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Time-Stampless Adaptive Nonuniform Sampling for
Stochastic Signals

Soheil Feizi, Vivek K Goyal,Senior Member, IEEE, and Muriel Médard,Fellow, IEEE

Abstract—In this paper, we introduce a time-stampless adap-
tive nonuniform sampling (TANS) framework, in which time
increments between samples are determined by a function of
the m most recent increments and sample values. Since only
past samples are used in computing time increments, it is not
necessary to save sampling times (time stamps) for use in the
reconstruction process. We focus on two TANS schemes for
discrete-time stochastic signals: a greedy method, and a method
based on dynamic programming. We analyze the performances
of these schemes by computing (or bounding) their trade-offs
between sampling rate and expected reconstruction distortion
for autoregressive and Markovian signals. Simulation results
support the analysis of the sampling schemes. We show that by
opportunistically adapting to local signal characteristics TANS
may lead to improved power efficiency in some applications.

I. I NTRODUCTION

Sampling is essential in any digital system that interfaces
with the analog world. All else being equal, it is desirable
to minimize the number of samples while maintaining an
acceptable reconstruction distortion. In some applications,
minimizing the number of samples can be translated into
having a power-efficient sampling, since the power consump-
tion at an analog-to-digital converter (ADC) is approximately
proportional to its sampling rate [1]. Also, having fewer
samples can increase the efficiency of other processing of
these measurements. For example, if these samples should be
transmitted to another place via a communication channel,
having fewer samples will improve power and bandwidth
efficiencies.

One can viewsamplingas aquery to obtain information
from a signal or a function that can only be measured remotely.
We get a sample of this function at an arbitrary time when we
queryfor it over a communication medium. Here, a portion of
the operational cost (e.g., power) is proportional to the number
of samples that we acquire. Hence, again it is desirable to
minimize the number of samples taken.

A uniform sampling at the Nyquist rate of the signal
may cause some redundant samples, since the global signal
bandwidth may not be a good measure of local variations of
the signal. Although traditional nonuniform sampling schemes
(e.g., [2], [3]) deal with this problem, they have certain
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Fig. 1. A schematic view of the TANS framework: sampling times are
determined by a function ofm most recently taken samples. Hence, it is not
necessary to save sampling times (time stamps) for use in thereconstruction
process.

limitations. Firstly, they are mostly designed to operate un-
der specific conditions for restrictive signal models (e.g.,
[4]–[8]) and, secondly, sampling times (i.e., time stamps)
must be stored/transmitted to be used in the reconstruction
process. This may cause power/bandwidth inefficiencies in
sampling/communication procedures.

In this paper, we introduce a new framework for an adaptive
nonuniform sampling scheme (see Figure 1). The key idea
of this framework is thattime increments between samples
are computed by using a function of previously taken sam-
ples. Therefore, keeping sampling times (time stamps), except
initialization times, is not necessary. The function by which
sampling time intervals is computed is called thesampling
function. The aim of this sampling framework is to have a
balance between the reconstruction distortion and the average
sampling rate. We refer to this sampling framework asTime-
stampless Adaptive Nonuniform Sampling(TANS). The TANS
concept can be applied on continuous- or discrete-time signals,
and the design and analysis can be based on deterministic or
stochastic models.

The TANS framework is described in general terms in Sec-
tion II. Section III then formalizes the problem setup for this
paper, where we focus on discrete-time signals and stochastic
models. A greedy method is developed in Section IV, and a
method based on dynamic programming (DP) is developed
in Section V. Simulations results are provided in Section VI,
and some proofs are relegated to Section VII. Section VIII
concludes the paper.

II. TANS FRAMEWORK

In this section, we introduce the TANS framework and
sketch design approaches that will be developed in more detail
in later sections. Fix some nonnegative integerm and suppose
the ith sample of signalX(t) is taken at timeti. We take the
(i+ 1)st sample after a time increment of

Ti = f ({(tj , X(tj)) : i−m+ 1 ≤ j ≤ i}) ,

http://arxiv.org/abs/1110.3774v1
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where f is called the sampling function. This makes the
sampling rate adapt to local characteristics of the signal.Since
the time increment is a function of them most recently taken
samples, we say theorder of the sampling functionf is m.
The sampling is nonuniform except in the trivial cases whenf
is a constant-valued function (e.g.,m = 0). Some initialization
of the firstm sampling times is necessary, but the effect of
this initialization on the rate is amortized.

The sampling function is known at the reconstruction side.
Assuming that thestate

Sti = {(tj , X(tj)) : i−m+ 1 ≤ j ≤ i}

is also known at the reconstruction side when reconstructing
X(t) on [ti, ti+1], there isno need for the sampling times (time
stamps) to be transmitted. These times can be computed by
using the sampling function and previously taken samples:

ti+1 = ti + f (Sti) .

This type of synchronization in an adaptive system without ex-
plicit communication is often called backward adaptation [9].
In a practical setting involving both sampling and quantization,
backward adaptivity requires using the quantized values to
drive the adaptation [10]–[13]. Here, to maintain focus on
sampling rate and adaptation of sampling increments, we do
not explicitly include quantization effects. Note that while the
sampling time selection is causal, the reconstruction method
can be causal or non-causal.

The aim of TANS is to balance between the average sam-
pling rate and the reconstruction distortion. This objective is
different from the one considered in change point analysis [14]
or active learning [15]. There, the objective is to find points of
the signal at which statistical behaviors of the signal change,
by causal or non-causal sampling, respectively.

SupposeX̂(t) is the reconstructed signal computed by some
reconstruction method. For the case of discrete time and
a stochastic signal model, defined(Sti , Ti) as the expected
reconstruction distortion over samples from timeti + 1 until
time ti+1 − 1. That is,

d(Sti , Ti) = EX

[
ti+1−1∑

t=ti+1

D
(
X(t), X̂(t)

)
]
,

where X is the known probabilistic model of the signal
X(t) andD(X(t), X̂(t)) represents the distortion at timet.1

Note that at timesti and ti+1 the reconstruction distortion
is zero since exact sample values are known at these times.
In realistic cases and for a given stateSti , d(Sti , Ti) is an
increasing function with respect toTi, because the greater the
next sampling step, the greater the reconstruction distortion.
On the other hand, the greater the next sampling step, the
larger the rate benefit. Hence, a rate penalty can be defined
as a(Sti , Ti) = ρ/f(Sti) = ρ/Ti, whereρ is a rate award
parameter. We define the cost of each sampling state as the sum
of the expected reconstruction distortion and the rate penalty,
that is, c(Sti , Ti) = d(Sti , Ti) + a(Sti , Ti). The overall cost

1An analogous formulation for continuous time would replacethe sum with
an integral overt ∈ [ti, ti+1]. Without a stochastic model, a maximum error
criterion could be used.
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Fig. 2. Demonstrating the behavior of different parts of sampling state cost
c(Sti

, Ti) = d(Sti
, Ti)+a(Sti

, Ti), whered(Sti
, Ti) is the reconstruction

distortion anda(Sti
, Ti) is the rate penalty function.

of the sampling process is the sum of different sampling state
costs, that is,

∑
i c(Sti , Ti).

Finding an appropriate sampling function for TANS depends
on requirements such as average sampling rate, maximum
distortion, etc. In this paper, we investigate two general
approaches to computing appropriate sampling functions for
given sampling setups:greedy methodsanddynamic program-
ming (DP) methods.

In greedy methods, a sampling function at stateSti chooses
the next sampling incrementTi to minimize the sampling state
costc(Sti , Ti). As depicted in Figure 2, for any given stateSti ,
d(Sti , Ti) is an increasing function ofTi, while a(Sti , Ti) is
a decreasing function. Therefore, there is a trade-off between
the sampling rate and the expected reconstruction distortion.
A greedy method balances this trade-off by choosing the state
cost minimizer as the next sampling increment. In certain
cases, greedy sampling schemes can perform closely to an
optimal scheme.

Sincec(Sti , Ti) depends on the current sampling stateSti ,
a greedy sampling function does not take into account charac-
teristics of the next sampling state. Intuitively, the larger the
sampling incrementTi at the sampling stateSti , the lower the
quality of the next sampling state. Hence, in general, greedy
methods are not optimal sampling schemes considering the
overall sampling cost

∑
i c(Sti , Ti) as a comparison measure.

We consider effects of the next sampling states’quality in
DP methods. We show that an exact Bellman-Ford equation
(BFE) can be written and solved for some sampling setups.
For those cases, the solution of BFE provides an optimal
sampling function which minimizes the overall sampling cost.
In cases where solving the BFE is not practically feasible
(because the number of possible sampling states is large or
exact sampling states are not known), we propose sampling
functions based on approximate dynamic programming (ADP)
algorithms. Sampling functions derived by greedy methods
can be used in ADP-based sampling methods. In fact, greedy
methods can be viewed as DP-based methods with a unit time
horizon.

In this paper, we consider two examples of stochastic
signals: stationary signals and Markovian signals. Unlike
stationary signals, Markovian processes have sudden changes
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in their statistical properties based on an underlying hidden
Markov chain. Note that the general sampling framework can
be applied on other signal models.

III. PROBLEM SETUP, SIGNAL MODELS AND

BACKGROUND RESULTS

In this section, we first present the problem setup of TANS.
Then, we introduce signal models considered in this paper. At
the end of this section, ageneralized linear prediction filter
is proposed, which linearly predicts the future samples of a
stationary process by using a set of nonuniform samples from
its past.

A. Problem Setup

Consider a discrete-time signalX(t). TANS with orderm
is used to take samples from this signal. Hence, the next
sampling increment at timeti is a function ofm most recently
taken samples at that time (i.e.,Ti = f(Sti)). The set of
samples taken using the sampling functionf(·) is denoted by
Γf

X(t). A functiong(·) is used to reconstruct the original signal

from its samples, that is,̂X(t) = g(Γf

X(t)). The reconstruction

error signal ise(t) = X(t)− X̂(t). The overall sampling cost
is the sum of sampling state costs over different states, that is,
ctot(X(t), f, g) =

∑
i c(Sti , Ti).

A system optimization problem under the TANS framework
can be stated as follows:

Definition 1 (Optimal TANS sampling problem):For a
class of signalsX(t), a given reconstruction functiong(·),
and an orderm, a sampling functionf∗(·) is desired to
minimize the overall expected sampling cost:

f∗ = arg inf
f

ctot(f, g). (1)

The resulting cost is denotedc∗tot = ctot(f
∗, g).

B. Signal Models

In this paper, we consider the following signal models:
• Case 1: an autoregressive signal with memory of one (i.e.,

AR(1)):

X(t+ 1) = αX(t) + Z(t+ 1), (2)

whereZ(t + 1) is a Gaussian noise with zero mean. If
the power of the signal is assumed to be one, the noise
variance is1− α2.

• Case 2: a Markovian signal:

X(t+ 1) = αθtX(t) + Zθt(t+ 1), (3)

whereθt represents the state of a hidden Markov chain
(MC) with state transition probabilities depicted in Fig-
ure 3. At timet, if the MC is at state0, θt = 0; otherwise,
θt = 1. Depending on the value ofθt, the signal is
generated by a first-order AR model with parameterαθt

and the noise variance1− α2
θt

. Note that, in this model,
unlike the previous case, the coefficient of the AR model
has a sudden change in time depending on the state of
the underlying hidden Markov chain.

state 0

p00

state 1

p11

p01

p10

Fig. 3. A hidden Markov chain considered in Markovian signalmodel of
equation (3).

C. Generalized Linear Prediction Filter

SupposeX(t) is a stationary signal. Assume we havem
samples ofX(t) at times {ti−m+1, . . . , ti}. Our aim is to
linearly predictX(t), wheret = ti + T for someT ≥ 1, by
using these known samples so that the expected mean square
error is minimized (MMSE predictor).

ConsiderX̂(t) as a predicted value ofX(t) by using these
m sample values. The prediction error ise(t) = X(t)− X̂(t).
Define τk = t − ti−k for 0 ≤ k ≤ m − 1. We want to find
optimal linear prediction weightswτ0 , . . . , wτm−1

so that the
prediction error power is minimized:

min
wτ0

,...,wτm−1

E[|e(t)|2] (4)

subject to X̂(t) =

m−1∑

k=0

wτkX(ti−k).

A solution of this linear optimization is referred asw∗
τi

, for
0 ≤ i ≤ m − 1. Note that, unlike a regular linear prediction
filter ( [16]), a generalized linear prediction filter predictsX(t)
by using a set of nonuniform samples.

The auto-correlation function ofX(t) can be written as

r(i) = E
[
X(t)Xc(t− i)

]
, (5)

whereXc(t) represents the complex conjugate ofX(t). In this
paper, we deal with real signals.

To simplify notations, we define the following matrices:

τ = [τ0, . . . , τm−1]
T (6)

p =
[
r(−τ0), . . . , r(−τm−1)

]T

w∗
τ =

[
w∗

τ0
, ..., w∗

τm−1

]T
.

Also, a m × m auto-correlation matrixR is defined whose
component in theith row andjth column isr(τi − τj).

The following theorem provides optimal weights for the
generalized linear prediction filter:

Theorem 2:
p = Rw∗

τ .

Proof: See Section VII-A.
For X(t) with zero mean, the variance of the prediction

error is defined as follows:

σ2
e∗(Sti , T ) = E[|e∗(t)|2].
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The following theorem provides a way to compute the vari-
ance of the prediction error for a generalized linear prediction
filter:

Theorem 3:σ2
e∗(Sti , T ) = r(0) − pTw∗

τ .
Proof: See Section VII-B.

IV. GREEDY TANS

In this section, we investigate greedy sampling functions
various signal models. In Section V, we evaluate performance
of these schemes and compare them with some other schemes,
including uniform sampling setups. In all of these sampling
schemes, the reconstruction function is assumed to be a
generalized linear prediction filter, introduced in Section III-C.
Note that it is a causal reconstruction function.

In greedy methods, a sampling function is computed as
follows:

Ti = argmin
T

c(Sti , T ) (7)

subject to T ≥ 1,

wheref(Sti) = Ti. The sampling function of a greedy method
depends on the current sampling state and does not take into
account characteristics of the next sampling states. Intuitively,
the larger the sampling incrementTi at the sampling stateSti ,
the lower thequality of the next sampling state. Therefore, we
have a trade-off between the sampling rate award of the current
state and the sampling cost of the next state (Figure 2). Hence,
greedy methods usually are not optimal solutions of a TANS
sampling problem presented in Definition 1. However, these
greedy solutions can be used to approximate optimal solutions,
which may have high computational complexity.

Here, we investigate the greedy sampling function of (7) for
two signal classes described in Section III-B. We analyze their
sampling rate versus the expected reconstruction distortion in
Theorems 4 and 8. Simulation results of proposed schemes
are shown in Section VI.

A. Greedy TANS for Autoregressive Signals

In this section, we consider greedy sampling functions for
an AR(1) signal model described in (2).

Supposef∗
greedy(Sti) is an optimal greedy sampling func-

tion. Also, supposed∗tot is the expected reconstruction dis-
tortion per sample corresponding to this sampling function.
The following theorem introduces an optimal greedy sampling
function and its expected reconstruction distortion per sample.

Theorem 4:For an AR(1) signal with parameterα de-
scribed in (2), over a large enough time interval[0, Ttot], an
optimal greedy sampling function is

f∗
greedy(Sti) = T ∗, (8)

d∗tot =
1

T ∗

T∗−1∑

j=1

1− α2j ,

whereT ∗ = argminT

∑T−1
j=1 (1− α2j) + ρ/T .

Proof: See Section VII-C.
Note that, for this signal model, an optimal greedy sampling

function yields uniform sampling with the sampling rate1/T ∗,

which performs closely to an optimal sampling scheme. In the
following corollary, we present a formula to computeT ∗.

Corollary 5: SupposeTroot is a solution of the following
equation:

(1− α2T )−
ρ

T (T + 1)
= 0 (9)

where0 < α < 1 andρ > 0. If (1− α2) < ρ
2 , then

(i) Troot is unique; and
(ii) T ∗ = ⌊Troot⌋ or T ∗ = ⌊Troot⌋+ 1.

Proof: See Section VII-D.
We will validate this by simulation in Section VI. Also,

arguments of Theorem 4 can be extended for a general
stationary signal.

For an AR signal, since statistical properties of the signal
do not vary in time, there is no rate adaption with respect to
sample values. This is not the case for Markovian signals. We
investigate the greedy TANS framework for Markovian signals
in the next section; a rate adaption with respect to sample
values would be helpful to minimize the sampling cost and
leads to a nonuniform sampling scheme.

B. Greedy TANS for Markovian Signals

Consider a Markovian signal described by (3), whereθt
represents the state of a hidden underlying Markov chain
depicted in Figure 3. In this section, for simplicity we assume
the MC is symmetric (i.e.,p01 = p10). However, all arguments
can be extended for a general MC. We also assume thatα0

andα1 are known. However, the state of the Markov chain
(i.e., θt) is unknown and needed to be estimated by using the
taken samples. We use a generalized linear prediction filterfor
the reconstruction. Note that ifα0 andα1 are also unknowns,
one can learn these parameters at the beginning of the process
by taking more samples. Then, our proposed scheme can be
applied for the rest of the process.

Extending the previous notation, defineθSti
as the state

of the MC during the sampling stateSti . If during Sti the
MC state stays at zero,θSti

= 0. Similarly, if the MC
state stays at one,θSti

= 1. Otherwise, if there is an MC
transition within this sampling state,θSti

= 2. We assume
that θSti

is unknown and needs to be estimated by using
the taken samples. The estimated value ofθSti

is referred
by θ̂Sti

. The error probability of this estimation is referred by
Pe(Sti) = Pr(θ̂Sti

6= θSti
).

Algorithm 6: A greedy sampling function for the consid-
ered Markovian signal has the following steps:

• Step i,0: ComputêθSti
andPe(Sti).

• Step i,1: ComputeTi = argminT c(Sti , T |θ̂Sti
), where

c(Sti , T |θ̂Sti
) is the sampling state cost given̂θSti

(see
(11) and (12)).

• Step i,2: Take a sample at timeti + Ti.
• Step i,3: ComputeSti+1. Repeat.

For simplicity, we assume that the sampling incrementT is
small enough that the probability of having more than one MC
transition is negligible. In other words, we have the following
assumptions.
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Assumption 7:

max
i

Ti ≤ Tup,

p
(Tup−1)
00 ≫

1

2
,

p
(Tup−1)
11 ≫

1

2
.

If MC transition probabilitiesp01 andp10 are small enough,
this assumption is reasonable. Under this assumption, the
sampling state cost,c(Sti , T ), can be conditioned on the value
of θ̂Sti

as follows:

c(Sti , T | θ̂Sti
= 0)

= Pr(θ̂Sti
= θSti

)
{ T−1∑

j=0

pj00p01

j∑

l=1

(1 − α2l
0 )

+(T − 1− j)σ2
max

}

+Pr(θ̂Sti
6= θSti

)σ2
max +

ρ

T

= (1− Pe(Sti))
{ T−1∑

j=0

pj00p01

j∑

l=1

(1− α2l
0 )

+(T − 1− j)σ2
max

}

+Pe(Sti)(T − 1)σ2
max +

ρ

T
, (10)

which says that, if the estimation is correct (with probability
1−Pe(Sti)) and an MC transition happens at timeti + j +1
(with probabilitypj00p01), the sampling state cost is

∑j
l=1 1−

α2l
0 +(T−1−j)σ2

max, whereσ2
max is the maximum prediction

error variance (in this example,σ2
max = 1). If the estimation

process fails (with probabilityPe(Sti)), a maximum prediction
error varianceσ2

max occurs. By using the assumptionpTup

00 ≫
1/2, equation (10) can be simplified as follows:

c(Sti , T | θ̂Sti
= 0)

≈ (1− Pe(Sti))

T−1∑

ℓ=1

(1 − α2ℓ)

+Pe(Sti)(T − 1)σ2
max +

ρ

T
. (11)

The sampling state cost function conditioned onθ̂Sti
= 1

(i.e., c(Sti , T | θ̂Sti
= 1)) can be written similarly.

Finally, for the casêθSti
= 2, we assume that the prediction

variance is the maximum prediction error varianceσ2
max:

c(Sti , T | θ̂Sti
= 2) = (T − 1)σ2

max +
ρ

T
. (12)

We analyze the performance of the proposed greedy sam-
pling scheme in the following theorems. We derive upper
and lower bounds for average sampling rate and expected
reconstruction distortion per sample of the proposed sampling
scheme. Simulation results for this sampling scheme are
presented in Section VI, which support the derived analytical
bounds.

Before presenting theorems, we introduce some notations.
Suppose that, for allSti , P low

e ≤ Pe(Sti) ≤ P up
e . By

considering an upper bound onPe(Sti), we define

T low
0 = argmin

T

(1 − P up
e )

T−1∑

l=1

(1 − α2l
0 )

+ P up
e (T − 1)σ2

max +
ρ

T
. (13)

T up
0 is defined similarly by considering a lower bound on

Pe(Sti). Analogously,T up
1 andT low

1 can be defined.

Also, dup0 , an upper bound on the expected reconstruction
distortion per sample given̂θSti

= 0 is defined as follows:

dup0 =
1

T up
0

{
(1−P up

e )

T
up
0 −1∑

ℓ=1

(1−α2ℓ
0 )+Pup

e (T up
0 −1)σ2

max

}
.

Quantitiesdlow0 , dup1 anddlow1 are defined similarly.

The following theorem provides analytical upper and lower
bounds on the average sampling rate and the expected recon-
struction distortion of the greedy sampling scheme introduced
in Algorithm 6.

Theorem 8:Consider a Markovian signal defined in (3)
over a large enough time interval[0, Ttot]. Under Assump-
tion 7, an achievable rate-distortion pair(R,D) of the greedy
sampling scheme of Algorithm 6 can be bounded as follows:

1

2T up
0

+
1

2T up
1

≤ R ≤
1

2T low
0

+
1

2T low
1

(14)

dlow0

2
+

dlow1

2
≤ D ≤

dup0
2

+
dup1
2

. (15)

Proof: See Section VII-E.

Similarly to Corollary 5,T low
0 , T up

0 , T low
1 andT up

1 can be
calculated by finding roots of some equations. For example:

Corollary 9: SupposeTroot is a solution of the following
equation:

(1−P up
e )(1−α2T

0 )+P up
e (T −1)σ2

max−
ρ

T (T + 1)
= 0 (16)

where0 < α < 1 andρ > 0. If (1−P up
e )(1−α2

0) <
ρ
2 , then,

(i) Troot is unique; and
(ii) T low

0 = ⌊Troot⌋ or T low
0 = ⌊Troot⌋+ 1.

A similar corollary can be stated forT up
0 , T low

1 andT up
1 .

In Theorem 8, the performance of the proposed sampling
scheme (i.e., its average sampling rate and the expected
reconstruction distortion) is bounded. However, it is insightful
to compare its performance to a genie-aided sampling scheme
where the state of the underlying Markov chain is known. For
a genie-aided scheme,P low

e = P up
e = 0, and therefore upper

and lower bounds of Theorem 8 match:

Corollary 10: For a genie-aided sampling scheme, the fol-
lowing rate-distortion pair is achievable:

R =
1

2T genie
0

+
1

2T genie
1

, (17)

D =
dgenie0

2
+

dgenie1

2
, (18)
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where

T genie
0 = argmin

T

T−1∑

ℓ=1

(1 − α2ℓ
0 ) +

ρ

T
,

dgenie0 =
1

T genie
0

{ T
genie

0 −1∑

ℓ=1

(1− α2ℓ
0 )

}
,

andT genie
1 anddgenie1 are defined similarly.

The proof of Corollary 9 is similar to the one of Corollary 5.
Also, Corollary 10 can be derived by usingP low

e = P up
e = 0

in Theorem 8.
In the first step of this sampling function, we need to

estimateθSti
by usingm most recently taken samples of the

signal and compute its probability of errorPe(θ̂Sti
). In the

following, we give an example of such a scheme.
Example 11:Supposem = 2 and we use a maximum

likelihood estimator. IfθSti
= 0, the probability distribution

of X(ti) is N (α
Ti−1

0 X(ti−1), 1 − α
2Ti−1

0 ), whereN (µ, σ2)
represents a Gaussian distribution with meanµ and variance
σ2. The prior probability of this event ispTi−1

00 . Similarly,
if θSti

= 1, X(ti) is distributed byN
(
α
Ti−1

1 X(ti−1), 1 −

α
2Ti−1

1

)
. The prior probability of this event ispTi−1

11 . Other-
wise, the distribution ofX(ti) is N (αj

0α
Ti−1−j
1 X(ti−1), 1 −

α2j
0 α

2(Ti−1−j
1 )) with the prior probability

(
Ti−1

j

)
pj00p

Ti−1−j
11 ,

for 1 ≤ j ≤ Ti−1−1. Each of these events corresponds to the
caseθSti

= 2 (i.e., there is a transition within the sampling
state.). Therefore, by having the observed value ofX(ti) and
using these distributions, a maximum likelihood estimatorcan
estimateθ̂Sti

and compute its error probability.
Remarks:

1) If the state space is not large, computations can be per-
formed off-line and results can be used in the sampling
function.

2) When the order of the sampling function is large
and/or autocorrelation coefficients change continuously,
a maximum likelihood estimator may not be practically
interesting. In these cases, we can use previously taken
samples within a window of sizeW from the last sample
(i.e., all taken samples from timeti − W + 1 to the
time ti) to update or estimate autocorrelation coefficients
to use in the sampling function. The quality of this
estimation process depends on the window sizeW , the
variation rate of autocorrelation coefficients, and the
technique used. Two possible methods for estimating
autocorrelation coefficients are as follows:

• A gradient-based method. Suppose at the sampling
state Sti−1

, the set of estimated autocorrelation
coefficients is{r̂(j) : j ≥ 1}. By taking a sample at
time ni, these coefficients are updated as follows:

r̂(j) := r̂(j) + γ(X(ti)X(ti − j)− r̂(j)) (19)

for all possiblej’s, where:= represents an update
sign, and γ > 0 is a gradient step size. This
gradient-based update method can be useful when
W is not large.

• A window-based method. If the window sizeW is

large and there are enough known samples within
the window, an empirical value for each autocorre-
lation coefficient can be computed.

The estimated autocorrelation coefficients{r̂(j) : j ≥
0} can be used in the generalized linear prediction filter
in order to design a sampling function similar to the one
of Algorithm 6.

V. DYNAMIC PROGRAMMING-BASED TANS

In greedy TANS, sampling functions are derived based
on minimizing the sampling cost at each sampling state.
Hence, it does not take into account thequality of next
sampling states. Intuitively, the larger the sampling increment
at the sampling stateSti , the lower the quality of the next
sampling state. Therefore, in general, greedy methods may not
provide optimal sampling functions with respect to the overall
sampling cost.

We considerquality of next sampling states in dynamic
programming-based TANS methods. For the sampling state
Sti , a cost-to-go functionJf (Sti) is defined as follows:

Jf (Sti) = c(Sti , Ti) + βc(Sti+1
, Ti+1) + · · · (20)

=
∑

j≥i

βj−ic(Stj , Tj).

In this setup,0 < β < 1 is called adiscount factor. An
interpretation of this factor is that the cost of the next sampling
state is less important for the current state policy by a factor
of β. Another interpretation of this factor is that the process
may be ended at each sampling state with probability1 − β.
An optimal cost-to-go functionJ(Sti) of the sampling state
Sti is defined as follows:

J(Sti) = inf
f

Jf (Sti). (21)

A Bellman-Ford equation (BFE) can be written for this
problem by using cost-to-go functions of different sampling
states as follows:

J(Sti) = inf
Ti

(
c(Sti , Ti) + βE[J(Sti+1

)]
)
. (22)

A solution of this Bellman-Ford equation (BFE) is an optimal
solution for the sampling problem presented in Definition 1
when the reconstruction function is causal. We investigatethis
problem for various signal models and sampling setups in this
section. For some cases where the number of sampling states
is not large, an optimal sampling function can be derived.
In other cases where finding this optimal solution is com-
putationally difficult, we propose sampling functions based
on approximate dynamic programming (ADP) algorithms. We
define aquality functionq(Sti) for each sampling stateSti . A
greedy solution is used to define this quality function. Then,
a sampling function can be computed as follows:

Ti = arg inf
T

c(Sti , T ) + βE[q(Sti+1
)] (23)

subject to T ≥ 1.

In this setup, we consider quality effects of just one sampling
state ahead. Also, note that the solution of the BFE is optimal



TIME-STAMPLESS ADAPTIVE NONUNIFORM SAMPLING FOR STOCHASTIC SIGNALS 7

if the reconstruction functiong(·) is causal. It is a necessary
assumption of the dynamic programming setup to have a
separation of sampling state costs at different stages.

A. An Online Source Coding Scheme Based on TANS

In this section, we consider a sampling problem where an
exact DP-based solution can be derived as a solution of the
BFE (22). Consider a Markovian signal with an underlying
hidden Markov chain depicted in Figure 3. For simplicity,
supposep01 = ǫ0 ≪ 1 and p10 = ǫ1 ≪ 1. Other regimes
of transition probabilities can be analyzed similarly. Suppose
X(t) is a binary signal generated by this underlying hidden
Markov chain so that, at state0, X(t) = 0, and at state1,
X(t) = 1. For the reconstruction, we use a causal function that
selects a most-probable binary sequence to fill missing places.
Hamming distance is used as an error measure. We call this
problem anonline source codingproblem since it does not
have a compression delay as in an unconstrained block source
coding scheme. In this problem, TANS can provide some
compression gain without having any delay. This problem can
be extended to Markov chains with more states and different
regimes of transition probabilities.

In this sampling problem, there are two different sampling
states: IfX(ti) = 0, then, Sti = 0; otherwise,Sti = 1.
Supposef(·) is the sampling function (i.e.,Ti = f(Sti).).
Supposef(Sti = 0) = T0 and f(Sti = 1) = T1. Hence,T0

andT1 represent sampling steps at different sampling states.

Sinceǫ0, ǫ1 ≪ 1, the reconstruction method would choose
all-0 and all-1 sequences whenSti = 0 andSti = 1, respec-
tively. SupposeSti = 0. Hence, the next sample is taken at
time ti+T0. An error happens if there is one or more Markov
chain transitions over the time interval[ti + 1, ti + T0 − 1].
To simplify our analysis, we only consider first-order error
terms (i.e., we assume at most one transition happens over a
time interval [ti + 1, ti + T0 − 1]). To have this simplifying
assumption, we need to restrict the sampling increments such
thatmaxT0, T1 ≪ min{ 1

ǫ0
, 1
ǫ1
}. Therefore, the probability of

having more than one Markov chain transition over a time
interval of a lengthT0 or T1 is negligible.

By considering Hamming distance as a distortion measure,
the sampling state cost atSti = 0 can be written as follows:

c(Sti , T0) =

T0−1∑

j=1

(1− ǫ0)
j−1ǫ0(T0 − j) +

ρ

T0
. (24)

Note that, (1 − ǫ0)
j−1ǫ0 is the probability of not having

a transition over the firstj − 1 samples of the sampling
interval and having a transition at thejth sample. Hence,
the considered reconstruction method makes errors on samples
from timeti+j to ti+T0−1, which corresponds to a Hamming
distance ofT0 − j. A similar argument can be made for the
case ofSti = 1.

By considering these sampling state cost functions, the BFE

can be written as follows:

J(Sti = 0) = min
T0,T1

[
c(Sti = 0, T0)

+β(1− ǫ0)
T0J(Sti = 0)

+β(1− (1− ǫ0)
T0)J(Sti = 1)

]
,

J(Sti = 1) = min
T0,T1

[
c(Sti = 1, T1)

+β(1− ǫ1)
T1J(Sti = 1)

+β(1− (1− ǫ1)
T1)J(Sti = 0)

]
.

Since these BFEs have only two variables, various numerical
and analytical methods can be applied to find their solution,
which in turn corresponds to an optimal sampling scheme in
TANS (e.g., see [17]). Simulation results for this sampling
scheme are given in Section VI.

B. Approximate Dynamic Programming Methods

Finding a solution of the BFE of a DP-based sampling
function may not be practically feasible if the sampling state
space is large or is unknown (or is known partially). In these
cases, approximate dynamic programming (ADP) algorithms
can provide suboptimal solutions with a reasonable computa-
tion complexity. In this section, we investigate an ADP-based
sampling function of TANS introduced in (23). To use this
approximate algorithm, for any sampling stateSti , a quality
measureq(Sti) is assigned. We use a greedy sampling solution
to define this quality function.

Consider a Markovian signalX(t) described in Sec-
tion III-B. A greedy sampling function for this signal is
introduced in Algorithm 6. We refer to this greedy sampling
function asfgreedy(·), whereT greedy

i = fgreedy(Sti).
A quality function of each state is defined as

q(Sti) = γT greedy
i (25)

where γ is a scaling parameter. Intuitively, the larger the
greedy sampling step, the higher the quality of the sampling
state. Therefore, an ADP-based sampling function of TANS
can be derived by using the optimization setup of (23).

For computing the expected quality of the next sampling
state, transition probabilities among different samplingstates
should be known. Suppose, at a sampling stateSti , the next
sample is taken after a time intervalTi. The value of the
sampleX(ti+Ti) is a random variable with a mean̂X(ti+Ti),
which can be computed by a generalized linear prediction
filter. The probability distribution ofX(ti + Ti) determines
the probability distribution of the next sampling stateSti+1

.
Therefore, the expected value of the quality function of the
next state can be computed by using this probability distri-
bution. However, to simplify this sampling function further,
one may approximate this expected quality by the quality of
the most probable next state, which has a sample value of
X̂(ti +Ti) at timeti+1. We call this statêSti+1

. Therefore, a
more simplified sampling function based on an ADP algorithm
can be written as

Ti = argmin
T

c(Sti , T ) + βq(Ŝti+1
).
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Fig. 4. Illustration of Corollary 5 by simulation. The red curve is the solution
of (9). The blue curve is optimal sampling rateT ∗. Note that, their difference
is always less than 1.

For any given stateSti and Ti = T , q(Ŝti+1
) can be

computed. Intuitively, the termβq(Ŝti+1
) is a correction term

for the greedy solution considering the quality of the next
sampling state. In this scheme, the quality of only one future
sampling state is considered. However, one can extend this
algorithm to consider the quality of more than one future
sampling state.

Algorithm 12: An approximate dynamic programming-
based sampling function for the Markovian signal of (3) can
be summarized as follows:

• Step i,0: ComputêθSti
, Pe(Sti) andq(Ŝti+1

).
• Step i,1: ComputeTi = min c(Sti , T |θ̂Sti

) + βq(Ŝti+1
).

• Step i,2: Take a sample at timeti + Ti.
• Step i,3: ComputeSti+1. Repeat.

Simulation results for this sampling procedure are presented
in Section VI.

VI. SIMULATION RESULTS

In this section, we evaluate the performance of the pro-
posed sampling schemes by simulations and compare their
performance against uniform sampling. In uniform sampling,
the sampling rate is always in the form ofR = 1/Tuni,
, where Tuni is a positive integer. To be able to compare
the performance of different methods with uniform sampling
at different rates, we modify the uniform sampling setup to
capture all possible sampling rates. To do this, for a given
rateR = 1/Tuni whereTuni is not an integer number, theith
sample is taken at timeti = round(Tuni).

First, we consider an autoregressive signal model introduced
in (2). In Theorem 4, we show that an optimal sampling
scheme for this signal is uniform. Also, Corollary 5 provides
a straightforward way to compute the optimal sampling rate.
Figure 4 illustrates this corollary for the case ofα = 0.99 (i.e.,
noise power is0.02) and for differentρ values. As shown in
this figure, the difference between the root of equation (9) and
the optimal incrementT ∗ is always less than 1.

Now, we consider Markovian signals introduced in (3).
Transition probabilities of the underlying MC are assumed
to be 0.001. We demonstrate the performance of different
sampling methods on a rate-distortion plots (Figures 5, 6
and 7). Rate refers to average sampling rate and distortion

0 0.1 0.2 0.3 0.4 0.5
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Average Distortion

A
ve

ra
ge

 S
am

pl
in

g 
R

at
e

 

 
pe=0
pe=0.05
pe=0.1
pe=0.15
pe=0.2

Fig. 5. Analytical rate-distortion curves of Theorem 8 for aMarkovian
signal of equation (3) with the signal parametersα0 = 0.01 and α1 =
0.99. Pe represents error probability of the estimation process.Pe = 0 curve
corresponds to the so-called genie-aided scheme.
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Fig. 6. Average sampling rate versus average reconstruction distortion for a
Markovian signal with parametersα0 = 0.01 andα1 = 0.99 for methods:
(i) uniform sampling with causal line-connecting (CLC) reconstruction, (ii)
uniform sampling with non-causal line-connecting (NCLC) reconstruction,
(iii) uniform sampling with generalized linear prediction(GLP) filtering (iv)
greedy TANS with generalized linear prediction (GLP) filtering, and (v)
analytical lower bound for greedy TANS based on Theorem 8.

refers to average reconstruction distortion per sample. Lower
curves in these plots indicate better performance.

Figure 5 shows analytical rate-distortion curves of Theo-
rem 8 for a Markovian signal of equation (3) for different
estimation error probabilities. Here, noise power in state0 of
the Markov chain is 0.05 (i.e.,α0 ≈ 0.97) and the noise power
in state 1 is 0.5 (i.e.,α1 ≈ 0.7). As illustrated in this plot, the
lower the error probability, the better the performance. Note
that the case wherePe = 0 is referred as a genie-aided scheme.

Figures 6 and 7 show rate-distortion curves achieved by
simulations for various schemes. The signal model is Marko-
vian (3) with parametersα0 = 0.01 andα1 = 0.99 in schemes
considered in Figure 6 and,α0 = 0.7 andα1 = 0.97 in the
ones of Figure 7. In greedy schemes, we use a maximum
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Fig. 7. Average sampling rate versus average reconstruction distortion for
a Markovian signal with parametersα0 = 0.7 andα1 = 0.97 for methods:
(i) uniform sampling with causal line-connecting (CLC) reconstruction, (ii)
uniform sampling with non-causal line-connecting (NCLC) reconstruction,
(iii) uniform sampling with generalized linear prediction(GLP) filtering (iv)
greedy TANS with generalized linear prediction (GLP) filtering, and (v)
analytical lower bound for greedy TANS based on Theorem 8.

likelihood estimation block withm = 10 to estimate the state
of the underlying Markov chain. For greedy TANS, we use
generalized linear prediction (GLP) filter as the reconstruction
method. Note that, this reconstruction is causal. For uniform
sampling, we use three reconstruction methods: causal line-
connecting (CLC), non-causal line-connecting (NCLC) and
GLP filtering. Although, it is not fair to compare performance
of greedy TANS with causal reconstruction with a uniform
sampling scheme with non-causal reconstruction, in the case
of Figure 6, greedy TANS outperforms uniform sampling
schemes including the one with a non-causal reconstruction
method. In the case of Figure 7, greedy TANS outperforms
uniform schemes with causal reconstructions. In the low-
distortion regime (distortion less than0.08), it also outper-
forms uniform sampling with non-causal reconstruction.

As illustrated in these figures, genie-aided greedy TANS
provides an analytical lower bound for greedy TANS in the
rate-distortion plot. The proposed greedy TANS performs
closely to this lower bound. Also, by choosing the estimation
error probability0.05 (estimated from simulations), an analyti-
cal upper bound for greedy TANS can be achieved as proposed
in Theorem 8. Moreover, by comparing two greedy TANS
schemes of these figures, we notice that the more different
α values of MC states, the more gain is provided by TANS
framework.

Figure 8 shows the performance of a dynamic programming-
based TANS scheme for an online source coding application
explained in Section V-A. Here, we assumeǫ0 = 0.1 and
ǫ1 = 0.01. To solve the Bellman-Ford equation (25), a value-
iteration method is used [17]. As shown in this plot, a DP-
based TANS scheme outperforms uniform sampling.

Figure 9 illustrates performance of a TANS scheme based
on approximate dynamic programming for a Markovian signal
explained in Algorithm 12. Here, we assume that underlying
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Fig. 8. A rate-distortion plot of a dynamic programming-based TANS for
an online source coding application explained in Section V-A.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Average Reconstruction Distortion

A
ve

ra
ge

 S
am

pl
in

g 
R

at
e

 

 

greedy TANS
DP−based TANS

Fig. 9. Comparison of a dynamic programming-based TANS withgreedy
TANS for a Markovian signal model.

Markov chain transition probabilities are 0.1 (i.e.,p01 = p10 =
0.1). The signal parameters are assumed to beα0 = 0.7 and
α1 = 0.99. As illustrated in this figure, a TANS scheme based
on ADP outperforms the greedy one.

VII. PROOFS

A. Proof of Theorem 2

To find a solution of the optimization problem (4), we use
similar techniques as for the regular linear prediction filter
[16]. Note that in an optimal scheme the error term should be
orthogonal to all known samples:

E
[
X(ti−k)e

∗(t)
]
= 0 (26)

for k = 0, . . . ,m − 1, where e∗(t) = X(t) −∑m−1
k=0 w∗

τk
X(ti−k).

By using (26) and (5), optimal weightsw∗
τi

, for 0 ≤ i ≤
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m− 1 should satisfy the following set of linear equations:

r(−τk) =

m−1∑

i=0

w∗
τi
r(τi − τk) (27)

for k = 0, . . . ,m− 1. By using matrix notations of (6), linear
equations of (27) can be written as follows:

p = Rw∗
τ .

B. Proof of Theorem 3

SinceX(t) has zero mean andX(t) = X̂(t) + e∗(t), by
using (26), we have

σ2
e∗(Sti , T ) = σ2

X − σ2
X̂

= r(0) − σ2
X̂
, (28)

whereX̂(t) = (w∗
τ )

T (XSti
). Therefore,

σ2
X̂

= E[|X̂(t)|2]

= (w∗
τ )

TE
[
(XSti

)(XSti
)T

]
w∗

τ

= (w∗
τ )

TRw∗
τ

= pTw∗
τ . (29)

Equations (28) and (29) establish the theorem.

C. Proof of Theorem 4

By using the definition of an AR(1) signal, the sampling
state cost can be written as follows:

c(Sti , T ) =

T−1∑

j=1

(1− α2j) +
ρ

T
. (30)

Hence, an optimal greedy sampling solution for this sampling
state cost can be computed as follows:

T ∗
greedy = argmin

T

T−1∑

j=1

(1− α2j) +
ρ

T
. (31)

Now, we show that this optimal greedy TANS (which is
a uniform sampling scheme) performs closely to an optimal
sampling scheme, which may be nonuniform. Consider a uni-
form sampling stateSti with an inter-state sampling increment
T ∗
greedy. The sampling state cost of this uniform sampling

scheme is referred to bycmin (this sampling state cost can be
achieved by havingT ∗

greedy as a solution of the optimization
setup (7)). First, we show that this uniform sampling scheme
satisfies the BFE (22). Since under this sampling scheme,
Sti+1

= Sti , therefore, the cost-to-go function at the sampling
stateSti can be written as follows:

Jf (Sti) = c(Sti , Ti) + βc(Sti+1
, Ti+1) + · · ·

= c(Sti , T
∗
greedy)

(
1 + β + β2 + · · ·

)

=
cmin

1− β
. (32)

Now, consider the right hand side (RHS) of the BFE (22):

RHS of BFE = min
Ti

(
c(Sti , Ti) + βE[Jf (Sti+1

)]
)

= cmin + β
cmin

1− β

=
cmin

1− β
= Jf (Sti). (33)

Therefore, the above uniform sampling scheme satisfies the
BFE whenSti (i.e., the initialization state) happens to be a
uniform sampling state with an inter-state sampling step size
T ∗
greedy. If the process starts from another sampling state, we

assume that there is always a way to reach to this uniform
sampling state (e.g., takem uniform samples with a sampling
incrementT ∗

greedy). Moreover, the mapping functions between
policies and costs are continuous. Hence, a small difference
in costs due to initialization effects has a small effect in
sampling policies. Therefore, for an AR(1) signal model, the
optimal greedy TANS (which is uniform) performs closely to
an optimal sampling scheme (which may be nonuniform).

D. Proof of Corollary 5

Defineh(T ) = (1− α2T )− ρ/(T (T + 1)) for T ∈ [1,∞).
Note thath(T ) is a continuous function over this interval.
Sinceh(1) = (1−α2)−ρ/2 < 0 andlimT→∞ h(T ) = 1 > 0,
by using the mean value theorem,h has a rootTroot in [1,∞).
Sincedh(T )/dT > 0, this root is unique, completing the proof
of part (i).

For an AR(1) signal, we have:

h(T ) = c(Sti , T + 1)− c(Sti , T ) = (1− α2T )−
ρ

T (T + 1)
.

Since T ∗ = argminT c(Sti , T ) and alsoT ∗ is an integer,
either T ∗ = ⌊Troot⌋ or T ∗ = ⌊Troot⌋ + 1, completing the
proof of part (ii).

E. Proof of Theorem 8

Under conditions of (10), (11) shows the sampling state cost
given θ̂Sti

= 0. By using the sampling scheme proposed in
Algorithm 6, we have:

Ti = argmin
T

c(Sti , T |θ̂Sti
= 0). (34)

Sinceσ2
max ≥ 1, by havingP low

e ≤ P (Sti) ≤ P up
e , given

θ̂Sti
= 0, we have:T low

0 ≤ Ti ≤ T up
0 . Similarly, one can

show that, givenθ̂Sti
= 1, T low

1 ≤ Ti ≤ T up
1 . Since the

underlying Markov chain is symmetric (i.e.,p01 = p10), in
steady state,̂θSti

= 0 approximately half of the time and
θ̂Sti

= 1 approximately half of the time. Hence, the number
of samples taken in that state by using the proposed sampling
scheme of Algorithm 6 is bounded between

Ttot

2T low
0

+
Ttot

2T low
1

and
Ttot

2T up
0

+
Ttot

2T up
1

.

This demonstrates the sampling rate bounds. By using bounds
on Ti andPe(Sti) in (11), deriving bounds on the expected
reconstruction distortion is straightforward.
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VIII. C ONCLUSION

In this paper, we introduced a new framework for an
adaptive nonuniform sampling scheme calledtime-stampless
adaptive nonuniform sampling(TANS). The key idea of
this framework is that,time increments between samples are
computed by using a function of previously taken samples.
Therefore, keeping sampling times (time stamps), except ini-
tialization times, is not necessary. We introduced two meth-
ods to design sampling functions for discrete-time stochastic
signals: a greedy method, and a method based on dynamic
programming. We analyzed the performances of these schemes
by computing (or bounding) their trade-offs between sampling
rate and expected reconstruction distortion for autoregressive
and Markovian signals. We showed that, by being time-
stampless and opportunistically adapting to local signal char-
acteristics, TANS can provide significant rate-distortiongains,
which can be translated to improved power efficiency in some
applications.
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