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1 Introduction

In this paper we describe a search for physics beyond the standard model (BSM) in a
sample of proton-proton collisions at a centre-of-mass energy of 7 TeV. The data sample
was collected with the Compact Muon Solenoid (CMS) detector [1] at the Large Hadron
Collider (LHC) between March and November of 2010 and corresponds to an integrated
luminosity of 34 pb−1.

The BSM signature in this search is motivated by three general considerations. First,
new particles predicted by BSM physics scenarios are expected to be heavy, since they have
so far eluded detection. Second, BSM physics signals with high enough cross sections to be
observed in our current dataset are expected to be produced strongly, resulting in significant
hadronic activity. Third, astrophysical evidence for dark matter suggests [2, 3] that the
mass of weakly-interacting massive particles is of the order of the electroweak symmetry
breaking scale. Such particles, if produced in pp collisions, could escape detection and give
rise to an apparent imbalance in the event transverse energy. We therefore focus on the
region of high missing transverse energy (Emiss

T ). An example of a specific BSM scenario
is provided by R-parity conserving supersymmetric (SUSY) models in which new, heavy
particles are pair-produced and subsequently undergo cascade decays, producing hadronic
jets and leptons [4–10]. These cascade decays may terminate in the production of weakly-
interacting massive particles, resulting in large Emiss

T .
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The results reported in this paper are part of a broad program of BSM searches in
events with jets and Emiss

T , characterized by the number and type of leptons in the final
state. Here we describe a search for events containing opposite-sign isolated lepton pairs
(e+e−, e±µ∓, µ+µ−) in addition to the jets and Emiss

T . Results from a complementary
search with no electrons or muons in the final state have already been reported in ref. [11].

Our analysis strategy is as follows. In order to select dilepton events, we use high-
pT lepton triggers and a preselection based on that of the tt cross section measurement
in the dilepton channel [12]. Good agreement is found between this data sample and
predictions from SM Monte Carlo (MC) simulations in terms of the event yields and shapes
of various kinematic distributions. Because BSM physics is expected to have large hadronic
activity and Emiss

T as discussed above, we define a signal region with requirements on these
quantities to select about 1% of dilepton tt events, as predicted by MC. The observed
event yield in the signal region is compared with the predictions from two independent
background estimation techniques based on data control samples, as well as with SM and
BSM MC expectations. Finally, the robustness of the result is confirmed by an independent
analysis based on hadronic activity triggers, different “physics object” reconstruction, and
a complementary background estimation method.

No specific BSM physics scenario, e.g. a particular SUSY model, has been used to
optimize the search. In order to illustrate the sensitivity of the search, a simplified and
practical model of SUSY breaking, the constrained minimal supersymmetric extension of
the standard model (CMSSM) [13, 14], is used. The CMSSM is described by five param-
eters: the universal scalar and gaugino mass parameters (m0 and m1/2, respectively), the
universal trilinear soft SUSY breaking parameter A0, the ratio of the vacuum expectation
values of the two Higgs doublets (tanβ), and the sign of the Higgs mixing parameter µ.
Throughout the paper, two CMSSM parameter sets, referred to as LM0 and LM1 [15], are
used to illustrate possible CMSSM yields. The parameter values defining LM0 (LM1) are
m0 = 200 (60) GeV/c2, m1/2 = 160 (250) GeV/c2, A0 = −400 (0) GeV; both LM0 and LM1
have tanβ = 10 and µ > 0. In the LM0 (LM1) scenario the squarks and gluinos have
masses in the range 350–450 GeV/c2 (400–600 GeV/c2) and the lightest SUSY particle is
the lightest neutralino with a mass of 60 GeV/c2 (96 GeV/c2). These two scenarios are
beyond the exclusion reach of previous searches performed at the Tevatron and LEP. They
were recently excluded by a search performed at CMS in events with jets and Emiss

T [11]
based on the same data sample used for this search. In this analysis, the LM0 and LM1
scenarios serve as benchmarks which may be used to allow comparison of the sensitivity
with other analyses.

2 CMS detector

The central feature of the CMS apparatus is a superconducting solenoid, 13 m in length
and 6 m in diameter, which provides an axial magnetic field of 3.8 T. Within the field
volume are several particle detection systems. Charged particle trajectories are measured
by silicon pixel and silicon strip trackers, covering 0 ≤ φ ≤ 2π in azimuth and |η| < 2.5 in
pseudorapidity, defined as η = − log[tan θ/2], where θ is the polar angle of the trajectory of
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the particle with respect to the counterclockwise proton beam direction. A crystal electro-
magnetic calorimeter and a brass/scintillator hadronic calorimeter surround the tracking
volume, providing energy measurements of electrons and hadronic jets. Muons are iden-
tified and measured in gas-ionization detectors embedded in the steel return yoke outside
the solenoid. The detector is nearly hermetic, allowing energy balance measurements in
the plane transverse to the beam direction. A two-tier trigger system selects the most
interesting pp collision events for use in physics analysis. A more detailed description of
the CMS detector can be found elsewhere [1].

3 Event selection

Samples of MC events are used to guide the design of the analysis. These events are gener-
ated using either the pythia 6.4.22 [16] or MadGraph 4.4.12 [17] event generators. They
are then simulated using a GEANT4-based model [18] of the CMS detector, and finally
reconstructed and analyzed using the same software as is used to process collision data.

We apply a preselection based on that of the tt cross section measurement in the
dilepton channel [12]. Events with two opposite-sign, isolated leptons (e+e−, e±µ∓, or
µ+µ−) are selected. At least one of the leptons must have pT > 20 GeV/c and both must
have pT > 10 GeV/c, and the electrons (muons) must have |η| < 2.5 (|η| < 2.4). In events
with more than two such leptons, the two leptons with the highest pT are selected. Events
with an e+e− or µ+µ− pair with invariant mass between 76 GeV/c2 and 106 GeV/c2 or below
10 GeV/c2 are removed, in order to suppress Drell-Yan (DY) Z/γ∗ → `` events, as well as
low mass dilepton resonances.

Events are required to pass at least one of a set of single-lepton or double-lepton
triggers. The efficiency for events containing two leptons passing the analysis selection to
pass at least one of these triggers is very high, in excess of 99% for dilepton tt̄ events.

Because leptons produced in the decays of low-mass particles, such as hadrons con-
taining b and c quarks, are nearly always inside jets, they can be suppressed by requiring
the leptons to be isolated in space from other particles that carry a substantial amount
of transverse momentum. The details of the lepton isolation measurement are given in
ref. [12]. In brief, a cone is constructed of size ∆R ≡

√
(∆η)2 + (∆φ)2 = 0.3 around the

lepton momentum direction. The lepton relative isolation is then quantified by summing
the transverse energy (as measured in the calorimeters) and the transverse momentum (as
measured in the silicon tracker) of all objects within this cone, excluding the lepton, and
dividing by the lepton transverse momentum. The resulting quantity is required to be less
than 0.15, rejecting the large background arising from QCD production of jets.

We require the presence of at least two jets with pT > 30 GeV/c and |η| < 2.5, sepa-
rated by ∆R > 0.4 from leptons passing the analysis selection with pT > 10 GeV/c. The
anti-kT clustering algorithm [19] with ∆R = 0.5 is used for jet clustering. Jets are recon-
structed using calorimeter information and their energies are corrected using reconstructed
tracks [20]. The event is required to satisfy HT > 100 GeV, where HT is defined as the
scalar sum of the transverse energies of the selected jets. In addition, the Emiss

T in the
event is required to exceed 50 GeV. Several techniques are used in CMS for calculating
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Sample σ (pb) ee µµ eµ Total
tt→ `+`− 16.9 14.50 ± 0.24 17.52 ± 0.26 41.34 ± 0.40 73.36 ± 0.53
tt→ other 140.6 0.49 ± 0.04 0.21 ± 0.03 1.02 ± 0.06 1.72 ± 0.08
Drell-Yan 18417 1.02 ± 0.21 1.16 ± 0.22 1.20 ± 0.22 3.38 ± 0.37
W± + jets 28049 0.19 ± 0.13 0.00 ± 0.00 0.09 ± 0.09 0.28 ± 0.16
W+W− 2.9 0.15 ± 0.01 0.16 ± 0.01 0.37 ± 0.02 0.68 ± 0.03
W±Z 0.3 0.02 ± 0.00 0.02 ± 0.00 0.04 ± 0.00 0.09 ± 0.00
ZZ 4.3 0.01 ± 0.00 0.02 ± 0.00 0.02 ± 0.00 0.05 ± 0.00
Single top 33.0 0.46 ± 0.02 0.55 ± 0.02 1.24 ± 0.03 2.25 ± 0.04
Total SM MC 16.85 ± 0.34 19.63 ± 0.34 45.33 ± 0.47 81.81 ± 0.67
Data 15 22 45 82
LM0 52.9 10.67 ± 0.31 12.63 ± 0.34 17.81 ± 0.41 41.11 ± 0.62
LM1 6.7 2.35 ± 0.05 2.83 ± 0.06 1.51 ± 0.04 6.69 ± 0.09

Table 1. Data yields and MC predictions after preselection, using the quoted NLO production
cross sections σ. The tt→ `+`− corrresponds to dilepton tt, including t→W→ τ → `; tt→ other
includes all other tt decay modes. The samples of MC tt, W± + jets, and single-top events were
generated with MadGraph. The Drell-Yan sample (which includes events with invariant masses as
low as 10 GeV/c2) was generated using a mixture of MadGraph and pythia and includes decays
to the τ+τ− final state. All other samples were generated with pythia. The LM0 and LM1
benchmark scenarios are defined in the text; the quoted σ values refer to the total production cross
section for SUSY particles in these scenarios. Uncertainties are statistical only.

Emiss
T [21]. Here, the raw Emiss

T , calculated from calorimeter signals in the range |η| < 5.0,
is corrected by taking into account the contributions from minimally interacting muons.
The Emiss

T is further corrected on a track-by-track basis for the expected response of the
calorimeter derived from simulation, resulting in an improved Emiss

T resolution.

The data yields and corresponding MC predictions after this event preselection are
given in table 1. The MC yields are normalized to 34 pb−1 using next-to-leading order
(NLO) cross sections. As expected, the MC predicts that the sample passing the preselec-
tion is dominated by dilepton tt. The data yield is in good agreement with the prediction.
We also quote the yields for the LM0 and LM1 benchmark scenarios.

Figure 1 compares several kinematic distributions in data and SM MC for events
passing the preselection. As an illustration, we also show the MC distributions for the
LM1 benchmark point. We find that the SM MC reproduces the properties of the bulk
of dilepton tt events. We therefore turn our attention to the tails of the Emiss

T and HT

distributions of the tt sample.

To look for possible BSM contributions, we define a signal region that preserves about
1% of the dilepton tt events, by adding the following two requirements to the preselection
described above:

HT > 300 GeV and y > 8.5 GeV1/2, (3.1)
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Figure 1. Distributions of (top left) scalar sum of jet transverse energies (HT), (top right) y ≡
Emiss

T /
√
HT, (bottom left) dilepton invariant mass M(``), and (bottom right) dilepton transverse

momentum pT(``) for SM MC and data after preselection. The last bin contains the overflow. Here
tt → `+`− corresponds to dilepton tt, including t → W → τ → `; tt → other includes all other tt
decay modes, and VV indicates the sum of WW, WZ, and ZZ. The MC distributions for the LM1
benchmark points are also shown.

where y ≡ Emiss
T /

√
HT. The requirement is on y rather than Emiss

T because the variables
HT and y are found to be almost uncorrelated in dilepton tt MC, with a correlation
coefficient of ∼ 5%. This facilitates the use of a background estimation method based on
data, as discussed in section 4.

The MC predicts 1.3 SM events, dominated by dilepton tt, in the signal region. The
expectations for the LM0 and LM1 points are 8.6 and 3.6 events, respectively.

4 Background estimates from data

We have developed two independent methods to estimate from data the background in the
signal region. The first method exploits the fact that HT and y are nearly uncorrelated for
the tt background. Four regions (A, B, C, and D) are defined in the y vs. HT plane, as
indicated in figure 2, where region D is the signal region defined in eq. (3.1). In the absence
of a signal, the yields in the regions A, B, and C can be used to estimate the yield in the
signal region D as ND = NA×NC/NB; this method is referred to as the “ABCD method”.

The expected event yields in the four regions for the SM MC, as well as the background
prediction NA×NC/NB, are given in table 2. We observe good agreement between the total
SM MC predicted and observed yields. A 20% systematic uncertainty is assigned to the
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predicted yield of the ABCD method to take into account uncertainties from contributions
of backgrounds other than dilepton tt (16%), finite MC statistics in the closure test (8%),
and variation of the boundaries between the ABCD regions based on the uncertainty in
the hadronic energy scale (8%).

The second background estimate, henceforth referred to as the dilepton transverse
momentum (pT(``)) method, is based on the idea [22] that in dilepton tt events the pT

distributions of the charged leptons and neutrinos from W decays are related, because of the
common boosts from the top and W decays. This relation is governed by the polarization
of the W’s, which is well understood in top decays in the SM [23, 24] and can therefore be
reliably accounted for. We then use the observed pT(``) distribution to model the pT(νν)
distribution, which is identified with Emiss

T . Thus, we use the number of observed events
with HT > 300 GeV and pT(``)/

√
HT > 8.5 GeV1/2 to predict the number of background

events with HT > 300 GeV and y = Emiss
T /

√
HT > 8.5 GeV1/2. In practice, two corrections

must be applied to this prediction, as described below.
The first correction accounts for the Emiss

T > 50 GeV requirement in the preselection,
which is needed to reduce the DY background. We rescale the prediction by a factor
equal to the inverse of the fraction of events passing the preselection which also satisfy
the requirement pT(``) > 50 GeV/c. This correction factor is determined from MC and is
K50 = 1.5. The second correction (KC) is associated with the known polarization of the W ,
which introduces a difference between the pT(``) and pT(νν) distributions. The correction
KC also takes into account detector effects such as the hadronic energy scale and resolution
which affect the Emiss

T but not pT(``). The total correction factor is K50×KC = 2.1± 0.6,
where the uncertainty is dominated by the 5% uncertainty in the hadronic energy scale [25].

All background estimation methods based on data are in principle subject to signal
contamination in the control regions, which tends to decrease the significance of a signal
which may be present in the data by increasing the background prediction. In general, it
is difficult to quantify these effects because we do not know what signal may be present in
the data. Having two independent methods (in addition to expectations from MC) adds
redundancy because signal contamination can have different effects in the different control
regions for the two methods. For example, in the extreme case of a BSM signal with
identical distributions of pT(``) and Emiss

T , an excess of events might be seen in the ABCD
method but not in the pT(``) method.

Backgrounds in which one or both leptons do not originate from electroweak decays
(non-W/Z leptons) are assessed using the method of ref. [12]. A non-W/Z lepton is a
lepton candidate originating from within a jet, such as a lepton from semileptonic b or
c decays, a muon decay-in-flight, a pion misidentified as an electron, or an unidentified
photon conversion. Estimates of the contributions to the signal region from pure multijet
QCD, with two non-W/Z leptons, and in W + jets, with one non-W/Z lepton in addition
to the lepton from the decay of the W, are derived separately. We find 0.00+0.04

−0.00 and
0.0+0.4
−0.0 for the multijet QCD and W+jets contributions respectively, and thus consider

these backgrounds to be negligible.
Backgrounds from DY and from processes with two vector bosons and single top are

negligible compared to dilepton tt.
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Figure 2. Distributions of y vs. HT for SM MC (2-dimensional histogram) and data (scatter plot).
Here our choice of the ABCD regions is also shown.

5 Results

We find one event in the signal region D. The event is in the eµ channel and contains 3
jets. The SM MC expectation is 1.3 events.

Table 2 summarizes the event yields obtained for each of the four ABCD regions in
the data and in the MC samples. The prediction of the ABCD method is given by NA ×
NC/NB = 1.3± 0.8 (stat.)± 0.3 (syst.) events. The data, together with SM expectations,
are presented in figure 2.

The ABCD prediction is then compared with that of the pT(``) method. We find 1
event passing the requirements HT > 300 GeV and pT(``)/

√
HT > 8.5 GeV1/2. This leads

to a predicted background of 2.1 ± 2.1 (stat.) ± 0.6 (syst.) after applying the correction
factor K50 ×KC = 2.1± 0.6, as shown in figure 3 (left).

As a validation of the pT(``) method in a region with higher statistics, we also apply
the pT(``) method in control region A by restricting HT to be in the range 125–300 GeV.
Here the prediction is 9.0 ± 6.0 (stat.) background events, in good agreement with the
observed yield of 12 events, as shown in figure 3 (right).

In summary, for the signal region defined as HT > 300 GeV and y > 8.5 GeV1/2: we
observe one event in the data, SM MC predicts 1.3 events, the ABCD method predicts
1.3 ± 0.8 (stat.) ± 0.3 (syst.) events, and the pT(``) method predicts 2.1 ± 2.1 (stat.) ±
0.6 (syst.) events.

All three background predictions are consistent within their uncertainties. We thus
take as our best estimate of the SM yield in the signal region the error-weighted average of
the two background estimates based on data and find a number of predicted background
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Sample NA NB NC ND NA ×NC/NB

tt→ `+`− 8.44 ± 0.18 32.83 ± 0.35 4.78 ± 0.14 1.07 ± 0.06 1.23 ± 0.05
tt→ other 0.12 ± 0.02 0.78 ± 0.05 0.16 ± 0.02 0.02 ± 0.01 0.02 ± 0.01
Drell-Yan 0.17 ± 0.08 1.18 ± 0.22 0.04 ± 0.04 0.12 ± 0.07 0.01 ± 0.01
W± + jets 0.00 ± 0.00 0.09 ± 0.09 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
W+W− 0.11 ± 0.01 0.29 ± 0.02 0.02 ± 0.01 0.03 ± 0.01 0.01 ± 0.00
W±Z 0.01 ± 0.00 0.04 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
ZZ 0.01 ± 0.00 0.02 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
Single top 0.29 ± 0.01 1.04 ± 0.03 0.04 ± 0.01 0.01 ± 0.00 0.01 ± 0.00
Total SM MC 9.14 ± 0.20 36.26 ± 0.43 5.05 ± 0.14 1.27 ± 0.10 1.27 ± 0.05
Data 12 37 4 1 1.30 ± 0.78
LM0 4.04 ± 0.19 4.45 ± 0.20 13.92 ± 0.36 8.63 ± 0.27 12.63 ± 0.88
LM1 0.52 ± 0.02 0.26 ± 0.02 1.64 ± 0.04 3.56 ± 0.06 3.33 ± 0.27

Table 2. Data yields in the four regions of figure 2, as well as the predicted yield in region D given
by NA × NC/NB. The SM and BSM MC expectations are also shown. The quoted uncertainties
are statistical only.
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√
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(predicted) for (left) the signal region and (right) the control region A, for both MC and data. The
vertical dashed line indicates the search region defined by y > 8.5 GeV1/2. The deficit at low y is
due to the Emiss

T > 50 GeV preselection requirement.

events NBG = 1.4 ± 0.8, in good agreement with the observed signal yield. We therefore
conclude that no evidence for a non-SM contribution to the signal region is observed.

6 Acceptance and efficiency systematic uncertainties

The acceptance and efficiency, as well as the systematic uncertainties in these quantities,
depend on the signal model. For some of the individual uncertainties, it is reasonable to
quote values based on SM control samples with kinematic properties similar to the SUSY
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benchmark models. For others that depend strongly on the kinematic properties of the
event, the systematic uncertainties must be quoted model by model.

The systematic uncertainty in the lepton acceptance consists of two parts: the trigger
efficiency uncertainty and the identification and isolation uncertainty. The trigger efficiency
for two leptons of pT > 10 GeV/c, with one lepton of pT > 20 GeV/c is close to 100%. We
estimate the efficiency uncertainty to be a few percent, mostly in the low pT region, using
samples of Z → ``. For dilepton tt, LM0, and LM1, the trigger efficiency uncertainties
are found to be less than 1%. We verify that the MC reproduces the lepton identification
and isolation efficiencies in data using samples of Z→ ``; the data and MC efficiencies are
found to be consistent within 2%.

Another significant source of systematic uncertainty is associated with the jet and
Emiss

T energy scale. The impact of this uncertainty is final-state dependent. Final states
characterized by very large hadronic activity and Emiss

T are less sensitive than final states
where the Emiss

T and HT are typically close to the minimum requirements applied to these
quantities. To be more quantitative, we have used the method of ref. [12] to evaluate the
systematic uncertainties in the acceptance for tt and for the two benchmark SUSY points
using a 5% uncertainty in the hadronic energy scale [25]. For tt the uncertainty is 27%; for
LM0 and LM1 the uncertainties are 14% and 6%, respectively.

The uncertainty in the integrated luminosity is 11% [26].

7 Same-flavour dilepton search

The result of section 5 is cross-checked in a similar kinematic region with an independent
search relying on a different trigger path, different methods for “physics object” recon-
struction, and a different background estimation method. This search is directed at BSM
scenarios in which decay chains of a pair of new heavy particles produce an excess of
same-flavour (e+e− and µ+µ−) events over opposite-flavour (e±µ∓) events. For example,
in the context of the CMSSM, this excess may be caused by decays of neutralinos and Z
bosons to same-flavour lepton pairs. For the benchmark scenario LM0 (LM1), the fraction
of same-flavour events in the signal region discussed below is 0.67 (0.86).

The dominant background in this search is also dilepton tt, for which such an excess
does not exist because the flavours of the two leptons are uncorrelated. Therefore, the rate
of tt decays with two same-flavour leptons may be estimated from the number of opposite-
flavour events, after correcting for the ratio of muon to electron selection efficiencies, rµe.
This method actually estimates the contribution of any uncorrelated pair of leptons, in-
cluding e.g. Z → ττ events where the two τ leptons decay leptonically. This method will
also subtract any BSM signal producing lepton pairs of uncorrelated flavour.

Events with two leptons with pT > 10 GeV/c are selected. Because the lepton triggers
are not fully efficient for events with two leptons of pT > 10 GeV/c, the data sample for this
analysis is selected with hadronic triggers based on the scalar sum of the transverse energies
of all jets reconstructed from calorimeter signals with pT > 20 GeV/c. The event is required
to pass at least one of a set of hadronic triggers with transverse energy thresholds ranging
from 100 to 150 GeV. The efficiency of this set of triggers with respect to the analysis
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selection is greater than 99%. In addition to the trigger, we require HT > 350 GeV, where
HT in this analysis is defined as the scalar sum of the transverse energies of all selected
jets with pT > 30 GeV/c and within an increased pseudorapidity range |η| < 3, in line with
the trigger requirement. The jets, Emiss

T , and leptons are reconstructed with the Particle
Flow technique [27]. The resulting performance of the selection of leptons and jets does
not differ significantly from the selection discussed in section 3.

The signal region is defined by additionally requiring Emiss
T > 150 GeV. This signal re-

gion is chosen such that approximately one SM event is expected in our current data sample.

The lepton selection efficiencies are measured using the Z resonance. As discussed in
section 6, these efficiencies are known with a systematic uncertainty of 2%. The selection
efficiencies of isolated leptons are different in the tt̄ and Z + jets samples. The ratio of
muon to electron efficiencies rµe, however, is found to differ by less than 5% in the MC
simulations, and a corresponding systematic uncertainty is assigned to this ratio. This
procedure gives rµe = 1.07± 0.06.

The W + jets and QCD multijet contributions, where at least one of the two leptons is
a secondary lepton from a heavy flavour decay or a jet misidentified as a lepton (non-W/Z
leptons) are estimated from a fit to the lepton isolation distribution, after relaxing the
isolation requirement on the leptons. Contributions from other SM backgrounds, such as
DY or processes with two gauge bosons, are strongly suppressed by the Emiss

T requirement
and are expected to be negligible.

We first estimate the number of SM events in a tt-dominated region with 100 < HT <

350 GeV and Emiss
T > 80 GeV. In order to cope with the lower HT requirement, we use the

same high-pT lepton trigger sample as described in section 3. In this region we observe 26
opposite-flavour candidates and predict 1.0 ± 0.5 non-W/Z lepton events from the fit to
the lepton isolation distribution. This results in an estimate of 25.0± 5.0 tt events in the
eµ channel. Using the efficiency ratio rµe this estimate is then converted into a prediction
for the number of same-flavour events in the ee and µµ channels.

Table 3 shows the number of expected SM background same-flavour events in the con-
trol region for the MC, as well as the prediction from the background estimation techniques
based on data. There are a total of 25 same-flavour events, in good agreement with the
prediction of 25.9± 5.2 events. We thus proceed to the signal region selection.

The SM background predictions in the signal region from the opposite-flavour and
non-W/Z lepton methods are summarized in table 4. We find one event in the signal
region in the eµ channel with a prediction of non-W/Z leptons of 0.1 ± 0.1, and thus
predict 0.9+2.2

−0.8 same-flavour events using Poisson statistical uncertainties. In the data we
find no same-flavour events, in agreement with the prediction, in contrast with 7.3 ± 1.6
and 3.6± 0.7 expected events for the benchmark points LM0 and LM1, respectively. The
predicted background from non-W/Z leptons is negligible.

Table 4 demonstrates the sensitivity of this approach. We observe comparable yields
of the same benchmark points as for the high-pT lepton trigger search, where 35–60% of
the events are common to both searches for LM0 and LM1. Either approach would have
given an excess in the presence of a signal.
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Control region
Process ee µµ

tt predicted from eµ 11.7± 2.4 13.4± 2.8
Non-W/Z leptons 0.5± 0.3 0.4± 0.2
Total predicted 12.2± 2.4 13.8± 2.8
Total observed 10 15
SM MC 8.4± 0.2 10.5± 0.3

Table 3. Number of predicted and observed ee and µµ events in the control region, defined as
100 < HT < 350 GeV and Emiss

T > 80 GeV. “SM MC” indicates the sum of all MC samples (tt, DY,
W + jets, and WW/WZ/ZZ) and includes statistical uncertainties only.

Signal region

Process ee µµ

tt predicted from eµ 0.4+1.0
−0.4 0.5+1.2

−0.4

Non-W/Z 0 0

Total predicted 0.4+1.0
−0.4 0.5+1.2

−0.4

Total observed 0 0

SM MC 0.38± 0.08 0.56± 0.07
LM0 3.4± 0.2 3.9± 0.2
LM1 1.6± 0.1 2.0± 0.1

Table 4. Number of predicted and observed events in the signal region, defined as HT > 350 GeV
and Emiss

T > 150 GeV. “SM MC” indicates the sum of all MC samples (tt, DY, W + jets, and
WW/WZ/ZZ) and includes statistical uncertainties only.

8 Limits on new physics

The three background predictions for the high-pT lepton trigger search discussed in section 5
are in good agreement with each other and with the observation of one event in the signal
region. A Bayesian 95% confidence level (CL) upper limit [28] on the number of non-
SM events in the signal region is determined to be 4.0, using a background prediction of
NBG = 1.4 ± 0.8 events and a log-normal model of nuisance parameter integration. The
upper limit is not very sensitive to NBG and its uncertainty. This generic upper limit is
not corrected for the possibility of signal contamination in the control regions. This is
justified because the two independent background estimation methods based on data agree
and are also consistent with the SM MC prediction. Moreover, no evidence for non-SM
contributions in the control regions is observed (table 2 and figure 3). This bound rules
out the benchmark SUSY scenario LM0, for which the number of expected signal events
is 8.6 ± 1.6, while the LM1 scenario predicts 3.6 ± 0.5 events. The uncertainties in the
LM0 and LM1 event yields arise from energy scale, luminosity, and lepton efficiency, as
discussed in section 6.
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For the same-flavour search using hadronic activity triggers discussed in section 7, no
same-flavour events are observed and the corresponding Bayesian 95% CL upper limit on
the non-SM yield is 3.0 events. This bound rules out the benchmark SUSY scenarios LM0
and LM1, for which the numbers of expected signal events are 7.3 ± 1.6 and 3.6 ± 0.7,
respectively.

We also quote the result more generally in the context of the CMSSM. The Bayesian
95% CL limit in the (m0,m1/2) plane, for tanβ = 3, A0 = 0 and µ > 0 is shown in figure 4.
The high-pT lepton and hadronic trigger searches have similar sensitivity to the CMSSM;
here we choose to show results based on the high-pT lepton trigger search. The SUSY
particle spectrum is calculated using SoftSUSY [29], and the signal events are generated
at leading order (LO) with pythia 6.4.22. NLO cross sections, obtained with the program
Prospino [30], are used to calculate the observed exclusion contour. At each point in the
(m0,m1/2) plane, the acceptance uncertainty is calculated by summing in quadrature the
uncertainties from jet and Emiss

T energy scale using the procedure discussed in section 6, the
uncertainty in the NLO cross section due to the choice of factorization and renormalization
scale, and the uncertainty from the parton distribution function (PDF) for CTEQ6.6 [31],
estimated from the envelope provided by the CTEQ6.6 error sets. The luminosity uncer-
tainty and dilepton selection efficiency uncertainty are also included, giving a total relative
acceptance uncertainty which varies in the range 0.2–0.3. A point is considered to be ex-
cluded if the NLO yield exceeds the 95% CL Bayesian upper limit calculated with this
acceptance uncertainty, using a log-normal model for the nuisance parameter integration.
The limit curves do not include the effect of signal contamination in the control regions.
We have verified that this has a negligible impact on the excluded regions in figure 4.

The excluded regions for the CDF search for jets + missing energy final states [32]
were obtained for tanβ = 5, while those from D0 [33] were obtained for tanβ = 3, each
with approximately 2 fb−1 of data and for µ < 0. The LEP-excluded regions are based
on searches for sleptons and charginos [34]. The D0 exclusion limit, valid for tanβ = 3
and obtained from a search for associated production of charginos χ±1 and neutralinos χ0

2

in trilepton final states [35], is also included in figure 4. In contrast to the other limits
presented in figure 4, the results of our search and of the trilepton search are strongly
dependent on the choice of tanβ and they reach the highest sensitivity in the CMSSM for
tanβ values below 10.

9 Additional information for model testing

Other models of new physics in the dilepton final state can be confronted in an approxi-
mate way by simple generator-level studies that compare the expected number of events in
34 pb−1 with the upper limits from section 8. The key ingredients of such studies are the
kinematic requirements described in this paper, the lepton efficiencies, and the detector
responses for HT, y, and Emiss

T . The muon identification efficiency is ≈ 95%; the electron
identification efficiency varies approximately linearly from ≈ 63% at pT = 10 GeV/c to 91%
for pT > 30 GeV/c. The lepton isolation efficiency depends on the lepton momentum, as
well as on the jet activity in the event. In tt events, it varies approximately linearly from
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Figure 4. The observed 95% CL exclusion contour at NLO (solid red line) and LO (dashed blue
line) in the CMSSM (m0,m1/2) plane for tanβ = 3, A0 = 0 and µ > 0. The area below the curve is
excluded by this measurement. Exclusion limits obtained from previous experiments are presented
as filled areas in the plot. Thin grey lines correspond to constant squark and gluino masses.

≈ 83% (muons) and ≈ 89% (electrons) at pT = 10 GeV/c to ≈ 95% for pT > 60 GeV/c. In
LM0 events, this efficiency is decreased by ≈ 5–10% over the whole momentum spectrum.
Electrons and muons from LM1 events have the same isolation efficiency as in tt events
at low pT and ≈ 90% efficiency for pT > 60 GeV/c. The average detector responses (the
reconstructed quantity divided by the generated quantity) for HT, y and Emiss

T are consis-
tent with 1 within the 5% jet energy scale uncertainty. The experimental resolutions on
these quantities are 10%, 14% and 16%, respectively.

10 Summary

We have presented a search for BSM physics in the opposite-sign dilepton final state using
a data sample of proton-proton collisions at 7 TeV centre-of-mass energy corresponding to
an integrated luminosity of 34 pb−1, recorded by the CMS detector in 2010. The search
focused on dilepton events with large missing transverse energy and significant hadronic
activity, motivated by many models of BSM physics, such as supersymmetric models. Good
agreement with standard model predictions was found, both in terms of event yields and
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shapes of various relevant kinematic distributions. In the absence of evidence for BSM
physics, we have set upper limits on the non-SM contributions to the signal regions. The
result was interpreted in the context of the CMSSM parameter space and the excluded
region was found to exceed those set by previous searches at the Tevatron and LEP exper-
iments. Information on the acceptance and efficiency of the search was also provided to
allow testing the exclusion of specific models of BSM physics.
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G. Steinbrück, J. Thomsen

– 19 –



J
H
E
P
0
6
(
2
0
1
1
)
0
2
6

Institut für Experimentelle Kernphysik, Karlsruhe, Germany
C. Barth, J. Bauer, V. Buege, T. Chwalek, W. De Boer, A. Dierlamm, G. Dirkes, M. Feindt,
J. Gruschke, C. Hackstein, F. Hartmann, S.M. Heindl, M. Heinrich, H. Held, K.H. Hoff-
mann, S. Honc, J.R. Komaragiri, T. Kuhr, D. Martschei, S. Mueller, Th. Müller, M. Niegel,
O. Oberst, A. Oehler, J. Ott, T. Peiffer, D. Piparo, G. Quast, K. Rabbertz, F. Rat-
nikov, N. Ratnikova, M. Renz, C. Saout, A. Scheurer, P. Schieferdecker, F.-P. Schilling,
M. Schmanau, G. Schott, H.J. Simonis, F.M. Stober, D. Troendle, J. Wagner-Kuhr,
T. Weiler, M. Zeise, V. Zhukov,10 E.B. Ziebarth

Institute of Nuclear Physics ”Demokritos”, Aghia Paraskevi, Greece
G. Daskalakis, T. Geralis, K. Karafasoulis, S. Kesisoglou, A. Kyriakis, D. Loukas,
I. Manolakos, A. Markou, C. Markou, C. Mavrommatis, E. Ntomari, E. Petrakou

University of Athens, Athens, Greece
L. Gouskos, T.J. Mertzimekis, A. Panagiotou, E. Stiliaris

University of Ioánnina, Ioánnina, Greece
I. Evangelou, C. Foudas, P. Kokkas, N. Manthos, I. Papadopoulos, V. Patras, F.A. Triantis

KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary
A. Aranyi, G. Bencze, L. Boldizsar, C. Hajdu,1 P. Hidas, D. Horvath,11 A. Kapusi, K. Kra-
jczar,12 B. Radics, F. Sikler, G.I. Veres,12 G. Vesztergombi12

Institute of Nuclear Research ATOMKI, Debrecen, Hungary
N. Beni, J. Molnar, J. Palinkas, Z. Szillasi, V. Veszpremi

University of Debrecen, Debrecen, Hungary
P. Raics, Z.L. Trocsanyi, B. Ujvari

Panjab University, Chandigarh, India
S. Bansal, S.B. Beri, V. Bhatnagar, N. Dhingra, R. Gupta, M. Jindal, M. Kaur, J.M. Kohli,
M.Z. Mehta, N. Nishu, L.K. Saini, A. Sharma, A.P. Singh, J.B. Singh, S.P. Singh

University of Delhi, Delhi, India
S. Ahuja, S. Bhattacharya, B.C. Choudhary, P. Gupta, S. Jain, S. Jain, A. Kumar, K. Ran-
jan, R.K. Shivpuri

Bhabha Atomic Research Centre, Mumbai, India
R.K. Choudhury, D. Dutta, S. Kailas, V. Kumar, A.K. Mohanty,1 L.M. Pant, P. Shukla

Tata Institute of Fundamental Research - EHEP, Mumbai, India
T. Aziz, M. Guchait,13 A. Gurtu, M. Maity,14 D. Majumder, G. Majumder, K. Mazumdar,
G.B. Mohanty, A. Saha, K. Sudhakar, N. Wickramage

Tata Institute of Fundamental Research - HECR, Mumbai, India
S. Banerjee, S. Dugad, N.K. Mondal

Institute for Research and Fundamental Sciences (IPM), Tehran, Iran
H. Arfaei, H. Bakhshiansohi, S.M. Etesami, A. Fahim, M. Hashemi, A. Jafari, M. Khakzad,
A. Mohammadi, M. Mohammadi Najafabadi, S. Paktinat Mehdiabadi, B. Safarzadeh,
M. Zeinali

– 20 –



J
H
E
P
0
6
(
2
0
1
1
)
0
2
6
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16: Also at Università della Basilicata, Potenza, Italy
17: Also at Laboratori Nazionali di Legnaro dell’ INFN, Legnaro, Italy
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