
MIT Open Access Articles

Interactive robogami: An end-to-end system
for design of robots with ground locomotion

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

As Published: 10.1177/0278364917723465

Publisher: SAGE Publications

Persistent URL: https://hdl.handle.net/1721.1/134183

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/134183
http://creativecommons.org/licenses/by-nc-sa/4.0/

Interactive Robogami : An End-to-End
System for Design of Robots with
Ground Locomotion

Journal Title
XX(X):1–12
c©The Author(s) 2015

Reprints and permission:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/ToBeAssigned
www.sagepub.com/

Adriana Schulz*1, Cynthia Sung*1, Andrew Spielberg1, Wei Zhao1, Robin Cheng1, Eitan
Grinspun2, Daniela Rus1, and Wojciech Matusik1

Abstract
This paper aims to democratize the design and fabrication of robots, enabling people of all skill levels to make robots
without needing expert domain knowledge. Existing work in computational design and rapid fabrication has explored this
question of customization for physical objects but so far has not been able to conquer the complexity of robot designs.
We have developed Interactive Robogami, a tool for composition-based design of ground robots that can be fabricated
as flat sheets and then folded into 3D structures. This rapid prototyping process enables users to create lightweight,
affordable, and materially versatile robots with short turnaround time. Using Interactive Robogami, designers can
compose new robot designs from a database of print and fold parts. The designs are tested for the users’ functional
specifications via simulation and fabricated upon user satisfaction. We present six robots designed and fabricated using
a 3D printing based approach, as well as a larger robot cut from sheet metal. We have also conducted a user study that
demonstrates our tool is intuitive for novice designers and expressive enough to create a wide variety of ground robot
designs.

Keywords
interactive design, digital fabrication, data-driven methods, simulation, concurrent design

Introduction

A long-held goal in the robotics field has been to see our
technologies enter the hands of the everyman. With the
increasing number of retailers selling robotic kits, as well as
the development of robotic household products, this goal has
recently started to become a reality. Unfortunately despite
these advances, customizing robotic technology to individual
needs remains a challenge. Robots are complex systems that
tightly integrate mechanical, electronic, and computational
subsystems. As a result, customization at anything more than
a superficial level often requires a nonnegligible amount of
engineering skill. And yet, in order for robots to be able to
address the individual needs of their users, they must allow
for personalization.

Traditionally, robot development is a challenging and
time-consuming process involving many iterations of design
and testing, even for skilled engineers. Designers who decide
to tackle this challenge must be able not only to devise
and integrate physical and computational subcomponents,
but also to evaluate manufacturability, usability, reliability,
and other practical issues. Projects often go through multiple
prototypes before converging to a final design. Recent
advances in rapid fabrication ? have made creating complex
3D physical objects easier than ever, allowing people to
realize their designs in hours or days instead of weeks
or years. Among these, 3D printing has emerged as a
method for creating general geometries quickly. Unlike
traditional manufacturing, in which complex geometries
require in-depth analysis to ensure fabricability ?, 3D
printing processes are independent of the fabricated object,
meaning that designers are able to instantiate increasingly

complex geometries without corresponding increases in
cost or fabrication time. As a result, multiple groups have
started to investigate how mechanisms and linkages can be
fabricated as single prints without requiring post-fabrication
assembly by printing joints ??, full mechanisms ?), and
robots ??. However, when it comes to evaluation and design
cycles, current design tools still present users with clear
limitations, and the learning curve is steep for anyone who
wishes to create a design from scratch.

In this paper, we explore an intuitive design tool that
complements current rapid fabrication methods, with the
goal of providing designers with a framework for rapidly
exploring, evaluating, and realizing their robotic designs.
We focus in particular on print and fold robots, robots
whose mechanical parts are fabricated as flat sheets and
folded into their final 3D form. The main challenges that
we tackle with this system are threefold. First, the design
space is large and there is a great amount of flexibility.
For any given task, there are many robot designs that could
satisfy the task requirements. A robot design tool must allow
users to make interesting design choices while presenting
the design space in an intuitive and manageable manner. A
second challenge is the interdependence of subsystems in a

1Massachusetts Institute of Technology, MA, USA
2Columbia University, NY, USA
* The first two authors contributed equally.

Corresponding author:
Adriana Schulz, Cynthia Sung, Massachusetts Institute of Technology,
77 Mass Ave., Cambridge, MA 02139
Email: aschulz@csail.mit.edu crsung@csail.mit.edu

Prepared using sagej.cls [Version: 2015/06/09 v1.01]

2 Journal Title XX(X)

robotic design. A robot has a mechanical body that has a
geometry, has a particular kinematic structure, and is made
of certain materials; it has actuators, sensors, and electronics
that control the robots interactions with the environment at
the low-level; and it has software that provides its high-
level behaviors. Each of these components affects the other.
In this paper, we address the subproblem of geometry-gait
interdependence for ground robots. A third challenge is the
transition from a conceptual design to a physical robot. Any
design that a user creates must be manufacturable, that is,
each of its pieces must be able to be fabricated, and the
disparate pieces must be able to be assembled. Therefore, a
robot design tool should validate not only a robots final form
but also its fabrication plan.

In our work we tackle these challenges using a design by
composition framework. This framework presents users with
a database of usable robot parts which are independently
manufacturable. Users can compose the parts together to
form full designs and the validity and manufacturability
of the design is maintained at every step. Components
in the database can be parameterized to allow variability
while keeping the space of possible designs manageable.
Composition also addresses the challenge of concurrent
geometry and gait design, since in addition to the
geometric components, we also include gait components
in the database. The tool incorporates simulations and
interactive feedback with algorithms for design composition
to streamline parts of the design cycle and guide the
users exploration. It also includes algorithms for automatic
generation of fabrication plans to provide users with
full fabrication and assembly instructions for the robots
mechanical body, required electronics, and control software.
We have tested our methods by implementing this system,
which we call Interactive Robogami, and using it to design
and fabricate six robots of different forms. The robots are
printed as flat fold patterns using a 3D printer and folded
into their 3D shape. One was also fabricated in a larger form
using sheet metal. We have also introduced the tool to eight
novice users to investigate the expressiveness and usability
of a design by composition framework.

Related Work

Our work draws from a number of methods in computational
design, fabrication-oriented design, and robot design.

Computational Design Recent works in computational
design have proposed techniques to bridge the gap between
aesthetic design and physical validity and functionality. For
example, Whiting at al. ? propose a method to optimize
the geometric form of masonry buildings to shapes that are
more structurally sound. Umetani et al. ? describe a system
for furniture design that guides users in creating physically
valid solutions. Similar works have optimized the geometry
of 3D printed shapes to make them stand ?, spin ?, and to
control more generic mass properties ?. Shape optimization
has also been used to allow complex functionality such as
flying capabilities ?. Our work is similar to these efforts since
we propose a technique for designing functional robots that
also guides the user in geometric modeling to optimize for
ground locomotion.

Fabrication-Oriented Design Manufacturability has long
been a concern in engineering design ????? and more
recently has become an area of interest in the computer
graphics community. Proposed fabrication-oriented systems
include tools for plush toys ?, furniture ????, clothes ?,
inflatable structures ?, wire meshes ?, model airplanes ?,
twisty puzzles ?, prototypes of mechanical objects ?, and
architecture-scale objects ?. Our work is similar to these
efforts in the sense that our tool constrains the design space
to ensure fabricability. For fabrication, we use a method
that combines 3D printing with origami-inspired fabrication
methods: robots are 3D printed as flat faces that are then
folded into their final shape ?. This method exploits origami-
inspired fabrication which generates low-cost, lightweight
structures ?????????? and combines it with the flexibility
of additive manufacturing technologies to produce complex
geometries and durable functional joints ?????.

Design of Robots and Functional Mechanisms Design
generation work often considers mechanical structure and
task-specific movement in isolation, with mechanisms
being designed independently of actuation ???. Although
fabrication plans for fully functional robots were outputted
in ?, the designs were driven by mechanical considerations,
and the electrical and software components generated in a
post-processing stage. On the other side of the spectrum are
work in generating driving mechanisms that match desired
input motions for toy designs ???, robots ??, and other
models ?. The combined geometry-motion design challenge,
although acknowledged, is not addressed by these systems.

Concurrent Design Concurrent design of multiple cou-
pled subcomponents is a common challenge when develop-
ing complex systems. Proposed methods for tackling this
challenge include methods for combined structure and con-
trol optimization for mechatronic systems ???, cooptimiza-
tion of dimensions and gait for a quadrupedal robot ?, cogen-
eration of mechanics and actuation for printable robots ??,
and concurrent design of planar linkage structures and tra-
jectories ?. These works search for satisfactory designs
under space and kinematic constraints. Our work is similar
in that our robots require concurrent design of geometry
and motion. However, our system handles 3D robot designs
and additionally considers the stability, speed, and actuation
requirements associated with a ground robot.

Design by Composition Compositional design tools have
been shown in previous work ? to facilitate user creativity
while simplifying the design process for a wide variety
of geometric objects such as furniture ??, clothing ?, and
electromechanical systems ??. The idea has existed at a
hardware level in the robotics literature in the form of
modular robots ???, where individual hardware modules
can be combined on-site to create new geometries and
capabilities. However, since it is difficult to know what
capabilities will be needed, these systems often suffer from
the need to create ever more powerful modules. For robot
design tools, allowing users to combine virtual modules that
can then be fabricated according to their exact specifications
provides designers with greater flexibility. In our approach
we combine geometry and control design exploiting a
component database in an interactive system.

Prepared using sagej.cls

Schulz et al. 3

(a) Original (b) Modified gait (c) Modified geometry
speed: 32.59 mm/s speed: 69.29 mm/s speed: 99.76 mm/s

Figure 1. A robot design that topples while walking (a) can be
modified to follow a gait that only wobbles slightly (b), but
changing the geometry (c) allows the robot to move much faster
and more steadily.

Origami-inspired Design Origami inspired approaches
have been widely used to allow low-cost and fast fabrication
of 3D objects from 2D sheets ranging in scale from the
micrometer and millimeter range ??? to the decimeter
and meter range ??. Creating robots using a print and
fold process accelerates the fabrication and enables the
construction of strong and lightweight structures well suited
for robot designs, but it also presents additional fabrication
constraints that complicate the design process. Previous work
has leveraged the transformation abilities of folded structures
to create robots that crawl ??, jump ?, or navigate obstacles ?,
but most of these designs are single instance designs
that have been manually optimized. Work in ? explored
composition of print and fold robots but did not present any
validity guarantees on the fold patterns. In our system, using
a combination of folding and 3D printing ? allows us to
leverage the flexibility of an additive manufacturing process
to simplify fold pattern design while maintaining the speed
and material efficiency of folding.

Design Decisions

One of the main challenges in robot design is the
interdependence of the geometry and motion. A typical
design process for a robot starts with geometry design,
followed by actuator selection, then controller design ??.
However, minor changes in geometry can drastically
simplify actuator or control design. Take for example the
robot in Figure 1. This four-legged robot was designed by
a user to deliver ice cream. In this task, speed is essential to
ensure the ice cream does not melt. In addition, the robot
must be steady enough that the ice cream does not spill
on the way to its destination. In general, the fastest way
for a statically stable four-legged robot to move is for all
the legs to move simultaneously, resulting in a scooting
motion. With the user’s initial design (Figure 1(a)), though,
this gait is unstable and the robot topples backwards. The
user can find a gait with the left and right pairs of legs
moving sequentially that allows the robot to move forward
with only a slight wobble (Figure 1(b)). However, changing
the geometry slightly allows the robot to succeed with the
original gait and maintain its high speed without falling over
(Figure 1(c)), resulting in a robot that is almost 50% faster.

We present an interactive system that allows designers
to explore how both geometry and motion affect robot
performance, enabling them to make these types of design

Geometry Design Fabrication
and

Assembly

SYSTEM

Gait Design

User
Interface

Simulation

Figure 2. System diagram. Users interact with geometry and
gait design tools. The designed models are simulated to provide
feedback to the user. The user may iterate over the design
before fabricating and assemblying the model.

Figure 3. User interface. Icons that link to geometry
components are displayed on the left and the gait design tool is
on the bottom. Users design models by dragging components
into the center canvas and editing them. Performance metrics
for the design are shown on the right.

choices. Our system contains tools for geometry and
gait design, as well simulations for evaluating the model
(ref. Figure 2). Users interact with the tool through a
graphical user interface (Figure 3) in which they can
visualize the models they create and receive real time
feedback as to how changes to the design affect the robot’s
performance. The system keeps track of the geometry and
motion in order to output a full fabrication plan once the user
is ready to build the design.

Our design choices were driven by three main objectives:
1) facilitate user creativity while maintaining wide range
of accessibility, 2) enable concurrent design of motion and
geometry, 3) guarantee fabricability and 4) provide real time
feedback for ground locomotion design.

Since the design space of robots is too large to be explored
interactively by casual users, we introduce a component
library and an assembly based modeling tool to allow
users to combine components in the database to create
new robots. This method has been shown to facilitate user
creativity while maintaining wide range accessibility ?.
The components in the database are parameterized to
allow variability while keeping the space of possible
designs manageable. A linear parameterization simplifies
the data representation and speeds up computation without
compromising expressiveness.

In order to address the concurrent design problem, our
database contains both geometric parts and motions and
is supported by a grammar that dictates composition rules

Prepared using sagej.cls

4 Journal Title XX(X)

for both of these components. To this end we drew many
insights from the experience of robotics engineers. We
categorized parts into bodies, legs, and peripherals based on
the functionality of components in existing robot designs.
The joint controllers were chosen based on the physiology
literature and parameterized according to when legs were
expected to make contact with the ground ?.

All the geometric components can be fabricated using
our 3D print and fold method and the parametrization is
designed so that this is preserved at any configuration. The
composition tool uses the parametric representation to snap
geometric component together constraining the composed
models to a fabricable set of geometries. The composition
rules are used to determine the electronic components needed
in the assembly and the parametric motion representation is
used for automatic generation of the control software. This
allows the system to automatically generate a full fabrication
plan for every composed model.

Optimization and simulation tools are used to guide users
in realizing a stable ground robot as will be detailed in
a later sections. The parametric representation defines the
design space for a fixed topology over which optimization
can occur. Nine performance and fabrication metrics are
computed in real time when a user creates or modifies a
robot and are displayed to the user. Users can optimize
designs relative to these metrics by altering geometry, gait,
or both. We chose metrics that are commonly of interest
to roboticists designing ground behavior. These objectives
allow inexperienced users to optimize their designs to follow
trajectories, minimize fabrication cost, maximize speed, and
overall make more intelligent design tradeoffs than when
using single-metric systems often found in the literature.
During a pilot study, we found that users preferred some
metrics (e.g., speed, turning angle) and found others to be
unintuitive (e.g., forward travel) and we incorporated this
feedback into our user interface design.

Geometric Design
Our assembly based modeling tool allows users to create new
designs by composing parts from a collection of parametric
components and manipulating their shape parameters.

Geometry Components
We have created a database of robot components to be
used in design. These components are classified into three
categories: robot bodies, limbs (wheels and legs), and
peripherals, shown in Figure 4. The database contains a
total of 45 components, including 12 bodies, 23 limbs, and
10 peripherals.

All the components in the database are parameterized
to allow structure-preserving variations. They were created
using a system similar to that in ?. Each component M
contains a set of shape parameters q and a corresponding
feasible setQ, which together describe the viable component
geometries (see Figure 5). Each vertex on the geometry
is written as a linear function of the shape parameters q.
Components are also annotated with fabrication rules for our
3D print and fold method. This includes a 2D representation
of the fold pattern, consisting of a set of 2D faces and
connection information between their edges that indicate

Figure 4. Geometry components by category. Our system’s
database contains 45 components: 12 bodies, 23 limbs, and 10
peripherals.

Figure 5. One of the geometry components in the database,
with both its 3D shape and 2D unfolding. The component has
parameter values of diameter qd and width qw. The green line
indicates a functional patch, and the blue lines are static
patches.

where folds are located in the design. The 3D and 2D
representations are coupled so that they are simultaneously
updated as parameters are changed.

In order to allow the assembly based modeling to work
with our fabrication method, each component M is also
annotated with a set of connecting patches pi that indicate
where components are allowed to be connected together.
Patch representations are also a function of the shape
parameters q and contain orientation information dictating
the direction of connection. We define two types of patches.
Static patches are edges where rigid attachments can be
made. Because we use an origami-inspired fabrication
approach, components can only be attached along folds.
When components are attached along static patches,
connecting hinges are added to the corresponding edges
in the 2D unfolding. Functional patches indicate where

Prepared using sagej.cls

Schulz et al. 5

Figure 6. Given an orthonormal orientation (x, y), the
dimension of the part in each direction is written as a function of
q by using the parametric representation of the extreme
vertices.

articulated connections occur. These are either single points
on the centers of wheels and legs or line segments along the
sides of the bodies. When components are attached along
functional patches, servomotors are added to actuate the
articulations.

Geometry Manipulation
Components can be modified based on the parametric
representation. Allowable manipulations include translation,
rotation, and dimension scaling. In order to maintain a linear
representation for the geometric components, rotation is
restricted to a global rotation of the model and involves
modifying the linear functions that represent the vertex
locations and connections.

All other manipulations correspond to an optimization
of the parameter values. For example, in order to scale
the dimensions of a face, users select that face and click
and drag on one of the two orthonormal control axes that
appear (Figure 3). The dimension in the selected direction,
d(q), is expressed as a function of the design parameters
q using the distance between the extreme vertices in this
direction (see Figure 6). Resizing involves finding a feasible
solution, q ∈ Q, such that ‖d(q)− (d(qcurrent) +K) ‖2 is
minimized, where qcurrent are the parameter values at the
current configuration and K is the resizing amount defined
by the user’s dragging. Since there might be many feasible
solutions to this problem, the system finds the one that that
keeps the model as close as possible to its original state. We
express the distance to the current configuration as ‖D(q)−
D(qcurrent)‖2, where D is a matrix created by stacking the
directional dimensions of all faces and represents the current
dimensions of the model. The closest model satisfying the
user’s input can be found by solving for

q∗ := argmin ‖d(q)− (d(qcurrent) +K) ‖2+

α‖D(q)−D(qcurrent)‖2 s.t q ∈ Q
(1)

where α is a weighting parameter. Translation of parts is
performed in an analogous manner.

Geometry Composition
As users drag new components M c onto the screen, the
system proposes a connection to the working model Mw.
It searches for the closest pair (pci , p

w
j) of either static

or functional patches and proposes to connect them by
highlighting them in real time (ref. Figure 7). When the
users are satisfied with a matching pair, they finalize the

Figure 7. As the user drags in components, the UI highlights
the patch pairs that will be connected. Limbs are attached to
bodies along functional patches. All other components attach
via static patches.

Algorithm 1: Compose(M c, pci ,M
w, pwj)

1 Rotate M c so orientation of pci matches pwj ;
// Add constraints for connecting patches

2 if pci and pwj are functional patches then
3 Constrain center of pci to lie on pwj ;
4 else
5 Constrain the vertices of pci and pwj to match;
6 end
// Compose parameters q and feasible set

Q
7 Q ← Qw ∩Qc;
8 q← qw ∪ qc;
9 Update q by solving Eq. (2);

10 Update kinematic tree;

connection (Algorithm 1). This operation first rotates the
added model so that the patches are properly aligned, then
defines constraints on the parametric representation that snap
the components into place and adds connection information.

The information added depends on the patch type. For
static patches, constraints ensure that the pairs of patch edges
remain coincident. The system also adds folds to connect
the 2D unfoldings. For functional patches, the constraints
enforce that patch regions intersect, i.e., that patch points
are coincident when attaching limbs to limbs or that patch
points lie on patch lines when attaching limbs to bodies.
Joint information indicating that a servomotor should be
added between these two components is also added. We
define four types of joints: wheel joints (connecting wheels
and bodies), single leg joints (connecting single-link legs
to bodies), shoulder joints (connecting multi-link legs to
bodies), and elbow joints (connecting links within the same
leg). These connections define a kinematic chain that is used
for gait design and simulation.

Constraints on point and edge locations can be defined
as linear constraints on the shape parameters q. When
connecting a limb to a body, a new parameter qc indicating
the position of the leg along the side of the body is
added. Linear constraints are then defined to enforce that
the point patch on the limb is attached at this location.
In addition, when multiple limbs are attached to the same
functional patch, inequality constraints on qc are added to
enforce that limbs do not collide during locomotion. We
use a conservative approximation that ensures limbs will not
collide in any gait.

Once constraints are defined, the system finds the valid
parameters that keep the model as close as possible to the

Prepared using sagej.cls

6 Journal Title XX(X)

current configuration by solving for

q∗ := argmin ‖D(q)−D(qcurrent)‖2 s.t q ∈ Q (2)

The solution of this optimization “snaps” the components
into place.

Since assembled models preserve the parametric repre-
sentation, users can continue to manipulate shapes in the
way described above after assembly. When one part is
manipulated, the different parts of the composed model will
update to satisfy the constraints imposed by the composition
algorithm.

Finally, our system also allows users to define additional
constraints on composed models. The user interface exposes
a list of symmetry constraints that can be enforced or relaxed
at any design stage. These include equalizing the length of
all limbs, uniformly spacing all limbs along the sides of the
body, equalizing thickness of all legs, and equalizing length
of links on multi-linked legs.

These constraints are also defined as linear constraints
on the shape parameters q. We use the parameters qc that
indicate the position of each limb along the side of the body
to define a uniform spacing. Equalizing length and thickness
of limbs and links is done by constraining their bounding box
dimensions.

Gait Design
Motion of a ground robot is dictated by its gait, which
consists of the periodic motions performed by the robot’s
joints as it locomotes. Similar to the geometry design
process, gait design is done by manipulating parameters of
gait components and composing them into a gait sequence.

Gait Component
We have designed a gait that consists of two phases: a step
phase and a reset phase. During the step phase, limbs take
turns lifting off and re-situating. During the reset phase, all
limbs move to shift the robot’s joint angles back to their pre-
step configuration. In our parametric model, users can vary
the size of the step for each limb and select the ordering
of limb steps. The reset phase is modeled on these same
parameters moving all of the limbs simultaneously after all
the steps are performed, completing the gait cycle. When
the robot is stable and does not rely on body contact with
the ground to move, these phases correspond to the swing
and stance gait phases commonly used in the literature ?, the
main difference being that in our robots, the stance phases
for all limbs occur simultaneously.

We have designed a parametric controller for each joint
type using this gait model. The joint motions that occur
under each controller are shown in Figure 8. Green arrows
indicate the joint trajectory during the step phase. Red arrows
indicate the trajectory during the reset phase. Note that
since wheels cannot lift off the ground once in contact, they
do not experience a step phase. The combination of these
controllers for a given robot topology defines a parametric
gait component with gait parameters g and a corresponding
feasible set G.

The gait parameters g are as set of parameters for each
limb (θi, Ni), where the value θi controls the angle swept

θiθi

(a) Single leg

θi

(b) Shoulder/Elbow

θi

(c) Wheel

Figure 8. Joint controllers for each joint type. Controllers for
every joint are separated into a step phase (shown in green)
and a reset phase (shown in red). Users modify gaits by
changing the θi values for each joint and defining the step
sequence.

Figure 9. Gait design interface. Users can choose among gait
suggestions (top), edit the gait parameters (middle), and
compose gaits into a gait sequence by dragging them into a
timeline (bottom).

out by the ith limb during the reset phase, and the integer
Ni defines the step order of the ith limb with respect to
the step sequence. During the step phase, limbs can move
in groups, therefore more than one limb can have the same
step parameter Ni (see Figure 9). The feasible set G includes
constrains on Ni so that every step is associated with at least
one leg. It also includes bounds on the absolute value of
θi. Negative values for θi indicate a sweep in the opposite
direction. Timing information for the gait is computed based
on the parameter values and the servomotor’s maximum
angular speed (3.3π rad/s).

Gait Manipulation
The system provides users with a list of gait suggestions
using a heuristic based on the stability and speed for a given
topology. Stability is approximated as the distance between
the projection of the robot’s center of mass on the ground
plane and the boundary of its support polygon, and speed
is approximated by counting the number of steps N . The
system suggests gaits that maximize stability, then speed. It
suggests only gaits that keep at least 3 limbs on the ground
at all times.

Our system also suggests three standard gaits in which
all limbs step simultaneously (N = 1). The three variations
consist of all positive values for θi’s (forward gait), negative
values for θi’s along the left side of the body and positive
values for θi’s on the right (rotation to the left), and positive
values for θi’s along the left side of the body and negative
values for θi’s on the right (rotation to the right).

Prepared using sagej.cls

Schulz et al. 7

Users design a gait by initially choosing a suggestion
provided by the software. The users can adjust the gait
parameters using the interface in Figure 9 (middle). The
image on the left side shows the users the step sequence,
while the smaller images to the right show the directions
of movement of particular limbs. Users can adjust the step
ordering or the sweep angle θi for each leg by using the
arrows and sliders.

Gait Composition
Users can design multiple gaits by repeating the process for
gait manipulation on the system’s suggestions and assigning
each of the new gaits a unique name. They can compose a
gait sequence by dragging the gaits onto a timeline (Figure 9
(bottom)). The system displays to the user each of the gaits
they have designed, using colors to indicate the which gait
takes place at each entry in the gait sequence. The system
automatically adds a transition gait between any two gaits
whose ending and starting joint configurations do not match.
The transition gait consists of all joints moving between the
ending joint angles of the previous gait to the starting joint
angles of the next gait at the servomotor’s maximum speed
(3.3π rad/s).

Interactive Feedback and Optimization
Our system incorporates simulations and metric evaluations
that enable users to evaluate their designs and make
additional changes before finalizing and fabricating the
robot.

Simulation The robot models are simulated by discretiz-
ing time and computing the corresponding statically stable
geometry at each time step. In particular, at each time ti, the
configuration of the robot is first computed by updating the
joint angles at each of the robot’s joints. Next, the robot’s
orientation is found by placing the lowest points of the
robot on the ground and iteratively pivoting the robot about
its contact points until it is statically stable. The weight
of actuators is accounted for using a point mass at the
center of the joints. The direction of rotation is determined
by computing the effect of a downward gravitational force
applied at the robot’s center of mass. The robot is statically
stable when the projection of its center of mass onto the
ground plane lies within its support polygon (i.e., the convex
hull of the contact points with the ground).

We approximate friction by assuming that the robot has
slipped as little as possible. At each time ti, our system
finds the contact points of the robot with the ground and
identifies those points that were also in contact at time ti−1.
To compute the new pose of the robot, a least-squares rigid
transformation between the locations of the contact points
from the two time steps is computed and applied to the robot.

Since the robot may exhibit different behaviors over
multiple gait cycles (e.g., toppling), the system performs the
simulation until it has detected that the robot has reached a
steady-state behavior. It detects this case by comparing the
pose of the robot at the beginning of a gait cycle to its pose at
the beginning of every previous gait cycle. If its pose differs
by only a translation and a rotation about ẑ, then the robot
has reached a steady state. The system stores information
about the start time ti0 and end time tif for one iteration of

the robot’s steady state behavior for metric evaluation. Any
pose of the robot after this time can be calculated as a rigid
transformation of a pose during this time period.

Metrics The robot models are simulated for each of the
different designed gaits and the composed gait sequence. The
simulations are used to compute metrics that provide the user
with information about the robot’s expected performance.
All metrics on designed gaits are computed for the robot’s
steady state behavior.

The system evaluates the following metrics, which tell
users about the robot’s overall performance.

1. Speed: The average speed V of the robot in steady
state is computed as the distance traveled during
one iteration of steady state behavior, divided by the
amount of time required to traverse that distance:

V =
1

tif − ti0

if∑
i=i0+1

‖p(ti)− p(ti−1)‖2

where p(ti) is the position of the robot’s center of
mass at time ti. Speed is reported in mm/s.

2. Wobbliness: The average wobbliness W of the robot
is computed as the amount of orientation variation the
robot experiences over one iteration of steady state
behavior:

W =
1

if − i0

if∑
i=i0+1

|∆θ (ti−1, ti)|

where ∆θ (ti−1, ti) is the combined yaw and pitch
angular change between time ti−1 and time ti.
Wobbliness is reported in rad.

3. Slip: The average slip of the robot is the root mean
square of errors between contact points during the final
reorientation step of the simulation.

S =
1

if − i0

if∑
i=i0+1

√
1

ni

∑
j

∥∥∥cji − cji−i

∥∥∥2
2

where ni is the total number of contact points that
remain in contact between times ti−1 and time ti, and
cji is the location of one of those contact points j at
time ti. Slip is reported in mm.

The following metrics are also computed for each of
the designed gaits to provide the user with additional
information for composition.

1. Angle of Rotation: The robot’s change in heading is
computed over one gait cycle.

∆φ =
1

if − i0
(
φ(tif)− φ(ti0)

)
where φ(ti) is the heading of the robot at time ti.
Angle of rotation is reported in degrees.

2. Curvature: The average curvature of a gait is the
reciprocal of the robot trajectory’s radius of curvature
and is computed as

ρ =
2 sin(∆φ/2)∥∥p(tif)− p(ti0)

∥∥
2

Curvature is reported in 1/m.

Prepared using sagej.cls

8 Journal Title XX(X)

3. Variance: The variance of a trajectory is calculated
assuming that the robot ideally follows a circular path
with curvatureC and uses the perpendicular error from
that path.

E =
1

if − i0

if∑
i=i0

‖p(ti)− p̂(ti)‖22

where p̂(ti) is the closest point to p(ti) on the circular
trajectory. Variance is reported in mm2.

In addition to these performance metrics, the system
computes fabrication metrics related to the robot geometry
and kinematics. These include:

1. Fabrication Cost: The fabrication cost is computed as
the mass in grams of nonsupport material required to
print the robot body.

2. Electronics Cost: The cost of electronics is the
combined cost of the servomotors, the microcontroller,
and the battery.

3. Total Mass: The total mass of the robot in grams is
calculated as the combined mass of the printed body
and the electronics.

Feedback and Guidance Our system computes the
metrics at interactive rates and exposes them to the user as
feedback during the design process. A tab on the right side
of the UI displays each gait design’s metric values, colored
according to gait. It also shows an overhead view of the
trajectory of the robot’s center of mass for each gait. An
arrow at the end of the trajectory indicates the robot’s final
heading. As the user manipulates the model and composes
parts, the metrics and trajectories update automatically to
reflect the changes. Users can also visualize an animation
of any of the designed gaits in order to have a more
comprehensive understanding of the robot’s motion.

Our system also provides guidance to the user on how
to manipulate model dimensions. To activate this feature,
users select a metric value to improve (i.e., increasing speed,
decreasing wobble, decreasing slip, etc.) and turn guidance
on. When they next choose a face on the model to scale
or translate, the system displays arrows on the control
axes indicating which direction to change the dimensions
to improve that value (Figure 10). The system uses finite
differences to determine how much the metric improves
for each manipulation axis and draws an arrow if the
improvement is above a given threshold. The guidance can be
performed for metrics on individual designed gaits or for the
composed gait sequence, and it helps the user to find optimal
part dimensions for that metric.

Finally, our system contains an automatic optimization
method that will search for metric improvements in the
full geometry space. The system uses NLopt’s COBLYA
implementation ?? to search for parameter changes that
achieve a local optimum of the user-chosen metric. For
example, when the four-legged fish design in Figure 11 is
optimized for speed, the system increases the overall size of
the robot and two of the legs (Figure 11(b)). Because of legs
on the same side of the robot are constrained to be far enough
apart that they will never collide, and since robot speed is
most affected by the maximum leg length, having one long

Figure 10. The system provides guidance arrows for users who
want to make local geometry optimizations. The up and down
arrows indicate that the user should lengthen and shorten the
leg respectively. No arrow indicates that the part dimension is
already at a local optimum.

(a) Original (b) Maximize speed (c) Minimize wobble
V = 25.59 mm/s V = 52.28 mm/s V = 15.25 mm/s
W = 0.46 rad W = 0.75 rad W = 0.06 rad

Figure 11. Optimization results for a four-legged fish robot for
different metrics. Maximizing speed increases the overall size of
the robot. Minimizing wobble makes the robot shorter.

leg and one shorter leg yields a higher speed than having two
legs of equal length. The same model can also be optimized
for minimum wobbliness, in which case the model becomes
flatter and the back legs become shorter than the front ones
to account for the heavy tail (Figure 11(c)).

Fabrication
Our system outputs a full fabrication plan for the robot
that the user has designed. These plans include a mesh
of the robot’s body that can be sent to a 3D printer, a
list of electronics and port connections, and software to
load onto the microcontroller (see Supplementary Materials
for example fabrication plan). The user is responsible for
assembling the robot model.

Fabricating the Robot Body
For the robot bodies, we use a combination of 3D and
origami-inspired assembly methods that provide a balance
between the versatility and rigidity of 3D printing and the
speed of planar fabrication. Since the model that the user
designs is already associated with a 2D fold pattern, our
system can convert the pattern into a 3D printable mesh
(Figure 12, Algorithm 2).

In order to construct the mesh, faces are first shrunk along
the normals of connection edges to make room for folds
and hinges are added to the mesh to enable folding. All the
faces need to be shrunk before adding any hinges so that the
added hinges do not interfere with each other. The faces are
then extruded to 1 mm, which we chose as the thickness
that produces rigid faces while still allowing almost π rad
fold angles. At each of the functional connections, holes
are added to the faces to make room for servomotors to be
mounted. The hinge design is parameterized according to its
location in the overall model, its length and its angle. It is also
designed to snap together so that faces that are not adjacent

Prepared using sagej.cls

Schulz et al. 9

Algorithm 2: Fabricate(M)

1 forall static patch pair (pi, pj) do
2 Shrink connected faces along connecting edges;
3 end
4 Extrude all faces to 1 mm;
5 forall functional patch pair (pi, pj) do
6 Add holes for servo mounts;
7 end
8 forall static patch pair (pi, pj) do
9 Generate printable hinge at patch locations;

10 end

(a) Input design (b) Process connections (c) Final print

Figure 12. Our system automatically generates a 3D mesh for
a foldable design. (a) The original design, with blue edges
indicating static connections and green dots indicating
functional connections. (b) Connections are processed by
shrinking faces to make room for hinges and adding holes for
servo mounts. (c) Hinges are added and the result is a
complete mesh that is 3D printed.

in the 2D pattern can still be connected in the folded state.
The hinges snap to the correct fold angle during assembly.

Finally, our system enables certain parts to be printed as
3D objects instead of folded ones. For example, volumetric
feet on some of the legs are printed in a softer, rubbery
material to increase friction with the ground. Wheels are
printed thicker in order to increase their rigidity.

Implementing the Motion Sequence
In order to implement the motion sequence, the robot
requires actuators and control circuitry. An electronics plan
is generated based on the kinematic tree of the robot
design. Our control circuitry uses an Arduino Pro Mini and
is based on a standardized electronics module described
previously in ?. First, one servomotor is assigned to each
degree of freedom. For this system, we use the Turnigy
TGY-1370A servomotors, modified to also output a position
signal. The robots are powered by a 3.7 V lithium ion
battery. Connections between the servos, batteries, and
the Arduino are assigned using a greedy approach that
matches pin types. Connections such as those for power and
ground can connect multiple components, while connections
sending control signals to servomotors must be one-to-one.
Depending on the number of servos and the available ports,
more microcontrollers may be added.

The system then generates control software by converting
the timing and angle values from the individual joint
controllers in the composed gait sequence into code for
sending PWM signals to the robot’s servomotors. Because
our gaits are based on joint controller modules, the software
for the robot can be generated using a software template. The
gait parameters and the gait sequence that forms the desired

trajectory are written to a gait definition file. The rest of the
software is general code that implements the trajectory given
the parameters.

Assembly
The user assembles the robot by folding the body,
attaching servomotors to the printed mounts, connecting the
electronics parts, and loading the control software. Once the
user turns the robot on, it immediately follows gait sequence
designed in the system.

Results
To test the usability of our system and the effectiveness
of the combined geometry and gait design approach, we
introduced our system to 8 users with no previous experience
in robot design. The users were all engineering graduate
students (3 female, 5 male) between the ages of 22 and 31.
Four of the students had previous experience with CAD and
modeling tools (SolidWorks, Blender, Maya, etc.). The users
were given 20 min. of training in the system’s features and
were then asked to perform 2 tasks designed to evaluate the
expressiveness of the geometry and gait design frameworks.
In addition to these tests, we also fabricated 6 robot models
designed in the system.

Geometry Design
In the first task, users were given 10 min. to interact with the
geometry composition tool and create a car. Figure 13 shows
the models that the users created. All of the models were
functional vehicles that rolled forward without toppling.
The results demonstrate a wide range of geometries that
are achievable using our system. Interestingly, when body
geometries that users wanted were not available as single
components in the database, they were able to create
new shapes by composing and rescaling individual bodies
together. The users generally expressed satisfaction with the
expressiveness of the system. An enthusiastic user designed
an additional 18 robots with different levels of complexity
(Figure 14). Each model took 3 to 25 min. to design.

Gait Design
In the second task, users were given a robot design and
asked to design a trajectory to navigate the robot through an
obstacle course in the least amount of travel time. The users
were given 15 min. to complete the task. Half of the users
were allowed both to design gaits and to change the geometry
parameters of the design, while the other half were restricted
to gait design. Figure 15 shows the trajectories designed by
each user and the total time of each gait sequence.

The robot geometry provided was similar to the one
described in Figure 1, which topples during forward gaits
where all legs have equal values for θi’s. Users who were
not allowed to manipulate the geometry were able to explore
the gait design tool creatively to reach the goal. Solutions
included a combination of right and left rotation gaits (user
1), fixing the back legs and moving forward stably with
only the front legs (users 2 and 6), and performing an
180 degree rotation before moving with a backwards gait
towards the goal. To reach these solutions, users made

Prepared using sagej.cls

10 Journal Title XX(X)

Figure 13. Cars designed by 8 different novice users after a
20 min. training session with the tool. Users were given 10 min.
to design their car.

extensive use of the interactive feedback during manipulation
of gait parameters and gait sequence composition. The users
reported that the most useful features were the animations
and the trajectory visualization.

On the other hand, users who were not restricted to gait
design edited the robot dimensions so that it would be stable
during a forward gait with all legs moving simultaneously.
The resulting gait sequences were significantly faster (40%
time reduction on average) than the ones designed without
geometry modification. These users referenced the metrics
tab on the user interface when manipulating the shape to find
more stable configurations. One user used the guide arrows
to minimize the wobbliness metric.

Fabrication Examples
We tested the full design pipeline by composing and
fabricating 6 robot models, shown in Figure 16. Figure 17
shows the electronics inside one of the models. They each
took 10-15 min. to design, 3-7 hr. to print, and 30-90 min.
to assemble (ref. Table 2). Each robot was fabricated and
assembled successfully and was able to execute the gait
designed in the system.

The robots demonstrate a range of locomotion types and
gaits. The mouse, dragon, and ant are each robots that use
multiple single legs to walk. The mouse uses a gait that

steps with one leg at a time, while the dragon and ant move
their legs in groups. The ant uses a standard tripod gait
commonly seen in robotic hexapods. The wheeled car robot
is an example of locomotion with a rigid body and wheels
that rotate continuously to move it forward. Two of the robots
demonstrate combinations of limb types. The house has two
front legs and two back wheels. It moves each of its two legs
forward individually but rotates its wheels simultaneously to
shift forward. The monkey has double-link front legs and
single back legs, and it uses a similar step sequence to the
mouse but with a different ordering of legs.

The resulting robot trajectories were similar to those
predicted by the system. Figure 18 shows frames from the
simulation of the monkey compared with the physical robot
at the same time. Each of the legs moves at the expected
times and in the correct order. In addition, the robot dips
forward when the third leg moves (t = 3.0 s) in both the
simulation and in the physical model. Both models have
turned slightly to the right by the end of one gait cycle.

To test the degree of similarity of the physical robots
with the simulations in the design tool, we tracked the
movement of each of the robots over 10 gait cycles for 5
trial runs in a VICON motion capture system. We calculated
the speed, mean curvature, and turning angle for each of
these trajectories. The mean metric values for each robot are
given in Table 1. The car is the fastest robot, with a speed of
357.02 mm/s, while the monkey is the slowest of the robots,
moving at a speed of 6.99 mm/s. All the experimental speed
values are within 26% of the expected value, and turning
angles are within 0.13 radians (7.35 deg.) of the expected
turning angle. Larger errors in speed are correlated with
larger errors in turning angle. During experiments, those
robots experienced greater amounts of slip because their
limbs were not moving completely synchronously and so
dragged on the floor. While they were moving, there were
also slight shifts of the positions of electronic internals, such
as batteries and microcontrollers, that were not accounted for
in the simulations.

Finally, we compared our 3D print and fold method to
directly 3D printing the geometries of their folded state.
Table 2 compares the printing time and material usage for
each process. Our 3D print and fold technique yields a 73.2%
reduction in 3D printing time and a 69.9% reduction in
material usage on average. The difference in material usage
is due to the support material that is necessary to print
the robots in their 3D form. In addition to the fabrication
efficiency, our method allows fabrication of closed shapes
that are empty on the inside. All of our printed models would
have been impossible to assemble as 3D models since there is
no way to remove the support material from inside the body
and to add the electronics.

Extensions
Because the system abstracts away the implementation
details, users can design robots without specifying the exact
fabrication approach. As a result, the models that users
produce can also be fabricated using other origami-inspired
methods, allowing our system to scale to robots beyond
those models that can be printed in the 3D printer. For
example, Figure 19 shows a foldable design for a two-
legged, two-wheeled robot that was fabricated using both

Prepared using sagej.cls

Schulz et al. 11

Figure 14. Gallery of designs created by a novice user after a 20 min. training session. Each of the models took between 3 and
25 min. to design and contains multiple components from the database.

Speed (mm/s) Curvature (1/m) Turning Angle(rad)
exp sim exp sim exp sim

Ant 20.60 27.63 2.63 0.02 0.129 0.001
Dragon 14.39 14.31 1.9 1.79 -0.073 -0.047
Mouse 10.6 12.40 1.19 3.97 -0.045 -0.115
Monkey 6.99 9.17 6.05 4.43 -0.182 -0.106
House 14.56 14.01 1.60 0.21 -0.042 -0.004
Car 352.02 419.40 0.97 0.00 -0.051 0.000

Table 1. Simulated and experimental speed, curvature, and turning angle values for each of the six fabricated robots

Material Usage Print Time Assembly3D 2D 3D 2D
Ant 2176 g 614 g 24.4 hr. 5.9 hr. 55 min.
Dragon 1795 g 517 g 24.2 hr. 6.9 hr. 45 min.
Mouse 1154 g 358 g 21.2 hr. 3.4 hr. 35 min.
Monkey 2779 g 499 g 33.7 hr. 5.2 hr. 45 min.
House 841 g 342 g 10.8 hr. 4.4 hr. 40 min.
Car 1955 g 661 g 18.1 hr. 6.5 hr. 90 min.

Table 2. Fabrication time and material usage for 3D printing vs.
our proposed 3D print and fold method. The 3D print and fold
method provides substantial time and material savings.

our 3D print and fold approach and by waterjetting and
folding 3.18 mm thick aluminum sheet. The geometries of
the two models were the same, up to a scaling factor, and
the gaits were identical. In its folded state, the aluminum
robot was 627 mm× 602 mm× 368 mm. Because of its size,
we changed parts of the electronics design to enable larger
motors and voltages to be used. Rubber sheet was attached
to the bottoms of the legs and to the rims of the wheels to
prevent the sharp corners of the metal from snagging on or
scratching the floor. Table 3 shows a comparison of the robot
to its 3D print and fold counterpart. The robot is able to carry
a payload in excess of 14 kg. It walks at about half the speed
of the 3D print and fold robot due to the gearing in the motors
used.

The system currently allows users only to make geometry
and motion design decisions, but the automated generation
of the fabrication plan also enables end users to more
easily program robots for high-level behaviors. To test this
feature, the aluminum robot was designed using the system

Aluminum Print and fold
Length 627 mm 103 mm
Width 602 mm 103 mm
Height 368 mm 63 mm
Mass 9.300 kg 75 g

Speed 18.91 mm/s 31.2 mm/s
Payload capacity 14.456 kg 188 g

Table 3. Specifications for aluminum and print and fold robot

for forward, backward, and left and right turning gaits. It
was then instrumented with range sensors. We manually
added some additional code to choose a gait depending on
the sensor input but did not change any of the generated
software. The resulting robot was able to navigate an
obstacle course of cardboard boxes without colliding with
the environment.

It is worth noting that although our database was designed
for the purpose of creating ground robots, many of the parts
can also be used for other tasks. For example, legs and
fingers on robots are essentially equivalent in all but intended
functionality. Our system is flexible enough to accommodate
manipulation tasks by simply allowing users to connect
multi-link legs to functional patches on the tops or sides of
robot bodies (ref. Figure 20).

Limitation
Our system is subject to a few limitations. First and foremost,
as with most data-driven methods, our system’s design space
is restricted to the designs that can be composed from the
database using our grammar. Experts designers are needed

Prepared using sagej.cls

12 Journal Title XX(X)

User 3: 9.25 s

User 4: 8.10 s

User 7: 9.30 s

User 8: 8.40 s

User 1: 13.30 s

User 2: 16.60 s

User 5: 13.65 s

User 6: 15.30 s

No Geometry

Changes

Geometry

Changes

Figure 15. Trajectories designed by users during the second
task. Users who were allowed to make changes to the robot
geometry were able to make the robot navigate the course
about 40% faster on average.

to expand the set of building blocks from which users can
compose their own designs. Methods for expanding the
database that are accessible to novice users are needed to
overcome this limitation.

With regards to the animation and simulation, our system
currently only considers the geometry and kinematics of
the robot. As a result, the electronics modules in all of
our robots are the same. However, actuation is often a
large challenge in robot design. Simulations that incorporate
environmental or task constraints such as load, dynamic
forces, and robustness in order to generate more applicable
robot models are needed.

Finally, our user feedback is restricted to local guidance.
Performance metrics are calculated for the current robot
model, and guidance arrows provide information on how
to make local design changes to improve metrics. Thus,
the system is currently unable to accommodate situations
where more global changes are needed (e.g., changing
the dimensions of multiple parts simultaneously) or where
additional parts should be added. It is also unable to
determine when a user-designed model is unable to

achieve the desired performance metrics given the parameter
constraints. Methods that enable the system to provide this
feedback will significantly strengthen the system.

Discussion and Future Work
We have presented a system that allows novice designers
to create functional robots using an assembly-based
modeling approach. The system enables users to explore
the space of geometries and gaits in their models in
order to efficiently achieve desired performance metrics. It
incorporates simulation and optimization methods to provide
the user with feedback and guidance on how to modify
their designs. It also takes care of the implementation details
required for fabrication, allowing users to focus on the
conceptual high-level design. We have demonstrated this
end-to-end pipeline by designing and fabricating multiple
robot models.

In the future, it would be interesting to expand the system
to incorporate dynamic simulations and verification, as well
as to address a wider variety of tasks. We showed with our
obstacle course that the system is able to provide sufficient
feedback for standard planning tasks. However, real world
robots must be able to interact with a physical environment.
It would therefore be useful for the system to also be able
to estimate metrics such as robustness, allowable load, and
battery life.

Our results demonstrate that a design approach that
simultaneously tackles geometry and motion aspects of a
robot design can lead to better design performance. Using
a tool that provides interactive feedback on performance
metrics, novice users are able to efficiently explore the
combined geometry and motion space to produce functional
robots within a few hours. In the future, we believe that
similar data-driven fabrication systems will enable mass
customization and production of robots for the general
public.

Acknowledgements

Support for this project has been provided in part by NSF Grant
Nos. 1240383 and 1138967, by the DoD through the NDSEG
Fellowship Program. We are also grateful to the following people
for resources, discussions and suggestions: Ankur Mehta, Joseph
DelPreto, Jacob Haip, and Isaque Dutra.

References

Ayyappa E (1997) Normal human locomotion, part 1: Basic
concepts and terminology. Journal of Prosthetics and Orthotics
9(1): 10–17.

Bächer M, Bickel B, James DL and Pfister H (2012) Fabri-
cating articulated characters from skinned meshes. ACM
Trans. Graph. 31(4): 47:1–47:9. DOI:10.1145/2185520.
2185543. URL http://doi.acm.org/10.1145/

2185520.2185543.
Bächer M, Coros S and Thomaszewski B (2015) LinkEdit:

Interactive linkage editing using symbolic kinematics. ACM
Trans. Graph. 34(4): 99:1–99:8. DOI:10.1145/2766985. URL
http://doi.acm.org/10.1145/2766985.

Bächer M, Whiting E, Bickel B and Sorkine-Hornung O (2014)
Spin-it: Optimizing moment of inertia for spinnable objects.

Prepared using sagej.cls

http://doi.acm.org/10.1145/2185520.2185543
http://doi.acm.org/10.1145/2185520.2185543
http://doi.acm.org/10.1145/2766985

Schulz et al. 13

(a) Ant (281 mm × 138 mm × 124 mm) (b) Dragon (210 mm × 162 mm × 88 mm) (c) Mouse (146 mm × 147 mm × 94 mm)

(d) Monkey (207 mm × 250 mm × 112 mm) (e) House (127 mm × 82 mm × 140 mm) (f) Car (200 mm × 117 mm × 98 mm)

Figure 16. Six robots designed and fabricated using the system. Numbers over the limbs indicate the step sequence.

Figure 17. The electronics (servomotors, microcontroller, and
battery) inside the Monkey example (Figure 16(d)).

ACM Trans. Graph. 33(4): 96:1–96:10. DOI:10.1145/
2601097.2601157. URL http://doi.acm.org/10.

1145/2601097.2601157.
Bezzo N, Gebhard P, Lee I, Piccoli M, Kumar V and Yim M

(2015) Rapid co-design of electro-mechanical specifications
for robotic systems. In: ASME 2015 International Design
Engineering Technical Conferences and Computers and
Information in Engineering Conference. American Society of
Mechanical Engineers, pp. V009T07A009–V009T07A009.

Calı̀ J, Calian DA, Amati C, Kleinberger R, Steed A, Kautz J
and Weyrich T (2012) 3d-printing of non-assembly, articulated
models. ACM Trans. Graph. 31(6): 130:1–130:8. DOI:
10.1145/2366145.2366149. URL http://doi.acm.org/

10.1145/2366145.2366149.
Ceylan D, Li W, Mitra NJ, Agrawala M and Pauly M (2013)

Designing and fabricating mechanical automata from mocap
sequences. ACM Trans. Graph. 32(6): 186:1–186:11. DOI:
10.1145/2508363.2508400. URL http://doi.acm.org/

10.1145/2508363.2508400.
Chen D, Sitthi-amorn P, Lan JT and Matusik W (2013) Computing

and fabricating multiplanar models. In: Computer Graphics
Forum, volume 32. Wiley Online Library, pp. 305–315.

Cheney N, MacCurdy R, Clune J and Lipson H (2013) Unshackling
evolution: evolving soft robots with multiple materials and a
powerful generative encoding. In: Proceedings of the 15th
annual conference on Genetic and evolutionary computation.
ACM, pp. 167–174.

Coros S, Thomaszewski B, Noris G, Sueda S, Forberg M, Sumner
RW, Matusik W and Bickel B (2013) Computational design of
mechanical characters. ACM Trans. Graph. 32(4): 83:1–83:12.
DOI:10.1145/2461912.2461953. URL http://doi.acm.

org/10.1145/2461912.2461953.
Currier DW (1980) Automation of sheet metal design and

manufacturing. In: 17th Conference on Design Automation.
IEEE, pp. 134–138.

Davey J, Kwok N and Yim M (2012) Emulating self-reconfigurable
robots-design of the smores system. In: 2012 IEEE/RSJ
International Conference on Intelligent Robots and Systems.
IEEE, pp. 4464–4469.

Deng D and Chen Y (2013) Assembled additive manufacturing–a
hybrid fabrication process inspired by origami design. Solid
Freeform Fabrication : 174.

Deng D and Chen Y (2015) Origami-based self-folding structure
design and fabrication using projection based stereolithogra-
phy. Journal of Mechanical Design 137(2): 021701.

Digumarti K, Gehring C, Coros S, Hwangbo J and Siegwart R
(2014) Concurrent optimization of mechanical design and
locomotion control of a legged robot. Mobile Service Robotics:
CLAWAR 2014 12: 315.

Prepared using sagej.cls

http://doi.acm.org/10.1145/2601097.2601157
http://doi.acm.org/10.1145/2601097.2601157
http://doi.acm.org/10.1145/2366145.2366149
http://doi.acm.org/10.1145/2366145.2366149
http://doi.acm.org/10.1145/2508363.2508400
http://doi.acm.org/10.1145/2508363.2508400
http://doi.acm.org/10.1145/2461912.2461953
http://doi.acm.org/10.1145/2461912.2461953

14 Journal Title XX(X)

t = 0.0 s t = 1.0 s t = 2.0 s t = 3.0 s t = 4.0 s t = 5.0 s t = 6.0 s

Figure 18. Comparison of monkey gait in simulation and from physical robot. The robot motion matches those from the simulations.

Figure 19. Large fold robot designed in system and fabricated
from 0.125 in. thick aluminum sheet.

Figure 20. Robot with gripper constructed by attaching 2-link
legs to a functional patch on the top of the robot body

Felton S, Tolley M, Demaine E, Rus D and Wood R (2014) A
method for building self-folding machines. Science 345(6197):
644–646.

Firouzeh A and Paik J (2015) Robogami: a fully integrated low-
profile robotic origami. Journal of Mechanisms and Robotics
7(2): 021009.

Fitzner I, Sun Y, Sachdeva V and Revzen S (2017) Rapidly
prototyping robots: Using plates and reinforced flexures. IEEE
Robotics & Automation Magazine 24(1): 41–47.

Fuge M, Carmean G, Cornelius J and Elder R (2015) The
mechprocessor: Helping novices design printable mechanisms
across different printers. Journal of Mechanical Design
137(11): 111415.

Funkhouser TA, Kazhdan MM, Shilane P, Min P, Kiefer W, Tal A,
Rusinkiewicz S and Dobkin DP (2004) Modeling by example.
ACM Transactions on Graphics 23(3): 652–663.

Garg A, Sageman-Furnas AO, Deng B, Yue Y, Grinspun E,
Pauly M and Wardetzky M (2014) Wire mesh design.
ACM Trans. Graph. 33(4): 66:1–66:12. DOI:10.1145/
2601097.2601106. URL http://doi.acm.org/10.

1145/2601097.2601106.
Gong J, Wang J and Xu Y (2014) Paperlego: component-based

papercraft designing tool for children. In: SIGGRAPH Asia
2014. ACM, p. 3.

Gupta SK and Nau DS (1995) Systematic approach to analysing the
manufacturability of machined parts. Computer-Aided Design
27(5): 323–342.

Hoover AM, Steltz E and Fearing RS (2008) RoACH: An
autonomous 2.4g crawling hexapod robot. In: IEEE/RSJ
International Conference on Intelligent Robots and Systems.
IEEE, pp. 26–33.

Johnson SG (2014) The NLopt nonlinear-optimization package.
http://ab-initio.mit.edu/nlopt.

Khardekar R, Burton G and McMains S (2006) Finding feasible
mold parting directions using graphics hardware. Computer-
Aided Design 38(4): 327–341.

Koo B, Li W, Yao J, Agrawala M and Mitra NJ (2014)
Creating works-like prototypes of mechanical objects. ACM
Trans. Graph. 33(6): 217:1–217:9. DOI:10.1145/2661229.
2661289. URL http://doi.acm.org/10.1145/

2661229.2661289.
Lau M, Ohgawara A, Mitani J and Igarashi T (2011) Converting

3D furniture models to fabricatable parts and connectors. ACM
Transactions on Graphics 30(4): 85.

Lee DY, Kim JS, Kim SR, Koh JS and Cho KJ (2013) The
deformable wheel robot using magic-ball origami structure.
In: ASME 2013 International Design Engineering Technical
Conferences and Computers and Information in Engineering
Conference. American Society of Mechanical Engineers, pp.
V06BT07A040–V06BT07A040.

Li Q, Zhang W and Chen L (2001) Design for control-a
concurrent engineering approach for mechatronic systems
design. IEEE/ASME Transactions on Mechatronics 6(2): 161–
169.

Li XY, Shen CH, Huang SS, Ju T and Hu SM (2010)
Popup: Automatic paper architectures from 3d models.
ACM Trans. Graph. 29(4): 111:1–111:9. DOI:10.1145/
1778765.1778848. URL http://doi.acm.org/10.

1145/1778765.1778848.
Lipson H and Pollack JB (2000) Automatic design and manufacture

of robotic lifeforms. Nature 406(6799): 974–978.
Ma X, Vogtmann D and Bergbreiter S (2016) Dynamics and scaling

of magnetically folding multi-material structures. In: 2016
IEEE International Conference on Robotics and Automation
(ICRA). IEEE, pp. 1899–1906.

Mavroidis C, DeLaurentis KJ, Won J and Alam M (2000)
Fabrication of non-assembly mechanisms and robotic systems

Prepared using sagej.cls

http://doi.acm.org/10.1145/2601097.2601106
http://doi.acm.org/10.1145/2601097.2601106
http://doi.acm.org/10.1145/2661229.2661289
http://doi.acm.org/10.1145/2661229.2661289
http://doi.acm.org/10.1145/1778765.1778848
http://doi.acm.org/10.1145/1778765.1778848

Schulz et al. 15

using rapid prototyping. Journal of Mechanical Design : 516–
524.

McCann J, Albaugh L, Narayanan V, Grow A, Matusik W,
Mankoff J and Hodgins J (2016) A compiler for 3d machine
knitting. ACM Trans. Graph. 35(4): 49:1–49:11. DOI:
10.1145/2897824.2925940. URL http://doi.acm.org/

10.1145/2897824.2925940.
Megaro V, Thomaszewski B, Nitti M, Hilliges O, Gross M and

Coros S (2015) Interactive design of 3D-printable robotic
creatures. ACM Transactions on Graphics (TOG) 34(6): 216.

Mehta A, Bezzo N, An B, Gebhard P, Kumar V, Lee I and Rus D
(2014) A design environment for the rapid specification and
fabrication of printable robots. In: International Symposium on
Experimental Robotics.

Mehta A, DelPreto J and Rus D (2015) Integrated codesign of
printable robots. Journal of Mechanisms and Robotics 7:
021015.

Mehta A and Rus D (2014) An end-to-end system for designing
mechanical structures for print-and-fold robots. In: IEEE
International Conference on Robotics and Automation. IEEE.

Meng Y, Zhang Y, Sampath A, Jin Y and Sendhoff B (2011) Cross-
ball: a new morphogenetic self-reconfigurable modular robot.
In: Robotics and Automation (ICRA), 2011 IEEE International
Conference on. IEEE, pp. 267–272.

Mitani J and Suzuki H (2004) Making papercraft toys from
meshes using strip-based approximate unfolding. ACM
Trans. Graph. 23(3): 259–263. DOI:10.1145/1015706.
1015711. URL http://doi.acm.org/10.1145/

1015706.1015711.
Mori Y and Igarashi T (2007) Plushie: An interactive design system

for plush toys. ACM Transactions on Graphics 26(3): 45:1–
45:8.

Musialski P, Auzinger T, Birsak M, Wimmer M and Kobbelt
L (2015) Reduced-order shape optimization using offset
surfaces. ACM Trans. Graph. 34(4): 102:1–102:9. DOI:10.
1145/2766955. URL http://doi.acm.org/10.1145/

2766955.
Park JH and Asada H (1994) Concurrent design optimization of

mechanical structure and control for high speed robots. Journal
of dynamic systems, measurement, and control 116(3): 344–
356.

Patel J and Campbell MI (2010) An approach to automate and
optimize concept generation of sheet metal parts by topological
and parametric decoupling. Journal of Mechanical Design
132(5): 051001.

Pil AC and Asada HH (1996) Integrated structure/control design of
mechatronic systems using a recursive experimental optimiza-
tion method. IEEE/ASME Transactions on Mechatronics 1(3):
191–203.

Powell MJ (1994) A direct search optimization method that models
the objective and constraint functions by linear interpolation.
In: Advances in Optimization and Numerical Analysis. pp. 51–
67.

Prévost R, Whiting E, Lefebvre S and Sorkine-Hornung O
(2013) Make it stand: Balancing shapes for 3d fabrication.
ACM Trans. Graph. 32(4): 81:1–81:10. DOI:10.1145/
2461912.2461957. URL http://doi.acm.org/10.

1145/2461912.2461957.
Romanishin JW, Gilpin K, Claici S and Rus D (2015) 3d m-blocks:

Self-reconfiguring robots capable of locomotion via pivoting in

three dimensions. In: 2015 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, pp. 1925–1932.

Saul G, Lau M, Mitani J and Igarashi T (2011) Sketchchair: an all-
in-one chair design system for end users. In: Proceedings of
the fifth international conference on tangible, embedded, and
embodied interaction, TEI ’11. pp. 73–80.

Schulz A, Shamir A, Levin DIW, Sitthi-amorn P and Matusik
W (2014) Design and fabrication by example. ACM
Trans. Graph. 33(4): 62:1–62:11. DOI:10.1145/2601097.
2601127. URL http://doi.acm.org/10.1145/

2601097.2601127.
Skouras M, Thomaszewski B, Kaufmann P, Garg A, Bickel

B, Grinspun E and Gross M (2014) Designing inflatable
structures. ACM Trans. Graph. 33(4): 63:1–63:10. DOI:
10.1145/2601097.2601166. URL http://doi.acm.org/

10.1145/2601097.2601166.
Song S, Kim J and Yamane K (2015) Development of a bipedal

robot that walks like an animation character. In: 2015 IEEE
International Conference on Robotics and Automation. IEEE,
pp. 3596–3602.

Sun T and Zheng C (2015) Computational design of twisty
joints and puzzles. ACM Trans. Graph. 34(4): 101:1–101:11.
DOI:10.1145/2766961. URL http://doi.acm.org/10.

1145/2766961.
Sung C and Rus D (2015a) Automated fabrication of foldable robots

using thick materials. In: Proceedings of the International
Symposium on Robotics Research (ISRR).

Sung C and Rus D (2015b) Foldable joints for foldable robots.
Journal of Mechanisms and Robotics 7(2): 021012.

Tachi T (2011) Rigid-foldable thick origami. In: Origami 5: Fifth
International Meeting of Origami Science Mathematics and
Education. pp. 253–264.

Thomaszewski B, Coros S, Gauge D, Megaro V, Grinspun E
and Gross M (2014) Computational design of linkage-based
characters. ACM Transactions on Graphics 33(4): 64.

Umetani N, Igarashi T and Mitra NJ (2012) Guided exploration
of physically valid shapes for furniture design. ACM
Trans. Graph. 31(4): 86:1–86:11. DOI:10.1145/2185520.
2185582. URL http://doi.acm.org/10.1145/

2185520.2185582.
Umetani N, Kaufman DM, Igarashi T and Grinspun E (2011)

Sensitive couture for interactive garment modeling and editing.
ACM Trans. Graph. 30(4): 90:1–90:12. DOI:10.1145/
2010324.1964985. URL http://doi.acm.org/10.

1145/2010324.1964985.
Umetani N, Koyama Y, Schmidt R and Igarashi T (2014) Pteromys:

Interactive design and optimization of free-formed free-flight
model airplanes. ACM Trans. Graph. 33(4): 65:1–65:10. DOI:
10.1145/2601097.2601129. URL http://doi.acm.org/

10.1145/2601097.2601129.
Wang CH and Sturges RH (1996) Bendcad: a design system

for concurrent multiple representations of parts. Journal of
Intelligent Manufacturing 7(2): 133–144.

Whiting E, Shin H, Wang R, Ochsendorf J and Durand F
(2012) Structural optimization of 3d masonry buildings.
ACM Trans. Graph. 31(6): 159:1–159:11. DOI:10.1145/
2366145.2366178. URL http://doi.acm.org/10.

1145/2366145.2366178.
Whitney J, Sreetharan P, Ma K and Wood R (2011) Pop-up book

mems. Journal of Micromechanics and Microengineering

Prepared using sagej.cls

http://doi.acm.org/10.1145/2897824.2925940
http://doi.acm.org/10.1145/2897824.2925940
http://doi.acm.org/10.1145/1015706.1015711
http://doi.acm.org/10.1145/1015706.1015711
http://doi.acm.org/10.1145/2766955
http://doi.acm.org/10.1145/2766955
http://doi.acm.org/10.1145/2461912.2461957
http://doi.acm.org/10.1145/2461912.2461957
http://doi.acm.org/10.1145/2601097.2601127
http://doi.acm.org/10.1145/2601097.2601127
http://doi.acm.org/10.1145/2601097.2601166
http://doi.acm.org/10.1145/2601097.2601166
http://doi.acm.org/10.1145/2766961
http://doi.acm.org/10.1145/2766961
http://doi.acm.org/10.1145/2185520.2185582
http://doi.acm.org/10.1145/2185520.2185582
http://doi.acm.org/10.1145/2010324.1964985
http://doi.acm.org/10.1145/2010324.1964985
http://doi.acm.org/10.1145/2601097.2601129
http://doi.acm.org/10.1145/2601097.2601129
http://doi.acm.org/10.1145/2366145.2366178
http://doi.acm.org/10.1145/2366145.2366178

16 Journal Title XX(X)

21(11): 115021.
Yan X and Gu P (1996) A review of rapid prototyping technologies

and systems. Computer-Aided Design 28(4): 307–318.
Yim S, Miyashita S, Rus D and Kim S (2017) Teleoperated

micromanipulation system manufactured by cut-and-fold
techniques. IEEE Transactions on Robotics 33(2): 456–467.

Yoon C, Xiao R, Park J, Cha J, Nguyen TD and Gracias DH (2014)
Functional stimuli responsive hydrogel devices by self-folding.
Smart Materials and Structures 23(9): 094008.

Yoshida H, Igarashi T, Obuchi Y, Takami Y, Sato J, Araki M, Miki
M, Nagata K, Sakai K and Igarashi S (2015) Architecture-
scale human-assisted additive manufacturing. ACM Trans.
Graph. 34(4): 88:1–88:8. DOI:10.1145/2766951. URL http:

//doi.acm.org/10.1145/2766951.
Zhakypov Z, Falahi M, Shah M and Paik J (2015) The design and

control of the multi-modal locomotion origami robot, tribot.
In: Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ
International Conference on. IEEE, pp. 4349–4355.

Zhu L, Xu W, Snyder J, Liu Y, Wang G and Guo B (2012) Motion-
guided mechanical toy modeling. ACM Trans. Graph. 31(6):
127:1–127:10. DOI:10.1145/2366145.2366146. URL http:

//doi.acm.org/10.1145/2366145.2366146.

Prepared using sagej.cls

http://doi.acm.org/10.1145/2766951
http://doi.acm.org/10.1145/2766951
http://doi.acm.org/10.1145/2366145.2366146
http://doi.acm.org/10.1145/2366145.2366146

	Introduction
	Related Work
	Design Decisions
	Geometric Design
	Geometry Components
	Geometry Manipulation
	Geometry Composition

	Gait Design
	Gait Component
	Gait Manipulation
	Gait Composition

	Interactive Feedback and Optimization
	Fabrication
	Fabricating the Robot Body
	Implementing the Motion Sequence
	Assembly

	Results
	Geometry Design
	Gait Design
	Fabrication Examples
	Extensions
	Limitation

	Discussion and Future Work

