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Abstract—Multipath interference (MPI) is one of the major
sources of both depth and amplitude measurement errors in
Time–of–Flight (ToF) cameras. This problem has seen a lot of
attention recently. In this work, we discuss the MPI problem
within the framework spectral estimation theory and multi–
frequency measurements. As compared to previous approaches
that consider up to two interfering paths, our model considers the
general case of K–interfering paths. In the theoretical setting,
we show that for the case of K–interfering paths of light,
2K + 1 frequency measurements suffice to recover the depth
and amplitude values corresponding to each of the K optical
paths. What singles out our method is the that our algorithm
is non–iterative in implementation. This leads to a closed–form
solution which is computationally attractive. Also, for the first
time, we demonstrate the effectiveness of our model on an off–
the–shelf Microsoft Kinect for the X–Box one.

I. INTRODUCTION

Amplitude modulated continuous wave (AMCW) Time–of–
flight (ToF) imaging cameras [1], [2] measure at each pixel
both amplitude and optical travel time (depth), thus capturing
three dimensional scene information. Fig. 3(e) and 3(f) show
an example of such intensity and depth images as produced by
a ToF camera. These cameras work on the principle of emitting
a coded light signal (generally a sine wave) by amplitude
modulating a light source. They then measure the time delay
between the transmission and the reflection arriving back from
the scene (Fig. 1(a)), similar in principle to LIDAR.

A. Multipath Interference in ToF Cameras

All of the existing ToF cameras work under the hypothesis
that each given pixel observes one optical path. Another way to
state this, the assumption is that the scene is only illuminated
directly with no inter reflections (known in the optics and
geophysics domains as the Born approximation [3]). This
however is not the case in many practical cases of interest
such as inter reflections in the scene due to multiple objects
or corners, in the presence of transparencies such as windows,
or sub surface scattering. Some of these cases are presented
in Fig. 1.

When multiple optical paths combine at a given pixel,
the depth measurements are corrupted. This is known as the
multipath interference problem or the mixed pixel problem
(MPI). This is one of the major sources of errors in ToF
sensors [4]–[15] To that end, almost all existing solutions
consider up to two interfering paths of light [8]–[10]. The case
of K–interfering paths was first discussed in [4] and later in
[5]. Both of these papers rely on a sparsity formulation which
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Fig. 1: (a) The ToF camera emits a reference signal. Delay
in time of arrival of the reflection encodes the depth d. (b)
Specular or mirror like and, (c) Semi–transparent reflections
cause multiple light paths to mix at the sensor which leads to
multipath interference or the mixed–pixel problem (MPP). (d)
Case of continuous multipath reflections.

leads to computationally intensive and iterative algorithms.

B. Contribution and Organization of this Paper

In this work, we report a model for the case of K–path
interference for which the solution is non–iterative in im-
plementation which makes it computationally attractive when
compared to the sparsity based, iterative schemes discussed in
[4], [5].

In Section II, we provide a general description of the ToF
image formation model. Within our inverse–problem frame-
work, we set–up the mathematical model for the multipath
interference problem. As will be seen, our reformulation of
this problem shows that the MPI is intrinsically linked with
parametric spectral estimation theory [16], [17]. We leverage
on previous ideas [6], [16] to solve this problem in closed–
form. In Section III, we discuss some first results linked
with MPI cancellation in Microsoft Kinect One. Finally, we
conclude with some future directions.
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Fig. 2: Time–of–flight imaging system pipeline for solving
inverse problems. p is the transmitted signal, h the system
(scene) response, r the measured signal and m the correlation
measurement.

II. TOF IMAGE FORMATION MODEL

The ToF imaging pipeline is shown in Fig. 2. Pixelwise image
formation model for ToF cameras can be disseminated into 3
steps.

1) Probe the Scene: ToF cameras are active sensors.
The ToF camera probes the scene by transmitting a
T–periodic function of form p (t) = p (t+ T ). This
is achieved by amplitude modulating a light source,
usually co–located at the sensor. In current cameras
this signal is, p (t) = 1 + cos (ω0t) , ω0 = 2π/T .

2) Scene Interaction The probing function p interacts
with the scene resulting with the reflected signal
s. This interaction is defined mathematically using
scene response function h

r (t) =

∫
Ω

p (z)h (t− z) dz (Reflected Signal).

(1)
In the standard multi path case, the scene interaction
function is symmetric. With more complex inverse
problems such as Fluorescence-lifetime imaging mi-
croscopy (FLIM) this function can be non symmetric,
i.e h (z, t) and the response function is then described
by a more general Fredholm integral [18]

3) Cross–Correlation The ToF lock–in sensor measures
a discretized cross correlation function of the ref-
erence signal against the reflected signal for some
sampling step Δ

m (t)
∣∣∣
t=kΔ

= (p⊗ r) (t) , k ∈ Z (2)

here ⊗ denotes the correlation function.

A. Modeling Single Depth

Most ToF cameras including the Kinect for the X–Box One
probe the scene using an amplitude modulated sine wave

p (t) = 1 + cos (ωt) . (3)

At some depth d, the probing function undergoes a reflection
as well as attenuation as a function of the scene albedo at the
current pixel 0 ≤ Γ ≤ 1. The total time–of–flight is, td = 2d/c
where c = 3× 108m/s is the speed of light.

Simple computation [1], [2] shows that the measured
correlation response at the lock–in–pixel is

mω (t) = Γ (1 + cos (ω (t+ td))) . (4)

An equivalent conclusion can be reached be setting the scene
response function to

h (t) = Γδ (t− td) , (5)

where δ denotes Dirac’s Delta function.
It remains to estimate {Γ, d} from the measurements m in

Eq. (2). Most ToF cameras are so called 4-tap devices, where
4 correlation measurements are used to compute the approxi-
mations {Γ̃, d̃} at sampling steps Δ = π/2ω, k = 0 · · · 3 [2],

Γ̃ = p−2
0

√
(mω (3Δ)−mω (Δ))

2
+ (mω (0)−mω (2Δ))

2

d̃ =
c

2ω
tan−1

(
mω(3Δ)−mω(Δ)
mω(0)−mω(2Δ)

)
. (6)

Note that for any given modulation frequency ω, and estimated
parameters {Γ, d}, we can associate a complex number/phasor,

Zω = Γ̃ exp
(
j
(
2d̃ω

)
/c
)

Δ
= Γ̃ exp (jωtd) , Zω ∈ C. (7)

One thing to note is that Zω is the Fourier Transform of
Γδ (t− td).

We now revert our attention to the case of multipath
interference.

B. Multipath Interference Problem

Consider the case discussed in Fig. 1(b) and 1(c). When
multiple bounces of light or optical paths arrive at the sensor,
the depth measurements are corrupted [4], [8], [14]. The
system response function, modeled based on Eq. (5), is

hK (t) =
∑K−1

k=0
Γkδ

(
t− 2dk

c

)
≡

∑K−1

k=0
Γkδ (t− tk).

(8)
Let us denote the Fourier Transform of h(t) by ĥK (ω) with,

hK (t)
Fourier−−−−→ ĥK (ω) =

∑K−1

k=0
Γke

−jωtk . (9)

Indeed, for the multipath case, the Fourier domain represen-
tation of the system response function in (8) is a sum of K
complex exponential functions. Using the phasor formulation
(7), the measurement can be represented using this complex
value Zω = ĥ∗K (ω). From this we get the following formulas
for {Γ̃, d̃}

Γ̃ω =

∣∣∣∣∑K−1

k=0
Γke

jωtk

∣∣∣∣ and φ̃ω = ∠
(∑K−1

k=0
Γke

jωtk

)
,

(10)
a consequence of which is that the camera cannot resolve the
interference corrupted measurements.

C. Closed Form Solution for Retrieving {Γk, dk}K−1
k=0

We start with measurements mω (t). Since the multipath
component is independent of t, we will only consider mea-
surements in ω.
Problem Statement: Given a vector m of N measurements
at equispaced modulation frequencies where

mn =

K−1∑
k=0

Γku
n
k , n � N with uk = exp (jtk) (11)

extract {Γk, dk}K−1
k=0 .

This is a classic inverse problem in line spectrum estima-
tion [17] and is a special case of the solution discussed in
context of Fractional Fourier transforms [16].



Let us define a Laurent polynomial such that its roots are
uk,

Q (z) =
∏K−1

�=0

(
1− ukz

−1
) ≡ ∑K

�=0
q�z

−�︸ ︷︷ ︸
Factorized Polynomial

, z ∈ Z.

(12)
We leverage from an interesting factorization property of
complex–exponentials which is q� ∗m� = m�Q (uk) = 0,

q�∗m� =
∑K

n=0
qnm�−n =

∑K−1

k=0
Γku

�
k︸ ︷︷ ︸

m�

∑K

n=0
qnu

−n
k︸ ︷︷ ︸

Q(uk)=0

= 0.

This is because Q (z)|z=uk
= 0 (see (12)). Hence the null

space of the polynomial contains the decoupled phase infor-
mation for the different paths. In vector–matrix notation, this
is equivalent to,⎡

⎢⎣
mK · · · m0

...
. . .

...
m2K . . . mK

⎤
⎥⎦

︸ ︷︷ ︸
Toeplitz Matrix M(K+1)×(K+1)

⎡
⎢⎣

q0
...
qK

⎤
⎥⎦

︸ ︷︷ ︸
qK+1

=

⎡
⎢⎣
0
...
0

⎤
⎥⎦

︸ ︷︷ ︸
0K+1

⇔ Mq = 0,

where M is identified as the convolution/Toeplitz matrix and
vector q ∈ Null (M) is a vector in the null–space of rank–
deficit matrix M with rank = K. We need at least N = 2K+1
measurements to construct M and hence, 2K + 1 modulated
frequencies in mω to recover K optically interfering paths.
Once we compute q, we factorize it to compute the roots {uk}
in (12). This, in turn leads to,

d̃k = (2j)
−1

c log (uk) where c = 3× 108m/s. (13)

Let us define a Vandermonde matrix UN×K with matrix
elements,

[U ]n,k = un
k , k = 0, . . . ,K − 1, n = 0, . . . , N − 1.

To compute {Γ}k, we solve the system of equations UΓ =
m ⇒ Γ = U+m where U+ is pseudo–inverse of U.

D. Remarks and Discussion

• Improvement over previous work. To begin with,
our work generalizes the results in [9], [10] in that
our theoretical results are applicable to general setting
of K–interfering paths. For example, setting K = 2
leads to N = 5 frequency measurements which
is the result discussed in [9]. Also, unlike [9] that
requires measurements both in frequency and phase,
our formulation does not require phase sampling.
The idea of using multiple modulation frequencies to
resolve multiple interfering paths (K > 2) in context
of TOF was first presented in [4] however, the choice
greedy algorithm for sparse optimization makes the
solution inefficient. In this work, we show that it is
possible to retrieve {Γk, dk}K−1

k=0 from mω by using a
closed–form solution.

• Reconstruction Guarantee. In absence of model
mismatch and noise, we show that N = 2K + 1
frequency measurements are necessary for de–mixing
K–interfering paths. To the best of our knowledge,

this result has not been reported in literature (in con-
text of ToF imaging). Also, for our setting, Cramér–
Rao bounds [17] may be used to provide reconstruc-
tion guarantees.

• Implementation Details. As is well known, the Van-
dermonde matrix U+ is highly unstable in presence
of noise and oversampling is an efficient counter–
measure. Many variants have been proposed in lit-
erature to alleviate this problem. For implementation
purposes, we use Matrix Pencils [19] to solve to
problem.

III.RESULTS

For experiments we use an off the shelf, Microsoft Kinect
for the X–Box one ToF camera with modified firmware that
allows custom modulation frequencies. The Kinect is at a
distance of about 1.5 meters from a scene comprising of a
mannequin on a table with a wall in the background. We
further place a transparent acrylic sheet about 15 cm in front
of the camera. The acrylic reflects part of the emitted light
directly back to the camera, resulting in mixed measurements
(also known as multipath effect). We proceed with recording
of the amplitude/phase measurements of the Kinect at varying
modulation frequencies starting from 50 MHz.

The experimental setup is shown in Fig. 3(j). In this exam-
ple, we set K = 2. The amplitude and phase measurements
at 52 MHz are shown in Fig. 3(a) and 3(b) respectively. We
use 21 measurements from 52 − 72 MHz for our processing.
For the experiment in Fig. 3(j), our goal is to decompose the
mixture of images into 2 components corresponding to two
optical paths, one due to the acrylic sheet and another due to
the background. Fig. 3(c) and 3(d) shows the amplitude/depth
pair corresponding to the contribution due to acrylic sheet. As
can be seen in Fig. 3(c), we observe a specular reflection due to
the reflective acrylic sheet. In Fig. 3(e) and 3(f), we show the
contribution due to the background. The depth of the table is
estimate to be 1.67 meters. The amplitude image in Fig. 3(e)
is devoid of any multipath effects due to the acrylic sheet,
including the specular reflection.

Fig 3(g) and 3(g) show the 3d reconstruction (amplitude
embedded on the depth data) at 52 MHz and 72 MHz. The
error in amplitude recovery is a tell tale sign of multi path
interference. Fig. 3(i) shows amplitude embeded onto the 3d
information for the 2 bounces.

IV.CONCLUSION

Our theoretical development is general in that it considers
the general case of K–optical paths and is computationally
efficient in that the algorithm is non-iterative (compared to the
recent work). Our first results demonstrate the practicability of
our modelling with the ease of computation.
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