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FOURIER DIMENSION AND SPECTRAL GAPS
FOR HYPERBOLIC SURFACES

JEAN BOURGAIN AND SEMYON DYATLOV

Abstract. We obtain an essential spectral gap for a convex co-compact hyperbolic

surface M = Γ\H2 which depends only on the dimension δ of the limit set. More

precisely, we show that when δ > 0 there exists ε0 = ε0(δ) > 0 such that the Selberg

zeta function has only finitely many zeroes s with Re s > δ − ε0.

The proof uses the fractal uncertainty principle approach developed in Dyatlov–

Zahl [DZ16]. The key new component is a Fourier decay bound for the Patterson–

Sullivan measure, which may be of independent interest. This bound uses the fact

that transformations in the group Γ are nonlinear, together with estimates on expo-

nential sums due to Bourgain [Bou10] which follow from the discretized sum-product

theorem in R.

Let M = Γ\H2 be a (noncompact) convex co-compact hyperbolic surface. The Sel-

berg zeta function ZM(s) is a product over the set LM of all primitive closed geodesics

ZM(s) =
∏
`∈LM

∞∏
k=0

(
1− e−(s+k)`

)
, Re s� 1,

and extends meromorphically to s ∈ C. Patterson [Pa76] and Sullivan [Su79] proved

that ZM has a simple zero at the exponent of convergence of Poincaré series, denoted δ,

and no other zeroes in {Re s ≥ δ}. Naud [Na05], using the method originating in the

work of Dolgopyat [Do98], showed that for δ > 0, ZM has only finitely many zeroes

in {Re s ≥ δ − ε} for some ε > 0 depending on the surface. (See also Petkov–

Stoyanov [PS10], Stoyanov [St11], and Oh–Winter [OW16].)

Our result removes the dependence of the improvement ε on the surface:

Theorem 1. Let M be a convex co-compact hyperbolic surface with δ > 0. Then there

exists ε0 > 0 depending only on δ such that ZM(s) has only finitely many zeroes in

{Re s > δ − ε0}.

Remarks. 1. The proof of Theorem 1 uses the results of Dyatlov–Zahl [DZ16] and

thus gives a resonance free strip with a polynomial resolvent bound, see [DZ16, (1.3)].

In the terminology used in [DZ16], Theorem 1 gives an essential spectral gap of size
1
2
− δ + ε0, improving over the Patterson–Sullivan gap 1

2
− δ.

2. The Selberg zeta function ZM has only finitely many zeroes in {Re s > 1
2
}; that

is, M has an essential spectral gap of size 0. Therefore, Theorem 1 only gives new
1
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Figure 1. The dependence on δ of the essential spectral gap β (that is,

a number such that ZM has only finitely many zeroes in {Re s > 1
2
−β}),

showing curves representing the bounds of Theorem 1 and of [BD16].

These curves are for illustration purposes only, the actual size of the

improvement is expected to be much smaller. The value of β from [BD16]

depends on the surfaceM but the value given by Theorem 1 only depends

on δ. The solid black line is the standard (Patterson–Sullivan and Lax–

Phillips) gap β = max(0, 1
2
− δ).

information when δ ≤ 1
2

+ ε̃ for a small global constant ε̃ > 0. In [BD16] the authors

proved that there exists ε > 0 (depending on the surface M) such that ZM only has

finitely many zeroes in {Re s > 1
2
−ε}. The latter result is only interesting when δ ≥ 1

2
.

Therefore [BD16] and the present paper overlap only when δ ≈ 1
2
, and in the latter

case the present paper gives a stronger result (since ε0 depends only on δ). In view

of the methods used in [BD16] a higher-dimensional extension of that result seems

difficult at the present. See Figure 1.

3. The constant ε1 can be chosen increasing in δ, and thus can be made continuous

in δ – see the paragraph preceding §1.1.

4. In the more general setting of scattering on manifolds with hyperbolic trapped sets,

the Patterson–Sullivan gap is replaced by the pressure gap, established by Ikawa [Ik88],

Gaspard–Rice [GR89], and Nonnenmacher–Zworski [NZ09]. See the reviews of Non-

nenmacher [No11] and Zworski [Zw17] for the history of the spectral gap question

and [DZ16, DJ17] for an overview of more recent developments.

5. Dyatlov–Jin [DJ17] gave a bound on ε0 depending only on δ and the regularity con-

stant (that is, the constant CΓ in Lemma 2.12), proving a fractal uncertainty principle

for more general Ahlfors–David regular sets. Our proof removes the dependence of ε0

on CΓ by using the nonlinear nature of the transformations in the group Γ. In fact,

the earlier work of Dyatlov–Jin [DJ16, Proposition 3.17] gives examples of Cantor sets

with δ ∈ (0, 1/2] which are invariant under a group of linear transformations and do

not satisfy the fractal uncertainty principle we derive for hyperbolic limit sets here

(Propositions 4.1 and 4.3).
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The key new component of the proof of Theorem 1, established in §3, is the following

generalized Fourier decay bound for the Patterson–Sullivan measure:

Theorem 2. Let M, δ be as in Theorem 1 and denote by µ the Patterson–Sullivan

measure on the limit set ΛΓ ⊂ R. Assume that

ϕ ∈ C2(R;R), g ∈ C1(R;C)

are functions satisfying the following bounds for some constant Cϕ,g:

‖ϕ‖C2 + ‖g‖C1 ≤ Cϕ,g, inf
ΛΓ

|ϕ′| ≥ C−1
ϕ,g. (1.1)

Then there exists ε1 > 0 depending only on δ and there exists C > 0 depending on

M,Cϕ,g such that∣∣∣∣ ∫
ΛΓ

exp
(
iξϕ(x)

)
g(x) dµ(x)

∣∣∣∣ ≤ C|ξ|−ε1 for all ξ, |ξ| > 1. (1.2)

Remarks. 1. By taking ϕ(x) = x, g ≡ 1 on ΛΓ, we obtain the Fourier decay bound

µ̂(ξ) = O(|ξ|−ε1). This implies that the Fourier dimension dimF ΛΓ is positive, specif-

ically dimF ΛΓ ≥ 2ε1. The nonlinearity of transformations in Γ is crucial for obtain-

ing Fourier decay, since there exist limit sets of linear transformations (for instance,

the mid-third Cantor set) whose Fourier dimension is equal to zero – see [Ma95,

§12.17]. Previously Jordan–Sahlsten [JS13] used a similar nonlinearity property to

obtain Fourier decay for Gibbs measures for the Gauss map which have dimension

greater than 1/2. (The method of the present paper can be adapted to prove [JS13,

Theorem 1.3] without the dimensional assumption.)

2. The key tool in the proof of Theorem 2 is an estimate on decay of exponential sums

established by the first author [Bou10], see Proposition 3.1 and the following remark.

In particular our proof relies on the discretized sum-product theorem for R.

3. The constant ε1 can be chosen an increasing function of δ. Indeed, it is determined

by the constants ε3, ε4, k from Proposition 3.1, see (3.28) and the proof of Proposi-

tion 3.2. However, Proposition 3.1 holds for same ε3, ε4, k and all larger values of δ

since the condition (3.1) is stronger for larger values of δ1 and we apply this proposition

with δ1 = δ/24.

Given Theorem 2, we establish a fractal uncertainty principle for the limit set ΛΓ, see

Propositions 4.1 and 4.3. Then Theorem 1 follows by combining the fractal uncertainty

principle with the results of [DZ16], see §4. The value of ε0 in Theorem 1 can be any

number strictly less than ε1/4, where ε1 is obtained in Theorem 2, and thus can be

chosen increasing as a function of δ.

1.1. Extensions to higher dimensional situations. While we do not pursue the

case of higher-dimensional convex co-compact hyperbolic quotients in this paper, we
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briefly discuss a possible generalization of Theorem 1 to the case of three-dimensional

quotients M = Γ\H3 with Γ ⊂ SL(2,C) a Kleinian group.

The limit set ΛΓ is contained in Ċ := C ∪ {∞} and it is invariant under the action

of Γ on Ċ by complex Möbius transformations. The Patterson–Sullivan measure is

equivariant under Γ similarly to (2.29).

Linearizing Möbius transformations leads to complex multiplication and the need of

a complex analogue of our main tool, Proposition 3.1. In this analogue the measure µ0

is supported on the annulus {z ∈ C : 1/2 ≤ |z| ≤ 2}, the box dimension estimate (3.1)

is replaced by

sup
x,θ∈R

µ0

{
z : Im(eiθz) ∈ [x− σ, x+ σ]

}
< σδ1 (1.3)

and the conclusion (3.2) is replaced by∣∣∣∣ ∫ exp
(
2πiη Im(eiθz1 · · · zk)

)
dµ0(z1) · · · dµ0(zk)

∣∣∣∣ ≤ N−ε4 , θ ∈ R.

This complex analogue of Proposition 3.1 can be shown by following the proof of [Bou10,

Lemma 8.43] and replacing the real version of the sum-product theorem [Bou10, The-

orem 1] by its complex version established in [BG12, Proposition 2].

However, the box dimension bound (1.3) is more subtle than in the case of surfaces.

Indeed, in the case of a hyperbolic cylinder (i.e. when Γ is a co-compact subgroup

of SL(2,R), with δ = 1) the limit set ΛΓ is equal to R ⊂ C and the Patterson–Sullivan

measure equals the Poisson measure π−1(1 +x2)−1 dx. In this case, both (1.3) and the

Fourier decay bound (1.2) fail.

In fact, for hyperbolic cylinders the specific fractal uncertainty principle [DZ16,

Definition 1.1] used to establish the spectral gap still holds (and does recover the

correct size of the spectral gap, equal to 1
2
), however the general fractal uncertainty

principle (Proposition 4.1) fails if we take the phase function Φ(z, w) = Im(zw) which

restricts to 0 on ΛΓ×ΛΓ = R2 ⊂ C2 but has nondegenerate matrix of mixed derivatives

∂(z,z̄)∂(w,w̄)Φ.

2. Structure of the limit set

In this section, we study limit sets of convex co-compact quotients, as well as the

associated group action and Patterson–Sullivan measure, establishing their properties

which form the basis for the proof of the Fourier decay bound in §3.

Let M = Γ\H2 be a convex co-compact hyperbolic surface. Here H2 is the upper

half-plane model of the hyperbolic plane and Γ is a convex co-compact (in particular,

discrete) subgroup of SL(2,R) acting isometrically on H2 by Möbius transformations:

γ =

(
a b

c d

)
∈ SL(2,R), z ∈ H2 = {z ∈ C | Im z > 0} =⇒ γ(z) =

az + b

cz + d
.
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The action of SL(2,R) extends continuously to the compactified hyperbolic plane

H2 := H2 ∪ Ṙ, Ṙ := R ∪ {∞}.

See for instance the book of Borthwick [Bor16, Chapter 2] for more details.

We assume that M is nonelementary and noncompact and introduce the following

notation:

• δ ∈ (0, 1), the exponent of convergence of Poincaré series, see [Bor16, §2.5.2];

• ΛΓ ⊂ Ṙ, the limit set of the group Γ, see [Bor16, §2.2.1];

• µ, the Patterson–Sullivan measure (centered at i ∈ H2) which is a probability

measure on Ṙ supported on ΛΓ, see [Bor16, §14.1].

2.1. Schottky groups. A Schottky group is a convex co-compact subgroup Γ ⊂
SL(2,R) constructed in the following way (see [Bor16, §15.1] and Figure 2):

• Fix nonintersecting closed half-disks D1, . . . , D2r ⊂ H2 centered on the real

line. Here r ∈ N and for the nonelementary cases studied here, we have r ≥ 2.

• Put A := {1, . . . , 2r} and for each a ∈ A, denote

a :=

{
a+ r, 1 ≤ a ≤ r;

a− r, r + 1 ≤ a ≤ 2r.

• Fix transformations γ1, . . . , γ2r ∈ SL(2,R) such that for all a ∈ A,

γa(H2 \D◦a) = Da, γa = γ−1
a . (2.1)

• Let Γ ⊂ SL(2,R) be the free group generated by γ1, . . . , γr.

Each convex co-compact group Γ ⊂ SL(2,R) can be represented in the above way for

some choice of D1, . . . , D2r, γ1, . . . , γ2r, see [Bor16, Theorem 15.3]. We henceforth fix

a Schottky structure for Γ.

Notation: In the rest of the paper, CΓ denotes constants which only depend on the

Schottky data D1, . . . , D2r, γ1, . . . , γ2r, whose exact value may differ in different places.

The elements of Γ are indexed by words on the generators γ1, . . . , γ2r. We introduce

some useful combinatorial notation:

• For n ∈ N0, define Wn, the set of words of length n, by

Wn := {a1 . . . an | a1, . . . , an ∈ A, aj+1 6= aj for j = 1, . . . , n− 1}.

Denote by W :=
⋃
nWn the set of all words, and for a ∈ Wn, put |a| := n.

Denote the empty word by ∅ and put W◦ := W \ {∅}. For a = a1 . . . an ∈ W ,

put a := an . . . a1 ∈ W . If a ∈ W◦, put a′ := a1 . . . an−1 ∈ W . Note that W
forms a tree with root ∅ and each a ∈ W◦ having parent a′.

• For a = a1 . . . an,b = b1 . . . bm ∈ W , we write a → b if either at least one of

a,b is empty or an 6= b1. Under this condition the concatenation ab is a word.
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D1 D3

D2

D4

γ3
γ4

γ1
γ2

I12 I14 I11 I33 I32 I34 I21 I23 I22 I44 I41 I43

Figure 2. A Schottky structure with r = 2.

• For a,b ∈ W , we write a ≺ b if a is a prefix of b, that is b = ac for some

c ∈ W .

• For a = a1 . . . an,b = b1 . . . bm ∈ W◦, we write a  b if an = b1. Note that

when a b, the concatenation a′b is a word of length n+m− 1.

• A finite set Z ⊂ W◦ is called a partition if there exists N such that for each

a ∈ W with |a| ≥ N , there exists unique b ∈ Z such that b ≺ a.

For each a = a1 . . . an ∈ W , define the group element γa ∈ Γ by

γa := γa1 . . . γan .

Note that each element of Γ is equal to γa for a unique choice of a and γa = γ−1
a ,

γab = γaγb when a→ b.

To study the action of Γ on Ṙ, consider the intervals

Ia := Da ∩ Ṙ ⊂ R.

For each a = a1 . . . an ∈ W◦, define the interval Ia as follows (see Figure 2):

Ia := γa′(Ian).

By (2.1), we have Ib ⊂ Ia when a ≺ b and Ia ∩ Ib = ∅ when |a| = |b|, a 6= b. The

limit set is given by

ΛΓ :=
⋂
n

⊔
a∈Wn

Ia. (2.2)

A finite set Z ⊂ W◦ is a partition if and only if

ΛΓ =
⊔
a∈Z

(Ia ∩ ΛΓ). (2.3)

Denote by |I| the size of an interval I ⊂ R. The following contraction property is

proved in §2.3:

a ∈ W◦, b ∈ A, a→ b =⇒ |Iab| ≤ (1− C−1
Γ )|Ia|. (2.4)

Note that (2.4) implies the bound

a,b ∈ W◦, a ≺ b =⇒ |Ib| ≤ (1− C−1
Γ )|b|−|a||Ia| (2.5)
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Figure 3. A numerically computed example of a partition Z(τ). The

elements of the partition are in dark red and the preceding intervals on

the tree are in light gray.

which gives exponential decay of the sizes of the intervals Ia:

a ∈ W◦ =⇒ |Ia| ≤ CΓ(1− C−1
Γ )|a|. (2.6)

We finally describe the collection of words discretizing to a certain resolution. For

τ > 0, let Z(τ) ⊂ W◦ be defined as follows:

Z(τ) = {a ∈ W◦ : |Ia| ≤ τ < |Ia′|}, (2.7)

where we put |I∅| :=∞. It follows from (2.6) that Z(τ) is a partition. See Figure 3.

2.2. Distortion estimates for Möbius transformations. Let a = a1 . . . an be a

long word. Recall that Ia = γa′(Ian). In §2.3 below we study how the derivative

γa′ varies on the interval Ian , in particular how much it deviates from its average

value |Ia|/|Ian|. The results of §2.3 rely on several statements about general Möbius

transformation which are proved in this section.

Let γ ∈ SL(2,R) and assume that γ(I) = J for some intervals I, J ⊂ R. Define the

distortion factor of γ on I by

α(γ, I) := log
γ−1(∞)− x1

γ−1(∞)− x0

∈ R where I = [x0, x1]. (2.8)

If γ−1(∞) = ∞, then we put α(γ, I) := 0. The transformation γ can be described in

terms of I, J , and α(γ, I) as follows:

γ = γJ γα(γ,I) γ
−1
I , γα =

(
eα/2 0

eα/2 − e−α/2 e−α/2

)
∈ SL(2,R). (2.9)

Here γI , γJ ∈ SL(2,R) are the unique affine transformations such that γI([0, 1]) = I,

γJ([0, 1]) = J . To see (2.9), it suffices to note that

γJγα(γ,I)γ
−1
I (I) = J, γJγα(γ,I)γ

−1
I (γ−1(∞)) =∞.

See Figure 4. The formula (2.9) implies the following identity:

γ′(x) = γ′α(γ,I)(γ
−1
I (x)) · |J |

|I|
. (2.10)

Our first lemma states that as long as the distortion factor is controlled, the derivatives

γ′ at different points of I do not differ too much from each other and from the average:
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α = −2 α = 0 α = 4

Figure 4. Graphs of the transformation γα for several different values

of α, with the square being [0, 1]2.

Lemma 2.1. Assume that γ(I) = J as above. Then we have for all x, y ∈ I

e−|α(γ,I)| · |J |
|I|
≤ γ′(x) ≤ e|α(γ,I)| · |J |

|I|
, (2.11)

γ′(x)

γ′(y)
≤ exp

(
2e|α(γ,I)| · |x− y|

|I|

)
. (2.12)

Proof. We estimate for each α ∈ R

γ′α(x) =
eα

((eα − 1)x+ 1)2
∈ [e−|α|, e|α|] for x ∈ [0, 1]

which together with (2.10) implies (2.11). Next, we have∣∣(log γ′α(x))′
∣∣ =

∣∣∣ 2(1− eα)

(eα − 1)x+ 1

∣∣∣ ≤ 2e|α| for x ∈ [0, 1]

which gives

γ′α(x)

γ′α(y)
≤ exp

(
2e|α| · |x− y|

)
for x, y ∈ [0, 1].

Combined with (2.10), this implies (2.12). �

As a corollary of (2.11) and the change of variable formula, we immediately obtain

Lemma 2.2. Assume that γ(I) = J as above and let I ′ ⊂ I be a Borel subset. Then,

denoting by | • | the Lebesgue measure on the line, we have

e−|α(γ,I)| · |I
′| · |J |
|I|

≤ |γ(I ′)| ≤ e|α(γ,I)| · |I
′| · |J |
|I|

. (2.13)

The next lemma shows that transformations with different distortion factors have

significantly different derivatives. It is an essential component of the proof of Theo-

rem 2 which takes advantage of the nonlinearity of Möbius transformations.
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Lemma 2.3. Assume that γ1, γ2 ∈ SL(2,R) and I, J1, J2 ⊂ R are intervals such that

γj(I) = Jj. Let L ⊂ R be an interval. Then the set of points x satisfying

x ∈ I, log
γ′1(x)

γ′2(x)
∈ L (2.14)

is contained in an interval of size

e|α(γ1,I)|+|α(γ2,I)| · |I| · |L|
|α(γ1, I)− α(γ2, I)|

.

Proof. Denote αj = α(γj, I). For each x ∈ I we have by (2.10)

log
γ′1(x)

γ′2(x)
= log

γ′α1
(y)

γ′α2
(y)

+ log
|J1|
|J2|

, y := γ−1
I (x).

Therefore, (2.14) corresponds to the set of all y such that

y ∈ [0, 1], log
γ′α1

(y)

γ′α2
(y)
∈ L̃ (2.15)

where L̃ is some interval with |L̃| = |L|. We compute

∂y log
γ′α1

(y)

γ′α2
(y)

=
2(1− eα1)

(eα1 − 1)y + 1
− 2(1− eα2)

(eα2 − 1)y + 1
=

2(eα2 − eα1)

((eα1 − 1)y + 1)((eα2 − 1)y + 1)
.

We then have for all y ∈ [0, 1]∣∣∣∣∂y log
γ′α1

(y)

γ′α2
(y)

∣∣∣∣ ≥ 2e−|α1|−|α2| · |α1 − α2|.

It follows that the set of y satisfying (2.15) is an interval of size no more than

e|α1|+|α2| · |L|
|α1 − α2|

which finishes the proof. �

2.3. Distortion estimates for Schottky groups. We now return to the setting of

Schottky groups introduced in §2.1. We start by estimating the distortion factors of

transformations in Γ:

Lemma 2.4. We have

|α(γa, Ib)| ≤ CΓ for all a ∈ W , b ∈ A, a→ b. (2.16)

Proof. We may assume that a ∈ W◦. Let a = a1 . . . an. By (2.1), γ−1
a (∞) ∈ Ian .

Moreover, an 6= b since a→ b. It remains to recall the definition (2.8) and put

CΓ := 2 max
{∣∣ log |x− y|

∣∣ : x ∈ Ia, y ∈ Ib, a, b ∈ A, a 6= b
}
. �

Lemma 2.4 together with (2.11), (2.12), and (2.13) immediately gives
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Lemma 2.5. For all a = a1 . . . an ∈ W◦ and x, y ∈ Ian, we have

C−1
Γ |Ia| ≤ γ′a′(x) ≤ CΓ|Ia|, (2.17)

γ′a′(x)

γ′a′(y)
≤ exp

(
CΓ|x− y|

)
. (2.18)

Moreover, if I ′ ⊂ Ian is a Borel set, then

C−1
Γ |Ia| · |I

′| ≤ |γa′(I ′)| ≤ CΓ|Ia| · |I ′|. (2.19)

Armed with Lemma 2.5, we give

Proof of (2.4). We write a = a1 . . . an. With | • | denoting the Lebesgue measure on

the line, we compute

|Iab| = |γa′(γan(Ib))| = |γa′(Ian)| − |γa′(Ian \ γan(Ib))|.

Recall that γa′(Ian) = Ia. Using (2.19), we obtain the lower bound

|γa′(Ian \ γan(Ib))| ≥ C−1
Γ |Ia| · |Ian \ γan(Ib)| ≥ C−1

Γ |Ia|

finishing the proof. �

We next show several estimates on the sizes and positions of the intervals Ia:

Lemma 2.6 (Parent-child ratio). We have

C−1
Γ |Ia| ≤ |Iab| ≤ |Ia| for all a ∈ W◦, b ∈ A, a→ b. (2.20)

Proof. Denote a = a1 . . . an and note that Iab = γa′(I
′) where I ′ := γan(Ib) ⊂ Ian .

Then (2.20) follows from (2.19). �

Lemma 2.7 (Concatenation). We have

C−1
Γ |Ia| · |Ib| ≤ |Ia′b| ≤ CΓ|Ia| · |Ib| for all a,b ∈ W◦, a b. (2.21)

Proof. This follows from (2.19) similarly to Lemma 2.6, using that Ia′b = γa′(Ib). �

Lemma 2.8 (Reversal). We have

C−1
Γ |Ia| ≤ |Ia| ≤ CΓ|Ia| for all a ∈ W◦. (2.22)

Proof. Without loss of generality, we may assume that |a| ≥ 3. We write a = a1 . . . an
and denote b := a2 . . . an−1, so that a = a1ban. Since Ia = γa1(Iban) and Ia =

γan(Iba1
), it suffices to show that

C−1
Γ |Iban| ≤ |Iba1

| ≤ CΓ|Iban|. (2.23)

Denote

Ian = [x1, x2], Iba1
= [x3, x4], Iban = [y1, y2], Ia1 = [y3, y4]
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and remark that γb(xj) = yj and thus we have equality of cross ratios

(x2 − x1)(x4 − x3)

(x4 − x1)(x3 − x2)
=

(y2 − y1)(y4 − y3)

(y4 − y1)(y3 − y2)
. (2.24)

Now, x3, x4 ∈ Ian−1 and an−1 6= an. Therefore,

|x2 − x1|, |x4 − x1|, |x3 − x2| ∈ [C−1
Γ , CΓ].

Since y1, y2 ∈ Ia2 we similarly bound |y4 − y3|, |y4 − y1|, |y3 − y2|. Then (2.23) follows

from (2.24) and the fact that |Iban| = y2 − y1, |Iba1
| = x4 − x3. �

Lemma 2.9 (Separation). Assume that a,b ∈ W◦ and a 6≺ b, b 6≺ a. Then

|x− y| ≥ C−1
Γ max

(
|Ia|, |Ib|

)
for all x ∈ Ia, y ∈ Ib. (2.25)

Proof. Since a 6≺ b, b 6≺ a, there exist

c ∈ W , d, e ∈ A such that c→ d, c→ e, cd ≺ a, ce ≺ b, d 6= e.

Without loss of generality we may assume that c ∈ W◦ and write c = c1 . . . cn. Then

Ia ⊂ Icd = γc′(γcn(Id)), Ib ⊂ Ice = γc′(γcn(Ie)).

Since the distance between γcn(Id) and γcn(Ie) is bounded below by C−1
Γ and both

these intervals are contained in Icn , we get by (2.17)

|x− y| ≥ C−1
Γ |Ic| ≥ C−1

Γ max
(
|Ia|, |Ib|

)
for all x ∈ Ia, y ∈ Ib

finishing the proof. �

We finally obtain estimates on the elements of the partition Z(τ) defined in (2.7):

Lemma 2.10. For all τ ∈ (0, 1] and a = a1 . . . an ∈ Z(τ), we have

C−1
Γ τ ≤ |Ia| ≤ τ, (2.26)

C−1
Γ τ ≤ |Ia| ≤ CΓ τ, (2.27)

C−1
Γ τ ≤ γ′a′ ≤ CΓ τ on Ian . (2.28)

Proof. Let a ∈ Z(τ). Without loss of generality we may assume that |a| ≥ 2. We have

|Ia| ≤ τ < |Ia′| and by Lemma 2.6, |Ia| ≥ C−1
Γ |Ia′ |. This gives (2.26). Now (2.27)

follows from (2.22), and (2.28) follows from (2.17). �
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2.4. Patterson–Sullivan measure. The Patterson–Sullivan measure µ is equivariant

under the group Γ: for any bounded Borel function f on R,∫
ΛΓ

f(x) dµ(x) =

∫
ΛΓ

f(γ(x))|γ′(x)|δB dµ(x) for all γ ∈ Γ (2.29)

where |γ′|B is the derivative of γ as a map of the ball model of the hyperbolic space:

|γ′(x)|B =
1 + x2

1 + γ(x)2
γ′(x), x ∈ Ṙ.

See for instance [Bor16, Lemma 14.2]. Next, (2.29) implies∫
Iab

f(x) dµ(x) =

∫
Ib

f(γa(x))wa(x) dµ(x) for all a ∈ W , b ∈ A, a→ b (2.30)

where the weight wa is defined by

wa(x) := |γ′a(x)|δB. (2.31)

The Patterson–Sullivan measure of an interval Ia is estimated by the following

Lemma 2.11. We have

C−1
Γ |Ia|

δ ≤ µ(Ia) ≤ CΓ|Ia|δ for all a ∈ W◦. (2.32)

Proof. The formula (2.30) implies that for all a, b ∈ A, a 6= b, we have

µ(Ia) ≥ µ(Iab) =

∫
Ib

wa(x) dµ(x) ≥ C−1
Γ µ(Ib).

Since µ is a probability measure, this implies that

C−1
Γ ≤ µ(Ia) ≤ 1 for all a ∈ A.

Denote a = a1 . . . an. From (2.30) we have

µ(Ia) =

∫
Ian

wa′(x) dµ(x).

By (2.17) we have

C−1
Γ |Ia|

δ ≤ wa′ ≤ CΓ|Ia|δ on Ian

and (2.32) follows. �

Using Lemma 2.11, we give a self-contained proof of Ahlfors–David regularity of µ

(see [Bor16, Lemma 14.13] for another proof):

Lemma 2.12. Let I ⊂ R be an interval. Then

µ(I) ≤ CΓ|I|δ. (2.33)

If additionally |I| ≤ 1 and I is centered at a point in ΛΓ, then

µ(I) ≥ C−1
Γ |I|

δ. (2.34)
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Proof. We first show the upper bound (2.33). Since µ is supported on ΛΓ, replacing I

with the intersections I ∩ Ia we may assume that I ⊂ Ia for some a ∈ A. Shrinking

I without changing µ(I), we may also assume that its endpoints x0, x1 lie in ΛΓ. If

I = {x0} consists of one point, then by (2.2) we can find arbitrarily long words a such

that x0 ∈ Ia; by (2.6) and (2.32), we have µ(I) = 0.

Assume now that x0 < x1. By (2.6) there exists the longest word a = a1 . . . an ∈ W◦
such that I ⊂ Ia. Then x0 ∈ Iab, x1 ∈ Iac for two different b, c ∈ A such that a → b,

a→ c. By Lemma 2.9, the distance between Iab and Iac is bounded below by C−1
Γ |Ia|,

therefore |I| ≥ C−1
Γ |Ia|. Now (2.33) follows from (2.32):

µ(I) ≤ µ(Ia) ≤ CΓ|Ia|δ ≤ CΓ|I|δ.

We next show the lower bound (2.34) where I is an interval of size 0 < |I| ≤ 1 centered

at some x ∈ ΛΓ. Using (2.6), take the shortest word a ∈ W◦ such that x ∈ Ia ⊂ I. If

|a| = 1, then by (2.32) µ(I) ≥ µ(Ia) ≥ C−1
Γ . Assume now that |a| ≥ 2.

Since x ∈ Ia′ and Ia′ 6⊂ I, we have |Ia′| ≥ 1
2
|I| and thus by (2.20) |Ia| ≥ C−1

Γ |I|.
Now (2.34) follows from (2.32):

µ(I) ≥ µ(Ia) ≥ C−1
Γ |Ia|

δ ≥ C−1
Γ |I|

δ. �

As another corollary of Lemma 2.11, we estimate the number of elements in the

partition Z(τ) defined in (2.7):

Lemma 2.13. For τ ∈ (0, 1] we have

C−1
Γ τ−δ ≤ #(Z(τ)) ≤ CΓ τ

−δ. (2.35)

Proof. Since Z(τ) is a partition, we have by (2.3)

1 = µ(ΛΓ) =
∑

a∈Z(τ)

µ(Ia).

By (2.26) and (2.32), we have for all a ∈ Z(τ)

C−1
Γ τ δ ≤ µ(Ia) ≤ CΓ τ

δ (2.36)

which implies (2.35). �

The following is an analogue of the upper bound of Lemma 2.11 where instead of the

measure µ(Ib) we estimate the number of intervals of length at least τ in the subtree

with root Ib:

Lemma 2.14. Assume that τ ∈ (0, 1], b ∈ W◦. Then

#{a ∈ W◦ : b ≺ a, |Ia| ≥ τ} ≤ CΓ τ
−δ|Ib|δ. (2.37)
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Proof. We may assume that |Ib| ≥ τ since otherwise the left-hand side of (2.37)

equals 0. By (2.6), the following sets are finite:

A := {a ∈ W◦ : b ≺ a, |Ia| ≥ τ}, B := {a ∈ W◦ : b ≺ a, |Ia| < τ ≤ |Ia′ |}.

Then {Ia}a∈B is a disjoint collection of subintervals of Ib. Therefore by (2.32)∑
a∈B

µ(Ia) ≤ µ(Ib) ≤ CΓ|Ib|δ.

On the other hand, by (2.20) and (2.32)

µ(Ia) ≥ C−1
Γ |Ia|

δ ≥ C−1
Γ τ δ for all a ∈ B.

Therefore, the number of elements in B is bounded as follows:

#(B) ≤ CΓ τ
−δ|Ib|δ. (2.38)

Next, AtB forms a tree with root b, where the parent of a is given by a′. Moreover,

B is the set of leaves of this tree and each element of A has exactly 2r − 1 children,

where 2r ≥ 4 is the number of intervals in the Schottky structure. The number of

edges of the tree is equal to both #(A) + #(B)− 1 and (2r− 1) ·#(A), which implies

#(A) =
#(B)− 1

2r − 2
≤ #(B).

Combining this with (2.38), we obtain (2.37). �

Arguing similarly to the proof of (2.33), we obtain from Lemma 2.14 the following

Lemma 2.15. For all intervals J and all C0 ≥ 2 we have

#
{
a ∈ W◦ : τ ≤ |Ia| ≤ C0τ, Ia ∩ J 6= ∅

}
≤ CΓ τ

−δ|J |δ + CΓ logC0. (2.39)

Proof. Without loss of generality we may assume that J is contained in Ia for some

a ∈ A. Consider the finite set

X := {a ∈ W◦ : |Ia| ≥ τ, Ia ∩ J 6= ∅}.

Then X forms a tree with root a in the sense that a ∈ X \ {a} implies a′ ∈ X.

Take the longest word b ∈ X with the following property: for each a ∈ X, we have

a ≺ b or b ≺ a. Then b cannot have exactly one child in X, leaving the following two

options:

(1) b has no children in X. Then all a ∈ X satisfy a ≺ b. By (2.5), we estimate

the number of elements a ∈ X such that |Ia| ≤ C0τ by CΓ logC0.

(2) There exist c, d ∈ A, c 6= d, b → c, b → d, such that bc,bd ∈ X. By

Lemma 2.9 the distance between Ibc and Ibd is bounded below by C−1
Γ |Ib|, and

both these intervals intersect J , therefore

|Ib| ≤ CΓ|J |.
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By (2.37), the number of elements a ∈ X such that b ≺ a is bounded above

by CΓ τ
−δ|J |δ. All other elements a ∈ X have to satisfy a ≺ b, and arguing

similarly to the previous case we see that the number of these with |Ia| ≤ C0τ

is bounded above by CΓ logC0. �

We finally use Lemma 2.3 to obtain the following statement, which gives the positive

box dimension estimate required in §3.3. This is the only statement which uses both

Lemma 2.8 (via (2.27)) and the full power of Lemma 2.15. Recall the notation a b

from §2.1. We introduce the following additional piece of notation:

a b
c
 d if and only if a b d and a c d. (2.40)

Lemma 2.16. Fix a ∈ Z(τ) and for each d ∈ W◦ let xd be the center of Id. Then we

have for 0 < τ ≤ σ ≤ 1

#
{

(b, c,d) ∈ Z(τ)3 : a b
c
 d, |γ′a′b′(xd)− γ′a′c′(xd)| ≤ τ 2σ

}
≤ CΓ τ

−3δσδ/2.
(2.41)

Proof. Without loss of generality, we may assume that τ is small enough so that |c| ≥ 2

for all c ∈ Z(τ). For each b ∈ Z(τ) such that a b, we have

#
{
c ∈ Z(τ) : a c, |γ−1

a′b′(∞)− γ−1
a′c′(∞)| ≤

√
σ
}
≤ CΓ τ

−δσδ/2. (2.42)

Indeed, denoting e := c′, we have γ−1
a′c′(∞) = γea′(∞) ∈ Ie. Also, C−1

Γ τ ≤ |Ie| ≤ CΓτ

by (2.27) and (2.21). Therefore, the left-hand side of (2.42) is bounded by

2r ·#
{
e ∈ W◦ : C−1

Γ τ ≤ |Ie| ≤ CΓτ, Ie ∩ J 6= ∅
}
, J := γ−1

a′b′(∞) + [−
√
σ,
√
σ].

Now (2.42) follows from (2.39).

By (2.42) and (2.35), the triples (b, c,d) with |γ−1
a′b′(∞)−γ−1

a′c′(∞)| ≤
√
σ contribute

at most CΓτ
−3δσδ/2 to the left-hand side of (2.41). Therefore, it remains to show that

for each b, c ∈ Z(τ) such that a b, a c and

|γ−1
a′b′(∞)− γ−1

a′c′(∞)| ≥
√
σ, (2.43)

we have

#
{
d ∈ Z(τ) : b d, c d, |γ′a′b′(xd)− γ′a′c′(xd)| ≤ τ 2σ

}
≤ CΓ τ

−δσδ/2. (2.44)

Denote by bn the last letter of b; we may assume it is also the last letter of c, since

otherwise the left-hand side of (2.44) is zero.

By (2.26) and (2.21) we have C−1
Γ τ 2 ≤ |Ia′b| ≤ CΓτ

2 and C−1
Γ τ 2 ≤ |Ia′c| ≤ CΓτ

2.

By (2.17) this gives C−1
Γ τ 2 ≤ γ′a′b′ ≤ CΓτ

2 and C−1
Γ τ 2 ≤ γ′a′c′ ≤ CΓτ

2 on Ibn . Thus it

suffices to show that for any given constant C0 depending only on the Schottky data,

#
{
d ∈ Z(τ) : b d, c d,

∣∣∣ log
γ′a′b′(xd)

γ′a′c′(xd)

∣∣∣ ≤ C0σ
}
≤ CΓ τ

−δσδ/2. (2.45)
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By (2.4), (2.8), and (2.43), we have

|α(γa′b′ , Ibn)|, |α(γa′c′ , Ibn)| ≤ CΓ, |α(γa′b′ , Ibn)− α(γa′c′ , Ibn)| ≥ C−1
Γ

√
σ.

By Lemma 2.3, there exists an interval J̃ of size CΓ

√
σ depending on a,b, c such that

for each d on the left-hand side of (2.45), the point xd lies in J̃ and thus Id ∩ J̃ 6= ∅.
Then by (2.39) and (2.26) we obtain (2.45), finishing the proof. �

2.5. Transfer operators. For a partition Z ⊂ W◦, define the operator

LZ : Bor(I)→ Bor(I), I :=
⊔
b∈A

Ib,

where Bor(I) denotes the space of all bounded Borel functions on I, as follows:

LZf(x) =
∑

a∈Z,a b

f(γa′(x))wa′(x), x ∈ Ib.

Here the weight wa′(x) is defined in (2.31). The Patterson–Sullivan measure is invariant

under the adjoint of LZ :

Lemma 2.17. Assume that Z ⊂ W◦ is a partition. Then we have for all f ∈ Bor(I),∫
ΛΓ

f dµ =

∫
ΛΓ

LZf dµ. (2.46)

Proof. Since Z is a partition, we have by (2.3)∫
ΛΓ

f dµ =
∑
b∈A

∑
a∈Z, a b

∫
Ia

f dµ

which together with (2.30) gives (2.46). �

We will use the following corollary of Lemma 2.17:∫
ΛΓ

f dµ =

∫
ΛΓ

LkZf dµ, f ∈ Bor(I), k ∈ N. (2.47)

Note that LkZf is given by the formula

LkZf(x) =
∑

a1,...,ak∈Z
a1 ··· ak b

f(γa′1...a′k(x))wa′1...a
′
k
(x), x ∈ Ib. (2.48)

3. Fourier decay bound

3.1. Key combinatorial tool. The key tool in the proof of Theorem 2 is the following

result [Bou10, Lemma 8.43] (more precisely, its version in Proposition 3.3 below):
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Proposition 3.1. For all δ1 > 0, there exist ε3, ε4 > 0 and k ∈ N such that the

following holds. Let µ0 be a probability measure on [1
2
, 1] and let N be a large integer.

Assume that for all σ ∈ [N−1, N−ε3 ]

sup
x
µ0

(
[x− σ, x+ σ]

)
< σδ1 . (3.1)

Then for all η ∈ R, |η| ∼ N ,∣∣∣∣ ∫ exp(2πiηx1 · · ·xk) dµ0(x1) . . . dµ0(xk)

∣∣∣∣ ≤ N−ε4 . (3.2)

Remark. The main component of the proof of [Bou10, Lemma 8.43] is the discretized

sum-product theorem [Bou10, Theorem 1]. Roughly speaking it states that for a finite

set A ⊂ [1
2
, 1] of 1

N
-separated points which has box dimension ≥ δ1 > 0, either the sum

set A+A or the product set A ·A has size at least N ε ·#(A), where ε > 0 depends only

on δ1. The box dimension condition is analogous to (3.1). We refer the reader to the pa-

pers by the first author [Bou03, Bou10] for history and applications of the sum-product

theorem. For the passage from the sum-product theorem to the estimate (3.2) in the

cleaner case of prime fields see Bourgain–Glibichuk–Konyagin [BGK06, Theorem 5].

See also the expository article of Green [Gr09].

The following is an adaptation of Proposition 3.1 to the case of several different

measures with slightly relaxed assumptions:

Proposition 3.2. Fix δ0 > 0. Then there exist k ∈ N, ε2 > 0 depending only

on δ0 such that the following holds. Let C0 > 0 and µ1, . . . , µk be Borel measures

on [C−1
0 , C0] ⊂ R such that µj(R) ≤ C0. Let η ∈ R, |η| ≥ 1, and assume that for all

σ ∈
[
C0|η|−1, C−1

0 |η|−ε2
]

and j = 1, . . . , k

µj × µj
({

(x, y) ∈ R2 : |x− y| ≤ σ
})
≤ C0 · σδ0 . (3.3)

Then there exists a constant C1 depending only on C0, δ0 such that∣∣∣∣ ∫ exp(2πiηx1 · · ·xk) dµ1(x1) . . . dµk(xk)

∣∣∣∣ ≤ C1|η|−ε2 . (3.4)

Proof. We may assume that |η| is large depending on C0, δ0. By breaking µj into pieces

supported on [2`, 2`+1] where |`| . log2C0 and rescaling η, we reduce to the case when

each µj is supported on [1
2
, 1].

Put δ1 := δ0/6, choose ε3, ε4, k as in Proposition 3.1, and put

ε2 :=
min(ε4, ε3δ0)

10
.

We henceforth replace (3.3) with the following assumption:

sup
x
µj
(
[x− σ, x+ σ]

)
≤ 2
√
C0 · σδ0/2, σ ∈

[
C0|η|−1, (2C0)−1|η|−ε2

]
(3.5)
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which follows from (3.3) since [x− σ, x+ σ]2 ⊂ {(x, y) ∈ R2 : |x− y| ≤ 2σ}.
We next claim that it suffices to consider the case µ1 = · · · = µk. Indeed, denote

F (µ1, . . . , µk) :=

∫
exp(2πiηx1 · · ·xk) dµ1(x1) . . . dµk(xk).

For λ := (λ1, . . . , λk) ∈ [0, 1]k, put

G(λ) := F (µλ, . . . , µλ), µλ := λ1µ1 + · · ·+ λkµk.

If µ1, . . . , µk satisfy (3.5), then the measure µλ satisfies (3.5) as well (with C0 replaced

by k2C0). Then the version of Proposition 3.2 for the case µ1 = · · · = µk implies that

for some C ′1 depending only on δ0, C0

sup
λ∈[0,1]k

|G(λ)| ≤ C ′1|η|−ε2 .

Since G is a polynomial of degree k, we have for some C1 depending only on δ0, C0

|F (µ1, . . . , µk)| =
1

k!
|∂λ1 . . . ∂λkG(0, . . . , 0)| ≤ C1|η|−ε2

giving (3.4) in the general case.

We henceforth assume that µ1 = · · · = µk. We consider two cases:

(1) µ1(R) ≥ |η|−ε3δ0/10: define the probability measure µ0 on [1
2
, 1] by

µ0 :=
µ1

µ1(R)
.

Choose an integer N such that N ≤ |η| ≤ 2N . By (3.5) we have

sup
x
µ0

(
[x− σ, x+ σ]

)
< σδ1 , σ ∈ [C0N

−1, N−ε3 ].

Same is true for σ ∈ [N−1, C0N
−1] by applying (3.5) to σ := C0N

−1. Then (3.4)

follows from Proposition 3.1.

(2) µ1(R) ≤ |η|−ε3δ0/10: the bound (3.4) follows from the triangle inequality. �

In the discrete probability case Proposition 3.2 gives the following statement which

is used in the key step of the proof of Theorem 2 at the end of §3.3:

Proposition 3.3. Fix δ0 > 0. Then there exist k ∈ N, ε2 > 0 depending only on δ0

such that the following holds. Let C0, NZ ≥ 0 and Z1, . . . ,Zk be finite sets such that

#(Zj) ≤ C0NZ . Take some maps

ζj : Zj → [C−1
0 , C0], j = 1, . . . , k.

Let η ∈ R, |η| > 1, and consider the sum

Sk(η) = N−kZ
∑

b1∈Z1,...,bk∈Zk

exp
(
2πiηζ1(b1) · · · ζk(bk)

)
.
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Assume that ζj satisfy for all σ ∈
[
|η|−1, |η|−ε2

]
and j = 1, . . . , k

#{(b, c) ∈ Z2
j : |ζj(b)− ζj(c)| ≤ σ} ≤ C0N

2
Z · σδ0 . (3.6)

Then we have for some constant C1 depending only on C0, δ0

|Sk(η)| ≤ C1|η|−ε2 . (3.7)

Proof. It suffices to apply Proposition 3.2 to the measures µj defined by

µj(A) := N−1
Z ·#{b ∈ Zj : ζj(b) ∈ A}, j = 1, . . . , k. �

3.2. A combinatorial description of the oscillatory integral. We now begin the

proof of Theorem 2. We fix a Schottky representation for M as in §2.1. In this section

C denotes constants which depend only on Cϕ,g and the Schottky data.

Put δ0 := δ/4 and choose k ∈ N, ε2 > 0 from Proposition 3.3, depending only on δ.

Let ξ be the frequency parameter in (1.2). Without loss of generality we may assume

that |ξ| ≥ C. Define the small number τ > 0 by

|ξ| = τ−2k−3/2. (3.8)

Let Z(τ) ⊂ W◦ be the partition defined in (2.7) and LZ(τ) be the associated transfer

operator, see §2.5. Recall from (2.35) that

#(Z(τ)) ≤ Cτ−δ. (3.9)

Moreover, by (2.28) and (2.31) we have for each a = a1 . . . an ∈ Z(τ),

wa′ ≤ Cτ δ on Ian . (3.10)

We introduce some notation used throughout this section:

• we denote

A = (a0, . . . , ak) ∈ Z(τ)k+1, B = (b1, . . . ,bk) ∈ Z(τ)k;

• we write A↔ B if and only if aj−1  bj  aj for all j = 1, . . . , k;

• if A ↔ B, then we define the words A ∗ B := a′0b
′
1a
′
1b
′
2 . . . a

′
k−1b

′
ka
′
k and

A#B := a′0b
′
1a
′
1b
′
2 . . . a

′
k−1b

′
k;

• denote by b(A) ∈ A the last letter of ak;

• for each a ∈ W◦, denote by xa the center of Ia;

• for j ∈ {1, . . . , k} and b ∈ Z(τ) such that aj−1  b aj, define

ζj,A(b) := τ−2γ′a′j−1b
′(xaj) (3.11)

and note that ζj,A(b) ∈ [C−1, C] by the chain rule and (2.28).
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Using the functions ϕ, g from the statement of Theorem 2, define

f(x) := exp(iξϕ(x))g(x), x ∈ ΛΓ. (3.12)

By (2.47) and (2.48) the integral in (1.2) can be written as follows:∫
ΛΓ

f dµ =

∫
ΛΓ

L2k+1
Z(τ) f dµ =

∑
A,B : A↔B

∫
Ib(A)

f(γA∗B(x))wA∗B(x) dµ(x). (3.13)

We use Hölder’s inequality and approximations for the weight wA∗B and the amplitude

g to get the following bound. Note that (2.28) and (3.8) imply that the function

eiξϕ(γA∗B(x)) below oscillates at frequencies ∼ τ−1/2.

Lemma 3.4. We have∣∣∣∣ ∫
ΛΓ

f dµ

∣∣∣∣2 ≤ Cτ (2k−1)δ
∑

A,B : A↔B

∣∣∣∣ ∫
Ib(A)

eiξϕ(γA∗B(x))wa′k
(x) dµ(x)

∣∣∣∣2 + Cτ 2. (3.14)

Proof. Take arbitrary x ∈ Ib(A), then

wA∗B(x) = wA#B(γa′k(x))wa′k
(x).

Now, γa′k(x) lies in Iak , which by (2.7) is an interval of size no more than τ . By (2.18)

exp(−Cτ) ≤
wA#B(γa′k(x))

wA#B(xak)
≤ exp(Cτ). (3.15)

Moreover, by (3.10) and the chain rule

wA∗B(x) ≤ Cτ (2k+1)δ, wA#B(xak) ≤ Cτ 2kδ. (3.16)

Recall that ‖g‖C1 ≤ C by (1.1). Since γA∗B(x) ∈ Ia0 , by (2.7) we have

|f(γA∗B(x))− eiξϕ(γA∗B(x))g(xa0)| ≤ Cτ. (3.17)

Put

gA,B := wA#B(xak)g(xa0).

Combining (3.15)–(3.17), we obtain

|f(γA∗B(x))wA∗B(x)− gA,Beiξϕ(γA∗B(x))wa′k
(x)| ≤ Cτ (2k+1)δ+1.

Therefore by (3.13) and (3.9)∣∣∣∣ ∫
ΛΓ

f dµ−
∑

A,B : A↔B

gA,B

∫
Ib(A)

eiξϕ(γA∗B(x))wa′k
(x) dµ(x)

∣∣∣∣ ≤ Cτ. (3.18)
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Using Hölder’s inequality, (3.9), and (3.16), we get∣∣∣∣ ∑
A,B : A↔B

gA,B

∫
Ib(A)

eiξϕ(γA∗B(x))wa′k
(x) dµ(x)

∣∣∣∣2
≤ Cτ (2k−1)δ

∑
A,B : A↔B

∣∣∣∣ ∫
Ib(A)

eiξϕ(γA∗B(x))wa′k
(x) dµ(x)

∣∣∣∣2.
(3.19)

Combining (3.18) and (3.19) finishes the proof. �

To handle the first term on the right-hand side of (3.14), we estimate using (3.10)∑
A,B : A↔B

∣∣∣∣ ∫
Ib(A)

eiξϕ(γA∗B(x))wa′k
(x) dµ(x)

∣∣∣∣2
=
∑
A

∫
I2
b(A)

wa′k
(x)wa′k

(y)
∑

B : A↔B

eiξ(ϕ(γA∗B(x))−ϕ(γA∗B(y))) dµ(x)dµ(y)

≤ Cτ 2δ
∑
A

∫
I2
b(A)

∣∣∣∣ ∑
B : A↔B

eiξ(ϕ(γA∗B(x))−ϕ(γA∗B(y)))

∣∣∣∣ dµ(x)dµ(y).

(3.20)

The next statement bounds the integral
∫
f dµ by an expression which can be analyzed

using Proposition 3.3, by linearizing the phase ϕ. Recall the definition (3.11) of ζj,A(b).

Lemma 3.5. Denote

Jτ := {η ∈ R : τ−1/4 ≤ |η| ≤ Cτ−1/2} (3.21)

where C is sufficiently large. Then∣∣∣∣ ∫
ΛΓ

f dµ

∣∣∣∣2 ≤ Cτ (2k+1)δ
∑
A

sup
η∈Jτ

∣∣∣∣ ∑
B : A↔B

e2πiηζ1,A(b1)···ζk,A(bk)

∣∣∣∣+ Cτ δ/4.

Proof. Fix A. Take x, y ∈ Ib(A) and put

x̃ := γa′k(x), ỹ := γa′k(y) ∈ Iak .

Assume that A↔ B. Since γA∗B(x) = γA#B(x̃), γA∗B(y) = γA#B(ỹ), we have

ϕ(γA∗B(y))− ϕ(γA∗B(x)) =

∫ ỹ

x̃

(ϕ ◦ γA#B)′(t) dt.

By the chain rule, for each t ∈ Iak there exist sj ∈ Iaj , j = 0, . . . , k, such that

(ϕ ◦ γA#B)′(t) = ϕ′(s0)γ′a′0b′1(s1) · · · γ′a′k−1b
′
k
(sk).

By (2.7), we have |sj − xaj | ≤ τ . Then by (1.1) and (2.18), we have for all t ∈ Iak

exp(−Cτ) ≤ (ϕ ◦ γA#B)′(t)

τ 2kϕ′(xa0)ζ1,A(b1) · · · ζk,A(bk)
≤ exp(Cτ).
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Since |ϕ′(xa0)|, ζj,A(bj) ∈ [C−1, C] and |x̃− ỹ| ≤ τ , it follows that∣∣ϕ(γA∗B(x))− ϕ(γA∗B(y))− τ 2kϕ′(xa0)ζ1,A(b1) · · · ζk,A(bk)(x̃− ỹ)
∣∣ ≤ Cτ 2k+2. (3.22)

Denote

η :=
sgn ξ

2π
τ−3/2ϕ′(xa0) · (x̃− ỹ)

and note that by (1.1) and (2.28)

C−1τ−1/2|x− y| ≤ |η| ≤ Cτ−1/2|x− y|.

We have by Lemma 3.4, (3.20), (3.22), and (3.9), recalling that |ξ| = τ−2k−3/2 by (3.8)∣∣∣∣ ∫
ΛΓ

f dµ

∣∣∣∣2 ≤ Cτ (2k+1)δ
∑
A

∫
I2
b(A)

∣∣∣∣ ∑
B : A↔B

e2πiηζ1,A(b1)···ζk,A(bk)

∣∣∣∣ dµ(x)dµ(y) + C
√
τ .

Now, we remark that by (2.33), for each fixed constant C0

µ× µ
{

(x, y) ∈ Λ2
Γ : |x− y| ≤ C0τ

1/4
}
≤ Cτ δ/4.

Therefore, the double integral above can be taken over x, y such that |x− y| ≥ C0τ
1/4,

which for large enough C0 implies that η ∈ Jτ . This finishes the proof. �

3.3. End of the proof of Theorem 2. To apply Proposition 3.3 to the sum in

Lemma 3.5, we need a positive box dimension estimate. To state it we recall the

notation a b
c
 d from (2.40) and the constant ε2 fixed at the beginning of §3.2.

Lemma 3.6. Define the set of regular sequences R ⊂ Z(τ)k+1 as follows: A ∈ R
if and only if for all j = 1, . . . , k and σ ∈ [τ, τ ε2/4] we have

τ 2δ ·#
{

(b, c) ∈ Z(τ)2 : aj−1  
b
c
 aj, |ζj,A(b)− ζj,A(c)| ≤ σ

}
≤ σδ/4. (3.23)

Then most sequences are regular, more precisely

τ (k+1)δ ·#(Z(τ)k+1 \ R) ≤ Cτ ε2δ/20. (3.24)

Proof. For ` ∈ Z with τ ≤ 2−` ≤ 2τ ε2/4, define R̃` as the set of pairs (a,d) ∈ Z(τ)2

such that

τ 2δ ·#
{

(b, c) ∈ Z(τ)2 : a b
c
 d, |γ′a′b′(xd)− γ′a′c′(xd)| ≤ τ 22−`

}
≤ 2−(`+1)δ/4.

For each σ ∈ [τ, τ ε2/4], there exists ` such that 2−`−1 ≤ σ ≤ 2−`. By (3.11),⋂
j

⋂
`

{
A ∈ Z(τ)k+1 | (aj−1, aj) ∈ R̃`

}
⊂ R.

It suffices to show that for each j, ` we have

τ 2δ ·#(Z(τ)2 \ R̃`) ≤ Cτ ε2δ/16. (3.25)

By Chebyshev’s inequality the left-hand side of (3.25) is bounded above by

2(`+1)δ/4τ 4δ ·#{(a,b, c,d) ∈ Z(τ)4 : a b
c
 d, |γ′a′b′(xd)− γ′a′c′(xd)| ≤ τ 22−`}



FOURIER DIMENSION AND SPECTRAL GAPS FOR HYPERBOLIC SURFACES 23

By Lemma 2.16 this is bounded above by

C2−δ`/4 ≤ Cτ ε2δ/16.

This gives (3.25), finishing the proof. �

We are now ready to finish the proof of Theorem 2. Using Lemma 3.5 and estimating

the sum over A ∈ Z(τ)k+1 \ R by Lemma 3.6, we obtain∣∣∣∣ ∫
ΛΓ

f dµ

∣∣∣∣2 ≤ Cτ kδ max
A∈R

sup
η∈Jτ

∣∣∣∣ ∑
B : A↔B

e2πiηζ1,A(b1)···ζk,A(bk)

∣∣∣∣+ Cτ ε2δ/20. (3.26)

We estimate the first term on the right-hand side using Proposition 3.3. Fix A ∈ R
and define

Zj := {b ∈ Z(τ) : aj−1  b aj}, j = 1, . . . , k.

By (2.35),

#(Zj) ≤ CNZ , NZ := τ−δ.

Fix η ∈ Jτ . Recall that δ0 = δ/4. By (3.21) and (3.23) we have for all j = 1, . . . , k

and σ ∈
[
|η|−1, |η|−ε2

]
#
{

(b, c) ∈ Z2
j : |ζj,A(b)− ζj,A(c)| ≤ σ

}
≤ N2

Z · σδ0 .

Therefore, condition (3.6) is satisfied. We also recall from (3.11) that ζj,A(b) ∈
[C−1, C].

Applying Proposition 3.3, we obtain for all A ∈ R and η ∈ Jτ

τ kδ
∣∣∣∣ ∑
B : A↔B

e2πiηζ1,A(b1)···ζk,A(bk)

∣∣∣∣ ≤ C|η|−ε2 ≤ Cτ ε2/4. (3.27)

From (3.26) and (3.27) we have ∣∣∣∣ ∫
ΛΓ

f dµ

∣∣∣∣ ≤ Cτ ε2δ/40.

Recalling (3.8) and the definition (3.12) of f , this gives Theorem 2 with

ε1 :=
ε2δ

40(2k + 3/2)
. (3.28)

4. Fractal uncertainty principle

In this section, we deduce Theorem 1 from Theorem 2 by establishing a fractal uncer-

tainty principle (henceforth denoted FUP) and using the results of [DZ16]. Throughout

this section we assume that M, δ,ΛΓ, µ are as in Theorem 2.
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4.1. FUP for the Patterson–Sullivan measure. We first use Theorem 2 to obtain

a fractal uncertainty principle with respect to the Patterson–Sullivan measure µ:

Proposition 4.1. Assume that:

• U ⊂ R2 is an open set and V ⊂ U is compact;

• Φ ∈ C3(U ;R) and G ∈ C1(U ;C), suppG ⊂ V , satisfy for some constant CΦ,G

‖Φ‖C3 + ‖G‖C1 ≤ CΦ,G, inf |∂2
xyΦ| ≥ C−1

Φ,G. (4.1)

Define for 0 < h < 1 the operator B(h) : L2(ΛΓ;µ)→ L2(ΛΓ;µ) by

B(h)u(x) =

∫
ΛΓ

exp
(iΦ(x, y)

h

)
G(x, y)u(y) dµ(y). (4.2)

Let ε1 = ε1(δ) > 0 be the constant from Theorem 2. Then

‖B(h)‖L2(ΛΓ;µ)→L2(ΛΓ;µ) ≤ Chε1/4, 0 < h < 1 (4.3)

where the constant C depends only on M,U, V, CΦ,G.

Proof. We denote by C constants which depend only on M,U, V, CΦ,G. As in §2.1, we

view ΛΓ as a subset of R. Using a partition of unity for G, we reduce to the case

U = I◦1 × I◦2 , V = J1 × J2, J1 ⊂ I◦1 , J2 ⊂ I◦2

for some intervals I1, I2, J1, J2. To prove (4.3) suffices to show that

‖B(h)B(h)∗‖L2(ΛΓ;µ)→L2(ΛΓ;µ) ≤ Chε1/2. (4.4)

Note that B(h)B(h)∗ is an integral operator:

B(h)B(h)∗f(x) =

∫
ΛΓ

K(x, x′)f(x′) dµ(x′),

where

K(x, x′) =

∫
ΛΓ

exp
( i
h

(
Φ(x, y)− Φ(x′, y)

))
G(x, y)G(x′, y) dµ(y).

By Schur’s inequality, to show (4.4) it suffices to prove the bound

sup
x∈ΛΓ

∫
ΛΓ

|K(x, x′)| dµ(x′) ≤ Chε1/2. (4.5)

For x, x′ ∈ ΛΓ ∩ J1, define the functions ϕxx′ , gxx′ on I◦2 as follows:

Φ(x, y)− Φ(x′, y) = (x− x′) · ϕxx′(y), gxx′(y) = G(x, y)G(x′, y).

Then

K(x, x′) =

∫
ΛΓ

exp
(
iξϕxx′(y)

)
gxx′(y) dµ(y), ξ :=

x− x′

h
. (4.6)

It follows from (4.1) that

‖ϕxx′‖C2(I◦2 ) + ‖gxx′‖C1(I◦2 ) ≤ C, inf
I◦2
|∂yϕxx′ | ≥ C−1
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and we extend gxx′ , ϕxx′ to compactly supported functions on R so that

‖ϕxx′‖C2(R) + ‖gxx′‖C1(R) ≤ C, inf
ΛΓ

|∂yϕxx′ | ≥ C−1;

this is possible since ΛΓ ⊂ R is compact.

Applying Theorem 2 and using (4.6) we get the bound

|K(x, x′)| ≤ C
∣∣∣x− x′

h

∣∣∣−ε1 , x, x′ ∈ ΛΓ ∩ J1, |x− x′| ≥ h. (4.7)

It remains to split the integral in (4.5) into two parts. The integral over {|x−x′| ≤ h1/2}
is bounded by Chδ/2 by (2.33). The integral over {|x−x′| ≥ h1/2} is bounded by Chε1/2

by (4.7). �

4.2. FUP for the Lebesgue measure. We now deduce from Proposition 4.1 a fractal

uncertainty principle with respect to Lebesgue measure on a neighborhood

ΛΓ(h) := ΛΓ + [−h, h] ⊂ R

of ΛΓ. We use the following

Lemma 4.2. For 0 < h < 1, define the function Fh(x) as the convolution of the

Patterson–Sullivan measure µ with the rescaled uniform measure on [−2h, 2h]:

Fh(x) :=
1

4hδ
µ
(
[x− 2h, x+ 2h]

)
. (4.8)

Then for some constant CΓ > 0 depending only on Γ,

Fh ≥ C−1
Γ on ΛΓ(h). (4.9)

Proof. Let x ∈ ΛΓ(h). Then there exists x0 ∈ ΛΓ such that |x − x0| ≤ h. We have

[x0−h, x0 +h] ⊂ [x− 2h, x+ 2h] and µ([x0−h, x0 +h]) ≥ C−1
Γ hδ by (2.34). Therefore

Fh(x) ≥ C−1
Γ . �

Our fractal uncertainty principle for the Lebesgue measure is the following

Proposition 4.3. Let ε1 = ε1(δ) > 0 be the constant from Theorem 2. Assume that

U, V,Φ, G are as in Proposition 4.1. Define the operator B(h) : L2(R)→ L2(R) by

B(h)u(x) = (2πh)−1/2

∫
R

exp
(iΦ(x, y)

h

)
G(x, y)u(y) dy. (4.10)

Fix ρ ∈ (0, 1). Then

‖ 1lΛΓ(hρ) B(h) 1lΛΓ(hρ) ‖L2(R)→L2(R) ≤ Chβ−(1−δ)(1−ρ), β :=
1

2
− δ +

ε1

4
. (4.11)
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Proof. Let Fhρ be the function defined in (4.8), with h replaced by hρ. By (4.9), it is

enough to show the following estimate for each bounded Borel function u on R:

‖
√
FhρB(h)Fhρu‖L2(R) ≤ Chβ−(1−δ)(1−ρ)‖

√
Fhρ u‖L2(R). (4.12)

Define the shift operator ωt on functions on R by

ωtv(x) = v(x− t), t, x ∈ R.

Then for each bounded Borel function v on R,

‖
√
Fhρ v‖2

L2(R) =
1

4hρδ

∫ 2hρ

−2hρ
‖ωtv‖2

L2(ΛΓ;µ) dt.

Moreover

ωtB(h)Fhρu =
1

4
√

2πh1/2+ρδ

∫ 2hρ

−2hρ
Bts(h)ωsu ds

where

Bts(h)v(x) =

∫
ΛΓ

exp
(iΦ(x− t, y − s)

h

)
G(x− t, y − s)v(y) dµ(y).

By Proposition 4.1, we have for all t, s ∈ [−2hρ, 2hρ],

‖Bts(h)‖L2(ΛΓ;µ)→L2(ΛΓ;µ) ≤ Chε1/4.

Then

‖
√
FhρB(h)Fhρu‖2

L2(R) =
1

4hρδ

∫ 2hρ

−2hρ
‖ωtB(h)Fhρu‖2

L2(ΛΓ;µ) dt

≤ h2ρ−3ρδ−1 sup
|t|≤2hρ

∫ 2hρ

−2hρ
‖Bts(h)ωsu‖2

L2(ΛΓ;µ) ds

≤ Ch2ρ−3ρδ−1+ε1/2

∫ 2hρ

−2hρ
‖ωsu‖2

L2(ΛΓ;µ) ds

= 4Ch2ρ−2ρδ−1+ε1/2‖
√
Fhρ u‖2

L2(R)

which gives (4.12). �

4.3. Proof of Theorem 1. We use [DZ16, Theorem 3]. It suffices to show that ΛΓ

satisfies the fractal uncertainty principle with exponent β = 1
2
− δ + ε1

4
in the sense

of [DZ16, Definition 1.1].

The paper [DZ16] uses the Poincaré disk model of the hyperbolic plane and the limit

set there is a subset of the circle S1 ⊂ C. To relate to our model, we use the standard

transformation from the upper half-plane model to the disk model,

z 7→ w =
z − i
z + i

. (4.13)
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Note that, with | • | denoting the Euclidean norm on C, we have for x, y ∈ R

|w(x)− w(y)|2 =
4(x− y)2

(1 + x2)(1 + y2)
.

Let χ ∈ C∞(S1×S1) satisfy suppχ∩{w = w′} = ∅, and Bχ(h) be the operator defined

in [DZ16, (1.6)]. For the purpose of satisfying [DZ16, Definition 1.1] we may assume

that χ is supported near Λ2
Γ, in particular the pullback of χ to R2 by the square of

the map (4.13) is supported in a compact subset of {(x, y) ∈ R2 | x 6= y}. Then the

operator Bχ(h) has the form (4.10) with

U b {(x, y) ∈ R2 | x 6= y}, Φ(x, y) = 2 log |x− y| − log(1 + x2)− log(1 + y2),

and we have on U ,

∂2
xyΦ(x, y) =

2

(x− y)2
6= 0.

It remains to apply Proposition 4.3 to see that the fractal uncertainty principle [DZ16,

Definition 1.1] holds, finishing the proof.
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