
A machine learning toolkit for genetic
engineering attribution to facilitate biosecurity

The MIT Faculty has made this article openly available. Please share 
how this access benefits you. Your story matters.

As Published 10.1038/s41467-020-19612-0

Publisher Springer Science and Business Media LLC

Version Final published version

Citable link https://hdl.handle.net/1721.1/134004

Terms of Use Creative Commons Attribution 4.0 International license

Detailed Terms https://creativecommons.org/licenses/by/4.0/

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/134004
https://creativecommons.org/licenses/by/4.0/


ARTICLE

A machine learning toolkit for genetic engineering
attribution to facilitate biosecurity
Ethan C. Alley 1,2,3✉, Miles Turpin4, Andrew Bo Liu5, Taylor Kulp-McDowall6, Jacob Swett1, Rey Edison2,

Stephen E. Von Stetina2, George M. Church1,3 & Kevin M. Esvelt 1,2

The promise of biotechnology is tempered by its potential for accidental or deliberate misuse.

Reliably identifying telltale signatures characteristic to different genetic designers, termed

‘genetic engineering attribution’, would deter misuse, yet is still considered unsolved. Here,

we show that recurrent neural networks trained on DNA motifs and basic phenotype data can

reach 70% attribution accuracy in distinguishing between over 1,300 labs. To make these

models usable in practice, we introduce a framework for weighing predictions against other

investigative evidence using calibration, and bring our model to within 1.6% of perfect cali-

bration. Additionally, we demonstrate that simple models can accurately predict both the

nation-state-of-origin and ancestor labs, forming the foundation of an integrated attribution

toolkit which should promote responsible innovation and international security alike.
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After a nearly decade-long, $100 million dollar investiga-
tion into the 2001 Amerithrax anthrax attacks1, the
National Academy of Sciences reported that “it is not

possible to reach a definitive conclusion about the origins…based
solely on the available scientific evidence”2. In the aftermath of
Amerithrax, the scientific community mobilized to develop
genetic3 and phenotypic4 methods for forensic attribution of
biological attacks. However, these efforts were severely con-
strained by the limits of biotechnology; satisfactory sequencing of
the anthrax agent’s genome would have cost $500,000 dollars at
the time5. Today, exponential improvement in tools for bio-
technology have made this and other life-saving tasks increasingly
inexpensive and accessible, yet these advancements have not been
matched with corresponding improvements in tools to support
responsible innovation in genetic engineering. In particular,
attribution is still considered technically challenging and
unsolved6–9.

Just as programmers leave clues in code, biologists “program-
ming” an engineered organism differ on unique design decisions
(e.g., promoter choice), style (e.g., preferred codon optimization),
intent (e.g., functional gene selection), and tools (e.g., cloning
method). These design elements, together with evolutionary
markers, form designer “signatures”. Advances in high-through-
put, spatial, and distributed sequencing10–12, and omic-scale
phenotyping13 make these signatures easier to collect but require
complex data analysis. Recent work suggests that deep learning, a
flexible paradigm for statistical models built from differentiable
primitives, can facilitate complex biological data analysis14–19.
We propose deploying these methods to develop a toolkit of
machine-learning algorithms which can infer the attributes of
genetically engineered organisms—like lab-of-origin—to support
biotechnology stakeholders and enable ongoing efforts to scale
and automate biosecurity20.

A prior attempt to use deep learning for genetic engineering
attribution provided evidence that it might be possible but was
<50% accurate21. Here, we reach over 70% lab-of-origin attribu-
tion accuracy using a biologically motivated approach based on
learned DNA motifs, simple phenotype information, and
Recurrent Neural Networks (RNNs) on a model attribution sce-
nario with data from the world’s largest plasmid repository,
Addgene22 (Fig. 1a). We show that this algorithm, which we call
deteRNNt, can provide more calibrated probabilities—a pre-
requisite for practical use—and with simple models demonstrate
that a wider range of attribution tools are possible. By simulta-
neously addressing the need for accuracy, more calibrated
uncertainty, and broad capabilities, this computational forensic
framework can help enable the characterization of engineered
biological materials, promote technology development which is
accountable to community stakeholders, and deter misuse.

Results
Training and model evaluation. DNA sequences are patterned
with frequent recurring motifs of various lengths, like codons,
regulatory regions, and conserved functional regions in proteins.
Workhorse bioinformatic approaches like profile Hidden Markov
Models23 and BLAST24 often rely on implicit or explicit recog-
nition of local sequence motifs. Using an algorithm called Byte-
Pair Encoding (BPE)25, which was originally designed to com-
press text by replacing the most frequent pairs of tokens with new
symbols26, we inferred 1000 salient motifs directly from the
Addgene primary DNA sequences (Fig. 1b and “Methods”) in a
format suitable for deep learning. We found that the learned
motifs appear to be biologically relevant, with the longer high-
ranked motifs including fragments from promoters and plasmid
origins of replication (ORIs) (Fig. 1c). Each of these inferred

motifs is represented as a new token so that a primary DNA
sequence is translated into a motif token sequence that models
can use to infer higher-level features.

Next, we prepared the Addgene dataset for training and model
evaluation. The data were minimally cleaned to create a
supervised multiclass classification task (“Methods”), in which a
plasmid DNA sequence and six simple phenotype characteristics
(Supplementary Table 1) are used to predict which of the 1314
labs in the dataset deposited the sequence. This setup mirrors a
scenario in which a biological sample is obtained, partially
sequenced, and assayed to measure simple characteristics like
growth temperature and antibiotic resistance (Supplementary
Table 1). The method can be trivially extended to incorporate any
measurable phenotypic characteristic as long as a sufficiently large
and representative dataset of measurements and lab-of-origin can
be assembled, enabling integration with laboratory assays.

Before any analysis began, the data were split to withhold a
~10% test set for evaluation (“Methods”). We further decreased
the likelihood of overfitting by ensuring plasmids known to be
derived from one another were not used in both training and
evaluation (“Methods”).

The deteRNNt model predicts lab-of-origin from DNA motif
sequence and phenotypic metadata. For our model, we con-
sidered a family of RNNs called long-short term memory (LSTM)
networks27, which process variable-length sequences one symbol
at a time, recurrently, and are designed to facilitate the modeling
of long-distance dependencies (Supplementary Fig. 1). We
hypothesized that the intrinsically variable-length nature of RNNs
would be well suited for biological sequence data and robust to
data-processing artifacts, and that attribution may rely on iden-
tifying patterns between distant elements, such as regulatory
sequences and functional genes. We tokenized the sequences with
variations of BPE, as described above, and searched over 250
configurations of architectures and hyperparameters (Supple-
mentary Figs. 2 and 3, “Methods”).

The best-performing sequence-only model from this search
(Supplementary Fig. 1) was then augmented with the phenotypic
data (Supplementary Table 1) and fine-tuned (“Methods”). We
elected to average the predictions of subsequences within each
plasmid, as ensembling is widely recognized to reduce variance in
machine-learning models28. On an Nvidia K80 GPU, the
resulting deteRNNt prediction pipeline (Fig. 1d) takes <10 s to
produce a vector (summing to 1) of model confidences that the
plasmid belongs to each lab.

We compared Top-k lab-of-origin prediction accuracy on
held-out test-set sequences (Fig. 1e and Supplementary Table 2).
Our model, with the basic phenotype information, reaches 70.1%
top 1 accuracy. Our model additionally reached 84.7% top 10
accuracy, a more relevant metric for narrowing down leads. This
is a ~1.7× reduction in the top 10 error rate of a deep-learning
Convolutional Neural Network (CNN) method previously
considered the deep-learning state of the art21 and similar
reduction in BLAST29 top 10 error. We note that BLAST cannot
produce uncertainty estimates and has other drawbacks to
deployment, described elsewhere21. As expected, training without
phenotype information reduced the Top-k accuracy of our model
(Fig. 1f).

DeteRNNt is reasonably well-calibrated and can be improved
with temperature scaling. Having achieved lab-of-origin attri-
bution accuracy of over 70%, we next considered the challenge
posed to practical use by the black-box nature of deep learning.
While powerful prediction tools, deep-learning algorithms are
widely recognized to be difficult to interpret30,31. Investigators of
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biological accidents or deliberate misuse will need to weigh the
evidence from computational tools and other indicators, such as
location, the incident’s consequences, and geopolitical context.
Without this capability, computational forensic tools may not be
practically useful. Consequently, as a starting point, we should
demand that our models precisely represent prediction uncer-
tainty: they must be well-calibrated. An attribution model is
perfectly calibrated if, when it predicts that a plasmid belongs to
Lab X with Y% confidence, it is correct Y% of the time.

Performant deep-learning models are not calibrated by default;
indeed, many high-scoring models exhibit persistent over-
confidence and miscalibration32.

Calibration can be measured empirically by taking the average
model confidence within some range (e.g., 90–95%) and
comparing it to the ground-truth accuracy of those predictions.
Taking the average difference across all binned ranges from 0 to
100% is called the Expected Calibration Error (ECE). For
situations where conservatism is warranted, the maximum
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Fig. 1 Deep learning on DNA motifs and minimal phenotype information enables state-of-the-art genetic engineering attribution. a The Addgene
plasmid repository (bottom) provides a model through which to study the deployment scenario (top) for genetic engineering attribution. In the model
scenario, research laboratories engineer organisms and share their genetic designs with the research community by depositing the DNA sequence and
phenotypic metadata information to Addgene. In the corresponding deployment scenario, a genetically engineered organism of unknown origin is obtained,
for example, from an environmental sample, lab accident, misuse incident, or case of disputed authorship. By characterizing this sample in the laboratory
with sequencing and phenotype experiments, the investigator identifies the engineered sequence and phenotype information. In either case, the sequence
and phenotype information are input to an attribution model which predicts the probability the organism originated from individuals connected to a set of
known labs, enabling further conventional investigation; * indicates a hypothetical “best match” predicted by the imagined model. Above, the same
information may be input to a wider toolkit of methods which provide actionable leads and characterization of the sample to support the investigator.
b DNA motifs are inferred through the Byte Pair Encoding (BPE) algorithm25, which successively merges the most frequently occurring pairs of tokens to
compress input sequences into a vocabulary larger than the traditional four DNA bases. Progressively, sequences become shorter and new motif tokens
become longer. c BPE on the training set of Addgene plasmid sequences. The x axis shows the tokens rank-ordered by frequency in the sequence set
(decreasing). The y axis shows token length, in base pairs. Example tokens (bold, numbered) are linked to biologically meaningful sequence motifs. d The
deteRNNt method takes 100 random subsequences from the plasmid encoded with BPE and embeds them into a continuous space via a learned word
embedding59 matrix layer. These (potentially variable-length) sequences are processed by an LSTM network. We average the predictions from each
subsequence to obtain a softmax probability that the plasmid originated in a given lab. e Top-k prediction accuracy on the test set. Compared: deteRNNt,
deteRNNt trained without phenotype, BLASTn, CNN deep-learning state-of-the-art method21, a baseline guessing the most abundant labs from the training
set, and guessing uniformly randomly (so low, cannot be seen).* indicates P < 10−10, by Welch’s two-tailed t test on n= 30 × 50% bootstrap replicates
compared to BLAST. f Top-k prediction accuracy on test set with and without phenotype information. * indicates P < 10−10, by Welch’s two-tailed t test on
n= 30 × 50% bootstrap replicates compared to no phenotype.
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calibration error (MCE), which instead measures the maximum
deviation between confidence and ground truth, can be used
(“Methods”).

Following standard calibration analysis32,33, we find that our
model is calibrated within 5% of the ground truth on average
(ECE= 4.7%, MCE= 8.9%, accuracy= 70.1%, Fig. 2a). For
comparison, the landmark image recognition model ResNet
11034 is within 16.53% of calibration on average on the CIFAR-
100 benchmark dataset32. We next deployed a simple technique
to improve the calibration of deteRNNt called temperature
scaling32. After training, we learn a parameter called “tempera-
ture” which divides the unnormalized log probabilities (logits) in
the softmax function by performing gradient descent on this
scalar parameter to maximize the log probability of a held-out
subset of data, our validation set. While more sophisticated
techniques exist, temperature scaling provides the first-order
correction to over or under-confidence by increasing or
decreasing the Shannon entropy of predictions (Fig. 2a, b). After
scaling, the re-calibrated model achieved a lower ECE of just 1.6%
with a marginal decrease in accuracy (MCE= 3.7%, accuracy=
69.3%, Fig. 2b, “Methods”). Using such calibrated predictions,
investigators will be able to put more weight on a 95% prediction
than a 5% prediction, choose not to act if the model is too
uncertain, and have a basis for considering the relative
importance of other evidence.

Predicting plasmid nation-of-origin with Random Forests.
With a framework for calibration of attribution models that can

in principle be applied to any deep-learning classification algo-
rithm, we next sought to expand the toolkit of genetic engineering
attribution. While important, lab-of-origin prediction is only one
component of the attribution problem. A fully developed fra-
mework would also include tools focused on laboratory attributes,
which could narrow the number of labs to investigate, and the
research dynamics by which designs collaboratively evolve, which
could generate investigative leads. Furthermore, a suite of such
tools may improve our understanding of the research process
itself. Here, we begin lab attribute prediction with nation-of-
origin prediction, which is particularly relevant for the Biological
Weapons Convention (BWC). In terms of research dynamics, we
begin by predicting the ancestry-descendent relationships of
genetically engineered material.

For these analyses, we used a simple machine-learning model
called a Random Forest (RF)35,36, which ensembles decision trees,
and encoded the DNA sequence of each plasmid with n-grams,
which count the occurrence of n-mers in the primary sequence
(“Methods”), instead of the more complex BPE-DNA motif
encoding and highly parameterized deteRNNt model. We see this
as a simple, but the reasonably performant method for checking
the feasibility of each task.

We inferred the nation-of-origin of a majority of the labs in the
Addgene dataset through provided metadata and, in a few hundred
cases, manual human annotation, without changing the boundaries
of the train-validate-test split (“Methods”). There were 34 countries
present after cleaning (“Methods”). We proposed a two-step nation-
of-origin prediction process: (1) binary classification of a plasmid
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into Domestic vs. International, to identify domestic incidents like
local lab accidents or domestic bioterrorism; (2) multiclass
classification to directly predict a plasmid’s nation-of-origin,
excluding the domestic origin, to identify the source of an
international accident or foreign bio-attack. We found the United
States to make up over 50% of plasmid deposits in all the subsets
(Fig. 4b), so we selected it as the domestic category for this analysis;
in principle, any nation could play this role, and other training
datasets would have a different geographic emphasis. We trained an
RF model, as described above, to perform the binary U.S. vs.
International classification. As before, a ~10% test set was withheld
for evaluation (“Methods”). We found that RF performed
comparably to BLAST (84.2% and 85.1%, respectively), but that
both performed substantially better than guessing the most
abundant class and uniformly choosing a class (Fig. 3a, RF ROC
in Fig. 3b).

We proceeded to nation-of-origin prediction with the remain-
ing international country assignments. A multiclass RF model
was trained on the training set. Prediction accuracies within each
country varied substantially (Fig. 3d), but overall RF accuracy was
75.8% with top 10 accuracy reaching 96.7% (Fig. 3c and
Supplementary Table 3). If asked to predict the top three most
likely countries, which could be more useful for investigators, we
find 87.7% top 3 accuracy for RF compared to 47.0% for guessing
the abundant classes. As shown in Fig. 3e, classification
performance is degraded by low sample size for many countries
in the dataset, explaining some of the variability in Fig. 3d. We,

therefore, expect performance to improve and variability to be
reduced as more researchers in these countries publish genetic
designs. Together, these results suggest that it may be possible to
model genetic engineering provenance at a coarse-grained level,
which should be helpful in cases where a lab has never been seen
before. However, the dataset used here has substantial geographic
bias due to Addgene’s location in North America and the
difference in data and materials sharing practices as a function of
geography. Additionally, the accuracy of our simple model could
be substantially improved. Even with those considerations
addressed, improved nation-of-origin models, as with the other
methods in this paper, should be one part of an integrated toolkit
that assists human decision-makers rather than assigning origin
autonomously.

Inferring collaboration networks by predicting ancestor lab-of-
origin. We continued to expand the toolkit of attribution tools by
evaluating the feasibility of predicting plasmid research dynamics
in the form of ancestry-descendent relationships. These might
help elucidate connections between research projects, improve
credit assignment and provide evidence in cases when the
designer lab has not been observed in the data but may have
collaborated with a known lab. Ancestry relationships may be
caused by deliberate collaboration between one lab sharing an
“ancestor” plasmid with another lab who creates a derivative, or
by incidental reuse of genetic components from published work.
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In our usage, these ancestry-descendent relationships form
“lineages” of related plasmids.

We inferred plasmid ancestor-descendant linkages from the
relevant fields in Addgene which acknowledge sequence con-
tributions from other plasmids (“Methods”). By following these
linkages, we identified 1223 internally connected lineage networks
of varying sizes (example networks in Fig. 4a). Analysis of the
networks revealed that the number of plasmids deposited by lab
and country (Fig. 4b), number of lab-to-lab connections, and
number of connections per plasmid (Fig. 4c) exhibited extremely
skewed, power-law like distributions (“Methods”). These patterns
reflect some combinations of the trends in who deposits to
Addgene and the underlying collaboration process.

Next, we constructed an international lineage network: a
weighted directed graph of ancestry-descendent connections
between labs in different countries, with weights proportional
to the number of unique connections from lab to lab (Fig. 4d and
“Methods”). We used the Google PageRank algorithm, which
scores the importance of each country in the network by
measuring the percentage of time spent in each country if one
followed the links in the network randomly (Fig. 4e and
“Methods”). As expected from the geographic centrality of the
United States in this dataset, it scores by far the highest at 36.2%.
Unexpectedly, Denmark, Austria, and Japan followed as the next
most important nodes despite not being in the top four countries
in terms of raw Addgene contributions.

Finally, we labeled each plasmid with the lab of its most recent
ancestor, e.g., the lab which contributed part of the source

sequence of the plasmid. We call this ancestor lab attribution, to
distinguish that it occurs one step above lab-of-origin attribution
in the lineage network. We re-split the data to ensure the
representation of each ancestor lab in the training and test sets
(“Methods”). On the held-out test set, we find top 1 accuracy of
87.0% and top 10 accuracy of 96.5%, compared to guessing the
most frequent class(es) at 13.6% (k= 1) and 45.0% (k= 10),
respectively (Fig. 4f and Supplementary Table 4). We note that
this high accuracy compared to standard lab-of-origin prediction
is likely explained by having only 188 ancestor labs to guess
between (compared to 1314 previously), and is limited by the
lineage structure we were able to infer from Addgene, which may
be particular to this unique resource instead of representative of
broader trends in collaboration.

Exploring the deteRNNt model. A better understanding of the
predictions of and features learned by neural networks for attri-
bution is desirable. However, while model calibration can be a
universal criterion for any black-box model, it is notoriously
challenging (and often model specific) to visualize and under-
stand the high-dimensional non-linear function of the input data
which a deep neural network represents30,31.

We began by visualizing the learned feature representation of
the model. We took the model’s 1000-dimensional hidden
activations and projected them into two dimensions using a t-
distributed stochastic neighbor embedding37 (tSNE) (“Methods”).
We saw many large, well-separated clusters of plasmids that are
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assigned high probability by the model (Fig. 5a). This is in line
with the expectation that a model can classify a group of plasmids
more accurately if they are more separable in the hidden space.

We next examined three case studies to inspect the contribu-
tion of DNA sequence features to deteRNNt predictions. These
should be taken as suggestive, given the anecdotal nature of
analyzing an example plasmid. We first looked at a plasmid from
Chris Voigt’s lab, pCI-YFP (Genbank JQ394803.1) which is not in
Addgene and has been used for this purpose in prior work21. pCI-
YFP is notable because it is composed of very widespread and
frequently used components (Fig. 5b, below). We found that
sequence-based deteRNNt is uncertain whether this plasmid was

designed by the Voigt Lab or by Baojun Wang’s Lab (~25%
probability to each). Notably, the Wang lab does substantial work
in genetic circuit design and other research areas which overlap
with the Voigt lab. We adapted a method described previously21

to perform an ablation analysis, where the true DNA sequence
within a window is replaced by the unknown symbol N. We scan
a window of 10 N’s across the length of the sequence and predict
the lab-of-origin probabilities for each.

We visualized what sequences were critical for predicting the
Voigt lab (drop-in Voigt probability when ablated) and which
were “distracting” the model into predicting the Wang label (rise
in Voigt probability when ablated) (Fig. 5b). Among the sequence
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features we identified, we found a sequence in a Tn903 inverted
repeat (upstream of the p15a origin of replication) which, when
deleted, causes a spike in Voigt Lab probability, and also found
two unlabeled primer sites, VF2 and VR which seem to be
important for predicting Voigt and Wang, respectively.

Given the age of pCI-YFP (published in 2012), we were
concerned that it might not be the most representative case study
because (1) genetic engineering is a rapidly evolving field and
more recent techniques and research objectives could likely have
shifted the data distribution since this plasmid’s design and
publication, and (2) older plasmids are more likely to have their
subcomponents used in other plasmids, especially within the
same lab where a material transfer is instantaneous.

We identified the plasmid pAAV-Syn-SomArchon (Addgene
#126941) from Edward Boyden’s lab for an additional case study.
This plasmid was also outside our dataset because it was
published38 after our data were downloaded. Beyond representing
a case of generalizing forward in time and to an unpublished
research project, this plasmid also contains the coding sequence
for SomArchon, which is the product of a screening-based
protein engineering effort. We note that despite being a design
newer than our data, this plasmid builds on prior work, and we
expect some microbial opsins and elements of the backbone to be
present elsewhere in Addgene.

Given the entire sequence, sequence-based deteRNNt predicts
the plasmid belongs to the Boyden Lab as its top choice at 44%,
followed by the “Unknown Engineered”‘ category at 10%,
followed by the Adam Cohen lab at 4%, which has also published
on microbial-opsin based voltage indicators39,40. Performing the
same analysis as above, we examined the predictions while
scanning 10 Ns along the sequence (Fig. 5c). Interestingly, there
were many restriction sites that when deleted dropped the
Boyden probability. Restriction sites choices can often be a
hallmark of a research group. In addition, the choice of what to
do to the ATG start codon in a fusion protein (in this case the
eGFP fused to ArchonI) can differ between labs. One could leave
it be, delete it, or mutate it, as the Boyden group chose to do in
this case (ATG to GTG, M to V), which our model appears to
identify as a critical feature (drop-in Boyden probability of ~10%
when deleted) (Fig. 5c).

Unlike architectures which assume a fixed-length sequence,
deteRNNt can accept any length sequence as input. We elected to
use this capability to examine the marginal contribution of K-mer
subsequences of various length to the overall prediction. Unlike
the analysis above, this tests what the model believes about a
fragment of the plasmid in isolation. We selected a sliding
window of a subsequence of length K across pCI-YFP and
visualized the positional average Voigt lab predicted probability
(Fig. 5d). We see that in general subsequence predictions produce
probabilities substantially lower than the full sequence ~25%,
with higher-frequency features showing much lower predicted
probability. K-mers containing BBa_B0015 on the right-hand
terminus of the sequence have a surprisingly high marginal
probability predicting Voigt, around 10% for K= 256, while the
ablation analysis does not identify this as a critical region.

We were curious to what degree the predictions of deteRNNt
on these two case studies were dependent on having the highly
discriminative motifs, like restriction sites and codon selection
noted above, co-occur with backbone elements which are
incidental to the functioning of the system. In practice, the
backbone plasmid may substantially change as part of a new
project within a lab, or an actor who is not inside addgene may
combine elements from existing plasmids for a new purpose.
While we cannot expect a multiclass classification model to
identify a never-before-seen lab, we might hope that it could
identify which components of a plasmid were likely derived from,

or designed by, a given lab. If this subcomponent attribution
could be achieved, it might provide another useful tool for
understanding the origin of an unknown genetic design.

To test this, we designed a gene-drive plasmid for use in Aedes
aegypti by starting from a germline-Cas9 backbone designed in
the Omar Akbari lab (AAEL010097-Cas9, Addgene #100707). In
our design, the original Cas9 is fused with dsRed from elsewhere
in the plasmid, and this backbone was modified to introduce
homology arms and include the payload of a guide RNA cassette
and the SomArchon CDS from the Boyden Lab’s pAAV-Syn-
SomArchon examined above (“Methods”). As we might expect,
the model is very uncertain about this hybrid plasmid and assigns
~35% probability to it being from the “Unknown Engineered”
class. Among the true lab classes it assigns the Akbari lab highest
probability at ~3%, but only gives the Boyden lab 0.3%. When we
apply the scanning K-mer analysis from Fig. 5d, with K= 1024,
we find that the model peaks its Akbari lab predictions on
backbone elements around two piggyBac sites, and furthermore,
the Boyden lab-derived SomArchon payload has a peak of
predicted Boyden probability, indicating that the model could
identify this functional payload even absent clues from the
pAAV-Syn-SomArchon backbone. While these analyses should
be taken as anecdotes as with any case study, we note that future
work could explicitly model the attribution problem as predicting
the lab-of-origin of every position in a sequence.

Discussion
Together, these results suggest a practical and accurate toolkit for
genetic engineering forensics is within reach. We achieve 70%
accuracy on lab-of-origin prediction, a problem previously
thought challenging if not intractable. Our work has the advan-
tages of using biologically motivated, motif-based sequence
models, and leveraging phenotype information to both improve
accuracy and interface with laboratory infrastructure. Further-
more, with model calibration, we provide the first framework for
weighing the predictions of attribution forensics models against
other evidence. Finally, we establish new attribution tasks—
nation-of-origin and ancestor lab prediction—which promise to
aid in bioweapons deterrence and open the possibility of more
creative attribution technologies. While we focus here on security,
attribution has wide implications. For example, attribution could
promote better lab safety by tracing accidental release41. Addi-
tionally, we discovered an interesting, albeit anecdotal, power-law
like skew in Addgene plasmid deposits, which may reflect the
particular dynamics of this unique resource, but is also consonant
with prior work on scale-free patterns of scientific influence42–44.
We believe that a deeper understanding of the biotechnology
enterprise will continue to be a corollary of attribution research,
and perhaps more importantly, that computational character-
ization tools, like ancestor lab prediction, will directly promote
openness in science, for example by increasing transparency in
the acknowledgement of sequence contributions from other labs,
and establishing a mechanism by which community stakeholders
and policymakers can probe the research process.

Our analysis has limitations. Machine learning depends on
high-quality datasets and the data required to train attribution
models is both diverse and scenario dependent. That said, we
believe it is the responsibility of the biotechnology community to
develop forensic attribution techniques proactively, and while the
Addgene attribution data provide a reasonable model scenario,
future work should look to build larger and more balanced
datasets, validate algorithms on other categories of engineered
sequences like whole viral and bacterial genomes, and analyze
their robustness to both obfuscation efforts and dataset shifts,
especially considering new methods for robust calibration45. We
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further note that 70% lab-of-origin attribution accuracy is not
conclusive on its own, and any real investigation with tools at this
level of accuracy would do well to almost entirely rely on human
expertise. However, combined with the traditional investigation,
microbial forensics3,4, isotopic ratio analysis46–48, evolutionary
tracing, sequence watermarking49,50, and a collection of machine-
learning tools targeting nation-states, ancestry lineages, and other
angles, our results suggest that a powerful integrated approach
can, with more development, amplify human expertise with
practically grounded forensic algorithms. In the meantime,
developing automated attribution methods will help scale efforts
to understand, characterize and study the rapidly expanding
footprint of biotechnology on society, and may in doing so pro-
mote increased transparency and accountability to the commu-
nities affected by this work.

We see our results as the first step toward this integrated approach,
yet more work is needed. The bioengineering, deep learning, and
policy communities will need to creatively address multidisciplinary
problems within genetic engineering attribution. We are hopeful that
the gap between these fields can be closed so that tools from deep
learning and synthetic biology are proactively aimed at essential
problems of responsible innovation.

Methods
Graphing and visualizations. All graphs and plots were created in python using a
combination of the seaborn (https://seaborn.pydata.org/), matplotlib (https://
matplotlib.org/3.1.0/index.html), plotly (for geographic visualization and inter-
active 3d hidden state visualization: https://plot.ly/) and networkx (https://
networkx.github.io/). The graphics in Fig. 1a were created in part with BioRender.
com.

Processing the Addgene dataset. The dataset of deposited plasmid sequences
and phenotype information was used with permission from Addgene, Inc.

Scientists using Addgene may upload full or partial sequences along with
metadata such as growth temperature, antibiotic resistance, vector backbone, vector
manufacturer, host organism, and more. For quality control, Addgene sequences
portions of deposited plasmids, and in some cases sequences entire constructs. As
such, plasmid entries featured sequences categorized as addgene-full (22,937),
depositor-full (32,669), addgene-partial (56,978), depositor-partial (25,654).
When more than one category was listed, we prioritized plasmids in the order
listed above. When there was more than one entry for a category, the longest
sequence was chosen. If more than one partial sequence was present, we
concatenated them into a single sequence. The final numbers by sequence
category were addgene-full (22937), depositor-full (28465), addgene-partial
(27185), and depositor-partial (3247). Plasmids were dropped if they did not have
any registered sequences. Any Us were changed to Ts and letters other than A, T,
G, C, or N were changed to Ns. The resulting dataset contained 81834 plasmids,
from 3751 labs.

The raw dataset contains as many as 18 metadata fields from Addgene. In the
final dataset, we kept only host organism species, growth temperature, bacterial
resistance, selectable markers, growth strain, and copy number. These fields were
selected because they are phenotypic characteristics we expect to be easy to
measure in the scenario considered here, where a sample of the organism is
available for sequencing and wet-lab experimentation. For more information on
what these phenotyping assays might look like, see Supplementary Table 1.

Metadata fields on Addgene are not standardized and have many irregularities
as a result. To deal with the lack of standardization, our high-level approach was to
default to conservatism in assigning a given plasmid some phenotype label. We
used an “other” category for each field to avoid noisy or infrequent labels, in
particular, we assigned any label that made up <1% of all labels in some field to
“other”. Additionally, some of the fields had multiple labels e.g., the species field
may list multiple host organisms: “H. sapiens (human), M. musculus (mouse), R.
norvegicus (rat)”. These fields were one-hot encoded, allowing multiple columns to
take on positive values if multiple labels were present. If the field contained no
high-frequency labels (>1%) and was not missing, the “other” column was set to 1.
A small number of plasmids (117) had sequences but no metadata. While far from
perfect, our choice to use the default category of “other” to avoid introducing noisy
information should prevent spurious features from being introduced by including
phenotypic metadata. Given the performance boost achieved by including even this
very minimal phenotype information, we are enthusiastic about future efforts to
collate more standardized, expressive and descriptive phenotype information.

Inferring plasmid lineage networks. Many plasmids in the Addgene database
reference other plasmids used in their construction. Within the metadata of each

plasmid, we searched for references to other sequences in the Addgene repository,
either by name or by their unique Addgene identifier. Plasmid names were unique
except for 1519 plasmids that had names associated with more than one Addgene
ID (331 of these also had duplicate sequences). However, none of these plasmids
with duplicate names were referenced by name by some other plasmid. We con-
sidered a plasmid reference in one of the following metadata fields to be a valid
reference: A portion of this plasmid was derived from a plasmid made by, Vector
backbone, Backbone manufacturer, and Modifications to backbone. Self-references
were not counted, and in the rare case where two plasmids referred to each other,
the descendent/ancestor relationship was picked at random.

We were interested in discovering networks of plasmids with shared ancestors
—collectively we may call this subset of plasmids a lineage network. The problem
of assigning plasmids to their associated network reduces to the problem of finding
a node’s connected component from an adjacency list of a directed, potentially
cyclic, graph. The algorithm proceeded iteratively: in each round we picked some
unvisited node. We then performed breadth-first search (plasmids were allowed to
have multiple ancestors) and assigned all nodes visited in that round to a lineage
network. In the case where a visited node pointed to a node that was already a
member of some network, the two networks were merged. Keeping track of nodes
visited in each round prevented the formation of cycles. We verified this result by
reversing our adjacency list and running the same algorithm, equivalent to
traversing by descendants instead of ancestors.

Train-test-validation split. To rigorously evaluate the performance of a predictive
algorithm, strong boundaries between the datasets used for training and evaluation
are needed to prevent overfitting. We follow best practices by pre-splitting the lab-
of-origin Addgene data into an 80% training set, ~10% validation set for model
selection, and ~10% test set held out for final model evaluation. In our vocabulary,
the training set can be used for any optimization, including fitting an arbitrarily
complex model. The validation set may only be used to measure the performance
of an already trained model, e.g., to select architecture or hyperparameters; no
direct training. Finally, the test set may only be used after the analysis is completed,
the architecture and hyperparameters are finalized, as a measure of generalization
performance. We addressed two additional considerations with the split:

1. A large number of labs only deposited one or a few sequences. This is
insufficient data to either train a model to predict that lab class or
reasonably measure generalization error.

2. Like many biological sequence datasets, the Addgene data are not
independent and identically distributed because many plasmids are derived
from others in the dataset, potentially creating biased accuracy measures due
to overperformance on related plasmids used for both training and
evaluation.

To handle the first, we choose to pool plasmids with fewer than ten examples
into an auxiliary category called “Unknown Engineered”, and additionally stratify
the split to ensure that every lab has at least three plasmids in the test set.

For the second, we inferred lineage networks (see above). We stratified the split
such that multi-lab networks were not split into multiple sets. In other words, each
lineage was assigned either to the training, validation, or test set as a group, not
divided between them.

We used the GroupShuffleSplit function in python with sklearn (http://scikit-
learn.org/stable/) to randomly split given these constraints. The final split had
63,017 training points, 7466 validation points, and 11,351 test points. The larger
test set is a direct result of enforcing 1/3 of rare lab’s plasmids are split there for
generalization measurement. We note that, because model selection is occurring on
the validation set which has no representation of a number of rare labs, there is a
built-in distributional shift that makes generalizing to our test set particularly
challenging. However, we believe that this is appropriate to the problem setting—
attribution algorithms should be penalized if they cannot detect rare labs, because
in a deployment scenario the responsible lab may be unexpected. A visualization of
this phenomena, and the lab distribution after splitting can be found in
Supplementary Fig. 4.

We confirmed that this cleaning and splitting procedure did not dramatically
change the difficulty of the task from prior work by reproducing the model
architecture, hyperparameters, and training procedure of a model with known
performance on a published dataset (see Baselines in “Methods”)21.

Byte-pair encoding. The sequences from the training set were formatted as a
newline-separated file for Byte Pair Encoding inference. The inference was per-
formed in python on Amazon Web Services (AWS) with the sentencepiece package
(https://github.com/google/sentencepiece) using both the BPE and Unigram51

algorithms, with vocabulary sizes in [100, 1000, 5000, 10000], no start or end token,
and full representation of all characters. The resulting model and vocabulary files
were saved for model training, which used sentencepiece to tokenize batches of
sequence on the fly during training. For the Unigram model, which is probabilistic,
we sampled from the top ten most likely sequence configurations.

For the visualization and interpretation of the 1000-token BPE vocabulary
ultimately selected by our search algorithm, we took the vocabulary produced by
sentencepiece, which has a list of tokens in order of merging (which is based on
their frequency), and plotted this ordering vs. the length of the detected motif. We
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selected three example points visually for length at a given ranking. These sequence
motifs were interrogated with BLAST24 with the NCBI web tool, and additionally
with BLAST tool on the iGEM Registry of Standard Biological Parts (http://parts.
igem.org/sequencing/index.cgi). For each motif, a collection of results were
compared with their plasmid maps to place the motif sequences within a plasmid
component. We found, as numbered in the figure, motif 1 repeated twice in the
SV40 promoter, motif 2 repeated twice in the CMV promoter, and motif 3
occurring slightly downstream of the pMB1 origin of replication.

Training deep recurrent neural networks. We consider a family of models based
on the LSTM recurrent neural network and a DNA motif-base encoding. We for-
mulated an architecture and hyperparameter search space based on prior experience
with these models. In particular, we searched over categorical options of learning
rate, batch size, bidirectionality, LSTM hidden size, LSTM number of layers,
number of fully connected layers, extent of dropout, class of activations, maximum
length of the input sequence and word embedding dimension. We further searched
over parameters of the motif-based encoding, including whether it was Unigram or
BPE based and the vocabulary size. Configurations from this categorical search
space were sampled and evaluated by the Asynchronous Hyperband52 algorithm,
which evaluates a population of configurations in tandem and halts poor per-
forming models periodically. Thus, computational resources are more efficiently
allocated to the better performing models at each step in training. Our LSTM
architecture was optimized with Adam using categorical cross-entropy loss in
PyTorch (https://pytorch.org/) and hyperparameter tuning with Asynchronous
Hyperband used ray tune (https://ray.readthedocs.io/en/latest/tune.html).

In early exploratory experiments, we found that including metadata in the
initial training process caused a rapid increase but quick plateau of the Hyperband
population. We noticed that these models usually had small LSTM components,
suggesting that they were ignoring sequence information. This led us to
hypothesize that adding metadata early in training led to an attractive local
minimum for the tuning process which neglected sequence, exploiting the fact that
Hyperband penalizes slow-improving algorithms.

We, therefore, adopted a progressive training policy as follows. First, 250
configurations of the search space described above were evaluated with ray tune
(Supplementary Figs. 2 and 3) over the course of ~1 week on an AWS p2.8xlarge
machine with K80 GPUs. The best-performing model was selected for a stable and
steadily decreasing loss curve (Supplementary Fig. 3) after 300 Hyperband steps,
each of 300 weight updates (~90,000 updates total). This model configuration was
saved and trained from scratch to ~200,000 weight updates, selected based on an
early stopping heuristic on the validation loss. Next, this model was truncated to the
pre-logit layer, and metadata was concatenated with the output of this sequence-
only model (Supplementary Fig. 1), followed by one hidden layer and the logit layer.
This was further trained, but with the LSTM sequence model frozen until validation
loss plateaued. Finally, the full model was jointly trained until validation loss
plateaued. The effect of this approach was to prevent the model converging on a
metadata-focused local optimum without overfitting on the training set (which was
facilitated by training only components of the model at a time).

After fully training and finalizing results using our original random split (see
above), three additional random splits were performed and training was repeated
as before using different random seeds but the same hyperparameters as were
found in the first hyperband search. We found that even without hyperparameter
tuning on each newly split dataset, the results for the full and sequence-only
deteRNNt models were consistent with our earlier results (Supplementary Fig. 5).

Calibration analysis. We followed the methodology of Guo et al.32. Prediction on
the test set was binned into 15 bins, Bm. The difference between the confidence of a
model and the accuracy of the resulting model’s predictions, termed calibration can
be measured by two metrics, Expected Calibration Error (ECE) measuring the
average difference between prediction confidence and ground-truth accuracy, and
Maximum Calibration Error (MCE) measuring the maximum thereof. They are
defined below (n is the number of samples).

ECE ¼
XM

m¼1

Bmj j
n

acc Bmð Þ � conf Bmð Þj j; ð1Þ

MCE ¼ max
m2f1;¼ ;Mg

acc Bmð Þ � conf Bmð Þj j: ð2Þ

Temperature scaling. Temperature scaling adjusts the logits (pre-softmax output)
of a multiclass classifier of c classes by dividing them by a single scalar value called
the temperature. For a categorical prediction q for a single example, logits z2 Rc

predicted by the network, scalar temperature T, and the softmax function σSM we
have a the temperature-scaled prediction:

q̂ ¼ max
k

σSM
z i
T

� �ðkÞ
: ð3Þ

The temperature is learned on the validation set after the model is fully trained.
We used PyTorch and gradient descent with Adam optimizer to fit the temperature
value. Subsequently, all of the logits predicted for the test set by the original model
were divided by the temperature and softmaxed to get confidences as shown in Fig. 2

(right). Because the maximum of the softmaxed vector is mathematically equivalent to
the maximum of a softmax on scaled logits, we concluded that the slight difference in
the accuracy of the calibrated model was due to floating-point errors.

Random Forest models. We used scikit-learn package (https://scikit-learn.org/
stable/index.html) implementation of Random Forest Regressor. Unless otherwise
specified, we used 1000 estimators with 0.5 as the maximum proportion of features
to look at while searching for the best split and with class weights inversely pro-
portional to class frequency.

For Random Forest analysis, we represented the sequences as frequencies of 1,
2, 3, and 4-grams. We constructed the n-gram vocabulary using the training set,
and then only used the frequencies of n-grams included in the vocabulary to
construct features (n-gram frequencies) for the validation and test sets. Where
specified, we concatenated one-hot-encoded metadata (phenotypic information) to
these n-gram frequencies. We transformed the n-grams features using TF-IDF
weighting53 before using them for the Random Forest models.

Nation-of-origin data. Addgene has lab country information for many depositing
labs (https://www.addgene.org/browse/pi/). For those missing, publication links
were followed to affiliation addresses, and the country of the lab was manually read
off the address and cross-checked with a web search. When country information
was missing from a lab, if there was conflicting information, and for very rare
countries, these classes were dropped and all the corresponding plasmids for that
lab were dropped from all three training split sets. No reshuffling of the train,
validation and test data occurred.

Lineage network analysis. Lab, country, and ancestry-descendent linkage counts
were obtained from the training set and plotted as described above, rank-ordering
where specified. Networks were analyzed for size and graph diameter with Net-
workX. Lab lineages were obtained from plasmid lineage data by considering the
presence of a link from plasmid X from lab A to plasmid Y from Lab B to be a
directed edge from Lab A to B. Parallel edges were not allowed and weight was not
considered. Self-edges were disregarded. The country lineage network was con-
structed from the lab lineage network, by considering a connection between lab X
in country A and lab Y in country B to be a directed edge between country A and B.
This time, weights were given as the number of lab-to-lab connections. Parallel
edges were not allowed, but self-edges were. For simplicity, the arrows of the
directed graph were not shown in the NetworkX visualization. A version of Google
PageRank54 was computed on the directed, weighted graph with NetworkX.

Ancestor lab prediction. Due to the earlier biased train-validation-test split which
deliberately segregated lineage networks into one of the three sets to minimize
ancestry relationships that could lead to overfitting, we reconsidered the dataset for
ancestor lab prediction. By definition, an ancestor plasmid and all its descendants
will always be in the same set. So, if the ancestor is in the validation set, none of its
descendants is available for training.

Therefore, we first parsed the most recent ancestor for each plasmid from the
lineage data and assigned each plasmid that ancestor’s lab. We then randomly 80-
10-10 re-split the data.

We recognize that there is some potential for meta-overfitting by performing
this reshuffle, even though ancestor lab prediction is a unique task from any of the
others done so far. However, as this analysis was using a simple model intending to
show tractability rather than peak performance, we decided to enable the right
train-test-split was worth the chance.

Interpreting the deteRNNt model. To visualize the hidden states of the model, we
first performed inference of the deteRNNt model on the validation set and extracted
the activations of the last hidden layer (just prior to the layer which outputs logits).
These hidden states were 1000-dimensional. To visualize them, we projected them
into two and three dimensions using tSNE37 in scikit-learn with default hyper-
parameters. We colored each point by P(True Lab) as assigned by the model for
that example. Note that throughout this section when we refer to model prob-
abilities, we mean the probabilities given by the model after temperature scaling
calibration has been applied. The three-dimensional interactive plot was made
using plotly and labeled with each plasmid’s true lab-of-origin.

For the analyses of sequence motifs (Fig. 5b–e), we use the deteRNNt sequence-
only model as phenotype information was not available for all plasmids. For the
scanning-N ablation analysis (Fig. 5b, c), we made all possible sequences with a
window of 10 Ns inserted and performed standard deteRNNt inference to predict
logits. We then generated per-position predicted logits by selecting all the sequences
which include a given position as mutated to N, and averaging their logits together.
We then apply softmax over each of these position logits to generate per-position
predicted probabilities, which are indexed by the relevant labs to visualize.

For the scanning subsequence analysis (Fig. 5d, e), we made all possible
subsequences of given length K and predicted logits for each, as above. Note that
these are subsequences in isolation, as if they were sequences from a new plasmid,
rather than padded with Ns or similar. For each position in the full sequence, we
selected all the subsequences which include that position and averaged together
their predicted logits, softmaxing to visualize probabilities as above.
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We custom-designed a gene-drive vector using the Akbari germline-Cas9 plasmid
AAEL010097-Cas9 (Addgene #100707) as a baseline. We modified it by removing the
eGFP sequence attached to Cas9 and replacing it with the dsRed1 sequence within the
same plasmid (but removing the Opie2 promoter in the process). We then identified
two Cas9 guide RNAs against the Aedes aegypti AeAct-4 gene55 (Genbank Accession
Number: AY531223), designed to remove most of the coding region, that are
predicted to have high activity using CHOPCHOP (https://chopchop.cbu.uib.no)56.
These guides were placed downstream of the Akbari identified AeU6a and AeU6c
promoters(Addgene #117221 and #117223, respectively)57. We also included
somArchon-GFP from pAAV-Syn-SomArchon (Addgene #126941, deposited by
Edward Boyden’s group) as a non-Akbari derived sequence. The Cas9-dsRed1_guide
cassette_somArchon-GFP payload was flanked by 500 bp homology arms (upstream
of 5′ guide and downstream of 3′ guide).

To analyze the results of our ablation and subsequence analyses, we indexed out
the positions in the sequence with the most extreme changes in predicted
probability and manually examined these regions in Benchling. We performed
automated annotation, used BLAST58, and searched various repositories for the
highest-ranked fragments in order to identify restriction sites, primers sites and
other features.

Baselines. The comparison with BLAST was performed using the blastn command
line tool from NCBI58. At a high level, we can consider the BLAST baseline to be a
nearest-neighbor algorithm, where the blast e-value is used to define neighbors in
the training set. For each of the lab-of-origin and nation-of-origin prediction tasks,
a fasta file of plasmid sequences from the training set was formatted as a BLAST
database. Then, each test set was blasted against this database with an e-value
threshold of 10. The resulting training set hits were sorted by e-value, from lowest
to highest, and used to look up the training set labels for each sequence. For top 1
accuracy, the lowest e-value sequence class was compared to the true class. For top
10 accuracy, an example was marked correct if one of the labels of the lowest 10 e-
value hits, after dropping duplicate hits to the same lab, corresponded to the correct
test-set label. This dropping of duplicates ensured that the BLAST baseline was
permitted up to 10 unique lab “guesses”, which is necessary because occasionally
the top-k ranked sequence results all have the same lab label. To perform the
nation-of-origin and U.S. vs. foreign comparison, the same blast results were fil-
tered to drop the U.S. or binarized so the U.S. was a positive class, respectively.

The comparison with the Convolutional Neural Network (CNN) method
copied the architecture and hyperparameters reported in Nielsen & Voigt (2018)21.
The model was implemented in PyTorch. We trained for 100 epochs, as reported in
previous work21, on an Nvidia K80 GPU using the Amazon Web Services cloud p2.
xlarge instance. Training converged on a validation score of 57.1% and appeared
stable (Supplementary Fig. 6). After training for this duration, we saved the model
and evaluated performance on the held-out validation and test sets. Test-set
performance was 50.2%, which was very near the previously reported accuracy of
48%21, leading us to conclude that this model’s performance was reproducible and
robust to increases in both the number of labs and number of plasmids in our
dataset compared to Nielsen & Voigt (2018) (827 vs. 1314 labs, 36,764 vs. 63,017
plasmids)21. In other words, this replication of the architecture, hyperparameters
and training procedure of previous work with everything held constant to the best
of our knowledge except the dataset, suggests that the effect of having more
examples (typically associated with an easier task) and more labs to distinguish
between (typically associated with a more difficult task) approximately cancel out,
or perhaps net to a very weak (2%) difference in the difficulty of our dataset.

In lab-of-origin, U.S. vs. foreign, nation-of-origin, and ancestor lab prediction,
we show comparisons with a baseline based on guessing the most abundant class,
or classes (in the case of top 10 accuracy) from the training set. We also show the
frequency of success based on uniformly guessing between the available labels (1/
number of categories).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The sequence of pCI-YFP sequence can be obtained from Genbank (Genbank
JQ394803.1). pAAV-Syn-SomArchon is available on Addgene (Addgene #126941).
AAEL010097-Cas9 is available on Addgene (Addgene #100707). U6a and U6c can be
obtained from Addgene (Addgene #117221 and #117223, respectively). The sequence of
the custom Akbari/ Boyden gene drive (Fig. 5e) is available in the github repository
associated with this paper at https://github.com/altLabs/attrib/blob/master/sequences/
custom_drive.fasta. All other data are available on request.

Code availability
Code is available in the following github repository: https://github.com/altLabs/attrib.
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