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Fig. 1. In this example, we co-design a swimmer’s geometry and controller for position-keeping in running water (blue arrows in upper middle
and upper right). The blue and red spheres indicate the desired and actual position of the swimmer. The swimmer’s geometric design weights are
initialized as the average of 12 base shapes with the Wasserstein distance metric shown in gray (left). After optimization, the final geometric design
weights of each base shape are shown in orange (left). With the initial shape and actuator locations (upper middle) and the initial controller (lower
middle), the position-keeping performance is poor, as indicated by the large distance between the red and blue dots. With the optimized shape and
actuator locations (upper right) and the optimized controller (lower right), performance is markedly improved, i.e., blue and red are closer together.

The computational design of soft underwater swimmers is challenging be-
cause of the high degrees of freedom in soft-body modeling. In this paper, we
present a differentiable pipeline for co-designing a soft swimmer’s geometry
and controller. Our pipeline unlocks gradient-based algorithms for discover-
ing novel swimmer designs more efficiently than traditional gradient-free
solutions. We propose Wasserstein barycenters as a basis for the geometric

Authors’ addresses: Pingchuan Ma, MIT CSAIL, Cambridge, MA, USA, pcma@csail.
mit.edu; Tao Du, MIT CSAIL, Cambridge, MA, USA, taodu@csail.mit.edu; John Z.
Zhang, ETH Zurich, Zurich, Switzerland, john.zhang@srl.ethz.ch; Kui Wu, MIT CSAIL,
Cambridge, MA, USA, kuiwu@csail.mit.edu; Andrew Spielberg, MIT CSAIL, Cam-
bridge, MA, USA, aespielberg@csail.mit.edu; Robert K. Katzschmann, ETH Zurich,
Zurich, Switzerland, rkk@ethz.ch; Wojciech Matusik, MIT CSAIL, Cambridge, MA,
USA, wojciech@csail.mit.edu.

© 2021 Copyright held by the owner/author(s).
0730-0301/2021/8-ART132
https://doi.org/10.1145/3450626.3459832

design of soft underwater swimmers since it is differentiable and can nat-
urally interpolate between bio-inspired base shapes via optimal transport.
By combining this design space with differentiable simulation and control,
we can efficiently optimize a soft underwater swimmer’s performance with
fewer simulations than baseline methods. We demonstrate the efficacy of our
method on various design problems such as fast, stable, and energy-efficient
swimming and demonstrate applicability to multi-objective design.

CCS Concepts: • Computing methodologies → Modeling and simula-
tion; Physical simulation; Volumetric models.

Additional KeyWords and Phrases: Computational design, differentiable sim-
ulation, optimal transport, geometry and control co-design, multi-objective
optimization
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1 INTRODUCTION
Designing bio-inspired underwater swimmers has long been an
exciting interdisciplinary research problem for biologists and en-
gineers [Berlinger et al. 2018; Fish and Lauder 2006; Katzschmann
et al. 2018; Marchese et al. 2014; Triantafyllou and Triantafyllou
1995]. Aquatic locomotive performance of underwater swimmers is
governed by two interrelated aspects: the control policy responsible
for coordinated actuation and the geometry by which the actuation
is transformed into motion through hydrodynamic forces. While the
computational co-design of geometry and control has been explored
in the context of articulated rigid walking and flying robots [Du et al.
2016; Ha 2019; Pathak et al. 2019; Zhao et al. 2020], the co-design
of geometry and control of a soft robot consisting of substantially
deformable materials has been sparsely studied. Since a soft robot
is governed by continuum physics with many more degrees of free-
dom (DOFs), existing methods are not readily transferable to soft
robotic design problems. Optimizing over all degrees of freedom of
an infinite-dimensional continuum elastic body is computationally
intractable, even when approximated with a large number of dis-
crete elements. Lower-dimensional geometric representations are
needed to allow for efficient shape exploration without sacrificing
expressiveness.
To remedy the lack of an intuitive and low-dimensional design

space suitable for soft underwater swimmers, we propose represent-
ing a soft swimmer’s shape and actuators as probability distributions
in 3D space and interpolate between designs with optimal trans-
port [Rubner et al. 2000]. Given a set of base shapes representing
swimmer archetypes, we define a vector space spanned by these
shapes according to the Wasserstein distance metric [Solomon et al.
2015]. Such a representation of the soft swimmer’s design space
brings a few key benefits. First, it allows for each design to be repre-
sented as a low-dimensional Wasserstein barycentric weight vector.
Second, and more importantly, this interpolation procedure is differ-
entiable [Bonneel et al. 2016], enabling gradient-based optimization
algorithms for fast exploration of the design space. We further com-
bine this design space with a differentiable simulator [Du et al. 2021]
and control policy, creating a full pipeline for co-optimizing the
body and brain of soft swimmers using gradient-based optimization
algorithms.

We evaluate our co-optimization pipeline on a set of soft swimmer
design problems whose objectives include forward swimming, sta-
ble swimming under opposing flows, and energy conservation. We
further demonstrate the pipeline’s applicability to multi-objective
design and the generation of Pareto fronts. We show that our algo-
rithm converges significantly faster than gradient-free optimization
algorithms [Hansen et al. 2003] and strategies that alternate between
optimizing geometric design and control.
In this paper, we contribute:

• a low-dimensional differentiable design space parametrizing
the shape and actuation of soft underwater swimmers with
the Wasserstein distance metric,

• a differentiable pipeline for co-optimizing the geometric de-
sign and controller of a soft swimmer concurrently, and

• demonstrations of this algorithm on a set of bio-inspired
single- and multi-objective underwater swimming tasks.

2 RELATED WORK
Our approach builds upon recent and seminal work in differen-
tiable simulation, soft robot and character control, computational
co-design of robots, and shape parametrizations.

Differentiable simulation. Differentiable simulation allows for the
direct computation of the gradients of continuous parameters affect-
ing the system performance, such as control, material, and geometric
parameters. Gradients computed from differentiable simulation can
be directly fed into numerical optimization algorithms, immediately
unlocking applications such as system identification, computational
control, and design optimization. Differentiable simulation has a
rich history in robotics and physically-based animation across vari-
ous domains, including rigid-body dynamics [Belbute-Peres et al.
2018; Degrave et al. 2019; Geilinger et al. 2020; Popović et al. 2003],
fluid dynamics [Holl et al. 2020; McNamara et al. 2004; Schenck and
Fox 2018] and cloth physics with rigid coupling [Liang et al. 2019;
Qiao et al. 2020]. In cases where manually deriving gradients is dif-
ficult, automatic differentiation frameworks [Giftthaler et al. 2017;
Hu et al. 2020] or learned, approximate models [Chen et al. 2018; Li
et al. 2019; Sanchez-Gonzalez et al. 2020] have been employed. Most
related to our work are differentiable simulation methods for soft
bodies [Du et al. 2021; Hahn et al. 2019; Hu et al. 2019; Huang et al.
2021]. We build upon the work of Du et al. [2021], which proposes
a differentiable projective dynamics framework capable of implicit
integration.

Dynamic soft robot and character control. Soft robotic control
is traditionally more difficult than rigid robotic control, since the
infinite-dimensional state spaces of soft robots are difficult to com-
putationally reason about. Previous papers [Geijtenbeek et al. 2013;
Won and Lee 2019] demonstrated learning general controllers for
articulated, rigid-body walking robots in a variety of forms. Tan
et al. [2011] explored model-based control optimization of articu-
lated rigid swimmers in an environment coupled with fluid. Control
using model-free reinforcement learning for systems with solid-
fluid coupling has been studied in Ma et al. [2018]. Simplified dy-
namical models which treat soft tendril structures compactly and
accurately as rod-and-spring-like structures have allowed for the
natural adoption of modern control algorithms like those used for
articulated rigid robots [Della Santina et al. 2018; Katzschmann et al.
2019a; Marchese et al. 2016]. Grzeszczuk and Terzopoulos [1995]
proposed representing the actuators of swimmers with a simplified
biomechanical model and automatically generating their controllers.
There are also works, such as Hecker et al. [2008], synthesizing
animation independent of character morphology for the purpose
of downstream retargeting, with the motion described by familiar
posing and key-framing methods. More general approaches [Bar-
bič et al. 2009; Barbič and Popović 2008; Katzschmann et al. 2019b;
Spielberg et al. 2019; Thieffry et al. 2018] present dimensionality
reduction strategies for soft robots to compact representations used
in model-based control. Most similar to our work are the approaches
of Hu et al. [2019] and Min et al. [2019]. In Hu et al. [2019], a dif-
ferentiable soft-body simulator is coupled with parametric neural
network controllers. By tracking the positions and velocities of man-
ually specified regions as control inputs, a loss function measuring
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the forward progress in robot locomotion is directly backpropa-
gated to control parameters, enabling efficient model-based control
optimization via gradient descent. Min et al. [2019] present model-
free control of soft swimmers using reinforcement learning with
similar handcrafted features. Our approach for control optimization
is similar to the model-based optimization framework of Hu et al.
[2019], but instead of considering legs and crawlers, we optimize
underwater swimmers. Our work further distinguishes itself from
prior art through the realization of the non-trivial co-optimization
of shape and control of soft underwater swimmers.

Computational robot co-design. Much of the existing work on the
co-design of rigid robots has focused on the interplay between geo-
metric, inertial and control parameters. Megaro et al. [2015]; Schulz
et al. [2017b] explored the interactive design of robot control and
geometry, in which CAD-like front-ends guided human-in-the-loop,
simulation-driven control and design optimization. Ha et al. [2017];
Spielberg et al. [2017]; Wampler and Popović [2009] presented al-
gorithms for co-optimizing geometric and inertial parameters of
robots with open-loop controllers; Ha [2019]; Schaff et al. [2019]
extended these ideas to the space of closed-loop neural network
controllers via reinforcement learning approaches. Du et al. [2016]
presented a method for co-optimizing the control and geometric
parameters for optimal multicopter performance. Sims [1994] mod-
els the morphology as a graph and co-optimizes it with control
using an evolutionary strategy. In each of the approaches described
above, the geometric representations are simple. Each robotic link is
parameterized by no more than a handful of geometric parameters,
substantially limiting the morphological search. More complex rep-
resentations are used in the works by Ha et al. [2018]; Wang et al.
[2018]; Zhao et al. [2020], presenting algorithms for searching over
various robot topologies. These techniques lead to more geometri-
cally and functionally varied robots; however, this discrete search
space cannot be directly optimized by the continuous optimization
approaches to which differentiable simulation lends itself.
Computational co-design of soft robots has been more sparsely

explored. Cheney et al. [2014]; Corucci et al. [2016]; Van Diepen
and Shea [2019] presented heuristic search algorithms for search-
ing over soft robotic topology and control, including swimmers in
the case of Corucci et al. [2016]. These sampling-based approaches
focus on geometry and (discrete) materiality, typically leaving ac-
tuation as open-loop, pre-programmed cyclic patterns. Contrasted
with these approaches are those of Hu et al. [2019]; Spielberg et al.
[2019], which exploit system gradients to co-optimize over closed-
loop control, observation models, and spatially varying material
parameters, but not geometry. Our approach combines advantages
of both lines of research, relying on the differentiable simulation for
fast gradient-based co-optimization of neural network control and
complex geometry.

Shape interpolation. Many bases for shape representations have
been proposed over the years for applications in shape analysis.
Geometrically-based spaces [Baek et al. 2015; Bonneel et al. 2016;
Lewis et al. 2014; Ovsjanikov et al. 2012; Schulz et al. 2017a; Solomon
et al. 2015] parameterize shape collections based on intrinsic geo-
metric metrics computed across a data set; learning-based spaces
[Averkiou et al. 2014; Bronstein et al. 2011; Fish et al. 2014; Mo

et al. 2019; Park et al. 2019; Yang et al. 2019], by contrast, learn
parametrizations based on statistical features of that dataset and
can also easily incorporate non-geometric information (such as
labels). In this work, we opt for the geometrically-based convo-
lutional Wasserstein basis [Solomon et al. 2015], which interpo-
lates between meshes using the Wasserstein distance. This basis
smoothly interpolates between shapes with “as few” in-between
modifications as necessary, keeping our mesh parametrizations well-
behaved and minimizing the chance of artifacts that might cause
difficulties in simulation. This continuous and differentiable basis
makes it amenable to continuous co-optimization.

3 SYSTEM OVERVIEW
Our design optimization procedure starts with a collection of base
shapes from which to build a geometric design space using the
Wasserstein distance metric. Each base design also specifies a mul-
tivariate normal distribution for each of its actuators. For our bio-
inspired exploration of swimmers, we have selected base shapes
inspired by nature (Sec. 4), e.g., sharks, manta rays, and goldfish.
Next, the user specifies a controller which is either an open-loop
sinusoidal signal or a neural network. The state observations of
the closed-loop neural network controller are defined by the user
(Sec. 5). The user then evaluates the soft swimmer via differentiable
simulation (Sec. 6), which returns both the swimmer’s performance
and its gradients with respect to geometric design and control pa-
rameters. Finally, we embed both the design space and the differen-
tiable simulator in a gradient-based optimization procedure, which
co-optimizes both the geometric design and the controller until con-
vergence (Sec. 7), closing our design loop. We present the overview
of our method in Fig. 2.

4 GEOMETRIC DESIGN
Our soft swimmer’s geometric design consists of two parts: its
volumetric shape and its actuator locations. This section explains
our differentiable parameterization of this geometric design space.
The key idea is to represent geometric designs as probability den-
sity functions and generate novel swimmers by interpolating the
probability density functions of the base designs. After the design
space has been parametrized, any swimmer in this space can be
represented compactly by low-dimensional discrete and continuous
parameters.

4.1 Shape Design
Given a set of user-defined base shapes, we interpolate between
these bases with the Wasserstein distance metric to form a continu-
ous and differentiable shape space. The reason behind this choice
is twofold. First, the Wasserstein barycentric interpolation encour-
ages smooth, plausible intermediate results even between shapes
with substantially different topology [Solomon et al. 2015], which is
common in underwater creatures. Second, efficient numerical solu-
tions exist for solving Wasserstein barycenters, and their gradients
are also readily available [Bonneel et al. 2016; Solomon et al. 2015].
These two features make Wasserstein distance a proper choice for
building a fully differentiable shape design space for soft swimmers.
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Fig. 2. In our computational design pipeline, we begin with (a) the shape and actuator design using the Wasserstein distance to interpolate
smoothly between base shapes and between actuators. Given a set of base shapes by the user, we initialize the shape parametrization by assigning
equal weights to all bases. (b) Next, we consider the controller design for two cases: an open-loop controller and a closed-loop controller. (c) Given
this initial shape, actuators, and controller, we simulate the design using a differentiable simulator to evaluate its performance. (d) Finally, we take
advantage of the differentiability of our framework to compute the gradients of a given objective with respect to geometry and control parameters
simultaneously. These gradients are used in a gradient descent optimizer to concurrently adapt the geometric and control design parameters.

Formally, we consider the designs of our soft swimmers to be
embedded in an axis-aligned bounding box Ω ⊆ R𝑑 , where 𝑑 = 2
or 3 is the dimension. Without loss of generality, we rescale Ω
uniformly and shift it so that it has unit volume and is centered at
the origin of R𝑑 . We use 𝑑𝐸 : Ω × Ω → R+ to denote the Euclidean
distance function, P(Ω) the space of probability measures on Ω,
and P(Ω × Ω) the space of probability measures on Ω × Ω.
For any probability measure 𝑃 ∈ P(Ω), we define the following

set 𝑆 ⊆ Ω based on 𝑃 ’s probability density function 𝑝 to represent a
soft swimmer’s shape:

𝑆 (𝑝) = {𝒙 |𝑝 (𝒙) ≥ 0.5 sup
𝒙∈Ω

𝑝 (𝒙)}. (1)

In other words, a soft swimmer’s shape occupies the volumetric
region where the probability density is over half the peak density.
Similarly, the surface of the shape, which is primarily used for com-
puting hydrodynamic forces and visualizing the shape, is defined as
follows:

𝜕𝑆 (𝑝) = {𝒙 |𝑝 (𝒙) = 0.5 sup
𝒙∈Ω

𝑝 (𝒙)} (2)

Shape bases. Although these probability density functions provide
us a design space that can express almost all possible soft swimmer
shape designs, its infinite degrees of freedom makes design opti-
mization computationally challenging. Moreover, the probability
measure space includes many physically implausible shapes that
would be rejected instantly by a human user. To encourage findings
of physically plausible swimmers from a low-dimensional shape
space, we build a library consisting of𝑚 soft swimmers designed
by human experts and define the shape space as the vector space

spanned from these designs. Specifically, let 𝑆1, 𝑆2, · · · , 𝑆𝑚 ⊆ Ω
be the 𝑚 shapes in the library, we define the probability density
function 𝑝𝑖 for 𝑖 = 1, 2, · · · ,𝑚 as follows:

𝑝𝑖 (𝒙) =
{

1
|𝑆𝑖 | if 𝒙 ∈ 𝑆𝑖 ,

0 otherwise.
(3)

Furthermore, we use 𝑃𝑖 to refer to the corresponding probability
measures induced by 𝑝𝑖 , which serve as the basis for shape interpo-
lation.

Shape interpolation. With all probability measures 𝑃𝑖 at hand, we
consider the shape space parametrized by a weight vector 𝜶 ∈ R𝑚

in the probability simplex {𝜶 |𝛼𝑖 ≥ 0,
∑
𝑖 𝛼𝑖 = 1}. Specifically, given

a weight vector 𝜶 , we compute the Wasserstein barycenter 𝑃 (𝜶 ),
which can be interpreted as a weighted average of 𝑃1, 𝑃2, · · · , 𝑃𝑚
[Solomon et al. 2015]:

𝑃 (𝜶 ) = arg min
𝑃 ∈P(Ω)

∑
𝑖

𝛼𝑖W2
2 (𝑃, 𝑃𝑖 ). (4)

Here, W2 (·, ·) : P(Ω) × P(Ω) → R+ is the 2-Wasserstein distance:

W2 (𝑃,𝑄) =
[

inf
𝜋 ∈Π (𝑃,𝑄)

∬
Ω×Ω

𝑑2
𝐸 (𝒙,𝒚)𝑑𝜋 (𝒙,𝒚)

] 1
2

(5)

where Π(𝑃,𝑄) is the set of transportation maps from probability
measure P to Q:

Π(𝑃,𝑄) = {𝜋 ∈ P(Ω × Ω) |𝜋 (·,Ω) = 𝑃, 𝜋 (Ω, ·) = 𝑄}. (6)

In short, for each weight vector 𝜶 , we compute the Wasserstein
barycenter 𝑃 (𝜶 ) and use its probability density function to define
a new shape 𝑆 (𝜶 ), with some abuse of notation 𝑆 . This way, we
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establish an isomorphic mapping from the probability simplex to
the shape space. Exploring the shape space is then equivalent to
navigating the continuous, low-dimensional probability simplex.

4.2 Actuator Design
In this work, we use the contractile muscle fiber model introduced
byMin et al. [2019] to actuate soft swimmers. Like the shape interpo-
lation scheme above, users first specify the geometric representation
of actuators for all soft swimmers in the library. Then, our method
interpolates between them to obtain actuators for shapes at Wasser-
stein barycenters.

Actuator representation. For a given soft swimmer, we define its
actuators by a set of discrete and continuous labels. Each actuator
has one discrete parameter denoting its category and a small number
of continuous parameters defining its location, size, and orientation.
The actuator categories supported in this work include “left fin”,
“right fin”, and “caudal fin”, which indicate the actuator’s rough
location (Fig. 5). Each soft swimmer has at most one actuator for
each category. The actuator’s continuous parameters represent its
geometric design with a multivariate normal distribution N(𝝁, 𝚺)
where 𝝁 ∈ R𝑑 and 𝚺 ∈ R𝑑×𝑑 are its mean and variance. Similar
to the shape function 𝑆 , the actuator’s shape 𝐴 is defined by the
locations whose probability density is over half of the peak density
from N(𝝁, 𝚺):

𝐴𝑐
𝑆 (𝝁, 𝚺) = 𝐵({𝒙 | exp(−1

2
(𝒙 − 𝝁)⊤𝚺−1 (𝒙 − 𝝁)) ≥ 0.5}) ∩ 𝑆. (7)

Here, 𝐴𝑐
𝑆
stands for the volumetric region occupied by an actuator

of category 𝑐 in a soft swimmer whose shape is 𝑆 , and 𝐵 : Ω → Ω is
a function that takes as input a 𝑑-dimensional ellipsoid and returns
the minimum bounding box whose directions are aligned with the
principal axes of the ellipsoid (Fig. 3). Note that the intersection
with 𝑆 ensures the actuator stays in the interior of 𝑆 . With some
abuse of notation, we use 𝐴𝑐

𝑃
and 𝐴𝑐

𝜶 to denote an actuator of
category 𝑐 in a soft swimmer defined by a probability measure 𝑃 or
the Wasserstein barycentric interpolation with a weight vector 𝜶 ,
respectively. When designing a soft swimmer 𝑆𝑖 in the library, the
human expert also specifies its actuators’ discrete and continuous
parameters to obtain {𝐴𝑐

𝑖
}𝑐 , defined as follows:

𝐴𝑐
𝑖 = 𝐴𝑐

𝑆𝑖
(𝝁𝑐𝑖 , 𝚺

𝑐
𝑖 ) (8)

where 𝝁𝑐
𝑖
and 𝚺

𝑐
𝑖 are prespecified mean and variance for the actua-

tors with category 𝑐 in shape 𝑆𝑖 .

Actuator interpolation. We now describe how to generate actua-
tors for a soft swimmer interpolated using the Wasserstein distance.
Let 𝜶 be the weight vector defined above. For the soft swimmer
defined by the probability measure 𝑃 (𝜶 ) and for each actuator cat-
egory 𝑐 , we define 𝐴𝑐

𝜶 as follows:

𝐴𝑐
𝜶 = 𝐴𝑐

𝑆 (𝜶 ) (𝝁
𝑐
𝜶 , 𝚺

𝑐
𝜶 ) (9)

(c)

()(d)co
n
tr
a
ct
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n

(e)

(b)(a)

d
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si
ty

Fig. 3. We explain our actuator design with a 2D fish illustration.
Sec. 4: (a) We use a multivariate normal distribution to parametrize
the location of the actuators. The gradient of light pink to dark pink
represents the increasing probability density function. (b) The actua-
tor’s shape is defined by the bounding box of the probability density’s
isocontour at half of its peak density. We draw a black bounding box
around the clipped distribution to form the actuator. Sec. 5: (c) Our
actuator is divided into a pair of antagonistic muscle fibers acting in
opposition. We show the extreme deformations of the fish tail in (d)
the left-most position, (e) the neutral position, and (f) the right-most
position. More contraction of each muscle fiber is indicated by a darker
blue. The rest shape of the muscle fiber is depicted in gray.

where 𝝁𝑐𝜶 and 𝚺
𝑐
𝜶 are continuous parameters computed as follows:

𝝁𝑐𝜶 = LinearInterpolation(𝜶 , 𝝁𝑐𝑖 ), (10)

𝚺
𝑐
𝜶 = (𝑹𝑐 )⊤𝑺𝑐𝑹𝑐 , (11)
𝑹𝑐 = RotationalInterpolation(𝜶 , 𝑹𝑐𝑖 ), (12)
𝑺𝑐 = LinearInterpolation(𝜶 , 𝑺𝑐𝑖 ). (13)

Here, both 𝝁𝑐𝜶 and 𝚺
𝑐
𝜶 are defined by interpolating the means and

variances of the actuators from the base shapes with the weight
vector 𝜶 . If the actuator of category 𝑐 is not used by the 𝑖-th base
shape, we set the corresponding weight 𝛼𝑖 to zero so that it is
excluded from the interpolation. The mean 𝝁𝑐𝜶 is computed by
linearly interpolating between the 𝝁𝑐

𝑖
. The variance matrix 𝚺

𝑐
𝜶 is

obtained by linearly interpolating the eigenvalues 𝑺𝑐
𝑖
and the Euler

angles of the rotational matrices 𝑹𝑐
𝑖
from the actuator of category 𝑐

in the 𝑖-th base shapes. Note that, for simplicity, the actuators are
not interpolated using the Wasserstein distance. We leave solving
for the exact actuator interpolation as future work.

5 CONTROL
In this section, we first explain the actuation model built upon the
actuator’s geometric design defined in the previous section. Next,
we introduce two controllers for the soft underwater swimmer’s
motion: an open-loop controller defined by analytic functions and a
closed-loop neural network controller.

5.1 Actuation Model
As we explain in the previous section, each actuator is a cubic region
defined by a clipped multivariate normal distribution. Following the
muscle fiber model from previous work [Du et al. 2021; Min et al.
2019], we model each actuator as a group of parallel muscle fibers.
Each muscle fiber can contract itself along the fiber direction based
on the magnitude of the control signal. For the “caudal fin” actuator,
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the parallel muscle fibers are placed antagonistically, allowing us to
actuate bilateral flapping (Fig. 3).

5.2 Open-Loop Controller
The muscles of marine animals are usually actuated periodically
like waves. Inspired by this, the first controller we consider in this
work is a series of sinusoidal waves:

𝑎(𝑡) = 𝑎 sin(𝜔𝑡 + 𝜑) (14)

where 𝑡 stands for the time and𝑎,𝜔 , and𝜑 are the control parameters
to be optimized and may vary between different actuator categories.
When combined with the parallel muscle fibers in each actuator, the
open-loop controller generates an oscillating motion sequence from
the soft swimmer’s body.

5.3 Closed-Loop Controller
In addition to open-loop controllers, we also consider using closed-
loop neural network controllers to achieve more precise control
over a soft swimmer’s motion. Our neural network controller takes
sensor data as input and returns control signals used to activate the
actuation of the parallel muscle fibers.

Sensing. For a soft underwater swimmer in our design space, we
gather position and velocity information from a swimmer’s head,
center, and tail. More concretely, we first align all swimmers in
the library so that their heading is along the positive 𝑥-axis. After
this alignment, we ensure the heading of any interpolated design is
also along the positive 𝑥-axis. We then place the head, center, and
tail sensor at locations along the 𝑥-axis with the maximum, zero,
and minimum 𝑥 values within the swimmer’s shape. We stack the
outputs from all three sensors into a single vector and send it to the
neural network controller.

Neural network controller. Our neural network controller is a stan-
dard multilayer perceptron network with two layers of 64 neurons.
We use tanh as the activation function. The input to the network
includes the velocities from all three sensors and also the positional
offsets from the center sensor to the head and tail sensors. Addi-
tionally, our network also takes as input a 20-dimensional temporal
encoding vector 𝜙 (𝑡) to sense the temporally contextual informa-
tion and encourage periodic control output, which is defined as
follows [Vaswani et al. 2017]:

𝜙 (𝑡) = [ sin(20𝜋𝜏 (𝑡)), sin(21𝜋𝜏 (𝑡)), · · · , sin(29𝜋𝜏 (𝑡)),
cos(20𝜋𝜏 (𝑡)), cos(21𝜋𝜏 (𝑡)), · · · , cos(29𝜋𝜏 (𝑡))] .

(15)

Here, 𝜏 : R+ → [0, 1] wraps the actual 𝑡 with a predefined period
𝑇 : 𝜏 (𝑡) = 𝑡 mod𝑇

𝑇
. We use 𝑇 = 25ℎ where ℎ is the time step in each

experiment. We concatenate the sensor feedback and the temporal
encoding as a 35-dimensional vector, which is used as the input to
the neural network controller. The neural network then outputs
control signals for all actuators.

6 DIFFERENTIABLE SIMULATION
Given a soft swimmer’s geometric design and controller, we now de-
scribe how to evaluate the swimmer’s performance and gradients in
a differentiable simulation environment. We build our differentiable

simulator upon Min et al. [2019] and Du et al. [2021], which use pro-
jective dynamics, a fast finite element simulation method amenable
to implicit integration. We consider the geometric domain Ω as the
material space and the swimmer’s shape 𝑆 (𝑝) as the rest shape of a
deformable body. One way to forward simulate the design is to ex-
tract the surface boundary 𝜕𝑆 (𝑝) from the level set of its probability
density function 𝑝 , discretize 𝑆 (𝑝) into finite elements, and simulate
its motion by tracking its vertex locations. While this is a viable
option for the forward simulation, this Lagrangian representation of
the geometric design brings a few challenges for design optimization.
First, whenever 𝑆 is updated, we need to regenerate the volumetric
mesh to avoid narrow finite elements, and such a geometric pro-
cessing step could be computationally expensive. Second, gradient
computation depends on the exact discretization of 𝑆 (𝑝), but the
way to partition 𝑆 (𝑝) into finite elements is not unique. Therefore,
picking any specific partition may bias the gradient computation
unintentionally.

Spatial and time discretization. As a result, we choose to evolve
the soft swimmer’s motion with an Eulerian view based on the
probability density function 𝑝 . Specifically, we simulate the full
geometric domain Ω with a spatially varying stiffness defined by
𝑝 . For the volumetric region outside 𝑆 (𝑝), we assign close-to-zero
stiffness so that simulating it has a negligible effect on the soft
swimmer’s motion. More formally, we consider a uniform grid that
discretizes Ω. Let 𝑛 be the number of nodes in the grid and let
𝒒𝑖 , 𝒗𝑖 ∈ R𝑑𝑛 be the nodal positions and velocities at the beginning
of the 𝑖-th time step. We simulate the grid based on the implicit
time-stepping scheme:

𝒒𝑖+1 = 𝒒𝑖 + ℎ𝒗𝑖+1 (16)

𝒗𝑖+1 = 𝒗𝑖 + ℎ𝑴−1 [𝒇int (𝒒𝑖+1) + 𝒇ext] (17)

where ℎ denotes the time step,𝑴 ∈ R𝑑𝑛×𝑑𝑛 is the mass matrix, and
𝒇int,𝒇ext ∈ R𝑑𝑛 are the internal and external forces applied to the 𝑛
nodes. As we inherit the constitutive model and the actuator model
from Min et al. [2019], we skip their implementation details and
focus on explaining how our spatially varying stiffness field is used
to define the constitutive model. Specifically, we define a cell-wise
constant Young’s modulus field 𝐸 (𝑐):

𝐸 (𝑐) = 𝐸0𝐺 (𝑝𝑐 , 0.1) (18)

where 𝑐 is the cell index, 𝐸0 is a base Young’s modulus and 𝑝𝑐
is the discretized value of 𝑝 in cell 𝑐 . We further divide 𝑝𝑐 by
its maximum value from all cells so that 𝑝𝑐 is between 0 and 1.
𝐺 (·, 0.1) : [0, 1] → [0, 1] is the Schlick’s function [Schlick 1994],

̂pc

G(
̂ p c
, 0

.1
)

and choosing its second argument to be 0.1
pushes the output of 𝐺 towards the binary
value 0 or 1 (see the inset). Recall that the
soft swimmer’s shape is defined at locations
where 𝑝 is at least half of the peak density, us-
ing𝐺 (·, 0.1) encourages the soft swimmer’s
body to have a Young’s modulus close to 𝐸0.
Additionally, it suppresses the volumetric region outside the swim-
mer to have a close-to-zero Young’s modulus so that its effect on
the swimmer’s motion is negligible (Fig. 4).
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Fig. 4. To understand the effects of simulating a volumetric region
outside a swimmer with a close-to-zero Young’s modulus, we simulate
an eel without the volumetric region outside its shape (top) and com-
pare it to our method (middle), which simulates the whole domain Ω
but assigns small Young’s modulus to the volumetric region outside
the eel. The relative error for each time step converges to around 6%
after 100 time steps (bottom). We compute the relative error by com-
puting the average difference between nodal positions from the two
simulations and dividing it by the length of the eel.

We stress that the choice of simulating the entire domain Ω with
spatially varying Young’s modulus brings us two key benefits. First,
discretization is done trivially on the background grid. We avoid
the expensive discretization process involving the level set of 𝑝 , and
evolving the shape design is merely updating the probability density
function on the regular grid. Second, and more importantly, since
a differentiable simulator provides gradients about the material
stiffness, and algorithms for Wasserstein barycentric interpolation
offer gradients about the probability density function [Bonneel
et al. 2016], formulating the material stiffness as a function of the
probability density connects the gradients from shape design and
simulation into a uniform pipeline seamlessly.

Hydrodynamics. To efficiently mimic the interaction between the
water and the swimmer, we develop a hydrodynamics formulation
based on Min et al. [2019]. In this model, the thrust and drag forces
are computed on each quadrilateral from the swimmer’s surface
mesh after discretization:

𝒇drag =
1
2
𝜌𝐴𝐶𝑑 (Φ) ∥𝒗rel∥2 𝒅, (19)

𝒇thrust = −1
2
𝜌𝐴𝐶𝑡 (Φ) ∥𝒗lat∥2 𝒏, (20)

where𝐴 is the area of the surface quadrilateral, 𝜌 is the density of the
fluid, 𝒅 =

𝒗rel
∥𝒗rel ∥ is the direction of the relative surface velocity, and

𝒏 is the surface normal. 𝐶𝑑 (Φ) and 𝐶𝑡 (Φ) are dimensionless drag
and thrust coefficients that only depend on the angle of attack Φ =

cos−1 (𝒏 ·𝒗rel) − 𝜋
2 . The relative velocity for the surface quadrilateral

is calculated as follows:

𝒗rel = 𝒗water −
1
4
(𝒗0 + 𝒗1 + 𝒗2 + 𝒗3), (21)

where 𝒗water is the velocity of the surrounding water and 𝒗0 to 𝒗3
are the velocities of the four corners of the quadrilateral. We define
the lateral velocity in Eqn. (20) as follows:

𝒗lat = 𝒗rel − (𝒔 · 𝒗rel)𝒔, (22)

where 𝒔 is the direction of the fish spine. In our framework, 𝒔 is set
as an unit vector pointing from fish tail to the head. The thrust and
drag forces ares then distributed equally to the four corners of each
quadrilateral.
Lastly, the thrust force model from Min et al. [2019] creates an

additional “drag-like” force even when there is no tail motion, which
prevents forward swimming. To alleviate this, we modify Eqn.. (20),
and scale the thrust by ∥𝒗lat∥2, a physically-based modification
which is inspired by the large amplitude elongated-body theory of
fish lomocotion [Lighthill 1971].

Backpropagation. For a given soft swimmer’s design and con-
troller, a loss function provides a quantitative metric for evaluating
the soft swimmer’s performance. In this work, we define our loss
function 𝐿 on nodal positions, velocities, and hydrodynamic forces.
The choices of these input arguments allow us to measure travel
distance, speed, or energy efficiency. We provide the definitions of
each loss function in our experiments in Sec. 8.
After we evaluate the loss function for a given design and con-

troller, we can compute their gradients via backpropagation. To
calculate the gradients about the design parameter 𝜶 , we first ob-
tain gradients about 𝐸 (𝑐), the material stiffness inside each cell,
from the differentiable simulator. We then backpropagate these gra-
dients through Wasserstein barycentric interpolation to obtain 𝜕𝐿

𝜕𝜶
through the mapping function𝐺 (·, 0.1) as described above. In partic-
ular, 𝜕𝐿

𝜕𝜶 is computed using auto-differentiation as implemented by
deep learning frameworks [Paszke et al. 2019]. All of our controllers
are also clearly differentiable, allowing gradients with respect to
control parameters to also be computed via backpropagation.

7 OPTIMIZATION
Our fully differentiable pipeline enables the usage of gradient-based
numerical optimization algorithms in co-designing the shape, actu-
ator shape, and controller of soft underwater swimmers. Starting
with an initial guess of the soft swimmer’s geometric design and
controller, we apply the Adam optimizer [Kingma and Ba 2015] with
gradients computed for both design and control parameters. We ter-
minate the optimization process when the results converge or when
we exhaust a specified computational budget. Since we parametrize
both geometry and control with continuous variables in the same
framework, we can optimize over all variables simultaneously.

8 RESULTS
We evaluate our method’s performance with six experiments, cov-
ering shape design, co-design of geometry and control, and multi-
objective design. We summarize their setup in Table 1. We run all
experiments on a virtual machine instance from Google Cloud Plat-
form with 16 Intel Xeon Scalable Processors (Cascade Lake) @ 3.1
GHz and 64 GB memory with 8 OpenMP threads in parallel.
We collect a set of meshes representing various fishes in nature

as the design bases. In the pre-processing phase, we normalize and
voxelize them using the same grid resolution. Grid resolutions can
be found in Table 1. W use the following strategies in all our experi-
ments to improve the numerical stability of Wasserstein barycen-
tric interpolation: choosing basis shapes with the same topological
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Table 1. A summary of all experiments mentioned in Sec. 8. The “# Bases” and “# Parameters” columns report the number of base shapes used for
interpolation and the number of trainable parameters, respectively. The “Resolution” column gives the voxel resolution of base bounding boxes.
The “Shape” and “Control” columns indicate whether we optimize a soft swimmer’s geometric design and controller, respectively. The “Objective”
column shows the experiment’s objective type (none, single, or multiple). The “Time” column records the total time cost of optimization in minutes.

Section Name # Bases # Parameters Resolution Shape Control Objective Time (min)

8.1 Shape Exploration 3 - 60 × 54 × 14 - - None -
Shape Optimization 2 2 60 × 16 × 26 ✓ - Single 136

8.2
Open-Loop Co-Optimization 2 5 40 × 8 × 8 ✓ ✓ Single 60
Closed-Loop Co-Optimization 3 7572 60 × 54 × 14 ✓ ✓ Single 354
Large Dataset Co-Optimization 12 6541 60 × 16 × 26 ✓ ✓ Single 193

8.3 Multi-Objective Co-Optimization 12 6541 60 × 16 × 26 ✓ ✓ Multiple 195

Fig. 5. "Shape exploration" experiment: Interpolation between three base shapes and their actuators. Left triangle: 12 intermediate shapes
interpolated from three base shapes (red, green, and blue shapes at the corners). Right triangle: the corresponding actuator placements (colored
regions) for the 12 intermediate shapes shown as wire frames, also generated by interpolating actuators in the three base shapes at the corners.

genus, aligning their centers of mass, and running the interpolation
iteration until convergence.

8.1 Design Space Exploration
Shape exploration. In this experiment, we demonstrate the ca-

pability of our shape interpolation scheme without considering
optimization. In Fig. 5, we show shape and actuator interpolation
between three morphologically different hand-designed base shapes
from our library: a clownfish, a manta ray, and a stingray. We see
from Fig. 5 that the Wasserstein barycentric interpolation is capable
of generating smooth and biologically plausible intermediate shapes.
Additionally, we note that our actuator interpolation generates de-
signs adaptive to the shape’s size, as can be seen from the change
of muscle size in the left and right fins.

Shape optimization. In this experiment, we demonstrate the power
of our shape interpolation scheme when used in tandem with our
differentiable simulator for optimizing shape design and actuator
placement. We choose a shark with a tall tail and an orca with a flat
tail as the base shapes. The control input is a prespecified open-loop
sine wave leading to oscillatory motions on the horizontal plane

(spanned by the 𝑥- and 𝑦-axes in our coordinate system), which is
ill-suited for the orca but natural for the shark. We initialize the
open-loop controller with 𝑎 = 1, 𝜔 = 𝜋

6ℎ , and 𝜑 = 0. The objective
is to find a geometric design that traverses the longest forward
distance in a fixed time period 𝑁ℎ, where 𝑁 is the number of time
steps and ℎ the time interval. We purposefully choose the shark and
orca bases since we know a priori that the shark will outperform
the orca in this task with the prespecified controller. Therefore, this
experiment also serves as a smell test for our pipeline. Formally, the
loss function is defined as

𝐿 = − 1
|𝑆𝑝 |

∑
𝑗 ∈𝑆𝑝𝑖𝑛𝑒

(𝒒𝑁,𝑗 )𝑥 − (𝒒0, 𝑗 )𝑥 (23)

𝑆𝑝𝑖𝑛𝑒 ={ 𝑗 | (𝒒0, 𝑗 )𝑦 = 0} (24)

where 𝒒𝑖, 𝑗 ∈ R𝑑 is the 𝑗-th node’s location at the 𝑖-th time step and
(·)𝑥 and (·)𝑦 extracts its 𝑥 and𝑦 coordinate, respectively. The objec-
tive encourages faster swimming speed along the desired heading
direction, which is defined as the 𝑥-axis in all our experiments. We
estimate the swimmer’s 𝑥-offset by averaging the 𝑥-offsets between
the first and last time step from nodes near the spine of the swimmer,
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which is formally defined by a 𝑆𝑝𝑖𝑛𝑒 set consisting of nodes whose
𝑦 coordinate (the lateral offset) is zero when undeformed.

Fig. 6 summarizes our results in this experiment. We run our
optimization algorithm with two different initial weight vectors
𝜶 : 𝜶 = (0, 1) which puts all weights in the orca (Fig. 6 top) and
𝜶 = (0.5, 0.5) (Fig. 6 middle). As the control signal is known to be ill-
suited for the orca, we expect the orca to have a poor performance,
as is correctly reflected in the top row of Fig. 6. The optimized results
from both starting shapes align with our expectation of the shark
as the optimal shape for this task (Fig. 6 bottom). Our algorithm
robustly converges to the optimal solution in both cases.

Orca: 𝐿 = −0.7268

Average: 𝐿 = −4.473 Shark: 𝐿 = −36.77

Fig. 6. “Shape optimization” experiment: Performances of two initial
shapes and the optimized shape. Top: the orca; Middle: the average
shape between the orca and the shark; Bottom: the optimized shape
found by our method, which is similar to the shark. The color on the
shape indicates the weight on the two base shapes (light blue: orca,
dark blue: shark). A smaller loss 𝐿 indicates a longer traveling distance
within the same duration and is preferred in this experiment.

8.2 Co-Design of Shape and Control
Open-loop co-optimization. We now present our first co-design

example, illustrating the value of our method compared to other
baseline methods. The case we consider is co-optimization of both
the shape and controller of an eel for the same objective described in
the “shape optimization” experiment. The base shapes are two eels,
i.e., slender bodies with their undulations’ wavelengths smaller than
their length. One vertical eel is flag-like with a greater height than
width, and the other horizontal eel is pancake-like with a greater
width than height. We use the same open-loop sine wave control
sequence as in the “shape optimization” experiment, except that
we leave its amplitude, phase, and frequency as variables to be
optimized from the initial guess with 0.5, 0, and 𝜋

6ℎ respectively.
The decision variables for this co-optimization problem are four-
dimensional, including one geometric design parameter and three
control parameters. The goal is to find both an optimal shape and an
optimal controller that leads to the longest distance traveled within
a fixed time span. Fig. 7 shows the initial design (top row) and the
optimized design (bottom row) returned by our algorithm. Since the
actuation is manifested in form of a sine-wave on the horizontal
plane, the optimal shape should be a vertical eel. As expected, our
co-optimization algorithm correctly finds such a physical design, as
well as an intensified control signal to maximize traveling distance.

For comparison, we also examine the performances of a few
baseline algorithms: alt: alternating between shape and control op-
timization; shape-only: fixing the initial controller and optimizing
the shape; control-only: fixing the initial shape and optimizing the
controller; cma-es: co-optimizing both shape and controller with

CMA-ES [Hansen et al. 2003], a gradient-free evolutionary algo-
rithm. By comparing the loss-iteration curves from all of these meth-
ods (Fig. 8), we reach the following conclusions: First, co-optimizing
both the shape and controller (ours, alt, and cma-es) reaches a
much lower loss than only optimizing shape or control (shape-only
and control-only), which is as expected. Second, gradient-based
co-optimization (ours and alt) converges significantly faster than
the gradient-free baseline cma-es, demonstrating the value of gra-
dients in design optimization. Lastly, we find that simultaneously
optimizing both shape and controller (ours) converges to similar
results but faster than the alternating strategy alt. This observation
highlights the value of our differentiable geometric design space,
which makes simultaneously co-optimizing shape and control with
a gradient-based algorithm possible.

Closed-loop co-optimization. In this experiment, we replace the
open-loop controller from the last experiment with a closed-loop
neural network controller. We also use the three base shapes in the
“shape exploration” experiment (Fig. 5) for shape interpolation. The
objective is the same as in the previous experiment.

Fig. 9 and Fig. 10 show the optimal shape and controller from our
method. We observe that the optimal shape assigns more weight
to the clownfish and the stingray than the manta ray, likely the
clownfish has a larger tail. For the controller, we also notice that the
optimal neural network controller discovers a strongly oscillating
pattern for the tail (Fig. 10), which aligns with our expectation for
a fast swimmer. We point out that the source of periodicity in the
control signal is from the temporal encoding technique: As shown
in Fig. 10, learning a periodic control output becomes much more
difficult when temporal encoding is disabled, leading to much worse
performance (Fig. 11).
To show the value of co-optimizing both shape and control in

this experiment (rather than just control), we test fixing the shape
design to the three bases and optimizing the controller only. We
present the loss-iteration curves for these methods in Fig. 11 and
conclude that co-optimizing both the shape and control achieves
significantly better performance.

Large dataset co-optimization. In a more realistic example of de-
sign pertinent to roboticists, we consider a position-keeping task in
the face of an external disturbance from a constant water flow. We
feed our shape interpolation a plethora of bases, including four shark
variations, seven goldfish variations, and one submarine (Fig. 1). We
again use a closed-loop controller as in the Experiment 4. The swim-
mer’s goal is to maintain its position and orientation in a stream of
fast-flowing water moving against its head. Formally, our loss 𝐿 is
defined as follows:

𝐿 =𝐿perf + 𝛾𝐿reg (25)

𝐿perf =
∑
𝑖

∥𝒒𝑖,𝑐 − 𝒒target∥1 (26)

𝐿reg = −
∑
𝑖

(𝒒𝑖,ℎ0 − 𝒒𝑖,ℎ1 ) · 𝒅target . (27)

Here, the loss function consists of a performance loss 𝐿perf and
a regularizer 𝐿reg. We set the regularizer weight 𝛾 = 0.01. The
performance loss is defined as the cumulative offset of a node 𝒒𝑖,𝑐 ∈
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Fig. 7. “Open-loop co-optimization” experiment: The initial guess (top) and the optimized design (bottom) of the shape and control. The shapes are
simulated to swim forward with the parameterized sinusoidal controller (right) from its initial position (transparent) to the final location (solid)
within a fixed time period.
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Fig. 8. The loss-iteration curves for our method and four baseline
algorithms evaluated in the “open-loop co-optimization” experiment.
Lower losses are better. The CMA-ES loss continually oscillates and
does not reach a loss lower than our method before exhausting its
computational budget (250 iterations, not shown in the figure). We
label the total time cost for each method with its corresponding color.

R𝑑 at the 𝑖-th timestep with respect to a target location 𝒒target = 0.
Here 𝑐 is the index of the central node in the aforementioned 𝑆𝑝𝑖𝑛𝑒
set. In short, the performance loss encourages the swimmer to stay at
the origin within the given time period. Additionally, we introduce
the regularizer loss to penalize controllers circling around 𝒒target.
Here, ℎ0 and ℎ1 are indices of two prespecified nodes from the 𝑆𝑝𝑖𝑛𝑒
set. Therefore, 𝒒𝑖,ℎ0 − 𝒒𝑖,ℎ1 estimates the swimmer’s heading at the
𝑖-th timestep. The regularizer computes the dot product between
the true heading and a target heading 𝒅target, which is the positive
𝑥 unit vector, to encourage a controller that maintains orientation
along the positive 𝑥 direction.
We report the optimal shape and controller from our method in

Fig. 1. With co-optimized shape and control, the swimmer learns
to leverage an oscillating motion to counter the flow and stabilize
itself. We use an average of all shape bases as the initial shape
for optimization. The swimmer’s shape after optimization appears
mildly different from the initial guess (Fig. 1 middle and right), but

Fig. 9. “Closed-loop co-optimization” experiment: Performances of
the initial (top) and the optimized geometric design (bottom) of the
swimmer. The color of the swimmer is interpolated with their weights
𝜶 from the base shapes’ colors in Fig. 5. The design is simulated to
swim forward from an initial position (transparent) on the right. The
swimmer’s final locations after a fixed amount of time are rendered as
solidmeshes. A longer traveling distance is preferred in this experiment.

that difference has a significant impact on performance. Further,
the difference between the initial and optimized control signals
are quite noticeable. In particular, the optimizer learns to intensify
the magnitude of the control signal to counter the flow. To justify
the importance of shape optimization, we compare our method to
optimizing controllers with the shape fixed as each of the 12 bases.
As shown in Fig. 12, our co-optimized swimmer outperforms all
12 base swimmers by a clear margin, highlighting the necessity of
co-optimizing both the geometry and the control of the swimmer.

8.3 Multi-Objective Design
Multi-objective co-optimization. Finally, we employ our method

to investigate a multi-objective design problem: What is the optimal
design of a swimmer for both fast and efficient forward swimming?
These two objectives often conflict with each other for real marine
creatures [Sfakiotakis et al. 1999]; therefore, they define a gamut of
designs with varying preferences on these two objectives and an
interesting Pareto front.

Formally, we consider the same set of shape bases as in the “Large
dataset co-optimization” experiment with two loss functions 𝐿speed
and 𝐿efficiency. We use the loss function in Eqn. (23) for 𝐿speed, which
reaches its minimum when the swimmer obtains the maximum
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Fig. 10. The initial and optimized control signals generated by running our method with and without temporal encoding in the “closed-loop
co-optimization” experiment.
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Fig. 11. The loss-iteration curves for five different methods in the
“closed-loop co-optimization” experiment: The curves labeled as “ours”
and “ours-no-te” represent losses from our methods with and with-
out temporal encoding. The “clownfish”, “manta ray”, and “stingray”
curves record the intermediate losses from optimizing controllers with
shapes fixed to the corresponding base shape. Lower losses are better.

average forward speed over a given time. The efficiency loss is
defined as follows:

𝐿efficiency = −
∑
𝑖

|𝑃 thrust |
1 + |𝑃 thrust | + |𝑃drag |

(28)

= −
∑
𝑖

|𝒇 thrust
𝑖

· 𝒗𝑖 |

1 + |𝒇 thrust
𝑖

· 𝒗𝑖 | + |𝒇drag
𝑖

· 𝒗𝑖 |
. (29)

In short, 𝐿efficiency provides a measure of the energy dissipation due
to the hydrodynamic drag, and minimizing 𝐿efficiency encourages a
more efficient usage of the hydrodynamic force. We use 𝑃thrust and
𝑃drag to denote the power of hydrodynamic thrust and drag, respec-
tively. At the 𝑖-th time step, we define the hydrodynamic force’s
power 𝑃 thrust as the dot product between the average hydrodynamic
force 𝒇 thrust

𝑖
on the swimmer’s surface and the average velocity 𝒗𝑖

computed from nodes in the 𝑆𝑝𝑖𝑛𝑒 set. The hydrodynamic drag’s
power 𝑃drag is defined similarly. Finally, we add 1 in the denomina-
tor to avoid singularities, which occurs when both the water and
the swimmer are still.
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Fig. 12. The loss-iteration curves for ourmethod (ours) and optimizing
control parameters with the shape fixed to each of the 12 base shapes
(ctrl-only). A lower loss is better. We report the aggregate results about
the 12 control-only optimizations (whose loss curves all fall in the gray
area), with the lower and upper bounds of the loss curves highlighted
by dashed lines.

To understand the implications of different geometry and con-
troller designs on the two losses, we generate a gamut of swim-
mers and visualize their performances in the 𝐿speed-𝐿efficiency space
(Fig. 13 left). Note that lower losses are better, so designs closer to the
lower-left corner are preferred. To generate this gamut, we optimize
the weighted sum of the two losses 𝑤𝑠𝐿speed + 𝑤𝑒𝐿efficiency with
𝑤𝑠 = 0, 0.1, 0.2, · · · , 1 and𝑤𝑒 = 1 −𝑤𝑠 . We record all intermediate
designs discovered during this process to form the gamut, with the
designs on the Pareto front highlighted as white circles.

To understand the Pareto optimal designs, we sampled four swim-
mers along the Pareto front. Fig. 13 further shows the geometric
design and neural network control outputs for the sampled swim-
mers. We find that the four swimmers’ shape designs are quite
similar, but their controllers are significantly different. In particu-
lar, their control signals show a strong correlation with the losses:
controllers preferred by faster swimmers show larger magnitudes
lasting for a longer period, which exerting more powerful forces
from the muscle fibers in the actuators. These sampled four swim-
mers, along with many others discovered in the Pareto front, form
a diverse set of designs for users to choose from in case they have
varying preferences.
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(a) high efficiency

(b) medium efficiency

(c) medium speed

(d) high speed

Fig. 13. “Multi-objective co-optimization” experiment: Left: The performance gamut of the intermediate discovered designs (gray dots) and its
Pareto front (white circles). Lower losses are better. Right: We show four samples, labeled as (a), (b), (c), and (d), from the Pareto front. For each
sample, we show the swimmer’s initial (transparent) and final (solid) location at the beginning and end of the simulation. A larger distance between
these two locations indicate a faster average speed (better 𝐿𝑠𝑝𝑒𝑒𝑑 ). The design parameters for each sample are shown in the radar chart to its left.
We plot the control signals for each sample below its initial and final locations.

8.4 Ablation Study
Gradient Scaling. The Adam optimizer we use in our experiments

is a first-order gradient descent optimizer. Since such algorithms are
generally not scale-invariant and we co-optimize parameters from
two very different categories (geometry and control), the possible im-
balance between the scale of geometry and control parameters may
affect the optimizer’s performance. To examine the impact of differ-
ent scales, we rerun the “closed-loop co-optimization” experiment
by scaling the geometry and control parameters in three different
settings: First, the default setting repeats the experiment with no
changes, in which case we notice the ratio between the gradient
from each geometry and control parameter is roughly 3:1. Next, in
the balanced setting, we rescale the control parameters by roughly
a factor of 3 so that their gradients have magnitudes comparable to
those from the geometry parameters. Finally, in the reversed setting,
we further rescale the control parameters until the ratio between the
geometry and control gradients becomes 1:3, the reciprocal of the
ratio in the default setting. We report the training curves in Fig. 14
(left), from which we notice a substantial effect from rescaling these
parameters as expected. Using a scale-invariant optimizer instead
of Adam could be a potential solution in the future.

Initial Guesses. To better understand the influence of different ini-
tial guesses on the performance of our method, we rerun the “large
dataset co-optimization” experiment with ten randomly sampled
initial shapes and controllers. Fig. 14 (right) reports the resulting ten
training curves, from which we observe a consistent decrease in the
loss function across all initial guesses. Still, we notice that not all
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Fig. 14. The loss-iteration curves for ablation studies on the “gra-
dient scaling” experiment (left) and the “initial guesses” experiment
(right) in Sec. 8.4. Lower losses are better. Left: The “default” curve
reports the result without scaling the gradients. The “balanced” and
“reversed” curves represent the strategies normalizing the gradients
to the same average 𝐿1-norm and switching the scales, respectively.
Right: The semitransparent curves represent the losses from different
initial guesses. The red dashed line reports the average loss.

random guesses converge to the same optimal solution, and some
of them are trapped in different local minima. Such results are not
surprising as our gradient-based method is inherently a continuous
local optimization algorithm. More advanced global search algo-
rithms might alleviate the issue of local minima, which we consider
as future work.
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9 CONCLUSIONS, LIMITATIONS, AND FUTURE WORK
We have presented a method for co-optimizing soft swimmers over
control and complex geometry. By exploiting differentiable simu-
lation and control and a basis space governed by the Wasserstein
distance, we are able to generate biomimetic forms that can swim
quickly, resist disturbance, or save energy. Further, we have gen-
erated designs that are Pareto-optimal in two conflicting design
objectives. Our co-optimization procedure outperforms optimizing
over each domain independently, demonstrating the tight interrela-
tion of form and control in swimmer behavior.
While we have provided a first foray into the computational

design of soft underwater swimmers, a number of interesting prob-
lems remain ripe for exploration. First, while our algorithm was
able to interpolate between actuator shapes, those actuators were
placed manually on the base shapes. A method for automating
the design of muscle-based actuators for soft swimmers would be
interesting. Second, our algorithm requires that the base shapes
themselves be chosen by hand — it would be interesting to investi-
gate methods for extending the morphological search beyond the
Wasserstein basis space. For example, it can be combined with dis-
crete, composition-based design methods, e.g., Zhao et al. [2020],
to explore combinatorial design space. Third, certain aspects of
soft swimmer design — e.g. sensing and material selection — were
untouched in this work. Fourth, our simulator can be made more
physically realistic by handling environmental contact as well as
employing computational fluid dynamics rather than our analytical
hydrodynamic model. Fifth, our work presented here investigated
only virtual swimmers. It would be interesting to fabricate their
physical counterparts, and research methods for overcoming the
likely sim-to-real gap for physical soft swimmers. Sixth, the objec-
tives of optimization in our experiments cover only travel distance,
the ability for position maintenance, and swimming efficiency. It
will be exciting to extend our algorithm to more complex goals, e.g.,
stability under non-constant current or controllability over a target
trajectory. Finally, as our optimization scheme is a local, gradient-
based method, there is no guarantee for global optimality. It would
be interesting to see if our gradient-based optimization could be
combined with more global heuristic searches (such as simulated
annealing or evolutionary algorithms) to reap the benefits of both
approaches.
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