MIT
Libraries | D>pace@MIT

MIT Open Access Articles

Integrated Codesign of Printable Robots

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Mehta, A., J. Del Preto, and D. Rus. "Integrated Codesign of Printable Robots.” Journal
of Mechanisms and Robotics 7 2 (2015).

As Published: 10.1115/1.4029496
Publisher: ASME International
Persistent URL: https://hdl.handle.net/1721.1/134249

Version: Final published version: final published article, as it appeared in a journal, conference
proceedings, or other formally published context

Terms of Use: Article is made available in accordance with the publisher’s policy and may be
subject to US copyright law. Please refer to the publisher's site for terms of use.

I I I .
I I Massachusetts Institute of Technology

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/134249

Ankur Mehta

Computer Science and

Artificial Intelligence Laboratory,
Massachusetts Institute of Technology,
Cambridge, MA 02139

e-mail: mehtank@csail.mit.edu

Joseph DelPreto
Computer Science and

Artificial Intelligence Laboratory,
Massachusetts Institute of Technology,
Cambridge, MA 02139

e-mail: delpreto@csail.mit.edu

Integrated Codesign
of Printable Rohots

This work presents a system by which users can easily create printable origami-inspired
robots from high-level structural specifications. Starting from a library of basic mechani-
cal, electrical, and software building blocks, users can hierarchically assemble integrated
electromechanical components and programmed mechanisms. The system compiles those
designs to cogenerate complete fabricable outputs: mechanical drawings suitable for

direct manufacture, wiring instructions for electronic devices, and firmware and user

Daniela Rus

Professor

Computer Science and

Artificial Intelligence Laboratory,
Massachusetts Institute of Technology,
Cambridge, MA 02139

e-mail: rus@csail.mit.edu

1 Introduction

Robotic devices have gained widespread traction within
research and industrial environments, yet they are still comparably
underrepresented in personal everyday life. Creating a new
robotic system typically requires domain-specific expertise across
a range of disciplines, including mechanics for the structural
body, electronics to connect sensors and actuators, and software
to specify behaviors. This presents a knowledge barrier for on-
demand robot creation, which is further compounded by the need
for a variety of computer-aided design tools for implementation.
This entire process often involves repeated design iterations, and
must be rerun for each new robot desired, keeping the design and
fabrication of new robots beyond the realm of casual users.

Computational tools that can create robots from high-level
descriptions would allow the general public to obtain custom
devices able to accomplish specified functions on-demand. The
long-term objective is to develop a hardware compiler that can
automatically design and fabricate a robot to accomplish desired
goals from functional specifications of the required tasks. This
paper takes a step toward that vision with a system that allows
nonexperts to simultaneously generate mechanical, electrical, and
software designs from a custom structural specification, and then
quickly and inexpensively fabricate the designed robot.

The system presented here begins with a database of mechani-
cal, electrical, and software components, encapsulated in a com-
mon abstraction suitable for modular composition. Expert users
can directly generate new low level building blocks, while both
expert and casual users can make custom electromechanical devi-
ces by hierarchically connecting existing blocks. The component
abstraction allows for parameterization in terms of geometric and
physical properties to allow further fine-grained customizability.

Component hierarchies are compiled by the system into a col-
lection of files necessary for a user to manufacture the specified
design: The mechanical structure is made using 2D or 3D rapid
fabrication processes from generated fabrication drawings, the
user assembles the electrical subsystem onto that structure guided
by a bill of materials and wiring instructions, and firmware gets
loaded onto the central microcontroller. The resulting robot can
be wirelessly controlled from a generated UI, autonomously

Manuscript received August 16, 2014; final manuscript received December 24,
2014; published online February 27, 2015. Assoc. Editor: Aaron M. Dollar.

Journal of Mechanisms and Robotics

Copyright © 2015 by ASME

interface (Ul) software to control the final robot autonomously or from human input. This
process allows everyday users to create on-demand custom printable robots for personal
use, without the requisite engineering background, design tools, and cycle time typical of
the process today. This paper describes the system and its use, demonstrating its abilities
and versatility through the design of several disparate robots. [DOI: 10.1115/1.4029496]

controlled from generated application software, or user pro-
grammed with custom behaviors with help from a generated
control library.

This work extends the previous work reported in Refs. [1-3] by
unifying and integrating mechanical, electrical, and software sub-
system designs under a common functional specification based on
information flow. In particular, this paper presents a modular,
hierarchical, component based abstraction for integrated electro-
mechanical robot design specification, composed of the following:

(1) a scripted code object which encapsulates mechanical, elec-
trical, and software designs into self-contained parameteriz-
able components

(2) a process to hierarchically compose such elements along
well-defined interfaces into electromechanical mechanisms
of arbitrary complexity

(3) methods to render the component design as directly manu-
facturable fabrication specifications

(4) alibrary of base and derived components

(5) several robots designed, fabricated, and operated using the
proposed system

2 Related Work

This paper joins a body of work including rapid fabrication
technologies, modular design methods, and robotic system
specification.

There has been much work to enable the rapid fabrication of
arbitrary geometries. On-demand 3D structures are generally
achievable by additive manufacturing using 3D printers; advances
in printer technology have made desktop printers available to the
general public. However, while complex solid geometries are
easily manufactured with 3D printing, achieving the required
compliance and mobility necessary for general robotic systems is
nevertheless difficult to achieve using most common techniques
[4]. Limited workarounds do exist [5,6]; these often lack robust-
ness or reliability, though current technology has been improving.
3D printers are also plagued by long fabrication times—though
quicker than conventional manufacturing processes, parts still
take on the order of hours to build.

Mechanical structures can alternatively be realized by pattern-
ing then folding 2D sheets to define the shell of the desired geom-
etry. A variety of substrates are possible, including cardboard
laminates [7], single layer plastic film [8], or more exotic

MAY 2015, Vol. 7 / 021015-1

Downloaded From: https://mechanismsrobotics.asmedigitalcollection.asme.org on 07/12/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use

materials [9,10]. These designs can be manually folded by hand,
folded by embedded or external active stimuli, or passively folded
by controlled environmental conditions [11,12]. These processes
have been used to create passive 3D structures [11,13] as well as
active programmable robots [9,14,15]. The system presented in
this paper employs this fabrication process.

The 2D fabrication methods have been employed for rapid pro-
totyping, being able to manufacture devices in a time frame of
minutes. However, creating the fabrication drawings for these
processes typically requires careful hand design by experienced
engineers using sophisticated 2D cap programs and was difficult
to visualize as 3D objects. Custom electronic circuitry and soft-
ware was required to drive the actuators. The robots were created
as monolithic integrated designs, and so these issues would com-
pound as designs grow in size and complexity. There have been
attempts to automate the decomposition of 3D shapes, notably in
Refs. [16-18], to generate 2D fold patterns. These tools and algo-
rithms, however, focus mostly on solid objects, employing various
heuristics to generate polyhedra obeying certain rules. Compliant
and kinematic structures are not addressed.

The use of modular methods can greatly simplify, clarify, and
speed up system design [19] and has been widely adopted
throughout the software development communities. Modular
design can also be applied to robot creation [20-22] to achieve the
same benefits over ad-hoc custom design, to the point of inspiring
commercial offerings, e.g., Refs. [23-25]. However, these all call
upon the use of a discrete set of specially designed modular build-
ing blocks, adding expense with limited configuration space. This
work adapts such a design method to use discrete but off-the-shelf
electronics along with the 2D cut-and-fold fabrication process
above, enabling a much broader range of customizability from
cheaper raw materials.

Finally, while physical systems are often designed in an interac-
tive graphical environment, there has been work on creating
domain-specific programming languages to specify hardware
designs using software for electrical circuits [26] and rigid bodies
[27]. This software-defined-hardware paradigm has been used to
define robotic designs for simulations using a scripted modular lan-
guage in Refs. [21] and [28]; the system presented in this paper
employs a similar design method for user input, but the focuses on
physical device creation, compiling into directly fabricable outputs.

3 Design Paradigm

Traditionally, robots are created over a sequence of phases dur-
ing which mechanical, electrical, and software subsystems are
designed and then integrated. Because of the deep interplay
between the separate subsystems, the entire process must be
largely recreated for each distinct robot. If personal robotics is to
gain widespread traction, however, the process by which devices
are designed must be greatly simplified. Furthermore, with school
children or the general public as target audiences, the system must
be usable by those without engineering backgrounds. The system
presented in this work therefore follows a number of guiding prin-
ciples to help translate users’ visions into mechanical structures as
easily and directly as possible.

The presented system leverages a modular paradigm that allows
electrical, mechanical, and software components to be coupled at
the lowest level by experts, and then abstracted into functionally
defined blocks usable by novices. As a user combines these elec-
tromechanical modules, subsystem designs are assembled behind
the scenes to maintain an integrated design throughout the modu-
lar composition. Complexity is managed by nesting hierarchical
constructions in an intuitive design abstraction, allowing an inex-
perienced user to easily understand and utilize the design process.
Ultimately, this high-level assembly of modules can be directly
compiled to generate fabrication specifications to manufacture the
robot.

This paradigm allows a high degree of modular reuse, allowing
for incremental adaptation from earlier designs. Furthermore, the

021015-2 / Vol. 7, MAY 2015

generated designs take the form of text-based code scripts and are
therefore easy to share, modify, adapt, and extend using free and
open source tools, unencumbered by proprietary standards.

3.1 Modular Encapsulation. The fundamental unit of
abstraction in this design system is the component object. This
represents an individual design element that can accomplish a
self-contained set of functionality and provides the required
encapsulation to define and create that device. The simplest com-
ponents are the basic building blocks of electromechanical struc-
tures, such as a mechanical beam, discrete servomotor, or code
method. Complex components can be hierarchically built by com-
bining existing components as described below in Sec. 3.3. These
higher order components can represent anything from mechanical
assemblies and control systems to integrated electromechanical
mechanisms and full robots.

Components can be parameterized, allowing for fine-tuned
design customization. These parameters define adjustable values
that quantitatively but not qualitatively change the functionality of
design elements. Examples of parameters include geometric
dimensions, electronic device models, or feedback loop gains.
They therefore provide a means by which casual users can cus-
tomize a component’s behavior without changing its overall func-
tion. Assigning values to all parameters of a component serves to
fully specify that element and is sufficient to generate fabricable
design files to manufacture that object.

3.2 Information Flow. In order to make the behavior of a
design readily apparent, the design process focuses on describing
the flow and manipulation of information among the various com-
ponents. Each component is an encapsulated module that can be
conceptually replaced by a parameterized “black box” mapping a
set of inputs to outputs. These ports conceptually transmit infor-
mation related to the behavior defined by that component. Ports
can take on a number of different types, depending on the nature
of the information transmitted therein. Mechanical ports transmit
information in the form of spatial position and orientation, and a
connection along mechanical ports is realized by a physical
attachment of mechanical patches. Electrical ports transmit elec-
trical signals, and their connections are realized by wires or other
communication channels. Data ports represent the flow of concep-
tual information such as software values and are realized by code
functions or variables.

Components can provide ports of multiple types, and in fact
this forms the basis for cogenerating robotic subsystems across a
design. For example, electromechanical transducers such as sen-
sors and actuators translate between electrical and mechanical
ports, while hardware drivers translate between data and electrical
ports. Controls in a UI can be seen as data information sources,
while end effectors provide mechanical information sinks. Each
component is defined by the specific mapping between the infor-
mation at its inputs to the information at its outputs, and this
mapping is often a function of the component’s parameters.

Several ports can be collected into a single interface, allowing a
logical grouping of functionally related ports to be connected
simultaneously. For example, a plug can provide both electrical
and mechanical connectivity, or a communications transceiver
can bundle several data ports into a single channel.

3.3 Hierarchical Composition. Each design made in this
system is itself a component. A design library is initially popu-
lated with basic building blocks designed by experts to provide a
core set of functionality from manually defined specifications.
From there, the general design environment allows users to create
new components by attaching existing components from the
library along their exposed interfaces. A newly created component
is then defined by its collection of subcomponents and how their
interfaces are connected, as diagrammed in Fig. 1.

Transactions of the ASME

Downloaded From: https://mechanismsrobotics.asmedigitalcollection.asme.org on 07/12/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use

New component design

4 .
I 1
/ ! Component |
1 Library 1
Sub- [)
components S S
Parameter
constraints
Input) Exposed
parameters Interface | | interfaces
connections
Composition
K Algorithms /
Fabrication
drawings
Fig. 1 When creating a new electromechanical component, a designer needs only

to be responsible for specifying the shaded blocks: which subcomponents are
required from the library, how their parameters and interfaces are constrained, and
what parameters and connections to expose to higher designs

The new super-component is also parameterized; all subcompo-
nent parameters are then either manually specified or defined as
functions of the super-component’s parameters. Similarly, the new
super-component can expose interfaces inherited from the sub-
components for future connections. In this way, newly designed
components get added to the library and can be used in higher
order designs.

As components from the library get connected along their
interfaces, an information path is traced from a set of inputs,
through various transformations, to a set of outputs. The overall
input/output relationship defines the functionality of the designed
mechanism, while the specific path defines its implementation.

4 Scripted Hardware Design

The design system described in this paper is implemented as a
PYTHON package, with the designs themselves defined and gener-
ated by pyTHON scripts. This purely software-defined-hardware
paradigm allows for general cross-platform compatibility and
inherits many of the benefits inherent in software development.

4.1 Component Object. The component object is a PYTHON
class that implements the functionality described in Sec. 3. Every
component contains a list of its parameters and interfaces; a
derived component additionally contains references to its constitu-
ent subcomponents with functions constraining their parameters,
as well as a list of connections defining which pairs of subcompo-
nent interfaces are connected. Each component includes a collec-
tion of executable script objects that, when run, generate
fabricable designs to implement its specified input/output func-
tionality. For basic building blocks, these code elements must be
manually written in PYTHON by an expert designer. In a derived
composition, however, these scripts are autogenerated by compos-
ing the respective elements of its subcomponents.

Component objects, when written directly by experts, also rep-
resent a hierarchy through a structure of class inheritance. Any
component may serve as the superclass for a more specialized
component, allowing for new definitions to inherit rules, ports,
types, and design principles from previously designed compo-
nents. This makes it easier for experts to design new components,
since most of the tedious details have already been deal with by
pre-existing, higher level components.

4.2 Composable Script Elements. The composable script
elements form the software that defines the hardware specified by
the components, with the hardware comprising various

Journal of Mechanisms and Robotics

mechanical, electrical, and software subsystems of the complete
electromechanical device. Not all components will have all sub-
systems, but a derived component will contain scripts for every
subsystem contained in the components comprising its hierarchy.
These scripts are described in more detail in Sec. 5.

Executing the script in a PYTHON interpreter generates output
files that specify the creation of the respective subsystem.
Mechanical output files include a 2D vector drawing that can be
directly sent to a laser or vinyl cutter to create a cut-and-fold
structure, and a solid object file that can be built using a 3D
printer. Electrical subsystem output files include a bill of materials
and wiring instructions to assemble the desired circuit. Software
subsystems can include a set of program files to be loaded onto
the central microcontroller, off-board UI apps for human control
of the robot, and code libraries that simplify the creation of
custom-written control programs.

4.3 Component Ports. The interfaces of a component can
contain a number of ports, which represent pathways by which
information is passed to and from other components in a hierarch-
ical design. Like components themselves, parameters can be used
to quantitatively customize ports during design and implementa-
tion. The pyTHON class defining a port specifies its type, describing
what kind of information it passes and in which direction. When
instantiating a connection between interfaces of two components,
ports can ensure that they are connected to ports of appropriate
reciprocal types, allowing information to logically flow from one
component into the other. When establishing such a connection,
the component class delegates to each port the task of combining
the attached composable script elements in each subcomponent
into a single set of scripts that generate integrated designs for the
composite device.

When connecting two components together, port requirements
can be used to automatically determine appropriate interfaces to
join. For example, when connecting an analog sensor to a micro-
controller, the sensor’s electrical output port must connect to an
electrical input port that supports analog readings, and so the
respective interfaces will be automatically selected. Similarly, the
data, electrical, and mechanical subsystems will automatically be
joined as appropriate. Additional rules for port matching can be
programmed to provide more sophisticated design guidance and
automation and can be used to provide compiler-level verification
of design decisions.

To achieve these rules for automatic connections and design
principles, the port classes form a structure of class inheritance
similar to that described above for the components. At the most

MAY 2015, Vol. 7 / 021015-3

Downloaded From: https://mechanismsrobotics.asmedigitalcollection.asme.org on 07/12/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use

general level, the port class allows for the specification of port
types to which it should connect and port types to which it cannot
connect, as well as basic rules for the verification and determina-
tion of connections. New types of ports defined by experts then
inherit from existing port types and can extend their lists of rec-
ommended or forbidden types as well as their rules for verifying
and forging connections. For example, a general class for an out-
put port may simply specify that it cannot connect to another out-
put port and recommend connecting to an input port. A slightly
more specialized port type such as a pulse-width modulation
(PWM) output can inherit from the general output type and add
that a PWM input is a recommended type. The rule for not con-
necting to other outputs is already specified (and will apply to any
port types that inherit from the general output type). Moreover,
the system can automatically determine that the PWM input inher-
its from the more general input type, and thus the new rule will be
applied first when searching for ports with which to make new
connections. In this way, rules for verification and determining
connections can quickly become quite sophisticated with little
additional effort on the part of the experts.

4.4 Software Infrastructure. The pyTHON software package
that implements the integrated codesign environment is divide
into three main collections: (1) the classes that define the underly-
ing code architecture of the software-defined-hardware and con-
tain the algorithms used to compose and instantiate designs are
collected into an application programming interface (API); (2)
that API is used by expert designers to come up with a set of basic
components to populate a library; and (3) a collection of utilities
and builder applications to aid a casual user to assemble library
components into higher order electromechanical designs (which
can then also be added to the library).

The library is a folder that stores all components created in this
environment; a small subset of the components currently defined
in the library is displayed in Fig. 2. An expert-designed basic
component takes the form of a pyTHON script in which all the com-
ponent script elements are manually specified, and is saved in this
folder. Derived components, on the other hand, are specified only
in terms of its subcomponent breakdown and so do not need to be
written as a PYTHON script. Instead, the design can be stored in
plain text using the YAML markup language [29]. A user can

write the YAML by hand, or use a number of utilities to generate
the YAML in a more interactive manner. Currently, both a text-
based console interface and a simple graphical interface exist to
allow nonexpert users to build robotic designs by intuitively
assembling building blocks; a web interface is currently under
development. Of course, derived components can also be created
with a PYTHON script, giving greater configurability to an expert
user.

5 Subsystem Implementation

5.1 Mechanical System. Mechanical building blocks are
used to define the physical structure and degrees of freedom of the
robot body. These components also present input/output ports,
defining the physical positions and orientations of a subset of the
mechanical design, often a face or an edge, which can interface
with other components or the environment. To maintain universal-
ity, designs are generated and stored in a process-independent
data structure; process-specific plugins can then be used on those
designs to generate fabrication-ready outputs.

5.1.1 Implementation Encapsulation. Mechanical geometries
are stored using a face-edge graph that can be resolved to both 2D
and 3D shapes as required by specific fabrication processes. A ba-
sic example of this is shown in by the beam in Fig. 3, generated
from the code in Listing 1. The squares in the graph represent the
rectangular faces of the beam, connected to each other along
folded edges represented by circles. The unconnected dashed lines
represent connections along which future components can be
attached. A cut-and-fold pattern can be generated from the face
graph, requiring the dotted edge to be replaced by a tab-and-slot
connector. A 3D solid model can also be generated to display the
structure resulting from folding the 2D pattern, or to directly
generate a 3D object via 3D printing.

5.1.2 Mechanical Ports. The ports of a mechanical structure
describe locations along which additional mechanical elements
can be physically attached; the information that flows through
them is the spatial configuration of that patch. For rigid elements,
the information that is assigned to the output port is an affine
transform applied to the location to the input. For example, the
beam described in Sec. 5.1.1 can have one input and one output

Component Library

Face*

Beam* Tendon

Finger
| HeaderMount |

Block*
Hinge*

w2
AEANE
02 =
@

ol
I~
e}
C l
-+
*

2=
S5
o ||e
@

FlexHinge*

Tab/Slot*

l Motor |

-->,< Arm
LED | ActuatedGripper I
PhotoSensor* :

I ActuatedHinge I

Component Type

EModule*
irmware
UI Element*
Software

Integrated

* base unit

Fig. 2 A library of modular components enables robotic design to be reduced to hierarchical
composition of predesigned elements. The starred components are basic building blocks
defined from scripts by experts; the rest have been assembled within the design system and

added to the library.

021015-4 / Vol. 7, MAY 2015

Transactions of the ASME

Downloaded From: https://mechanismsrobotics.asmedigitalcollection.asme.org on 07/12/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use

Listing 1 Python script defining a mechanical beam

import library

= library.getComponent ("Beam")
.setParameter ("length", 100)
.setParameter ("beamwidth", 10)
.setParameter ("shape", 3)
.makeOutput ()

Ol WIN
oo ooo

port, defined to be the two ends of the beam. The value of the out-
put port is a location set to be that of the input port, offset by a dis-
tance equal to the length of the beam.

Mechanical components can also include degrees of freedom;
in that case, setting an input value can result in a nonrigid defor-
mation of the mechanical device. This is useful in generating
motion for robotic mechanisms.

5.1.3 Composition. Mechanical components can be connected
along mechanical ports to generate more complex geometries.
Depending on the nature of these connections, additional mechan-
ical ports may be opened up in a composition if the resulting ge-
ometry has additional unconstrained degrees of freedom. A
simple composite structure is demonstrated in Fig. 4 from the
YAML definition in Listing 2. In contrast to the primitive beam
component described in Sec. 5.1.1, this new design is entirely
defined by its subcomponent structure and does not need to be
designed in pyTHON. The subcomponent ports are edges, connected
by a flexible joint for compliant motion. This hinge defines an
additional mechanical port for the angle of the flexure.

5.2 Electrical System. Within the hierarchical composition
of elements, the electrical subsystem is determined by the topol-
ogy of the electrical devices and connections. Each device added
to the design may contain electrical ports, and connections
between these ports represent physical connections that describe
how electrical information flows throughout the design. A library
of basic components has been developed which addresses the typi-
cal electrical needs of a robotic system, namely, various forms of
sensing, actuation, processing, communication, and user interfac-
ing. Yet this subsystem is not designed in isolation, since many
electromechanical devices required to accomplish physical tasks
are often distributed throughout the robot. Hardware modules
have been developed to facilitate this codesign and allow the

@

Listing 2 YAML specification of the hierarchical design of a
finger consisting of two beams with a kinematic degree of
freedom

1| # Set parameters of new Component

2| parameters: {width, fullLength, jointAngle}

3

4| # Define subcomponents and

5| # constrain subcomponent parameters

6| subcomponents:

7| beaml:

8 object: Beam

9 parameters:

10 angle: 45

11 beamwidth: {parameter: width}

12 length:

13 parameter: fullLength

14 function: x » .4

15 shape: 3

16| beam2:

17 object: Beam

18 parameters:

19 angle: 45

20 beamwidth: {parameter: width}

21 length:

22 parameter: fullLength

23 function: x * .6

24 shape: 3

25

26| # Connect subcomponents along interfaces

27| connections:

28| — - [beaml, botedgel

29 - [beam2, topedgel

30 - {angle: {parameter: jointAngle, function: ’x’}}
31

32| # Expose interfaces inherited from subcomponents
33| interfaces:

34 botedge: {interface: botedge, subcomponent: beam2}
35 botface: {interface: botface, subcomponent: beam2}
36| topedge: {interface: topedge, subcomponent: beaml}
37 topface: {interface: topface, subcomponent: beaml}

electrical layout to mirror the mechanical structure. Additionally,
components may directly serve as interfaces between various sub-
systems by containing ports of many different types in addition to
electrical.

The library has been populated with discrete electronic compo-
nents that have standardized header connectors, allowing for sim-
ple plug-in connections between devices. This eliminates the
requirement for custom printed circuit boards (PCBs) to handle
electrical interconnect. However, the system does not preclude
such design elements—the extensible nature of the component

(b) (©

Fig. 3 Outputs generated from the code in Listing 1: (a) face-edge graph representation of a beam geometry,
(b) generated drawing to be sent to a 2D cutter, and (¢) generated 3D solid model

Beam

+-1|Beam

L4 |

A N |

(@)

(b) (0)

Fig. 4 Outputs generated from the YAML definition in Listing 2: (a) component-connection graph represen-
tation of a finger design hierarchy, (b) generated drawing to be sent to a 2D cutter, and (c) generated 3D solid

model

Journal of Mechanisms and Robotics

MAY 2015, Vol. 7 / 021015-5

Downloaded From: https://mechanismsrobotics.asmedigitalcollection.asme.org on 07/12/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use

Port O
Port 1 <, Next
© ﬁ? Module
ﬁb 5%
P Signal
\Yele!
GND
Previous
Module
Signal)
Vece “ 2 NS
GND 0%,
Port 2

Fig. 5 Each electrical module features connections for an
upstream and downstream module as well as three ports for
connecting devices such as servos, LEDs, or digital and analog
sensors. These modules are designed to be plug-and-play and
do not require reprogramming based upon location or
connected devices.

abstraction can allow an expert designer to implement a PCB
composable to enable more complex electrical devices and
circuits, at the expense of in-home fabricability for a casual user.

5.2.1 Information Flow. As in the mechanical layout, the
sources and sinks of electrical information can reveal the underly-
ing structure of the design. In the case of electrical signals, units
such as sensors or communication modules can source electrical
information, and devices such as servos or light-emitting diodes
(LEDs) can sink electrical information. Note that the overall infor-
mation flow does not necessarily start or stop at these devices, but
the electrical information does—for example, a communication
module may take in a conceptual value and convert it to electrical
information, and the servo takes in electrical information and con-
verts it to mechanical information. These devices may therefore
serve as electrical sources while being sinks for other types of
information, and vice versa. By only considering the electrical
sources and sinks though, the electrical subdesign can be made
apparent.

Less informative ports such as power connections, and details
such as particular pins used, are abstracted away from the user
during the design process. At fabrication time, the system auto-
matically creates power connections, chooses particular pins and
pin types, and inserts devices such as microcontrollers or power
converters if necessary so that only the informational flow needs
to be considered during design.

5.2.2 Electrical Hardware Modules. The modularity and scal-
ability of the electrical system are enhanced by plug-and-play
hardware modules that serve as interfaces between electrical devi-
ces and the main controller. Each module uses an ATtiny85
microcontroller to drive three general ports, as shown in Fig. 5,
which can be independently configured as digital outputs, PWM
outputs, digital inputs, or analog inputs. Since these modules are
designed to be plug-and-play, however, the code loaded on the
modules does not change according to the robot design; on
startup, the main controller sends the modules any necessary
design-specific data such as what pin types to use. Communica-
tion is established between a module and the main controller via a
one-wire serial protocol, and messages are then exchanged such
that devices can be attached to the modules as if they were being
attached to the main controller. Modules can also be chained
together, in which case messages are passed along the chain until
they reach the desired module. In this way, the number of possible
devices is no longer limited by the number of pins on the main
controller. This configuration also facilitates the physical distribu-
tion of devices across the robot while reducing the wiring com-
plexity, thus allowing the electrical layout to more naturally

021015-6 / Vol. 7, MAY 2015

mirror the mechanical layout. The flexible nature of the hardware
modules can also be leveraged during automatic design, since the
system can insert them where needed in order to join various
devices together.

5.3 Software System. In general, electrical systems on a
robot are controlled by processors such as microcontrollers, and
thus the design of an electrical subsystem must directly interact
with the design of a software subsystem. This subsystem includes
driver firmware for controlling devices, higher level microcontrol-
ler code, UI generation, and the ability to automatically generate
code for robot behaviors. Within this abstract subsystem, compo-
nents may pass information such as a desired servo angle or a Ul
slider position as conceptual data values. Components contain
software snippets written by experts which represent the code
needed for the block to perform its required function and can con-
tain code tags that reference design-specific information. At fabri-
cation time, the data network can be analyzed and all of the
software snippets can be pooled together to generate software
which reflects the designed data flow. The collection of provided
components allows users to design at an abstraction level with
which they are comfortable; expert users can use low-level code
directly, intermediate users can use automatically generated
code libraries to aid the writing of custom code, and novice users
can intuitively link ports to specify behaviors and generate a
graphical UL

5.3.1 Hardware Drivers. At the lowest level, code must be
generated which allows the main controllers to directly interact
with the electrical devices. Toward this end, components called
drivers perform conversions between software, abstract data, and
electrical signals; for example, a servo driver accepts as input a
conceptual data value such as an angle, and outputs a software
snippet representing the knowledge of how to realize that value as
an electrical signal. This output can also adapt to the design topol-
ogy through the use of parameters. Drivers are therefore sources
for the software subsystem and sinks for abstract data—they serve
as indirect interfaces between the conceptual software realm and
the physical electrical realm. Such examples illustrate that the
designed subsystems are not isolated from each other, but rather
interact both through the types of information they process as well
as through design parameters that affect how the information
processing takes place.

5.3.2 Ul Elements. While hardware drivers are necessary
abstraction barriers between the software and electrical realms,
they are often included at a low level of the design hierarchy and
not made transparent to the novice user. Other data sources such
as UI elements, however, can be intuitively included in higher
level designs and allow for humans to become information
sources. In this case, elements can represent Ul elements such as
joysticks, buttons, switches, or sliders. These then generate con-
ceptual data values that can be processed by other software blocks
and ultimately control actuators or otherwise affect the robot’s
behavior. In this way, the Ul can be designed in parallel with the
robot itself, such that the design process for the robot subsystems
can interact with the design process for its human interface.

5.3.3 Data Manipulation. Although drivers and UI elements
serve as conceptual sources by translating data or human interac-
tion into software and thereby allow for the direct control of vari-
ous devices, a robot should also be able to perform some
autonomous behavior. An intuitive way to design such behavior is
to link data sources and sinks together—for example, linking a
light sensor output to a servo angle input through some simple
function can create a line-following robot. To facilitate such infor-
mation flow, various library components can manipulate data
within the conceptual realm. For example, such a block may take
in data from a sensor and scale it to a value that is meaningful to a
servo driver. By serving as an interface between sensors and
actuators, this conversion enables autonomous behavior to be

Transactions of the ASME

Downloaded From: https://mechanismsrobotics.asmedigitalcollection.asme.org on 07/12/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use

Sensor Module

= “pin 3”

Motor Module
Q‘— ’
Sensor & Output Module] [

v‘i LED Module

| _—y ’

$ 4
o=

Fig. 6 Each device is automatically assigned a virtual pin
number. Users can then control the robot using the virtual pin
numbers so that knowledge of the actual chain configuration is
not required.

“Pin 0”

“Pin 1” .
“Pin 4”

“Pin 2”

easily described in the design environment. Similarly, data may
be converted from a human-readable version to a machine-
readable version, facilitating human interaction with the final
design. Thus, the flow of conceptual data within the design largely
describes the resulting behavior of the robot.

534 Programming Blocks. While the data manipulation
components allow for the direct linking of devices throughout the
design and the seamless integration of the conceptual and physical
realms of the design, more advanced users may want to specify
robot behaviors in a more arbitrary manner. Library components
are therefore provided which allow for graphically writing arbi-
trary code. These blocks include if/else statements, loops, and the
declaration and definition of variables or methods. Using these
blocks, arbitrary code can be created to specify robot behavior.
Such blocks also include data ports which allow the software to
directly utilize the information flow of the design; for example,
the block to set a variable may be connected to the output of a sen-
sor. Details of how the data signals are converted into software
(such as how the sensor is read) can be encapsulated lower in the
hierarchy and thus abstracted away from the user.

5.3.5 Software Sinks. The various elements described above
translate conceptual data into software to realize the abstract flow
of data defined by the design. Ultimately, these software outputs
must be processed and pooled together into a coherent library for
a particular device. Toward this end, a microcontroller such as an
ARDUINO may be a sink for the drivers’ software, or an Android
device may be a sink for the UI software.

The software snippets written by experts and included in the
components can include various code tags that are processed once
the design is complete. These may include pin numbers, device
indices, counts of other devices in the design, device types, or
other design parameters. These allow experts to write code
snippets that are flexible and dependent upon the final design
topology. In addition, they may write multiple code snippets and
provide rules for choosing between them based upon design
parameters—this allows the software sources to adjust their
generated software according to the type of sink to which they are
ultimately connected.

Once the flow of software is well defined, the sinks can pool the
code from all of the connected inputs into usable code. This
includes processing the aforementioned code tags so that the code
reflects the final design. This may also include generating code for
interfacing with the hardware modules, if any are present, by
abstracting away the implementation details from users of the
final code library. When the system analyzes the overall topology,
it assigns each device a “virtual pin number,” as shown in Fig. 6,
and this list of virtual pins is presented to the user along with the
building instructions. If the user then opens a generated ARDUINO
file, for example, they can interface with the attached devices by
simply using the virtual pin numbers—if a sensor was assigned a
virtual pin number of 3, a user can simply call robot.analog-
Read(3) as if it was connected directly to the brain. The generated

Journal of Mechanisms and Robotics

robot library will determine the corresponding module and physi-
cal pin, and send the command along the appropriate chain. The
user can therefore program as they normally would program an
ARDUINO, and all of the work for interfacing with the actual
electronic layout is done behind the scenes.

5.4 Integrated Components. Because of the common API
used by each component, design elements can be integrated across
subsystems. A typical combination connects the electrical output
of a software driver block to the input of an electromechanical
transducer to give a logical actuator element driven by data sig-
nals. Higher levels of integration can further connect that block’s
data input to a Ul data source and mechanical output to a struc-
tural degree of freedom to yield a component representing self-
contained robotic mechanism. Such integrated components
autonomously cogenerate mechanical structures, electronic wiring
diagrams, microcontroller firmware, and Uls as shown in Fig. 7.

6 Case Studies

The design environment presented herein was used to create a
variety of different robots. Because the system is process agnostic,
any of a number of rapid prototyping manufacturing techniques
can be used to realize the generated designs.' The robots pre-
sented in this section were all laser cut from 0.010 in. (0.25 mm)
thick polyester (PET) sheet, then folded to their final 3D geome-
tries. The electronic components were incorporated into the struc-
ture during the folding process. Generated drawings guide the
user along the steps in the folding process, aiding a novice
designer in the fabrication of these robots. More hands-off fabri-
cation processes can be used to reduce the skill requirements on
the user—the same designs were made using, e.g., 3D printed
structures and origami self-folding laminates in Ref. [30].

6.1 Two-Wheeled Roller. A two-wheeled mobile robot base
is shown in Fig. 8. The robot, nicknamed the Seg, is specified by
three parameters:

(1) the specific microprocessor module used (in this case the
ARDUINO Pro Mini) and its dimensions

(2) the specific continuous rotation servos used as drive motors
(in this case Turnigy TGY-1370s) and its dimensions

(3) the desired ground clearance (in this case set to be 25 mm)

The user can design a Seg from an extended electromechanical
component library by attaching two motor mounts to a central
body, along with a tail for stability. The functionality of the robot
is defined by the flow of information from a human source to the
drive wheels as a mechanical sink. A component defining a Ul
slider is the information source, generating information at a data
output port from human interaction. A firmware driver is the next
component in the chain, converting the data value from the UI ele-
ment into an electrical signal on a microcontroller output pin. An
electrical component defining the servomotor actuator takes the
electrical signal and generates a mechanical output angle of the
servo horn. This finally gets connected to the wheel for a mechani-
cal sink, achieving the desired robot functionality.

In practice, the design process is greatly simplified by breaking
the design into a multilayer hierarchy. For instance, the compo-
nents defining the servomotor firmware driver and discrete
electronic device are combined into a higher level integrated com-
ponent that translates a data input value to a mechanical output,
abstracting away the internal details until the final design outputs
are generated. The final component-based hierarchical design is
presented in Fig. 9.

Since the necessary mechanical, electrical, and software
designs are encapsulated within the components, the compilation
of the complete design creates mechanical drawings for the body

'Some work in this section was previously published in Ref. [3].

MAY 2015, Vol. 7 / 021015-7

Downloaded From: https://mechanismsrobotics.asmedigitalcollection.asme.org on 07/12/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use

Elbow

Gripper Hinge

Base
Hinge

Brain

- r
4 Robot Screen »

-
&4 Robot Screen

Robot Controls Robot Controls

Sent: JOINT$388-56

Digital LED
(Shoulder)

Joint Servo

‘ I (Shouldey %
Joint Servo
(Elbow) &
Digital
Sensor vae Read | Poll
(Claw) Low
" Gripper
Actuate Gripper sevotclowy — &
Connected to "linvor’ v Connected o linvor’ v

Fig. 7 An intuitive connection of integrated components simultaneously produces a collection of outputs for immediate fabri-

cation, producing designs across all required subsystems

and wheels as well as code for the central microcontroller. The
electrical subsystem gets resolved into a wiring diagram, software
and firmware snippets get pooled together, and the mechanical
mounts get physically linked. Instructions for connecting the mod-
ules and devices are then displayed to the user, and an autogener-
ated smartphone app containing the controlling UI blocks can
immediately be used to drive the robot. A summary of the robot’s
characteristics is provided in Table 1.

The design environment is also able to autogenerate autono-
mous driving code for this robot. Additional electronic compo-
nents comprising an LED and a photosensor (each an integrated

Fig. 8 The Seg, a two-wheeled mobile robot, was compiled
from modular electromechanical components. Electrical com-
ponents are directly connected to the brain using the modular
software interface.

021015-8 / Vol. 7, MAY 2015

Seg

Brain MotorMount Wheel
|EBrain|[Beam||Cutout | Ul elementl [Beam|

|Spoke|

Firmware Firmware I
Arduino Servomotor| Component type

Mechanical

Integrated

Cutout
Beam

Mount

Fig. 9 Each node on this tree represents a component in the
design of the two-wheeled robot, generated solely by compos-
ing its child nodes. The leaf nodes were design by expert
designers, but every higher level of the design can be
assembled from its children by a casual user.

Table 1 Performance of two-wheeled Seg robot folded from
laser-cut 0.010 in. (0.25 mm) PET film

Approximate design time 1 hr
Approximate fabrication time 20 min
Approximate cost 20.00 USD
Weight 42 g
Maximum speed 23 cm/s
Turning radius (both wheels driven) 0 cm
Turning radius (one wheel driven) 4 cm

“The same design made from 0.005 in. (0.13 mm) PET film weighs 36 g,
while a paper version weighs 31 g. Other metrics remain unchanged.

Transactions of the ASME

Downloaded From: https://mechanismsrobotics.asmedigitalcollection.asme.org on 07/12/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use

Fig. 10 Complete mechanical, electrical, and software subsys-
tem designs for an autonomous line-following wheeled robot
are generated from a functional description of the logical flow
of information from a light sensor to the wheels

[Brain]

[EBrain|[Beam|[Cutout] [FixedLegs| [MovingLegs|

Firmware I Belam | I Moltor | I FouéBar | lf‘ca

Mount Firmware

Servomotor
Beam

Fig. 11 The design of the walking robot is similar to that of the
Seg, with the addition of mechanical leg and flexure compo-
nents. The higher-level brain and motor components, shaded in
the diagram, can be reused from the earlier design.

derived components containing both a pure electrical subcompo-
nent and a firmware driver) can be added to the design. Their data
outputs can be wired through data manipulation blocks into the
data input ports of the integrated motor component and replace
the previous Ul elements. Since there is no U, app code is no lon-
ger generated; instead the on-board microcontroller runs autogen-
erated code to autonomously drive the robot in a line-following
pattern. The resulting system is shown in Fig. 10.

6.2 Hexapod Walker. An insectlike legged robot can be cre-
ated using compliant joints to add kinematic degrees of freedom
for a more complex design. A stationary base is formed from four

Fig. 12 A complex hexapod walker can be generated adapting
existing library elements generated from past designs

Journal of Mechanisms and Robotics

Fig. 13 A robotic manipulator arm was generated by serially
connecting integrated actuated hinge and gripper modules

ActuatedGripper

[ActuatedHingel IBeamI lServol IGripperl
’Seévol | Hirllgel | Tenldonl
——
Motor | [Face| | Cutout|
EModule
Mount

Fig. 14 The design tree for the gripper arm shows how a com-
plex electromechanical device can be hierarchically assembled
from simpler mechanisms. The integrated brain and servo
modules are adapted from the earlier robots with slight modifi-
cations to enable daisy chained electronic modules, and the
servo module is shared between the hinge and gripper
mechanisms.

nonmoving legs, while two other legs are circularly actuated by
drive motors to provide a walking gait. The moving legs remain
parallel and are constrained to move in a plane by flexural four-
bar linkages. The design of this robot was adapted from the earlier
Seg design, with many components directly taken from that. This
was enabled by the modular design paradigm, greatly simplifying
and speeding up the creation of the hexapod.

An information flow similar to the wheeled robot above defines
the robot design, with an additional mechanical component defin-
ing a four-bar linkage translating the circular mechanical output
of the motor shaft into the walking gait of the moving legs. The
component hierarchy can be seen in Fig. 11, and the resulting
structure can be seen in Fig. 12.

6.3 Grasping Arm. A markedly different robotic configura-
tion is created for the multisegment manipulator arm shown in
Fig. 13. In this robot, an actuated gripper is positioned by a
sequence of actuated hinge joints. The design tree, shown in
Fig. 14, illustrates the hierarchical composition; for example, the
end effector itself is an integrated electromechanical mechanism

Table 2 Performance of an arm folded from laser-cut 0.010 in.
(0.25 mm) PET film

Approximate design time 1 hr

Approximate fabrication time 30 min
Approximate cost 27.00 USD
Weight 60 g

Maximum joint angle (actuated) *35 deg
Maximum joint angle (mechanism) *110 deg
Gripper strength (on 1.5 cm object) 100 mN

MAY 2015, Vol. 7 / 021015-9

Downloaded From: https://mechanismsrobotics.asmedigitalcollection.asme.org on 07/12/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use

included in the higher level assembly. This robot also employs the
electrical hardware modules, such that each actuated hinge and
gripper module contains an independent integrated mechanical
structure, actuator, drive circuit, and control logic. The plug-and-
play electrical modules enable a distributed electrical system
along the arm.

The designed arm automatically generated a smartphone Ul to
allow immediate human control. Some performance metrics of the
fabricated robot are presented in Table 2.

7 Conclusions and Future Work

The system presented in this paper implements a unified design
environment allowing users to create robotic mechanisms from a
library of integrated mechanical, electrical, and software compo-
nents. The building blocks can be created by expert designers,
allowing casual users to quickly and easily create custom pro-
grammed electromechanical mechanisms. The value of this para-
digm is demonstrated by the various robots created using the
system presented above. In a matter of hours, the high-level struc-
tural specification of a desired device was able to be realized into
automatically generated fabrication files, control software, and
Uls, creating immediately usable robots complete with driver
interfaces and autonomous behavior. This system brings into
reach the goal of a complete robot compiler to incorporate custom
robotics into the domain of personal on-demand use.

This work demonstrates an infrastructure for automated robot
design, opening up a large body of future research to extend and
enhance the system. The next steps can focus on assisting a user
with design decisions. A recommendation engine can analyze
existing components to suggest possible connections or compo-
nents to add to a design in progress. The system can also help
closing the design loop by incorporating behavioral analysis.
Component definitions can include a composable model of their
kinematics and dynamics, generating outputs suitable for simula-
tions and analytic characterizations. The complete behavior of a
design can be verified and validated against the functional require-
ments of the user.

In the long run, an independent design loop can iterate through
automatically generated robot compositions, analyzing and updat-
ing the design based on the characterization output, thus leading
to an intelligent compiler that can autonomously generate a cus-
tom robot design based on a high-level task description.

Acknowledgment

This work was funded in part by NSF Grant Nos. 1240383 and
1138967 and NSF Graduate Research Fellowship No. 1122374,
for which the authors express thanks.

References

[1] Mehta, A. M., Rus, D., Mohta, K., Mulgaonkar, Y., Piccoli, M., and Kumar, V.,
2013, “A Scripted Printable Quadrotor: Rapid Design and Fabrication of a
Folded MAV,” 16th International Symposium on Robotics Research
(ISRR’13), Singapore, Dec. 16-19.

[2] Mehta, A. M., and Rus, D., 2014, “An End-to-End System for Designing
Mechanical Structures for Print-and-Fold Robots,” IEEE International Confer-
ence on Robotics and Automation (ICRA), Hong Kong, China, May 31-June 7,
pp. 1460-1465.

[3] Mehta, A. M., DelPreto, J., Shaya, B., and Rus, D., 2014, “Cogeneration of
Mechanical, Electrical, and Software Designs for Printable Robots From

021015-10 / Vol. 7, MAY 2015

Structural Specifications,” IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS 2014), Chicago, IL, Sept. 14-18, pp. 2892-2897.

[4] Mavroidis, C., DeLaurentis, K. J., Won, J., and Alam, M., 2001, “Fabrication of
Non-Assembly Mechanisms and Robotic Systems Using Rapid Prototyping,”
ASME J. Mech. Des., 123(4), pp. 516-524.

[5] Richter, C., and Lipson, H., 2011, “Untethered Hovering Flapping Flight of a
3D-Printed Mechanical Insect,” Artif. Life, 17(2), pp. 73-86.

[6] Rossiter, J., Walters, P., and Stoimenov, B., 2009, “Printing 3D Dielectric Elas-
tomer Actuators for Soft Robotics,” Proc. SPIE, 7287, p. 72870H.

[7] Hoover, A. M., and Fearing, R. S., 2008, “Fast Scale Prototyping for Folded
Millirobots,” IEEE International Conference on Robotics and Automation
(ICRA 2008), Pasadena, CA, May 19-23, pp. 886-892.

[8] Liu, Y., Boyles, J., Genzer, J., and Dickey, M., 2012, “Self-Folding of Poly-
mer Sheets Using Local Light Absorption,” Soft Matter, 8(6), pp.
1764-1769.

[9] Shimoyama, I., Miura, H., Suzuki, K., and Ezura, Y., 1993, “Insect-Like Micro-
robots With External Skeletons,” Control Syst., 13(1), pp. 37-41.

[10] Brittain, S. T., Schueller, O. J. A., Wu, H., Whitesides, S., and Whitesides, G.
M., 2001, “Microorigami: Fabrication of Small, Three-Dimensional, Metallic
Structures,” J. Phys. Chem. B, 105(2), pp. 347-350.

[11] Hawkes, E., An, B., Benbernou, N. M., Tanaka, H., Kim, S., Demaine, E. D.,
Rus, D., and Wood, R. J., 2010, “Programmable Matter by Folding,” Proc. Natl.
Acad. Sci., 107(28), pp. 12441-12445.

[12] Tolley, M., Felton, S. M., Miyashita, S., Xu, L., Shin, B., Zhou, M., Rus, D.,
and Wood, R. J., 2013, “Self-Folding Shape Memory Laminates for Automated
Fabrication,” IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), Tokyo, Japan, Nov. 3—7, pp. 4931-4936.

[13] Onal, C. D., Wood, R. J., and Rus, D., 2011, “Towards Printable Robotics:
Origami-Inspired Planar Fabrication of Three-Dimensional Mechanisms,”
IEEE International Conference on Robotics and Automation (ICRA), Shanghai,
China, May 9-13, pp. 4608-4613.

[14] Birkmeyer, P., Peterson, K., and Fearing, R. S., 2009, “DASH: A Dynamic 16g
Hexapedal Robot,” IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), St. Louis, MO, Oct. 10-15, pp. 2683-2689.

[15] Onal, C., Wood, R., and Rus, D., 2013, “An Origami-Inspired Approach to
Worm Robots,” IEEE/ASME Trans. Mechatronics, 18(2), pp. 430-438.

[16] Tachi, T., 2010, “Origamizing Polyhedral Surfaces,” IEEE Trans. Visualiz.
Compt. Graphics, 16(2), pp. 298-311.

[17] Lang, R., 2012, Origami Design Secrets: Mathematical Methods for an Ancient
Art, A K Peters/CRC Press, Boca Raton, FL.

[18] Tama, 2014, “Pepakura Designer,” Tama Software Inc., Tokyo, accessed May
26, 2014, http://www.tamasoft.co.jp/pepakura-en/

[19] Parnas, D. L., 1972, “On the Criteria to be Used in Decomposing Systems Into
Modules,” Commun. ACM, 15(12), pp. 1053—-1058.

[20] Farritor, S., and Dubowsky, S., 2001, “On Modular Design of Field Robotic
Systems,” Auton. Rob., 10(1), pp. 57-65.

[21] Hornby, G., Lipson, H., and Pollack, J., 2003, “Generative Representations for
the Automated Design of Modular Physical Robots,” IEEE Trans. Rob. Autom.,
19(4), pp. 703-719.

[22] Davey, J., Kwok, N., and Yim, M., 2012, “Emulating Self-Reconfigurable
Robots—Design of the SMORES System,” IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), Vilamoura, Portugal, Oct. 7-12, pp.
4464-4469.

[23] LEGO Group, 2014, “LEGO Mindstorms,” LEGO Group, Billund, Denmark,
accessed Nov. 1, 2014, http://mindstorms.lego.com

[24] Modular Robotics, 2012, “MOSS,” Modular Robotics Inc., Boulder, CO,
accessed Nov. 1, 2014, http://www.modrobotics.com/moss

[25] “VEX Robotics,” VEX Robotics Inc., Greenville, TX, accessed Nov. 1, 2014,
http://www.vexrobotics.com

[26] Bachrach, J., Vo, H., Richards, B., Lee, Y., Waterman, A., Avizienis, R.,
Wawrzynek, J., and Asanovic, K., 2012, “Chisel: Constructing Hardware in a
Scala Embedded Language,” 49th ACM/EDAC/IEEE on Design Automation
Conference (DAC), San Francisco, CA, June 3-7, pp. 1212-1221.

[27] Kintel, M., 2011, “OpenSCAD, The Programmers Solid 3D CAD Modeller,”
accessed Nov. 1, 2014, http://www.openscad.org

[28] Freese, M., Singh, S., Ozaki, F., and Matsuhira, N., 2010, “Virtual Robot
Experimentation Platform V-Rep: A Versatile 3D Robot Simulator,” Simula-
tion, Modeling, and Programming for Autonomous Robots, Springer, Berlin,
Germany, pp. 51-62.

[29] Ben-Kiki, O., Evans, C., and dot Net, I., 2009, “YAML,” accessed Nov. 01,
2014, http://www.yaml.org/

[30] Mehta, A. M., Bezzo, N., An, B., Gebhard, P., Kumar, V., Lee, L., and Rus, D.,
2014, “A Design Environment for the Rapid Specification and Fabrication of
Printable Robots,” 14th International Symposium on Experimental Robotics
(ISER’14), Marrakech/Essaouira, Morocco, June 15-18.

Transactions of the ASME

Downloaded From: https://mechanismsrobotics.asmedigitalcollection.asme.org on 07/12/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use

http://dx.doi.org/10.1109/ICRA.2014.6907044
http://dx.doi.org/10.1109/IROS.2014.6942960
http://dx.doi.org/10.1115/1.1415034
http://dx.doi.org/10.1162/artl_a_00020
http://dx.doi.org/10.1117/12.815746
http://dx.doi.org/10.1109/ROBOT.2008.4543317
http://dx.doi.org/10.1039/c1sm06564e
http://dx.doi.org/10.1109/37.184791
http://dx.doi.org/10.1021/jp002556e
http://dx.doi.org/10.1073/pnas.0914069107
http://dx.doi.org/10.1073/pnas.0914069107
http://dx.doi.org/10.1109/IROS.2013.6697068
http://dx.doi.org/10.1109/ICRA.2011.5980139
http://dx.doi.org/10.1109/IROS.2009.5354561
http://dx.doi.org/10.1109/TMECH.2012.2210239
http://dx.doi.org/10.1109/TVCG.2009.67
http://dx.doi.org/10.1109/TVCG.2009.67
http://www.tamasoft.co.jp/pepakura-en/
http://dx.doi.org/10.1145/361598.361623
http://dx.doi.org/10.1023/A:1026596403167
http://dx.doi.org/10.1109/TRA.2003.814502
http://dx.doi.org/10.1109/IROS.2012.6385845
http://mindstorms.lego.com
http://www.modrobotics.com/moss
http://www.vexrobotics.com
http://www.openscad.org
http://www.yaml.org/

	s1
	s2
	l
	s3
	s3A
	s3B
	s3C
	s4
	s4A
	s4B
	s4C
	F1
	s4D
	s5
	s5A
	s5A1
	s5A2
	F2
	s5A3
	s5B
	F3
	F4
	T3
	T4
	s5B1
	s5B2
	s5C
	s5C1
	s5C2
	s5C3
	F5
	s5C4
	s5C5
	s5D
	s6
	s6A
	F6
	FN1
	F7
	F8
	F9
	T1
	T1n1
	s6B
	s6C
	F10
	F11
	F12
	F13
	F14
	T2
	s7
	B1
	B2
	B3
	B4
	B5
	B6
	B7
	B8
	B9
	B10
	B11
	B12
	B13
	B14
	B15
	B16
	B17
	B18
	B19
	B20
	B21
	B22
	B23
	B24
	B25
	B26
	B27
	B28
	B29
	B30

