} := \bigcap_{n} \bigsqcup_{\mathbf{a} \in \mathcal{W}_n} I_{\mathbf{a}}.\tag{2.2}
$$

A finite set $Z \subset \mathcal{W}^{\circ}$ is a partition if and only if

$$
\Lambda_{\Gamma} = \bigsqcup_{\mathbf{a} \in Z} (I_{\mathbf{a}} \cap \Lambda_{\Gamma}). \tag{2.3}
$$

Denote by |I| the size of an interval $I \subset \mathbb{R}$. The following contraction property is proved in §[2.3:](#page-9-0)

$$
\mathbf{a} \in \mathcal{W}^{\circ}, \ b \in \mathcal{A}, \ \mathbf{a} \to b \quad \Longrightarrow \quad |I_{\mathbf{a}b}| \le (1 - C_{\Gamma}^{-1}) |I_{\mathbf{a}}|.
$$

Note that [\(2.4\)](#page-6-1) implies the bound

$$
\mathbf{a}, \mathbf{b} \in \mathcal{W}^{\circ}, \ \mathbf{a} \prec \mathbf{b} \quad \Longrightarrow \quad |I_{\mathbf{b}}| \le (1 - C_{\Gamma}^{-1})^{|\mathbf{b}| - |\mathbf{a}|} |I_{\mathbf{a}}| \tag{2.5}
$$

FIGURE 3. A numerically computed example of a partition $Z(\tau)$. The elements of the partition are in dark red and the preceding intervals on the tree are in light gray.

which gives exponential decay of the sizes of the intervals I_a :

$$
\mathbf{a} \in \mathcal{W}^{\circ} \quad \Longrightarrow \quad |I_{\mathbf{a}}| \leq C_{\Gamma} (1 - C_{\Gamma}^{-1})^{|\mathbf{a}|}. \tag{2.6}
$$

We finally describe the collection of words discretizing to a certain resolution. For $\tau > 0$, let $Z(\tau) \subset \mathcal{W}^{\circ}$ be defined as follows:

$$
Z(\tau) = \{ \mathbf{a} \in \mathcal{W}^{\circ} \colon |I_{\mathbf{a}}| \le \tau < |I_{\mathbf{a}'}| \},\tag{2.7}
$$

where we put $|I_{\emptyset}| := \infty$. It follows from (2.6) that $Z(\tau)$ is a partition. See Figure [3.](#page-7-1)

2.2. Distortion estimates for Möbius transformations. Let $a = a_1 \ldots a_n$ be a long word. Recall that $I_a = \gamma_{a'}(I_{a_n})$. In §[2.3](#page-9-0) below we study how the derivative $\gamma_{a'}$ varies on the interval I_{a_n} , in particular how much it deviates from its average value $|I_{a}|/|I_{a_n}|$. The results of §[2.3](#page-9-0) rely on several statements about general Möbius transformation which are proved in this section.

Let $\gamma \in SL(2,\mathbb{R})$ and assume that $\gamma(I) = J$ for some intervals $I, J \subset \mathbb{R}$. Define the distortion factor of γ on I by

$$
\alpha(\gamma, I) := \log \frac{\gamma^{-1}(\infty) - x_1}{\gamma^{-1}(\infty) - x_0} \in \mathbb{R} \quad \text{where } I = [x_0, x_1]. \tag{2.8}
$$

If $\gamma^{-1}(\infty) = \infty$, then we put $\alpha(\gamma, I) := 0$. The transformation γ can be described in terms of I, J, and $\alpha(\gamma, I)$ as follows:

$$
\gamma = \gamma_J \gamma_{\alpha(\gamma,I)} \gamma_I^{-1}, \quad \gamma_\alpha = \begin{pmatrix} e^{\alpha/2} & 0\\ e^{\alpha/2} - e^{-\alpha/2} & e^{-\alpha/2} \end{pmatrix} \in SL(2,\mathbb{R}). \tag{2.9}
$$

Here $\gamma_I, \gamma_J \in SL(2, \mathbb{R})$ are the unique affine transformations such that $\gamma_I([0, 1]) = I$, $\gamma_J([0,1]) = J$. To see [\(2.9\)](#page-7-2), it suffices to note that

$$
\gamma_J \gamma_{\alpha(\gamma,I)} \gamma_I^{-1}(I) = J, \quad \gamma_J \gamma_{\alpha(\gamma,I)} \gamma_I^{-1}(\gamma^{-1}(\infty)) = \infty.
$$

See Figure [4.](#page-8-0) The formula (2.9) implies the following identity:

$$
\gamma'(x) = \gamma'_{\alpha(\gamma, I)}(\gamma_I^{-1}(x)) \cdot \frac{|J|}{|I|}.\tag{2.10}
$$

Our first lemma states that as long as the distortion factor is controlled, the derivatives γ' at different points of I do not differ too much from each other and from the average:

FIGURE 4. Graphs of the transformation γ_{α} for several different values of α , with the square being $[0, 1]^2$.

Lemma 2.1. Assume that $\gamma(I) = J$ as above. Then we have for all $x, y \in I$

$$
e^{-|\alpha(\gamma,I)|} \cdot \frac{|J|}{|I|} \le \gamma'(x) \le e^{|\alpha(\gamma,I)|} \cdot \frac{|J|}{|I|},\tag{2.11}
$$

$$
\frac{\gamma'(x)}{\gamma'(y)} \le \exp\left(2e^{|\alpha(\gamma, I)|} \cdot \frac{|x - y|}{|I|}\right). \tag{2.12}
$$

Proof. We estimate for each $\alpha \in \mathbb{R}$

$$
\gamma'_{\alpha}(x) = \frac{e^{\alpha}}{((e^{\alpha} - 1)x + 1)^2} \in [e^{-|\alpha|}, e^{|\alpha|}] \text{ for } x \in [0, 1]
$$

which together with (2.10) implies (2.11) . Next, we have

$$
\left| (\log \gamma_\alpha'(x))' \right| = \left| \frac{2(1 - e^{\alpha})}{(e^{\alpha} - 1)x + 1} \right| \le 2e^{|\alpha|} \quad \text{for } x \in [0, 1]
$$

which gives

$$
\frac{\gamma_{\alpha}'(x)}{\gamma_{\alpha}'(y)} \le \exp\left(2e^{|\alpha|} \cdot |x-y|\right) \quad \text{for } x, y \in [0,1].
$$

Combined with (2.10) , this implies (2.12) .

As a corollary of [\(2.11\)](#page-8-1) and the change of variable formula, we immediately obtain

Lemma 2.2. Assume that $\gamma(I) = J$ as above and let $I' \subset I$ be a Borel subset. Then, denoting by \bullet | the Lebesgue measure on the line, we have

$$
e^{-|\alpha(\gamma,I)|} \cdot \frac{|I'| \cdot |J|}{|I|} \le |\gamma(I')| \le e^{|\alpha(\gamma,I)|} \cdot \frac{|I'| \cdot |J|}{|I|}.\tag{2.13}
$$

The next lemma shows that transformations with different distortion factors have significantly different derivatives. It is an essential component of the proof of Theo-rem [2](#page-3-1) which takes advantage of the nonlinearity of Möbius transformations.

Lemma 2.3. Assume that $\gamma_1, \gamma_2 \in SL(2, \mathbb{R})$ and $I, J_1, J_2 \subset \mathbb{R}$ are intervals such that $\gamma_j(I) = J_j$. Let $L \subset \mathbb{R}$ be an interval. Then the set of points x satisfying

$$
x \in I, \quad \log \frac{\gamma_1'(x)}{\gamma_2'(x)} \in L \tag{2.14}
$$

is contained in an interval of size

$$
\frac{e^{|\alpha(\gamma_1,I)|+|\alpha(\gamma_2,I)|}\cdot |I|\cdot |L|}{|\alpha(\gamma_1,I)-\alpha(\gamma_2,I)|}.
$$

Proof. Denote $\alpha_j = \alpha(\gamma_j, I)$. For each $x \in I$ we have by [\(2.10\)](#page-7-3)

$$
\log \frac{\gamma_1'(x)}{\gamma_2'(x)} = \log \frac{\gamma_{\alpha_1}'(y)}{\gamma_{\alpha_2}'(y)} + \log \frac{|J_1|}{|J_2|}, \quad y := \gamma_I^{-1}(x).
$$

Therefore, (2.14) corresponds to the set of all y such that

$$
y \in [0, 1], \quad \log \frac{\gamma'_{\alpha_1}(y)}{\gamma'_{\alpha_2}(y)} \in \widetilde{L}
$$
\n(2.15)

where \widetilde{L} is some interval with $|\widetilde{L}| = |L|$. We compute

$$
\partial_y \log \frac{\gamma'_{\alpha_1}(y)}{\gamma'_{\alpha_2}(y)} = \frac{2(1 - e^{\alpha_1})}{(e^{\alpha_1} - 1)y + 1} - \frac{2(1 - e^{\alpha_2})}{(e^{\alpha_2} - 1)y + 1} = \frac{2(e^{\alpha_2} - e^{\alpha_1})}{((e^{\alpha_1} - 1)y + 1)((e^{\alpha_2} - 1)y + 1)}.
$$

We then have for all $y \in [0, 1]$

$$
\left|\partial_y \log \frac{\gamma'_{\alpha_1}(y)}{\gamma'_{\alpha_2}(y)}\right| \ge 2e^{-|\alpha_1| - |\alpha_2|} \cdot |\alpha_1 - \alpha_2|.
$$

It follows that the set of y satisfying (2.15) is an interval of size no more than

$$
\frac{e^{|\alpha_1|+|\alpha_2|} \cdot |L|}{|\alpha_1 - \alpha_2|}
$$

which finishes the proof. \Box

2.3. Distortion estimates for Schottky groups. We now return to the setting of Schottky groups introduced in §[2.1.](#page-5-1) We start by estimating the distortion factors of transformations in Γ:

Lemma 2.4. We have

$$
|\alpha(\gamma_{\mathbf{a}}, I_b)| \le C_{\Gamma} \quad \text{for all} \quad \mathbf{a} \in \mathcal{W}, \ b \in \mathcal{A}, \ \mathbf{a} \to b. \tag{2.16}
$$

Proof. We may assume that $\mathbf{a} \in \mathcal{W}^{\circ}$. Let $\mathbf{a} = a_1 \dots a_n$. By $(2.1), \gamma_{\mathbf{a}}^{-1}(\infty) \in I_{\overline{a_n}}$. Moreover, $\overline{a_n} \neq b$ since $\mathbf{a} \to b$. It remains to recall the definition [\(2.8\)](#page-7-4) and put

$$
C_{\Gamma} := 2 \max \{ | \log |x - y | | : x \in I_a, \ y \in I_b, \ a, b \in \mathcal{A}, \ a \neq b \}.
$$

Lemma [2.4](#page-9-3) together with (2.11) , (2.12) , and (2.13) immediately gives

Lemma 2.5. For all $\mathbf{a} = a_1 \dots a_n \in \mathcal{W}^{\circ}$ and $x, y \in I_{a_n}$, we have

$$
C_{\Gamma}^{-1}|I_{\mathbf{a}}| \le \gamma'_{\mathbf{a}'}(x) \le C_{\Gamma}|I_{\mathbf{a}}|,\tag{2.17}
$$

$$
\frac{\gamma'_{\mathbf{a}'}(x)}{\gamma'_{\mathbf{a}'}(y)} \le \exp\left(C_{\Gamma}|x-y|\right). \tag{2.18}
$$

Moreover, if $I' \subset I_{a_n}$ is a Borel set, then

$$
C_{\Gamma}^{-1}|I_{\mathbf{a}}|\cdot|I'|\leq|\gamma_{\mathbf{a}'}(I')|\leq C_{\Gamma}|I_{\mathbf{a}}|\cdot|I'|.\tag{2.19}
$$

Armed with Lemma [2.5,](#page-10-0) we give

Proof of [\(2.4\)](#page-6-1). We write $\mathbf{a} = a_1 \dots a_n$. With $|\bullet|$ denoting the Lebesgue measure on the line, we compute

$$
|I_{\mathbf{a}b}| = |\gamma_{\mathbf{a}'}(\gamma_{a_n}(I_b))| = |\gamma_{\mathbf{a}'}(I_{a_n})| - |\gamma_{\mathbf{a}'}(I_{a_n} \setminus \gamma_{a_n}(I_b))|.
$$

Recall that $\gamma_{\mathbf{a}'}(I_{a_n}) = I_{\mathbf{a}}$. Using [\(2.19\)](#page-10-1), we obtain the lower bound

$$
|\gamma_{\mathbf{a}'}(I_{a_n} \setminus \gamma_{a_n}(I_b))| \geq C_{\Gamma}^{-1}|I_{\mathbf{a}}| \cdot |I_{a_n} \setminus \gamma_{a_n}(I_b)| \geq C_{\Gamma}^{-1}|I_{\mathbf{a}}|
$$

finishing the proof.

We next show several estimates on the sizes and positions of the intervals I_a :

Lemma 2.6 (Parent-child ratio). We have

$$
C_{\Gamma}^{-1}|I_{\mathbf{a}}| \le |I_{\mathbf{a}b}| \le |I_{\mathbf{a}}| \quad \text{for all } \mathbf{a} \in \mathcal{W}^{\circ}, \ b \in \mathcal{A}, \ \mathbf{a} \to b. \tag{2.20}
$$

Proof. Denote $\mathbf{a} = a_1 \dots a_n$ and note that $I_{\mathbf{a}b} = \gamma_{\mathbf{a}'}(I')$ where $I' := \gamma_{a_n}(I_b) \subset I_{a_n}$. Then (2.20) follows from (2.19) .

Lemma 2.7 (Concatenation). We have

$$
C_{\Gamma}^{-1}|I_{\mathbf{a}}| \cdot |I_{\mathbf{b}}| \le |I_{\mathbf{a}'\mathbf{b}}| \le C_{\Gamma}|I_{\mathbf{a}}| \cdot |I_{\mathbf{b}}| \quad \text{for all } \mathbf{a}, \mathbf{b} \in \mathcal{W}^{\circ}, \ \mathbf{a} \leadsto \mathbf{b}.
$$
 (2.21)

Proof. This follows from [\(2.19\)](#page-10-1) similarly to Lemma [2.6,](#page-10-3) using that $I_{\mathbf{a}'\mathbf{b}} = \gamma_{\mathbf{a}'}(I_{\mathbf{b}})$. \Box

Lemma 2.8 (Reversal). We have

$$
C_{\Gamma}^{-1}|I_{\mathbf{a}}| \le |I_{\overline{\mathbf{a}}}| \le C_{\Gamma}|I_{\mathbf{a}}| \quad \text{for all } \mathbf{a} \in \mathcal{W}^{\circ}.
$$
 (2.22)

Proof. Without loss of generality, we may assume that $|\mathbf{a}| \geq 3$. We write $\mathbf{a} = a_1 \dots a_n$ and denote $\mathbf{b} := a_2 \dots a_{n-1}$, so that $\mathbf{a} = a_1 \mathbf{b} a_n$. Since $I_{\mathbf{a}} = \gamma_{a_1}(I_{\mathbf{b}a_n})$ and $I_{\overline{\mathbf{a}}} =$ $\gamma_{\overline{a_n}}(I_{\overline{ba_1}})$, it suffices to show that

$$
C_{\Gamma}^{-1}|I_{\mathbf{b}a_n}| \le |I_{\overline{\mathbf{b}}\overline{a}_1}| \le C_{\Gamma}|I_{\mathbf{b}a_n}|. \tag{2.23}
$$

Denote

$$
I_{a_n} = [x_1, x_2], \quad I_{\overline{ba_1}} = [x_3, x_4], \quad I_{ba_n} = [y_1, y_2], \quad I_{\overline{a_1}} = [y_3, y_4]
$$

and remark that $\gamma_{\mathbf{b}}(x_j) = y_j$ and thus we have equality of cross ratios

$$
\frac{(x_2 - x_1)(x_4 - x_3)}{(x_4 - x_1)(x_3 - x_2)} = \frac{(y_2 - y_1)(y_4 - y_3)}{(y_4 - y_1)(y_3 - y_2)}.
$$
\n(2.24)

Now, $x_3, x_4 \in I_{\overline{a_{n-1}}}$ and $\overline{a_{n-1}} \neq a_n$. Therefore,

$$
|x_2 - x_1|, |x_4 - x_1|, |x_3 - x_2| \in [C_\Gamma^{-1}, C_\Gamma].
$$

Since $y_1, y_2 \in I_{a_2}$ we similarly bound $|y_4 - y_3|, |y_4 - y_1|, |y_3 - y_2|$. Then [\(2.23\)](#page-10-4) follows from [\(2.24\)](#page-11-0) and the fact that $|I_{ba_n}| = y_2 - y_1$, $|I_{\overline{ba_1}}| = x_4 - x_3$.

Lemma 2.9 (Separation). Assume that $\mathbf{a}, \mathbf{b} \in \mathcal{W}^{\circ}$ and $\mathbf{a} \nless \mathbf{b}, \mathbf{b} \nless \mathbf{a}$. Then

$$
|x - y| \ge C_{\Gamma}^{-1} \max\left(|I_{\mathbf{a}}|, |I_{\mathbf{b}}|\right) \quad \text{for all } x \in I_{\mathbf{a}}, \ y \in I_{\mathbf{b}}.\tag{2.25}
$$

Proof. Since $\mathbf{a} \not\prec \mathbf{b}$, $\mathbf{b} \not\prec \mathbf{a}$, there exist

$$
\mathbf{c} \in \mathcal{W}, \ d, e \in \mathcal{A} \quad \text{such that} \quad \mathbf{c} \to d, \ \mathbf{c} \to e, \ \mathbf{c}d \prec \mathbf{a}, \ \mathbf{c}e \prec \mathbf{b}, \ d \neq e.
$$

Without loss of generality we may assume that $\mathbf{c} \in \mathcal{W}^{\circ}$ and write $\mathbf{c} = c_1 \dots c_n$. Then

$$
I_{\mathbf{a}} \subset I_{\mathbf{c}d} = \gamma_{\mathbf{c}'}(\gamma_{c_n}(I_d)), \quad I_{\mathbf{b}} \subset I_{\mathbf{c}e} = \gamma_{\mathbf{c}'}(\gamma_{c_n}(I_e)).
$$

Since the distance between $\gamma_{c_n}(I_d)$ and $\gamma_{c_n}(I_e)$ is bounded below by C_{Γ}^{-1} Γ ⁻¹ and both these intervals are contained in I_{c_n} , we get by (2.17)

$$
|x - y| \ge C_{\Gamma}^{-1} |I_{\mathbf{c}}| \ge C_{\Gamma}^{-1} \max (|I_{\mathbf{a}}|, |I_{\mathbf{b}}|) \quad \text{for all } x \in I_{\mathbf{a}}, y \in I_{\mathbf{b}}
$$

finishing the proof.

We finally obtain estimates on the elements of the partition $Z(\tau)$ defined in [\(2.7\)](#page-7-5):

Lemma 2.10. For all $\tau \in (0,1]$ and $\mathbf{a} = a_1 \dots a_n \in Z(\tau)$, we have

$$
C_{\Gamma}^{-1}\tau \le |I_{\mathbf{a}}| \le \tau,\tag{2.26}
$$

$$
C_{\Gamma}^{-1}\tau \le |I_{\overline{\mathbf{a}}}| \le C_{\Gamma}\tau,\tag{2.27}
$$

$$
C_{\Gamma}^{-1}\tau \le \gamma_{\mathbf{a}'}' \le C_{\Gamma}\tau \quad on \ I_{a_n}.\tag{2.28}
$$

Proof. Let $\mathbf{a} \in Z(\tau)$. Without loss of generality we may assume that $|\mathbf{a}| \geq 2$. We have $|I_{\mathbf{a}}| \leq \tau < |I_{\mathbf{a'}}|$ and by Lemma [2.6,](#page-10-3) $|I_{\mathbf{a}}| \geq C_{\Gamma}^{-1}$ $T_{\Gamma}^{-1}|I_{\mathbf{a}'}|$. This gives [\(2.26\)](#page-11-1). Now [\(2.27\)](#page-11-2) follows from (2.22) , and (2.28) follows from (2.17) .

2.4. Patterson–Sullivan measure. The Patterson–Sullivan measure μ is equivariant under the group Γ: for any bounded Borel function f on \mathbb{R} ,

$$
\int_{\Lambda_{\Gamma}} f(x) d\mu(x) = \int_{\Lambda_{\Gamma}} f(\gamma(x)) |\gamma'(x)|_{\mathbb{B}}^{\delta} d\mu(x) \quad \text{for all } \gamma \in \Gamma \tag{2.29}
$$

where $|\gamma'|_B$ is the derivative of γ as a map of the ball model of the hyperbolic space:

$$
|\gamma'(x)|_{\mathbb{B}} = \frac{1+x^2}{1+\gamma(x)^2} \gamma'(x), \quad x \in \mathbb{R}.
$$

See for instance [\[Bor16,](#page-27-8) Lemma 14.2]. Next, [\(2.29\)](#page-12-1) implies

$$
\int_{I_{ab}} f(x) d\mu(x) = \int_{I_b} f(\gamma_{\mathbf{a}}(x)) w_{\mathbf{a}}(x) d\mu(x) \quad \text{for all } \mathbf{a} \in \mathcal{W}, \ b \in \mathcal{A}, \ \mathbf{a} \to b \tag{2.30}
$$

where the weight w_a is defined by

$$
w_{\mathbf{a}}(x) := |\gamma_{\mathbf{a}}'(x)|_{\mathbb{B}}^{\delta}.
$$
\n(2.31)

The Patterson–Sullivan measure of an interval I_a is estimated by the following

Lemma 2.11. We have

$$
C_{\Gamma}^{-1}|I_{\mathbf{a}}|^{\delta} \le \mu(I_{\mathbf{a}}) \le C_{\Gamma}|I_{\mathbf{a}}|^{\delta} \quad \text{for all } \mathbf{a} \in \mathcal{W}^{\circ}.
$$
 (2.32)

Proof. The formula [\(2.30\)](#page-12-2) implies that for all $a, b \in \mathcal{A}$, $a \neq \overline{b}$, we have

$$
\mu(I_a) \ge \mu(I_{ab}) = \int_{I_b} w_a(x) \, d\mu(x) \ge C_{\Gamma}^{-1} \mu(I_b).
$$

Since μ is a probability measure, this implies that

 $C_{\Gamma}^{-1} \leq \mu(I_a) \leq 1$ for all $a \in \mathcal{A}$.

Denote $\mathbf{a} = a_1 \dots a_n$. From (2.30) we have

$$
\mu(I_{\mathbf{a}}) = \int_{I_{a_n}} w_{\mathbf{a}'}(x) d\mu(x).
$$

By (2.17) we have

$$
C_{\Gamma}^{-1}|I_{\mathbf{a}}|^{\delta} \le w_{\mathbf{a}'} \le C_{\Gamma}|I_{\mathbf{a}}|^{\delta} \quad \text{on } I_{a_n}
$$

and (2.32) follows.

Using Lemma [2.11,](#page-12-4) we give a self-contained proof of Ahlfors–David regularity of μ (see [\[Bor16,](#page-27-8) Lemma 14.13] for another proof):

Lemma 2.12. Let $I \subset \mathbb{R}$ be an interval. Then

$$
\mu(I) \le C_{\Gamma} |I|^{\delta}.
$$
\n(2.33)

If additionally $|I| \leq 1$ and I is centered at a point in Λ_{Γ} , then

$$
\mu(I) \ge C_{\Gamma}^{-1} |I|^{\delta}.
$$
\n(2.34)

Proof. We first show the upper bound [\(2.33\)](#page-12-5). Since μ is supported on Λ_{Γ} , replacing I with the intersections $I \cap I_a$ we may assume that $I \subset I_a$ for some $a \in A$. Shrinking I without changing $\mu(I)$, we may also assume that its endpoints x_0, x_1 lie in Λ_{Γ} . If $I = \{x_0\}$ consists of one point, then by [\(2.2\)](#page-6-2) we can find arbitrarily long words **a** such that $x_0 \in I_a$; by [\(2.6\)](#page-7-0) and [\(2.32\)](#page-12-3), we have $\mu(I) = 0$.

Assume now that $x_0 < x_1$. By (2.6) there exists the longest word $\mathbf{a} = a_1 \dots a_n \in \mathcal{W}^{\circ}$ such that $I \subset I_a$. Then $x_0 \in I_{ab}$, $x_1 \in I_{ac}$ for two different $b, c \in A$ such that $a \to b$, $\mathbf{a} \to c$. By Lemma [2.9,](#page-11-4) the distance between $I_{\mathbf{a}b}$ and $I_{\mathbf{a}c}$ is bounded below by C_{Γ}^{-1} $\binom{-1}{\Gamma}$ [$I_{\mathbf{a}}$], therefore $|I| \geq C_{\Gamma}^{-1}$ $T_{\Gamma}^{-1}|I_{\mathbf{a}}|$. Now [\(2.33\)](#page-12-5) follows from [\(2.32\)](#page-12-3):

$$
\mu(I) \le \mu(I_{\mathbf{a}}) \le C_{\Gamma} |I_{\mathbf{a}}|^{\delta} \le C_{\Gamma} |I|^{\delta}.
$$

We next show the lower bound (2.34) where I is an interval of size $0 < |I| \leq 1$ centered at some $x \in \Lambda_{\Gamma}$. Using [\(2.6\)](#page-7-0), take the shortest word $\mathbf{a} \in \mathcal{W}^{\circ}$ such that $x \in I_{\mathbf{a}} \subset I$. If $|{\bf a}| = 1$, then by $(2.32) \mu(I) \ge \mu(I_{\bf a}) \ge C_{\Gamma}^{-1}$ Γ^{-1} . Assume now that $|\mathbf{a}| \geq 2$.

Since $x \in I_{a'}$ and $I_{a'} \not\subset I$, we have $|I_{a'}| \geq \frac{1}{2}|I|$ and thus by $(2.20) |I_{a}| \geq C_{\Gamma}^{-1}$ $\Gamma^{-1}|I|.$ Now (2.34) follows from (2.32) :

$$
\mu(I) \ge \mu(I_{\mathbf{a}}) \ge C_{\Gamma}^{-1} |I_{\mathbf{a}}|^\delta \ge C_{\Gamma}^{-1} |I|^\delta. \quad \Box
$$

As another corollary of Lemma [2.11,](#page-12-4) we estimate the number of elements in the partition $Z(\tau)$ defined in (2.7) :

Lemma 2.13. For $\tau \in (0,1]$ we have

$$
C_{\Gamma}^{-1} \tau^{-\delta} \leq #(Z(\tau)) \leq C_{\Gamma} \tau^{-\delta}.
$$
\n(2.35)

Proof. Since $Z(\tau)$ is a partition, we have by (2.3)

$$
1 = \mu(\Lambda_{\Gamma}) = \sum_{\mathbf{a} \in Z(\tau)} \mu(I_{\mathbf{a}}).
$$

By (2.26) and (2.32) , we have for all $\mathbf{a} \in Z(\tau)$

$$
C_{\Gamma}^{-1} \tau^{\delta} \le \mu(I_{\mathbf{a}}) \le C_{\Gamma} \tau^{\delta} \tag{2.36}
$$

which implies (2.35) .

The following is an analogue of the upper bound of Lemma [2.11](#page-12-4) where instead of the measure $\mu(I_{\bf b})$ we estimate the number of intervals of length at least τ in the subtree with root $I_{\bf b}$:

Lemma 2.14. Assume that $\tau \in (0,1]$, $\mathbf{b} \in \mathcal{W}^{\circ}$. Then

$$
\# \{ \mathbf{a} \in \mathcal{W}^{\circ} \colon \mathbf{b} \prec \mathbf{a}, \ |I_{\mathbf{a}}| \geq \tau \} \leq C_{\Gamma} \tau^{-\delta} |I_{\mathbf{b}}|^{\delta}.
$$
 (2.37)

Proof. We may assume that $|I_{\bf{b}}| \geq \tau$ since otherwise the left-hand side of [\(2.37\)](#page-13-1) equals 0. By (2.6) , the following sets are finite:

 $A := \{ \mathbf{a} \in \mathcal{W}^{\circ} \colon \mathbf{b} \prec \mathbf{a}, |I_{\mathbf{a}}| \geq \tau \}, \quad B := \{ \mathbf{a} \in \mathcal{W}^{\circ} \colon \mathbf{b} \prec \mathbf{a}, |I_{\mathbf{a}}| < \tau \leq |I_{\mathbf{a}'}| \}.$

Then $\{I_{\mathbf{a}}\}_{{\mathbf{a}}\in B}$ is a disjoint collection of subintervals of $I_{\mathbf{b}}$. Therefore by [\(2.32\)](#page-12-3)

$$
\sum_{\mathbf{a}\in B}\mu(I_{\mathbf{a}})\leq \mu(I_{\mathbf{b}})\leq C_{\Gamma}|I_{\mathbf{b}}|^{\delta}.
$$

On the other hand, by [\(2.20\)](#page-10-2) and [\(2.32\)](#page-12-3)

$$
\mu(I_{\mathbf{a}}) \ge C_{\Gamma}^{-1} |I_{\mathbf{a}}|^{\delta} \ge C_{\Gamma}^{-1} \tau^{\delta} \quad \text{for all } \mathbf{a} \in B.
$$

Therefore, the number of elements in B is bounded as follows:

$$
\#(B) \le C_{\Gamma} \tau^{-\delta} |I_{\mathbf{b}}|^{\delta}.
$$
\n(2.38)

Next, $A \sqcup B$ forms a tree with root **b**, where the parent of **a** is given by **a'**. Moreover, B is the set of leaves of this tree and each element of A has exactly $2r - 1$ children, where $2r \geq 4$ is the number of intervals in the Schottky structure. The number of edges of the tree is equal to both $\#(A) + \#(B) - 1$ and $(2r - 1) \cdot \#(A)$, which implies

$$
#(A) = \frac{\#(B) - 1}{2r - 2} \le \#(B).
$$

Combining this with (2.38) , we obtain (2.37) .

Arguing similarly to the proof of [\(2.33\)](#page-12-5), we obtain from Lemma [2.14](#page-13-2) the following **Lemma 2.15.** For all intervals J and all $C_0 \geq 2$ we have

$$
\#\big\{\mathbf{a}\in\mathcal{W}^{\circ}\colon\tau\leq|I_{\mathbf{a}}|\leq C_{0}\tau,\ I_{\mathbf{a}}\cap J\neq\emptyset\big\}\leq C_{\Gamma}\tau^{-\delta}|J|^{\delta}+C_{\Gamma}\log C_{0}.\tag{2.39}
$$

Proof. Without loss of generality we may assume that J is contained in I_a for some $a \in \mathcal{A}$. Consider the finite set

$$
X := \{ \mathbf{a} \in \mathcal{W}^{\circ} \colon |I_{\mathbf{a}}| \ge \tau, \ I_{\mathbf{a}} \cap J \neq \emptyset \}.
$$

Then X forms a tree with root a in the sense that $\mathbf{a} \in X \setminus \{a\}$ implies $\mathbf{a}' \in X$.

Take the longest word $\mathbf{b} \in X$ with the following property: for each $\mathbf{a} \in X$, we have $\mathbf{a} \prec \mathbf{b}$ or $\mathbf{b} \prec \mathbf{a}$. Then b cannot have exactly one child in X, leaving the following two options:

- (1) **b** has no children in X. Then all $\mathbf{a} \in X$ satisfy $\mathbf{a} \prec \mathbf{b}$. By [\(2.5\)](#page-6-4), we estimate the number of elements $\mathbf{a} \in X$ such that $|I_{\mathbf{a}}| \leq C_0 \tau$ by $C_{\Gamma} \log C_0$.
- (2) There exist $c, d \in \mathcal{A}, c \neq d, \mathbf{b} \rightarrow c, \mathbf{b} \rightarrow d$, such that $\mathbf{b}c, \mathbf{b}d \in X$. By Lemma [2.9](#page-11-4) the distance between $I_{\mathbf{b}c}$ and $I_{\mathbf{b}d}$ is bounded below by C_{Γ}^{-1} $\binom{-1}{\Gamma}I_{\mathbf{b}}$, and both these intervals intersect J , therefore

$$
|I_{\mathbf{b}}| \leq C_{\Gamma}|J|.
$$

By [\(2.37\)](#page-13-1), the number of elements $\mathbf{a} \in X$ such that $\mathbf{b} \prec \mathbf{a}$ is bounded above by $C_{\Gamma} \tau^{-\delta} |J|^{\delta}$. All other elements $\mathbf{a} \in X$ have to satisfy $\mathbf{a} \prec \mathbf{b}$, and arguing similarly to the previous case we see that the number of these with $|I_{a}| \leq C_0 \tau$ is bounded above by $C_{\Gamma} \log C_0$.

We finally use Lemma [2.3](#page-9-4) to obtain the following statement, which gives the positive box dimension estimate required in §[3.3.](#page-22-0) This is the only statement which uses both Lemma [2.8](#page-10-7) (via [\(2.27\)](#page-11-2)) and the full power of Lemma [2.15.](#page-14-1) Recall the notation $\mathbf{a} \rightarrow \mathbf{b}$ from §[2.1.](#page-5-1) We introduce the following additional piece of notation:

$$
\mathbf{a} \leadsto \mathbf{b} \leadsto \mathbf{d} \quad \text{if and only if} \quad \mathbf{a} \leadsto \mathbf{b} \leadsto \mathbf{d} \text{ and } \mathbf{a} \leadsto \mathbf{c} \leadsto \mathbf{d}. \tag{2.40}
$$

Lemma 2.16. Fix $\mathbf{a} \in Z(\tau)$ and for each $\mathbf{d} \in \mathcal{W}^{\circ}$ let $x_{\mathbf{d}}$ be the center of $I_{\mathbf{d}}$. Then we have for $0 < \tau \leq \sigma \leq 1$

$$
\#\{(b, c, d) \in Z(\tau)^3 \colon a \leadsto \frac{b}{c} \leadsto d, \ |\gamma'_{a'b'}(x_d) - \gamma'_{a'c'}(x_d)| \leq \tau^2 \sigma \}
$$
\n
$$
\leq C_\Gamma \tau^{-3\delta} \sigma^{\delta/2}.
$$
\n(2.41)

Proof. Without loss of generality, we may assume that τ is small enough so that $|c| \geq 2$ for all $\mathbf{c} \in Z(\tau)$. For each $\mathbf{b} \in Z(\tau)$ such that $\mathbf{a} \leadsto \mathbf{b}$, we have

$$
\#\{\mathbf{c}\in Z(\tau)\colon \mathbf{a}\leadsto \mathbf{c}, \ |\gamma_{\mathbf{a'}\mathbf{b'}}^{-1}(\infty)-\gamma_{\mathbf{a'}\mathbf{c'}}^{-1}(\infty)|\leq \sqrt{\sigma}\}\leq C_{\Gamma}\,\tau^{-\delta}\sigma^{\delta/2}.\tag{2.42}
$$

Indeed, denoting $\mathbf{e} := \overline{\mathbf{c}'}$, we have $\gamma_{\mathbf{a'}\mathbf{c'}}^{-1}(\infty) = \gamma_{\mathbf{e}\overline{\mathbf{a}'}}(\infty) \in I_{\mathbf{e}}$. Also, C_{Γ}^{-1} $\Gamma^{-1}\tau \leq |I_{\mathbf{e}}| \leq C_{\Gamma}\tau$ by (2.27) and (2.21) . Therefore, the left-hand side of (2.42) is bounded by

$$
2r \cdot \#\{e \in \mathcal{W}^{\circ} \colon C_{\Gamma}^{-1} \tau \le |I_e| \le C_{\Gamma} \tau, \ I_e \cap J \neq \emptyset\}, \quad J := \gamma_{\mathbf{a'}\mathbf{b'}}^{-1}(\infty) + [-\sqrt{\sigma}, \sqrt{\sigma}].
$$

Now (2.42) follows from (2.39) .

By [\(2.42\)](#page-15-0) and [\(2.35\)](#page-13-0), the triples $(\mathbf{b}, \mathbf{c}, \mathbf{d})$ with $|\gamma_{\mathbf{a'}\mathbf{b'}}^{-1}(\infty) - \gamma_{\mathbf{a'}\mathbf{c'}}^{-1}(\infty)| \leq \sqrt{\sigma}$ contribute at most $C_{\Gamma} \tau^{-3\delta} \sigma^{\delta/2}$ to the left-hand side of [\(2.41\)](#page-15-1). Therefore, it remains to show that for each $\mathbf{b}, \mathbf{c} \in Z(\tau)$ such that $\mathbf{a} \leadsto \mathbf{b}, \mathbf{a} \leadsto \mathbf{c}$ and

$$
|\gamma_{\mathbf{a' b'}}^{-1}(\infty) - \gamma_{\mathbf{a' c'}}^{-1}(\infty)| \ge \sqrt{\sigma}, \tag{2.43}
$$

we have

$$
\#\{\mathbf{d}\in Z(\tau)\colon \mathbf{b}\leadsto \mathbf{d},\ \mathbf{c}\leadsto \mathbf{d},\ |\gamma'_{\mathbf{a'}\mathbf{b'}}(x_{\mathbf{d}})-\gamma'_{\mathbf{a'}\mathbf{c'}}(x_{\mathbf{d}})|\leq \tau^2\sigma\}\leq C_{\Gamma}\tau^{-\delta}\sigma^{\delta/2}.\tag{2.44}
$$

Denote by b_n the last letter of **b**; we may assume it is also the last letter of **c**, since otherwise the left-hand side of [\(2.44\)](#page-15-2) is zero.

By (2.26) and (2.21) we have C_{Γ}^{-1} $\Gamma_{\Gamma}^{-1} \tau^2 \leq |I_{\mathbf{a}'\mathbf{b}}| \leq C_{\Gamma} \tau^2$ and C_{Γ}^{-1} $\Gamma^{-1} \tau^2 \leq |I_{\mathbf{a}'\mathbf{c}}| \leq C_{\Gamma} \tau^2.$ By (2.17) this gives C_{Γ}^{-1} $\Gamma_{\Gamma}^{-1} \tau^2 \leq \gamma_{\mathbf{a}' \mathbf{b}'} \leq C_{\Gamma} \tau^2$ and C_{Γ}^{-1} $\Gamma_{\Gamma}^{-1} \tau^2 \leq \gamma_{\mathbf{a}' \mathbf{c}'} \leq C_{\Gamma} \tau^2$ on I_{b_n} . Thus it suffices to show that for any given constant C_0 depending only on the Schottky data,

$$
\#\Big\{\mathbf{d}\in Z(\tau)\colon\mathbf{b}\leadsto\mathbf{d},\ \mathbf{c}\leadsto\mathbf{d},\ \Big|\log\frac{\gamma'_{\mathbf{a}'\mathbf{b}'}(x_{\mathbf{d}})}{\gamma'_{\mathbf{a}'\mathbf{c}'}(x_{\mathbf{d}})}\Big|\leq C_0\sigma\Big\}\leq C_\Gamma\,\tau^{-\delta}\sigma^{\delta/2}.\tag{2.45}
$$

By (2.4) , (2.8) , and (2.43) , we have

$$
|\alpha(\gamma_{\mathbf{a' b'}}, I_{b_n})|, |\alpha(\gamma_{\mathbf{a' c'}}, I_{b_n})| \leq C_{\Gamma}, \quad |\alpha(\gamma_{\mathbf{a' b'}}, I_{b_n}) - \alpha(\gamma_{\mathbf{a' c'}}, I_{b_n})| \geq C_{\Gamma}^{-1} \sqrt{\sigma}.
$$

By Lemma [2.3,](#page-9-4) there exists an interval J of size C_{Γ} $\overline{\sigma}$ depending on **a**, **b**, **c** such that for each **d** on the left-hand side of [\(2.45\)](#page-15-4), the point x_d lies in \widetilde{J} and thus $I_d \cap \widetilde{J} \neq \emptyset$.
Then by (2.39) and (2.26) we obtain (2.45), finishing the proof. Then by (2.39) and (2.26) we obtain (2.45) , finishing the proof.

2.5. **Transfer operators.** For a partition $Z \subset \mathcal{W}^{\circ}$, define the operator

$$
\mathcal{L}_Z : \operatorname{Bor}(\mathcal{I}) \to \operatorname{Bor}(\mathcal{I}), \quad \mathcal{I} := \bigsqcup_{b \in \mathcal{A}} I_b,
$$

where $\text{Bor}(\mathcal{I})$ denotes the space of all bounded Borel functions on \mathcal{I} , as follows:

$$
\mathcal{L}_Z f(x) = \sum_{\mathbf{a} \in Z, \mathbf{a} \sim b} f(\gamma_{\mathbf{a}'}(x)) w_{\mathbf{a}'}(x), \quad x \in I_b.
$$

Here the weight $w_{\mathbf{a}'}(x)$ is defined in [\(2.31\)](#page-12-7). The Patterson–Sullivan measure is invariant under the adjoint of \mathcal{L}_Z :

Lemma 2.17. Assume that $Z \subset \mathcal{W}^{\circ}$ is a partition. Then we have for all $f \in \text{Bor}(\mathcal{I}),$

$$
\int_{\Lambda_{\Gamma}} f d\mu = \int_{\Lambda_{\Gamma}} \mathcal{L}_Z f d\mu. \tag{2.46}
$$

Proof. Since Z is a partition, we have by (2.3)

$$
\int_{\Lambda_{\Gamma}} f \, d\mu = \sum_{b \in \mathcal{A}} \sum_{\mathbf{a} \in Z, \ \mathbf{a} \leadsto b} \int_{I_{\mathbf{a}}} f \, d\mu
$$

which together with (2.30) gives (2.46) .

We will use the following corollary of Lemma [2.17:](#page-16-2)

$$
\int_{\Lambda_{\Gamma}} f d\mu = \int_{\Lambda_{\Gamma}} \mathcal{L}_Z^k f d\mu, \quad f \in \text{Bor}(\mathcal{I}), \ k \in \mathbb{N}.
$$
 (2.47)

Note that $\mathcal{L}_Z^k f$ is given by the formula

$$
\mathcal{L}_Z^k f(x) = \sum_{\substack{\mathbf{a}_1, \dots, \mathbf{a}_k \in Z \\ \mathbf{a}_1 \sim \dots \sim \mathbf{a}_k \sim b}} f(\gamma_{\mathbf{a}'_1 \dots \mathbf{a}'_k}(x)) w_{\mathbf{a}'_1 \dots \mathbf{a}'_k}(x), \quad x \in I_b.
$$
 (2.48)

3. Fourier decay bound

3.1. Key combinatorial tool. The key tool in the proof of Theorem [2](#page-3-1) is the following result [\[Bou10,](#page-27-1) Lemma 8.43] (more precisely, its version in Proposition [3.3](#page-18-0) below):

Proposition 3.1. For all $\delta_1 > 0$, there exist $\varepsilon_3, \varepsilon_4 > 0$ and $k \in \mathbb{N}$ such that the following holds. Let μ_0 be a probability measure on $\left[\frac{1}{2}\right]$ $\frac{1}{2}$, 1] and let N be a large integer. Assume that for all $\sigma \in [N^{-1}, N^{-\varepsilon_3}]$

$$
\sup_{x} \mu_0([x-\sigma, x+\sigma]) < \sigma^{\delta_1}.\tag{3.1}
$$

Then for all $\eta \in \mathbb{R}$, $|\eta| \sim N$,

$$
\left| \int \exp(2\pi i \eta x_1 \cdots x_k) d\mu_0(x_1) \dots d\mu_0(x_k) \right| \le N^{-\varepsilon_4}.
$$
 (3.2)

Remark. The main component of the proof of [\[Bou10,](#page-27-1) Lemma 8.43] is the discretized sum-product theorem [\[Bou10,](#page-27-1) Theorem 1]. Roughly speaking it states that for a finite set $A \subset \left[\frac{1}{2}\right]$ $\frac{1}{2}$, 1] of $\frac{1}{N}$ -separated points which has box dimension $\geq \delta_1 > 0$, either the sum set $A + A$ or the product set $A \cdot A$ has size at least $N^{\varepsilon} \cdot \#(A)$, where $\varepsilon > 0$ depends only on δ_1 . The box dimension condition is analogous to (3.1) . We refer the reader to the papers by the first author [\[Bou03,](#page-27-9) [Bou10\]](#page-27-1) for history and applications of the sum-product theorem. For the passage from the sum-product theorem to the estimate [\(3.2\)](#page-17-3) in the cleaner case of prime fields see Bourgain–Glibichuk–Konyagin [\[BGK06,](#page-27-10) Theorem 5]. See also the expository article of Green [\[Gr09\]](#page-28-12).

The following is an adaptation of Proposition [3.1](#page-17-0) to the case of several different measures with slightly relaxed assumptions:

Proposition 3.2. Fix $\delta_0 > 0$. Then there exist $k \in \mathbb{N}$, $\varepsilon_2 > 0$ depending only on δ_0 such that the following holds. Let $C_0 > 0$ and μ_1, \ldots, μ_k be Borel measures on $[C_0^{-1}, C_0] \subset \mathbb{R}$ such that $\mu_j(\mathbb{R}) \leq C_0$. Let $\eta \in \mathbb{R}$, $|\eta| \geq 1$, and assume that for all $\sigma \in [C_0|\eta|^{-1}, C_0^{-1}|\eta|^{-\epsilon_2}]$ and $j = 1, \ldots, k$

$$
\mu_j \times \mu_j \left(\left\{ (x, y) \in \mathbb{R}^2 \colon |x - y| \le \sigma \right\} \right) \le C_0 \cdot \sigma^{\delta_0}.
$$
 (3.3)

Then there exists a constant C_1 depending only on C_0 , δ_0 such that

$$
\left| \int \exp(2\pi i \eta x_1 \cdots x_k) d\mu_1(x_1) \dots d\mu_k(x_k) \right| \leq C_1 |\eta|^{-\varepsilon_2}.
$$
 (3.4)

Proof. We may assume that $|\eta|$ is large depending on C_0 , δ_0 . By breaking μ_j into pieces supported on $[2^{\ell}, 2^{\ell+1}]$ where $|\ell| \lesssim \log_2 C_0$ and rescaling η , we reduce to the case when each μ_j is supported on $[\frac{1}{2}, 1]$.

Put $\delta_1 := \delta_0/6$, choose $\varepsilon_3, \varepsilon_4, k$ as in Proposition [3.1,](#page-17-0) and put

$$
\varepsilon_2 := \frac{\min(\varepsilon_4, \varepsilon_3 \delta_0)}{10}.
$$

We henceforth replace (3.3) with the following assumption:

$$
\sup_{x} \mu_j([x - \sigma, x + \sigma]) \le 2\sqrt{C_0} \cdot \sigma^{\delta_0/2}, \quad \sigma \in [C_0|\eta|^{-1}, (2C_0)^{-1}|\eta|^{-\varepsilon_2}] \tag{3.5}
$$

which follows from [\(3.3\)](#page-17-4) since $[x - \sigma, x + \sigma]^2 \subset \{(x, y) \in \mathbb{R}^2 : |x - y| \leq 2\sigma\}.$

We next claim that it suffices to consider the case $\mu_1 = \cdots = \mu_k$. Indeed, denote

$$
F(\mu_1,\ldots,\mu_k):=\int \exp(2\pi i\eta x_1\cdots x_k)\,d\mu_1(x_1)\ldots d\mu_k(x_k).
$$

For $\lambda := (\lambda_1, \ldots, \lambda_k) \in [0, 1]^k$, put

$$
G(\lambda) := F(\mu_{\lambda}, \ldots, \mu_{\lambda}), \quad \mu_{\lambda} := \lambda_1 \mu_1 + \cdots + \lambda_k \mu_k.
$$

If μ_1, \ldots, μ_k satisfy [\(3.5\)](#page-17-5), then the measure μ_λ satisfies (3.5) as well (with C_0 replaced by k^2C_0). Then the version of Proposition [3.2](#page-17-1) for the case $\mu_1 = \cdots = \mu_k$ implies that for some C'_1 depending only on δ_0, C_0

$$
\sup_{\lambda \in [0,1]^k} |G(\lambda)| \le C_1' |\eta|^{-\varepsilon_2}.
$$

Since G is a polynomial of degree k, we have for some C_1 depending only on δ_0 , C_0

$$
|F(\mu_1,\ldots,\mu_k)|=\frac{1}{k!}|\partial_{\lambda_1}\ldots\partial_{\lambda_k}G(0,\ldots,0)|\leq C_1|\eta|^{-\varepsilon_2}
$$

giving [\(3.4\)](#page-17-6) in the general case.

We henceforth assume that $\mu_1 = \cdots = \mu_k$. We consider two cases:

(1) $\mu_1(\mathbb{R}) \ge |\eta|^{-\epsilon_3 \delta_0/10}$: define the probability measure μ_0 on $[\frac{1}{2}, 1]$ by

$$
\mu_0 := \frac{\mu_1}{\mu_1(\mathbb{R})}.
$$

Choose an integer N such that $N \leq |\eta| \leq 2N$. By [\(3.5\)](#page-17-5) we have

$$
\sup_x \mu_0([x-\sigma, x+\sigma]) < \sigma^{\delta_1}, \quad \sigma \in [C_0N^{-1}, N^{-\varepsilon_3}].
$$

Same is true for $\sigma \in [N^{-1}, C_0 N^{-1}]$ by applying (3.5) to $\sigma := C_0 N^{-1}$. Then (3.4) follows from Proposition [3.1.](#page-17-0)

(2) $\mu_1(\mathbb{R}) \leq |\eta|^{-\epsilon_3 \delta_0/10}$: the bound [\(3.4\)](#page-17-6) follows from the triangle inequality. \square

In the discrete probability case Proposition [3.2](#page-17-1) gives the following statement which is used in the key step of the proof of Theorem [2](#page-3-1) at the end of §[3.3:](#page-22-0)

Proposition 3.3. Fix $\delta_0 > 0$. Then there exist $k \in \mathbb{N}$, $\varepsilon_2 > 0$ depending only on δ_0 such that the following holds. Let $C_0, N_{\mathcal{Z}} \geq 0$ and $\mathcal{Z}_1, \ldots, \mathcal{Z}_k$ be finite sets such that $\#(\mathcal{Z}_i) \leq C_0 N_{\mathcal{Z}}$. Take some maps

$$
\zeta_j : \mathcal{Z}_j \to [C_0^{-1}, C_0], \quad j = 1, \dots, k.
$$

Let $\eta \in \mathbb{R}$, $|\eta| > 1$, and consider the sum

$$
S_k(\eta) = N_{\mathcal{Z}}^{-k} \sum_{\mathbf{b}_1 \in \mathcal{Z}_1, \dots, \mathbf{b}_k \in \mathcal{Z}_k} \exp (2\pi i \eta \zeta_1(\mathbf{b}_1) \cdots \zeta_k(\mathbf{b}_k)).
$$

Assume that ζ_j satisfy for all $\sigma \in [|\eta|^{-1}, |\eta|^{-\varepsilon_2}]$ and $j = 1, \ldots, k$

$$
\#\{(\mathbf{b}, \mathbf{c}) \in \mathcal{Z}_j^2 : |\zeta_j(\mathbf{b}) - \zeta_j(\mathbf{c})| \le \sigma\} \le C_0 N_{\mathcal{Z}}^2 \cdot \sigma^{\delta_0}.
$$
 (3.6)

Then we have for some constant C_1 depending only on C_0 , δ_0

$$
|S_k(\eta)| \le C_1 |\eta|^{-\varepsilon_2}.\tag{3.7}
$$

Proof. It suffices to apply Proposition [3.2](#page-17-1) to the measures μ_j defined by

$$
\mu_j(A) := N_{\mathcal{Z}}^{-1} \cdot \# \{ \mathbf{b} \in \mathcal{Z}_j : \zeta_j(\mathbf{b}) \in A \}, \quad j = 1, \dots, k. \quad \Box
$$

3.2. A combinatorial description of the oscillatory integral. We now begin the proof of Theorem [2.](#page-3-1) We fix a Schottky representation for M as in $\S 2.1$. In this section C denotes constants which depend only on $C_{\varphi,q}$ and the Schottky data.

Put $\delta_0 := \delta/4$ and choose $k \in \mathbb{N}$, $\varepsilon_2 > 0$ from Proposition [3.3,](#page-18-0) depending only on δ . Let ξ be the frequency parameter in (1.2) . Without loss of generality we may assume that $|\xi| \geq C$. Define the small number $\tau > 0$ by

$$
|\xi| = \tau^{-2k - 3/2}.\tag{3.8}
$$

Let $Z(\tau) \subset \mathcal{W}^{\circ}$ be the partition defined in (2.7) and $\mathcal{L}_{Z(\tau)}$ be the associated transfer operator, see $\S 2.5$. Recall from (2.35) that

$$
#(Z(\tau)) \le C\tau^{-\delta}.\tag{3.9}
$$

Moreover, by [\(2.28\)](#page-11-3) and [\(2.31\)](#page-12-7) we have for each $\mathbf{a} = a_1 \dots a_n \in Z(\tau)$,

$$
w_{\mathbf{a}'} \le C\tau^{\delta} \quad \text{on } I_{a_n}.\tag{3.10}
$$

We introduce some notation used throughout this section:

• we denote

$$
\mathbf{A} = (\mathbf{a}_0, \dots, \mathbf{a}_k) \in Z(\tau)^{k+1}, \quad \mathbf{B} = (\mathbf{b}_1, \dots, \mathbf{b}_k) \in Z(\tau)^k;
$$

- we write $\mathbf{A} \leftrightarrow \mathbf{B}$ if and only if $\mathbf{a}_{j-1} \leadsto \mathbf{b}_j \leadsto \mathbf{a}_j$ for all $j = 1, \ldots, k$;
- if $\mathbf{A} \leftrightarrow \mathbf{B}$, then we define the words $\mathbf{A} * \mathbf{B} := \mathbf{a}'_0 \mathbf{b}'_1 \mathbf{a}'_1 \mathbf{b}'_2 \dots \mathbf{a}'_{k-1} \mathbf{b}'_k \mathbf{a}'_k$ and $\mathbf{A}\# \mathbf{B}:= \mathbf{a}_0'\mathbf{b}_1'\mathbf{a}_1'\mathbf{b}_2'\ldots \mathbf{a}_{k-1}'\mathbf{b}_k';$
- denote by $b(\mathbf{A}) \in \mathcal{A}$ the last letter of \mathbf{a}_k ;
- for each $\mathbf{a} \in \mathcal{W}^{\circ}$, denote by $x_{\mathbf{a}}$ the center of $I_{\mathbf{a}}$;
- for $j \in \{1, ..., k\}$ and $\mathbf{b} \in Z(\tau)$ such that $\mathbf{a}_{j-1} \leadsto \mathbf{b} \leadsto \mathbf{a}_j$, define

$$
\zeta_{j,\mathbf{A}}(\mathbf{b}) := \tau^{-2} \gamma'_{\mathbf{a}'_{j-1}\mathbf{b}'}(x_{\mathbf{a}_j})
$$
\n(3.11)

and note that $\zeta_{j,\mathbf{A}}(\mathbf{b}) \in [C^{-1}, C]$ by the chain rule and [\(2.28\)](#page-11-3).

Using the functions φ, g from the statement of Theorem [2,](#page-3-1) define

$$
f(x) := \exp(i\xi\varphi(x))g(x), \quad x \in \Lambda_{\Gamma}.
$$
 (3.12)

By (2.47) and (2.48) the integral in (1.2) can be written as follows:

$$
\int_{\Lambda_{\Gamma}} f d\mu = \int_{\Lambda_{\Gamma}} \mathcal{L}_{Z(\tau)}^{2k+1} f d\mu = \sum_{\mathbf{A}, \mathbf{B}: \mathbf{A} \leftrightarrow \mathbf{B}} \int_{I_{b(\mathbf{A})}} f(\gamma_{\mathbf{A} * \mathbf{B}}(x)) w_{\mathbf{A} * \mathbf{B}}(x) d\mu(x).
$$
(3.13)

We use Hölder's inequality and approximations for the weight w_{A*B} and the amplitude g to get the following bound. Note that (2.28) and (3.8) imply that the function $e^{i\xi\varphi(\gamma_{\mathbf{A}*\mathbf{B}}(x))}$ below oscillates at frequencies $\sim \tau^{-1/2}$.

Lemma 3.4. We have

$$
\left| \int_{\Lambda_{\Gamma}} f \, d\mu \right|^2 \le C \tau^{(2k-1)\delta} \sum_{\mathbf{A}, \mathbf{B}: \mathbf{A} \leftrightarrow \mathbf{B}} \left| \int_{I_{b(\mathbf{A})}} e^{i\xi \varphi(\gamma_{\mathbf{A} * \mathbf{B}}(x))} w_{\mathbf{a}'_k}(x) \, d\mu(x) \right|^2 + C \tau^2. \tag{3.14}
$$

Proof. Take arbitrary $x \in I_{b(\mathbf{A})}$, then

$$
w_{\mathbf{A}*\mathbf{B}}(x) = w_{\mathbf{A}\# \mathbf{B}}(\gamma_{\mathbf{a}'_k}(x))w_{\mathbf{a}'_k}(x).
$$

Now, $\gamma_{a'_{k}}(x)$ lies in $I_{a_{k}}$, which by [\(2.7\)](#page-7-5) is an interval of size no more than τ . By [\(2.18\)](#page-10-9)

$$
\exp(-C\tau) \le \frac{w_{\mathbf{A}\# \mathbf{B}}(\gamma_{\mathbf{a}'_k}(x))}{w_{\mathbf{A}\# \mathbf{B}}(x_{\mathbf{a}_k})} \le \exp(C\tau). \tag{3.15}
$$

Moreover, by [\(3.10\)](#page-19-1) and the chain rule

$$
w_{\mathbf{A}^* \mathbf{B}}(x) \le C\tau^{(2k+1)\delta}, \quad w_{\mathbf{A} \# \mathbf{B}}(x_{\mathbf{a}_k}) \le C\tau^{2k\delta}.
$$
 (3.16)

Recall that $||g||_{C^1} \leq C$ by [\(1.1\)](#page-3-3). Since $\gamma_{\mathbf{A}*\mathbf{B}}(x) \in I_{\mathbf{a}_0}$, by [\(2.7\)](#page-7-5) we have

$$
|f(\gamma_{\mathbf{A}*\mathbf{B}}(x)) - e^{i\xi\varphi(\gamma_{\mathbf{A}*\mathbf{B}}(x))}g(x_{\mathbf{a}_0})| \le C\tau.
$$
 (3.17)

Put

$$
g_{\mathbf{A},\mathbf{B}} := w_{\mathbf{A}\# \mathbf{B}}(x_{\mathbf{a}_k}) g(x_{\mathbf{a}_0}).
$$

Combining $(3.15)-(3.17)$ $(3.15)-(3.17)$, we obtain

$$
|f(\gamma_{\mathbf{A}*\mathbf{B}}(x))w_{\mathbf{A}*\mathbf{B}}(x)-g_{\mathbf{A},\mathbf{B}}e^{i\xi\varphi(\gamma_{\mathbf{A}*\mathbf{B}}(x))}w_{\mathbf{a}'_k}(x)| \leq C\tau^{(2k+1)\delta+1}.
$$

Therefore by [\(3.13\)](#page-20-2) and [\(3.9\)](#page-19-2)

$$
\left| \int_{\Lambda_{\Gamma}} f \, d\mu - \sum_{\mathbf{A}, \mathbf{B}: \; \mathbf{A} \leftrightarrow \mathbf{B}} g_{\mathbf{A}, \mathbf{B}} \int_{I_{b(\mathbf{A})}} e^{i\xi \varphi(\gamma_{\mathbf{A} * \mathbf{B}}(x))} w_{\mathbf{a}'_{k}}(x) \, d\mu(x) \right| \leq C\tau.
$$
 (3.18)

Using Hölder's inequality, (3.9) , and (3.16) , we get

$$
\left| \sum_{\mathbf{A},\mathbf{B}: \mathbf{A}\leftrightarrow\mathbf{B}} g_{\mathbf{A},\mathbf{B}} \int_{I_{b(\mathbf{A})}} e^{i\xi \varphi(\gamma_{\mathbf{A}*\mathbf{B}}(x))} w_{\mathbf{a}'_k}(x) d\mu(x) \right|^2
$$
\n
$$
\leq C\tau^{(2k-1)\delta} \sum_{\mathbf{A},\mathbf{B}: \mathbf{A}\leftrightarrow\mathbf{B}} \left| \int_{I_{b(\mathbf{A})}} e^{i\xi \varphi(\gamma_{\mathbf{A}*\mathbf{B}}(x))} w_{\mathbf{a}'_k}(x) d\mu(x) \right|^2.
$$
\n(3.19)

Combining (3.18) and (3.19) finishes the proof.

To handle the first term on the right-hand side of (3.14) , we estimate using (3.10)

$$
\sum_{\mathbf{A},\mathbf{B}: \mathbf{A}\leftrightarrow\mathbf{B}} \left| \int_{I_{b(\mathbf{A})}} e^{i\xi\varphi(\gamma_{\mathbf{A}*\mathbf{B}}(x))} w_{\mathbf{a}'_k}(x) d\mu(x) \right|^2
$$
\n
$$
= \sum_{\mathbf{A}} \int_{I_{b(\mathbf{A})}^2} w_{\mathbf{a}'_k}(x) w_{\mathbf{a}'_k}(y) \sum_{\mathbf{B}: \mathbf{A}\leftrightarrow\mathbf{B}} e^{i\xi(\varphi(\gamma_{\mathbf{A}*\mathbf{B}}(x)) - \varphi(\gamma_{\mathbf{A}*\mathbf{B}}(y)))} d\mu(x) d\mu(y) \qquad (3.20)
$$
\n
$$
\leq C\tau^{2\delta} \sum_{\mathbf{A}} \int_{I_{b(\mathbf{A})}^2} \left| \sum_{\mathbf{B}: \mathbf{A}\leftrightarrow\mathbf{B}} e^{i\xi(\varphi(\gamma_{\mathbf{A}*\mathbf{B}}(x)) - \varphi(\gamma_{\mathbf{A}*\mathbf{B}}(y)))} \right| d\mu(x) d\mu(y).
$$

The next statement bounds the integral $\int f d\mu$ by an expression which can be analyzed using Proposition [3.3,](#page-18-0) by linearizing the phase φ . Recall the definition [\(3.11\)](#page-19-3) of $\zeta_{j,\mathbf{A}}(\mathbf{b})$.

Lemma 3.5. Denote

$$
J_{\tau} := \{ \eta \in \mathbb{R} \colon \tau^{-1/4} \le |\eta| \le C\tau^{-1/2} \} \tag{3.21}
$$

where C is sufficiently large. Then

$$
\left| \int_{\Lambda_{\Gamma}} f \, d\mu \right|^2 \leq C\tau^{(2k+1)\delta} \sum_{\mathbf{A}} \sup_{\eta \in J_{\tau}} \left| \sum_{\mathbf{B} \colon \mathbf{A} \leftrightarrow \mathbf{B}} e^{2\pi i \eta \zeta_{1,\mathbf{A}}(\mathbf{b}_1) \cdots \zeta_{k,\mathbf{A}}(\mathbf{b}_k)} \right| + C\tau^{\delta/4}.
$$

Proof. Fix **A**. Take $x, y \in I_{b(\mathbf{A})}$ and put

$$
\tilde{x}:=\gamma_{\mathbf a_k'}(x),\ \tilde{y}:=\gamma_{\mathbf a_k'}(y)\ \in\ I_{\mathbf a_k}.
$$

Assume that $\mathbf{A} \leftrightarrow \mathbf{B}$. Since $\gamma_{\mathbf{A} * \mathbf{B}}(x) = \gamma_{\mathbf{A} * \mathbf{B}}(\tilde{x})$, $\gamma_{\mathbf{A} * \mathbf{B}}(y) = \gamma_{\mathbf{A} * \mathbf{B}}(\tilde{y})$, we have

$$
\varphi(\gamma_{\mathbf{A}\ast\mathbf{B}}(y)) - \varphi(\gamma_{\mathbf{A}\ast\mathbf{B}}(x)) = \int_{\tilde{x}}^{\tilde{y}} (\varphi \circ \gamma_{\mathbf{A}\#\mathbf{B}})'(t) dt.
$$

By the chain rule, for each $t \in I_{a_k}$ there exist $s_j \in I_{a_j}, j = 0, \ldots, k$, such that

$$
(\varphi \circ \gamma_{\mathbf{A} \# \mathbf{B}})'(t) = \varphi'(s_0) \gamma'_{\mathbf{a}'_0 \mathbf{b}'_1}(s_1) \cdots \gamma'_{\mathbf{a}'_{k-1} \mathbf{b}'_k}(s_k).
$$

By [\(2.7\)](#page-7-5), we have $|s_j - x_{a_j}| \leq \tau$. Then by [\(1.1\)](#page-3-3) and [\(2.18\)](#page-10-9), we have for all $t \in I_{a_k}$

$$
\exp(-C\tau) \le \frac{(\varphi \circ \gamma_{\mathbf{A} \# \mathbf{B}})'(t)}{\tau^{2k} \varphi'(x_{\mathbf{a}_0}) \zeta_{1,\mathbf{A}}(\mathbf{b}_1) \cdots \zeta_{k,\mathbf{A}}(\mathbf{b}_k)} \le \exp(C\tau).
$$

Since $|\varphi'(x_{\mathbf{a}_0})|, \zeta_{j,\mathbf{A}}(\mathbf{b}_j) \in [C^{-1}, C]$ and $|\tilde{x} - \tilde{y}| \leq \tau$, it follows that

 $|\varphi(\gamma_{\mathbf{A}*\mathbf{B}}(x)) - \varphi(\gamma_{\mathbf{A}*\mathbf{B}}(y)) - \tau^{2k}\varphi'(x_{\mathbf{a}_0})\zeta_{1,\mathbf{A}}(\mathbf{b}_1)\cdots\zeta_{k,\mathbf{A}}(\mathbf{b}_k)(\tilde{x}-\tilde{y})| \leq C\tau^{2k+2}$. (3.22)

Denote

$$
\eta := \frac{\operatorname{sgn} \xi}{2\pi} \tau^{-3/2} \varphi'(x_{\mathbf{a}_0}) \cdot (\tilde{x} - \tilde{y})
$$

and note that by (1.1) and (2.28)

$$
C^{-1}\tau^{-1/2}|x-y| \le |\eta| \le C\tau^{-1/2}|x-y|.
$$

We have by Lemma [3.4,](#page-20-6) [\(3.20\)](#page-21-1), [\(3.22\)](#page-22-1), and [\(3.9\)](#page-19-2), recalling that $|\xi| = \tau^{-2k-3/2}$ by [\(3.8\)](#page-19-0)

$$
\left| \int_{\Lambda_{\Gamma}} f d\mu \right|^2 \leq C\tau^{(2k+1)\delta} \sum_{\mathbf{A}} \int_{I^2_{b(\mathbf{A})}} \left| \sum_{\mathbf{B}: \mathbf{A} \leftrightarrow \mathbf{B}} e^{2\pi i \eta \zeta_{1,\mathbf{A}}(\mathbf{b}_1) \cdots \zeta_{k,\mathbf{A}}(\mathbf{b}_k)} \right| d\mu(x) d\mu(y) + C\sqrt{\tau}.
$$

Now, we remark that by (2.33) , for each fixed constant C_0

$$
\mu \times \mu \{(x, y) \in \Lambda_{\Gamma}^2 : |x - y| \le C_0 \tau^{1/4} \} \le C \tau^{\delta/4}.
$$

Therefore, the double integral above can be taken over x, y such that $|x - y| \geq C_0 \tau^{1/4}$, which for large enough C_0 implies that $\eta \in J_{\tau}$. This finishes the proof.

3.3. End of the proof of Theorem [2.](#page-3-1) To apply Proposition [3.3](#page-18-0) to the sum in Lemma [3.5,](#page-21-2) we need a positive box dimension estimate. To state it we recall the notation $\mathbf{a} \leadsto \frac{\mathbf{b}}{\mathbf{c}} \leadsto \mathbf{d}$ from [\(2.40\)](#page-15-5) and the constant ε_2 fixed at the beginning of §[3.2.](#page-19-4)

Lemma 3.6. Define the set of **regular sequences** $\mathcal{R} \subset Z(\tau)^{k+1}$ as follows: $\mathbf{A} \in \mathcal{R}$ if and only if for all $j = 1, ..., k$ and $\sigma \in [\tau, \tau^{\epsilon_2/4}]$ we have

$$
\tau^{2\delta} \cdot \# \left\{ (\mathbf{b}, \mathbf{c}) \in Z(\tau)^2 \colon \mathbf{a}_{j-1} \rightsquigarrow \frac{\mathbf{b}}{\mathbf{c}} \rightsquigarrow \mathbf{a}_j, \ |\zeta_{j, \mathbf{A}}(\mathbf{b}) - \zeta_{j, \mathbf{A}}(\mathbf{c})| \le \sigma \right\} \le \sigma^{\delta/4}.
$$
 (3.23)

Then most sequences are regular, more precisely

$$
\tau^{(k+1)\delta} \cdot \# (Z(\tau)^{k+1} \setminus \mathcal{R}) \le C\tau^{\varepsilon_2 \delta/20}.\tag{3.24}
$$

Proof. For $\ell \in \mathbb{Z}$ with $\tau \leq 2^{-\ell} \leq 2\tau^{\epsilon_2/4}$, define $\widetilde{\mathcal{R}}_{\ell}$ as the set of pairs $(\mathbf{a}, \mathbf{d}) \in Z(\tau)^2$ such that

$$
\tau^{2\delta} \cdot \#\left\{ (\mathbf{b}, \mathbf{c}) \in Z(\tau)^2 \colon \mathbf{a} \leadsto \frac{\mathbf{b}}{\mathbf{c}} \leadsto \mathbf{d}, \ |\gamma'_{\mathbf{a}'\mathbf{b}'}(x_{\mathbf{d}}) - \gamma'_{\mathbf{a}'\mathbf{c}'}(x_{\mathbf{d}})| \le \tau^2 2^{-\ell} \right\} \le 2^{-(\ell+1)\delta/4}.
$$
\nor each $\sigma \in [\tau, \tau^{\epsilon_2/4}]$, there exists ℓ such that $2^{-\ell-1} \le \sigma \le 2^{-\ell}$. By (3.11).

For each $\sigma \in [\tau, \tau^{\epsilon_2/4}]$, there exists ℓ such that $2^{-\ell-1} \leq \sigma \leq 2^{-\ell}$. By (3.11) ,

$$
\bigcap_{j} \bigcap_{\ell} \{ \mathbf{A} \in Z(\tau)^{k+1} \mid (\mathbf{a}_{j-1}, \mathbf{a}_{j}) \in \widetilde{\mathcal{R}}_{\ell} \} \subset \mathcal{R}.
$$

It suffices to show that for each j, ℓ we have

$$
\tau^{2\delta} \cdot \# (Z(\tau)^2 \setminus \widetilde{\mathcal{R}}_\ell) \le C\tau^{\varepsilon_2 \delta/16}.\tag{3.25}
$$

By Chebyshev's inequality the left-hand side of [\(3.25\)](#page-22-2) is bounded above by

$$
2^{(\ell+1)\delta/4}\tau^{4\delta}\cdot\#\{(\mathbf{a},\mathbf{b},\mathbf{c},\mathbf{d})\in Z(\tau)^4\colon \mathbf{a}\leadsto \frac{\mathbf{b}}{\mathbf{c}}\leadsto \mathbf{d},\ |\gamma'_{\mathbf{a}'\mathbf{b}'}(x_{\mathbf{d}})-\gamma'_{\mathbf{a}'\mathbf{c}'}(x_{\mathbf{d}})|\leq \tau^22^{-\ell}\}
$$

By Lemma [2.16](#page-15-6) this is bounded above by

$$
C2^{-\delta\ell/4} \le C\tau^{\varepsilon_2\delta/16}.
$$

This gives (3.25) , finishing the proof.

We are now ready to finish the proof of Theorem [2.](#page-3-1) Using Lemma [3.5](#page-21-2) and estimating the sum over $\mathbf{A} \in Z(\tau)^{k+1} \setminus \mathcal{R}$ by Lemma [3.6,](#page-22-3) we obtain

$$
\left| \int_{\Lambda_{\Gamma}} f \, d\mu \right|^2 \le C \tau^{k\delta} \max_{\mathbf{A} \in \mathcal{R}} \sup_{\eta \in J_{\tau}} \left| \sum_{\mathbf{B} \colon \mathbf{A} \leftrightarrow \mathbf{B}} e^{2\pi i \eta \zeta_{1,\mathbf{A}}(\mathbf{b}_1) \cdots \zeta_{k,\mathbf{A}}(\mathbf{b}_k)} \right| + C \tau^{\varepsilon_2 \delta/20}.
$$
 (3.26)

We estimate the first term on the right-hand side using Proposition [3.3.](#page-18-0) Fix $A \in \mathcal{R}$ and define

$$
\mathcal{Z}_j := \{ \mathbf{b} \in Z(\tau) \colon \mathbf{a}_{j-1} \rightsquigarrow \mathbf{b} \rightsquigarrow \mathbf{a}_j \}, \quad j = 1, \dots, k.
$$

By [\(2.35\)](#page-13-0),

$$
\#(\mathcal{Z}_j) \leq CN_{\mathcal{Z}}, \quad N_{\mathcal{Z}} := \tau^{-\delta}.
$$

Fix $\eta \in J_{\tau}$. Recall that $\delta_0 = \delta/4$. By [\(3.21\)](#page-21-3) and [\(3.23\)](#page-22-4) we have for all $j = 1, ..., k$ and $\sigma \in [|\eta|^{-1}, |\eta|^{-\varepsilon_2}]$

$$
\#\big\{(\mathbf{b},\mathbf{c})\in\mathcal{Z}_j^2\colon |\zeta_{j,\mathbf{A}}(\mathbf{b})-\zeta_{j,\mathbf{A}}(\mathbf{c})|\leq\sigma\big\}\leq N_{\mathcal{Z}}^2\cdot\sigma^{\delta_0}.
$$

Therefore, condition [\(3.6\)](#page-19-5) is satisfied. We also recall from [\(3.11\)](#page-19-3) that $\zeta_{j,\mathbf{A}}(\mathbf{b}) \in$ $[C^{-1}, C].$

Applying Proposition [3.3,](#page-18-0) we obtain for all $\mathbf{A} \in \mathcal{R}$ and $\eta \in J_{\tau}$

$$
\tau^{k\delta} \bigg| \sum_{\mathbf{B}: \mathbf{A} \leftrightarrow \mathbf{B}} e^{2\pi i \eta \zeta_{1,\mathbf{A}}(\mathbf{b}_1) \cdots \zeta_{k,\mathbf{A}}(\mathbf{b}_k)} \bigg| \le C |\eta|^{-\varepsilon_2} \le C\tau^{\varepsilon_2/4}.
$$
 (3.27)

From (3.26) and (3.27) we have

$$
\left| \int_{\Lambda_{\Gamma}} f \, d\mu \right| \leq C \tau^{\varepsilon_2 \delta/40}.
$$

Recalling (3.8) and the definition (3.12) (3.12) (3.12) of f, this gives Theorem 2 with

$$
\varepsilon_1 := \frac{\varepsilon_2 \delta}{40(2k + 3/2)}.\tag{3.28}
$$

4. Fractal uncertainty principle

In this section, we deduce Theorem [1](#page-1-0) from Theorem [2](#page-3-1) by establishing a fractal uncertainty principle (henceforth denoted FUP) and using the results of [\[DZ16\]](#page-27-0). Throughout this section we assume that $M, \delta, \Lambda_{\Gamma}, \mu$ are as in Theorem [2.](#page-3-1)

4.1. FUP for the Patterson–Sullivan measure. We first use Theorem [2](#page-3-1) to obtain a fractal uncertainty principle with respect to the Patterson–Sullivan measure μ :

Proposition 4.1. Assume that:

- $U \subset \mathbb{R}^2$ is an open set and $V \subset U$ is compact;
- $\Phi \in C^3(U; \mathbb{R})$ and $G \in C^1(U; \mathbb{C})$, supp $G \subset V$, satisfy for some constant $C_{\Phi, G}$

$$
\|\Phi\|_{C^3} + \|G\|_{C^1} \le C_{\Phi,G}, \quad \inf|\partial_{xy}^2 \Phi| \ge C_{\Phi,G}^{-1}.
$$
 (4.1)

Define for $0 < h < 1$ the operator $B(h) : L^2(\Lambda_\Gamma; \mu) \to L^2(\Lambda_\Gamma; \mu)$ by

$$
B(h)u(x) = \int_{\Lambda_{\Gamma}} \exp\left(\frac{i\Phi(x,y)}{h}\right) G(x,y)u(y) d\mu(y).
$$
 (4.2)

Let $\varepsilon_1 = \varepsilon_1(\delta) > 0$ be the constant from Theorem [2.](#page-3-1) Then

$$
||B(h)||_{L^{2}(\Lambda_{\Gamma};\mu)\to L^{2}(\Lambda_{\Gamma};\mu)} \le Ch^{\varepsilon_{1}/4}, \quad 0 < h < 1
$$
\n(4.3)

where the constant C depends only on $M, U, V, C_{\Phi,G}$.

Proof. We denote by C constants which depend only on $M, U, V, C_{\Phi,G}$. As in §[2.1,](#page-5-1) we view Λ_{Γ} as a subset of R. Using a partition of unity for G, we reduce to the case

$$
U = I_1^\circ \times I_2^\circ, \quad V = J_1 \times J_2, \quad J_1 \subset I_1^\circ, \quad J_2 \subset I_2^\circ
$$

for some intervals I_1, I_2, J_1, J_2 . To prove (4.3) suffices to show that

$$
||B(h)B(h)^*||_{L^2(\Lambda_\Gamma;\mu)\to L^2(\Lambda_\Gamma;\mu)} \le Ch^{\varepsilon_1/2}.
$$
\n(4.4)

Note that $B(h)B(h)^*$ is an integral operator:

$$
B(h)B(h)^*f(x) = \int_{\Lambda_{\Gamma}} \mathcal{K}(x, x')f(x') d\mu(x'),
$$

where

$$
\mathcal{K}(x, x') = \int_{\Lambda_{\Gamma}} \exp\left(\frac{i}{h} \big(\Phi(x, y) - \Phi(x', y)\big)\right) G(x, y) \overline{G(x', y)} d\mu(y).
$$

By Schur's inequality, to show [\(4.4\)](#page-24-2) it suffices to prove the bound

$$
\sup_{x \in \Lambda_{\Gamma}} \int_{\Lambda_{\Gamma}} |\mathcal{K}(x, x')| \, d\mu(x') \le C h^{\varepsilon_1/2}.
$$
 (4.5)

For $x, x' \in \Lambda_{\Gamma} \cap J_1$, define the functions $\varphi_{xx'}$, $g_{xx'}$ on I_2° as follows:

$$
\Phi(x,y) - \Phi(x',y) = (x-x') \cdot \varphi_{xx'}(y), \quad g_{xx'}(y) = G(x,y)\overline{G(x',y)}.
$$

Then

$$
\mathcal{K}(x, x') = \int_{\Lambda_{\Gamma}} \exp\left(i\xi \varphi_{xx'}(y)\right) g_{xx'}(y) \, d\mu(y), \quad \xi := \frac{x - x'}{h}.\tag{4.6}
$$

It follows from [\(4.1\)](#page-24-3) that

$$
\|\varphi_{xx'}\|_{C^2(I_2^{\circ})} + \|g_{xx'}\|_{C^1(I_2^{\circ})} \leq C, \quad \inf_{I_2^{\circ}} |\partial_y \varphi_{xx'}| \geq C^{-1}
$$

and we extend $g_{xx}, \varphi_{xx'}$ to compactly supported functions on R so that

$$
\|\varphi_{xx'}\|_{C^2(\mathbb{R})} + \|g_{xx'}\|_{C^1(\mathbb{R})} \le C, \quad \inf_{\Lambda_{\Gamma}} |\partial_y \varphi_{xx'}| \ge C^{-1};
$$

this is possible since $\Lambda_{\Gamma} \subset \mathbb{R}$ is compact.

Applying Theorem [2](#page-3-1) and using [\(4.6\)](#page-24-4) we get the bound

$$
|\mathcal{K}(x,x')| \le C \left| \frac{x-x'}{h} \right|^{-\varepsilon_1}, \quad x, x' \in \Lambda_\Gamma \cap J_1, \quad |x-x'| \ge h. \tag{4.7}
$$

It remains to split the integral in [\(4.5\)](#page-24-5) into two parts. The integral over $\{|x-x'|\leq h^{1/2}\}\$ is bounded by $Ch^{\delta/2}$ by [\(2.33\)](#page-12-5). The integral over $\{|x-x'|\geq h^{1/2}\}\$ is bounded by $Ch^{\epsilon_1/2}$ by (4.7) .

4.2. FUP for the Lebesgue measure. We now deduce from Proposition [4.1](#page-24-0) a fractal uncertainty principle with respect to Lebesgue measure on a neighborhood

$$
\Lambda_{\Gamma}(h) := \Lambda_{\Gamma} + [-h, h] \subset \mathbb{R}
$$

of Λ_{Γ} . We use the following

Lemma 4.2. For $0 < h < 1$, define the function $F_h(x)$ as the convolution of the Patterson–Sullivan measure μ with the rescaled uniform measure on $[-2h, 2h]$:

$$
F_h(x) := \frac{1}{4h^{\delta}} \mu([x - 2h, x + 2h]).
$$
\n(4.8)

Then for some constant $C_{\Gamma} > 0$ depending only on Γ ,

$$
F_h \ge C_\Gamma^{-1} \quad on \ \Lambda_\Gamma(h). \tag{4.9}
$$

Proof. Let $x \in \Lambda_{\Gamma}(h)$. Then there exists $x_0 \in \Lambda_{\Gamma}$ such that $|x - x_0| \leq h$. We have $[x_0 - h, x_0 + h] \subset [x - 2h, x + 2h]$ and $\mu([x_0 - h, x_0 + h]) \ge C_\Gamma^{-1} h^\delta$ by [\(2.34\)](#page-12-6). Therefore $F_h(x) \geq C_{\Gamma}^{-1}$ Γ . The contract of the contract of the contract of the contract of \Box

Our fractal uncertainty principle for the Lebesgue measure is the following

Proposition 4.3. Let $\varepsilon_1 = \varepsilon_1(\delta) > 0$ be the constant from Theorem [2.](#page-3-1) Assume that U, V, Φ, G are as in Proposition [4.1.](#page-24-0) Define the operator $\mathcal{B}(h) : L^2(\mathbb{R}) \to L^2(\mathbb{R})$ by

$$
\mathcal{B}(h)u(x) = (2\pi h)^{-1/2} \int_{\mathbb{R}} \exp\left(\frac{i\Phi(x,y)}{h}\right) G(x,y)u(y) dy.
$$
 (4.10)

Fix $\rho \in (0,1)$. *Then*

$$
\|\mathop{1\hskip-2.5pt{\rm l}}_{\Lambda_{\Gamma}(h^{\rho})}\mathcal{B}(h)\mathop{1\hskip-2.5pt{\rm l}}_{\Lambda_{\Gamma}(h^{\rho})}\|_{L^{2}(\mathbb{R})\to L^{2}(\mathbb{R})}\leq Ch^{\beta-(1-\delta)(1-\rho)},\quad \beta:=\frac{1}{2}-\delta+\frac{\varepsilon_{1}}{4}.\tag{4.11}
$$

Proof. Let $F_{h\rho}$ be the function defined in [\(4.8\)](#page-25-2), with h replaced by h^{ρ} . By [\(4.9\)](#page-25-3), it is enough to show the following estimate for each bounded Borel function u on \mathbb{R} :

$$
\|\sqrt{F_{h\rho}}\mathcal{B}(h)F_{h\rho}u\|_{L^2(\mathbb{R})} \le Ch^{\beta-(1-\delta)(1-\rho)}\|\sqrt{F_{h\rho}}\,u\|_{L^2(\mathbb{R})}.\tag{4.12}
$$

Define the shift operator ω_t on functions on R by

$$
\omega_t v(x) = v(x - t), \quad t, x \in \mathbb{R}.
$$

Then for each bounded Borel function v on \mathbb{R} ,

$$
\|\sqrt{F_{h^{\rho}}}v\|_{L^{2}(\mathbb{R})}^{2}=\frac{1}{4h^{\rho\delta}}\int_{-2h^{\rho}}^{2h^{\rho}}\|\omega_{t}v\|_{L^{2}(\Lambda_{\Gamma};\mu)}^{2}dt.
$$

Moreover

$$
\omega_t \mathcal{B}(h) F_{h^{\rho}} u = \frac{1}{4\sqrt{2\pi} h^{1/2 + \rho \delta}} \int_{-2h^{\rho}}^{2h^{\rho}} B_{ts}(h) \omega_s u \, ds
$$

where

$$
B_{ts}(h)v(x) = \int_{\Lambda_{\Gamma}} \exp\left(\frac{i\Phi(x-t, y-s)}{h}\right)G(x-t, y-s)v(y) d\mu(y).
$$

By Proposition [4.1,](#page-24-0) we have for all $t, s \in [-2h^{\rho}, 2h^{\rho}],$

$$
||B_{ts}(h)||_{L^2(\Lambda_\Gamma;\mu)\to L^2(\Lambda_\Gamma;\mu)} \le Ch^{\varepsilon_1/4}.
$$

Then

$$
\begin{split} \|\sqrt{F_{h^{\rho}}}\mathcal{B}(h)F_{h^{\rho}}u\|_{L^{2}(\mathbb{R})}^{2} &= \frac{1}{4h^{\rho\delta}}\int_{-2h^{\rho}}^{2h^{\rho}}\|\omega_{t}\mathcal{B}(h)F_{h^{\rho}}u\|_{L^{2}(\Lambda_{\Gamma};\mu)}^{2}dt \\ &\leq h^{2\rho-3\rho\delta-1}\sup_{|t|\leq 2h^{\rho}}\int_{-2h^{\rho}}^{2h^{\rho}}\|B_{ts}(h)\omega_{s}u\|_{L^{2}(\Lambda_{\Gamma};\mu)}^{2}ds \\ &\leq Ch^{2\rho-3\rho\delta-1+\varepsilon_{1}/2}\int_{-2h^{\rho}}^{2h^{\rho}}\|\omega_{s}u\|_{L^{2}(\Lambda_{\Gamma};\mu)}^{2}ds \\ &=4Ch^{2\rho-2\rho\delta-1+\varepsilon_{1}/2}\|\sqrt{F_{h^{\rho}}}\,u\|_{L^{2}(\mathbb{R})}^{2} \end{split}
$$

which gives (4.12) .

4.3. Proof of Theorem [1.](#page-1-0) We use [\[DZ16,](#page-27-0) Theorem 3]. It suffices to show that Λ_{Γ} satisfies the fractal uncertainty principle with exponent $\beta = \frac{1}{2} - \delta + \frac{\varepsilon_1}{4}$ $\frac{51}{4}$ in the sense of [\[DZ16,](#page-27-0) Definition 1.1].

The paper [\[DZ16\]](#page-27-0) uses the Poincaré disk model of the hyperbolic plane and the limit set there is a subset of the circle $\mathbb{S}^1 \subset \mathbb{C}$. To relate to our model, we use the standard transformation from the upper half-plane model to the disk model,

$$
z \mapsto w = \frac{z - i}{z + i}.\tag{4.13}
$$

Note that, with $|\bullet|$ denoting the Euclidean norm on $\mathbb C$, we have for $x, y \in \mathbb R$

$$
|w(x) - w(y)|^2 = \frac{4(x - y)^2}{(1 + x^2)(1 + y^2)}
$$

.

Let $\chi \in C^{\infty}(\mathbb{S}^1 \times \mathbb{S}^1)$ satisfy supp $\chi \cap \{w = w'\} = \emptyset$, and $\mathcal{B}_{\chi}(h)$ be the operator defined in $[DZ16, (1.6)]$. For the purpose of satisfying $[DZ16, Definition 1.1]$ we may assume that χ is supported near Λ_{Γ}^2 , in particular the pullback of χ to \mathbb{R}^2 by the square of the map [\(4.13\)](#page-26-1) is supported in a compact subset of $\{(x, y) \in \mathbb{R}^2 \mid x \neq y\}$. Then the operator $\mathcal{B}_{\gamma}(h)$ has the form (4.10) with

$$
U \in \{(x, y) \in \mathbb{R}^2 \mid x \neq y\}, \quad \Phi(x, y) = 2\log|x - y| - \log(1 + x^2) - \log(1 + y^2),
$$

and we have on U ,

$$
\partial_{xy}^2 \Phi(x, y) = \frac{2}{(x - y)^2} \neq 0.
$$

It remains to apply Proposition [4.3](#page-25-0) to see that the fractal uncertainty principle [\[DZ16,](#page-27-0) Definition 1.1] holds, finishing the proof.

Acknowledgements. JB is partially supported by NSF grant DMS-1301619. This research was conducted during the period SD served as a Clay Research Fellow.

REFERENCES

- [Bor16] David Borthwick, Spectral theory of infinite-area hyperbolic surfaces, second edition, Birkhäuser, 2016.
- [Bou03] Jean Bourgain, On the Erdős–Volkmann and Katz–Tao ring conjectures, Geom. Funct. Anal. 13(2003), 334–365.
- [Bou10] Jean Bourgain, The discretized sum-product and projection theorems, J. Anal. Math. 112(2010), 193–236.
- [BD16] Jean Bourgain and Semyon Dyatlov, Spectral gaps without the pressure condition, preprint, [arXiv:1612.09040.](http://arxiv.org/abs/1612.09040)
- [BG12] Jean Bourgain and Alexander Gamburd, A spectral gap theorem in $SU(d)$, J. Eur. Math. Soc. 14(2012), 1455–1511.
- [BGK06] Jean Bourgain, Alexei Glibichuk, and Sergei Konyagin, *Estimates for the number of sums* and products and for exponential sums in fields of prime order, J. London Math. Soc. (2) 73 (2006) , 380–398.
- [Do98] Dmitry Dolgopyat, On decay of correlations in Anosov flows, Ann. Math. (2) 147(1998), 357–390.
- [DJ16] Semyon Dyatlov and Long Jin, Resonances for open quantum maps and a fractal uncertainty principle, Comm. Math. Phys., published online.
- [DJ17] Semyon Dyatlov and Long Jin, Dolgopyat's method and fractal uncertainty principle, preprint, [arXiv:1702.03619.](http://arxiv.org/abs/1702.03619)
- [DZ16] Semyon Dyatlov and Joshua Zahl, Spectral gaps, additive energy, and a fractal uncertainty principle, Geom. Funct. Anal. 26(2016), 1011–1094.
- [GR89] Pierre Gaspard and Stuart Rice, Scattering from a classically chaotic repeller, J. Chem. Phys. 90(1989), 2225–2241.
- [Gr09] Ben Green, Sum-product phenomena in \mathbb{F}_p : a brief introduction, [arXiv:0904.2075.](http://arxiv.org/abs/0904.2075)
- [Ik88] Mitsuru Ikawa, Decay of solutions of the wave equation in the exterior of several convex bodies, Ann. Inst. Fourier 38(1988), 113–146.
- [JS13] Thomas Jordan and Tuomas Sahlsten, Fourier transforms of Gibbs measures for the Gauss map, to appear in Math. Ann., [arXiv:1312.3619.](http://arxiv.org/abs/1312.3619)
- [Ma95] Pertti Mattila, Geometry of sets and measures in Euclidean spaces, Cambridge University Press, 1995.
- [Na05] Frédéric Naud, Expanding maps on Cantor sets and analytic continuation of zeta functions, Ann. de l'ENS (4) 38(2005), 116–153.
- [No11] Stéphane Nonnenmacher, Spectral problems in open quantum chaos, Nonlinearity 24(2011), R123.
- [NZ09] Stéphane Nonnenmacher and Maciej Zworski, *Quantum decay rates in chaotic scattering*, Acta Math. 203(2009), 149-233.
- [OW16] Hee Oh and Dale Winter, Uniform exponential mixing and resonance free regions for convex cocompact congruence subgroups of $SL_2(\mathbb{Z})$, J. Amer. Math. Soc. 29(2016), 1069-1115.
- [Pa76] Samuel James Patterson, The limit set of a Fuchsian group, Acta Math. 136(1976), 241–273.
- [PS10] Vesselin Petkov and Luchezar Stoyanov, Analytic continuation of the resolvent of the Laplacian and the dynamical zeta function, Anal. PDE 3(2010), 427–489.
- [St11] Luchezar Stoyanov, Spectra of Ruelle transfer operators for axiom A flows, Nonlinearity 24(2011), 1089–1120.
- [Su79] Dennis Sullivan, The density at infinity of a discrete group of hyperbolic motions, Publ. Math. de l'IHES 50(1979), 171–202.
- [Zw17] Maciej Zworski, Mathematical study of scattering resonances, Bull. Math. Sci. (2017) 7:1–85.

E-mail address: bourgain@math.ias.edu

INSTITUTE FOR ADVANCED STUDY, PRINCETON, NJ 08540

E-mail address: dyatlov@math.mit.edu

Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts AVE, CAMBRIDGE, MA 02139