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ABSTRACT

A comprehensive experimental and analytical study specifically designed
to investigate upstream history and apparent stresses in incompressible,
two-dimensional, turbulent, boundary layers has been conducted. Hot-wire
measurements of turbulent shear stress and longitudinal turbulence intensity
as well as velocity profile and wall shear stress measurements were made
for six different pressure distributions.

It was found that the turbulent shear stress is dependent upon the
upstream history of the flow and not a unique function of the local vel-
ocity profile. A simple equation for the dissipation integral,

“dac
D LY
dx K(CD . CD)
equi

with a constant K was found to represent the data well. This expression
wes used with the mean-flow energy integral equation to obtain a practical
method for predicting turbulent boundary layer behavior which accounts for
upstream history. The predictions made with this method for the six pres-—
sure distributions of this study and for others extracted from the liter—
ature agreed well with the experimental data.
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UPSTREAM HISTORY AND APPARENT STRESS

IN TURBULENT BOUNDARY LAYFRS

Perry Goldberg

I. INTRODUCTION

A. General Review

The fundamental difficulty in the analysis of any Lurbulent shear flow
is relating the turbulent exchange of momentum (apparent or turbulent shear
stress) to the mean-flow. Due to limited understanding of the turbulent
process, and also because of limited analytical and experimental methods,
this difficulty cannot be completely avoided at the present time.

Most previous attempts at solving the turbulent boundary layer problen
were based on knowledge concerning the behavior of laminar boundary layers
where the shear stress is proportional to the derivative of velocity pro-
file. These attempts centered around the assumption that the turbulent
fluctuations were only a functior of the local velocity profile. Based
upon this assumption and experimental data the turbulent shear stress was
expressed by means of an eddy viscosity or mixing length which was corre-
lated in terms of local properties. These empirical correlations along with
integral methods allowed prediction of turbulent boundary layer behavior.

Recently, ac more experimental turbulent boundary layer data has be-
come availsble, more people have begun to question the hypothesis that the
turbulent shear stress is uniquely defined by the local velocity préfile.
From hoﬁ-wire measurements, it appears as though the upstream development
of the flow (history), as well as mean velocity profile, plays a role in

determining the turbulent shear stress.

(1)

In 1960 Stewart '~ ‘published the results of a study of six turbulent
boundary layer prediction methods, all of which used the local property hy-

pothesis. He found that the methods worked moderately well when applied to
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conditions that were similar to those from which the methods themselves ev-
olved. But, when these conditions were somewhat different, the methods failed
rather badly.

Rotta(e)presented an excellent review of turbulent boundery layers in
1962. He concluded that the problem is far from being solved and that the
central problem is that of relating the shear stress distributions to the mean
flow and other characterizing parameters. In regard to this problem he states,
"Actually the shear stress distribution is also affected by the previous his-
tory. No proposals for the shape parameter equation which make proper allow-
ance for this circumstance have yet been made. But, at least one knows now
for certain that the insufficiency of the present calculation methods, . . .
originate here, and anv attempts at a positive improvement must start at
this point."

In January of 196k, Mbses(3)reported on a study of the behavior of tur-
bulent boundary leyers in adverse pressure gradients. After a review of the
pertinent literature and an extensive experimental program he concludes that
the turbulent shear stress within the boundary layer is the most critical
part of any prediction method and that "A more reliable correlation and per-
haps a better understanding of the turbuient shear stress is definitely
needed."

The most recent review of existing turbulent boundary layer methods was .
published by Thompson(h)in August of 196L4. Thompson concludes, after a crit-
jcal review of existing methods, that there is need for some precise, two-
dimensibnal, turbulent boundary layer measurements and also that the exist-
ing methods give widely differing and often insccurate results.

The four reviewers mentioned avove, as well as most other workers in the

(5) (6) (1)

field, including Clauser , Tetervin and Lin , Schubauer and Tchen

etc., agree that much more work needs to be done before an adeguate method
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for predicting turbulent boundary layer behavior can be obtained. In general,
the problem is one of understanding and describing quentitatively the turbulent
processes that occur in turbulent shear flow. |
The purpose of the present report is to present the results of an exper-
imental and analytical study of the effects of upstream history on two-dimen-
sional, incompressible, turbulent boundary layers.

B. The Problem cf Upstream History

The fact that the existing calculation methods which are based upon the
local property hypothesis do not work well in general could mean one of three
things:

i) It could simply mean that we do not understand the processes
well enough to be able to spccify the correct dependence of shear stress upon
local conditions. )

ii) It could mean that other approximations and empirical correl-
ations such as velocity profiles and wall shear stress required for a solution
are not well enough known. For example, when using integral methods the vel-
ocity profiles which may actually form a two or three parameter family are
generally assumed to form a one parameter family.

iii) Or perhaps it means that the failure of the existing methods is
due to the lack of proper accounting for the upstream history of the flow.
Intuitively, the turbulent fluctuations and hence turbulent shear stress must
lag behind the local Qelocity profile changes since these fluctuations have:
inertia associated with them and are produced by the mean flow.

Due to the uncertainties involved in the turbulent shear stress few
attempts have been made to solve the boundary layer equations exactly. Rather,
the integral approach is taken, whereby the relationships of continuity and
momentum are satisfied on the average and not necessarily at every point

within the boundary layer. The integral approach allows one to calculate
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parameters such as displacement thickness, momentum thickness, shape factor,
end wall shear stress which in turn can be used to predict airfoil drag,
'diffuser performance, heat and mass transfer rates, etc.

The usual approach to the integral method is t5 assume a one, or at most

a two, parameter family for the velocity profile.

o> ¥ (1)

where H is a shape factor which defines the velocity profile, not necessarily

%= £(H, L) or £(H, R

6*/6 (although this is the most frequent definition of H). The momentum equa-

tion integrated across the boundary layer

c du_
de _ _fw &
G- 5 - (H+2) T (Ref. 8) (2)

is then solved simultaneously with one auxiliary shape factor equation. The
normal stress corrections to the momentum integral equation are not shown in
Eq. (2) because they are generally neglected.
Auxiliary equations have generally been obtained in one of four ways:
i) By pure empiricism,
ii) By integrating the momentum equation across a part of the
boundary layer,
iii) By msking use of the moment of momentum equation,
iv) By making use of the energy equation.
Any auxiliary equation must imply something concerning the turbulent shear
stress. Therefore, methods (ii) to (iv), as well as (i) above, require
empirical correlations. Method (ii) requires the value of T at some point
in the boundary layer, method (iii) requires the value of Jtdy, and ‘method
(iv) requires the value of [t %g-dy.
Most auxiliary equations based only on local velocity profile parameters

can be written in the following general way:
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aH _ § = . ,
0 i = fl(H, Re) U =t fz(h, Re) (Reference 2) (3)

We can now see that mean flow history is accounted for in the boundary
layer calculations through the initial values of 6 and H. However, we also
see that the auxiliary equation, Equation (3), implies that the turbulent
shear stress which is usually incorporated in the function f2 is a function
of local properties only and hence is not dependent upon history directly.

Some significant experimental evidence that this situation cannot be true
is available in Reference (3). Figure 1 shows the variation of free stream
pressure, 0, and H for three different pressure distributions reproduced
from Reference (3) (distribution 1 was not included in the original report).
Each of these pressure distributions is characterized by an initial adverse
gradient section followed by & zero gradient section. In the zero gradient
section © %% varies with H as shown in Figure 2. Based upon Equation (3)
and the results shown in Figures l1and 2, one must conclude that either f2 is
a strong Tunction of Re or that something is missing in Equation (3). The

dau

former is not likely to be true since many studies of flat plate (zero a;:)

boundary layers indicate that f, is a very weak function of R Therefore,

0
it appears that something is missing. A plausible argument which can explain
the behavior illustrated in Figures 1 and 2 is that in the adverse gradient
sections the turbulent levels, and hence turbulent shear stresses grow; when
the pressure gradient is removed tle turbulence decays toward equilibrium at )
a rate which is slower than the rate of decay of the mean velocity profile;
gince the turbulence would be expected to grow faster in the steeper pressure
gradients, the shear stress at the location at which the pressure gradient is
removed would be larger for pressure distribution #3 than for #2. Hence, the

initial rate of decay of H would be expected to be greater for #3 than for #2,

as indeed it is.
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The bouncary layer behavior after a sudden removel of the pressure grad-
ient has been studied by Bradshaw and Ferriss(g). In their report they
concluded that the shear stress profile cannot be a unique function of velocity
profile. They also made some observations vhich tend to support the argument
used above to explain the data from Reference (3), "The response of a boundary
layer to a change in pressure gradient is slow:....the earlier stages of the
response to a sudden perturbation are much nearer that which would occur if
the turbulence was unaffected by the perturbation than the response calculated
by assuming any sort of local equilibrium or a universal eddy viscosity."

Two methods for calculating turbulent boundary layers which attempt to
include the effect of the upstream history on the shear stress have appeared
in the literature after the present study had started. The first of these by

McDonuld and Stoddart 10

(11)

makes use of the moment—of-momentum equation and
Coles universal velocity profiles. The authors were able to get reason-
able agreement with data by a trial and error selection of one initial cond-
ition. The method appears to have some limitations, since it prevents the

boundary layer from ever reaching equilibrium. The second of these methods,

by Bradshaw, et al(lz)

makes use of the energy equation for the turbulent
fluctuations. This method is in the early stages of its development and
requires specifying three empirical relationships between the turbulent int-
ensities and the turbulent shear stress.

The present study was initiated with the following objectives in mind:

i) To establish whether more upstream history than simply the.

initial values of 6 and H was ever required to predict turbulent boundary
layer behavior accurately, \
ii) To determine when this additional information is important,
jii) To develop a practical and simple calculation method which

will correctly account for the additional upstream history required.
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In the main, these objectives have been achieved. In addition, based
upon the particular data generated in this study, it was possible to confirm
the conclusions that (a) Reynolds normal stresses sometimes contribute
significantly to the two-dimensional, momentum, integral equation, and (v)
that in a limited Reynolds number range the velocity profiles form a one

parameter family.



IT. EXPERIMENTAL PROGRAM

The experimental investigation carried out during this study was designed
to obtain precise measurements of turbulence quantities as well as mean flow
quantities in two-dimensional, incompressible, turbualent, boundary layers for
a number of different pressure distributions. The test section used was sim-
ilar to that used by Mbses(3). With this test section, boundary layers free
of three-dimensional effects could be generated for various pressure distrib-
utions with rziative ease. The working fluid used was air. A relatively
simple and efficient air supply system was constructed for these experiments.

A. Apparatus

Figure 3 presents a schematic of the test apparatus. An axial flow fan,
rated at 16,000 cfm at 3 inches of water static, fitted with a radial inlet,
supplies air to the system. Downstream of the fan are flow straightening
vanes, a screen, motor fairing, and diffuser all of which serve the purpose
of reducing losses and steadying the flow. The air which leaves the diffuser
enters an aluminum settling chamber 6 feet in diameter and 10 feet long. The
settling chamber contains a honeycomb flow straightener, a center tube which
is held in place by a vertically mounted airfoil strut, and an 86 mesh silk
screen with approximately U6% free flow area for reducing turbulence. The
center tube provides support for the upstream end of the test section; as‘well
as for the honeycomb. To prevent blower vibrations from reaching the settling
chamber a flexible coupling, actually a piece of heavy fabric, is used to
seal the gap between blower and diffuser (the diffuser being rigidly attacﬁed
to the éettling chamber). The flow leaving the settling chamber is sccelerated
to approximately 85 ft/sec by a 9 to 1 area contraction which furtﬁer reduces
the turbulence levels and also reduces any longitudinal velocity variations
which might be present. The free stream turbulence intensity measured at the

exit of the contraction is approximately 0.2%.
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The test boundary layer was grown on a central, 10 inch diameter, Plexi-
glas cylinder 6 feet in length. This cylinder is concentric with a 4 foot
long, 24 inch diameter outer porous metal cylinder. An adjustable end plate
causes the annulus pressure to be greater than ambient. Thus, flow diffuses
out through the porous metal and creates an adverse pressure gradient. The
end plate can be removed for generating zero pressure gradient. The pressure
distribution was adjusted as desired by controlling the flow diffusing through
the porous cylinder. This was accomplished with cloth bands which were wrapped
around the outer cylinder. The outer cylinder had been provided with a long-
itudinal slot and guides for making boundary layer traverses.

Figure U4 presents a number of photographs of the test apparatus: Figure
ba shows the fan with its radial inlet, exit cone and exit screen; Figure lLb,
the settling chamber with its diffuser and contraction section; Figure lhc, the
center tube, airfoil strut and honeycomb flow straightener; Figure 4d, the test
section - inner Plexiglas cylinder fitted with contoured nose piece, outer
porous metal cylinder with traversing slot and guides, center support tube, and
adjustable back-up plate.

B. Instrumentation

Static pressure and wall shear stress measurements made with a Preston
tube and sub-layer fences were recorded by hand. All measurements of quantit-
ies distributed across the boundary layer were recorded on a Moseley Autograph
X-Y Plotter. The y-axis of the plotter was drivep by a signal proportional
to distance from the wall and the x-axis by the particular quantity being
measured., 2

B.1l Traversing Mechanism

A micrometer with 2 inch meximum travel was used to traverse probes

across the boundary layer. The micrometer barrel was connected to a ten turn
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Micro-pot by means of a friction reduction drive. The Micro—pot was supplied
with a fixed DC exicitation of 6 volts, thus giving as output a DC voltage
proportional to probe displacement, which was then used to drive the y-axis
of the X-Y recorder.

B.2 Pressure Measurements

Static pressure distribution: the inner Plexiglas cylinder was fitted

with static pressure taps spaced 2 inches gpart along a line parallel to the
cylinder center line. Also, at 12 inch intervals, 3 additional taps were
installed symmetrically around the cylinder to allow a quick check of the
lateral static pressure variation. The inner cylinder could also be rotated
to more precisely check the transverse pressure variation. The static taps
were .025 inches in diameter, and were machined from 1/8 inch brass plugs which
were pressed into the Plexiglas cylinder then ground flush to the surface.

The static pressures were read on a 26 tube manometer board inclined
at approximately 8.5° to the horizontal. This manometer board allowed the
pressure distribution to’be observed directly, thus facilitating the establish-
ment of desired test conditionms.

Wall shear stress: wall shear stress was measured with a Preston tube and

with sub-layer fences. The Preston tube used was .050 inches in diameter.
Seventeen sub-layer fences were located on the test cylinder along a line

parallel to the row of static pressure tapé. The sub-layer fences were offset

laterally about 2 inches from the static pressure taps. Each of the sub—la&er

fences shown in the following sketch was machined

.02" *
%éb .188" |f=zzzzcoc———3 ‘

SUTIEPSTI DT

out of a brass plug 3/16 of an inch in diameter, which was pressed into the
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Plexiglas cylinder and then ground flush with the surface on either side of
the fence. The fences are approximately .010 inches thick and .006 inches
high. Two .020 inch diameter static pressure holes are placed in each plug
on either side of the fence.

The Preston tube and sub~layer fence pressﬁres were read on inclined
manometer boards. The fence pressures were displayed on a board similar to
the one used for the static pressure distribution. Thus, the wall shear
stress distribution could also be observed direktly.

Velocity profiles: the mean velocity measurements were made with a

flattened total head tube having an outside height of .01k inches. A
Statham AP pressure transducer with a maximum range of * .05 psi was used
to transduce the velocity pressure to a DC voltage which then was used to
drive the x-axis of the X-Y recorder.

B.3 Hot-Wire Measurements

The constant temperature system for hot-wire measurements was used in
this study. Power was supplied to a transistorized, constant temperature
amplifier and linearizer, manufactured by Leslie T. Miller of Baltimore,
Maryland, by two 6 volt wet-cell batteries. The DC component of the linear-
izer cutput was monitored on & Heathkit VI'VM and the AC or fluctuating comp-
onent on a Hewlett-Packared Model #3400A RMS Meter. The linearizer output
was also displayed on a Tektronik Type 535 Oscilloscope and recorded on the
X-Y recorder. The output of the RMS meter was also recorded on the X-Y
plotter. A General Radio Sound and Vibration Meter was used to obtain the
energy spectrum measurements.

The hot-wires used were tungsten, .00015 inches in diameter, copper
plated on each end of a bare section, and soft soldered to two supporting

needles. The mounted wire resistance was normally between 8 and 12 ohms.

Loggitudingl turbulence intensitx and energy spectrum: these measure-
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ments were made with the single wire probe sketched below and shown in Figure 5

along with the micrometer traversing mechanism.

-

—~ePivot
Traversing
Drive Supporting Needles
Flexible *  Shaft
Shaft ﬁ
Drive — B - Flow
Direction

‘f§:;¥ing Afégg;ort- Hot-Wire

ing tube

The single wire was aligned at approximately U45° to the center line of the
supporting tube which was free to rotate 180° in a beering fixed to the trav-
ersing drive shaft. A flexible shaft drive allowed the wire to be rotated from
above. The axis of rotation of the probe could be aligned with the flow dir-
ection by tilting the whole probe sbout the pivot provided by the micrometer
traversing unit.

Figure 6 shows the various probes uéed in this study, and Figure T the
major instrumentation.

C. Experimental Procedure

Befcre making any quantitative measurements the boundary layer flow was
checked for axi-symmetry as follows: First, the lateral static pressure var-
iations were checked; second, the lateral variation of the wall shear streés,
as indicated by the sub-layer fences, was checked; finally, the movement of
the separation line, as indicated by tufts and sub-layer fences as the cylinder
was rotated, was checked. No evidence of any three-dimensional flow was fbuﬁd.

After it was established that there was no three-dimensional flow present,
8 zero pressure gradient case was set-up to verify that the instrumeﬁtation
and measurement schemes were working properly and also, to obtain calibration

curves for the sub-layer fences. A complete set of pressure and hot-wire



13.
measurements was then taken. This data, when reduced, agreed with the meas-
urements presented by Klebanaff(l3). In addition, the wall shear stresses,
1) measured with a Preston tube, 2) calculated from the momentum integral

equation and velocity profile data, 3) obtained by extrapolating the measured

shear stress distributions to the wall, and 4) estimated by the two Ludwig-
(1k)

"i1lmann correlations
C
v .0167
L.-T. 1 5 = 17838 (L)
(1o 1oRe)
246
L.-T. 2 ¢C = . (5)
fw Re.268 l0.678H

showed very good agreement as seen in Figure 8.

The sub-layer fence Ap's were calibrated against a Preston tube Ap in
zero pressure gradient. Four experimental points, in addition to the origin,
were used to generate calibration curves. These points were obtained by vary-
ing the test section flow. Figure 9 shows 3 typical calibration curves. A
separate curve was required for each fence, due to variations in dimensions,
as well as variations in orientation (with respect to the flow direction) of
the installed fences.

Five additional pressure distributions were then established and studied.
The experimental dats for each pressure distribution was obtained in thg fcll-
owing sequence: 1) wall static pressure, 2) sub-layer fence Ap, 3) Preston
tube Ap, 4) total head tube velocity profiles, 5) mean velocity from hot-wire,
6) longitudinal turbulence intensity, T) longitudinal turbulence energy spec-
trum, 8) mean readings of the shear stress wire in both the 0° and the 180°
positions, 9) RMS readings of the shear stress wire in both positions.

2

D, Data Reduction

Some typical raw data is shown in Figure 10. The X-Y recorder traces of

velocity pressure, longitudinel turbulence intensity, and shear stress are
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shown in Figure 10a, b, and ¢, respectively.

In reducing the recorder data a mean line was first drawn through each
trace. Then, values taken from the mean line were tdbulated at apprqpriate
intervals. The tabulated data was punched on IBM cards and a TO94 IEM Digital
Computer was used to reduce the data further.

Three computer programs were utilized in reducing the data. The first
of these evaluated mean flow parameters from the pressure measurement. The
values of displacement thickness, momentum thic¢kness, energy thickness, shape
factor, and energy shape factor were calculated for both their two-dimensional

and axi-symmetric definitions:

Two-Dimensional Axi-Symmetric
. . . u . u y
Displacement Thickness fo (1 - T )ay fo (1 - ﬁ_)(l + Ddy
6* co oo
(-] (-]
. U (, _Uu 4 -8+ X
Momentum Thickness / 0 T (1 0 Jay [ 0 U (1 T ) dy
9 .
* u u? _— u? Y
Energy Thickness [+ (1 - 2)ay [ — (-2 (1+ )dy
0 Um U 2 0 Ua, U 2 R
GRn o o
Shape Factor o s*
i 0 (¢}
Energy Shape Factor [ alad § *¥*
" 6 6

The maximum difference between the axi-symmetric and two-dimensional values
of 6%, 6, and 6** was found to be about 10%, whereas the maximum difference
for H and H was found to be only about 2%. Throughout the remainder of this
report the axi-symmetric definitions will be implied unless specifiéally
mentioned otherwise. With these values the momentum integral equation, as

presented in Equation (2), need not be changed. Had the two-dimensional
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definitions been used this equation -would have had to be corrected for trans-
verse curvature.

The second program wag used to compute the values of ;:;}uw,
- EET;TYUQZ, and ;szUw from the hot-wire data.
The third program was used to compute the longitudinal energy spectrum

E(k)/u'? and wave number k from hot-wire data.

(15) was used to obtain estimates of wall shear

The correlation of Patel
stress from the Preston tube data. The sub-layer fence data was reduced by
first finding the equivalent Preston tube reesding from the fence zero pressure

(15) correlation. No corr-

gradient calibration curve, and then using Patel's
ections for pressure gradient were made for either set of wall shear stress
data.

E. Accuracy

The static pressure distribution could be determined to better than .5%.
A few static taps read consistently high or low. These taps were generally
neglected in reducing the data.

No corrections to the total pressure readings were made for the effects
of turbulence, streamline displacement, or the wall. The linearity of the
transducer used to record the velocity pressures is illustrated in Figure 11,
where transducer Ap ratios are plotted against manometer board Ap ratios.

The overall accuracy of the velocity measurements is estimated to be better,
than 5% except for measurements within 2 or 3 probe heights (.014") from the
wall where due to the wall effect the accuracy should be somewhat poorer.

The pressure measurements presented no particular probiem. The hot-
wire measurements were more difficult due to such problems as lirdearity,
drift, and orientation for the shear stress wire. The linearity problem
was overcome by frequent calibration of the electronic equipment.

Drift was minimized by the effeetive filtering of large dust particles.
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This was done by two fine mesh silk screens, (1) the main turbulence reduction

screen in the settling chamber, and (2) a piece of the same material that was
placed across the inlet of the fan. Another factor which greatly reduced the
drift problem was the speedﬁat which boundary layer traverses could te made.
The use of the X-Y recorder made it possible to make a boundary layer traverse
in about a minute.

Accurate shear stress measuremenis require accurate alignmgnt of the shear
stress measuring wire or wires with the mean flow. With a single wire probe,
the axis of rotation of the probe must be aligned with the local mean flow
direction so that the angle between the wire and the local mean velocity will
change in sign only when the probe is rotated 180°. To have done this at every
measurement point would have required a prohibitive amount of time. Instead,
some accuracy was sacrificed in the outer part of the layer where the shear
stresses are generally smell and the probe orientation was fixed for each
traverse by the conditions existing neai the wall at each longitudinal station.
The Appendix presents a simplified analysis of shear stress errors due to mis-
alignment of the measuring wire or wires.

A consideration of the errors entering the hot-wire neasurements, along
with cross checks made on the data, indicates the meximum error fo; the measure-
ments presented is of the order of 5% for the u' measurements and 15% fof the
GT;T'measurements, except in the outer 20% of the boundary layer were the uvt
measurements may be somevhat larger. |

F. Experiment&l Results

Tyﬁical experimental results are shown in Figures 12 to 17. The mean flow
quantities shown in Figures 12 and 13 include the pressure distribﬁkion in terms
of the free stream velocity and the ususl integral parameters, 6 and H, which
were determined from the measured velocity profiles. These values ere shown as

a function of x, the distance along the cylinder starting from the first pressure
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tap, which was approximately the point of minimum pressure.

The three pressure distributions chosen to study the effects of upstream
history are shown in Figure 12. Each consists of an initially adverée pressure
gradient section followed by a zero pressure gradient section. Since the equi-
librium boundary layer behavior in zero pressure gradient has been well docum-
ented, these pressure distributions allowed a study of the non-equilibrium zero
pressure gradient behavior induced by the upstream history (initial adverse
pressure gradient section). From this figure it is seen that the mean flow,
as typified by the shape factor, appears to return to equilibrium at a rate
which is proportional to the departure from equilibrium. Also apparent from
Figure 12 is that it takes thz mean flow on the order of 100 momentum thicknes-
ses to return to equilibrium.

Two linear pressure distributions are shown in Figure 13. Pressure
Distribution #5 is a linear gradient starting at x = 0 where the boundary layer
is very thin and continuing on to separ;tion. Pressure Distribution #6 is zero
pressure gradient, followed by an adverse gradient driving the boundary layer
to separation. Distribution #6 is much more severe than #5 for two reasons;
first, the rate of pressure rise is faster and, second, the momentum thickness
at the initiation of the adverse gradient is some three times larger. These
two distributions were included in the study in an sttempt to define the
upstream history effect more thoroughly.

Figures lha and b show a comparison of the various methods used to obtain
wall shear stress for Pressure Distributions #3 and #5, respectively. Preéton
tube and sub-layer fence measurements are plotted as a function of longitudinal

(5)

A
distance x along with values obtained from (a) a Clauser type determination

based upon the law of the wall and measured velocity profiles and (b) the
(1%)

Iudwig-Tillmann correlation, Equation (5). In general, the egreement is

good. For all of the pressure distributions studied, the Ludwig-Tillmann
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correlation predicted values about 10% higher than those measured when the
Reynolds number Re was about 1,000, but gave values much closer to thqse
measured as Rg increased. The sub-layer fences used in this study do not
seem to give any better results than the simple, relatively large, Preston
tube. '

Measured longitudinal turbulence intensities for Pressure Distributions
#3 and #5 are presented in Figures 15a and b, respectively. From this figure
it is seen that in an adverse pressure gradient the distribution of u' across
the boundary layer develops a maximum which grows and moves away from the wall
as the boundary layer progresses downstream. Also apparent from Figure 15a
is that when the pressure gradient is removed this maximum decreases in the
downstream direction and eventually disappears as the boundary layer approach-
es equilibrium (althouth the test cylinder was not long enough for the bound-
ary layer of Pressure Distribution #3 to ;eturn fully teo equilibrium, this
last remark was verified by measurements made for Pressure Distribution #h4),
From a comparison of Figure 12 and Figure 15a it can be seen that H returns to
equilibrium faster then u'.

Typical hot-wire shear stress measurements are shown in Figures 16a and
b again for Pressure Distributions #3 and #5, respectively. To complete the
shear stress distributions, the shear stress at the wall, as determined frém
the Preston tube and sub-layer fence measurements, has been added.

The shear stress behavior is similar to the longitudinal turbulence
intensity behavior in that in the adverse gradient section a maximum develops
and moves away from the wall and when the adverse gradient is removed this

4
maximum decays. Since the equilibrium shear stress distribution for zero
pressure gradient has a maximum at the wall only, it is apparent from Figure
16a that the shear stress distribution cannot be characterised by pressure

gradient alone.
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Energy spectra for the longitudinal turbulence intensity are shown in
Figures 1Ta, b, and c. Figures 17a and b present rectangular coordinate
plots of normalized energy spectrum versus wave number for Pressure Dist-
ributions #3 and #5, respectively. These spectrum measurements were mede
with a hot-wire that was within .010 inch of the wall. The measurements
indicate that in an adverse pressure gradient there is a substantial shift
of energy from high to low frequency near the wall. Additiongl spectrum
measurements indicate that this shift of energy from high to low frequency
also occurs in the outer region of the boundary layer, but to a lesser
extent. In Figure 1Tc some energy spectrum measurements for Pressure Dist-—
ribution .#5 are presented in the form which is generally found in the liter-

ature.
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III. PRESENTATION ARD DISCUSSION OF FINDINGS

A. Normal Stresses

A calculation of momentum thickness from the von Karman momentum int-
egral equation, Equation (2), was carried out for all six pressure distrib-
utions considered in this study, (Pressure Distribution #1 was the case of
zero pressure gradient used to verify measurements). In this calculation
the experimental values of wall shear stress, shape factor, and pressure
distribution were used. The results of this calculstion, along with the
experimental data are shown in Figure 18. A significant difference between
the calculated values and the experimental values can be noted. Since this
difference is larger than would be expected, due to experimental errors, a
further study of the momentum integral equation was made.

The von Karman momentum integral equation, Equation (2),'has within it
the assumption that the Reynolds normal stresses can be neglected, a fact
which has been disputed by a number of authors. In References-lG thru 20
the validity of this assumption, especially near separation, has been quest-

ioned. Without this assumption the momentum integral equation can be written

as
C dU
48 _ _fw _._____ 1 w12 _ o1z
T 5 (H + 2) U & + p fo o (u vi%)ay (6)

The term containing ;T!.comes directly from the x momentum equation. The
;T;'tenn enters the equation through a static pressure variation across the
boundary lsyer.

In order to investigate the importance of these Reynolds normal stress-

es, the momentum thickness calculations were repeated. Estimates of the

first correction term

- yr2
UZ Ioaxu &
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evaluated directly from the experimental data were included.

An estimate of the second correction term

was also made from the experimental data. It was found that in general

3

3__12 = 1 LA
Ioaxv dy-2foaxu2dy' (7)

Based upon this approximation the momentum thickness ealculations were
repeated, this time using the full equation as presented in Equation (6).

The results of these additional calculations are also shown in Figure
18. As can be seen, particularly in Figure 18c, the Reynolds normsl stresses
make a noticeable contribution to the calculated momentum thicknesses.

However, the normal stresses do not fully account for the momentum
thickness behavior. The effects of longitudinal streamline curvature could
explain the discrepancies shown in Figure 18. In a decelerating boundary
layer the streamline curvature causes sa pPressure rise across the boundary
layer (%? < 0) which increases in the downstream direction causing the bound-
ary leyer to grow faster than would be predicted by assuming no static press-
ure variation across the boundary layer.

One possible reason why more eiperiﬁénters have been unable to reach a
definite conclusion regarding the importance of normal stresses is evident
from Figures 18c and d: when the boundary layer is driven rapidly to separ-
ation the effact of normal stresses is not nearly as noticeable as when the
boundary layer is driven close to separation and then allowed to gFturn to
some equilibrium condition away from separation.

Based upon the dats generated in this study and the data presented in
References 18, 21, and 22, a correlation for a normal stress correction

(N.S.C.) to the von Karman momentum integral equation (Equation (2)) has
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been geﬁerated. The correlation is as follows,
- “*
N.S.C. = .0365 (H - 1) g_xg_ . (8)

A comparison of the experimental data points and the correlation is shown in
Figure 19. The scatter ig rather large, but is to be expected since x deriv-
atives of the data must be taken to determine the N.S.C. The results of
using the correlation to predict 6 are shown in Figure 18.

The correlation as proposed is somewhat similar to that suggested by

Ross(lg)

d(s*u_2)
N.S.C. = :016 (9)
U 2 dx

in that the correction depends upon the derivative of é* and leads to a
singularity in the momentum integral equation. This can easily be seen if
5% is replaced by 6H in Equation (8) and if this equation is added to

Equation (2)

c au
fw 0 s dH

- (10)
1 - .0365 H(H - 1)

dax
When H is spproximately 5.7 %% goes to infinity. This singularity should
not be a practical limitation since separation occurs well below H = 5.7T.

B. Velocity Profiles

Reduced total head tube data for Pressure Distribution #3 is chosen
to illustrate the behavior of the velocity profiles in an adverse pressure
gradient and also in the relaxing region (zero pressure gradient region
vhere initially disturbed boundary layer is returning to equilibrium). The

velocity profile data is presented in two ways. First, Figure 20 shows %—

-]

plotted as a function of y at various longitudinal stations. Typically, in
A

the adverse pressure gradient the defect in the velocity profile grows with

the velocity being reduced rapidly in the vicinity of the wall and two

apparent inflection points becoming evident in the profile at x = 16". 1In
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the relaxing region the defect is slowly reduced and as equilibrium is

approached the velocity profile takes on a shape characterized by two regions:

u
U

one close to the wall where increases rapidly and another covering most of

the boundary layer where %—-increases slowly toward 1.

[
The second method for presenting the velocity profiles is shown in Figure
yu
21 where %— is plotted as a function of —;l. Also shown in the figure is a
T
curve representing the laminar sub-layer velocity profile

yu
u_ 3
u v (11)
T
yu_ &
for ——= less than about 10 and a line representing the "universal" law of
the wall
yu
u _ 1 T
w = ple—-+cC (12)
T
where constants B and C have been assumed to be those used by Coles(ll). All

of the velocity profiles can be divided into a sub-layer region, a law of the
wall region, and & wake region. In the former two regions; the expressions
represented by Equations (11) and (12) fit all of the data reasonably well
with the exception of the data for x = 24 inches which for some unknown reason
falls somewhat lcw. The wake region grows in the pressure gradient as the
wall shear siress decreases and ther Jecays in the relaxing region.

Evidence that the velocity profile can be well represented by a single
parameter family in a relatively small Re range, as suggested by von Doenhoff

and Tetervin(32), Coles(ll)

s and others, is given by Figure 22. In this
figure the energy shape factor H is plotted as a function of H. All of the
data takén in this study can be well represented by a single line. No dist-
inction could be made between data points for the same shape factor ;n
regions of rising or falling H (adverse pressure gradient or relaxing zero
pressure gradient sections). The curve shown in Figure 22 which fits the

data reasonably well

ot
-
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= _ 3.6 H
B = s#r-1 (13)

was obtained by juggling the constants in the axpression for Hvs H from
power law velocity profiles. Another expression proposed by Nicoll & Escud-

ier(23)

=131 - =21, '713 1.25 < H < 2.8 (1h)
H

yields results within about 2% of Equation (13) and hence would fit the data
in Figure 22 equally well.

The Reynolds number effect upon velocity profiles cannot be established
from this study since the total range of Re covered was only

1,000 < Re < 10,000

with most of the dats falling below Re = 5,000. Using some form of logarith-
mic velocity profile, such as that proposed by Coles(ll), there would be a
slight downward shift of the curve of H vs H as Reynolds number increased.

C. Turbulent Shear Stress

To solve any turbulent boundary layer problem an assumption about the
turbulent shear stress based upon empirical information must be médg. Three
basic approaches are usual.

First, correlate eg%-empirically and directly, thus allowing a solution
of the integral equations and hence implying something about the shear stress.

Second, utilize empirical data to specify the shear stress distribution
either (a) directly, (b) in terms of an eddy viscosity, or (¢) in terms of
a mixing length. Then either:

i) attempt a direct numerical solution of the partial differen-
tial equations

ii) use the shear stress distribution to evaluate the shear stress
at some point in the boundary layer and solve integral equations as described

in Reference (3).
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iii) evaluate shear stress integrals required for a solution. Most
frequently, either the moment-of-momentum equation or mean-flow energy equa-
tions are used. For power-law mean velocity profiles the moment-of-momentum

equation takes the form

a HE+ @2 -1) 8 Yo, ‘rv

b = - ) U, & + (B2 - 1) 8 —
J{E+) [ = d%] (Reference 6) (15)
eDUZ 0

requiring !0 T dy. The mean-flow energy equation, Reference 8,

— au_  HC
di dH _ T8 = _fw
3 (H—l)HUm——-—dx 5+ Cp (16)
requires CD which is defined as
2~ % (17)
CD = — T '5-—";(1}'
oU 2 o y

Third, use empirical information to correlate directly either the shear
stress at some specified location in the boundary layer(3) or one of the
shear stress integrals.

Needless to say the first approach sbove is the poorest in terms of
generality and in terms of providing some understanding of the turbulent
process and hence will not be considered further. The second and third
approaches, however, will be discussed in some detail in light of the data

cbtained in this study.

Before continuing with the discussion a result presented in an earlier
section regarding the wall shear stress is repeated. Based upon all of the
wall shear stress measurements made in this study the Ludweig-Tillmann(lh)

A

correlation

2h6
¢ = (5)
fw Re'2~68 10.6781{

eppears to be perfectly adequate for Reynolds numbers based upon momentum
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thickness between 2 and 10 thousend.
C.1 Polynomial Representation

A number of attempts have been made to represent the turbulent shear
stress distribution by a ﬁolynomial in terms of y/§. Perhaps the first of
these attempts was made by Fediaevsky(eh) vho, following the Pohlhausen
method for laminar flow, expresses 't/'rw in terms of a fourth order polynom-
ial in y/§ and evaluates the coefficients to satisfy appropriate boundary
conditions at the wall and at the free stream. Another attempt sémewhat
similar to Fediaevsky's was made by Ross and Robertson(es) whe tried to
include some upstream history in their shear stress distribution by making

4
the boundary condition on ——-(i}ﬁ at y = §, a function of the initial value

dy

T w
of Ezu The basic shortcomings of both of these attempts are discussed by

Rotta(2) who finds poor agreement between calculated shear stress distrib-
utions and the data of Schubauer and Klebenoff(zz).

Another approach which utilizes a polynomial representation for shear
stress is that described by Libby, et al(25) for equilibrium boundary layers,
In this approach, the boundary layer was broken up into (a) an inner region
where the shear stress weas obtained by integrating a law of the wall type
logarithmic velocity profile and (b) an outer region where the shear stress
was represented by a polynomial in y/8. At the boundary between the two
regions the velocity profile and the shear stress profile and its derivat-
ive were forced to be continuous. In addition, the eddy viscosity € defin-

ed as

- n'y!
€ = “az (18)

ay ‘ 2

was assumed to be constant in the outer region. With experimental data for
equilibrium boundary layers such as Clauser's(S) the empirical functions

required in this approach were evaluated. This approach is not applicable

i
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in the present situation since these authors were dealing only with equil-
ibrium boundary layers which, in essence, have no history.
Based upon the results of these previous studies, several unsuccessful
attempts were made to express the shear stress distributions in the relaxing
region of Pressure Distrisutions #2, #3, and #4, with polynomisals.,

C.2 Eddy Viscosity

The eddy viscosity as defined in Equation (18) has been used very often
(2)

to relate the turbulent shear stress to the mean velocity profile. Rotta

presents a summary of eddy viscosity relations employed in the region near

(26)

the wall. Clauser suggested that the eddy viscosity away from the wall

region can be assumed constant and also that

Gaw = -018. (19)

(25)

Based upon Clauser's work, Libby et al and Mellor and Gibson(27) have

formulated methods for calculating equilibrium boundary layer behavior.

(9)

However, Bradshaw and Ferriss have questioned the assumption of constant
eddy viscosity away from the wall and distributions evaluated from hot-wire
shear stress data do not usually exhibit this behavior.

Eddy viscosity distributions for Pressure Distributions #3 and #5 are
Ueé‘ is plotted against y with x as a
o

parameter., The eddy viscosity is zero at the wall, reaches a maximum some-~

9

shown in Figs. (23) and (24), where

wheres near the middle of the boundary layer,/and returns to zero at y = 6.
The variations of EEE;-at fixed y/§ are large particularly for Pressure

®
Distribution #3. In an adverse pressure gradient EEE; decreases. When the
pressure gradient is removed it then incresases rapiZIy. This behavior was
found to be typical for all of the pressure distributions considered in this
study.

An attempt was made to determine a more appropriate normalization for
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eddy viscosity. For this attempt a mean value of eddy viscesity in the
central portion of the boundary layer was estimated from the data at each
measurement station. The results of these calculations are summarized in
Table I which presents the maximum and minimum values for four different
normalizations of eddy viscosity. In all cases the distribution of values
between the maximum end minimum was fairly uniform.

Table I Eddy Viscosity Variations

€ € € €
U &# U &% G U e
) T © T
Maximum Value .028 .79 .039 1.4
Minimum Value .00L8 .26 .01k .51

The parameter Eﬁg;-suggested hy Clauser shows a somewhat larger variastion

(™
than the other three parameters. Clauser was primarily concerned with equil-
ibrium boundary layers, whereas the boundary layers in this study were gener-
ally not in equilibrium. However, even the best of these four has a ratio
of about 3 between the maximum and minimum values.

C.3 Mixing Length

The mixing length as defined by Prandtl
1/2

L = [—a;—z] (20)
0(3;

also has been used to relate the turbulent shear stress to the mean velocity

(2)

profile. Rotta once again presents a summary of expressions for mixing

lengths proposed for use in regions close to the wall. Escudier and Spald-
ing(28) have recently published an app;oximate expression for the mixing
length distribution which says that the mixing length is constant in the
outer 81%'of the boundary layer and equal to .075 §. ,

Figures 25 and 26 show mixing length distributions for Pressure Dist-

ributions #3 and #5, evaluated from experimental shear stress and velocity
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data. In general, the shape of the distributions agrees reasonably well with
the Escudier and Spalding(aa) assumption of constant mixing length over most
of the boundary layer. However, the magnitude of this constant level varies
considerably. In the advgrse pressure gradient %; decreeses. When the
pressure gradient is removed %;-grows rapidly. A study of the variations of
%;3 %—, and %-for the data of this study indicates that %-shows somewhat less
variation than either %; or %u Similar to the variations found for the

eddy viscosity, the maximum and minimum values of'%

approximately three. Table II presents the limiting values of the mean

differed by a factor of

mixing length over the outer portion of the boundary layers for Pressure
Distributions #3 and #5. Once again the values were fairly well distributed
between the maximum and minimum vaiues.

Table IT Mixing Length Variations

2 2 2

[ ) 8
Maximum Value .55 « 75 .10
Minimum Value .10 .22 .0k

C.)4 Shear Stress Integrals

The shear stress integrals required in the moment-of-momentum and the
mean~flow energy integral equations have been evaluated from the hot-wire
shear stress data. These are presented in Table III along with the Reynolds
number based upon momentum thickness and the shape factor. As seen the
variations of these integrals over the range of test conditions is not large.
Some of this variation is undoubtedly due to experimental errors and some
to real variations. The effects of variations in the shear stress integrals
are magnified in the equations for 6 %% (for example, at H = 1.5 a lO%,change
in either integral produces more than a 30% change in 6 %%, and at higher

shape factors even greater changes). The difficulty of obtaining a valid corr-



Table III Shear Stress Integrals Based Upon

Hot-Wire Shear Stress Measurements

)
P r 6 T !6 T
ressure
Distrib- Ro i fo i 5 0" 3w ¥
. in pU pU
ution © @
x10™3 x102 x10°
1 20 2.5 1.33 .79 1.71
Lo 4,1 1.33 .58 1.56
2 L 1.2 1.h1 .82 2.08
8 1.9 1.h7 .80 1.85
12 2.8 1.61 .85 1.85
16 3.9 1.78 .90 1.85
20 L4 1.72 .83 1.76
2l 4.6 1.58 .97 1.93
28 .7 1.49 .T9 1.58
32 4.8 1.43 .82 1.58
36 k.9 1.36 .88 1.52
Lo 5.0 1.35 .8k 1.41
3 L 1.2 1.k2 .68 1.91
8 1.8 1.h47 .51 1.4
12 2.9 1.72 .36 1.0
1k 3.5 1.98 .46 1.54
16 4.3 2.15 .50 1.84
18 L7 2.25 .60 . 2,25
20 5.0 2,15 .63 2.37
22 5.2 1.93 o TT 2.05
24 5.4 1,80 .85 1.74
28 5.6 1.60 .90 1.67
32 5.7 1.48 1.02 1.56
36 5.8 1.kh2 .97 1.46
, i 1.2 1.45 U1 1.69
8 1.8 1.44 U1 1.33
12 2.3 1.46 .38 1.48
16 2.8 1,46 .53 1.52
20 3.1 1.42 .53 1.43
24 3.3 1.39 47 1.39
28 3.5 1.37 .52 1.4k
32 3.7 1.36 50 1.46
36 3.8 1.34 .50 1.41
5 N 1.2 1.39 45 1.86
- 8 1.6 1.42 37 1.79
12 2.1 1.k2 .65 1.80
16 2.6 1.44 .5h 1.66
20 3.2 1.48 .59 1.60
24 L.o 1.54 .52 1.35
28 5.0 1.63 52 1.37
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elation of the data can be seen. What might normally be accepted as a reason-
able correlation for the experimental data may actually mask important
behavior.

Several attempts were made to determine the uncertainties in the values
presented in Table III. The first of these was to evaluate the shear stress

integrals from Equations (15) and (16) and also from

u
** . —
1 d 6 Io3 - T ano
= 2 f —= gy (21)
u 3 dx 0 oU 2 dy
(-] (-]

(another form of the mean flow energy equation) using velocity profile data.
This attempt was not very successful since it was found that uncertainties
in the x derivatives were such that almost any level of agreement could be
obtained between the values in Table III and those calculated from velocity
profile data.

For the second attempt the energy thickness §** was calculated from Equ-
ation (21) using the dissipation integrals'(shear stress integral required
for the mean-flow energy equation) listed in Table III and then compared with
those values obtained from velocity profile data. This comparison is shown
in Figure 27. The differences shown in this figure can be explained in part
by normal stresses which were shown to be of some importance in an earlier
section but which are neglected in Equation (21). Although these calculations
do not allow a quantitative statement concerning the asccuracy of the integrals
listed in Table III, they do imply that on the average at least the values
are reasonable.

D. Evidence of Upstream History

Once again the effects of upstream development are demonstrated by the
behavior of the shape factor H. The normalized rate of decay of H with dist-
ance, - e%% is plotted in Figure 28 as a function of H for the relaxing

regions of Pressure Distributions #2, #3, and #4. From this figure it is
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seen that at the same shape factor the decay rate is larger for #3 which was
driven closer to separation before being allowed to relax than it is for #2.
A similar comparison can be made for #2 with respect to #4. Therefore, it
follows that the mean turbulent shear stress at the same shape factor must
also be larger for #3 than for #2 and likewise for #2 with respect to #L.
It was shown in the previous section that the mean velocity profiles are a
function of H alone (within this limited Reynolds number range). Therefore,
the mean velocity profile at any station is not sufficient to determine the
turbulent shear stress at that station. Hence the 1océl mean velocity profile
is not sufficient to fully determine the downstream behavior of the boundary
layer. More informetion is needed concerning what has gone before, i.e.
concerning the upstream history of the flow.

The intuitive argument used earlier in this report, whereby the
turbulent fluctuations are built up in the adverse pressure gradient section
and then decay slowly when the pressure gradient is removed, would still
seem to be pertinent. By specifying, in addition to the mean velocity profile
at some station, some measure of the initial turbulence level (actually the
initial turbulent shear stress) and of its subsequent rate of decay, it should
be possible to calculate the downstream development of the boundary layer.

For the usual integral parameter methods the shape factor behavior is

described by Equation (3), which for zero pressure gradient simply becomes

o & =1,(uR) (22)

3)

It has been clearly shown with the data of Moses( and the data generated in

this study that this description (Eq. (3) or Eq. (22)) is not adequate. In
addition,.it has been indicated that the reason for this inadequacy is the

failure to account fully for the upstream history of the boundary layér.

(2) (9)

Therefore, the conclusions reached by Rotta and by Bradshaw an& Ferriss
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concerning the nezd to account for more upstream history than that implied by
the mean velocity profile in boundery layer calculations are substantiated.

E. Proposed Calculation Method

Based upon (a) the conclusion that the apparent or turbulent shear stress
is not uniquely determined by the local velocity profile and (b) the
realization that an accurate specification of the complete shear stress
distribution is extreemly difficult, attention was focused upon the problem
of including more upstream history in an integral method fof predicting
downstream boundary lsyer behavior. The mean-flow energy integral equation
was chosen over the moment-of-momentum integral equation because of its
somevwhat simpler form. The moment-of-momentum equation with a set of
velocity profiles somewhat more appropriate than power law profiles, such as

Cole's(ll)

universal profiles, becomes rather complicated. Therefore, a
study of the behavior of the dissipation integral CD was made. The relaxing
regions for Pressure Distributions #2, #3, and #4 were chosen for the initial
study since 1) this eliminated consideration of.the pressure gradient and,

2) equilibrium behavior in zero pressure gradient is well documented.

It was found that a relatively simple diffusion type equation,

8 o =K (C - C,) (23)
dx Ppp. P
could be used to represent the data. The value of CDF b was assumed to be
the equilibrium value of the zero pressure gradient dis;ipation integral, as
given by Truckenbrodt's(eg) correlation
% = %J/% (24)

which represents flat. plate data well. In order to use Equation (23) to

A
calculate CD at any down stream station the initial value of CD which reflects
the effect of the upstream history on the turbulent fluctuations must be

specified.
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The results of using Equation (23) along with the mean-flow energy int-
egral equation to calculate the shape factors in the relaxing regions of
Pressure Distributions #2 and #3 are shown in Figure 29 for K = ,009, The
initial values of:CD used for these calculations were estimated from the
integrated hot-wire data. Wall shear stresses were calculated from the

Ludwieg-Tillmann correlation Equation (5). Pressures and momentum thick-

(30)

nesses were tsken from the data, and a 2 step Runge-Kutta method was used

to march the solution downstream. Also shown in Figure 29 are predictions

made using the equilibrium value for C CD » throughout the relaxing

D’
F.P. (28)‘

region, and those made with the method of Escudier and Spalding The

predictions made with Equation (23) give much better agreement with the data
than either of the other two. However, this was to be expected here since
Equation {23) was derived from the data with which it is compared.

Although the results of only two other methods are shown in Figure 29,

a host of other methods were considered in the study, including the following:

(31)

Head's method

(32)

Von Doenhoff and Tetervin method

(33) method

(16)

Garner
Rubert and Persh
(34)

Spence(35)
(3)

method

Schuh method

method

Moses method.

For all of the pressure distributions considered in the study and in

particular for distributions #2 and #3 the method of Escudier and Spalding(aa)‘

gave the best agreement with the data. Therefore, this method has been used
in Figure 29 and will be used for comparisons between the "best" method based

upon the local velocity profile hypothesis (shear stress distribution

dependent upon local velbcity profile only) and the proposed method which
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attempts to account for an upstream histoxy-effect.upon the shear stress
distribution.

Extension of the proposed behavior of CD, Equation (23), to pressure

gradient regions was simply made by changing CD to the equiliﬁrium value
- F.D.
of CD based upon the local conditions. Thus,
d CD
0z =Kl - o (25)

equi
This simple approach preserves the intuitive diffusive type behavior of the
integrated turbulent fluctuations and also insures that at least at equilibrium

the correct value of CD will be obtained.

In order to obtain estimates for CD the equilibrium data of Clauser

equi
(36), as well as Townsend's(37)

(5)

and Herring and Norbury zero wall shear stress

estimate and flat plate data were used to calculate CD from the mean-flow

energy equation. The values of CD calculated in this way are shown
equi

plotted in Figure 30 as a function of normalized pressure gradient. The

ordinate has been divided by Cy » Equation (2k4), to approximately account
F.D. '

for Reynolds number effects. Using these data points, various relationships
au

were assumed between C /C and-g—~—J:, four of which are represented
D .""D U dx

equi “F.D. L
in Figure 30. These functions were then used to calculate the shape factors

from the mean-flow energy integral equations for the following pressure
distributions:

(a) Pressure Distributions #2, #3, #4, #5 and #6 of this study,
(3)

(b) The three pressure distributions of Moses

(9)

shown in Figure 1,

(c) Bradshew and Ferriss pressure distribution which has a relaxing

region.
' 4
In these calculations, the experimental pressure and momentum thicknesses as

well as Ludwieg Tillmanélh)Awall shear stresses were used. The initial values

of CD were assumed to be the eqnilib:ium values for the pressure distributions
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indicated in (a) and (b) above. Since these boundary layers were very thin
at the start of the calculations the initial values of CD chosen were not very
important since these boundary layers returned to equilibrium very quickly.
For the Bradshaw and Ferfiss(g) calculation the initial value of CD was
estimated from the hot-wire data presented in Reference 9. Once again a two
step Runge-Kutta method was used to march the solutions downstream. Various
constant values of X were used in these calculations. |

The results obtained for K = .,009 and for

du

7,6 %V, 3 29 ;..0112 -
C = [1-2.5x10' (3= =—)° - 10° =][ ] (26)
Dequi Um dx Ucn Rel73

gave the best overall agreement with the data. These results are presented
in Figure 31 along with the predictions maede with a similar calculation using

the Escudier and Spalding(28)

correlation for CD° In general, the calculations
made -using Equation (25) give a better fit with the data.

Based on these very encouraging resulﬁs, thgrfollowing integral equations
are proposed for the prediction of turbulent boundary layer behavior:

Momentum integral equations

C dau
fw 9 o
5 - (H + 2) [—I:-d-;— + N.S.C. . {27)

5
]

Mean-flow energy integral equation

du z C
di _ =8 "o H“fw aH N
edx—[(ﬂ-l)num-—dx -3 +cD]dﬁ (16)
And dissipation integral diffusion equation
dCD
o o = k(c - ¢p) £25)
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Best estimates for the normal stress correction (N.S.C.), K, and CD

equi
are at present
, as* (9)
N.S.C. = .0365 (H - 1) ix
K = .00G (28)
and
au du ,
_ v 10T(8 —=3 _ 42,8 _=q.0112
Cp =[1-2.5x%10 (U = ) 10%5- 5= ][——1—/-31 (26)
equi © © Re

Although reasonable results were achieved with Equations (28) andA(26) for
the limited number of cases considered, these e;uations can be revised as
more experimental data is examined. One possibility that has been considered
but not investigated to any extent is that K may not be a constant but some
function of local conditionms.

Specification of initial values for C., which is required for the

D
proposed method, may be & problem. Unless the calculation is started at a
station in the flow where the boundary layer is at or near equilibrium,
measurements or guesses based upon past experience will have to be used to
establish the initial CDo

The proposed method adds little complication to the boundary layer
calculations and appears to describe the mean turbulence behavior correctly.
The diffusive nature of Equation (25) is very satisfying to the intuition and

given the correct values of C will always give the correct solution at

D .
equilibrium. A failing which i:qg:herent in some of the proposed prediction
methods is thus avoided.
When a computer is available for the boundary layer calculations,
inclusion of Equation (25) into the calculation is simple and adds only slightly

to the time required to obtain a solution. If the calculations are being made

by hand then it may be desirable to use the following approximate criterion
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for deciding whether or not Equation (25) need be included in the calculation:

For
du
a & = -2
6 ax (U°° ax ) < 7Tx10
. . (28)

Equation (25) can probably be neglected and the Escudier and Spalding ’
correlation

CD = ,5L47 wa + ,00421k H - ¢09h572 (29)

used to determine CD. This criterion was only investigated for adverse
pressure gradients and needs verification in accelerating pressure gradients.
Also, the limiting velue was established somewhat arbitrarily since no

quantitative statement of the required prediction accuracy was made.
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IV. CONCLUSIONS

Based upon the experimental and analytic programs described in the
preceding sections, the following is a summary of the significant conclusions
reached. Conclusions #2 and #3 are not new but add additional support to
previous conclusions and provide alternate correlations of experimental data.
Conclusion #5 is by far the most significant.

1. Ir zero and adverse pressure gradients Preston tubes.are as good as
sub-layer fences for measuring wall shear stress.

2. The Reynolds normal stresses which are usually neglected in turbulent
boundary layer calculations do have a significant effect upon momentum
thickness calculations for rapidly growing boundary layers. An approximate
correction for normal stresses can be made in the two-dimensional, incompréss-

ible, momentum integral equation with the following correlation:
#*
N.S.C. = .0365 (H - 1) %x‘?-, (9)

3. In the Reynolds number range

1000 < Re < 10,000

the velocity profiles in two—dimensioﬁal, incompressible, turbulent boundary
layers can be represented by a one parameter family. A characteristic of this
femily is that H, the energy thickness factor, can be related to H, the sh;pe
factor 6*/6, in the range

1.3 <H<2.3

by one of the following expressions

_3.6H
2.T8 H - 1

f==]]

(13)

or

=~}
il

2

1,431 - 4—%1-+ 113 (Reference 23) (14)
H .
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4, The turbulent shear stress is not uniquely related to the local
velocity profile but also depends upon upstream history. The eddy viscosity
and mixing length vary considerably in non-equilibrium boundary layers and-
cannot be well represented by the available correlations.

5. The behavior of the dissipation integral CD defined as

[ ] E
C =f 2t —Uw dy (17)
D o pUmz sy ;

can be well represented with a simple diffusion-likeé equation,

d cp
8 — = K (¢ - cp) (25)

dx equi
This equation can be used in conjunction with the mean-flow energy and momentum
integral equations to obtain a practical method for predicting the behavior of
two-dimensional, incompressible, turbulent boundary layers which accounts for

upstream history.

Best estiwates for K and C at the bresent time are

equi

K = .009 (28)
and
a u d U

T.0 ©,3 29 ® ..,0112
o = [1-2.5x 10 (=)~ - 10° — —]] ] (26)
Dequi U, dx U, dx R 1/6 '
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V. RECOMMENDATIONS FOR FURTHER WORK

Due to the necessit;; for using empirical correlations in- turbulent boundary
layer calculations, the generality of any calculation method must be suspect
until many successful comparisons have been made between predicted and
measured behavior. Therefore, the proposed method should be tested and the
suggested empirical correlations modified whenever additional two-dimensional,
turbulent boundary-layer data is generated.

Because of the limited amount of equilibrium data available the
validity of any correlations for equilibrium ghear stress distributions or
integrals cannot be established. More experimental data including hot-wire
measurement of turbulence quantities for equilibrium turbulent boundary

layers would be highly desirable.
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APPENDIX

Effect of Hot-Wire Misalignment on Shear

Stress Measurements

Two cases are considered: The first of these is sketched below.

45° + a v
Flow

Direction L5

1

In position 1 the wire is at 45 plus ¢ degrees to the mean flow direction and
in position 2, 45 minus a degrees. Assuming a to be small and neglecting the
cooling effect of flow parallel to the wires, the linearized fluctuating out-

put voltages for the two positions are

l+a l-a
e = K, [0 3 + v (D) (A.1)
oo iz o
and
e, = K, [ ¢ =% - v O ) (A.2)

where Ke is a proportionality constant. The turbulent shear stress coeffic-
ient is normally obtained by dividing the difference between the squared RMS
values of e, and e, by the averaged mean-squared free stream reading e_ of

" the two wires,

—_— —

2
&) -8
2

_ (A.3)
e2

For the case depicted in the sketch the usual approach would give, according

to Equations (A.l) and (A.2),

2 2 N I
Tyt e - € 12 _ y12
J2uv L 2 0o viT (A.k)
u_2 2e? U2
o (-]
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Therefore, the error which results from not correcting for the misalignment
is

% ERROR = 100 o (——) (A.5)

2
where o has been neglected with respect to 1. For typical values

12 .
5—— = .01 (A.6)
V'2
T = .0025 (A.7)
and
[ []
- gz = -002 (A.8)

which could be expected in turbulent boundary layers, a 1 degree misalignment
(a = 1°) produces about a 6.5% error in shear stress coefficient. Th<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>