
EXACT FORMULAS FOR THE NORMALIZING
CONSTANTS OF WISHART DISTRIBUTIONS FOR

GRAPHICAL MODELS

By Caroline Uhler∗, Alex Lenkoski†, and Donald Richards‡

Massachusetts Institute of Technology∗, Norwegian Computing Center†,
and Penn State University‡

Gaussian graphical models have received considerable attention
during the past four decades from the statistical and machine learning
communities. In Bayesian treatments of this model, the G-Wishart
distribution serves as the conjugate prior for inverse covariance ma-
trices satisfying graphical constraints. While it is straightforward to
posit the unnormalized densities, the normalizing constants of these
distributions have been known only for graphs that are chordal, or
decomposable. Up until now, it was unknown whether the normaliz-
ing constant for a general graph could be represented explicitly, and
a considerable body of computational literature emerged that at-
tempted to avoid this apparent intractability. We close this question
by providing an explicit representation of the G-Wishart normalizing
constant for general graphs.

1. Introduction. Let G = (V,E) be an undirected graph with vertex
set V = {1, . . . , p} and edge set E. Let Sp be the set of symmetric p × p
matrices and Sp�0 the cone of positive definite matrices in Sp. Let

(1.1) Sp�0(G) = {M = (Mij) ∈ Sp�0 |Mij = 0 for all (i, j) /∈ E}

denote the cone in Sp of positive definite matrices with zeros in all entries not
corresponding to edges in the graph. Note that the positivity of all diagonal
entries Mii follows from the positive-definiteness of the matrices M .

A random vector X ∈ Rp is said to satisfy the Gaussian graphical model
(GGM) with graph G if X has a multivariate normal distribution with mean
µ and covariance matrix Σ, denoted X ∼ Np(µ,Σ), where Σ−1 ∈ Sp�0(G).
The inverse covariance matrix Σ−1 is called the concentration matrix and,
throughout this paper, we denote Σ−1 by K.
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Statistical inference for the concentration matrix K constrained to Sp�0(G)
goes back to Dempster [6], who proposed an algorithm for determining the
maximum likelihood estimator [cf., 31]. A Bayesian framework for this prob-
lem was introduced by Dawid and Lauritzen [5], who proposed the Hyper-
Inverse Wishart (HIW) prior distribution for chordal (also known as decom-
posable or triangulated) graphs G.

Chordal graphs enjoy a rich set of properties that led the HIW distribution
to be particularly amenable to Bayesian analysis. Indeed, for nearly a decade
after the introduction of GGMs, focus on the Bayesian use of GGMs was
placed primarily on chordal graphs [see, e.g., 11]. This tractability stems
from two causes: the ability to sample directly from HIWs [28], and the
ability to calculate their normalizing constants, which are critical quantities
when comparing graphs or nesting GGMs in hierarchical structures.

Roverato [29] extended the HIW to general G. Focusing on K, Atay-
Kayis and Massam [2] further studied this prior distribution. Following Letac
and Massam [22], Lenkoski and Dobra [21] termed this distribution the G-
Wishart. For D ∈ Sp�0(G) and δ ∈ R, the G-Wishart density has the form

fG(K | δ,D) ∝ |K|
1
2

(δ−2) exp(−1
2tr(KD)) 1K∈Sp�0(G).

This distribution is conjugate [29] and proper for δ > 1 [24].
Early work on the G-Wishart distribution was largely computational in

nature [4, 7, 8, 17, 21, 32, 33] and was predicated on two assumptions:
first, that a direct sampler was unavailable for this class of models and,
second, that the normalizing constant could not be explicitly calculated.
Lenkoski [20] developed a direct sampler for G-Wishart variates, mimicking
the algorithm of Dempster [6], thereby resolving the first open question. In
this paper, we close the second question by deriving for general graphs G
an explicit formula for the G-Wishart normalizing constant,

CG(δ,D) =

∫
Sp�0(G)

|K|
1
2

(δ−2) exp(−1
2tr(KD)) dK,

where dK =
∏p
i=1 dkii ·

∏
i<j, (i,j)∈E dkij denotes the product of differen-

tials corresponding to all distinct non-zero entries in K.
For notational simplicity, we will consider the integral

IG(δ,D) =

∫
Sp�0(G)

|K|δ exp(−tr(KD)) dK,

which can be expressed in terms of CG(δ,D) as follows: Denote by |E| the
cardinality of the edge set E; by changing variables, K → 2K, one obtains

CG(δ,D) = 2
1
2
pδ+|E| IG

(
1
2(δ − 2), D

)
.
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The normalizing constant IG(δ,D) is well-known for complete graphs, in
which every pair of vertices is connected by an edge. In such cases,

(1.2) Icomplete(δ,D) = |D|−(δ+ 1
2

(p+1)) Γp
(
δ + 1

2(p+ 1)
)
,

where

(1.3) Γp(α) = πp(p−1)/4
p∏
i=1

Γ
(
α− 1

2(i− 1)
)
,

Re(α) > 1
2(p − 1), is the multivariate gamma function. The formula (1.2)

has a long history, dating back to Wishart [34], Wishart and Bartlett [35],
Ingham [15], Siegel [30, Hilfssatz 37], Maass [23], and many derivations of a
statistical nature; see Olkin [27] and Giri [10, p. 224].

As noted above, IG(δ,D) is also known for chordal graphs. Let G be
chordal, and let (T1, . . . , Td) denote a perfect sequence of cliques (i.e., com-
plete subgraphs) of V . Further, let Si = (T1∪· · ·∪Ti)∩Ti+1, i = 1, . . . , d−1;
then, S1, . . . , Sd−1 are called the separators of G. Note that the separators
Si are cliques as well. We denote the cardinalities by ti = |Ti| and si = |Si|.
For S ⊆ {1, . . . , p}, let DSS denote the submatrix of D corresponding to the
rows and columns in S. Then,

IG(δ,D) =

∏d
i=1 ITi(δ,DTiTi)∏d−1
j=1 ISj (δ,DSjSj )

=

∏d
i=1

(
|DTiTi |

−
(
δ+ 1

2
(ti+1)

)
Γti
(
δ + 1

2(ti + 1)
))

∏d−1
j=1

(
|DSjSj |

−
(
δ+ 1

2
(sj+1)

)
Γsj
(
δ + 1

2(sj + 1)
)) .(1.4)

This result follows because, for a chordal graph G, the G-Wishart density
function can be factored into a product of density functions [5].

For non-chordal graphs the problem of calculating IG(δ,D) has been open
for over 20 years, and much of the computational methodology mentioned
above was developed with the objective of either approximating IG(δ,D) or
avoiding its calculation. Our result shows that an explicit representation of
this quantity is indeed possible.

In deriving the explicit formula for the normalizing constant IG(δ), we
utilize methods that are familiar to researchers in this area. These methods
include the Cholesky decomposition or the Bartlett decomposition of a pos-
itive definite matrix, Schur complements for factorizing determinants, and
the chordal cover of a graph. Furthermore, we make crucial use of certain
formulas from the theory of generalized hypergeometric functions of matrix
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argument [13, 16], and analytic continuation of differential operators on the
cone of positive definite matrices [9].

The article proceeds as follows. In Section 2 we treat the case in which
D = Ip, the p×p identity matrix, deriving a closed-form product formula for
the normalizing constant IG(δ, Ip) for various classes of non-chordal graphs.
In Section 3 we consider the case of general matrices D; in our main result
in Theorem 3.3 we derive an explicit representation of IG(δ,D) for general
graphs as a closed-form product formula involving differentials of principal
minors of D. We end with a brief discussion in Section 4.

2. Computing the normalizing constant IG(δ, Ip). In this section,
we compute IG(δ, Ip) for two classes of non-chordal graphs. We begin in
Section 2.1 with the class of complete bipartite graphs and use an approach
based on Schur complements to attain a closed-form formula. In Section 2.2
we introduce directed Gaussian graphical models and show how these models
relate to a Cholesky factor approach to computing IG(δ, Ip). This leads to
a formula for computing normalizing constants of graphs with minimum
fill-in equal to 1, namely graphs that become chordal after the addition of
one edge. However, these approaches do not lead to a general formula for
the normalizing constant in the case D = Ip. To obtain a formula for any
graph G, we found it necessary to calculate the more general case IG(δ,D)
and then specialize D = Ip, as is done for moment generating functions or
Laplace transforms. This is explained in Section 3.

2.1. Bipartite graphs. A complete bipartite graph on m+ n vertices, de-
noted by Hm,n, is an undirected graph whose vertices can be divided into
disjoint sets U = {1, . . . ,m} and V = {m + 1, . . . ,m + n}, such that each
vertex in U is connected to every vertex in V , but there are no edges within
U or V . For the graph Hm,n, the corresponding matrix K is a block matrix,

K =

(
KAA KAB

KT
AB KBB

)
,

where KAA,KBB are diagonal matrices of sizes m×m and n×n, respectively,
and KAB is unconstrained, i.e., no entry of KAB is constrained to be zero.

Proposition 2.1. The integral IHm,n(δ, Im+n) converges absolutely for
all δ > −1, and

(2.1) IHm,n(δ, Im+n) =
[
Γ
(
δ + 1

2n+ 1
)]m [

Γ(δ + 1
2m+ 1)

]n
×

Γm+n

(
δ + 1

2(m+ n+ 1)
)

Γm
(
δ + 1

2(m+ n+ 1)
)

Γn
(
δ + 1

2(m+ n+ 1)
) .
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Proof. Applying the Schur complement formula for block matrices, we
obtain

IHm,n(δ, Im+n) =

∫
Sm+n
�0 (G)

|K|δ exp(−tr(K)) dK

=

∫
Sm+n
�0 (G)

|KAA|δ |KBB −KT
AB(KAA)−1KAB|δ

· exp(−tr(KAA)− tr(KBB)) dKAA dKAB dKBB.

Since KAB is unconstrained, we can change variables by replacing KAB by

K
1/2
AAKABK

1/2
BB; then the corresponding Jacobian is |KAA|n/2|KBB|m/2. Since

|KBB −K1/2
BBK

T
ABKABK

1/2
BB| = |KBB| · |In −KT

ABKAB|,

we obtain

IHm,n(δ, Im+n) =

∫
Sm+n
�0 (G)

|KAA|δ+
1
2
n |KBB|δ+

1
2
m |In −KT

ABKAB|δ

· exp(−tr(KAA)− tr(KBB)) dKAA dKAB dKBB,

where the range of integration is such that each diagonal entry of KAA

and KBB is positive, KAB is unconstrained, and In −KT
ABKAB is positive

definite. Integrating over each diagonal entry of KAA and KBB, we obtain

IHm,n(δ, Im+n) =
[
Γ
(
δ + 1

2n+ 1
)]m [

Γ
(
δ + 1

2m+ 1
)]n

×
∫
KAB

|In −KT
ABKAB|δ dKAB.

Finally, since KAB is unconstrained, we deduce from (3.4) the value of the
latter integral.

In this computation, we used the special structure of the graph to de-
compose the inverse covariance matrix K into a special block matrix. In
Section 3 we use a similar approach to show how the normalizing constant
changes when removing a clique (i.e. a completely connected subgraph) from
a graph. This leads to an algorithm for computing the normalizing constant
IG(δ,D) for any graph G. In the reminder of this section, we show how
an approach based on the Cholesky factorization of K can be used to eas-
ily compute the normalizing constant for graphs that have minimum fill-in
equal to 1. This requires introducing directed Gaussian graphical models.
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2.2. Directed Gaussian graphical models. Let G = (V, E) be a directed
acyclic graph (DAG) consisting of vertices V = {1, . . . , p} and directed
edges E . We assume, without loss of generality, that the vertices in G are
topologically ordered, meaning that i < j for all (i, j) ∈ E . We associate
to G a strictly upper-triangular matrix B of edge weights. So B = (bij)
with bij 6= 0 if and only if (i, j) ∈ E . Then a directed Gaussian graphical
model on G for a random variable X ∈ Rp is defined by X ∼ Np(0,Σ) with
Σ = [(I −B)D(I −B)T ]−1, where D is a diagonal matrix.

To simplify notation, let aii = dii and aij = −bij
√
djj , and let A = (Aij)

with Aii =
√
aii and Aij = −aij for all i 6= j. Then Σ−1 = AAT , and aij 6= 0

for i 6= j if and only if (i, j) ∈ E . Note that AAT is the upper Cholesky
decomposition of Σ−1. Such a decomposition exists for any positive definite
matrix and is unique.

We will associate to a DAG, G = (V, E), and its corresponding directed
Gaussian graphical model two undirected graphs. We denote by Gs = (V, Es)
the skeleton of G obtained by replacing all directed edges in G by undirected
edges. We denote by Gm = (V, Em) the moral graph of G, which reflects the
conditional independencies in Np(0,Σ), i.e.,

(i, j) /∈ Em if and only if Xi ⊥⊥ Xj | XV \{i,j}.

Since Σ−1 also encodes the conditional independence relations of the form
Xi ⊥⊥ Xj | XV \{i,j}, this is equivalent to the criterion,

(i, j) /∈ Em if and only if
(
Σ−1

)
ij

= 0.

So, the moral graph Gm reflects the zero pattern of Σ−1.
The moral graph of G can also be defined graph-theoretically: It is formed

by connecting all nodes i, j ∈ V that have a common child in G, i.e., for which
there exists a node k ∈ V \{i, j} such that (i, k), (j, k) ∈ E , and then making
all edges in the graph undirected. The name stems from the fact that the
moral graph is obtained by ‘marrying’ the parents. For a review of basic
graph-theoretic concepts see e.g. [19, Chapter 2].

The moral graph is an important concept for our application. Let G =
(V,E) be an undirected graph, with V = {1, . . . , p}, for which we want to
compute IG(δ, Ip). Let G0 = (V,E0) with G0 = G. Given a labeling of the
vertices V we associate a DAG, G0 = (V, E0), to G0 by orienting the edges in
E0 according to the topological ordering, i.e., for all (i, j) ∈ E0 let (i, j) ∈ E0

if i < j. Note that the skeleton of G0 is the original undirected graph G0. Let
G1 = (V,E1) be the moral graph of G0, i.e., G1 = Gm0 , and let G1 = (V, E1)
be the corresponding DAG obtained by orienting the edges in E1 according
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to the ordering of the vertices V . So G0 is a subgraph of G1. We repeat this
procedure until Gq+1 = Gq. This results in a sequence of DAGs,

G0 ( G1 ( · · · ( Gq.

In the following, we denote by G = (V, E) the DAG associated to G =
(V,E) obtained by orienting the edges in E according to the ordering of the
vertices V . We denote by Ḡ = (V, Ē) the DAG associated to G = (V,E)
obtained by repeatedly marrying parents in G, i.e. Ḡ = Gq. We call Ḡ the
moral DAG ofG. Note that Ḡs, the skeleton of Ḡ, is a chordal graph withG ⊂
Ḡs (Lauritzen [19, Chapter 2]), so Ḡs is a chordal cover of G. A chordal cover
in general is not unique; however, Ḡs is the unique chordal cover obtained
by repeatedly marrying parents according to the vertex labeling V . We call
this chordal cover the moral chordal graph of G and denote it by Ḡ = (V, Ē).

We now show how to deduce from the undirected graph G = (V,E) the
normalizing constant IG(δ, Ip) as an integral in terms of the Cholesky factor
A. Since the proof is the same for general correlation matrices D ∈ Sp�0, we
give the result directly for IG(δ,D). In the following, we use the standard
graph-theoretic notation indeg(i) for the indegree of node i, representing the
number of edges “arriving at” (or “pointing to”) node i in a DAG G.

Theorem 2.2. Let G = (V,E) be an undirected graph with vertices V =
{1, . . . , p}. Let G = (V, E) be the DAG associated to G = (V,E) obtained
by orienting the edges in E according to the ordering of the vertices in V .
Let Ḡ = (V, Ē) denote the moral DAG of G and Ḡ = (V, Ē) its skeleton,
the moral chordal graph of G. Let A be an upper-triangular p × p matrix
with diagonal entries Aii =

√
aii and off-diagonal entries Aij = −aij for all

i < j. Then

IG(δ,D) =

∫
A∗

( p∏
i=1

a
δ+ 1

2
indeg(i)

ii

)
exp

[
−

p∑
i=1

(
aii +

∑
j: (i,j)∈Ē

a2
ij

)]

· exp

[
− 2

∑
(i,j)∈E

dij

(
− aij

√
ajj +

∑
l: (i,l),(j,l)∈Ē

ailajl

)]
dA∗,

where D ∈ Sp�0 is a correlation matrix, A∗ = {aij : i = j or (i, j) ∈ E}, the
range of aii is (0,∞), the range of aij for (i, j) ∈ E is (−∞,∞), indeg(i)
denotes the indegree of node i in G, and for aij /∈ A∗

aij =


0, if (i, j) /∈ Ē ,
1
√
ajj

∑
l∈V

(i,l),(j,l)∈Ē

ailajl, if (i, j) ∈ Ē \ E .
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Proof. Let K ∈ Sp�0(G). Since G ⊂ Ḡ, then K ∈ Sp�0(Ḡ) and we can
view K as an inverse covariance matrix of a directed Gaussian graphical
model on Ḡ. Because the Cholesky decomposition is unique, A is a weighted
adjacency matrix of Ḡ and hence aij = 0 for all (i, j) /∈ Ē .

Let (i, j) be an edge that is present in the moral chordal graph Ḡ but not
in G. We can assume that i < j. Hence (i, j) ∈ Ē \ E and therefore

0 = Kij = (AAT )ij = −aij
√
ajj +

∑
l>max(i,j)

ailajl.

Thus, for each edge (i, j) ∈ Ē \ E , we obtain an equation,

aij =
1
√
ajj

∑
l∈V

(i,l),(j,l)∈Ē

ailajl.

To complete the proof, we need to compute the Jacobian J of the change
of variables from K to A. We list the aij ’s column-wise, meaning that aij
precedes alm if j < m or if j = m and i < l, omitting aij for (i, j) /∈ E ,
corresponding to the zeros in K. We list the kij ’s in the same ordering.
Let the aij ’s correspond to the columns of the Jacobian, while the kij ’s
correspond to the rows. In order to form J , we calculate the partial derivative
of each kij with respect to each alm. Since K = AAT and A is upper-
triangular then J also is upper-triangular; therefore, |J | = |diag(J)|. Since

kii = aii +
∑

(i,j)∈Ē

a2
ij and kij = −aij

√
ajj +

∑
l∈V

(i,l),(j,l)∈Ē

ailajl,

for all (i, j) ∈ E , then

|J | =

p∏
i=1

a
indeg(i)/2
ii .

Collecting together these formulas completes the proof.

The number of edges in Ē \ E depend on the ordering of the vertices. It is
well-known (see e.g. Lauritzen [19, Chapter 2]) that one can find an ordering
of the vertices such that Ḡ = G if and only if G is chordal. Hence when G
is chordal we can directly derive the normalizing constant of IG(δ, Ip) from
Theorem 2.2 by evaluating Gaussian and Gamma integrals. One could also
prove the following corollary using Equation (1.4).
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Fig 1. Undirected graph G5 (left) discussed in Example 2.4 and its moral DAG Ḡ5 (right).

Corollary 2.3. Let G = (V,E) be a chordal graph, where the vertices
V = {1, . . . , p} are labelled according to a perfect ordering. Then

IG(δ, Ip) = π|E|/2
p∏
i=1

Γ
(
δ + 1

2 indeg(i) + 1
)
.

where indeg(i) denotes the indegree of node i in the corresponding DAG G.

Example 2.4. We illustrate Theorem 2.2 by studying the non-chordal
graph G5, shown in Figure 1 (left). We wish to calculate

(2.2) IG5(δ, I5) =

∫
K∈S5

�0(G5)
|K|δ exp

(
− tr(K)

)
dK

through the change of variables, K = AAT . The moral DAG of G5 is denoted
by Ḡ5 and depicted in Figure 1 (right). Since the edges (2, 4) and (2, 5) are
missing in Ḡ5, we immediately deduce that a24 = a25 = 0. In this example,
we chose an ordering where only one edge needed to be added in the process
of marrying parents, namely the edge (1,3). This results in one equation
for a13, which can be deduced from the colliders over the additional edge,
i.e., nodes l ∈ V with (1, l), (3, l) ∈ Ḡ, and results in

a13 =
1
√
a33

(a14a34 + a15a35).

Finally, the Jacobian can be deduced from the indegrees of the nodes in
G5, which corresponds to the moral DAG Ḡ5 after omitting the red edge.
Therefore, the determinant of the Jacobian is

a
0/2
11 a

1/2
22 a

1/2
33 a

2/2
44 a

3/2
55 ,



10 C. UHLER, A. LENKOSKI, D. RICHARDS

and we find that the integral (2.2) equals∫
A
aδ11a

δ+1/2
22 a

δ+1/2
33 aδ+1

44 a
δ+3/2
55

× exp
[
−
(
a11 + a2

12 +
(a14a34 + a15a35√

a33

)2
+ a2

14 + a2
15

+ a22 + a2
23 + a33 + a2

34 + a2
35 + a44 + a2

45 + a55

)]
dA,

where aii > 0; aij ∈ R, i < j; and dA denotes the product of all differentials.

As seen in Example 2.4, the equations corresponding to the additional
edges (i, j) ∈ Ē \ E complicate the integral significantly. Therefore, given a
non-chordal graph G, it is desirable to find an ordering such that |Ē \ E| is
minimized. This ordering is given by a perfect ordering of a minimal chordal
cover of G, where minimality is with respect to the number of edges that
need to be added in order to make G chordal. Using Corollary 2.3, we can
compute the normalizing constant corresponding to a minimal chordal cover
of G. The question arises: How can one compute the normalizing constant
of G from the normalizing constant of a minimal chordal cover of G? In the
following theorem, we show how one can compute the normalizing constant
of a graph G that results from removing one edge from a chordal graph.
Such graphs are said to have minimum fill-in equal to 1.

Theorem 2.5. Let G = (V,E) be an undirected graph with minimum
fill-in 1 and with vertices V = {1, . . . , p}. Let Ge = (V,Ee) denote the graph
G with one additional edge e, i.e., Ee = E ∪ {e}, such that Ge is chordal.
Let d denote the number of triangles formed by the edge e and two other
edges in Ge. Then

IG(δ, Ip) = π−1/2 Γ
(
δ + 1

2(d+ 2)
)

Γ
(
δ + 1

2(d+ 3)
) IGe(δ, Ip).

Proof. We begin by defining an ordering of the vertices in such a way
that one can directly integrate out the variables corresponding to the end
points of e and the variable corresponding to e itself.

Let one of the end points of e be labelled as ‘1’, the other end point
as ‘d + 2’ and label the d vertices involved in triangles over the edge e by
2, . . . , d+ 1. Label all remaining vertices by d+ 3, . . . , p. Let Ḡe denote the
moral DAG to Ge with edge set Ēe. Then the chosen ordering of the vertices
guarantees that Ēe = Ē ∪ {e}, and e /∈ Ē .
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Also, since all vertices 2, . . . , d+1 are connected to vertex d+2, no added
edge in Ē \ E points to vertex d + 2 and hence ad+2,d+2 does not appear in
any equation for the edges in Ē \ E . Similar arguments hold for vertex 1,
since due to the ordering there can be no edge pointing to node 1.

Let A and Ae denote the Cholesky factors of G and Ge, respectively. Then

Aij =

{
Aeij for all (i, j) 6= (1, d+ 2)

0 if (i, j) = (1, d+ 2)

Let indeg denote the indegree with respect to the DAG G and indege the
indegree with respect to the DAG Ge. Let A∗ = ((aii)i/∈{1,d+2}, (aij)(i,j)∈E).
Note that

(2.3) indege(1) = 0 = indeg(1), indege(d+ 2) = d+ 1 = indeg(d+ 2) + 1.

Then by Theorem 2.2,

IGe(δ, Ip) =

∫ ( p∏
i=1

a
δ+ 1

2
indege(i)

ii exp(−aii)
)

exp

[
−

∑
(i,j)∈Ēe

a2
ij

]
da11 dad+2,d+2 da1,d+2 dA∗

=

∫ ∞
−∞

exp(−a2
1,d+2) da1,d+2 ·

∫ ∞
0

a
δ+ 1

2
indege(1)

11 exp(−a11) da11

·
∫ ∞

0
a
δ+ 1

2
indege(d+2)

d+2,d+2 exp(−ad+2,d+2) dad+2,d+2

·
∫
A∗

[ ∏
i/∈{1,d+2}

a
δ+ 1

2
indege(i)

ii exp(−aii)
]

exp

[
−
∑

(i,j)∈Ē

a2
ij

]
dA∗.

The integral with respect to a1,d+2 is a Gaussian integral, with value
√
π.

Also, by (2.3),∫ ∞
0

a
δ+ 1

2
indege(1)

11 exp(−a11) da11 =

∫ ∞
0

a
δ+ 1

2
indeg(1)

11 exp(−a11) da11.

Again by (2.3), we have∫ ∞
0
a
δ+ 1

2
indege(d+2)

d+2,d+2 exp(−ad+2,d+2) dad+2,d+2

=
Γ
(
δ + 1

2(d+ 1) + 1
)

Γ(δ + 1
2d+ 1)

∫ ∞
0

a
δ+ 1

2
indeg(d+2)

d+2,d+2 exp(−ad+2,d+2) dad+2,d+2.
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Finally, since indege(i) = indeg(i) for all i /∈ {1, d+ 2}, we obtain

IGe(δ, Ip) =
√
π

Γ
(
δ + 1

2(d+ 1) + 1
)

Γ(δ + 1
2d+ 1)

∫ ∞
0

a
δ+indeg(1)/2
11 exp(−a11) da11

·
∫ ∞

0
a
δ+ 1

2
indeg(d+2)

d+2,d+2 exp(−ad+2,d+2) dad+2,d+2

·
∫
A∗

( ∏
i/∈{1,d+2}

a
δ+ 1

2
indeg(i)

ii exp(−aii)
)

exp

[
−
∑

(i,j)∈Ē

a2
ij

]
dA∗

=
√
π

Γ
(
δ + 1

2(d+ 3)
)

Γ
(
δ + 1

2(d+ 2)
) IG(δ, Ip).

The proof now is complete.

Example 2.6. Since the graph G5 discussed in Example 2.4 has mini-
mum fill-in equal to 1, we can apply Theorem 2.5 to compute its normalizing
constant. The skeleton of the graph shown in Figure 1 (right) is a chordal
cover of G5 and the given vertex labeling is a perfect labeling. By applying
Proposition 2.3, we deduce the normalizing constant for the graph G5 with
the additional edge e = (1, 3):

IGe5(δ, Ip) = π4 Γ(δ + 1) Γ
(
δ + 3

2

) [
Γ(δ + 2)

]2
Γ
(
δ + 5

2

)
.

Since the number of triangles over the red edge (1, 3) is d = 3, we find by
Theorem 2.5 that

IG5(δ, Ip) = π−1/2 Γ(δ + 3
2 + 1)

Γ(δ + 4
2 + 1)

IGe5(δ, Ip)

= π7/2 Γ
(
δ + 5

2

)
Γ(δ + 3)

Γ(δ + 1) Γ
(
δ + 3

2

) [
Γ(δ + 2)

]2
Γ
(
δ + 5

2

)
.(2.4)

3. Computing IG(δ,D) for general non-chordal graphs. In this
section, we study IG(δ,D) for general D. In Theorem 3.3 we show how the
normalizing constant changes when removing not only an edge, but an entire
clique (i.e., a completely connected subgraph) from a graph. This leads to an
algorithm for computing the normalizing constant IG(δ,D) for any graph G,
which can then be specialized to the case which D = Ip. For general graphs,
we found it necessary to calculate first the general case IG(δ,D) and then to
specialize to D = Ip, as is done for moment-generating functions or Laplace
transforms.
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3.1. Some results on a generalized hypergeometric function of matrix ar-
gument. We list in this subsection some results, involving a generalized
hypergeometric function of matrix argument, that we will apply repeatedly
in this section.

For a ∈ C and k ∈ {0, 1, 2, . . .}, we denote the rising factorial by

(a)k =
Γ(a+ k)

Γ(a)
= a(a+ 1)(a+ 2) · · · (a+ k − 1).

For t ∈ C and ρ 6∈ {0,−1,−2, . . .} the classical generalized hypergeometric
function, 0F1(ρ, t), may be defined by the series expansion,

(3.1) 0F1(ρ; t) =
∞∑
l=0

tl

l! (ρ)l
.

We refer to Andrews, et al. [1] for many other properties of this function.
The generalized hypergeometric function of matrix argument, 0F1(ρ; Y ),

Y ∈ Sp�0, is defined by the Laplace transform,

1

Γp(ρ)

∫
Sp�0

|Y |ρ−
1
2

(p+1) exp(−tr(Y D)) 0F1(ρ; Y ) dY = |D|−ρ exp(tr(D−1)),

valid for Re(ρ) > 1
2(p − 1) and D ∈ Sp�0. Herz [13] provided an extensive

theory of the analytic properties of the function 0F1. In particular, 0F1(ρ; Y )
is simultaneously analytic in ρ for Re(ρ) > 1

2(p− 1) and entire in Y ; so, as a
function of Y , its domain of definition extends to the set Sp and to the set of
of complex symmetric matrices. Other properties of the function 0F1, such
as zonal polynomial expansions which generalize (3.1), are given by James
[16], Muirhead [26], and Gross and Richards [12].

Herz [13, p. 497] proved that the function 0F1(ρ; Y ) depends only on
the eigenvalues of Y , and moreover that if Re(ρ) > 1

2(p− 1), D ∈ Sp�0, and
C ∈ Sp, then there holds the Laplace transform formula,

(3.2)

∫
Sp�0

|Y |ρ−
1
2

(p+1) exp(−tr(Y D)) 0F1(ρ; Y C) dY

= Γp(ρ) |D|−ρ exp(tr(D−1C)),

where, by convention, 0F1(ρ; Y C) is an abbreviation for 0F1(ρ; Y 1/2CY 1/2)
and Y 1/2 ∈ Sp�0 is the unique square-root of Y . Setting C = 0 (the zero
matrix) in (3.2) we deduce from the uniqueness of the Laplace transform
and (1.2) that 0F1(ρ; 0) = 1.
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We will apply repeatedly a generalization of the Poisson integral to matrix
spaces (see [13, pp. 495–496] and [16, Equation (151)]): If A is a k×p matrix
such that k ≤ p, and Re(ρ) > 1

2(k + p− 1), then

(3.3)

∫
0<XXT<Ik

|Ik −XXT |ρ−
1
2

(k+p+1) exp(tr(AXT )) dX

=
πkp/2 Γk

(
ρ− 1

2p
)

Γk(ρ)
0F1

(
ρ; 1

4AA
T
)
,

where the region of integration is the set of all k × p matrices X such that
XXT ∈ Sk�0 and I −XXT ∈ Sk�0. In particular, on setting A = 0 we obtain

(3.4)

∫
0<XXT<Ik

|Ik −XXT |ρ−
1
2

(k+p+1) dX =
πkp/2 Γk

(
ρ− 1

2p
)

Γk(ρ)
,

a result which was used in Proposition 2.1.
For the case in which Y is a 2× 2 matrix, Muirhead [25] proved that

0F1(ρ; Y ) =
∞∑
q=0

1

q! (ρ)2q

(
ρ− 1

2

)
q

|Y |q 0F1(ρ+ 2q; tr(Y )),(3.5)

where the 0F1 functions on the right-hand side are the classical generalized
hypergeometric functions given in (3.1). In the special case in which Y is of
rank 1, it follows from Herz [13, p. 497], or directly from (3.5), that

(3.6) 0F1(ρ; Y ) = 0F1(ρ; tr(Y )).

3.2. The normalizing constant for non-chordal graphs. We want to cal-
culate

IG(δ,D) =

∫
Sp�0(G)

|K|δ exp(−tr(KD)) dK,

the normalizing constant for G, a general non-chordal graph. By making
the change of variables K → diag(D)−1/2K diag(D)−1/2 we can assume,
without loss of generality, that D has ones on the diagonal and therefore is
a correlation matrix; this assumption will be maintained explicitly for the
remainder of the paper.

In the sequel, we will encounter a 2 ×m matrix C = (Cij), and then we
use the notation |C{1,2},{i,j}| for the minor corresponding to rows 1 and 2
and to columns i and j, where i, j ∈ {1, . . . ,m}. We will need L = (Lij), a
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2×m matrix of non-negative integers such that
∑2

i=1

∑m
j=1 Lij = l, and we

adopt the notation(
l

L

)
=

l!∏2
i=1

∏m
j=1 Lij !

, Li+ =

m∑
j=1

Lij , and L+j =

2∑
i=1

Lij .

We will also have Q = (Qij)1≤i<j≤m , a vector of non-negative integers such
that

∑
1≤i<j≤mQij = q, and we set(
q

Q

)
=

q!∏
1≤i<j≤mQij !

, Qi+ =
m∑

j=i+1

Qij , and Q+j =

j−1∑
i=1

Qij .

In the following result, we obtain the normalizing constant for H2,m, a
complete bipartite graph on 2 +m vertices.

Proposition 3.1. The integral IH2,m(δ,D) converges absolutely for all

δ > −1 and D ∈ S2+m
�0 . Let C = (Cij) denote the 2 × m submatrix of D

corresponding to the edges in G; then IH2,m(δ,D) equals

IH2,m(δ, Im+2)

·
∞∑
q=0

(
δ + 1

2(m+ 2)
)
q

[(δ + 2)q]
m

q!
(
δ + 1

2(m+ 3)
)

2q

∞∑
l=0

1

l!
(
δ + 2q + 1

2(m+ 3)
)
l

·
∑
L

(
l

L

)( 2∏
i=1

m∏
j=1

C
Lij
ij

)( 2∏
i=1

(
δ + q + 1

2(m+ 2)
)
Li+

)( m∏
j=1

(δ + 2)L+j

)

·
∑
Q

(
q

Q

)( ∏
1≤i<jm

|C{1,2},{i,j}|2Qij
)( m∏

j=1

(
δ + L+j + 2

)
Qj++Q+j

)
,

with

(3.7) IH2,m(δ, Im+2) =
πm Γ2

(
δ + 3

2

)
Γ2

(
δ + 1

2(m+ 3)
) [Γ(δ + 2)

]m
Γ
(
δ + 1

2(m+ 2)
)2
.

Proof. We order the vertices such that

K =

(
KAA KAB

KBA KBB

)
,

where KAA = diag(κ1, κ2), KBB = diag(k1, . . . , km), and KAB is uncon-
strained. We partition D in a similar way,

D =

(
DAA DAB

DBA DBB

)
,



16 C. UHLER, A. LENKOSKI, D. RICHARDS

where diag(D) = (1, . . . , 1) and DAB = C. By applying the determinant
formula for block matrices and making a change of variables to replace KAB

by K
1/2
AAKABK

1/2
BB, we obtain similarly as in the proof of Proposition 2.1:

IH2,m(δ,D) =

∫
S2+m
�0 (G)

|K|δ exp(−tr(KD)) dK

=

∫
S2+m
�0 (G)

|KAA|δ+
1
2
m |KBB|δ+1 |Im −KT

ABKAB|δ

· exp(−tr(KAA)− tr(KBB))

· exp
[
−2tr

(
K

1/2
AAKABK

1/2
BBC

T
)]

dKAA dKAB dKBB.

Applying (3.3) to integrate over KAB, we obtain

IH2,m(δ,D) =
πm Γ2

(
δ + 3

2

)
Γ2

(
δ + 1

2(m+ 3)
)

·
∫
|KAA|δ+

1
2
m |KBB|δ+1 exp(−tr(KAA)− tr(KBB))

· 0F1

(
δ + 1

2(m+ 3); KAACKBBC
T
)

dKAA dKBB.

Applying (3.5) to expand this 0F1 function of matrix argument in terms of
a classical 0F1 function of tr(KAACKBBC

T ), and applying (3.1), we get

0F1

(
δ + 1

2(m+ 3); KAACKBBC
T
)

=
∞∑
q=0

1

q!
(
δ + 1

2(m+ 3)
)

2q

(
δ + 1

2(m+ 2)
)
q

|KAACKBBC
T |q

· 0F1

(
δ + 2q + 1

2(m+ 3); tr(KAACKBBC
T )
)

=
∞∑
q=0

1

q!
(
δ + 1

2(m+ 3)
)

2q

(
δ + 1

2(m+ 2)
)
q

|KAACKBBC
T |q

·
∞∑
l=0

1

l!
(
δ + 2q + 1

2(m+ 3)
)
l

(
tr(KAACKBBC

T )
)l
.

By the Binet-Cauchy formula (see Karlin [18, p. 1]),

|KAACKBBC
T | = |KAA| · |CKBBC

T |
= |KAA|

∑
1≤i<j≤m

kikj |C{1,2},{i,j}|2.
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Hence, by the Multinomial Theorem,

|KAACKBBC
T |q

= |KAA|q
∑
Q

(
q

Q

) ∏
1≤i<j≤m

(
kikj |C{1,2},{i,j}|2

)Qij
= |KAA|q

∑
Q

(
q

Q

)( m∏
i=1

k
Qi++Q+i

i

) ∏
1≤i<j≤m

|C{1,2},{i,j}|2Qij

 ,

where Q = (Qij)1≤i<j≤m is a vector of non-negative integers, as defined
earlier. Also,

tr(KAACKBBC
T ) =

2∑
i=1

m∑
j=1

κikjCij ,

and hence, by the Multinomial Theorem,

(tr(KAACKBBC
T ))l =

( 2∑
i=1

m∑
j=1

κikjCij

)l

=
∑
L

(
l

L

) 2∏
i=1

m∏
j=1

(κikjCij)
Lij

=
∑
L

(
l

L

)( 2∏
i=1

(κi)
Li+

) m∏
j=1

k
L+j

j

 2∏
i=1

m∏
j=1

(Cij)
Lij

 ,

where L = (Lij) is a 2×m non-negative integer matrix defined earlier. Hence

IH2,m(δ,D) =
πmΓ2

(
δ + 3

2

)
Γ2

(
δ + 1

2(m+ 3)
) ∞∑

q=0

1

q!
(
δ + 1

2(m+ 3)
)

2q

(
δ + 1

2(m+ 2)
)
q

·
∞∑
l=0

1

l!
(
δ + 2q + 1

2(m+ 3)
)
l

·
∑
L

(
l

L

) 2∏
i=1

m∏
j=1

Cij
Lij

( 2∏
i=1

∫ ∞
0

κ
δ+q+Li++ 1

2
m

i e−κi dκi

)

·
∑
Q

(
q

Q

) ∏
1≤i<j≤m

|C{1,2},{i,j}|2Qij


·

 m∏
j=1

∫ ∞
0

k
δ+Qj++Q+j+L+j+1
j e−kj dkj

 .
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Evaluating each gamma integral and simplifying the outcomes, we obtain

IH2,m(δ,D) =
πm Γ2

(
δ + 3

2

)
Γ2

(
δ + 1

2(m+ 3)
) [Γ(δ + 2)

]m [
Γ
(
δ + 1

2(m+ 2)
) ]2

·
∞∑
q=0

(
δ + 1

2(m+ 2)
)
q

((δ + 2)q)
m

q!
(
δ + 1

2(m+ 3)
)

2q

∞∑
l=0

1

l!
(
δ + 2q + 1

2(m+ 3)
)
l

·
∑
L

(
l

L

)( 2∏
i=1

m∏
j=1

(Cij)
Lij

)( 2∏
i=1

(
δ + q + 1

2(m+ 2)
)
Li+

)( m∏
j=1

(δ + 2)L+j

)

·
∑
Q

(
q

Q

)( ∏
1≤i<j≤m

|C{1,2},{i,j}|2Qij
)( m∏

j=1

(δ + L+j + 2)Qj++Q+j

)
.

Finally, the value of IH2,m(δ, Im+2) is obtained by applying Theorem 2.1 or
Theorem 2.5, so the proof now is complete.

Note that if we set D = Im+2 in the proof of Proposition 3.1 then
|C{1,2},{i,j}| = Cij = 0. Hence, in the infinite series, the only non-zero terms
are those for which l = q = 0, so the series reduces identically to 1.

The special structure of K was crucial for the proof of Proposition 3.1. We
now combine Proposition 3.1 with the approach developed in Theorem 2.2,
of representing K by its upper Cholesky decomposition, to describe how the
normalizing constant changes when removing an edge from a chordal graph
with maximal clique size at most 3. Similarly as in the proof of Theorem 2.5,
the main difficulty lies in defining a good ordering of the nodes. For sim-
plifying notation we denote the quotient of the normalizing constants for
general D and the identity matrix by ĪG(δ,D), i.e.,

ĪG(δ,D) =
IG(δ,D)

IG(δ, Ip)
.

As an example, note that ĪH2,m(δ,D) is given in Proposition 3.1.

Corollary 3.2. Let G = (V,E) be an undirected graph of minimum
fill-in 1 with vertices V = {1, . . . , p} and maximal clique size at most 3.
Let Ge = (V,Ee) denote the graph G with one additional edge e, i.e., Ee =
E ∪ {e}, such that Ge is chordal and its maximal clique size is also at most
3. Let d denote the number of triangles formed by the edge e and two other
edges in Ge. Then

IG(δ,D) = π−1/2 Γ
(
δ + 1

2(d+ 2)
)

Γ
(
δ + 1

2(d+ 3)
) |D{1,d+2}|d−1∏d+1

j=2 |D{1,j,d+2}|
ĪH2,d

(δ,D) IGe(δ,D),
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where D{i1,...,ik} denotes the principal submatrix of D corresponding to the
rows and columns i1, . . . , ik.

Proof. We define an ordering of the vertices in such a way that the
integral for the normalizing constant IG(δ,D) decomposes into an integral
over a bipartite graph and an integral over the remaining variables. Similarly
as in the proof of Theorem 2.5, label one of the end points of e as ‘1’, label
the other end point as ‘d+ 2’, and label the d vertices involved in triangles
over the edge e by 2, . . . , d+ 1. Label all remaining vertices by d+ 3, . . . , p.
Let Ḡ denote the moral DAG to G with edge set Ē and similarly for Ge.

By Theorem 2.2, the normalizing constant for G decomposes into an in-
tegral over the variables A = {aij | (i, j) ∈ Ē , i, j ≤ d + 2} and an integral
over the variables B = {aij | (i, j) ∈ Ē , aij /∈ A}. The equivalent statement
holds for the graph Ge with Ae = A ∪ {e} and Be = B. Note that the
integral over B is the same for G as for Ge. The integral over A is the nor-
malizing constant for the complete bipartite graph H2,d with U = {1, d+ 2}
and V = {2, . . . , d+ 1} where every vertex in U is connected to all vertices
in V , but there are no edges within U nor within V . The integral over
Ae = A ∪ {e} is the normalizing constant for the complete bipartite graph
H2,d with one additional edge connecting the two nodes in U . We denote
this graph by He

2,d. So

IG(δ,D) = IGe(δ,D)
IH2,d

(δ,D)

IHe
2,d

(δ,D)

= IGe(δ,D)
IH2,d

(δ, Id+2)ĪH2,d
(δ,D)

IHe
2,d

(δ,D)
,

where ĪH2,d
(δ,D) is given by Proposition 3.1.

The additional edge e makes the graph He
2,m chordal and hence the nor-

malizing constant is computed using (1.4):

IHe
2,d

(δ,D) = IHe
2,d

(δ, Id+2)

∏d+1
j=2 |D{1,j,d+2}|
|D{1,d+2}|d−1

.

By Theorem 2.5,

IH2,d
(δ, Id+2)

IHe
2,d

(δ, Id+2)
= π−1/2 Γ

(
δ + 1

2(d+ 2)
)

Γ
(
δ + 1

2(d+ 3)
) .
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By collecting all terms we find

IG(δ,D) = IGe(δ,D)
IH2,d

(δ, Id+2)ĪH2,d
(δ,D)

IHe
2,d

(δ, Id+2)

|D1,d+2|d−1∏d+1
j=2 |D1,j,d+2|

= π−1/2 Γ
(
δ + 1

2(d+ 2)
)

Γ
(
δ + 1

2(d+ 3)
) |D{1,d+2}|d−1∏d+1

j=2 |D{1,j,d+2}|
ĪH2,d

(δ,D) IGe(δ,D).

The proof now is complete.

Corollary 3.2 can be generalized to graphs of minimum fill-in 1 and arbi-
trary treewidth to obtain an extension of Theorem 2.5 to general D. This
involves decomposing the normalizing constant for G into a normalizing con-
stant for the chordal graph Ge and the quotient of the normalizing constants
for the subgraph induced by the triangles over the edge e. This technical re-
sult is given in Theorem (S.3) in the Supplementary Material.

We now prove our main result which can be applied to compute the
normalizing constant for any graph. It involves showing how the normalizing
constant changes when removing a whole clique from a graph. However, for
graphs of minimum fill-in 1 it is advisable for computational reasons to use
the specialized result given in Theorem 4 in the Appendix.

In the following, we denote by GA the subgraph of G induced by the
vertices A ⊂ V . In the following theorem, we will encounter a symmetric
matrix TAA = (Tij)i,j∈A. Denoting Kronecker’s delta by δij , we define the
matrix of differential operators,

∂

∂TAA
=
(

1
2(1 + δij)

∂

∂Tij

)
i,j∈A

,

as in [9, 23]. The corresponding determinant, det(∂/∂TAA), and the (r, s)th
cofactor, Cof rs(∂/∂TAA), are defined in the usual way.

We will also make use of fractional powers of differential operators, a
concept which is widely used in some areas of probability theory and math-
ematical analysis [3, 14] but which is new to the study of Wishart distribu-
tions for graphical models. In its simplest formulation, suppose a function
f : R → R is such that its nth derivative, (d/dx)nf(x), can be analytically
continued as a function of n to a domain in C; this allows us to define the
αth derivative, (d/dx)αf(x) where α belongs to the domain of analyticity.

G̊arding [9] defined fractional powers,
(

det(∂/∂TAA)
)α

, of the determi-
nant det(∂/∂TAA) by means of analytic continuation in α. We will apply
G̊arding’s fractional powers of operators to calculate the normalizing con-
stant IG(δ,D), and we provide in Example 3.5 an explicit calculation for a
case in which the fractional power of the determinant det(∂/∂TAA) is −1/2.
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The following theorem is the main result of the paper. In this result, we
express IG(δ,D) in terms of a series in which derivatives with respect to
the UAA are calculated, then the outcome is evaluated at UAA = TAA, then
derivatives with respect to the TAA are calculated, and then the resulting
expression is evaluated at TAA = DAA.

Theorem 3.3. Let G = (V,E) be an undirected graph and partition
V = A ∪B such that the induced subgraph GB is a clique. Let I = {(i, j) ∈
A×B | (i, j) ∈ E} denote the edges connecting A and B, and let I1 denote
the end points in A and I2 the end points in B (i.e. the projection of I onto
the first and second coordinate). Define

(3.8) ∂I1,I2(D,TAA) =

(
−DI2(r),I2(s) Cof I1(r),I1(s)

( ∂

∂TAA

))|I|
r,s=1

,

a |I| × |I| matrix of differential operators. Then

IG(δ,D) = π|I|/2 Γ|B|
(
δ + 1

2(|B|+ 1)
)
|DBB|−(δ+ 1

2
(|B|+1))

·
(

det ∂I1,I2(D,TAA)
)−1/2

·
∑
· · ·
∑

0≤jrs<∞
1≤r≤s≤|I|

(
det ∂I1,I2(D,UAA)

)−j..
·
( ∏

1≤r≤s≤|I|

(1 + δrs)
jrs

jrs!
D jrs
I1(r),I2(r)D

jrs
I1(s),I2(s)

·
(
Cof rs ∂I1,I2(D,UAA)

)jrs)
· IGA(δ + 1

2 |I|+ j.., UAA)

∣∣∣∣
UAA=TAA

∣∣∣∣
TAA=DAA

.

As a corollary of this theorem, we obtain an analogous formula for the
case in which D = Ip.

Corollary 3.4. Let G = (V,E) be an undirected graph with vertices
V = {1, . . . , p}. Let V be partitioned such that V = A ∪ B and the induced
subgraph GB is a clique. Let I = {(i, j) ∈ A × B | (i, j) ∈ E} denote the
edges connecting A, B and let I1 denote the end points in A and I2 the end
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points in B. Then

IG(δ, Ip) = π|I|/2 Γ|B|
(
δ + 1

2(|B|+ 1)
)

· ∂I1,I2(D,TAA)IGA(δ + |I|/2, TAA)

∣∣∣∣
TAA=I|A|

.

Theorem 3.3 and Corollary 3.4 enable calculation of the normalizing con-
stant of the G-Wishart distribution for any graph by removing cliques se-
quentially until the resulting graph is chordal, in which case the normalizing
constant is known. In the following example we show how to apply Theo-
rem 3.3 in order to compute the normalizing constant for general D for the
graph G5 given in Figure 1.

Example 3.5. We wish to calculate

IG5(δ,D) =

∫
K∈S5

�0(G5)
|K|δ exp(−tr(KD)) dK.

We partition the matrix K into blocks,

K =

(
KAA KAB

KT
AB KBB

)
,

where

KAA =

(
k11 k12

k12 k22

)
, KAB =

(
0 k14 k15

k23 0 0

)
, KBB =

k33 k34 k35

k34 k44 k45

k35 k45 k55

 .

Noting that KBB is unconstrained, we now apply Theorem 3.3. In the fol-
lowing, we provide all the ingredients of the calculation, viz.,

I1 = (2, 1, 1), I2 = (3, 4, 5), vec(DI
AB) =

d23

d14

d15

 ,

Λ−1 = |KAA|−1

 d33k11 −d34k12 −d35k12

−d34k12 d44k22 d45k22

−d35k12 d45k22 d55k22

 .
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Further, the matrix of differential operators is

∂I1,I2(D,TAA) =

(
−DI2(r),I2(s)Cof I1(r),I1(s)

( ∂

∂TAA

))3

r,s=1

=


−d33

∂
∂T11

1
2d34

∂
∂T12

1
2d35

∂
∂T12

1
2d34

∂
∂T12

−d44
∂

∂T22
−1

2d45
∂

∂T22

1
2d35

∂
∂T12

−1
2d45

∂
∂T22

−d55
∂

∂T22


and similarly for ∂I1,I2(D,UAA).

SinceKAA is unconstrained, the integral IGA(δ, UAA) is a standard Wishart
normalizing constant, so we have

IGA(δ, UAA) = Γ2

(
δ + 3

2

)
|UAA|−(δ+ 3

2
).

Then from Theorem 3.3 we obtain

IG5(δ,D)

= π3/2 Γ3(δ + 2) |DBB|−(δ+2) (det ∂I1,I2(D,TAA))−1/2

·
∑
· · ·
∑

0≤jrs<∞
1≤r≤s≤3

Γ2(δ + 3 + j..) (det ∂I1,I2(D,UAA))−j..

·
( ∏

1≤r≤s≤3

(1 + δrs)
jrs

jrs!
D jrs
I1(r),I2(r)D

jrs
I1(s),I2(s)(3.9)

(Cof rs ∂I1,I2(D,UAA))jrs
)
· |UAA|−(δ+3+j..)

∣∣∣∣
UAA=TAA

∣∣∣∣
TAA=DAA

.

For the case in which D = I5, we have DI1(r),I2(r) = 0 for all r = 1, 2, 3
and hence we deduce the result given in Corollary 3.4, viz.,

IG5(δ, I5) = π3/2 Γ3(δ + 2) Γ2(δ + 3)

· (det ∂I1,I2(D,TAA))−1/2 |TAA|−(δ+3)

∣∣∣∣
TAA=I|A|

.
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By (3.8),

(det ∂I1,I2(D,TAA))n |TAA|−(δ+3)

∣∣∣∣
TAA=I|A|

= (−1)n
( ∂

∂T11

)n( ∂

∂T22

)2n
(T11T22)−(δ+3)

∣∣∣∣
T11=T22=1

= (δ + 3)(δ + 4) · · · (δ + 2 + n)(δ + 3)(δ + 4) · · · (δ + 2 + 2n)

=
Γ(δ + 3 + n)

Γ(δ + 3)

Γ(δ + 3 + 2n)

Γ(δ + 3)
.

The latter expression, considered as a function of a complex variable n, is
analytic in the complex plane on a region containing the point n = −1

2 .
Therefore, in accordance with G̊arding’s fractional calculus,

(det ∂I1,I2(D,TAA))−1/2 |TAA|−(δ+3)

∣∣∣∣
TAA=I|A|

=
Γ(δ + 3 + n)

Γ(δ + 3)

Γ(δ + 3 + 2n)

Γ(δ + 3)

∣∣∣∣
n=− 1

2

=
Γ(δ + 5

2)

Γ(δ + 3)

Γ(δ + 2)

Γ(δ + 3)
,

so we obtain the same result for IG5(δ, I5) as in (2.4).

To complete this section, we now provide the proofs of Theorem 3.3 and
Corollary 3.4.

Proof of Theorem 3.3. The matrix K is of the form

K =

(
KAA KAB

KT
AB KBB

)
∈ Sp�0,

where KBB has no zero constraints. By applying the determinant formula
for block matrices,

|K| = |KAA| · |KBB −KT
AB(KAA)−1KAB|,
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and changing variables, KBB → KBB +KT
AB(KAA)−1KAB, we obtain

IG(δ,D) =

∫
|KBB|δ exp(−tr(KBBDBB)) dKBB

·
∫
|KAA|δ exp(−tr(KAADAA))

·
∫

exp(−2tr(KABDAB))

· exp(−tr(DBBK
T
AB(KAA)−1KAB)) dKAB dKAA

and hence

IG(δ,D) = Γ|B|
(
δ + 1

2(|B|+ 1)
)
|DBB|−(δ+ 1

2
(|B|+1))

·
∫
|KAA|δ exp(−tr(KAADAA))

·
∫

exp(−2tr(KABDAB))

· exp(−tr(DBBK
T
AB(KAA)−1KAB)) dKAB dKAA,

where we applied (1.2) to compute the integral over KBB.
Denote by vec(KAB) the vectorized matrix KAB, written column-by-

column. We apply a formula for the Kronecker product of matrices (see
Muirhead [26, p. 76]) to obtain

tr(DBBK
T
AB(KAA)−1KAB) =

(
vec(KAB)

)T (
DBB ⊗ (KAA)−1

)
vec(KAB).

Let I = {(i, j) ∈ A × B | (KAB)ij 6= 0} and let I1 denote the projection
of I onto the first index and I2 the projection of I onto the second index.
Let vec(KI

AB) denote the column vector containing the non-zero entries of
vec(KAB) and let Λ−1 be a matrix containing the entries of DBB⊗ (KAA)−1

corresponding to the components of vec(KI
AB), i.e.,

(Λ−1)rs = DI2(r),I2(s)(K
−1
AA)I1(r),I1(s)

= DI2(r),I2(s)
1

|KAA|
Cof I1(r),I1(s)(KAA),(3.10)

where Cof ij(KAA) denotes the (i, j)-th entry of the cofactor matrix of KAA.
Then

tr(KABDAB) = vec(KI
AB)Tvec(DI

AB),

tr(DBBK
T
AB(KAA)−1KAB)) = vec(KI

AB)T Λ−1 vec(KI
AB),
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and hence we obtain the integral overKAB in the form of a Gaussian integral:∫
exp(−2tr(KABDAB)) exp(−tr(DBBK

T
AB(KAA)−1KAB)) dKAB

=

∫
exp(−2 vec(KI

AB)Tvec(DI
AB))

· exp(−vec(KI
AB)T Λ−1 vec(KI

AB)) dKI
AB

= π|I|/2 |Λ|1/2 exp(vec(DI
AB)T Λ vec(DI

AB)).

Therefore,

IG(δ,D) = π|I|/2 Γ|B|
(
δ + 1

2(|B|+ 1)
)
|DBB|−(δ+ 1

2
(|B|+1))

·
∫
|KAA|δ+|I|/2 exp(−tr(KAADAA))

· det
([
DI2(r),I2(s) Cof I1(r),I1(s)(KAA)

]|I|
r,s=1

)−1/2

· exp(vec(DI
AB)T Λ vec(DI

AB)) dKAA.

Now note that

(3.11) det
([
DI2(r),I2(s) Cof I1(r),I1(s)(KAA)

]|I|
r,s=1

)
exp(−tr(KAADAA))

= det(∂I1,I2(D,TAA)) exp(−tr(KAATAA))

∣∣∣∣
TAA=DAA

.

By analytic continuation [9], we obtain

IG(δ,D) = π|I|/2 Γ|B|
(
δ + 1

2(|B|+ 1)
)
|DBB|−(δ+ 1

2
(|B|+1))

· det(∂I1,I2(D,TAA))−1/2

·
∫
|KAA|δ+|I|/2 exp(−tr(KAATAA))(3.12)

· exp(vec(DI
AB)T Λ vec(DI

AB)) dKAA

∣∣∣∣
TAA=DAA

.

Now we write the exponential function as an infinite series and apply the
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cofactor formula to express Λ in terms of the entries of Λ−1:

exp(vec(DI
AB)T Λ vec(DI

AB))

=
∑
· · ·
∑

0≤jrs<∞

∏
1≤r≤s≤|I|

(1 + δrs)
jrs

jrs!
D jrs
I1(r),I2(r)D

jrs
I1(s),I2(s) Λjrsrs

=
∑
· · ·
∑

0≤jrs<∞

∏
1≤r≤s≤|I|

(1 + δrs)
jrs

jrs!
D jrs
I1(r),I2(r)D

jrs
I1(s),I2(s)

· |KAA|jrs Cof rs

(
[DI2(a),I2(b)Cof I1(a),I1(b)(KAA)]

|I|
a,b=1

)jrs
· det

(
[DI2(a),I2(b)Cof I1(a),I1(b)(KAA)]

|I|
a,b=1

)−jrs
.

Denoting
∑∑

0≤r<s≤|I| jrs by j.., and introducing the differentials

∂

∂UAA
=
(

1
2(1 + δij)

∂

∂Uij

)
i,j∈A

similar to (3.11), we obtain

IG(δ,D) = π|I|/2 Γ|B|
(
δ + 1

2(|B|+ 1)
)
|DBB|−(δ+ 1

2
(|B|+1))

· det

([
−DI2(r),I2(s) Cof I1(r),I1(s)

(
∂

∂TAA

)]|I|
r,s=1

)−1/2

·
∑
· · ·
∑

0≤jrs<∞
det

([
−DI2(a),I2(b)Cof I1(a),I1(b)

(
∂

∂UAA

)]|I|
a,b=1

)−j..
·

( ∏
1≤r≤s≤|I|

(1 + δrs)
jrs

jrs!
D jrs
I1(r),I2(r)D

jrs
I1(s),I2(s)

· Cof rs

([
−DI2(a),I2(b)Cof I1(a),I1(b)

(
∂

∂UAA

)]|I|
a,b=1

)jrs)

· IGA(δ + |I|/2 + j.., UAA)

∣∣∣∣
UAA=TAA

∣∣∣∣
TAA=DAA

,

where in the last line we used the fact that

IGA(δ, UAA) =

∫
|KAA|δ exp(−tr(KAAUAA)) dKAA.

This completes the proof.

Proof of Corollary 3.4. This follows from Theorem 3.3 by setting D =
Ip in (3.12).
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4. Discussion. In this paper we provided an explicit representation of
the G-Wishart normalizing constant for general graphs. Theorem 3.3 is our
main result and it can be applied to compute the normalizing constant of
any graph. However, for particular classes of graphs one might be able to
obtain simpler formulas using a more specialized approach as can be seen
by comparing the two formulas (3.9) and (4.1) for G5. In Proposition 3.1 we
provided a simpler formula for bipartite graphs H2,m, and in Corollary 3.2
and in Theorem 4 for graphs with minimum fill-in 1. Note that Corollary 3.2
and Theorem 4 can be applied to graphs of minimum fill-in 1 and also to
graphs which are clique sums of graphs of minimum fill-in 1.

Even in modest dimensions the size of the graph space necessitates iter-
ative methods to address model uncertainty, as exhaustive enumeration is
infeasible. Since the graphical model may be just one part of a larger hi-
erarchy, Markov chain Monte Carlo methods are naturally used to perform
posterior inference. In such scenarios the chain moves between graphs in each
scan of the parameter set and the transition probability reduces to the eval-
uation of ratios of G-Wishart normalizing constants. Since direct evaluation
of these constants has appeared infeasible, previous work used computation-
ally intensive sampling-based methods to approximate this ratio.

Our paper shows that computing the exact normalizing constant of the
G-Wishart distribution is possible in principle. The various examples in this
paper also make it clear that one can hope to find more computationally effi-
cient procedures than Theorem 3.3 for computing the normalizing constant
of the G-Wishart distribution for particular classes of graphs. Important
future work is the development of specialized methods for computing the
normalizing constants of different classes of graphs that are important for
applications, one example being grids, which are widely used in spatial ap-
plications.
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Supplementary Material.

Exact Formulas for the Normalizing Constants of Wishart Distributions
for Graphical Models with Minimum Fill-In 1. In the following, we prove
an extension of Corollary 3.2 to obtain a generalization of Theorem 2.5 for
arbitrary D. This requires generalizing Proposition 3.1 to block matrices of
the form

K =

(
KAA KAB

KT
AB KBB

)
∈ Sp�0

where KAA is arbitrary of size 2×2, KAB is complete of size 2×m and KBB

is arbitrary of size m × m. In Lemma (S.1) we analyze the case in which
KAA is complete and in Lemma (S.2) the case in which KAA is diagonal.

Lemma (S.1). Let G be a graph on 2 +m vertices with two nodes that
are connected to each other and to all other nodes, i.e. K is of the form

K =

(
KAA KAB

KT
AB KBB

)
∈ S2+m
�0 ,

where KAA is a complete 2×2 matrix, KAB is a complete 2×m matrix and
KBB is an arbitrary m × m matrix. Then the integral IG(δ,D) converges
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absolutely for all δ > −1 and D ∈ S2+m
�0 . Further,

IG(δ,D) = πm Γ2

(
δ + 3

2

)
|DAA|−(δ+ 1

2
(m+3))

· IGB
(
δ + 1, DBB −DT

ABD
−1
AADAB

)
.

Proof. By applying the determinant formula for block matrices, making

a change of variables to replace KAB by K
1/2
AAKABK

1/2
BB and applying (3.3)

as in the proof of Proposition 3.1 we find that

IG(δ,D) =
πm Γ2

(
δ + 3

2

)
Γ2

(
δ + 1

2(m+ 3)
)

·
∫
|KAA|δ+

1
2
m |KBB|δ+1 exp(−tr(KAADAA)− tr(KBBDBB))

· 0F1

(
δ + 1

2(m+ 3); KAADABKBBD
T
AB

)
dKAA dKBB.

Since KAA is complete, we can apply (3.2):

IG(δ,D) = πm Γ2

(
δ + 3

2

)
|DAA|−

(
δ+ 1

2
(m+3)

)
·
∫
|KBB|δ+1 exp(−tr(KBB(DBB −DT

ABD
−1
AADAB)) dKBB

= πm Γ2

(
δ + 3

2

)
|DAA|−(δ+ 1

2
(m+3))

· IGB (δ + 1, DBB −DT
ABD

−1
AADAB).

This completes the proof.

In the following lemma, we will encounter a symmetric matrix EBB =
(Eij)i,j∈B. Denoting Kronecker’s delta by δij , we define the matrix of differ-
ential operators,

∂

∂EBB
=
(

1
2(1 + δij)

∂

∂Eij

)
i,j∈B

and denote its minor corresponding to the rows {α1, α2} and the columns
{β1, β2} by ∣∣∣( ∂

∂EBB

)
{α1α2},{β1β2}

∣∣∣.
Lemma (S.2). Let G be a graph on 2 +m vertices with two nodes that

are connected to all other nodes but not to each other, i.e. K is of the form

K =

(
KAA KAB

KT
AB KBB

)
∈ Sm+2
�0 ,



32 C. UHLER, A. LENKOSKI, D. RICHARDS

where KAA = diag(κ1, κ2), KAB is a complete 2 ×m matrix, and KBB is
an arbitrary m×m matrix. Then the integral IG(δ,D) converges absolutely
for all δ > −1 and D ∈ S2+m

�0 , and IG(δ,D) is given by

πm Γ2

(
δ + 3

2

)
Γ2

(
δ + 1

2(m+ 3)
) [Γ (δ + 1

2(m+ 2)
) ]2 ∞∑

q=0

(
δ + 1

2(m+ 2)
)
q

q!
(
δ + 1

2(m+ 3)
)

2q

·
∞∑
l=0

1

l!
(
δ + 2q + 1

2(m+ 3)
)
l

∑
l1+l2=l

(
l

l1

)( 2∏
i=1

(
δ + q + 1

2(m+ 2)
)
li

)

·
∑
Q

(
q

Q

) ∏
3≤α1<α2≤m+2

|DA,{α1,α2}|
Qα1α2++

 ∏
3≤β1<β2≤m+2

|DA,{β1,β2}|
Q++β1β2



·
(
∂

∂t1

)l1( ∂

∂t2

)l2  ∏
3≤α1<α2≤m+2
3≤β1<β2≤m+2

∣∣∣∣∣
(

∂

∂EBB

)
{α1α2},{β1β2}

∣∣∣∣∣
Qα1α2β1β2


· IGB (δ + 1, EBB)

∣∣∣
EBB=DBB−

∑2
j=1 tjD

T
{j},BD{j},B

∣∣∣
t1=t2=0

,

where Q = (Qα1α2β1β2 : 3 ≤ α1 < α2 ≤ m + 2, 3 ≤ β1 < β2 ≤ m + 2) is a
vector of non-negative integers such that Q++++ = q.

Proof. By applying the determinant formula for block matrices, making

a change of variables to replace KAB by K
1/2
AAKABK

1/2
BB and applying (3.3)

as in the proof of Proposition 3.1 we find that

IG(δ,D) =
πm Γ2

(
δ + 3

2

)
Γ2

(
δ + 1

2(m+ 3)
)

·
∫
|KAA|δ+

1
2
m |KBB|δ+1 exp(−tr(KAADAA)− tr(KBBDBB))

· 0F1

(
δ + 1

2(m+ 3); KAADABKBBD
T
AB

)
dKAA dKBB.

Applying (3.5) and (3.1) as in the proof of Proposition 3.1 we obtain

0F1

(
δ + 1

2(m+ 3);KAADABKBBD
T
AB

)
=

∞∑
q=0

1

q!
(
δ + 1

2(m+ 3)
)

2q

(
δ + 1

2(m+ 2)
)
q

|KAADABKBBD
T
AB|q

·
∞∑
l=0

1

l!
(
δ + 2q + 1

2(m+ 3)
)
l

(
tr(KAADABKBBD

T
AB)

)l
.
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Since KAA = diag(κ1, κ2),

tr(KAADABKBBD
T
AB)

= κ1 tr(KBBD
T
{1},BD{1},B) + κ2 tr(KBBD

T
{2},BD{2},B)

and hence by the Multinomial Theorem

(
tr(KAAKABKBBK

T
AB)

)l
=

∑
l1+l2=l

(
l

l1

)
κl11 κ

l2
2

(
tr(KBBD

T
{1},BD{1},B)

)l1
·
(
tr(KBBD

T
{2},BD{2},B)

)l2 .
By the Binet-Cauchy formula ([18, p. 1]),

|KAADABKBBD
T
AB|

= |KAA| · |DABKBBD
T
AB|

= κ1 κ2

∑
3≤α1<α2≤m+2
3≤β1<β2≤m+2

|DA,{α1,α2}| |K{α1,α2},{β1,β2}||DA,{β1,β2}|.

Hence by the Multinomial Theorem,

|KAADABKBBD
T
AB|q

= κq1 κ2
q
∑
Q

(
q

Q

) ∏
3≤α1<α2≤m+2
3≤β1<β2≤m+2

|DA,{α1,α2}|
Qα1α2β1β2

· |K{α1,α2},{β1,β2}|
Qα1α2β1β2 |DA,{β1,β2}|

Qα1α2β1β2

= κq1 κ2
q
∑
Q

(
q

Q

)( ∏
3≤α1<α2≤m+2

|DA,{α1,α2}|
Qα1α2++

)

·
( ∏

3≤α1<α2≤m+2

|DA,{β1,β2}|
Q++β1β2

)
·
( ∏

3≤α1<α2≤m+2
3≤β1<β2≤m+2

|K{α1,α2},{β1,β2}|
Qα1α2β1β2

)
.
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Collecting all terms, we find that

IG(δ,D)

=
πm Γ2

(
δ + 3

2

)
Γ2

(
δ + 1

2(m+ 3)
) ∞∑

q=0

1

q!
(
δ + 1

2(m+ 3)
)

2q

(
δ + 1

2(m+ 2)
)
q

·
∞∑
l=0

1

l!
(
δ + 2q + 1

2(m+ 3)
)
l

∑
l1+l2=l

(
l

l1

)( 2∏
i=1

∫ ∞
0

κ
δ+q+li+

1
2
m

i e−κi dκi

)
·
∑
Q

(
q

Q

)( ∏
3≤α1<α2≤m+2

|DA,{α1,α2}|
Qα1α2++

)

·
( ∏

3≤β1<β2≤m+2

|DA,{β1,β2}|
Q++β1β2

)

·
∫
|KBB|δ+1 exp(−tr(KBBDBB))

( 2∏
j=1

(
tr(KBBD

T
{j},BD{j},B)

)lj)

·

( ∏
3≤α1<α2≤m+2
3≤β1<β2≤m+2

|K{α1,α2},{β1,β2}|
Qα1α2β1β2

)
dKBB.

The gamma integrals over κ1 and κ2 are computed readily, so only the inte-
gral over the variables KBB remains to be evaluated, and we shall evaluate
that integral in terms of a normalizing constant for the graph GB. First,
note that

exp
(
− tr(KBBDBB)

) 2∏
j=1

(
tr(KBBD

T
{j},BD{j},B)

)lj
=

(
∂

∂t1

)l1( ∂

∂t2

)l2
exp

[
− tr(KBBEBB)

] ∣∣∣∣
t1=t2=0

,

where

EBB = DBB −
2∑
j=1

tjD
T
{j},BD{j},B.

Let Eij denote the entry of EBB corresponding to nodes i and j in B. Then∫
|KBB|δ+1 exp(−tr(KBBEBB)) |K{α1,α2},{β1,β2}|

Qα1α2β1β2 dKBB

=
∣∣∣( ∂

∂EBB

)
{α1α2},{β1β2}

∣∣∣Qα1α2β1β2

∫
|KBB|δ+1 exp(−tr(KBBEBB)) dKBB.

By collecting all terms, we obtain the desired result.
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With these two lemmas, we now have the tools to generalize Corollary 3.2
to graphs of treewidth larger than 2. In the following theorem, we show how
the normalizing constant changes when removing one edge from an arbitrary
chordal graph G.

Theorem (S.3). Let G = (V,E) be an undirected graph with minimum
fill-in 1 on p vertices. Let Ge = (V,Ee) denote the graph G with one ad-
ditional edge e, i.e., Ee = E ∪ {e} such that Ge is chordal. Let d denote
the number of triangles formed by the edge e and two other edges in Ge.
Let V be partitioned such that V = A ∪ B ∪ C with |A| = 2, |B| = d,
|C| = p− d− 2, and where A contains the two vertices adjacent to the edge
e in Ge, B contains all vertices in Ge that span a triangle with the edge e,
and C contains all remaining nodes. Then IG(δ,D) is given by

π−1/2 Γ
(
δ + 1

2(d+ 2)
)

Γ
(
δ + 1

2(d+ 3)
) IGe(δ,D) |DAA|δ+

1
2

(d+3)
∞∑
q=0

(
δ + 1

2(d+ 2)
)
q

q!
(
δ + 1

2(d+ 3)
)

2q

·
∞∑
l=0

1

l!
(
δ + 2q + 1

2(d+ 3)
)
l

∑
l1+l2=l

(
l

l1

) 2∏
i=1

(
δ + q + 1

2(d+ 2)
)
li

·
∑
Q

(
q

Q

) ∏
3≤α1<α2≤d+2

|DA,{α1,α2}|
Qα1α2++

 ∏
3≤β1<β2≤d+2

|DA,{β1,β2}|
Q++β1β2



·
(
∂

∂t1

)l1( ∂

∂t2

)l2 ( ∏
3≤α1<α2≤d+2
3≤β1<β2≤d+2

∣∣∣( ∂

∂EBB

)
{α1α2},{β1β2}

∣∣∣Qα1α2β1β2

)

· IGB (δ + 1, EBB)

IGB
(
δ + 1, DBB −DT

ABD
−1
AADAB

)∣∣∣∣∣
EBB=DBB−

∑2
j=1 tjD

T
{j},BD{j},B

∣∣∣∣∣
t1=t2=0

.

Proof. Let GAB be the graph induced by the vertices A ∪ B. By The-
orem 2.2 and as in the proof of Corollary 3.2, the normalizing constants
for G and Ge decompose into the normalizing constants for GAB and GeAB,
respectively, and an integral over the variables involving C. Moreover, the
integral over the variables involving C is the same for G and for Ge. Hence,

IG(δ,D)

IGe(δ,D)
=

IGAB (δ,D{A,B},{A,B})

IGeAB (δ,D{A,B},{A,B})
,

where D{A,B},{A,B} denotes the principle submatrix of D corresponding
to the rows and columns in A ∪ B. Since GAB is of the form needed for
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Lemma (S.2) and GeAB is of the form needed for Lemma (S.1), the claim
follows by applying Lemma (S.1) and Lemma (S.2).

Note that since Ge is chordal, the induced graph GB is also chordal. Hence
its normalizing constant is given by (1.4). For the case in which D is the
identity matrix, EBB ≡ DBB and hence for l1 > 0 or l2 > 0 we get

( ∂

∂t1

)l1( ∂

∂t2

)l2( ∏
3≤α1<α2≤d+2
3≤β1<β2≤d+2

∣∣∣( ∂

∂EBB

)
{α1α2},{β1β2}

∣∣∣Qα1α2β1β2

)

· IGB (δ + 1, EBB)

IGB
(
δ + 1, DBB −DT

ABD
−1
AADAB

) = 0.

In addition, |DA,{α1,α2}| = |DA,{β1,β2}| = 0. Hence, in the infinite sums only
the terms for q = 0 and l = 0 are non-zero, and the infinite series reduce
to 1. Since |DAA| = 1, we see that if D = Ip then Theorem (S.3) reduces to
Theorem 2.5.

We revisit the graph G5 discussed in Example 2.6 and show how to apply
Theorem (S.3) to obtain the normalizing constant, IG5(δ,D), explicitly.

Example (S.4). A minimal chordal cover of G5 is given in Figure 1
(right). Only one edge is in the chordal cover of G5 but not in G5 itself,
namely the edge e = (1, 3). We denote the chordal cover of G5 by Ge5. There
are d = 3 triangles formed by the edge e in Ge5. The vertices adjacent to the
edge e are A = {1, 3} and all remaining vertices span a triangle with the
edge e, i.e. B = {2, 4, 5}. The induced graph GB consists of one edge only,
namely (4, 5), so its normalizing constant is

IGB (δ,DB) = |D{4,5}|−(δ+ 3
2) Γ2

(
δ + 3

2

)
Γ(δ + 1),

where, in order to abbreviate notation, we denoted by DB and D{4,5}, respec-
tively, the principle submatrix of D corresponding to the rows and columns
in B and in {4, 5}, respectively. Hence by applying Theorem (S.3), we obtain
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the following formula for IG5(δ,D):

π−1/2 Γ
(
δ + 5

2

)
Γ(δ + 3)

IGe5(δ,D) |DAA|δ+3
∞∑
q=0

(
δ + 5

2

)
q

q!
(
δ + 3

)
2q

·
∞∑
l=0

1

l!
(
δ + 2q + 3

)
l

∑
l1+l2=l

(
l

l1

) 2∏
i=1

(
δ + q + 5

2

)
li

·
∑
Q

(
q

Q

)( ∏
{α1,α2}⊂{2,4,5}

|DA,{α1,α2}|
Qα1α2++

)( ∏
{β1,β2}⊂{2,4,5}

|DA,{β1,β2}|
Q++β1β2

)

·
( ∂

∂t1

)l1( ∂

∂t2

)l2( ∏
{α1,α2}⊂{2,4,5}
{β1,β2}⊂{2,4,5}

∣∣∣( ∂

∂EBB

)
{α1α2},{β1β2}

∣∣∣Qα1α2β1β2

)

·
|D{4,5} −DT

A,{4,5}D
−1
AADA,{4,5}|δ+

3
2

|E{4,5}|δ+
3
2

∣∣∣∣∣
EBB=DBB−

∑2
j=1 tjD

T
{j},BD{j},B

∣∣∣∣∣
t1=t2=0

.

Note that when 2 ∈ {α1, α2} or 2 ∈ {β1, β2} and Qα1α2β1β2 > 0, then∣∣∣( ∂

∂EBB

)
{α1α2},{β1β2}

∣∣∣Qα1α2β1β2 |E{4,5}|−(δ+ 3
2) = 0.

As a consequence, the normalizing constant for IG5(δ,D) is given by

π−1/2 Γ
(
δ + 5

2

)
Γ (δ + 3)

IGe5(δ,D) |DAA|δ+3
∞∑
q=0

(
δ + 5

2

)
q

q!
(
δ + 3

)
2q

|DA,{4,5}|2q

·
∞∑
l=0

1

l!
(
δ + 2q + 3

)
l

∑
l1+l2=l

(
l

l1

) 2∏
i=1

(
δ + q + 5

2

)
li

(
∂

∂t1

)l1( ∂

∂t2

)l2 ∣∣∣∣∣ ∂

∂E{4,5}

∣∣∣∣∣
q

·
|D{4,5} −DT

A,{4,5}D
−1
AADA,{4,5}|δ+

3
2

|E{4,5}|δ+
3
2

∣∣∣∣∣E{4,5}=D{4,5}−∑2
j=1 tjD

T
{j},{4,5}D{j},{4,5}

t1=t2=0

,

the evaluation being done first at E{4,5} = D{4,5}−
∑2

j=1 tjD
T
{j},{4,5}D{j},{4,5}

and last at t1 = t2 = 0. Since Ge5 is chordal, the corresponding normalizing
constant is obtained from (1.4):

IGe5(δ,D) = Γ3(δ + 2) Γ4

(
δ + 5

2

) |D{1,2,3}|−(δ+2) |D{1,3,4,5}|−(δ+ 5
2)

|D{1,3}|−(δ+ 3
2)Γ2

(
δ + 3

2

) .
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Note also that∣∣∣ ∂

∂E{4,5}

∣∣∣q |E{4,5}|−(δ+ 3
2) = (−1)2q Γ2

(
δ + 3

2 + q
)

Γ2

(
δ + 3

2

) |E{4,5}|−(δ+ 3
2

+q);

this can be obtained by writing Icomplete(δ,D) as an integral in Equation (1.2)
and applying the differential operator ∂/∂E{4,5} to both sides of the equa-
tion Maass [23, p. 81]. Hence, by collecting all terms, noting that A = {1, 3}
and simplifying the formula for IG5(δ,D) above, we obtain the normalizing
constant for G5 for general D:

IG5(δ,D) = IG5(δ, I5)

·
|D{1,3}|2δ+

9
2

|D{1,2,3}|δ+2 |D{1,3,4,5}|δ+
5
2

∞∑
q=0

(
δ + 5

2

)
q

(
δ + 3

2

)
q

q!
(
δ + 3

)
2q

· |D{1,3}{4,5}|2q
∞∑
l=0

1

l! (δ + 2q + 3)l

∑
l1+l2=l

(
l

l1

) 2∏
i=1

(
δ + q + 5

2

)
li

(4.1)

·
( ∂
∂t1

)l1( ∂
∂t2

)l2 |D{4,5} −DT
{1,3},{4,5}D

−1
{1,3}D{1,3},{4,5}|

δ+ 3
2

|D{4,5} −
∑2

j=1 tjD
T
{j},{4,5}D{j},{4,5}|

δ+q+ 3
2

∣∣∣∣∣
t1=t2=0

.

If D = I5 then DT
{j},{4,5}D{j},{4,5} = 0 and hence for l1 > 0 or l2 > 0 we get

( ∂

∂t1

)l1( ∂

∂t2

)l2 ∣∣D{4,5} −DT
{1,3},{4,5}D

−1
{1,3}D{1,3},{4,5}

∣∣δ+ 3
2∣∣D{4,5} −∑2

j=1 tjD
T
{j},{4,5}D{j},{4,5}

∣∣δ+q+ 3
2

= 0.

In addition, |D{1,3},{4,5}| = 0. Hence in the infinite sums only the terms
for q = 0 and l = 0 are non-zero, and the infinite sums reduce to 1. Since
|D{1,3}| = |D{1,2,3}| = |D{1,3,4,5}| = 1, we see that the formula for IG5(δ,D)
indeed reduces to IG5(δ, I5).
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