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Figure 1: Left: photograph and scanned 3D geometry of a human face. We use a physics-based optimization process to design the geometry
of a synthetic skin in order to best match given target expressions. Right: final animatronic figure with fabricated skin.

Abstract

We propose a complete process for designing, simulating, and fab-
ricating synthetic skin for an animatronics character that mimics the
face of a given subject and its expressions. The process starts with
measuring the elastic properties of a material used to manufacture
synthetic soft tissue. Given these measurements we use physics-
based simulation to predict the behavior of a face when it is driven
by the underlying robotic actuation. Next, we capture 3D facial ex-
pressions for a given target subject. As the key component of our
process, we present a novel optimization scheme that determines
the shape of the synthetic skin as well as the actuation parameters
that provide the best match to the target expressions. We demon-
strate this computational skin design by physically cloning a real
human face onto an animatronics figure.

Keywords: animatronics, physics-based simulation, computa-
tional material design, facial animation, optimization.
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1 Introduction

We are naturally intrigued by the prospect of creating virtual hu-
mans in the likeness of ourselves — and it is not far-fetched to
say that this is also a driving force for computer graphics research.
While the latter strives to photorealistically recreate human charac-
ters on a computer screen, animatronics aims at creating physical
robot characters that move and look like real humans. Both fields
share many similarities; however, animatronics faces harder chal-

lenges since it has to deal with the physical constraints of real ma-
terials and actuators in addition to the virtual modeling component.

The human body consists of articulated rigid structures (bones) and
soft tissue (e.g., flesh and skin). Therefore, it seems natural for an-
imatronic characters to have a rigid articulated base and synthetic
soft tissue. Many impressive characters have been created in this
spirit, e.g., those in Disney World’s Hall of Presidents or “Gemi-
noids” [Nishio et al. 2007], androids that closely resemble human
beings. However, creating such figures is still a difficult and labor-
intensive process requiring manual work of skilled animators, ma-
terial designers, and mechanical engineers. Owing to its expressive
power, the human face is probably the most challenging part in this
context. An animatronic character has to produce a vast range of fa-
cial expressions, each having different deformations and wrinkles.
Manually designing the shape and material properties of a single
skin that is able to achieve all these targets is clearly a formidable
task.

The goal of this work is to automate this process, to increase the
realism of the resulting character and, ultimately, to create an an-
imatronic face that closely resembles a given human subject. In
order to accomplish this task, we capitalize on recent developments
from three areas in computer graphics: facial performance capture,
physics-based simulation, and fabrication-oriented material design.
Building on these foundations, we present a method of physical face
cloning — a novel process for computational modeling, optimiza-
tion and fabrication of synthetic skin for animatronic characters.

More specifically, our process comprises the following steps. First,
we capture elastic material properties for a range of possible syn-
thetic skin materials using a custom measurement system. We sub-
sequently capture a collection of different expressions for a given
target human face. As the central part of our pipeline, we then op-
timize the geometry of the skin and the actuation parameters of the
underlying animatronics device to provide the best match to the tar-
get human face. Although our method applies quite generally to a
broad range of possible animatronic devices, we validate the whole
process in this paper by fabricating synthetic silicone skins for a
specific articulated robot head. These skins are then animated, and
the resulting shapes are compared both to the optimized model and
to the real face.

http://doi.acm.org/10.1145/2185520.2185614
http://portal.acm.org/ft_gateway.cfm?id=2185614&type=pdf
http://graphics.ethz.ch/publications/papers/paperBic12.php
http://graphics.ethz.ch/Downloads/Publications/PaperVideos/2012/Bic12-SIGGRAPH2012-PhysicalFaceCloning.mp4


The contributions of the research presented in this paper can be
summarized as follows:

• A method to optimize for synthetic skin geometry and actua-
tion parameters that provide the best match to a collection of
given target expressions,

• A complete process for automating the physical reproduction
of a human face on an animatronics device, including data
acquisition, physical simulation, optimization, fabrication and
validation,

• A comprehensive analysis and experimental validation of the
process and its individual steps.

2 Related Work

Physical face cloning is a complex task that intersects with numer-
ous research areas from computer graphics, applied mathematics,
and material sciences. Although we are not aware of existing work
to address this problem in its entirety, the individual components of
our system have diverse connections to previous research.

Face Capture. Owing to the expressive power of the human face
and our ability to infer a burst of information from the slightest mo-
tion, capturing, synthesizing and transferring facial expressions are
important research topics in computer graphics. There exists a mul-
titude of methods for capturing facial expressions, including tradi-
tional marker-based motion capture [Terzopoulos and Waters 1993;
Bickel et al. 2007], structured light systems [Zhang et al. 2004;
Wang et al. 2004], and passive markerless approaches [Beeler et al.
2010; Bradley et al. 2010; Beeler et al. 2011]. Our acquisition sys-
tem uses the recent method of Beeler et al. [2011] to capture short
performance sequences with high-resolution geometry and dense
temporal correspondences.

Simulation. Introduced to the graphics community by Terzopou-
los et al [1987], it has become common to model elastically de-
formable materials using continuum mechanics and finite elements.
There exists a plethora of dedicated bio-mechanical models for dif-
ferent parts of the human body such as the face [Terzopoulos and
Waters 1993; Koch et al. 1996; Sifakis et al. 2005], the hand [Gour-
ret et al. 1989; Sueda et al. 2008], the torso [Lee and Terzopoulos
2006], various organs [Chentanez et al. 2009], or even the entire
upper body [Lee et al. 2009]. Similarly, a large body of literature
is concerned with modeling of biological soft tissue (see, e.g., the
work by Teran et al. [2005] and references therein). We do not
strive to reproduce the mechanical properties of biological tissue,
but rather take an output-oriented approach: we fabricate synthetic
skin using silicone rubbers, which are adequately modeled as elastic
materials with isotropic and homogeneous properties. More specif-
ically, we rely on a compressible neo-Hookean material model and,
on the computational side, employ a finite element approach cen-
tered around linear tetrahedral elements.

Measuring and Fitting Material Parameters. Closely related to
the choice of a constitutive law is the problem of finding a set of
parameters that best approximates a given reference model. This
reference data can originate either from an accurate computational
model [Van Gelder 1998; Kharevych et al. 2009; Nesme et al. 2009]
or, as in our case, from measurements of real-world objects. In the
context of computer graphics, several methods have been described
for fitting measured data to computational models, including linear-
elastic materials [Becker and Teschner 2007], nonlinear viscoelas-
tic soft tissue [Kauer et al. 2002], or nonlinear heterogeneous mate-
rials [Bickel et al. 2009]. Pai et al. [2001] describe a comprehensive

system for capturing interactions with real-world objects, including
deformation response, surface roughness and contact sounds. Our
approach for determining parameters of different silicone samples
goes along similar lines: we use a vision-based acquisition system
to capture dense surface displacement fields and determine optimal
material parameters by minimizing the displacement error of a cor-
responding finite element approximation.

Fabrication-oriented Design. As a natural step to follow acqui-
sition and data-driven simulation, fabrication-oriented design is a
recent trend that is seeing increasing attention in computer graph-
ics. Several methods have been presented in this context, targeting
the reproduction of geometric features of papercraft [Li et al. 2010]
or plush toys [Mori and Igarashi 2007], general appearance prop-
erties [Weyrich et al. 2009; Hašan et al. 2010; Dong et al. 2010],
and also the elastic properties of deformable media [Bickel et al.
2010]. Our approach for fabrication-oriented material design bears
some similarities to this last reference, but there is also a crucial
difference: whereas Bickel et al. determine spatially varying mate-
rial properties for fixed geometry, we fabricate synthetic skins with
uniform material properties and optimize their shape.

Shape Optimization. Engineering applications often require the
shape of a structure to be optimal with respect to given conditions.
Examples of such shape optimization problems include the com-
putation of aerodynamic profiles, the design of reflectors for lumi-
naires or the optimization of material interfaces. Such problems
are typically cast as constrained optimization problems and solved
numerically with finite elements (see, e.g., the textbook by Bucur
and Buttazzo [2005] for an introduction). We optimize the shape
of the synthetic skin by minimizing an elastic energy with respect
to rest state positions, which is similar in spirit to methods for vari-
ational shape adaptation [Thoutireddy and Ortiz 2004]. But since
it is generally difficult to control the adaptation of the undeformed
configuration, we use a dedicated parametrization approach com-
bined with a moving least squares interpolation technique that al-
lows us to modify the shape only in its thickness direction.

Robotics & Animatronics. The majority of robots consist of
only rigid mechanical structures. However, robots that are cov-
ered with soft-tissue materials such as rubbers or silicones have
been built as well. Hara et al. [2001] was one of the first group
to build an anthropomorphic head to study human-robot interac-
tion. The face skin was made of silicone and it was driven by SMA
(shape memory alloy) actuators. The head was able to reproduce
six different expressions such as surprised, scared, angry, disgusted,
sad and happy. Android research, which involves studying human-
computer interaction, has been carried out by Intelligent Research
Laboratory at Osaka University. The group has built a number of
robotic characters with increasing capabilities. Their recent hu-
manoid robot Geminoid HI-1 [Nishio et al. 2007] as well as it’s
successor Geminoid-DK have the realistic appearance of an adult
man. These robots also have silicone-based skin driven by actuators
placed underneath. KAIST and Hanson Robotics have developed a
robot called Albert HUBO [Oh et al. 2006]. The robot’s head re-
sembles Albert Einstein and its underlying electro-mechanical actu-
ation has 35 degrees of freedom. The skin is made of a sponge-like
elastomer which is very soft and requires very little force to deform.
In contrast to our approach, the design process for all these robotic
skins is mainly manual. Shape variations are modeled by an artist,
and the implications of changes to the shape have to be tested in a
time consuming trial and error manner.
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Figure 2: Physical face cloning pipeline.

3 Overview

Our approach to physical face cloning comprises modeling, simula-
tion, design, and fabrication of synthetic soft tissue. The individual
steps of our processing pipeline are illustrated in Fig. 2.

We start by capturing facial expressions of a human subject using
an optical performance capture system that offers high-resolution
3D reconstructions including pores and wrinkles, as well as robust
temporal correspondence (Sec. 4). This data provides information
about the deformation behavior of the subject’s skin. In addition,
we also determine the operational range of the animatronic head,
which consists of a set of skin attachment links actuated by motors.
We attach to each moving link a marker, which allows us to sample
a mapping of actuation parameters pact to 3D location and orien-
tation of each link in space. Interpolating these samples yields a
continuous function m(pact) that describes the path of the skin at-
tachment links (Sec. 7). Given the acquired example shapes of the
human face and the description of the animatronic head, the goal is
now to design synthetic soft tissue that matches the example shapes
as closely as possible.

Our base material for the synthetic skin is silicone, which of-
fers a wide range of stiffness that can be controlled by adjust-
ing the concentration of plasticizer in the compound. In order to
determine material parameters for the skin simulator, we numeri-
cally fit our computational model to experimentally acquired force-
displacement samples of materials with different stiffnesses. We
model and simulate the deformation behavior using a non-linear fi-
nite element method in combination with a neo-Hookean material
(Sec. 5). The forward simulation allows accurate prediction of the
deformed shape of a given synthetic skin and the resulting forces
induced by the moving skin attachment links.

In order to design a synthetic skin that best matches a desired tar-
get, we introduce a novel optimization process. While the outer
surface of the skin in the undeformed configuration is given by a
3D scan of the neutral target pose, we propose to vary the inner
surface (thickness) of the skin to achieve spatially varying stiffness
and deformation behavior. Furthermore, we also optimize the ac-
tuation parameters of the animatronic device to find the parameters
that best resemble the individual target expressions. All these de-
grees of freedom are handled in one uniform optimization frame-
work (Sec. 6).

We validate our simulation and optimization approach by fabricat-
ing various silicone objects using injection molding (Sec. 8). The
molds are created using a rapid prototyping 3D printer. We then

compare predicted simulation results and real-world behavior for
different deformation scenarios (Sec. 9).

4 Measurements and Acquisition

We rely on real-world data for modeling facial geometry and ex-
pressions as well as material behavior. The following paragraphs
briefly describe our techniques for data acquisition and integration.

Face Scanning. When cloning a human face, matching the shape
of the face and how the skin deforms under different expressions is
one of the main challenges. We must reconstruct various 3D expres-
sions of the subject to be cloned, in order to seed the deformable
skin optimization. Our approach is to capture a short performance
of the target subject, leveraging the high resolution geometry ac-
quisition method of Beeler et al. [2011]. The result is a detailed,
compatible mesh sequence with explicit temporal correspondence,
allowing us to analyze the deformation of a face under various ex-
pressions, down to the level of individual wrinkles. In our case, we
chose 8 expressive poses from the sequence for optimizing the skin
parameters.

Measuring & Fitting Material Parameters. Silicone rubber is an
ideal base material for fabricating synthetic skin since it is easy to
process and offers a vast range of stretch resistance. The anima-
tronics device can only exert a limited force through its actuators,
which imposes an upper bound on the net stiffness of the synthetic
skin. Hence, we have to adjust the silicone composition such that
the net stiffness of the synthetic skin complies to these constraints.
To accomplish this task, we first measure the force-deformation be-
havior of a collection of silicone samples with different amounts of
plasticizer. We then perform numerical optimization in order to de-
termine the parameters of our computational model that best match
the experimental data.

The measurement proceeds by pulling on small samples with con-
trolled forces and capturing the resulting deformation over time
using stereo reconstruction [Bradley et al. 2008]. With a set
of applied loads and resulting surface displacements determined,
we optimize the material parameters of our finite element solver
in order to best approximate the measured stress-strain behavior.
To this end, we start by defining an objective function O(p) =∑

i | (x̃i − xi(p)) |2 that measures the difference between simu-
lated surface positions xi(p) and their closest corresponding point
of the captured surface x̃i. The vector p holds the physical param-
eters of the material model, which can be identified with Young’s
modulus and Poisson’s ratio (see Sec. 5). Given an initial guess p0

we iteratively compute updated parameters in a simulated annealing
process. In each iteration, we compute the finite element solution
x(pi) with the current parameters, evaluate the objective function
O(pi) and determine updated parameters pi+1. This process is
repeated until the objective function signals convergence.

As a validation for this numerical-experimental material fitting pro-
cess, we compare the stress-strain curves obtained from a standard
testing procedure (ISO 37) to those obtained from a virtual coun-
terpart of the same experiment. As can be seen from Fig. 4, we
are able to match the real material behavior quite closely for defor-
mations in the range of [−20%,+50%]. Considering the operating
range of our animatronics device, this provides us with sufficiently
large safety margins.



Figure 3: Illustration of thickness optimization. (a) Target surface
(b) undeformed skin patch (c) unoptimized skin patch deformed by
vertical load (d) deformed skin patch with optimized thickness.

5 Physical Simulation of Synthetic Skin

As a central part of the face cloning pipeline, we need to have an
accurate computational model for simulating deformations of a syn-
thetic skin. Our approach is to model skin as a hyperelastic isotropic
solid. Since we have to account for large rotations, stretching, and
compression, we resort to finite-deformation continuum mechanics.
Here we only give a brief overview and refer the reader to the text-
book by Bonet and Wood [1997] for a comprehensive exposition.

Let X and x denote smooth functions describing the position of
the skin in its undeformed and deformed state, respectively. Fur-
ther, let ϕ : Ω → IR3 denote the mapping that transforms mate-
rial points from the undeformed to the deformed configuration as
x = ϕ(X). The deformation of the skin at each point can be char-
acterized by the deformation gradient F or, alternatively, the right
Cauchy-Green tensor C which are defined as

F =
∂ϕ

∂X
, respectively C = FTF .

For a hyperelastic material, the energy of the solid depends only on
its current state of deformation, which is described in a rotation-
and frame-invariant manner through the tensor C. We denote the
corresponding energy density function by Ψ = Ψ(C). The rela-
tion between Ψ and C is described by material models, which are
discussed next.

5.1 Material Model

Animating expressions on a virtual face generally induces both fi-
nite stretching and compression of the skin. While the simple St.
Venant-Kirchhoff solid cannot be used in this setting [Irving et al.
2004], the non-linear neo-Hookean, Mooney-Rivlin, and Ogden
material models are well suited for rubber-like substances such as
silicone. Being the simplest representative of this class, the strain
energy density of the compressible neo-Hookean material is given
as

Ψ(C) =
µ

2
(J−

2
3 tr(C)− 3)− κ

2
(J − 1)2 , (1)

where J = detF and µ, κ are shear and bulk moduli, which are
related to the familiar Young’s modulus E and Poisson’s ratio ν as

E =
9µκ

3κ+ µ
, respectively ν =

3κ− 2µ

2(3κ+ µ)
. (2)

The neo-Hookean material offers only two parameters, but for the
range of deformations considered here, we found this model to be
sufficiently accurate for obtaining good correspondence with the
measured data. Having settled upon this material model, we de-
termine the model parameters µ and κ for a given material sample
using the numerical-experimental technique described in the previ-
ous section. Fig. 4 compares the force-strain curve for a measured
and simulated material.

Figure 4: Force-strain curve of real (black) and simulated (red)
material.

5.2 Discretization

The optimization process described in the next section requires the
minimization of the elastic energy subject to boundary conditions.
To this end, we discretize (1) in space using tetrahedral finite ele-
ments. Let xa ∈ IR3, 1 ≤ a ≤ n denote deformed positions of a
tetrahedral mesh. We will use the superscript e to identify quanti-
ties pertaining to a given tetrahedral element. In particuar, we let
Xe ∈ IR12 and xe ∈ IR12 denote position vectors for a given ele-
ment in its undeformed and deformed state, respectively.

We proceed by approximating the configuration mapping as ϕ ≈∑
a xaNa where Na are piece-wise linear basis functions associ-

ated with the nodes of the mesh. The discrete deformation gradient
for each element e is then expressed as

Fe = F(xe,Xe) =

4∑
a=1

xe
a

(
∂Ne

a

∂X

)T

, (3)

where we emphasize the fact that for each element Fe is a function
of its position in both undeformed and deformed configuration. All
other discrete quantities required for computing the elastic energy
of a deformed element, i.e. tr(Ce) and Je, follow directly from
(3). Furthermore, we note that the deformation gradient is constant
within each element sinceNe

a are piece-wise linear functions. With
this relation established, the discrete elastic energy of a deformed
element W e can be expressed as

W e(xe,Xe) =

∫
Ωe

Ψ(Fe) = Ψ(Fe)V e(Xe) , (4)

where Ωe is the element’s parameter domain and V e its unde-
formed volume. From now on, let x = (xT

1 , . . . ,x
T
n )T and

X = (XT
1 , . . . ,X

T
n )T denote vectors containing all deformed and

undeformed positions respectively. Summing up all elemental con-
tributions, we obtain the total energy for a deformed configuration
as

W (x,X) =
∑
e

W e(xe,Xe) , (5)

We can now use this energy in a static equilibrium problem in or-
der to compute the deformation of the skin in response to actuator
placements, which translate into a set of position constraints. The
deformed configuration of the skin is then determined as the mini-
mum of the total energy

x = argmin
x

(W (x,X) +Wext(x)) , (6)

whereWext summarizes external contributions to the potential, e.g.
due to gravity. Requiring the gradient of the energy to vanish at
equilibrium leads to a set of nonlinear equations, which are solved
in the standard way using Newton iterations with incremental load-
ing and line search for convergence control.

By solving (6), we can simulate skin deformation in response to
arbitrary actuator placements.



6 Optimization

Recall that our goal is to fabricate a synthetic skin which, when
deformed by the underlying electromechanical base, matches the
target expressions as closely as possible. In order to achieve this
requirement, we optimize the shape of the skin as well as the actu-
ation parameters of the base. This process is subject to a number of
constraints. We cannot change the outside surface of the skin. We
also cannot modify the attachment points of the actuators. Further-
more, the motion of the actuators is physically restricted.

In order to achieve the best results given these constraints, we have
to expose as many degrees of freedom as possible to the optimiza-
tion process. To this end, we optimize with respect to two sets of
parameters. First, we optimize the actuation parameters of the an-
imatronic device for every target expression. Second, we change
the thickness of the skin by modifying its shape on the inside – we
are free to do so everywhere except at the attachment points and in
their immediate vicinity. Practically, this allows the skin to produce
bulges and wrinkles where they did not appear before. We start by
describing the general optimization framework and then how we
apply it to the individual parameter sets.

6.1 Generic Optimization Framework

Let the function Ŵ (x̂,p) denote the total energy of our physical
system, including internal deformation energies and external con-
tributions to the potential. p is a vector of generic parameters for
which we want to optimize. x̂ contains a subset of the deformed
positions x of the physical simulation. All other values of x are
either constant (constrained) or computable from p. In the most
general case, both the undeformed and deformed positions of our
simulation mesh are allowed to depend on p, and we can write

Ŵ (x̂,p) = W (x(x̂,p),X(p)) +Wext(x(x̂,p)). (7)

For fixed parameter values p, the physical system will assume the
equilibrium state

x̂eq(p) = argmin
x̂

(
Ŵ (x̂,p)

)
(8)

minimizing the total energy of the system, leading to the necessary
condition of a vanishing residual force

∂Ŵ

∂x̂

∣∣∣∣
x̂eq,p

= 0. (9)

The goal of the optimization will be to find the optimal parameter
values p such that the positions x(x̂eq(p),p) match a desired tar-
get configuration as closely as possible. This is measured in terms
of a matching energy Ematch(x). We additionally regularize the
parameters using a regularization energy Ereg(p).

We solve this as a minimization problem with respect to x̂ and p,
with the following objective function:

E(x̂,p) =
1

2
γ

∣∣∣∣∣∣∣∣∂Ŵ∂x̂
∣∣∣∣
x̂,p

∣∣∣∣∣∣∣∣2 +Ematch(x(x̂,p)) +Ereg(p) (10)

The first term penalizes the violation of condition (9), ensuring with
a sufficiently high penalty γ that the resulting x̂ is close to a physi-
cal solution with vanishing residual forces.

Matching Energy. The matching energy measures how well a
configuration x is in agreement with what we want the object to
look like. To this end, we embed a set of points in the simu-
lation domain and deform them according to the mapping ϕ. In
our implementation, we use a subset of points from high-resolution
3D scans (Sec. 4). Due to our choice of basis functions, the de-
formed position of a point can be computed as a linear combination
of four nodal positions. We then compute the matching energy as
the squared distance between the deformed points and their desired
target positions q,

Ematch(x) =
1

2
||Sx− q||2 (11)

where the matrix S contains the weights for the computation of the
deformed points from x.

Numerical Optimization. We minimize (10) using a Newton
method. For this we need to compute its first and second deriva-
tives with respect to x̂ and p. While these computations are trivial
for our particular choices of matching and regularization energies,
we compute the second derivatives of the first term in (10) only ap-
proximately, ignoring the third order derivatives of W that would
result from applying the chain rule. In each Newton step, we use a
sparse direct solver [Schenk and Gärtner 2006] to solve the linear
system

H

(
∆x̂
∆p

)
= −f (12)

for the increments ∆x̂ and ∆p, where f is the vector of first deriva-
tives of E and H contains its second derivatives. We employ line
search to make sure the energy decreases in each Newton step. It
can happen that the matrix H becomes indefinite, a condition we
can easily detect by the direct solver not being able to factorize
H, in which case we proceed as suggested in Nocedal and Wright
[2000] by adding a multiple of the identity to H.

6.2 Thickness Optimization

The goal of the thickness optimization is to modify the local thick-
ness of the skin in such way that when the mechanical actuators of
the robot are set to the values corresponding to a particular pose,
the resulting deformation of the skin matches the pose’s target po-
sitions q as closely as possible. In the physical simulation, the actu-
ator settings result in hard positional constraints that can directly be
applied to the corresponding deformed positions. The parameters
pthk determine the thickness distribution in the undeformed config-
uration without directly affecting the deformed positions, thus we
can write

Ŵ (x̂,pthk) = W (x̂,X(pthk)) +Wext(x̂) (13)

and minimize (10) to find the parameter values for the thickness
distribution that best match the given pose.

Parameterizing the Undeformed State. Although the skin
clearly exhibits a thickness direction, this information is not explic-
itly available from the 3D geometry such that we have to infer it
first. We start by computing a low-pass filtered version of the skin’s
outer surface and construct a parameterization r : IR2 → IR3 using
standard uv-mapping software. A roughly area-preserving map is
desirable for obtaining unbiased sample distributions, but this is not
a critical aspect in this context. The undeformed geometry of the
skin can now be described as X = r(u, v)+hn(u, v), where u and
v are surface coordinates and the thickness parameter h runs along



Figure 5: Left: parametrization of the geometry and placement
of MLS samples; Right: MLS warping field shown as surface with
isoparametric lines for illustration.

the surface’s normal direction n. Having defined the thickness in
this way, we can now proceed to its optimization.

Instead of working directly on the undeformed positions, we define
a warping heightfield on the surface in order to smoothly deform
space along its normal direction. We construct a smooth warping
field w(u, v) from a sparse set of height samples αi at positions
(ui, vi)

T using moving least squares (MLS) interpolation [Levin
1998]. Fig. 5 illustrates the concepts of parametrization and MLS
interpolation, while Fig. 6 shows some shape variations that can be
obtained for a simple one-dimensional example. To control the res-
olution of the warping heightfield, we adaptively place the locations
of the height samples in uv space based on a user-provided density
map [Clarberg et al. 2005].

Evaluating the MLS warping field at an arbitrary parameter point
(u, v) amounts to fitting an affine transformation that minimizes
the weighted least squares error∑

i

θ(||(u, v)T − (ui, vi)
T ||)||a(u, v)T (1, ui, vi)− αi||2 , (14)

where θ(x) is a weighting kernel and a(u, v) ∈ IR3 are the local
coefficients of the interpolation function. The latter are determined
by solving the normal equations for (14), which can be done effi-
ciently using precomputations.

Finally, we gather the parameters αi of all sample points into pthk

and compute optimal height values by minimizing (10). Note
that the MLS interpolation results in a linear mapping between
undeformed positions X and parameters pthk, thus the matrix
∂X/∂pthk is constant and can be precomputed. Once the opti-
mal αi are determined, the final rest configuration is obtained in
the following way: for each point Xa of the original mesh we first
retrieve its parameter values (ua, va, ha), evaluate the MLS warp-
ing field to obtain wa = w(ua, va) and finally compute the warped
positions as X′a = r(ua, va) + wahan(ua, va).

Regularization. We need the undeformed mesh with nodal posi-
tions X(pthk) to be a valid tetrahedral mesh where every element
has positive volume. While there are different ways to formulate
and enforce this constraint, we found it most practical to reuse the
deformation energy function W , abusing X(pthk) as the deformed
configuration and the initial undeformed positions X(1) as the un-
deformed configuration:

Ereg(pthk) = γundefregW (X(pthk),X(1)) (15)

For any positive penalty value γundefreg, this energy will tend to
infinity as any element’s volume approaches zero, effectively pre-
venting element inversions in the undeformed configuration.

Fabrication Constraints. Additionally, we add a quadratic en-
ergy term to Ereg that penalizes MLS weights exceeding a value

Figure 6: Illustration of MLS interpolation using 7 sample points.
(a) Input geometry (b)–(d) examples of warped geometry.

of one, or falling below a user-defined minimum thickness. This
guarantees a fabricatable skin that does not intersect the underlying
mechanical structure.

Multiple Pose Optimization. We want to optimize the unde-
formed configuration X(pthk) such that m > 1 poses can be re-
produced as closely as possible: for a set of actuator settings ai, the
given target positions qi should be matched as closely as possible.
In this case our optimization is slightly modified and we optimize
for all deformed positions x̂1, . . . , x̂m and pthk at once. We have
m matching functions Ei

match and the objective function can be
written as

E(x̂,pthk) =

m∑
i=1

1

2
γ

∣∣∣∣∣∣∣∣∂Ŵ∂x̂
∣∣∣∣
x̂i,pthk

∣∣∣∣∣∣∣∣2 (16)

+

m∑
i=1

Ei
match(x(x̂i,pthk)) (17)

+Ereg(pthk). (18)

We initialize the optimization with values x̂i computed from a per-
pose forward simulation with incremental loading, and use pthk =
1 for the MLS parameters.

6.3 Actuation Parameter Optimization

The goal of the actuation parameter optimization is to find the best
values for controlling the mechanical actuators such that the result-
ing deformed skin matches a given target pose as closely as possi-
ble. In this setting, the parameters pact of the optimization define
the positional constraints to apply to the nodal positions x. In the
objective function (10) we use

Ŵ (x̂,pact) = W (x(x̂,pact),X) +Wext(x(x̂,pact)). (19)

Parameterization. The mapping from unconstrained nodal posi-
tions x̂ and parameters pact to deformed positions x is

xi =

{
x̂i if node i unconstrained
Ma(pact)Xi if node i constrained by actuator a.

(20)

For the sake of simplicity, we linearize the transformation matrix
Ma(pact) of actuator a around the current parameter values pact

in each step of the optimization.

Regularization. Similar to the thickness optimization, we use the
regularization energy Ereg to keep the actuator parameter values
within the range of physically feasible values.



7 Animatronic Head

To actuate the silicone skin we use a proprietary ani-
matronic head developed by Walt Disney Imagineering.

It is driven by electric motors and features
a = 13 parameters pact ∈ IRa to con-
trol the movement of the attachment links
indicated in red in the figure on the left.
The length of the red arrows illustrates
the range of potential motion. Further-
more, there are several rigid attachment
links that constrain the movement of the
skin. We refer to the video for a visual-
ization of the actuation level of each ac-
tuation parameter for a facial animation
sequence, providing an intuition of which
expressions are inside or at the border of

the gamut of reproducible poses. We treat the underlying mechan-
ics and controlling mechanism as a black box, so in theory our op-
timization algorithm can be used with any animatronics device.

To determine the operating range and control parameters of the head
we attach a marker to each moving link and track its position under
a number of sample locations and orientations. Tracking is per-
formed using the same capture system as used for face scanning
(Sec. 4). The mapping m(pact) : IRa → IRl·6 from animation pa-
rameters pact to 3D locations and orientations of attachment points
is then specified by quadratically interpolating the samples. These
are then used as hard boundary constraints in our forward simula-
tion. To obtain the specific animation parameters for a given facial
expression, we solve the inverse problem as described in Sec. 6.3.

8 Fabrication

Our choice to use silicone is based on the fact that the stiffness can
be controlled accurately, the color can be adjusted, it is robust, and
the fabrication process is easy and safe. Silicone belongs to the
class of elastically deformable polymers with a high yield strength.
After having optimized the ideal skin geometry, we use liquid injec-
tion molding to fabricate the physical skin as shown in the accom-
panying video. Our mold consists of a core that resembles the inner
surface of the skin and six outer parts. Note that multiple outer parts
are required so that the skin can be removed without destroying the
mold. The mold itself is fabricated using a rapid prototyping 3D
printer. For our experiments, we used the two-part silicone GI-245
by Silicones Inc. After mixing it with the corresponding catalyst, it
has a liquid consistency and can be injected into the mold. Approx-
imately seven days of room-temperature curing is required until it
is ready to be used.

9 Results

In this section we present our results, starting with validation of our
pipeline and optimization process, and then showcasing our method
with an example of real physical face cloning for an animatronic
figure.

Validation Simulation. We validated our pipeline for measuring,
modeling, and simulating silicone materials. Fig. 4 shows a com-
parison of the force-strain curve of a simulated material to a mea-
sured sample. The measurements are acquired by running an uni-
axial stretch and compression test on a rectangular (55 × 5 × 2
mm — stretch) and cylindrical (50 mm diameter, 12 mm height
— compression) object. Furthermore, we validate the simulation
by comparing simulated deformations of our silicone skin with 3D

(a) (b) (c) (d) (e)

Figure 7: Volumetric shape optimization. Starting with a volumet-
ric object (a) and a target surface (b), our optimization process
computes the thickness variation (c) such that the surface matches
the deformation of the target under actuation (d). Without optimiza-
tion (e), the target is not well approximated.

scanned poses of the actual animatronic figure in Fig. 9, showing
an average error of less than 1.35 mm.

Validation Optimization. Our optimization process computes
the volumetric shape of soft-tissue material under actuation such
that the surface matches the deformation of given target surfaces.
We validated the optimization process in simulation. We start by
generating ground truth data by randomly varying the thickness of
a uniform block using the moving least squares warp as described in
Sec. 6.2. From the forward simulation of these objects we extract
target surfaces. We then used these target surfaces and the unde-
formed block as input into our optimization — see e.g. Fig. 7. In
all experiments, our algorithm was able to exactly reproduce the
spatially-varying thickness of the ground truth objects that were
used to generate the inputs. As shown in Fig. 8, we also fabricated
a subset of these examples, and compared the deformation of the
predicted optimized shape to the real object. For these 95mm long
bars, the average errors between the deformed fabricated surface
and the goal shape are 0.44mm (top) and 0.38mm (bottom).

Face Cloning. We showcase our complete pipeline by physically
cloning a human face for an animatronic figure. We started by ac-
quiring more than 100 frames of an expressive performance of our
subject. We then aligned the neutral pose to a scan of the anima-
tronic head. Because the animatronic head has very pronounced
cheek bones, we slightly warp the acquired 3D geometry of the
human face to prevent intersections. Consequently, we apply the
same warping transformation to the captured geometry before do-
ing comparisons (such as the error plots in Fig. 10) with our results.
The gap between the surface of the neutral pose and the underlying
animatronics defines the initial unoptimized skin, which we repre-
sent as a tetrahedral mesh consisting of ≈ 63k elements. To better
represent important facial deformation features on the forehead, we
additionally use a high-resolution mesh of ≈ 157k elements to op-
timize this area. We then use our optimization process to obtain
animation parameters for the entire captured face performance se-
quence. As matching criteria we select small surface regions close
to the attachment links. In those regions, the surface thickness is
constrained and cannot be changed because the skin is connected
to the moving and static links. For all other regions we use our op-
timization process to achieve the desired deformation behavior by
varying the skin thickness. In our experiment, we used a subset of 8
expressive poses for thickness optimization. Fig. 10 illustrates the
unoptimized and optimized geometry and provides a side-by-side
comparison of the deformation behavior.

Finally, we also fabricated the optimized skin, using material with
Young’s modulus of E = 78kPa and Poisson’s ratio of ν = 0.47
in its cured state. Figure finishing included industry-standard tech-
niques for adding hair and facial stubbles and painting a texture
by a professional makeup artist. Fig. 9 shows our figure in action
and compares it to the human face and the simulation under vari-



ous facial expressions. We also scanned these poses of the anima-
tronic figure and provide error visualizations showing the distance
between the simulated surface and the scanned surface. As can be
seen from the error plots, the agreement between the shape pre-
dicted by our simulation and the actual observed shape of the actu-
ated skin is generally good, with less than 4mm separating the sur-
faces everywhere. This shows that our simulation is a good model
for the real synthetic face. The difference between the scans of the
real face and the simulation is larger, representing the limitations in
the range of motion of the robot head and the range of deformation
of the attached skin. Comparing the human face to the cloned syn-
thetic face, the large scale deformations and general expressions
are captured well, and the differences show where improvements
should be made in the physical system to enable the fitting methods
to achieve a better match. For further comparisons we refer to the
accompanied video.

10 Conclusion

In this paper we have described a process for computationally
guided design of an animatronic character composed of a soft-tissue
material and an electromechanical base. We compute a volumetric
shape of the soft-tissue material and a set of actuation forces that
can reproduce target deformations of an exterior character surface.
As an example, this process allows us to construct an animatronic
head that approximates the shape and behavior of a real person
whose expressions are acquired using a 3D scanning system. The
core requirement of this process is a physically based simulation
framework that lets us accurately predict the behavior of the soft
tissue when subject to external forces. Our experimental validation
shows that using this process provides a principled way to design
soft-tissue animatronic characters.

Limitations and Future Work. We believe that our computation-
ally guided process for designing and fabricating animatronic char-
acters will serve as a blueprint for how future robots with soft tissue
should be built. Because this work is the first in the area, it has a
number of limitations that should be addressed in future research.
First, in our current framework the attachment of the actuators is
fixed to specific places underneath the character’s skin. Relaxing
this constraint would likely give us more degrees of freedom, e.g.,
the rest shape of the soft tissue would not need to be the same as
the rest shape of the electromechanical base. Second, we currently
only use a single soft tissue material to produce a synthetic skin. We
believe we can extend the range of possible deformations by using
multi-layered materials similarly to Bickel et al. [2010]. Moreover,
it is important to note that the motions of current animatronic char-
acters are still limited as they are less expressive than most humans.
Thus, it is important to develop retargeting algorithms that can map
the expressions of a target human to the physical constraints of the
electromechanical base and materials used. In this paper, we have
not addressed the appearance aspect of the synthetic skin tissue in-
cluding reflectance, subsurface scattering, and hair. This is also a
very interesting direction for future work and we envision that sim-
ilar computationally guided processes could be developed to solve
these problems. Finally, while in this work we have only shown
examples of replicating human faces, we predict that similar frame-
works will be used to design realistic full-body characters.
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forehead with color-coded thickness variation. Comparison of the unoptimized and optimized skin: Error plot of the (e) unoptimized and (f)
optimized skin (blue 0mm, red 4mm). Although the variations are subtle, a comparison of the fabricated unoptimized (g) and optimized (h)
skin shows visible differences.
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