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ABSTRACT
In cloud computing jobs consisting of many tasks run in par-
allel, the tasks on the slowest machines (straggling tasks) be-
come the bottleneck in the completion of the job. One way
to combat the variability in machine response time is to add
replicas of straggling tasks and wait for one copy to finish.
Using the theory of extreme order statistics, we analyze how
task replication reduces latency, and its impact on the cost
of computing resources. We also propose a heuristic algo-
rithm to search for the best replication strategies when it is
difficult to model the empirical behavior of task execution
time and use the proposed analysis techniques. Evaluation
of the heuristic policies on Google Trace data shows a signif-
icant latency reduction compared to the replication strategy
used in MapReduce.
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1. INTRODUCTION
Applications such as Google search, Dropbox, Netflix need

to perform enormous amounts of computing on the cloud.
Recently, cloud computing is also being offered as a ser-
vice by Amazon S3, Microsoft Azure etc. where users can
rent machines by the hour to run their computing jobs. The
large-scale sharing of computing resources makes cloud com-
puting flexible and scalable.

Cloud computing frameworks such as MapReduce and
Hadoop employ massive parallelization to reduce latency.
Large jobs are divided into hundreds of tasks that can be
executed parallely on different machines. Several algorithms
used in optimization and machine learning fall into the class
of “embarrasingly parallel” computation, and can be easily
divided into independent parallel tasks.

The execution time of a task on a machine is subject to
stochastic variations due to co-hosting, virtualization and
other hardware and network variations [7]. Thus, the key
challenge in executing a job with a large number of tasks is
the latency in waiting for the slowest tasks, or the “strag-
glers” to finish. As pointed out in [7, Table 1], the latency of
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executing many parallel tasks could be significantly larger
(140 ms) than the median latency of a single task (1 ms).

In this work we provide a mathematical framework to an-
alyze how replication of straggling tasks affects the latency,
and the cost of computing resources.

1.1 Related prior work
The idea of replicating tasks in parallel computing has

been recognized by system designers [6], and first adopted
at a large scale via the “backup tasks” in MapReduce [5].
A line of systems work [2, 9] and references therein further
developed this idea. While task replication has been studied
in systems literature and also adopted in practice, there is
not much work on careful mathematical analysis of replica-
tion strategies. Replication strategies are analyzed in [11],
mainly for the single task case. In this paper we consider
task replication for a job consisting of a large number of
tasks, which corresponds closely to today’s large-scale cloud
computing frameworks. Note that the use of redundancy to
reduce latency has also attracted attention in other contexts
such as cloud storage and networking [8, 10].

1.2 Our contributions
In this work we present the first rigorous analysis of how

the tail of the task execution time (heavy, light or expo-
nential tail) affects the trade-off between the latency and
the cost of computing resources. In particular for heavy tail
distributions e.g. Pareto, we identify scenarios where the
latency and computing cost can be reduced simultaneously.
We also propose a heuristic algorithm to search for a good
task replication policy when it is hard to use the proposed
analysis techniques for the empirical distribution of task ex-
ecution time.

2. PROBLEM FORMULATION

2.1 System Model
Consider a job consisting of n parallel tasks, where n is

large. We assume the execution time of each task on a ma-
chine is independent and identically distributed (i.i.d.) ac-
cording to FX , where FX denotes the cumulative distribu-
tion function (CDF) of random variable X. The distribution
FX accounts for the variability in the machine response due
to factors such as congestion, queueing, virtualization, and
competing jobs being run on the same machines. Modeling
all existing jobs as exogenous factors could be suboptimal
from a system designer’s view, but is reasonable from the
view of a user who is renting machines from a cloud com-
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Figure 1: Single-fork policies with and without relaunching.

puting service and has no control over other jobs sharing the
resources. We also assume that the number of machines the
user rents from the cloud is much larger than the number
of tasks in the given job, such that each new task (or new
replica) is assigned to a new machine.

In the rest of the paper we use Xj:n to denote the j-th
smallest of the n random variables X1, X2, · · · , Xn ∼ FX .

2.2 Scheduling Policy
A scheduling policy or scheduler assigns tasks to different

machines, possibly at different time instants. We assume
that the scheduler receives instantaneous feedback notifying
it when a machine finishes its assigned task. But there is
no intermediate feedback indicating the status of processing
of a task. When the scheduler receives notification that at
least one replica of each of the n tasks has finished, it kills all
the residual running replicas. We focus on a class of policies
called single-fork policies, defined as follows.

Definition 1 (Single-fork Scheduling policy). A
single-fork scheduling policy πSF (p, r, l) launches all n tasks
at time 0. It waits until (1 − p)n tasks finish. For the pn
straggling tasks, it chooses one of the following two actions:

• replicate without relaunching (l = 0): launch r
new replicas;

• replicate with relaunching (l = 1): kill the original
copy and launch r + 1 new replicas.

When the earliest replica of a task finishes, all the other
replicas are terminated.

We use l to denote the number of original replicas of each
task remaining after the forking point. Hence l = 0 when
the original replica is killed and restarted, and l = 1 other-
wise. Note that in for both the relaunching (l = 0) and no
relaunching (l = 1) cases there are a total of r + 1 replicas
running after the forking point. The effect of r and l on the
replication of straggling tasks is illustrated in Fig. 1.

For simplicity of notation we assume that p is such that
pn is an integer. We note that p = 0 corresponds to running
n tasks in parallel and waiting for all to finish, which is the
baseline case without any replication or relaunching.

Remark 1 (Backup tasks in MapReduce). The idea
of ‘backup’ tasks used in Google’s MapReduce [5], corre-
sponds to a single-fork policy with r = 1 and l = 1. The
value of p is tuned dynamically and hence not specified in [5].

2.3 Performance metrics
We now define the metrics of latency and the computing

cost. In later sections we analyze their trade-off and provide
insights on when and how replication is useful.

Definition 2 (Expected Latency). The expected la-
tency E[T ] is the expected value of T , the time taken for at
least one replica of each of the n tasks to finish.

Definition 3 (Expected Cost). The expected comput-
ing cost E[C] is the sum of the running times of all machines,
normalized by n, the number of tasks in the job. The run-
ning time is the time from when the task is launched on a
machine, until it finishes, or is killed by the scheduler.

For a user of a cloud computing service such as the Amazon
Web Service (AWS), which charges the user by time and
number of machines used, the money paid by the user to
rent the machines is proportional to E[C].

3. SINGLE-FORK POLICY ANALYSIS
In this section we analyze the trade-off between the per-

formance metrics E[T ] and E[C], and develop insights into
choosing the best single fork policy πSF (p, r, l). We observe
that the tail behavior (heavy, light or exponential) of FX
is the key factor in characterizing the latency-cost trade-off.
All proofs are omitted due to space limitations, but can be
found in the extended version [12] available online.

3.1 Performance characterization
First let us define random variable Y , the residual time

after forking when the earliest replica of a straggling task
finishes. Its distribution FY can be expressed in terms of
FX as given by Lemma 1 below.

Lemma 1 (Residual Straggler Execution Time).
As n→∞, the tail distribution F̄Y of the residual execution
time (after the forking point) of each of the pn straggling
tasks is

F̄Y (y) =

{
F̄X (y)r+1 if l = 0,
1
p
F̄X (y)r F̄X

(
y + F−1

X (1− p)
)

if l = 1.
(1)

For example, for r = 2 and l = 0, the tail of distribution
F̄Y = F̄ 2

X , because two identical replicas with distribution
FX are launched at the forking point. For a job with a
large number of tasks n, the expected latency and cost can
be expressed in terms of FX , FY and the single-fork policy
parameters p, r and l as given by Theorem 1 below.

Theorem 1 (Single-Fork Latency and Cost). For
a computing job with n tasks, and task execution time dis-
tribution FX , the latency and cost metrics as n→∞ are

E[T ] = F−1
X (1− p) + E[Ypn:pn], (2)

E[C] =

∫ 1−p

0

F−1
X (h)dh+ pF−1

X (1− p) + (r + 1)p · E[Y ],

(3)

where E[Ypn:pn] is the expected maximum of pn i.i.d. random
variables drawn from FY .

We now give a sketch of the proof of Theorem 1. The
latency T of a single fork policy πSF (p, r, l;n) can be de-

composed into T (1), the time to execute the first (1 − p)n
tasks, and T (2), the time to execute the pn straggling tasks.
The expected value of T (1) is

E[T (1)] = E[X(1−p)n:n] ≈ F−1
X (1− p) for large n, (4)

where (4) follows from the Central Value Theorem (Theorem
10.3 in [3]) which states that the ((1 − p)n)th order statis-
tic of n i.i.d random variables concentrates sharply around
F−1
X (1− p) as n→∞.
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The second part of the latency, T (2) is the maximum of
the residual time Y for each of the pn straggling tasks finish.
Its behavior for n→∞ is given by Lemma 2 below.

Lemma 2. The asymptotic behavior of E[Ypn:pn] as n →
∞ is given by

E[Ypn:pn] =


ãpnγEM + b̃pn FX ∈ DA (Λ) ,

ãpnΓ
(

1− 1
(r+1)ξ

)
FX ∈ DA (Φξ) ,

b̃pn − ãpnΓ
(

1 + 1
((1−l)r+1)ξ

)
FX ∈ DA (Ψξ) .

where the terms ãpn and b̃pn can be determined using the
Extreme Value Theorem (Theorem 1.1.3 in [4]). DA (·) is
the domain of attraction FX , and it can be one of the fol-
lowing: Gumbel (DA (Λ)), Frechet (DA (Φξ)), and Weibull
(DA (Ψξ)). The symbol γEM is the Euler-Mascheroni con-
stant, and Γ(·) is the Gamma function.

The domain of attraction of a distribution depends on its
tail behavior (exponential, heavy or light). For example,
exponentially decaying distributions belong to DA (Λ) while
heavy tailed distributions belong to DA (Φξ).

A comparison of the latency and cost in Theorem 1 with
simulation indicates that the metrics obtained from analyti-
cal calculation is very close to the actual performance when
the number of tasks n ≥ 100. Please see [12] for the plot
comparing analysis and simulation.

3.2 Examples of the Effect of Tail Behavior
We now use two canonical distributions, the Pareto distri-

bution (heavy, polynomially decaying tail) and the Shifted
Exponential distribution (exponential tail), to demonstrate
how the the tail of FX affects the latency-cost trade-off.

Fig. 2 shows the latency versus the computing cost when
FX is Pareto (α, xm) with parameters α = 2 and xm = 2,
and p varying from 0 to 1 along each curve. The black dot
is the baseline case (p = 0) without replication where we
simply wait for the original copies of all n tasks to finish.
The baseline case is also equivalent to the policies with r =
0, l = 1 and any p. We observe that a small amount of
replication (small p and r) can reduce latency significantly
in comparison with the baseline case.

Intuition suggests that replicating earlier (larger p) and
more (higher r) will increase the cost E[C]. But Fig. 2 shows
that this is not necessarily true, and that it is possible to re-
duce latency (from 70 to about 15 for r = 1 and r = 2 cases)
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Figure 3: Expected Latency versus cost when FX is shifted
exponential SExp (1, 1), n = 400 tasks, and varying p from
0 to 1 along each curve.

with a decrease in cost! However this benefit diminishes as
p and r increase above a certain threshold. For example, for
the r = 1 and relaunch (l = 0) case, we can show that all
policies with p < p∗1 ≈ 0.05 are sub-optimal in both E[T ]
and E[C], where p∗1 is marked in Fig. 2. Similarly, for cases
r = 0 and r = 2, the sub-optimal ranges are [0, p∗0] and
[0, p∗2], with p∗0 and p∗2 as shown in Fig. 2.

Next we consider that FX follows the shifted exponen-
tial distribution (denoted by SExp (∆, µ)), which is a pure
exponential with rate µ, with a constant additive shift ∆.
Fig. 3 shows the latency-cost trade-off for n = 400 with
FX = SExp (1, 1). Unlike Fig. 2 there is no range of p for
which both latency and cost decrease (or increase) simulta-
neously. For any p and r, no relaunching gives lower latency
than relaunching because the tail is not heavy, and thus it
is better to not kill the original straggling replica.

4. HEURISTIC ALGORITHM
In certain practical systems it may be difficult to fit a

well-known distribution to the empirical behavior of the task
execution time, thus making the latency-cost analysis using
the framework presented in Section 3 hard. In this section
we present an algorithm that uses traces of task execution
times to search for the best single-fork policy πSF (p, r, l),
and evaluate it using Google trace data [1].

4.1 Estimation of Latency and Cost Metrics
To find the estimates T̃ and C̃ of the latency and cost for

a given policy πSF (p, r, l), we first construct the empirical

CDF F̂X from experimental traces of start and finish times
of tasks on a large cluster of machines. By drawing samples
from F̂X we can simulate the running of n tasks of a job,
and the replicas of the pn straggling tasks and find T and
C for that job. We repeat this procedure for m jobs and set
T̃ and C̃ to the means of the m samples.

4.2 Heuristic Search for the Best Policy
We present a heuristic algorithm to search for the single-

fork policy that minimizes the objective function J , T̃+µC̃
where µ represents the relative priority for minimizing C̃.

For a given p, we first find the optimal r and l and then
perform gradient descent on p. This is repeated for k itera-
tions. To optimize r and l we keep increasing r by 1 until J
decreases. For each r, we set l to the value (0 or 1) which
gives a smaller J . Note from (2) and (3) that E[T ] and
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Figure 4: Normalized histogram of the task execution times
for a Google cluster job with n = 1017 tasks.

E[C] are convex in r, but not in p and l. Thus, the gradient
descent may not converge to the optimal policy.

The policy found by this heuristic can be used for future
jobs with similar task execution time statistics. This is true
in several applications, where the same computation is per-
formed repeatedly with different parameters.

4.3 Demonstration using Google Traces
The Google Trace data [1] gives timestamps of events such

as SCHEDULE, EVICT, FINISH, FAIL, KILL etc. for each
of the tasks of computing jobs that are run on Google’s
machine clusters. We consider the difference between the
SCHEDULE and FINISH timestamps as the task execution
time, and construct the empirical distribution F̂X .

We consider a large Google cluster job with n = 1017
tasks. Its normalized histogram plotted in Fig. 4 shows
heavy-tail behavior of task execution time. We run the
heuristic search on this empirical F̂X , with parameters m =
500 jobs used to estimate T̂ and Ĉ and k = 25 iterations of
gradient descent. The latency-cost trade-offs of the heuris-
tic policies found by the algorithm are shown in Fig. 5. The
plot also shows the estimated latency-cost trade-off for r = 1
and l = 1 as p varies from 0 to 1, which are the parameters
of the back-up tasks option in MapReduce as described in
Remark 1. Adding redundancy, that is r ≥ 1 significantly
reduces latency for a small cost, in comparison with the
baseline case (p = 0). The heuristic algorithm finds policies
with r > 1 that give lower latency for the same cost, as
compared to the policies with r = 1 and l = 1. Also note
that the latency reduction is more when µ is smaller, that
is, the priority given to minimizing the cost is lower.

5. CONCLUDING REMARKS
In this paper we present a mathematical framework to

analyze how replication of the slowest tasks in a job (the
stragglers) affects the latency and the computing cost. We
characterize the latency-cost trade-off for a set of replica-
tion strategies called single-fork policies. We also propose a
heuristic algorithm to find the best scheduling policy. Ex-
periments on Google Trace data show that the policies found
by the algorithm can give a better latency-cost trade-off than
the back-up tasks option used in MapReduce.

Although we focus on single-fork policies in this paper,
the analysis can be generalized to multi-fork policies, where
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replicas of straggling tasks can be launched multiple times
during the job execution. Another promising research direc-
tion is to develop an online algorithm that simultaneously
learns the execution time distribution FX and launches repli-
cas, instead of estimating FX using historical traces.
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