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Abstract
Machine learning has been suggested as a means of identifying individuals at greatest risk for hospital readmission,
including psychiatric readmission. We sought to compare the performance of predictive models that use interpretable
representations derived via topic modeling to the performance of human experts and nonexperts. We examined all
5076 admissions to a general psychiatry inpatient unit between 2009 and 2016 using electronic health records. We
developed multiple models to predict 180-day readmission for these admissions based on features derived from
narrative discharge summaries, augmented by baseline sociodemographic and clinical features. We developed models
using a training set comprising 70% of the cohort and evaluated on the remaining 30%. Baseline models using
demographic features for prediction achieved an area under the curve (AUC) of 0.675 [95% CI 0.674–0.676] on an
independent testing set, while language-based models also incorporating bag-of-words features, discharge
summaries topics identified by Latent Dirichlet allocation (LDA), and prior psychiatric admissions achieved AUC of
0.726 [95% CI 0.725–0.727]. To characterize the difficulty of the task, we also compared the performance of these
classifiers to both expert and nonexpert human raters, with and without feedback, on a subset of 75 test cases. These
models outperformed humans on average, including predictions by experienced psychiatrists. Typical note tokens or
topics associated with readmission risk were related to pregnancy/postpartum state, family relationships, and
psychosis.

Introduction
The ability of prediction tools based on machine

learning (ML) to identify high-risk individuals among
clinical populations has been embraced across health
care1. In psychiatry, a number of reports suggest the
ability of these approaches to improve on chance in pre-
dicting hospital readmission, suicide attempts, or mor-
tality, for example2,3. In previous work, we demonstrated
that incorporation of features based on topic modeling of

narrative notes improved prediction among individuals
with major depressive disorder. This approach has the
important feature of yielding topics that may be more
interpretable than individual words or codes4,5.
However, several important questions remain unan-

swered by prior work. First, most prior investigations
focused on a single, homogeneous patient group. In real-
world implementation, clinical populations are rarely so
selected, which may pose challenges for natural language
processing methods. In particular, how well could such
models account for populations that are both medically
and psychiatrically complex? Second, while prior work
indicates improvement over chance, a more relevant
question is performance compared to human experts:
how well do clinicians perform on a given task, and can
ML outperform human learning?
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To address these concerns, we drew on 8 years of
electronic health records from a large inpatient psychia-
tric unit. We applied standard ML approaches and then
compared these approaches to expert and nonexpert
clinical annotation, as a means of understanding whether
ML models could equal or surpass human prediction.

Materials and methods
Study design and cohort generation
We utilized a retrospective cohort design, drawing from

the electronic health records of a Boston academic med-
ical center’s inpatient psychiatric unit. All consecutive
admissions between January 1, 2009 and December 31,
2016 were included. Data were extracted and stored using
i2b2 server software6; coded features extracted included
age, sex, race/ethnicity, insurance type, as well as admis-
sion diagnoses, with ICD9 codes mapped to the HCUP/
CCS Level 2 ontology7. The data mart also included all
narrative discharge summaries. In total, we analyzed 5076
health records, 75 of which were randomly sampled from
the test split for our human prediction study. The primary
outcome of interest was all-cause hospital readmission
within 180 days, recognizing that psychiatric illness con-
tributes to adverse outcomes that may not be fully cap-
tured by psychiatric hospitalization.
The Partners HealthCare Human Research Committee

approved the study protocol. As no participant contact
was required in this study based on secondary use of data
arising from routine clinical care, the committee waived
the requirement for informed consent as detailed by 45
CFR 46.116.

Natural language processing of discharge summaries
We preprocessed the raw text of the records by low-

ercasing the words, removing the punctuation, and
replacing all numbers with a placeholder “NUM” token.
The text was split into tokens with the regex-based
tokenizer of the nltk library v3.2.58, with whitespace
characters serving as token delimiters. The resulting
vocabulary consisted of 20878 tokens. Length distribution
of the discharge summaries is summarized in [Supple-
ment A Fig. 1]. After text preprocessing, we represented
the input discharge narratives using several sets of fea-
tures which are described below. No attempt was made to
distinguish discharge summary sections, as note format
varied substantially in structure.

TF-IDF features
Term frequency-inverse document frequency scoring9

allows for weighting every word of the given document by
its importance relative to the entire corpus. We used the
scikit-learn library v0.20.210 to convert every document to
a distribution of scores over a pruned vocabulary. The
pruning procedure included filtering out common English

stopwords, setting the maximum document frequency to
90% of all documents and the minimum document fre-
quency to 10, based on prior work with psychiatric dis-
charge summaries and visual inspection of distributions.
This filtering procedure aims to remove noise such as
typographic errors in the narrative notes. As a result, the
size of the initial vocabulary was reduced to 11062 unique
tokens.

LDA features
Latent Dirichlet Allocation11 is an unsupervised gen-

erative statistical model that uses word co-occurrence to
derive a representation for each input document. The
derived representation takes the form of a distribution
over a predefined number of topics, with each topic cor-
responding to a distribution over a set of words. In our
experiments, we used the gensim library v3.7.012 that uses
raw word counts as input to compute the topic distribu-
tions. We varied the number of topics from 25 to 100,
selected a priori based on prior work with narrative
clinical notes to balance overfitting risk without yielding
overly sparse topics, and, based on the held-out validation
dataset, found the optimal number to be 75 topics (see
[Supplement B Tables 1 and 2]). Stability of Supplement B
results was confirmed via multiple runs. The resulting
75-dimensional vectors (henceforth, LDA-75) were used
as input to the classifier models. Sample derived topics are
shown in Supplement C Table 3.

Prediction models
All models incorporated baseline sociodemographic and

clinical features, defined as age at admission, gender, self-
reported race (coded as White, African-American, Asian,
unknown, and other), age-adjusted Charlson comorbidity
index (ACCI)13,14, and insurance type (coded as public
payer, public Medicaid, public Medicare, and private
payer).
Out of the entire cohort, four patients had missing

values for age and ACCI index. These missing values were
imputed with the corresponding averages over the dataset
and the resulting numeric features were further normal-
ized to fall in the range between zero and one. Categorical
features were encoded using the one-hot encoding
scheme (i.e., presence/absence of a feature). This proce-
dure resulted in a 13-dimensional demographic baseline
feature vector per admission. Additionally, the number of
prior psychiatric admissions (PrPA) within the past
12 months was used as a predictive feature.
Using the representation described above, we trained

support vector machines with linear kernel (SVM) for dif-
ferent feature combinations, including demographics, TF-
IDF, LDA-75, demographics+TF-IDF, demographics+LDA,
demographics+TF-IDF+ LDA, and demographics+TF-IDF
+ LDA+ PrPA. We experimented with other simple ML
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models (including logistic regression (LR), gradient boosting
(XGB), multilayer perceptrons (MLP)), but all models had
very similar levels of performance.
In addition to these standard ML algorithms, in pre-

liminary experiments, we also examined two recurrent
neural networks: a standard long short-term memory
(LSTM) recurrent neural network15 and a hierarchical
LSTM with attention to model a sequence of sentences
where each sentence is a sequence of words16. However,
due to notably large input size of the tokenized docu-
ments, the selected LSTM-based architectures struggled
to encode all the relevant information in single fixed-
length vectors, leading to consistently poor performance
even with optimization of hyperparameters.

Comparison with human prediction
We sought to understand the difficulty of the prediction

task for human raters, including both clinical experts and
individuals without domain-specific knowledge. To
achieve this objective, we used two sets of human raters
(n= 7 total). The first consisted of three psychiatrists with
at least 5 years of clinical experience, including work on
inpatient units and consult-liaison psychiatry. The second
consisted of four graduate students without formal post-
graduate training in psychiatry or psychology. Human
raters were given access to the full discharge summary, as
well as the structured demographics information, but
were blinded to model features including prior psychiatric
admissions (PrPA). Each rater began by scoring the same
25 records, randomly selected to include 9 readmissions
and 16 non-readmissions within 180 days. Each record
was scored in terms of likely readmission17 and the
associated judgment confidence. In order to establish a
baseline for prediction accuracy, no feedback was pro-
vided for these predictions. In the second phase (hence-
forth, learning phrase), participants scored a set of
additional 50 randomly sampled records (with the same
ratio of readmission to non-readmission), receiving feed-
back about the correct answer after each prediction.
These additional 50 records were the same for all human
raters, and were shown in the same order.

Results
Characteristics of the full cohort (n= 5076 psychiatric

admissions), as well as the training (70%) and testing
(30%) cohorts stratified by sex, age, ACCI score, and
number of prior admissions, are presented in Table 1.
The cohort included a broad range of admission diag-
noses, with 44 unique CCS categories in total; the most
common diagnosis was mood disorder (5.8.657). The
full distribution of the top 10 most frequent admission
CCS codes can be found in [Supplement C Fig. 2]. Out
of the 5076 patients, 1168 were readmitted within
180 days (23%).

Machine learning
The training set was randomly split into 10 folds to

perform cross-validation, which was carried out separately
with each of the models (SVM, LR, XGB, and MLP) for
the feature representations listed in Methods section
above. Using random search over hyperparameter space,
we picked the best model hyperparameters based on the
average score over the folds. To ensure the reproducibility
of the results, we repeated the cross-validation procedure
100 times resulting in 100 best hyperparameter config-
urations. We tested the resulting 100 fine-tuned models,
and we report the average test AUC scores with the
corresponding confidence intervals in Table 2.
To identify the most relevant features in ML models

and facilitate interpretation, we extracted the top 20
weights (sorted by their magnitude) assigned by the best
logistic regression model (with the AUC of .726). The
histogram suggests that prior psychiatric admissions,
single tokens (pregnancy-related terms; family relation-
ships) as well as age-adjusted Charlson comorbidity index
represent major predictors of readmission (Fig. 1). Topics
provide additional predictive support, most notably cap-
turing family relationships (Topic 13) and psychosis and
antipsychotics (Topic 44).

Human learning
Since human raters did not have access to the infor-

mation about prior psychiatric admissions, we focused on
the SVM results, which yielded the best performance for
the demographics+TF-IDF+ LDA-75 feature set. Table 3
compares prediction results for 180-day readmission for

Table 1 Population characteristics.

Variable Value Train Test

Count 3553 1523

Gender F 1781 (50.1%) 771 (50.6%)

M 1772 (49.9%) 752 (49.4%)

Prior admissions 2.3 [4.5] 2.2 [4.0]

ACCI 3.7 [4.5] 3.8 [4.6]

Age 45.0 [16.7] 45.2 [16.6]

Median income of ZIP code 65557 [23427] 65679 [23869]

Insurance Private 2268 (63.9%) 970 (63.7%)

Public 1285 (36.1%) 553 (36.3%)

180-day readmission Y 819 (23.1%) 349 (22.9%)

N 2734 (76.9%) 1174 (77.1%)

ACCI is Age-adjusted Charlson Comorbidity Index. Parenthetical numbers for
categorical variables denote % membership. Bracketed numbers for continuous
variables denote the standard deviation. Note that prior admissions statistics
refer to prior general (rather than psychiatric) admissions.
The bold font corresponds to the best performing model for a given set of
features (in the leftmost column).
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the SVM models and human raters. Since AUC requires
ranked scores (and therefore cannot be reported for
human judgments), we report F1, accuracy, and balanced
accuracy. Also, for the purposes of comparison, the fig-
ures reported for ML models come from a single run,
rather than averaged over multiple runs. We also report
the baseline performance for two arbitrarily-selected
predictors to capture the recurrent nature of psychiatric
illness: (a) always predicting that the patient will be
readmitted, and (b) always predicting that the patient will
be readmitted if there are 5 or more prior psychiatric
admissions in the past 12 months.
Overall, all of the ML models, including very basic ones,

outperformed the average human performance (balanced
accuracy of 0.484 for expert and 0.635 for nonexpert
human judges, respectively). Note that the performance of
the ML models on the human-annotated learning-phase
data (n= 50) is higher than on the full test set (n= 1523),
with F1 scores of 0.52–0.63 and 0.41–0.45, respectively.
Also, for this smaller subset, models based on the minimal
baseline demographic features outperformed the models
using NLP-derived features. This suggests that the
human-annotated subset was not entirely representative

of the full test set, which is in part due to the small
sample size.
We also looked at human performance over time, both

with and without feedback on whether the generated
predictions were correct. Figure 2 illustrates the average
performance for expert (MD) and nonexpert (non-MD)
annotators; each timestep of the x-axis indicates a set of
15 predictions (i.e., 15 hospital discharges) grouped
together using a sliding window with a 5-note stride. The
first three timesteps (covering notes 0–25) indicate
human performance before receiving any feedback.
Starting from the 25–40 window, we can see performance
over time.

Discussion
In this investigation of more than 5000 admissions to a

psychiatric inpatient unit, we found that prediction models
incorporating topics derived from Latent Dirichlet Allocation
in addition to simpler bag-of-words features performed
comparably to, or better than, the models relying solely on
bag-of-words or on coded data. These findings are consistent
with our own and other prior work5; the explanatory power
of a single engineered feature, namely prior admissions, is
also unsurprising as a marker of illness chronicity and
severity. The topics themselves were notable for coherence in
capturing predominantly comorbidities (e.g., orthopedic
injury), psychosocial features (e.g., family relationships,
homelessness), or symptoms (e.g., psychosis, substance
abuse).
Conversely, the performance of the models we present

is markedly poorer than that of many models predicting
medical readmission1. We would underscore that this
likely reflects the challenging nature of the task; indeed,
clinical features strongly predictive of readmission remain
unclear, and there are no validated biomarkers or markers
of disease progression.
Although the models we developed improve sub-

stantially upon chance, we also sought to understand their
ability to improve upon prediction by clinicians and
nonclinicians. This task allows us to ground these models

Fig. 1 Weights for most important features in logistic
regression model.

Table 2 Overall performance of the tested models.

LR SVM XGB MLP

Demographics 0.668 [0.665–0.671] 0.659 [0.658–0.660] 0.675 [0.674–0.676] 0.655 [0.652–0.658]

TF-IDF 0.682 [0.678–0.686] 0.692 [0.691–0.693] 0.673 [0.670–0.676] 0.630 [0.620–0.640]

LDA-75 0.661 [0.660–0.662] 0.663 [0.662–0.664] 0.634 [0.633–0.635] 0.649 [0.646–0.652]

Demographics+ TF-IDF 0.687 [0.679–0.695] 0.698 [0.697–0.699] 0.688 [0.687–0.689] 0.631 [0.621–0.641]

Demographics+ LDA 0.685 [0.684–0.686] 0.685 [0.684–0.686] 0.679 [0.677–0.681] 0.643 [0.628–0.658]

Demographics+ TF-IDF+ LDA-75 0.696 [0.695–0.697] 0.701 [0.699–0.703] 0.688 [0.687–0/689] 0.626 [0.607–0.645]

Demographics+ TF-IDF+ LDA-75+ PrPA 0.726 [0.725–0.727] 0.721 [0.720–0.722] 0.706 [0.707–0.705] 0.628 [0.612–0.644]

The bold font corresponds to the best performing model for a given set of features (in the leftmost column).
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using a more understandable frame of reference. We
observed that ML models outperformed our human
raters, especially domain experts, suggesting both the
difficulty of the task and that the models are not over-
looking obvious features that would improve prediction.
The success of the models suggests that there is some
additional signal in the notes not captured fully by human
raters, potentially identified by aggregating many small
indications. Still, the modest performance overall suggests
that the upper bound of performance is probably far
below “perfect,” reflecting an element of stochasticity of

readmission. Of course, neither human nor machine
models have access to information not contained in notes
that could be highly relevant to readmission risk, such as
undocumented aspects of psychosocial circumstances or
comorbidities not addressed during an acute
hospitalization.
Perhaps more surprisingly, nonclinician raters out-

performed clinicians, which may reflect that this task is
distinct from standard clinical practice. Further, as the
nonclinician raters were better able to improve their
performance with feedback, it may be the case that non-
experts are more easily able to conform to new tasks
because they have fewer incorrect priors, whereas experts
are harder to shift from their existing frameworks.
This latter set of observations is consistent with decades

of prior evidence that clinician predictions, when com-
pared to real-world outcomes, often do not substantially
exceed chance. In psychiatry, a seminal paper by Pokorny
found that even incorporating a range of rating scales did
not yield meaningful prediction18.
Our results also hint at an opportunity to improve

prediction in clinical settings by presenting observed
outcomes to clinicians in an iterative process. An
important question to consider will be whether ML
models can be applied to accelerate or enhance this
learning process, by highlighting key topics or terms to
consider, for example.
We note several important limitations in considering

our results. First, they reflect a single inpatient unit, albeit
a large and heterogeneous one. The extent to which
results generalize to other health systems remains to be
established; it is possible that institution-specific models
will be required given the heterogeneity of documentation
across institutions. Institutional restrictions on accessing
large clinical corpora continue to inhibit work in this area
and underscore the need for more cross-institution
collaboration.

Table 3 Performance comparison between humans and predictive models on the full test set (n= 1523) and the human-
annotated learning-phase subset (n= 50).

Paradigm Method Accuracy (n= 50) Balanced Accuracy (n= 50) F1 (n= 50) F1 (n= 1523) AUC (n= 1523)

Human Average non-MD 0.655 0.635 0.527 — —

Human Average MD 0.527 0.484 0.306 — —

Baseline Always readmit 0.280 0.500 0.437 0.372 —

Baseline 5 or more admissions in 12 months 0.640 0.706 0.571 0.432 —

ML SVM (Demographics) 0.680 0.770 0.634 0.414 0.658

ML SVM (Demographics+ TF-IDF) 0.600 0.665 0.533 0.430 0.698

ML SVM (Demographics+ LDA) 0.700 0.704 0.571 0.436 0.685

ML SVM (Demographics+ TF-IDF+ LDA) 0.620 0.651 0.522 0.449 0.703

Bold entries represent the best performing model (or human category) for each of the target metrics given in the column headers.

Fig. 2 Change in human performance over time. As all raters were
shown the same notes in the same order, the figure also enables a
comparison of how well each group was able to improve their
performance over time. In particular, the nonclinicians were able to
improve their performance substantially upon receiving feedback,
with a ~10% increase in absolute accuracy between their initial
baseline performance and their final set of predictions after training.
Performance of expert annotators (i.e., psychiatrists), on the other
hand, did not improve notably over time.
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Second, our prediction task likely underestimates the
skill of clinicians in practice, who are able to draw on
clinical impressions of patients that may not be fully
captured in narrative notes. This distinction likely
explains the inability to distinguish trained clinicians from
graduate students. Moreover, as we use notes generated at
time of hospital discharge, we expect that clinicians do
not fully document the extent of concern for readmission,
insofar as individuals thought to be at high risk would not
be candidates for discharge in the first place.
Still, taken together, our results suggest that ML

approaches incorporating topic models consistently
exceed clinicians’ ability to predict hospital readmission,
while retaining inspectability. While such models are far
less performant than some recent efforts in more homo-
genous datasets, this likely reflects the challenging nature
of the task itself. As better approaches to staging or
characterizing progression emerge, including biomarkers
or clinical metrics, we anticipate that the models we
describe will provide a valuable baseline to be improved
upon in subsequent work.
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