
MIT Open Access Articles

A Real-time 802.11 Compatible Distributed MIMO System

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

As Published: 10.1145/2829988.2790042

Publisher: Association for Computing Machinery (ACM)

Persistent URL: https://hdl.handle.net/1721.1/134276

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/134276
http://creativecommons.org/licenses/by-nc-sa/4.0/

Real-time Distributed MIMO Systems

Ezzeldin Hamed Hariharan Rahul Mohammed A. Abdelghany Dina Katabi
Massachusetts Institute of Technology

ABSTRACT

Recent years have seen a lot of work in moving
distributed MIMO from theory to practice. While this
prior work demonstrates the feasibility of synchroniz-
ing multiple transmitters in time, frequency, and phase,
none of them deliver a full-fledged PHY capable of sup-
porting distributed MIMO in real-time. Further, none
of them can address dynamic environments or mobile
clients. Addressing these challenges, requires new solu-
tions for low-overhead and fast tracking of wireless chan-
nels, which are the key parameters of any distributed
MIMO system. It also requires a software-hardware ar-
chitecture that can deliver a distributed MIMO within
a full-fledged 802.11 PHY, while still meeting the tight
timing constraints of the 802.11 protocol. This archi-
tecture also needs to perform coordinated power con-
trol across distributed MIMO nodes, as opposed to sim-
ply letting each node perform power control as if it
were operating alone. This paper describes the design
and implementation of MegaMIMO 2.0, a system that
achieves these goals and delivers the first real-time fully
distributed 802.11 MIMO system.

CCS Concepts

•Networks → Network protocols; Wireless ac-
cess points, base stations and infrastructure;
•Hardware → Digital signal processing;

Keywords

Wireless Networks, Multi-user MIMO, Distributed
MIMO

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than the author(s) must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.

SIGCOMM ’16, August 22 - 26, 2016, Florianopolis , Brazil

c© 2016 Copyright held by the owner/author(s). Publication rights licensed to
ACM. ISBN 978-1-4503-4193-6/16/08. . . $15.00

DOI: http://dx.doi.org/10.1145/2934872.2934905

1. Introduction

Distributed MIMO has long been studied in the-
ory because of its ability to dramatically increase the
throughput of wireless networks [3, 14, 16, 9]. Recent
years have seen significant interest in moving distributed
MIMO from theory to practice. Multiple papers [11, 4,
17] have demonstrated the ability to synchronize dis-
tributed transmitters to enable them to concurrently
transmit to multiple independent receivers, without in-
terference.

The primary focus of past work has been to synchro-
nize time, frequency and phase across multiple trans-
mitters. While this is an important first step, several
additional critical challenges need to be addressed in or-
der to deliver practical distributed MIMO. Specifically,
for distributed MIMO to work in practical settings they
need to operate in real-time while being able to sustain
their gains. They also need to adapt to dynamic envi-
ronments with users moving around and the possibility
of mobile clients.

This paper describes the design and implementation
of MegaMIMO 2.0, the first real-time fully distributed
802.11 MIMO system. MegaMIMO 2.0 delivers a full-
fledged 802.11 PHY, while meeting the tight timing con-
straints of the 802.11 protocol. It also supports dynamic
environments and mobile clients. To achieve its perfor-
mance goals, MegaMIMO 2.0 has to address the follow-
ing key challenges:

(a) Real-time channel updates: At the heart of all
distributed MIMO designs, there is a core subsystem
that measures the channels from all the transmitters to
all the different end users and uses them to apply desired
beamforming and nulling. For any real-time system,
these measurements have to be collected and updated
on the scale of tens of milliseconds. Even in today’s
point-to-point MIMO systems, the process of collecting
channel measurement is known to be high overhead [10].
The problem becomes quadratically more expensive in a
distributed MIMO scenario because all senders have to
measure channels to all clients for all subcarriers.

To illustrate how significant a problem overhead is,
we simulate a distributed system consisting of N access
points and N clients. We use typical feedback parame-
ters (8 bits magnitude and phase for all OFDM subcar-

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

P
e
rc

e
n
ta

g
e
 O

ve
rh

e
a
d

Channel feedback interval (ms)

4x4
8x8

16x16

Figure 1: Channel feedback overhead for dis-
tributed MIMO system. The figure shows that at
typical coherence times of about 100ms, the channel
feedback overhead can significantly limit the gains of
distributed MIMO systems, particularly as they scale
to more nodes. For mobile clients with lower coherence
times, the overhead is even higher.

riers, and QPSK with 1/2 rate for the channel feedback
data with proper headers and DIFS), and evaluate over-
head for various channel feedback intervals. Fig. 1 plots
this overhead as a percentage of medium occupancy. As
we can see, the overhead increases drastically with the
number of users and can consume most of the wireless
medium resources for large distributed MIMO systems.
In fact, for a 16 × 16 system, feedback consumes most
of the channel time at typical indoor coherence times of
100 ms. The overhead is even bigger for mobile clients
with lower coherence times. It is therefore clear that for
a real-time distributed MIMO system to be plausible,
it cannot rely on explicit feedback and needs to devise
other mechanisms to update channel information at low
cost.

Addressing this problem in the context of distributed
nodes is not easy. The natural approach for eliminating
channel feedback would be to use channel reciprocity.
Reciprocity refers to the property that the over-the-air
channel from a node, say node A, to another node, say
node B, is the same as the over-the-air channel from
node B to node A. Point-to-point MIMO systems have
leveraged reciprocity to enable a transmitter to infer
the forward channel from its measurements of the re-
verse channel, without the need for any receiver feed-
back. They do this by performing a one-time computa-
tion of a constant calibration factor that compensates
for the part of the channel introduced by the transmit
and receive hardware, and correcting their estimate of
the forward channel from A to B by applying this cal-
ibration factor to the reverse channel from B to A. In
contrast, we demonstrate that in distributed MIMO sys-
tems, there is no such constant calibration factor that
can be computed one-time, and applied to correct for
reciprocity. We present a mathematical model that cap-
tures the variations in the calibration factor in a dis-
tributed system. We also introduce a protocol that com-
putes these variations without additional transmission
overhead, thereby extending the benefits of reciprocity
to distributed MIMO systems.

(b) Power control: Practical wireless systems all use
Automatic Gain Control (AGC), an analog module that
dynamically adjusts the received signal to ensure it fills
the range of the ADC. However, in a distributed MIMO
system, the nodes must maintain a consistent view of
the channels and other signaling information (e.g., their
phase with respect to the lead access point). Further-
more, the measurements of the channels and signaling
information have to be consistent across time. These re-
quirements are at odd with today’s AGCs, which oper-
ate independently from the AGCs on other nodes and
have no memory across packets. Of course, one way to
address this problem is to deactivate any individual con-
trol of AGC across the different devices.1 However, doing
this is not acceptable for any practical system, since the
loss of data rates due to the inability to control power
will translate to a large performance loss, defeating the
very purpose of distributed MIMO.

MegaMIMO 2.0 therefore designs a system that in-
fers the AGC parameters from the hardware on a per-
packet basis, and incorporates these parameters into
both distributed MIMO signaling and channel estima-
tion.

(c) Rearchitecting the baseband and firmware:
Distributed MIMO requires redesigning the firmware-
hardware interface. Event timing in the existing Wi-
Fi stack is local to each device. Thus, the firmware-
hardware interface operates on event sequence, and tim-
ing is buried into the hardware. In contrast, in a dis-
tributed MIMO system, the hardware needs to react
to interactions between devices, and perform coordi-
nated actions across multiple devices, as opposed to
purely local timing interaction like in traditional Wi-Fi.
MegaMIMO 2.0 extends the interface between the PHY
and the MAC to support such distributed coordination,
and further enhances the real-time component of the
MAC to enable it to effect this distributed coordination
using local actions at each node.

We have built MegaMIMO 2.0 in a system-on-
module comprised of an FPGA connected by a high-
speed bus to an ARM core. Our implementation fea-
tures a real-time full-fledged 802.11 PHY capable of dis-
tributed MIMO. We evaluated our system in an indoor
deployment consisting of multiple 802.11 distributed-
MIMO capable APs and unmodified 802.11 clients in
an indoor testbed. Our results show the following:

• MegaMIMO 2.0 can deliver a real-time distributed
MIMO system capable of adapting to mobile de-
vices and dynamic environments with people walking
around. In particular, a four-AP distributed MIMO
system running MegaMIMO 2.0 delivers a median
throughput of 120Mb/s and a maximum through-
put of 194 Mb/s to four clients mounted on moving
Roomba robots.

1This is typically the case in USRPs which have no sup-
port for AGC and on which prior systems have been
demonstrated.

• MegaMIMO 2.0’s reciprocity is both accurate and nec-
essary for high throughput. Specifically, in a fully
static environment, beamforming using reciprocity
and beamforming using explicit feedback deliver the
same gain. In contrast, in a mobile environment with
four APs and four mobile clients, explicit feedback re-
duces the median throughput by 20% in comparison to
reciprocity, due to feedback overhead. However, reduc-
ing the feedback rate can decrease the throughput by
as much as 6x due to stale channel information. These
results show the importance of using reciprocity even
in a relatively small 4×4 distributed MIMO system.
Since the feedback overhead increases quadratically
with the size of the distributed MIMO system, we ex-
pect that reciprocity is even more essential for larger
systems.

• MegaMIMO 2.0’s ability to accommodate distributed
power control is critical. In the absence of distributed
gain control, the throughput of clients drops dramati-
cally as the channels between some APs and clients
become significantly weaker than channels between
other APs and clients. Our experiments show a re-
duction of 5.1× in throughput when we deactivate
MegaMIMO 2.0’s distributed power control.

2. Related Work

There is a large body of theoretical work that an-
alyzes the performance gains provided by distributed
MIMO, and shows that it can scale wireless throughput
with the size of the network [3, 14, 16, 9]. Motivated
by these results, recent years have seen significant re-
search effort in moving theory to practice [11, 4, 17, 2].
While these systems differ in details, they focus only on
the problem of synchronizing the transmitters in time,
phase and frequency, do not address power control and
the overhead of learning and tracking the channels. Fur-
ther, they demonstrate their results using one-shot chan-
nel measurements, and unlike MegaMIMO 2.0, do not
design or show a full fledged physical layer or a real-
time system capable of dealing with moving clients and
dynamic environments.

There is a recent industry effort that targets build-
ing distributed MIMO systems [7, 1, 6]. However, exist-
ing systems are all based on CoMP(cooperative multi-
point), which assumes a shared clock, distributed either
via GPS or a wire, and a dedicated high throughput
fiber backhaul infrastructure to deliver signals to all
antennas with very high throughput and carefully con-
trolled latencies. Examples of such systems are PCell [7,
1] and a demonstration by Ericsson [6]. In contrast,
MegaMIMO 2.0 operates with fully distributed indepen-
dent radios, and does not need a single clock. Further, it
introduces a new technique for extending reciprocity to
distributed MIMO systems and presents detailed evalu-
ation results.

Also related to our work are papers studying the
use of reciprocity for channel estimation [5, 8, 13]. The
growth of massive MIMO systems has led to interest

in scalable channel estimation techniques [12]. However,
all these systems assume that all the antennas being
calibrated for reciprocity share a single clock, and are
on the same device. As a result, they do not extend to
distributed scenarios where the different devices do not
share a clock, and perform independent gain control.
MegaMIMO 2.0 demonstrates how to extend reciprocity
to these distributed scenarios, thereby enabling scalable
channel estimation for distributed MIMO.

MegaMIMO 2.0 builds on the above related work
but fills in an important gap by delivering the first fully
operational 802.11 distributed MIMO PHY. This per-
formance is enabled by novel techniques for extending
reciprocity to distributed MIMO, coordinating power
control, and providing a software-hardware architecture
that can meet the strict timing constraints of distributed
MIMO.

3. MegaMIMO 2.0 Overview

MegaMIMO 2.0 is a combined hardware-software
system that performs distributed MIMO across multi-
ple APs to multiple clients. The hardware implements a
fully 802.11 a/g/n compatible PHY with enhancements
to support distributed MIMO. The software running at
each AP performs calibration of that AP for adapting
uplink channel estimates and performing power control.
Additionally, the software at each node performs dis-
tributed MIMO, tracking channels to each client, and
coordinating between APs to perform distributed beam-
forming to the clients.

MegaMIMO 2.0 is designed to work across a dis-
tributed set of nodes without requiring a shared clock
across the nodes. It builds upon a prior such system,
MegaMIMO [11], and extends its design and implemen-
tation to support reciprocity, distributed power control,
and a full-fledged real-time 802.11 PHY. At a high level,
MegaMIMO works as follows. One AP acts as the lead
AP (master AP), and all other APs act as slaves. Each
slave AP maintains a reference channel from the lead
AP. A joint transmission is initiated by the lead AP by
transmitting a synchronization header, followed after a
fixed time by the data. Each slave hears the synchro-
nization header, compares it to the reference header to
estimate its oscillator phase drift from the master, and
corrects for this phase drift before jointly transmitting
its data. We refer the reader to [11] for the full details
of the system.

In the following sections, we describe each of the
components of MegaMIMO 2.0.

4. Channel Update and Tracking

Knowing the channels is a core requirement for any
multi-user MIMO system. In order for the AP to ap-
ply MIMO techniques like beamforming and nulling, it
needs to know a priori the downlink channels to the
clients. However, learning the downlink channels and
tracking them as they change over time can cause ex-
cessive overhead for the system, as shown in Fig. 1. The

AP

Cli

hup,1

hdown,1 hdown,2
hup,2

Figure 2: A 2-antenna AP transmitting to a 1-
antenna client. With reciprocity based channel esti-
mation, the AP would need to estimate the downlink
channels hdown,1 and hdown,2 from the uplink channels
hup,1 and hup,2.

overhead quickly increases for distributed MIMO as the
number of participating APs and clients increases, and
can eat up most of the gains even for relatively moder-
ate sized distributed MIMO systems with, say, 8 or 16
APs. In this section, we describe a completely passive
approach for learning the downlink channels and updat-
ing them in real-time. Our approach extends the nor-
mal reciprocity concept used in point-to-point MIMO
to infer downlink channels from uplink channels. Below,
we explain how reciprocity is used in today’s MIMO,
the challenges in extending the same concept to dis-
tributed MIMO, and finally our solution for addressing
those challenges.

4.1 Reciprocity in Traditional MIMO

Let us consider the simple example in Fig. 2 where a
two-antenna AP is communicating with a single-antenna
client. As mentioned earlier, to perform MIMO tech-
niques, the AP needs to know the downlink channels
hdown,1 and hdown,2 to the client. The most straightfor-
ward approach would be to have the AP transmit on the
downlink to the client from both antennas, and have the
client measure the channels and transmit them back to
the AP.2 Alternatively, the AP can avoid the feedback
overhead by leveraging the concept of reciprocity, which
says that the forward channel on the air is the same as
the reverse channel on the air. Thus the AP can leverage
the client’s transmissions to measure the uplink channels
hup,1 and hup,2. It can then convert them to downlink
channel estimates by multiplying them by a calibration
factor, Ki, as follows:

hdown,1 = K1hup,1

hdown,2 = K2hup,2

The calibration factor compensates for the fact that
the measured channels include the hardware of the AP
and the clients, as well as the air channels. Specifically,
the downlink channels include the impact of the trans-
mit chain on the AP and the receive chain on the client,
2The client would need to measure the channels for all
subcarriers and send them back to the AP.

while the uplink includes the transmit chain on the client
and receive chain on the AP. Thus,

K1 =
htx,AP,1

hrx,AP,1

/
htx,Cli,1

hrx,Cli,1

K2 =
htx,AP,2

hrx,AP,2

/
htx,Cli,1

hrx,Cli,1

From the above, it might seem that the calibration
factor used at the AP are client dependent. However,
this is not the case. Specifically, MIMO systems do not
need the exact values of the channels but rather need the
relative ratios of the channels from the different trans-
mit antennas.3 [15]. Therefore, instead of computing the
above channels, we can divide all channels by K1, and
compute the following MIMO channels.

h′
down,1 = hup,1

h′
down,2 = C2hup,2

where this new calibration factor:

Ci =
htx,AP,i

hrx,AP,i

/
htx,AP,1

hrx,AP,1

is independent of the client.
Further, this calibration factor, Ci, is independent of

time and can be computed once and used for all further
transmissions from this AP.

4.2 Reciprocity in Distributed MIMO

Ideally, one would like to leverage the concept of
reciprocity to learn the downlink channels without any
client feedback, as is the case for traditional MIMO. Un-
fortunately, the traditional reciprocity formulation does
not extend to distributed MIMO, i.e., there is no such
constant factors that can be computed once and used to
infer the downlink channels from the uplink channels.

To understand why this is the case, let us go back
to our previous example and assume that instead of two
independent APs, we have two APs each with one an-
tenna. In principle, a distributed MIMO system aims to
emulate a traditional MIMO system with all the anten-
nas on one humongous transmitter. Unfortunately, now
each antenna is on a different AP, which has a separate
oscillator and hence the two antennas would have car-
rier frequency offsets relative to each other. This simple
fact means that the calibration factor Ci is no longer
constant over time. Recall that the calibration factor is
defined as:

Ci =
htx,AP,i

hrx,AP,i

/
htx,AP,1

hrx,AP,1

When the two antennas are on the same device, they
are connected to the same oscillator, and therefore their
hardware chains do not change with respect to each

3In fact, all channels get eventually scaled by the trans-
mit power and therefore, all measurements are up to a
scaling factor.

other. However, when the two antennas are on indepen-
dent APs, they are connected to different oscillators.
Since the oscillator is part of the hardware chain, the
differences between oscillators are part of the calibra-
tion factor. However, the differences between oscillators
do not stay constant over time since their phases ro-
tate relative to each other according to their CFO. In
particular, say that the first oscillator has a carrier fre-
quency ω1 and the second oscillator has a carrier fre-
quency ω2 = ω1+∆ω21. Then, the calibration factor Ci

changes over time as

Ci(t) = Ci(0) exp(j2∆ω21t) (1)

Two points are worth noting.

• First, one option to compute the calibration with re-
spect to the lead AP is to compute the CFO with
respect to the lead AP, and update the calibration
factor according to Eq. 1. As mentioned earlier, and
is widely known, this does not work in a distributed
MIMO system since even small errors in computing
the CFO accumulate over time leading to unaccept-
able errors in the estimate.

• The factor of two in Eq. 1 arises from the fact that
MegaMIMO 2.0 needs to correct uplink channel esti-
mates for the phase offset between master and slave
and convert them to correct downlink channel es-
timates. In contrast, MegaMIMO directly corrects
downlink channel estimates for the phase difference
between the master and the slave.

In the following section, we describe a protocol that
extends distributed MIMO to account correctly for this
factor.

4.3 Distributed Reciprocity

We use the term distributed reciprocity to refer to the
extension of the reciprocity context to distributed envi-
ronments. Thus, the objective of distributed reciprocity
is to compute the time dependent calibration parame-
ter Ci(t) which allows the distributed MIMO system to
infer the downlink channels from the uplink channels.

Recall that, in distributed MIMO, there is a lead AP
and multiple slave APs, and all the slave APs calibrate
with respect to the lead AP. In the context of reciprocity,
this means that the lead AP simply uses its uplink chan-
nel estimates as its downlink channel estimates without
any correction, and all slave APs have to compute their
downlink channel estimates as their uplink channel esti-
mates corrected by their calibration factor with respect
to the lead AP, i.e., the ∆ω in Eq. 1 is the CFO relative
to the lead AP.

As mentioned earlier, simply estimating the phase
offset using the CFO will lead to large errors. Thus, in-
stead of computing the value of the calibration factor
over time, we only compute the instantaneous value of
the calibration factor exactly when the channel is mea-
sured, i.e., we compute the difference between the os-
cillator phase on the master and the oscillator phase on

the slave at the exact time as the uplink channel mea-
surement.

MegaMIMO 2.0’s calibration occurs in two steps: ini-
tialization and update. The initialization step occurs at
reboot or when the AP joins the distributed MIMO sys-
tem. It estimates both the magnitude and phase of the
calibration parameter at the initialization time. The up-
date step is invoked upon any reception from a client.
It assumes the existence of some prior estimate of the
calibration factor, and updates that prior estimate to
account for change of phase relative to the lead AP.

We first describe the initialization step. The goal of
this step is twofold. First, it estimates the magnitude
and phase of the calibration parameter, as mentioned
earlier. Second, it computes a reference channel from
the lead AP to the slave AP, which is used during the
update step, as described later.

The step consists of two back to back transmissions,
the first from the lead AP to the slave, and the second
from the slave AP to the lead. The slave measures the
channel from the lead AP, hAP1→i, using the pream-
ble of the first transmission and the lead measures the
channel from the slave AP, hAPi→1, using the preamble
of second transmission. By reciprocity, the forward air
channel between the lead AP and the slave AP is the
same as the reverse air channel. Hence, the slave can
compute the initial calibration factor as:

Ci(0) =
hAPi→1

hAP1→i

Additionally, the slave stores the channel from the lead
AP, hAP1→i as a reference channel, hlead(0).

We now explain the update step. For this step, we
introduce the concept of a synchronization trailer. Sim-
ilar to how a synchronization header synchronizes the
transmission functions of slave APs during a joint trans-
mission in distributed MIMO [11], we use a synchroniza-
tion trailer here to synchronize the reception function on
the slave APs. Specifically, when the client transmits its
data, the lead AP follows the client transmission with
a synchronization trailer. In fact, MegaMIMO 2.0 lever-
ages the MAC layer ACK transmission from the lead
AP which acknowledges the client’s data to act as a
synchronization trailer at all the slaves.

Each slave uses the preamble of the trailer to com-
pute the channel from the lead, hlead(t) at that point
in time. Now that the slave has an estimate of the lead
channel both at time 0 and at time t, it can compute the
total rotation, φ(t), of its oscillator relative to the lead
AP as the difference between the two phases. Specifi-
cally,

φ(t) = ∆ωt = angle(hlead(t))− angle(hlead(0))

The slave then computes the updated calibration pa-
rameter at the current time t as

Ci(t) = Ci(0)exp(j2φ(t))

and uses this updated calibration parameter to compute
the downlink channel estimate.

However, these computed downlink channel esti-
mates cannot directly be used for beamforming and joint
transmission by the slaves. This is because the down-
link channels for different clients are now estimated at
different times (specifically, the times of their respec-
tive uplink transmissions). Recall that this is different
from [11] where the APs jointly estimate downlink chan-
nels to all clients. As a result, during joint transmission,
MegaMIMO 2.0 slaves cannot apply a single phase cor-
rection to the beamformed packet to account for the
oscillator rotation between channel estimation and joint
transmission to all clients, unlike in [11]. To account
for this, MegaMIMO 2.0 instead performs an additional
phase correction step during channel estimation. Specif-
ically, each slave, after computing the instantaneous
downlink channel estimate from the uplink client trans-
mission as described above, then applies an additional
phase rotation to infer the downlink channel estimate at
an earlier time, specifically time 0. Note that the slaves
can do this simply using the reference master-slave chan-
nel at time 0 (hlead(0)), as well as the master-slave chan-
nel estimate at time t from the synchronization trailer.
After this step, each slave then has an estimate for the
downlink channel to each client as if it was measured
at time 0, independent of the actual time of the uplink
transmission.

These computed downlink channel estimates can be
used for beamforming, nulling etc. in future joint trans-
missions as described in prior papers [11].

5. Power Control

Power control is a fundamental aspect of any wireless
communication system. In particular, wireless receivers
need to perform adaptive gain control to amplify their
received signal and ensure that it maximally utilizes the
range of the receiver ADC. Similarly, wireless transmit-
ters need to scale their transmit power to fill the range
of their DAC.

In point-to-point MIMO, each node performs power
control locally. However since distributed MIMO in-
volves the joint operation of multiple transmit and re-
ceive chains across multiple APs, one needs to ensure
that power control across all these distributed chains is
also coordinated. Below, we describe three key problems
that occur due to the interaction between distributed
MIMO and power control, and our corresponding solu-
tions.

5.1 Coordinating AGC across time

The first step in a receive chain is a subsystem called
Adaptive Gain Control (AGC), which constantly mon-
itors the analog signal, and scales it up or down in the
analog domain to make sure it fills the range of the ADC.
For example, if your receiver has a 12 bit ADC, you
would like your incoming signal to cover somewhere in
the range of 10-12 bits. If the incoming signal is too

−0.5 0 0.5 1 1.5 2 2.5 3 3.5
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Phase error (radians)

Figure 3: Histogram of the difference in phase
between different AGC gains. The figure shows that
there are very large differences in phase across the differ-
ent gain settings, in fact as large as π radians. Different
gain ranges involve activation of different elements of
the analog RF front-end, and hence can introduce sig-
nificantly different phase shifts.

large, the AGC will scale it down so it does not get
clipped. If the incoming signal is too small, the AGC
will scale it up so that it has enough bit resolution.

The AGC has no memory across packets and makes
a fresh gain decision for each packet. This unfortu-
nately creates problems for distributed MIMO, which
requires a predictable relationship between channel mea-
surements across time.

Recall that distributed MIMO works by having each
slave node maintain an estimate of its channel from the
lead AP. Every time the slave hears from the lead, it
recomputes this channel estimate. It assumes that any
change in the phase of the channel estimate is due to os-
cillator drift between master and slave, and hence com-
pensates for the change in channel phase. This process
can interact adversely with the AGC function. Specifi-
cally, since the AGC has no memory between packets,
it makes an independent scaling decision every time it
hears a new signal from the lead. While, in principle, the
decision should be similar since the signal is coming from
the same source, in practice, due to noise in the medium,
there is a level of uncertainty in the AGC decision. Dif-
ferent AGC decisions can introduce different scaling of
the estimated channel, which the slave would incorrectly
attribute to oscillator drift, leading to synchronization
errors. Note that AGC scaling involves both magnitude
and phase as different gains involve activating different
elements of the analog chain. In fact, even a small vari-
ation of one step in the AGC can introduce very large
variations in phase. For instance, in our step, changing
the AGC gain by just 1 dB (for instance, from 34 to 35
dB) can introduce a phase change of π radians (since

this activates a different analog element - this is an in-
verting amplifier in our RF front-end). Not accounting
for this would completely destroy the synchronization of
the slave with the lead AP.

MegaMIMO 2.0 addresses this problem by inferring
the phase introduced by each gain setting, and correct-
ing for it on a per-packet basis so that it does not
impact the synchronization of distributed MIMO. Es-
timating the phase introduced by the AGC, however, is
not straightforward. The problem is that the hardware
knows the AGC setting; however, it does not know the
phase introduced by each specific setting. So, the device
needs to calibrate the phase introduced by each gain
value. Note that these phases are not the same across
all radios from the same manufacturer; in fact, every in-
dividual device needs to do this calibration on its own
to account for hardware variations.

MegaMIMO 2.0 performs this calibration as follows.
For each antenna, the device transmits and receives on
the same antenna measuring the loopback channel. It
does this by operating the AGC in a mode where the
AGC gain is set manually, and then stepping through
the entire range of gains supported by the RF chain.
For each gain setting, it measures the received chan-
nel. Of course, this received channel contains phase con-
tributions from both the actual channel as well as the
gain setting. However, note that as described earlier,
MIMO only needs channel measurements relative to a
reference. The same principle applies here, and hence
MegaMIMO 2.0 simply computes the change in phase
of the measured channel relative to the channel at a
reference gain setting.

Note that simply doing this process naively by trans-
mitting the same signal and simply changing the re-
ceived gain setting will not work correctly. This is be-
cause the loopback channel is typically quite strong,
and hence setting a high gain setting will cause the
receiver to saturate and therefore report an incorrect
channel. Hence, MegaMIMO 2.0 performs the process
in two steps: It first estimates the ideal gain setting for
the loopback channel by running the AGC in its regu-
lar mode where it is free to adapt the gain to the op-
timal setting. The hardware reports this gain setting
to the calibration software. As the calibration software
increases the receiver gain above this optimal AGC set-
ting, it simultaneously digitally scales down the trans-
mitted power by a corresponding amount. Specifically,
for an increase in X dB in the receive gain setting, the
calibration software applies a digital scaling factor of -X
dB to the transmitted signal. This ensures that the sig-
nal swing at the ADC stays in the optimal range even
as the gain setting is increased to larger values.

We calibrate all our boards using the technique de-
scribed above. Fig. 3 plots a histogram of the relative
phase between the different gains computed on differ-
ent boards and across different subcarriers. The figure
shows that it is essential to calibrate and account for the
phase changes introduced by gains. In fact, some gain

 0

 0.2

 0.4

 0.6

 0.8

 1

-4 -3 -2 -1 0 1 2 3 4 5 6 7

C
D

F

Magnitude error (dB)

Figure 4: CDF of the difference between nominal
and actual AGC gains. The figure shows that there
are significant differences between nominal and actual
gains, sometimes as large as 6-7 dB.

settings introduce a phase change as large as π radians.
Not correcting for this phase change would completely
destroy phase synchronization and beamforming in dis-
tributed MIMO. The same is true even of the smaller
changes. There are differences on the order of 0.2-0.3
radians, which if not corrected for, would cap the maxi-
mum achievable SNR at any client at around 12-14 dB.

It is worth noting that the phase correction for AGC
should be applied to all transmissions from the lead AP:
the reference channel, the synchronization header trans-
missions for joint transmissions, as well as the synchro-
nization trailer for client channel estimation transmis-
sions described in §4.3.

5.2 Coordinating AGC across space

As described in §4.3, channel estimation in
MegaMIMO 2.0 is performed independently by the dif-
ferent APs from a client’s transmission. Since each AP
applies gain control independently to its reception, the
client’s signal and hence the estimated channel from
the client is scaled differently at different nodes. If
these channels were simply communicated to the mas-
ter without accounting for the AGC at each slave, they
would each have an unknown scale component, and
hence could not be used for joint precoding. Hence, each
MegaMIMO 2.0 slave needs to compensate for the mag-
nitude (and phase) change introduced by its AGC before
communicating its estimated channels to the master.

Of course, the most straightforward way to do this
would be for the receiver hardware to simply undo the
effect of gain control. Specifically, if the receiver AGC
applies a gain setting of X dB, it could simply scale
down the measured channel magnitude by a correspond-
ing amount. Since Power(dB) = 20 log

10
(Magnitude),

we can compute the channel magnitude corresponding

to an AGC gain of XdB as 10
X

20 . However, this does not
work for two reasons. First, due to hardware variations,
a gain setting of X dB does not actually provide an exact
gain corresponding to that amount but has some errors
around that number. Second, even if the gain is accu-

rate, it represents an average gain across all subcarriers.
The actual gain in each subcarrier is different due to the
presence of various receive filters.

MegaMIMO 2.0 addresses this issue by extending
the calibration process described in the previous sec-
tion. Specifically, in addition to the change in phase in-
troduced by each gain, MegaMIMO 2.0 also computes
the ratio of the channel magnitude in each subcarrier
relative to the reference channel, during the calibration
step. It then corrects each reported channel by the mag-
nitude scaling factor in each subcarrier before using the
channel for further beamforming computations.

The result of this calibration process can be used
to see the effects of the deviation due to hard-
ware variations and across subcarriers described above.
Specifically, we convert the calibration factor for
each gain computed as described above to the ac-
tual power gain, X̂dB (this is simply computed as
20 log

10
(Calibration Factor). We then compute its dif-

ference from the nominal AGC gain, XdB expected for
that AGC setting. We repeat this process for all gain
settings and all subcarriers across all the boards in our
system. Fig. 4 plots the CDF of all these values. As can
be seen, the variations are significant, with the 90th per-
centile going to 1 dB, and the maximums as large as 6
dB. To understand the impact of this error, consider
a simple case where the difference between the nomi-
nal and actual AGC gain is 3 dB. Such an error can
lead to an incorrect estimate of the channel magnitude
by a factor of 1.4. Using a channel with this incorrect
magnitude to null another signal of comparable power
would lead to a residual noise of 0.4 times the magni-
tude of the channel, thereby capping the SNR of the sys-
tem to 20 log 10(1/0.4) = 8dB independent of the actual
SNR. This shows that calibrating AGC gain magnitude
is fundamental to the correct functioning of distributed
MIMO.

5.3 Coordinating transmit power

In distributed MIMO, each transmitter creates its
transmitted signal by multiplying the user data with a
precoding matrix. This precoding matrix ensures that
the joint transmission satisfies the desired beamforming
and nulling constraints. In principle, there are two ways
to perform this multiplication. The first way is to per-
form the multiplication completely in the digital domain
after which the signal is passed to the DAC and then to
the power amplifier (PA). The problem with this ap-
proach is that if the multiplier significantly reduces the
value of the signal such that it uses only a few bits of
the DAC, the final signal will have very low resolution.
Thus, a better approach is to split the multiplication
between the analog and the digital domain. Specifically,
the multiplication is split into two factors: the first is
applied in the digital domain and ensures that the sig-
nal after multiplication still spans the range of the DAC,
the second factor is then applied in the analog domain
by controlling the attenuation of the PA. This ensures

that the final signal has high resolution and therefore
improves the overall SNR of the system.

Of course, changing the attenuation of the PA can
cause phase offsets which one needs to precompensate
for in the digital domain. This effect is similar to the
AGC effect mentioned earlier and is calibrated using a
similar technique.

6. Architecture

In the previous sections, we have described algorith-
mic modifications to the PHY layer in order to support
efficient channel estimation and coordinated distributed
power control. In this section, we describe how to modify
the interface between the PHY and the MAC to support
distributed MIMO, and the design of the time critical
lower layer MAC subsystem to control the PHY.

A full-fledged distributed MIMO MAC has various
functions, including updating channels from clients, de-
termining which APs should jointly transmit to which
clients at any time, computing the associated precoding
matrices, and so on. Many of these functions occur at
long timescales, corresponding to multiple packets, and
we do not address these MAC functions in this paper.
This paper focuses on the PHY and the real-time con-
trols needed for the PHY.

The PHY interface to the MAC has two components:
control of the PHY transmit subsystem by the MAC,
and reporting from the PHY receiver subsystem to the
MAC. The interface enables the PHY to be stateless
across packets while still supporting distributed MIMO
functionality. We first describe the enhancements to the
interface, and then describe the enhancements to the
time critical MAC subsystem to utilize these enhance-
ments.

6.1 Transmitter PHY-MAC Interface

In the 802.11 standard, the interface between PHY
and MAC for a packet transmission is called TXVEC-
TOR. It provides the ability for the MAC to specify
for each packet the associated payload, payload length,
precoding matrix (if applicable), modulation and cod-
ing scheme (rate) to be used for the packet, and similar
metadata. For distributed MIMO, the PHY needs to
provide additional support for timing, phase, and fre-
quency synchronization.

In particular, it supports the following additional
functionalities:

Timing Synchronization: In addition to regular
CSMA/CA transmission, the PHY provides the ability
to transmit packets at specific time stamps defined rel-
ative to a system timer. This feature is to be used in
triggered transmissions which is described later in this
section.

Initial Phase Correction: For successful joint trans-
mission, all slave APs are required to correct for any
phase offset relative to the master AP at the instance of
transmission. In order to do so the PHY transmit inter-

face provides an initial phase correction capability. This
feature enables the MAC to define a slope and intercept
to be applied on the OFDM subcarriers for the given
packet. Using this initial phase correction all APs can
be configured to start the joint transmission with no rel-
ative phase offset. However, due to the frequency offset
between the APs the relative phase will keep changing
during the packet.

Frequency Offset Correction: This feature provides
the slave APs with the ability to correct for the rela-
tive frequency offset to the master AP during the given
packet. It enables the MAC to define two different rates
to correct for CFO and SFO. The first rate is the CFO
correction and is provided as a phase change per sam-
ple, while the second rate is the SFO correction and is
provided as a change in the phase slope (over the sub-
carriers) per symbol.

6.2 Receiver PHY-MAC interface

Similar to the TXVECTOR, the 802.11 standard de-
fines the RXVECTOR to provide the interface between
the PHY and MAC for a packet reception. For dis-
tributed MIMO, the PHY needs to provide additional
support for MAC in order to adapt the transmitter
metadata for future transmissions.

Specifically, for each packet, the receiver reports the
following:

Frequency Offset Estimation: The receiver com-
putes an estimate of the frequency offset with the trans-
mitter for each packet and reports it along with the re-
ceived data and other metadata to the MAC. The MAC
maintains this information for every master transmit-
ter, to be used in frequency corrections for future joint
transmissions.

Channel: The receiver also reports the measured chan-
nels in each subcarrier to the MAC. Depending on the
type of packet and its source, the MAC deals with the
channels differently: either as a reference channel from
the master, or as a channel corresponding to a synchro-
nization header to be used for phase synchronization
for joint transmission, or a channel measurement from
a client that can be utilized for later beamforming.

6.3 Real-time MAC interface to the PHY

In this section, we describe the real-time components
of the MAC that need to be implemented in hardware
to ensure timing, phase, and frequency synchronization.
Fig. 5 shows a schematic of the timing, frequency and
phase synchronization subsystem.

Timing Synchronization Subsystem: In order to
support timing synchronization, the real-time MAC
component has the abstraction of triggered transmis-
sions. A triggered transmission has two elements: a trig-
gering condition, and an elapsed time after the trigger-
ing condition at which a packet is transmitted. A trig-
gering condition comprises of either a transmission or
reception of a packet with the MAC address of the mas-

Master?

Transmit�Sync�

Header

Trigger�Transmission�of��

Data�Packet�by�

Transmission�of�Sync�

Header�with�correct�

timestamp

Received�

Sync�Header�

from�

Master?

Trigger�Transmission�of��

Data�Packet�by�Reception�

of�Sync�Header�with�

correct�timestamp,�phase,�

CFO,�SFO�correction

Transmitted�

Sync�

Header?

Yes No

Yes

Yes

No

No

Figure 5: Timing, Frequency and Phase Synchro-
nization Subsystem. This subsystem of the MAC op-
erates in real-time. It interacts with the PHY and trig-
gers transmission of packets based on transmission or
reception of sync headers. It also applies the correct fre-
quency and phase correction at the slave APs for the
joint transmission.

ter. This is a simple check and can be performed with
low hardware complexity.

At a high level, to initiate a joint transmission, the
MAC at the master provides two packets to the physi-
cal layer. The first packet is the synchronization header,
which is transmitted using the typical contention based
medium access. The second packet is the joint transmis-
sion, whose transmission is triggered by the transmission
of the first packet. The timestamp of this second trans-
mission is a fixed time after the transmission of the first
packet, say a SIFS.

At each slave, the MAC examines each received
packet. If the received packet is a synchronization
header, the MAC at each slave participating in the joint
transmission then initiates a joint transmission triggered
by this matching reception. The timestamp for this joint
transmission is determined by the timestamp of recep-
tion of the synchronization header, and like in the mas-
ter, is computed as a fixed time after the previous recep-
tion (specifically, it is the inter packet gap in the master
less the receive-transmit turnaround time in the slave
hardware).

Frequency and Phase Synchronization Subsys-
tems: At each slave, this subsystem operates jointly
with the timing synchronization subsystem to ensure
correct joint transmission. Specifically, at each node,
this subsystem examines every received packet. If the
received packet is a synchronization header from a mas-
ter, the MAC determines the associated CFO and SFO

Applications

Linux�Drivers

MegaMIMO 2.0�

Compatible�

802.11n�PHY

ADC�Serial�Link

Config

Registers

DMA

Programmable�Logic

Processing�System

DAC�Serial�Link

Figure 6: Platform Architecture The figure shows
the software-hardware architecture of our platform. The
PHY on the FPGA implements an 802.11n MIMO sys-
tem as well as the real time synchronization facilities
needed for distributed MIMO. The software on the ARM
core configures the PHY and manages data transfer to
and from the device.

Resource Used Utilization (%)
Slice Registers 49492 46.52

LUTs 43475 81.72
Block RAMs 36Kb 28 20

DSP48 (multipliers) 45 20.45

Table 1: FPGA Utilization on Xilinx Zynq Z7020.
This table shows the utilization of different FPGA ele-
ments by our real-time PHY and MAC implementation.

of that master. Further, it uses the channel from the syn-
chronization header, and compares it with the reference
channel from that master to determine the initial phase
correction to be applied to the joint transmission. It uses
these parameters to apply the appropriate correction to
the joint transmission packet at the slave. It is worth
mentioning that this process needs to be performed in
hardware in order to meet the short gap between syn-
chronization header and the joint transmission, which is
usually a SIFS.

7. Implementation

We implement MegaMIMO 2.0 and evaluate it in an
indoor testbed.

Each node in our system consists of a Zedboard con-
nected to an Analog Device FMCOMMS2 transceiver
card. The Zedboard is equipped with a Xilinx Zynq Z-
7020, which consists of an ARM dual-core Cortex A9
processing system connected to an Artix family FPGA
via a high-speed AXI bus.

We implement our baseband system in Verilog on the
FPGA. Our baseband consists of a full-fledged 802.11
a/g/n PHY layer that can operate in real-time and sup-
port all the 802.11 modulations and code rates on the
FPGA. We enhance our PHY implementation to sup-
port distributed MIMO as described in the previous
sections, and also implement various time critical MAC
functionalities on the FPGA. Based on the size of the
FPGA, our current implementation supports up to 4 dis-

tributed transmitters transmitting simultaneously to 4
independent clients. Table 1 shows the resource utiliza-
tion of our real-time PHY and MAC implementation on
our current FPGA platform.

We also implement the higher layer control system
that triggers channel measurement, channel updates,
precoding, and interfaces with user traffic in C on the
ARM core. The FMCOMMS2 board acts as an RF
front-end capable of transmitting and receiving signals
in the 2.4 and 5 GHz frequency ranges. Each Zedboard
is equipped with a Gigabit Ethernet interface through
which it is connected to an Ethernet backhaul. Fig. 6
shows the architecture of our system.

8. Evaluation

We evaluate MegaMIMO 2.0 both through mi-
crobenchmarks of its individual components, and inte-
grated system results of its overall performance.

(a) Testbed: We evaluate MegaMIMO 2.0 in an
indoor testbed that emulates a typical conference room
or lounge area. The APs are deployed high up on the
walls near the ceiling as is typical in these environments.
The clients are deployed at or near the floor level. The
environment has furniture, pillars, protruding walls etc.
that create rich multipath, and line of sight and non
line of sight scenarios. We evaluate our system under
both static and mobile conditions. All our experiments
are conducted in the 2.4 GHz band, channel 10 (center
frequency 2.457 GHz and 20 MHz bandwidth), using the
802.11n protocol.

(b) Compared Systems: We compare
MegaMIMO 2.0’s performance both with a tradi-
tional 802.11 system and distributed MIMO systems
based on explicit channel feedback.

Note that in prior distributed MIMO systems, chan-
nel estimation happens in a sequential process, where at
each time, the channel from each AP antenna to each
client is measured jointly with one antenna of the lead
AP. The reason for including one antenna from the lead
AP in every measurement is to provide a reference to re-
late the measurements to each other even though they
are performed at different times. These measurements
are then corrected to account for phase rotation across
time, which can be inferred from the phase changes in
the reference channel measured from the antenna of the
lead AP. The corrected measurements can then be used
as the downlink channel estimates for beamforming. The
details are described in [11].

For traditional 802.11, we assume the standard car-
rier sense based medium access protocol that allows one
transmitter to transmit at any given time.

(c) Metrics: The metrics of interest that we com-
pare are: the SNR after beamforming of the received
packets at client, the total network throughput (in
Mbps), and the individual throughput at each client (in
Mbps). Depending on the experiment, we compare one
or more of these metrics in different scenarios.

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25 30 35

R
e

c
ip

ro
c
it
y
 S

N
R

 (
d

B
)

Explicit Feedback SNR (dB)

Figure 7: SNR with reciprocity
(MegaMIMO 2.0) and explicit feedback
(MegaMIMO) based distributed MIMO sys-
tems. The 45o degree line is shown in dotted black.
The figure shows that reciprocity based distributed
MIMO can achieve the same SNR as explicit feedback
across the range of SNRs.

8.1 Accuracy of Reciprocity

Reciprocity eliminates the overhead of channel feed-
back, which tends to be excessive in distributed MIMO
systems (see Fig. 1). However, would reciprocity lead to
a degradation in MIMO gains in comparison to using
channel feedback? In this section we answer this ques-
tion by evaluating whether the channels inferred via reci-
procity are as effective at delivering MIMO beamform-
ing as the channels measured at the clients and explicitly
sent to the access points –i.e., explicit channel feedback.

Method: We evaluate a simple 2-transmitter, 2-
receiver system in a static environment. The network has
both downlink and uplink traffic with 90% of the traf-
fic being on the downlink. We evaluate two scenarios: 1)
The APs transmit packets on the downlink to the clients
and receive explicit channel feedback from the clients,
as in MegaMIMO. 2) The APs apply MegaMIMO 2.0’s
reciprocity protocol and use the clients’ data transmis-
sions to infer the downlink channels without any ex-
plicit feedback. We use both these explicit downlink
channels, and estimated downlink channels to perform
beamformed transmissions to the clients. We interleave
the beamforming measurements using explicit feedback
with those using reciprocity to ensure that the two com-
pared methods experience similar channels. We then
compare the SNR of these beamformed transmissions
at the clients in the two scenarios. We repeat the exper-
iment across a variety of locations, and the entire range
of 802.11 SNRs, from 5-30 dB.

Results: Fig. 7 shows a plot of the SNR achieved
with reciprocity as a function of the SNR achieved with
explicit channel feedback for each topology. As the graph
shows, MegaMIMO 2.0’s reciprocity based channel es-
timation performs as well as explicit channel feedback
through the entire range of SNRs. This means that dis-
tributed MIMO systems can safely use the reciprocity
technique developed in this paper to avoid the excessive
overhead of explicit channel feedback.

0

20

40

60

80

100

120

140

No AGC AGC without
calibration

AGC with
calibration

N
e

tw
o

rk
 T

h
ro

u
g

h
p

u
t
(M

b
p

s
)

Figure 8: Throughput comparison of
MegaMIMO 2.0 with full AGC calibration,
MegaMIMO 2.0 using AGC without calibration,
and MegaMIMO (fixed gain). The figure shows
that distributed MIMO needs the use of AGC with
full calibration in order to achieve high gains with low
variance.

8.2 Need for AGC calibration

A key feature of MegaMIMO 2.0 is its ability to en-
able the use of AGC by calibrating for AGC phase and
magnitude impact on a per-packet basis both in hard-
ware and software. In this section, we evaluate the im-
portance of this calibration.

Method: We evaluate a 4-transmitter, 4-receiver
system in a static environment. The network performs
distributed MIMO beamforming from all 4 transmitters
to all 4 receivers using reciprocity based channel estima-
tion. The network has both uplink and downlink traffic
with uplink traffic accounting for 10% of the load. The
first is full-fledged MegaMIMO 2.0 with AGC running
on all nodes, and both hardware and software calibra-
tion. The second is MegaMIMO 2.0 with AGC running
on all nodes, but with only magnitude calibration and
no phase calibration. The final system is MegaMIMO 2.0
with a fixed manually chosen gain setting (this is sim-
ilar to MegaMIMO in USRPs). We repeat the exper-
iment 10 times and change the client locations across
runs. We compare the network throughput obtained by
the system in all three settings.

Results: Fig. 8 shows the network throughput in
each of the three scenarios described above. The follow-
ing points are worth noting.

• MegaMIMO 2.0 with an operating AGC, and both
magnitude and phase calibration, achieves the highest
throughput among all the systems.

• We compare MegaMIMO 2.0 with a system with an
operating AGC where we turn off the phase calibra-
tion but still apply the magnitude calibration based
on the rated AGC gain. That is, we assume that an
AGC gain of X dB scales the signal magnitude by

10
X

20 (as described in §5.2), and correct for it accord-
ingly. We use this reference because ignoring mag-
nitude calibration completely makes the beamform-
ing extremely sensitive even to small changes in AGC

 0

 0.2

 0.4

 0.6

 0.8

 1

 50 100 150 200 250

C
D

F

Throughput (Mbps)

Feedback (30ms)

Feedback (100ms)

Feedback (300ms)

Reciprocity
 0

 0.2

 0.4

 0.6

 0.8

 1

 50 100 150 200 250

C
D

F

Throughput (Mbps)

Feedback (30ms)

Feedback (100ms)

Feedback (300ms)

Reciprocity

(a) Environmental Mobility (b) Client Mobility

Figure 9: CDF of user throughput of a 4x4 distributed MIMO in mobile scenarios using
MegaMIMO 2.0’s real-time PHY with reciprocity, and MegaMIMO 2.0’s real-time PHY but with
explicit feedback at different intervals. The figure shows that MegaMIMO 2.0’s real-time PHY can react to
changing environments and deliver a distributed MIMO system even in the presence of mobility. The figure also shows
that reciprocity based distributed MIMO always outperforms explicit feedback based systems. At low feedback rates,
the feedback based systems suffer from stale channel information. At high feedback rates, the systems have fresh
channel information but have high overhead.

gain during channel estimation at any of the APs (the
impact of gain errors is analyzed in §5.2 in a differ-
ent context). Since this system does not correct for
phase, it sometimes experiences extremely large errors
and therefore has higher variance than the full-fledged
MegaMIMO 2.0 system. Additionally, it loses perfor-
mance because of differences between the actual hard-
ware gain and the nominal hardware gain intended by
the AGC.

• Finally, the system with lowest performance is the one
with manually assigned gain control. This is because
one cannot pick a single gain value for a large sys-
tem that will allow all master-slave and all client-AP
links to function at reasonable SNRs across a vari-
ety of topologies. As a result, this system too has low
throughput and high variance.

8.3 Real-time Performance

In this section, we evaluate whether MegaMIMO 2.0
can deliver a distributed MIMO system capable of op-
erating in real-time.

Method: We consider dynamic environments com-
mon in indoor settings. We introduce dynamism into the
system in two ways. In the first case, all the nodes are
static, but there is mobility in the environment due to
moving people. In the second case, we introduce addi-
tional mobility by moving the nodes themselves. Specif-
ically, the clients in the testbed are moved by either
mounting them on Roomba robots, or by walking hu-
mans. The client mobility speeds change from one run
to another and are in the range [0.2m/s, 1m/s].

We deploy 4 nodes acting as APs in our testbed,
and 4 nodes acting as clients. We compare two schemes:
distributed MIMO with explicit channel feedback, and
distributed MIMO with reciprocity. Note that both
schemes are running MegaMIMO 2.0’s real-time PHY
with all of its components (AGC, calibration etc., nec-

essary to deal with mobility) and differ only with the
mechanism for tracking the channels. We compute the
throughput of individual nodes under 4 scenarios: reci-
procity based distributed MIMO where the clients send
uplink traffic about 10% of the time (i.e. 90% of the
traffic is downlink traffic), and explicit feedback at three
different feedback intervals: 30 ms, 100 ms, and 300 ms.
We run this experiment for several hours. We repeat
it for various topologies and the entire range of 802.11
SNRs.

Result: Figs. 9(a) and (b) plot the CDF of the
throughput obtained by each client in the various sce-
narios. A few of points are worth noting.

• First, MegaMIMO 2.0’s real-time PHY can support
dynamic environments, and adapt to both moving de-
vices and people. In particular, a four-AP distributed
MIMO system running MegaMIMO 2.0 delivers a me-
dian throughput of 120Mb/s and a maximum through-
put of 194 Mb/s to four mobile clients.

• Second, as expected, reciprocity based distributed
MIMO obtains the highest throughput in both sce-
narios: dynamic environment and dynamic clients.
The median throughput gain of reciprocity based dis-
tributed MIMO over explicit feedback ranges from
20% to 6x in when the device is mobile, and 10%
to 6x when device is static yet people are moving
around. Further, explicit feedback systems with in-
frequent feedback (100-300 ms) get significantly lower
throughput than the case of reciprocity, in spite of
having significantly lower channel feedback overhead.
This is because they suffer from stale channel informa-
tion since mobility causes the actual channels to de-
viate from the reported channels faster than the feed-
back interval. In fact, explicit feedback with intervals
of 100-300 ms suffers from extremely low throughput
between 35-50% of the time because of channel stale-

ness. Explicit feedback at a high rate (30 ms) is also
worse than reciprocity. In this case the APs have fresh
channel information, but explicit feedback suffers a
throughput loss due to the overhead of feedback.

• The performance of the explicit feedback system in
Figs. 9(a) and (b) is worse than the simulation results
of a 4×4 system in Fig. 1. This is because the simu-
lation results do not account for the impact of stale
channel information on the behavior of distributed
MIMO systems.

• Overall the empirical results show the importance of
using reciprocity even in a relatively small 4×4 dis-
tributed MIMO system. Since the feedback overhead
increases quadratically with the size of distributed
MIMO, we expect that reciprocity is even more es-
sential for larger systems.

8.4 Performance in a Static Environment

Finally, we check MegaMIMO 2.0’s performance in
static settings to ensure that our implementation sup-
ports the gains expected from distributed MIMO in
static environments.

Method: We deploy 4 nodes acting as APs in our
testbed, and 4 nodes acting as clients. We compare
MegaMIMO 2.0 with reciprocity to traditional 802.11.
The network has both uplink and downlink traffic with
uplink traffic creating ≈10% of the load. We perform
this experiment for 15 different runs, and change the
clients’ locations from one run to another. We evaluate
the throughput of each of these three schemes in three
SNR ranges: low (6-12 dB), medium (12-18 dB), and
high (18+ dB).

Result: Fig. 10 shows that MegaMIMO 2.0 with
reciprocity achieves about 3.6× gain with 4 transmit-
ters. This is compatible with the behavior expected from
distributed MIMO since this system can deliver 4 pack-
ets to 4 clients concurrently. The figure also shows that
this behavior is consistent across the whole range of
802.11 SNRs.

9. Future Work

In this paper, we discuss the architecture and imple-
mentation of a practical full-fledged real-time PHY and
real-time MAC layer for distributed MIMO. This sys-
tem can serve as a building block to address the next
set of questions that need to be tackled for distributed
MIMO.

Specifically, for a joint transmission, the distributed
MIMO PHY receives the master, set of slaves, and the
set of clients as an input. It is the responsibility of a
higher (non real-time) MAC layer to pick this set of
APs and clients based on the current traffic patterns, as
well as the channels between different APs and clients,
in order to optimize network fairness and throughput.
Additionally, this MAC layer will also determine which
among the APs will act as a master for any given trans-
mission. Ideally, the master would be picked to be at the
center of the transmission cluster so that it can be heard

0

50

100

150

200

250

6-12 dB 12-18 dB >18dB

L
in

k
 D

a
ta

 R
a

te
 (

M
b

p
s
)

SNR

Traditional 802.11

Reciprocity

Figure 10: Comparison of throughput obtained
with traditional 802.11, and MegaMIMO 2.0
with reciprocity. The figure shows that
MegaMIMO 2.0’s implementation can scale throughput
linearly with the number of nodes. At all SNRs, the
throughput of MegaMIMO 2.0 with 4 nodes is 3.6× the
throughput of a single 802.11 link.

with good SNR by all other APs and clients. The MAC
layer can utilize the measured channel information for
doing so.

10. Conclusion

This paper presents MegaMIMO 2.0, the first full
fledged real-time PHY capable of supporting distributed
MIMO. MegaMIMO 2.0 is 802.11 compatible, and ad-
dresses various key practical issues required for a practi-
cal PHY layer that can operate across diverse SNRs and
channel conditions. Further, it extends the 802.11 PHY
interface to support a MAC layer capable of distributed
MIMO, and can therefore serve as a building block for
a full stack distributed MIMO system. We believe that
MegaMIMO 2.0 represents a significant step forward in
bringing distributed MIMO closer to practice.

Acknowledgments: We thank the NETMIT group,
Arthur Berger, our reviewers and our shepherd, Deepak
Ganesan, for their insightful comments. This work is
funded by NSF. We thank members of the MIT Center
for Wireless Networks and Mobile Computing: Amazon,
Cisco, Google, Intel, Mediatek, Microsoft, ST Microelec-
tronics and Telefonica for their interest and support.

11. References
[1] An Introduction to pCell.

http://www.rearden.com/artemis/
An-Introduction-to-pCell-White-Paper-150224.pdf.
Artemis, February 2015.

[2] O. Abari, H. Rahul, and D. Katabi. AirShare:
Distributed Coherent Transmission Made Seamless. In
IEEE INFOCOM 2015, Hong Kong, China, April 2015.

[3] S. Aeron and V. Saligrama. Wireless Ad Hoc
Networks: Strategies and Scaling Laws for the Fixed
SNR Regime. IEEE Transactions on Inf. Theor.,
53(6), 2007.

[4] H. Balan, R. Rogalin, A. Michaloliakos, K. Psounis,
and G. Caire. AirSync: Enabling Distributed Multiuser
MIMO With Full Spatial Multiplexing. Networking,

IEEE/ACM Transactions on, 21(6):1681–1695, Dec
2013.

[5] A. Bourdoux, B. Come, and N. Khaled. Non-reciprocal
transceivers in OFDM/SDMA systems: impact and
mitigation. In Radio and Wireless Conference, 2003.
RAWCON ’03. Proceedings, pages 183–186, Aug 2003.

[6] 5G live test: Multipoint Connectivity with Distributed
MIMO.
https://www.youtube.com/watch?v=jCO68dPoNwA.
Ericsson Inc.

[7] A. Forenza, R. W. H. Jr., and S. G. Perlman. System
and Method For Distributed Input-Distributed Output
Wireless Communications. U.S. Patent Application
number 20090067402.

[8] M. Guillaud, D. Slock, and R. Knopp. A practical
method for wireless channel reciprocity exploitation
through relative calibration. In Signal Processing and
Its Applications, 2005. Proceedings of the Eighth
International Symposium on, volume 1, pages 403–406,
August 2005.

[9] A. Ozgur, O. Leveque, and D. Tse. Hierarchical
Cooperation Achieves Optimal Capacity Scaling in Ad
Hoc Networks. IEEE Trans. on Info. Theor., 2007.

[10] E. Perahia and R. Stacey. Next Generation Wireless
LANs: 802.11n and 802.11ac. Cambridge University
Press, 2013.

[11] H. Rahul, S. Kumar, and D. Katabi. MegaMIMO:
Scaling Wireless Capacity with User Demands. In
ACM SIGCOMM 2012, Helsinki, Finland, August
2012.

[12] C. Shepard, H. Yu, N. Anand, E. Li, T. Marzetta,
R. Yang, and L. Zhong. Argos: Practical
many-antenna base stations. In Proceedings of the 18th
Annual International Conference on Mobile Computing
and Networking, Mobicom ’12, pages 53–64, New York,
NY, USA, 2012. ACM.

[13] J. Shi, Q. Luo, and M. You. An efficient method for
enhancing TDD over the air reciprocity calibration. In
Wireless Communications and Networking Conference
(WCNC), 2011 IEEE, pages 339–344, March 2011.

[14] O. Simeone, O. Somekh, H. Poor, and S. Shamai.
Distributed MIMO in multi-cell wireless systems via
finite-capacity links. In ISCCSP, 2008.

[15] D. Tse and P. Vishwanath. Fundamentals of Wireless
Communications. Cambridge University Press, 2005.

[16] S. Venkatesan et al. A WiMAX-based implementation
of network MIMO for indoor wireless. EURASIP, ’09.

[17] V. Yenamandra and K. Srinivasan. Vidyut: Exploiting
power line infrastructure for enterprise wireless
networks. In Proceedings of the 2014 ACM Conference
on SIGCOMM, SIGCOMM ’14, pages 595–606, New
York, NY, USA, 2014. ACM.

