MIT
Libraries | D>pace@MIT

MIT Open Access Articles

Optimality and Robustness in Multi-Robot Path
Planning with Temporal Logic Constraints

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Ulusoy, A., et al. "Optimality and Robustness in Multi-Robot Path Planning with
Temporal Logic Constraints.” International Journal of Robotics Research 32 8 (2013): 889-911.

As Published: 10.1177/0278364913487931
Publisher: SAGE Publications
Persistent URL: https://hdl.handle.net/1721.1/134287

Version: Author’s final manuscript: final author’'s manuscript post peer review, without
publisher’'s formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

I I I .
I I Massachusetts Institute of Technology

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/134287
http://creativecommons.org/licenses/by-nc-sa/4.0/

Optimality and Robustness in Multi-Robot Path Planning with
Temporal Logic Constraints

Alphan Ulusoy" Stephen L. Smith* Xu Chu Ding* Calin Belta! Daniela Rus*

Abstract

In this paper we present a method for automatic planning of optimal paths for a group of robots
that satisfy a common high level mission specification. The motion of each robot is modeled as a
weighted transition system, and the mission is given as a Linear Temporal Logic (LTL) formula over a
set of propositions satisfied at the regions of the environment. In addition, an optimizing proposition
must repeatedly be satisfied. The goal is to minimize a cost function that captures the maximum time
between successive satisfactions of the optimizing proposition while guaranteeing that the formula is
satisfied.

When the robots can follow a given trajectory exactly, our method computes a set of optimal satisfying
paths that minimize the cost function and satisfy the LTL formula. However, if the traveling times of
the robots are uncertain, then the robots may not be able to follow a given trajectory exactly, possibly
violating the LTL formula during deployment. We handle such cases by leveraging the communication
capabilities of the robots to guarantee correctness during deployment and provide bounds on the deviation
from the optimal values. We implement and experimentally evaluate our method for various persistent
surveillance tasks in a road network environment.

1 Introduction

In the classical reach-avoid robotic path planning problem (Choset et al., 2005; LaValle, 2006), the aim is
to steer a robot from a given initial position to some final position while avoiding any obstacles along the
way. Many methods based on the configuration space approach (Lozano-Perez, 1983) have been proposed
to find such collision-free paths. If the dimension of the configuration space permits, one can use discretized
approaches that utilize various graph search algorithms (Choset et al., 2005; LaValle, 2006) or continuous
methods (Rimon and Koditschek, 1992) to solve this problem. Alternatively, randomized sampling-based
algorithms such as Probabilistic Road Map (PRM) (Kavraki et al., 1996) or Rapidly-Exploring Random Tree
(RRT) (Kuffner and LaValle, 2000) can be used to find admissible paths. However, due to the limited scope
of the problem that they address, classical path planning algorithms cannot handle more complex temporal
and logic mission requirements.

Complex robotic missions need a precise as well as user-friendly language for requirement specification.
In this regard, Linear Temporal Logic (LTL) provides a very attractive formalism that can capture the
infinite behavior of a dynamic system in an intuitive but mathematically precise manner (Baier and Katoen,
2008). Using LTL one can easily specify complex robotic missions such as “Repeatedly visit region 1. Go
to region 3 before each visit to region 1. Always avoid region 2.”. Current literature on path planning
and control synthesis using LTL specifications considers finite systems, which may be abstractions of their
infinite counterparts (Tabuada and Pappas, 2006; Yordanov et al., 2012). Given a finite system and an LTL

This work was supported in part by Office of Naval Research [grant number MURI N00014-09-1051]; Army Research Office
[grant number W911NF-09-1-0088]; Air Force Office of Scientific Research [grant number YIP FA9550-09-1-020]; National
Science Foundation [grant number CNS-0834260]; and by Natural Sciences and Engineering Research Council of Canada.

t Division of Systems Engineering, Boston University, Boston, MA 02215 (alphan@bu.edu, cbelta@bu.edu)

* Dept. of Electrical and Computer Engineering, University of Waterloo, Waterloo ON, N2L 3G1 Canada (stephen.smith@
uwaterloo.ca)

* Embedded Systems and Networks, United Technologies Research Center, East Hartford, CT 06108 (dingx@utrc.utc.com)

¥ Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139
(rus@csail.mit.edu)

mission specification, paths and control strategies that satisfy the mission can be automatically computed for
deterministic (Kloetzer and Belta, 2010; Kress-Gazit et al., 2011), non-deterministic (Kress-Gazit et al., 2007;
M.Kloetzer and Belta, 2008; Thomas, 2002; Yordanov et al., 2012), and probabilistic systems (Bianco and
de Alfaro, 1995; Ding et al., 2011; Kwiatkowska et al., 2002). Nevertheless, finding a path that accomplishes
a mission is only part of the robotic path planning problem, as there remains the question of picking a
particular path from all those paths that satisfy given specifications. In this case, one can either break the
tie by making an arbitrary choice or pick the best alternative in terms of safety, speed, efficiency, or some
other relevant metric.

The goal of this paper is to compute optimal paths for a group of robots subject to general LTL spec-
ifications. Our approach is motivated by persistent monitoring and pickup-delivery problems, where there
is an optimizing task that must be repeatedly completed. We aim to compute paths that satisfy the LTL
specification while minimizing the maximum time between sucessive completions of this optimizing task.
Previously, we provided a method that solves this problem for a single robot (Smith et al., 2011). Then, we
extended our approach to multiple robots by utilizing timed automata (Ulusoy et al., 2011), and provided
improved methods that are robust to uncertainties in the speeds of robots (Ulusoy et al., 2012a,b). Moving
from a single robot to multiple robots requires special care, as the model of the robotic team must capture
the asynchronous motion of its members. In (Kloetzer and Belta, 2010), the authors propose a method
for decentralized motion of multiple robots subject to LTL specifications. Their method, however, results
in sub-optimal performance as it requires the robots to travel synchronously, blocking the execution of the
mission before each transition until all robots are synchronized. The vehicle routing problem (VRP) (Toth
and Vigo, 2001) and its extensions to more general classes of temporal constraints (Karaman and Frazzoli,
2008a,b) also deal with finding satisfying optimal paths for a given specification. In (Karaman and Frazzoli,
2008a), the authors consider optimal vehicle routing with metric temporal logic specifications by converting
the problem to a mixed integer linear program (MILP). However, their method does not apply to the mis-
sions where robots must repeatedly complete some task, as it does not allow for specifications of the form
“always eventually”. Furthermore, none of these methods are robust to timing errors that can occur during
deployment, as they rely on the ability of the robots to follow generated trajectories exactly for satisfaction of
the mission specification. In (Quottrup et al., 2004), the authors propose a method for synthesizing controls
for a team of robots subject to a computational tree logic (CTL) formula. But, they do not consider opti-
mizing the paths of the robots. In (Chen et al., 2012), the authors propose a method for automatic synthesis
of control and communication strategies for a team of robots. However, they consider finite horizon tasks
given as regular expressions as opposed to infinite horizon tasks expressed in LTL that are of our interest.
Morever, their method does not consider the costs of the generated team trajectories and thus, in general,
does not provide optimal solutions. Even though the authors consider LTL as the specification language for
the same problem in (Chen et al., 2011), they again do not consider optimal solutions.

The contribution of this paper is threefold. First, we provide an algorithm to capture the asynchronous
motion of a group of robots. Given a team of robots modeled as weighted transition systems, this algorithm
constructs a new transition system that models the joint behavior of all members as a whole. Second,
we provide an algorithm to compute communication strategies for a team of robots so that we can still
guarantee correctness even if the robots cannot follow generated trajectories exactly during deployment.
Finally, building on these two algorithms, we present a method for generating optimal paths for a group of
robots satisfying general LTL formulas. Our method is general enough to address problems involving robotic
teams with different capabilities. The first case that we consider is when the members of the robotic team can
follow generated paths arbitrarily closely and their models have exact timing information. One such example
would be a team of robots that have accurate position information and can regulate their speeds to track
moving set-points that correspond to generated paths. We address such problems with our ezact solution
that generates optimal satisfying paths. However, there might also be cases where the robots lack accurate
speed control and traveling times between the regions of the environment is an unknown quantity within a
given interval. If this is the case, one cannot generally guarantee satisfaction of the LTL formula without
additional measures. Intuitively, if during deployment the robot speeds differ from those used for planning,
then the order of events can switch, which may result in the violation of the global mission specification.
For such cases we propose a robust solution that leverages the communication capabilities of the robots to
guarantee correctness and to maintain field performance in the presence of timing errors. Paths generated
using this approach are robust to uncertainties in the speeds (traveling times) of robots. In addition, we

characterize the performance of the robust paths with respect to the exact solutions. Preliminary versions
of parts of our approach appeared in conference proceedings (Ulusoy et al., 2011, 2012a,b). Here, we
extend these preliminary works by presenting a unified approach that can handle cases with both exact and
non-deterministic traveling times. We also provide full proofs, new case studies, and experiments.

The organization of the paper is as follows. In Sec. 2, we give some preliminaries in formal methods
and trace-closed languages. In Sec. 3, we formally state the optimal motion planning problem for a team
of robots and give an overview of our approach. In Sec. 4, we present the parts of our approach that are
common to the two cases that we consider in this paper. We present our ezxact solution in Sec. 5, which
applies to the cases where the models of the robots have exact timing information and the robots can follow
generated trajectories exactly. In Sec. 6, we present our robust solution, which applies to the cases where
the traveling times of the robots are uncertain and the robots communicate to guarantee correctness during
deployment and maintain field performance. In Sec. 7, we present case studies and experiments for a team
of robots performing persistent data gathering missions in a road network environment. We conclude with
final remarks in Section 8.

2 Preliminaries

In this section, we introduce the notation that we use in the rest of the paper and give some definitions. We
refer the reader to (Baier and Katoen, 2008; Clarke et al., 1999; Hopcroft et al., 2007) and references therein
for a more complete and rigorous treatment of these topics.

For a set II, we use |II|, 21, II*, and II* to denote its cardinality, power set, set of finite words, and set
of infinite words, respectively. We define 11> = II* UTI* and denote the empty string by .

Definition 2.1 (Transition System). A (weighted) transition system (TS) is a tuple T := (Qr, g%, T,
Ilr, L1, wr), where

(i) Ot is a finite set of states;

(ii) ¢% € Qr is the initial state;
(iii) o1 C Qr x Qv is the transition relation;

(i) Il is a finite set of atomic propositions;

(v) Lt : Q1 — 2T is a map giving the set of atomic propositions satisfied in a state;
(vi) wr : 07 — Rsg is a map that assigns a positive weight to each transition.

We define a run of T as an infinite sequence of states 7t = ¢°,¢',... such that ¢° = ¢3., ¢" € Or and
(¢*,¢"t1) € ot for all K > 0. A run generates an infinite word wr = £(q%), L(q'),... where £(¢") is the
set of atomic propositions satisfied at state ¢*. A prefiz of a run is a finite path from an initial state to a
state q. A periodic suffiz is an infinite run originating at the state g reached by the prefix, and periodically
repeating a finite path, which we call the suffiz-cycle, originating and ending at ¢. A run is in prefiz-suffix
form if it consists of a prefix followed by a periodic suffix.

Definition 2.2 (LTL Formula). An LTL formula ¢ over a set of atomic propositions II is defined induc-
tively as follows (Baier and Katoen, 2008; Clarke et al., 1999):

p:=T|ploVoloNne| -0 [Xo|oUS

where T is a predicate true in each state of a system, p € Il is an atomic proposition, = (negation), V
(disjunction) and N (conjunction) are standard Boolean connectives, and X and U are temporal operators.

LTL formulas are interpreted over infinite words (generated by the transition system T from Def. 2.1
with IIt = II). Informally, X p states that at the next position of a word, proposition p is true. Formula
p1 U p2 states that there is a future position of the word when proposition ps is true, and proposition p; is
true at least until ps is true. From these temporal operators we can construct two other temporal operators:
Eventually (future), F defined as F ¢ := T U ¢, and Always (globally), G, defined as G ¢ := = F = ¢. Formula

G ¢ states that ¢ is true at all positions of the word; formula F ¢ states that ¢ eventually becomes true in
the word. More expressivity can be achieved by combining the temporal and Boolean operators. We say a
run rr satisfies ¢ if and only if the word generated by rr satisfies ¢. An LTL formula ¢ over a set Il can be
represented by a Biichi automaton, which is defined next.

Definition 2.3 (Biichi Automaton). A Biichi automaton is a tuple B := (Qp, 9%, g, ép, F5), where
(i) Og is a finite set of states;
(ii) QF C Qg is the set of initial states;

(i4i) g is the input alphabet;

(iv) o0 C Op x IIg x Qp is a non-deterministic transition relation;

(v) Fg C QOp is the set of accepting (final) states.

A run of B over an input word w = w% w!,... is a sequence rg = ¢°,¢',..., such that ¢° € Q%, and

(g%, w¥, ¢"*t1) € dp, for all k > 0. A Biichi automaton B accepts a word over Il if and only if at least one of
the corresponding runs intersects with Fp infinitely many times. For any LTL formula ¢ over a set II, one
can construct a Biichi automaton with input alphabet IIg = 2™ accepting all and only words over 2 that
satisfy ¢. The set of all the words accepted by a Biichi automaton B is called the language recognized by
the automaton and is denoted by Lp.

Given a set II, the collection of subsets II; CII, V¢ =1,...,m is called a distribution of II if U[* II; = IIL.
For a word w € II* and a subset II; C II, w [r7, denotes the projection of w onto II;, which is obtained by
removing all the symbols in w that are not in II;. For a language L C II*° and a subset II; C II, L 17, denotes
the projection of L onto II;, which is the set of projections of all words in L onto II;, i.e., {w [m,: w € L}.

Definition 2.4 (Trace-Closed Language). Given a distribution {IIy, ..., 1, } of I and words w,w’ € TI°°,
w' is trace-equivalent to w, denoted w' ~ w, iff their projections onto each one of the subsets in the given
distribution are equal, i.e., w [;,= w' @, for each i = 1,...,m. For {Ily,...,II,,}, the trace-equivalence
class of w is given by [w] = {w' € I® : W' I,=w[m, Vi=1,...,m}. Finally, a trace-closed language over
{IIy,...,II,,} is a language L such that [w] C L,V w € L.

Remark 2.5 (Optimal-Run Algorithm (Smith et al., 2011)). The approach that we present in this
paper utilizes the OPTIMAL-RUN algorithm that we previously developed in (Smith et al., 2011). The algo-
rithm takes as input a weighted transition system modeling the motion of a robot and an LTL formula of
the form ¢ := ¢ AN GFw. In formula ¢, 7 is the optimizing task that must be repeatedly satisfied and ¢ is
an arbitrary LTL formula for capturing other mission requirements. The OPTIMAL-RUN algorithm outputs
an optimal satisfying run that satisfies ¢ and minimizes the maximum time between successive satisfying
instances of w. We refer the interested reader to (Smith et al., 2011) for more details on the OPTIMAL-RUN
algorithm.

3 Problem Formulation and Approach

In this section we introduce the optimal multi-robot path planning problem and motivate the need for
solutions that are robust to uncertain robot speeds. Let

&= (V, —)g,H,,C)

be a graph, where V is the set of vertices, —-¢C V x V is the set of edges, II is a finite set of atomic
propositions, and £ is a map giving the set of atomic propositions satisfied at a vertex. In this paper, £ is
the quotient graph of a partitioned environment, where V is a set of labels for the regions in the partition,
—¢ is the corresponding adjacency relation. For example, V can be a set of labels for the regions and
intersections for a road network and —¢ can give their connections (see Fig. 4(a)).

Consider a team of m robots moving in an environment modeled by £. The motion capabilities of robot
i € {1,...,m} are represented by a transition system T; = (Q;, ¢, d;, I1;, L;,w;), where Q; C V; ¢ is the

initial vertex of robot i; §; C—¢ is a relation modeling the capability of robot i to move among the vertices;
II; C 11 is the set of propositions that can be satisfied by robot ¢ and {Ily,...,II,,} is a distribution of II;
L; is a mapping from Q; to 2 showing how the propositions are satisfied at vertices; w;(q,¢’) captures
the time for robot i to go from vertex g to ¢/, which we assume to be an integer. In this model, each robot
travels along the edges of the corresponding transition system T;, and spends zero time at its vertices. We
assume that the robots are equipped with motion primitives that allow them to deterministically move from
q to ¢’ for each (q,q") € 6;.

We consider the case where this robotic team has a mission in which some particular task must be repeat-
edly completed and the maximum time in between successive completions of this task must be minimized.
For instance, in a persistent surveillance mission (Smith et al., 2011), the global mission could be to keep
gathering data while obeying traffic rules at all times, and the repeating task could be gathering data. For this
example, the robots would operate according to the mission specification while ensuring that the maximum
time between successive data gatherings is minimized. Consequently, we assume that there is an optimizing
proposition 7 € II corresponding to this particular repeating task and consider missions specified by LTL
formulae of the form

¢ := ¢ A GFr, (1)

where ¢ can be any LTL formula over I, and GF7 means that the proposition 7 must be repeatedly satisfied.
Our aim is to plan multi-robot paths that satisfy the mission specified by ¢ and minimize the maximum
time between successive satisfying instances of 7.

To state this problem formally, we assume that each run r7; = ¢?, ¢}, ... of T; (robot i) starts at t = 0 and
generates a word w; = w?,w},... and a corresponding sequence of time instances T; := ¢, ... such that
wF = £;(qF) is satisfied at t¥. To define the behavior of the team as a whole, we interpret the sequences T; as
sets, take the union (J;-, T; and order this set in an ascending order to obtain the sequence T :=t% ¢,
Next, we define Wicam = W yms Wieam, - - - t0 be the word generated by the team of robots where wr, . is the
union of all propositions satisfied at t*. Then, we define the infinite sequence T™ = T™(1), T™(2), ... where
T™ (k) stands for the time instance when 7 is satisfied for the k*" time by the team. Finally, we define the
cost function

J(T™) = limsup (T"(k + 1) — T"(k)) . (2)
k—+o00

In this paper we are particularly interested in the implementability and robustness of our solutions. Thus,
we consider two cases for the traveling times given by the models of the robots: The first case that we consider
is when the weight w;(q, ¢") of each transition (q,q’) € d; is exactly the time it takes for robot i to go from ¢
to ¢’ for i =1,...,m. This corresponds to the case when the robots can follow any given run exactly when
deployed in the environment and T™ observed during deployment is identical to the planned T™. The second
case that we consider is when the robots lack accurate speed control and the actual time it takes for robot i
to go from ¢ to ¢’ is an uncertain quantity w;(g,q’) taking values in known intervals non-deterministically.
The interval of each w;(q, ¢’) is given by [p;w;(q, ¢'), piw;(q, ¢')], where w;(q, ¢') is the weight of the transition
(¢,q') € &, p; and p; are the lower and upper deviation values of robot i, and 0 < p; < 1 < 7;. In this
setting, we treat the weight w;i(q,q’) given by T; as a nominal value, which determines the bounds of the
uncertain traveling time w;(q, ¢') along with p; and p;. We further assume that p; and p; of each robot ¢ are
known a priori. In the following, we use z and Z to denote the nominal and actual values of some variable
x, and use the expression “in the field” to refer to the model with uncertain traveling times. Notice that, for
the case of uncertain traveling times, J(T™) corresponds to the nominal value of the cost function, whereas
J (']NI"T) is the actual maximum time between any two successive satisfactions of = during deployment, i.e.,

J(T™) = lim sup (']T”(k +1)— 'ﬂ‘”(k)) .
k——+oo
When the robots cannot follow generated trajectories exactly, the order in which the propositions are
satisfied may switch during deployment. Then, the actual word Wieqy, generated by the robotic team during
its infinite asynchronous run in the field may not be the planned word wieqm, but a trace equivalent of wieqm
instead, i.e., @team € [Wieam]- This leads to the definition of critical words.

Definition 3.1 (Critical Words). Given the language Ly of the Biichi automaton that corresponds to the
LTL formula ¢ over I1, and a distribution {I11,...,II,,} of II, the word wieqm over I is a critical word if
3 Dteam € [Wieam] such that Oieam & Ly, where [Wieam] is the trace-equivalence class of w (Def. 2.4).

Thus, we see that if the planned word is critical and the traveling times of the robots are non-deterministic,
then we may not satisfy the specification in the field. This can be formalized by noting that the optimal
runs that satisfy (1) are always in a prefix-suffix form (Smith et al., 2011), where the suffix cycle is repeated
infinitely often. Using this observation and Def. 3.1 we can formally define the words that can violate the
LTL formula during the deployment of a robotic team with uncertain traveling times.

Proposition 3.2. If the suffiz cycle of the word wieam 18 a critical word and the traveling times of the robots
are non-deterministic, then the correctness of the motion of the robotic team during its deployment cannot
be guaranteed.

Proof. We denote the actual word generated by the robotic team in the field by @ieqm, whereas wieqm stands
for the planned word. Suppose that for each robot p; =1 —¢, p; = 1 +¢, and in the suffix cycle of wieam we

have o C wk . and 3 C wt(fat;), where o and (3 are the propositions generated by robots ¢ and j at positions

k and k + 7 of Wieam, respectively. Further assume that S must not occur before «, because if it does, Wieam
violates ¢. Note that we are guaranteed to find such « and S as we assume the suffix cycle to be a critical
word. In the worst-case, for @ieqm to violate to ¢, we must have (1+ €)t* > (1 —€)t*+7 where ¢ is the time
at which wF is satisfied. Solving for €, we get € > (t*T7 — ¢%)/(tk + t*+7). However, as the suffix is an
infinite repetition of the suffix cycle, limy_, oo (t**7 — t¥) /(#* +¢+7) = 0 and ¢ is violated for any ¢ > 0. W

Remark 3.3 (Worst-Case Performance in the Field under Uncertain Traveling Times). In ad-
dition, we can consider the performance of the team during deployment in terms of the value of the cost
function (2) observed in the field. Using the same arguments presented in Prop. 3.2, it can be easily shown
that the worst-case field value of (2) will be the minimum of (J(TT),...,J(TE)), where TT is the time
sequence of satisfactions of w by robot i and J('ﬁ‘f) s the marimum duration between any two successive
satisfactions of w by robot i in the field. This effectively means that, in the worst case, there is no benefit in
executing the task with multiple robots, as at some point in the future the overall performance of the team
will be limited by that of a single member.

Prop. 3.2 shows that we cannot solely rely on the planned runs to satisfy the mission when the traveling
times are uncertain and the suffix cycle of the word wieqm is a critical word. Thus, for such cases, it is
relevant to consider the communication capabilities of the robots as one may leverage them to guarantee
correctness during deployment. We can now formulate the problem that we consider in this paper.

Problem 3.4. Given an LTL formula ¢ over II of the form (1) and a team of m robots modeled as transition
systems {T1,..., Ty}, possibly with uncertain traveling times characterized by deviation values p;, p;,i =
1,...,m; generate individual runs and communication strategies for each robot such that T™ minimizes the
cost function (2) subject to the constraint that Wieam, 0T Oteam N case of uncertain traveling times, satisfies

o.

Since we consider LTL formulas containing GFm, this optimization problem is always well-posed. An
overview of our approach is given in Fig. 1. Notice that the exact steps we take to solve Prob. 3.4 depend on
whether the traveling times of the robots are uncertain or not. Nevertheless, in both solutions, we construct
the team transition system T that captures the joint asynchronous motion of the robots in the environment
(Sec. 4.1). We then find an optimal satisfying run on T using the OPTIMAL-RUN algorithm we previously
developed in (Smith et al., 2011), and we project this run back to the individual T;,i = 1,...,m (Sec. 4.2).
In the next section, we discuss these common parts of our approach before presenting our exact and robust
solutions in the sections that follow.

4 Modeling the Team and Finding Optimal Satisfying Runs

As given in Fig. 1, there are two operations common to both of our solutions: construction of the team
transition system T and finding optimal satisfying runs for individual robots. In the following, we discuss
these operations.

Transition Systems T4,...,T,,
Mission specification ¢
Deviation values p, pi,i = 1,...,m (optional)

'

Uncertain
traveling times?

>
transition system T

!

Find optimal satisfying

individual runs 77, ..., %,

Yes ‘ Obtain the team

Obtain the team
transition system T

'

Find optimal satisfying
individual runs r3,..., 7%,

Exact Solution (Sec. 5)

Find individual sync

sequences s},..., 5,

Use simple
synchronization

/

Robust Solution (Sec. 6)

Figure 1: An overview of our approach.

4.1 Constructing the Team Transition System

In order to be able to optimize the motion of the team, we must capture the joint asynchronous behavior
of its members as they move in the environment. Since traveling times between regions are typically not
identical, we need a way to capture the states, or relative positions, of the robots regardless of whether they
are at the regions in the environment or traveling in between regions. This leads to the definition of traveling
states.

Definition 4.1 (Traveling State). Given the transition system T; := (Q;,q?, 8;,I1;, L;, w;) modeling robot
i, we refer to a state of the form q;qiz;, where q;,q; € Q; and z; > 0, as a traveling state, and use it to
represent the instant where robot i has traveled from q; to ¢, for x; time units.

To model the asynchronous motion of the team in the environment, we use a team transition system
T = (Qr, ¢%, 61, T, L1, wr), where Qr is the set of states of the form ¢ = (g[1],...,q[m]) where ¢ is a
tuple and its i*" element g[i] is the state of robot i; ¢% = (¢, ..., q%,) is the initial state of the team; dr is the
set of transitions; It = U, II; is the set of propositions; £t is a mapping from QO to 217; wr(q,¢’) is the
weight of the transition from g to ¢’. The states of T corresponds to the instants where at least one member
of the team has completed a transition on its individual transition system and is currently at a vertex while
other robots may still be traveling. When robot ¢ is at some region in the environment, we have ¢[i] € Q.
If, on the other hand, robot i is traveling from ¢; to ¢; and it has been x; time units since it left g¢;, we have
qlf] = qi¢jz;. Using this, we construct T by running a depth first search on the transition systems of the
individual members of the team as given in Alg. 1.

Alg. 1 is essentially a recursive depth first search (lines 4 — 17) that starts at the initial state of the
team transition system T (line 3). The initial state ¢% of T is defined as the tuple of the initial states of
the m transition systems (line 2). Given a state g of T, the function dfsT first generates all possible tuples
of transitions that can be taken at the current states of the transition systems {T1,..., Ty} (lines 4 — 7).
The current state of transition system T; is given by the i*" element ¢[i] of the current state ¢ of the T.
At line 5 of Alg. 1, we consider all possible transitions out of the current states of all transition systems
{Ty,...,T}. Ifqli] € Q,, i.e., q[i] is a regular state of T;, then all transitions going out of this state in

Algorithm 1: CONSTRUCT-TEAM-TS
Input: {T4,..., T}
Output: Corresponding team transition system T.

1 ¢%:=(q,....45).
2 dfsT(¢Y).

3 Function dfsT(state tuple g € Or)

4 q[i] is the i*" element of q.

5 t; is a transition of T;, such that ¢; € {(¢[#], ¢})|(q[é], q}) € &;} for q[i] € Q; and ¢; = (¢, ¢;) for
qli] = qiqjz;.

T := (t1,...,tm) is a tuple of transitions.

T is the set of all such transition tuples at q.

foreach T' € T do

w < Shortest time until a robot is at a vertex.

10 | Find the ¢’ that corresponds to the new state of the team.

11 | if ¢’ ¢ OQr then

© 0w N o

12 Add state ¢’ to Or.

13 Set L(q") = UL, L(qli])-

14 Add (q,q’) to o1 with weight w.
15 Continue search from ¢": dfsT(q’).

16 | else if (¢,q¢’) ¢ o1 then
17 LAdd (g,¢') to 6t with weight w.

T, will be considered in the transition tuples that we will construct. Else, ¢[i] is a traveling state of T; of
the form ¢;qjx;, and the only transition that can be taken is the one that is being taken, i.e., the transition
from ¢; to ¢j. Then, we construct the set of all possible tuples of transitions that can be taken at the current
states of the transition systems (lines 6-7) and process each tuple one by one (lines 8-17). In a transition
tuple T, the i*" element gives the transition that is being taken at the current state of T;. In lines 9-10, we
find the next instant where at least one transition in 7' has been completed and the next state ¢’ of T has
been reached. The i*" element ¢'[i] of the next state ¢’ of T corresponds to the next state of T; w time units
after starting taking the transition T'[i] at ¢[i]. Suppose that, the source and target states of transition 77[i]
are ¢; and ¢}, respectively. If the transition T'[i] has been completed at this point, then ¢'[i] = ¢., i.e., we set
the next state of T; to the target state of T[i]. Otherwise, ¢'[i] is a traveling state of the form ¢;q;x; such
that x; = w if q[i] = ¢;, and z; = n + w if ¢[i] = ¢gin. If ¢’ is a new state (lines 11 — 15), we accordingly
add it to Q7 and define its propositions. Then, we add the transition that has just been completed to ot
and continue our search from this new state ¢’. Else, we add the transition that has just been completed to
o1 if required and proceed to the next transition tuple in 7. The algorithm concludes when all states and
transitions of T have been discovered.
The following proposition provides a bound on the size of the team transition system T.

Proposition 4.2. The number of states |Qt| of T is bounded by
[T1e+w -]l (3)
i=1 i=1

where W is the largest edge weight in all TS’s.

Proof. The first term in (3) is the maximum number of states that we can have in the Cartesian product of
T;,i=1,...,m. The second term in (3) is an upper-bound on the number of traveling states (Def. 4.1) that
we can define as we construct T. Here, [];", |d;] is the maximum number of transitions that we can have
in the Cartesian product of T;s and (W — 1) is the upper bound on the number of new traveling states per
transition. Thus, |Q| is bounded by the sum of these two terms as given in (3).]

Remark 4.3 (Comparison with Naive Construction). One can avoid going through Alg. 1 and capture
the joint behavior of the team by discretizing each transition in T; i = 1,...,m to unit-length edges and
taking the synchronous product of these m T;’s. This approach, however, yields a much larger model whose
state count is bounded by

m

IIlel+ 3 wiad) -5

=1 (¢,9")€6;

For the case where we have m identical robots in an environment with QQ vertices, A edges and a largest
edge weight of W, the above given bound is O((Q + AW)™), whereas the bound given by Prop. 4.2 is
o™+ A™W).

4.2 Finding Optimal Satisfying Runs for Individual Robots

Once we have the transition system T modeling the team, we can use the OPTIMAL-RUN algorithm (Smith
et al., 2011) to obtain an optimal run r},,,,, on T that minimizes the cost function (2) and satisfies any
mission specification ¢ of the form (1). The optimal run r7},,,, always consists of a finite sequence of states
of T (prefix), followed by infinite repetitions of another finite sequence of states of R (suffix).

Given a run ryeqm of T, we can finally project it onto individual robots to obtain their individual runs

{ri,.-..,rm}

Definition 4.4 (Projection of a Run on T to T;). Given a run ricqm on T where rieam = ¢°, ¢, . ..,
we define its projection on T; as run v, = ¢2q} ... for alli = 1,...,m, such that ¢ appears in r; only if
q"[i] € Q; where ¢*[i] is the it" element of tuple ¢~.

It can be easily seen that the set of runs {ry,...,r,,} obtained from ricq., using Def. 4.4 and the run
Tteam ON T agree with each other: The projection given in Def. 4.4 simply breaks down a sequence of tuples
of states into a tuple of sequences of states, while preserving the order of the states and filtering out the
traveling states. Thus, the word w and the time sequence T generated by {ri,...,r,} are exactly the word
Wteam and the time sequence Tyeq, generated by 7ieqm. Moreover, if the run 74eqq, is in prefix-suffix form,
all individual runs r; projected from 74cq., are also in prefix-suffix form. Therefore, the individual runs
projected from the optimal run r},,,, are always in prefix-suffix form.

5 Exact Solution

In this section we consider the case where the models of the robots have exact timing information and the
time it takes for the robots to travel between regions during deployment is exactly the time captured in their
models. Consequently, if we plan a run based on the models of the robots, the run that we will observe when
the robots are deployed will be exactly the planned run in the sense that the times at which robots reach
the regions in the run will be exactly as planned.

To solve Prob. 3.4 in this case, we first create a model of the motion of the team in the environment.
Given the individual transition systems {T1,..., T;,} of the robots, we use Alg. 1 to construct the team
transition system T that captures the joint asynchronous behavior of the robots.

Example 5.1. Figs. 2(a) and 2(b) illustrate the transition systems of two robots, where I} = {py, 7}, Iy =
{p2, p3, 7}, and II = {p1, p2, p3, m}. Using Alg. 1 we construct the team transition system T (Fig. 2(c))
that captures the joint asynchronous behavior of the team in 6 states.

Next, given an LTL mission specification ¢ of the form (1), we use our previous OPTIMAL-RUN algo-
rithm (Smith et al., 2011) to generate an optimal satisfying run r},,,, on the team transition system T.
Then, we project the optimal satisfying run r},,,, on T onto individual transition systems using Def. 4.4 to
obtain individual optimal satisfying runs {r},...,r* } of the robots.

Example 5.1 Revisited. Running the OPTIMAL-RUN algorithm (Smith et al., 2011) for the team transi-
tion system T given in Fig. 2(c), and the formula ¢ := GFr results in the optimal run

2 2
T,

(a)

1
. () e ()
s

2 1 1 L

2 2 2 2
2 1
T p3
P1, TQ P2, T 1
(b)

Figure 2: Figs. (a) and (b) show the transition systems T; and T2 of two robots in an environment with three vertices. The
states of the transition systems correspond to vertices {a, b, c} and the edges represent the motion capabilities of each robot.
The weights of the edges represent the traveling times between any two vertices. Propositions p1, p2,p3, and 7 are shown next
to the vertices where they can be satisfied by the robots. Fig. (c) shows the team automaton capturing the joint behavior of

two robots in 6 states. A state labeled (a,b) means robot 1 is at region a and robot 2 is at region b, whereas a state labeled
(bal, c) means robot 1 has traveled from b to a for 1 time unit and robot 2 is at c.

T \ 0 2 3 4 6 8 10
Tregm | @0 b,b bal,c a,b b,a a,b b,a
Lr() P1,P2,™ P3 P2,™ P1, ™ P2, P17

Ty a b a b a b

rs a b c b a b a

where the first row corresponds to the times when transitions occur, the second row corresponds to the run
Thoams the third row shows the propositions satisfied at each position, and the last two rows correspond to
the individual runs of the robots. For this run, we see that (a,a), (b,b), (bal,c) is the prefix and (a,b), (b, a)
is the suffix and will be repeated infinite number of times. Also, the time sequence of satisfaction of 7 is
T™ =2,4,6,8,10,... and the cost as defined in (2) is J(T™) = 2. Note that, at time t = 3, the second robot
has arrived at ¢ while the first robot is still traveling from b to a, therefore r has no state at time t = 3.

We finally summarize our exact solution in Alg. 2, and show that this algorithm indeed gives a solution
to Prob. 3.4 for the case where the models of the robots have exact timing information. We analyze the
overall complexity of Alg. 2 in Prop. 5.3.

Algorithm 2: EXACT-MULTI-ROBOT-OPTIMAL-RUN

Input: Transition systems {Ti,...,T,,} and an LTL specification ¢ of form (1).
Output: A set of runs {r¥,..., 7% } that both satisfies ¢ and minimizes (2).

1 Construct the team transition system T using CONSTRUCT-TEAM-TS (Alg. 1).
2 Find the optimal run r},,,, using OPTIMAL-RUN (Smith et al., 2011).
3 Project 17,,,, onto {T1,..., Ty} to obtain runs {rf,...,r%} (Def. 4.4).

Proposition 5.2. Alg. 2 solves Prob. 3.4.

Proof. Note that Alg. 2 combines all steps outlined in this section. Run r},,,, obtained from Alg. OPTIMAL-
RUN both satisfies ¢ and minimizes (2) among all runs of T (Smith et al., 2011). As discussed in Sec. 4.2,
there is a one-to-one correspondence between a set of runs {rq,...,r,,} obtained using Def. 4.4 and a run
Tream Of T. Therefore, {r},..., 75} as a projection of r},,,, onto {T1,...,T,,} is a solution to Prob. 3.4. W

Proposition 5.3. For the case where a group of m identical robots are expected to satisfy an LTL specification
¢ in a common environment with @ vertices, A edges and a largest edge weight of W, the worst-case
complexity of Alg. 2 is O((Q™ + A™W)3 . 2009D),

Proof. For the above mentioned case, the worst-case size of T as given in (3) is O(Q™ + A™W). In (Smith
et al., 2011), the authors give the worst-case complexity of the OPTIMAL-RUN algorithm as O(|T|? - 20(¢D)
where |T'| is the number of states of the input transition system and |¢| is the length of the LTL specification.
Then, the worst-case complexity of Alg. 2 becomes O((Q™ + A™W)3 . 20(9D), []

10

6 Robust Solution

In this section we consider the case where the actual traveling times of the robots observed during deployment,
denoted by w;(q,q’), are uncertain quantities taking values in known intervals non-deterministically. Recall
from Sec. 3 that, w;(q,q’) lies in the interval [p;w;(q,q’), piw;(q,q")], where w;(q,q’) is the nominal value
given by T;, p; and 7; are the lower and upper deviation values of robot i, and 0 < p; < 1 < p;. Thus, when
the robots execute a planned run in the field, the run observed during deployment may be different from
the one planned, possibly violating the mission specification. As previously discussed in Sec. 3, our solution
in this case will also comprise a communication strategy so that the satisfaction of the mission specification

will be guaranteed and the deviation of the field performance from optimality will be bounded.

6.1 Optimal Satisfying Runs and Transition Systems with Traveling States

Given the transition systems {T4, ..., T,,} of the robots and the mission specification ¢, we first construct the
team transition system T using Alg. 1 to model the team. Then, we use the OPTIMAL-RUN algorithm (Smith
et al., 2011) to obtain a run r},,,, on T that satisfies ¢ and minimizes the cost function (2).

Example 6.1. Running the OPTIMAL-RUN algorithm (Smith et al., 2011) on T given in Fig. 2(c) for the
formula ¢ = G(p1 = X(—p1 U p3)) A GFr results in the optimal run
T | 0 2 3 4 5 6
Troam | @0 b,b bal,c ab abl,c b,b
Lr()| 0 pi,pe,™ P3 P2,m™ P3 P1,p2,7

where the first row shows when transitions occur, the second row corresponds to the run r},,.,, end the last
row shows the satisfying atomic propositions. For this run, (a,a), (b,b) is the finite prefiz and (bal, c), (a,b),
(abl,c), (b,b) is the suffiz cycle, which will be repeated infinite number of times. Also, the time sequence T™
of satisfaction of w is T™ = 2,4,6,8, ... and the cost as defined in (2) is J(T™) = 2

Since T captures the asynchronous motion of the robots, the optimal satisfying run r},,,, on T may
contain some traveling states (Def. 4.1) of the form which do not appear in the individual transition systems
{T1,..., T} that we started with. In our exact solution (Sec. 5), we pruned such states as we projected
TFoqm onto {T1,..., Ty} to obtain {r},...,r%}. But we cannot ignore such traveling states in this case,
as each one of them is a candidate synchronization point for the corresponding robot as we discuss in the
following subsections. Instead, we insert those traveling states into individual transition systems so that
the robots will be able to synchronize with each other at those points if needed. In the following, we use
q"[i] to denote the i*" element of the k" state tuple in r7,,,,, which is also the state of robot i at that
position of 77,,,,. As given in Def. 4.1, a traveling state of robot ¢ has the form g¢;q/x;. First, we construct
the set S = {(i,¢"[i]) | ¢"[i] = qiqlw; YV k,i} of all traveling states that appear in 77,,,,. Elements of S are
ordered pairs where the second element is a traveling state and the first element gives the transition system
this new traveling state will be added to. Next, we construct the set T = {(4, (¢*[i], ¢**'[i]),z) | (¢"[i] €
S)V (¢**1[i] € S), v = wr(¢F,¢**t1) Yk, i} of all transitions that involve any of the traveling states in 77,
Elements of T are triplets where the second element is a transition, the third element is the weight of this
transition, and the first element shows the transition system that this new transition will be added to. Then,
we add the traveling states in S and the transitions in T to their corresponding transition systems. Finally,
using Def. 4.4, we project the run r},,,, onto {T1,..., T} to obtain the individual runs rf,i =1,...,m.

Example 1 Revisited. For the optimal run r}.,,, we obtained for this example, we have S = {(1,abl), (1,bal)}
and T = {(1,(a,adbl), 1), (1, (abl,d),1), (1, (b,bal), 1), (1, (bal,a),1)}. Fig. & illustrates the corresponding
transition systems with new traveling states and transitions highlighted in red. Then, we have runs of indi-
vidual robots from Def. 4.4 as r{ = a,abl,b,bal,a,abl,b,bal, a,abl,... and r5 = a,abl,b,c,b,c,b,c,b,c,....

Remark 6.2. For most applications, adding new states and transitions to the models of the robots may imply
introducing new waypoints or motion primitives at lower levels. Since the exact way in which these model
changes are accommodated at lower levels is strictly application specific, we do not discuss these details here
assuming that such necessary changes can be implemented.

11

Figure 3: Figs. (a) and (b) show the transition systems with new traveling states and transitions that correspond to the optimal
run r7,,,, that we compute for Exp. 6.1. In Fig. (a), the new traveling states and transitions of Ty are highlighted in red.

6.2 Synchronization for Trace-Closed Specifications and Optimality Bounds

After obtaining individual runs of the robots, we proceed by checking if the mission specification ¢ is trace-
closed using an algorithm adapted from (Peled et al., 1998). We say an LTL formula ¢ is trace-closed if the
language Ly of the corresponding Biichi automaton is trace-closed in the sense of Def. 2.4.

Proposition 6.3. If the LTL formula ¢ over the set I1 is a trace-closed formula with respect to the distri-
bution {11y, ..., I, }, then it will not be violated in the field due to uncertain traveling times.

Proof. From Defs. 2.4 and 3.1, we know that if we can find a run that satisfies a trace-closed LTL formula,
then the word wyeqm, corresponding to the run will not be a critical word. We use @eqm to denote the actual
word generated by the team during deployment. Since wyeqm is not a critical word, # @seam € [Wieam] such
that @eqm € Lp. Thus, regardless of the deviation values of the robots, ¢ will not be violated in the field
due to uncertain traveling times as any @reqm € [Wieam] Will also be in Lg. |

Corollary 6.4. If the LTL formula ¢ over the set Il is not trace-closed with respect to the distribution
{Iy,...,I,,}, then ¢ may be violated during deployment due to uncertain traveling times.

Proof. The proof directly follows from Prop. 6.3. |

If ¢ is not trace-closed, we cannot guarantee correctness during deployment in general as shown in
Cor. 6.4. In cases where the traveling times of the robots are uncertain and ¢ is not trace-closed, we
compute individual synchronization sequences {si,...,s,,} for the robots to guarantee correctness during
deployment. We discuss how we generate these synchronization sequences in greater detail in Sec. 6.3. If, on
the other hand, the mission specification ¢ is trace-closed, we can guarantee correctness in the field without
any additional measures as shown in Prop. 6.3. Nevertheless, as given in Rem. 3.3, the field performance of
the team will invariably deviate from its planned value, and in the worst-case, the field performance of the
team will be limited by that of a single member. To address this issue, we propose a periodic synchronization
protocol (Alg. 3). As the robots execute their infinite runs in the field, they synchronize with each other
periodically at the beginning of each repetition of the suffix-cycle.

Algorithm 3: TRACE-CLOSED-SYNC-RUN

Input: A run r; = ¢?, g}, ... of robot i in prefix-suffix form.

1 gsync < First state in the suffix-cycle.
2 k+ 0.
3 while True do

a | if current state is qsync then

5 Notify all robots.

6 Wait until notification messages of all robots are received.
7 | Make transition to ri-“'l.

8 |k« k+1.

Using this protocol, we can define a bound on the deviation from optimality, i.e., the value of the cost
function (2) observed in the field, as given in the following proposition.

12

Proposition 6.5. Suppose that each robot’s deviation values are bounded by p and p where p > p >0 (i.e.,
pi > p and p; < p for all robots i), and let J(T™) be the cost of the planned robot paths. Then, if the robots
follow the protocol given in Alg. 3 the field value of the cost satisfies

J(T™) < J(T™)p + ds(p — p)
where dg is the planned duration of the suffiz cycle.

Proof. The suffix consists of an infinite number of repetitions of the suffix cycle, which we denote by S.. As
given in Alg. 3, each repetition of S begins with a synchronization point where all robots synchronize with
each other. Let ds be the planned duration of S., let ngs be the number of optimizing propositions satisfied
in S.. Let us redefine ¢ = 0 to be the time when the suffix starts, and let T™ be a sequence of length n,
recording the ng times that the optimizing proposition is satisfied on the first repetition of S.. Note that,
as we consider infinite runs and as the process restarts itself at the beginning of each S. by means of the
synchronization protocol given in Alg. 3, we only need to consider the first repetition of S.. We first define

T = =T"(i)B
T = T()p
v — 4.5

where, 7% and T? are the earliest and latest times that the ith optimizing proposition can be satisfied,
respectively. The value t* is the latest time that the second repetition of S, can begin. Then, for 0 < i < ng,
the worst-case time between satisfying the i*" optimizing proposition and the (i 4 1)*" optimizing proposition
is

(4)

7,1+1 11 1 11 if0<Z< ”87
T° —
tw ZI_TS if’i—ns.

Next, in the planned paths, multiple robots may simultaneously satisfy the ith optimizing proposition. In
the field, these satisfactions will not occur simultaneously. The maximum amount of time between the first
and last of these satisfying instances for the it” proposition, for 0 < i < n, is

=T T (5)

Finally, using (4) and (5) we obtain the upper bound on the value of the cost function (2) that will be
observed during deployment as

J(T™) = max{m;cmx{Ti’Hl}, mlax{ri}}. (6)

Substituting the definitions for T%, T%, and t* into (4) we obtain

St _ T7 (i Jr_l)ﬁ - T”('{)B if 0 < i< ng,
(ds + T™(1))p — T™(ns)p if i = ny
But, we have that J(T™) > T"(i+1) —T" (i), and J(T™) > ds +T"(1) — T™(n,). In addition, T™(1) < J(TT)
and T™(i) < ds for all i € {2,...,ns}. Using these expressions we obtain 7%¢+t1 < J(']I"T)ﬁ +ds(p — p).
Similarly, we get 7° < d,(p — p), and thus J(T™) < J(T™)p + ds(p — p)- []

Remark 6.6 (Exact Bound on J(T7)). In Prop. 6.5, we have provided a conservative bound for ease of
presentation. However, we can also calculate an exact bound on the field value of the cost J(T™) using a
treatment similar to the proof of Prop 6.5.

6.3 Synchronization for General Specifications and Guarantee of Correctness

If the traveling times of the robots are uncertain and ¢ is not trace-closed, we compute individual synchro-
nization sequences {s1,...,Sn} for the robots to guarantee correctness during deployment. As the robots

13

execute their infinite runs in the field, they synchronize with each other according to the synchronization
sequences that we generate using Alg. 4. The synchronization sequence s; of robot i is an infinite sequence of
pairs of sets. The k' element of s;, denoted by s¥, corresponds to the k" element ¢¥ of r¥. Each s¥ is a pair
of two sets of robots: s¥ = (s 0, sﬁnotify), where s¥ ., and sﬁnotify are the wait-set and notify-set of sk,
respectively. The wait-set of s¥ is the set of robots that robot i must wait for at state ¢ before satisfying
its propositions and proceeding to the next state qf“ in r¥. The notify-set of sf is the set of robots that
robot 4 must notify as soon as it reaches state ¢¥. As we discussed earlier in Sec. 6.1, the optimal run 77,,,,
of the team and the individual optimal runs r},% = 1,..., m of the robots are always in prefix-suffix form.

Consequently, individual synchronization sequences s; of the robots are also in prefix-suffix form.

Algorithm 4: SYNC-SEQ

Input: Individual runs {r},...,7},}, Biichi automaton B4 of —¢, and models of the robots.
Output: Synchronization sequence for each robot {s1,...,sm}.

1 Z=/{1,...,m}, beg = beginning of suffix cycle, end = end of suffix cycle.
Siwaitlk] =Z \iforieZ and k=1,...,end.
foreach k. =1,...,end do

2
3

4 |if k#1 and k # beg then

5 Set ¥ iy =0 Vi€l

6 Construct the transition system W that generates every possible @teqm (Alg. 6).

7 if the language of By x W is empty then

8 LContinue to next position k in run.

9 else
10 Set 8§ i =Z\iVieT
11 foreach i € 7 do

12 foreach j € 7\ i do

13 Remove j from si—"’wait.

14 Construct the transition system W that generates every possible @ieqm (Alg. 6).

15 if the language of By x W is not empty then

16 LAdd j back to sF .-

17 Define each S?,notify Vi, k such that i € s;ﬁwm—t =j€ sfwmtify Viel jel k=1,...,end.

18 The sequence s; is an infinite repetition of its suffix-cycle, i.e. s?eg, ooy for each i € {1,...,m}.

Alg. 4 is essentially a loop (lines 3 — 16) that computes the wait-sets for each position of the runs of the
robots to guarantee correctness in the field. Initially, synchronization sequences are set so that the robots
wait for each other at every position of their runs (line 2). At line 4 of Alg. 4, if k is the first position of the
runs, we do not modify this initial value of sf wait- This ensures that all robots start executing their runs in a
synchronized way. We also keep this initial value of sf wait if k is the beginning of the suffix cycle, so that all
robots synchronize with each other globally at the beginning of each suffix cycle. This lets us define a bound
on the deviation from optimality, i.e., the value of the cost function (2) observed in the field, as given in
Prop. 6.5. For all other positions of the runs, we try to shrink the wait-set of each s¥ so that communication
effort is minimized while we can still guarantee correctness in the field (lines 5 — 16). To this end, we first
consider the case where robots do not wait for each other at this position of the run (lines 5 — 8). This
is actually a heuristic based on the observation that in most missions robots synchronize only occasionally.
We set all wait-sets corresponding to this position to empty sets. Then, given the runs, transition systems,
deviation values, and wait-sets of the robots, we use Alg. 6 to construct the transition system W that
generates all possible words Weqm that can be observed in the field due to the uncertainties in the traveling
times. Next, we construct the product B, x W, where B_4 is the Biichi automaton corresponding to the
negation of the LTL formula ¢. If the language of this product is empty, then the robots indeed do not need
to synchronize at this position. Else, we restore the previous values of the wait-sets of this position (line 10)
and consider each one of the robots in robot i’s k" wait-set s¥ ., one by one (lines 11 — 16). After removing

T, wat

14

; k
some robot j from 7,4,

we construct W and check if the language of B4, x W is empty (lines 13 — 15).
If the language of the product is empty, then robot i indeed does not need to wait for robot j at the k'"
position of its run. Thus, we keep the new value of sf wait- Else, we restore sf wait 1O 1ts previous value (line
16) and proceed with the next robot in sf wait- Once every robot in sf wait 18 considered, we proceed with the
next robot in the team, and eventually next position of the run. Notice that, the synchronization sequences
generated by Alg. 4 are free from any dead-locks as line 17 ensures that if some robot j waits for robot i at
position k, then robot i notifies robot j at position k. As the synchronization sequences of the robots are in
prefix-suffix form and the robots synchronize with each other globally at the beginning of each suffix-cycle
(line 4), at line 18, we define the rest of each synchronization sequence as an infinite repetition of its first
suffix-cycle that we have just generated. For the case where the total length of the prefix and the first suffix
cycle is K, worst case complexity of Alg. 4 is O(m?K(W + E)) where m is the number of robots, W is the
complexity of constructing W, and E is the complexity of checking emptiness of W x B_4 at each iteration.
If the robots need to synchronize only occasionally, i.e., if the heuristic at lines 5 — 8 succeeds most of the
time, then the complexity is O(K (W + E)). The synchronization protocol that the robots follow in the field

is given in Alg. 5.

Algorithm 5: SyNc-RuN
Input: The run r; and synchronization sequence s; of robot i .

1 k<« 0.
2 while True do

3 | Notify all robots in s”

i,notify"
Wait until notification messages of all robots in s*

T, wat

Make transition to rf“ after satisfying the propositions at rf.
k< Ek+1.

, are received.

[I N

We use Alg. 6 to construct the transition system W that generates all possible words that can be observed
in the field for a given set of runs and synchronization sequences of the robots. We must first define some
new terms before getting into the details of Alg. 6. We use the term position to refer to the current position
of a robot in its run. If some robot i has just reached the state rf in its run and satisfied the corresponding
propositions after waiting for all of the robots in its wait-set sf wait @8 given in Alg.5, then the position of
the robot is k. If, on the other hand, robot ¢ has left state rf‘l, but one of the above conditions has not
been satisfied yet, then the position of the robot is (k— 1, k). A robot-position pair is a pair of the form (i, p)
meaning that the position of robot ¢ is p which can be either an integer or a pair of integers, as discussed
above. For instance, the robot-position pair (¢, (k—1, k)) means robot 4 is on its way from state ri-“l to state
rF. An event is a set of one or more robot-position pairs that give the new positions of the corresponding
robots. In case of multiple robot-position pairs, all these changes occur simultaneously. That is, the event
{(i,k), (4, k)} means that robots i and j have just reached position & in their runs. On the other hand, the
event {(i,k)} means that robot ¢ has just reached position k and gives no information about the position of
robot j. Finally, an event sequence is a list of events that occur sequentially. Now we can begin discussing
Alg. 6. The states of W are tuples of positions such that the i*" element g[i] of some state ¢ € Qw gives
the current position of robot i. Consequently, at line 1 we set (1,...,1) to be the initial state of W as we
assume that the robots start their runs synchronously (Alg. 4). Alg. 6 is essentially a loop (lines 2-12) that
considers all possible sequences of events that may occur in the field. To do this, Alg. 6 relies on Alg. 8 to
generate pairs of event sequences and corresponding sets of states of W where those event sequences start.
For an event sequence and the corresponding set of start states generated using Alg. 8, Alg. 6 adds the
necessary states and transitions to W starting from each possible start state (lines 3-12). Then, at line 5,
we consider all events in an event sequence one by one. At lines 6-9, we compute the next state ¢’ after
the event e occurs at state g. If the position of some robot i changes due to e, then ¢'[i] is set to the new
position given in e (line 7). Else we update the position of robot i to capture its progress. If the position of
robot i is already a tuple in g, i.e., if robot 7 is already on road, then we do not change its position in ¢’ (line
8). Else, we update the position of robot i in ¢’ such that it starts traveling towards the next state in its
run (line 9). Next, we add the new state ¢’ with the necessary propositions and the new transition (g, ¢’) to

15

W as required (lines 10-11). Then, we set the current state ¢ of W to ¢’ and switch to the next event e in
the event sequence. Once we process all the events in this event sequence for all start states, we repeat the
same procedure for the next event sequence. Since the runs of the robots are in prefix-suffix form, Alg. 8 is
designed such that it terminates once the positions of the robots reach the end of the first suffix-cycle. Since
the robots start each suffix-cycle in a synchronized way (Alg. 4), at line 14 of Alg. 6 we add a transition
from all those states with no outgoing transitions to the state that corresponds to the beginning of the suffix
cycle. This final step concludes the construction of W by capturing the periodic structure of the runs of
the robots. In order not to interrupt the flow of the paper, we present and discuss the complexity of Algs. 8
and 9, which we use to generate the event sequences discussed above, in App. B. Next, we characterize the
complexity of Alg. 6.

Algorithm 6: CONSTRUCT-FIELD-WORDs-T'S
Input: {ri,...,7m}, {S1.wait,-- s Smwait}> {T1,.-., Tm}, and 77, pi,i = 1,...,m.
Output: The field words transition system W that generates all possible words that can be observed
in the field.
@ = (1,...,1).
foreach (event_seq, start_states) generated using GENERATE-EVENT-SEQ (Alg. 8) do
foreach qsiqrt in start_states do
q = (start-
foreach e in event_seq do
foreach i € {1,...,m} do
if (i, kpew) € e then ¢'[i] = kpew.
else if q[i] is a tuple then ¢'[i] = q[i].
else ¢'[i] = (qli], qli] +1).
10 if ¢’ is not in W then Add ¢’ to Qw with Lw(q') = U geLi(rF).
11 if (q,4") is not in W then Add (¢,¢’) to dw.
12 qg=4q.

© 00 N O A W N -

13 Gsuyfiac = (beg, ..., beg) where beg corresponds to the beginning of the suffix-cycle.
14 foreach q € Qw such that 3(q,q') € 6; for any ¢’ € Qw do add (¢, gsuy fiz) to Sw.

Proposition 6.7. For the case where the total length of the prefix and the first suffiz cycle is K and the
intervals of the events of a robot do not overlap, the worst-case complexity of Alg. 6 is O(2™ m*™+3K) and
the mazimum number of states of W is O(m?K).

Proof. From Prop. B.1, each call to Alg. 8 takes time O(m*™) and we have at most K(2m — 1) event
sequences with at most m events each. As each of the robots can be either at a position or traveling,
each of these event sequences can have at most 2™ different start states. Thus, the complexity of Alg. 6
is O(m*™ K (2m — 1)2™m?), which is O(2™ m*™*3K). Also, since Alg. 6 creates a new state for each new
event, the maximum number of states of W is O(m?2K). |

Remark 6.8. In Prop. 6.7 we assumed, for simplicity of presentation, that there is at most one event per
robot per interval. This is typically the case where the deviation values of the robots are small enough (with
respect to the length of the suffix cycle) so that the intervals of different events that belong to the same robot
do not overlap. A more general complexity analysis could be performed for the case where the intervals of
different events of a robot are allowed to overlap, but at the cost of increased difficulty of presentation and
interpretation. We employ the same assumption in Props. 6.10, B.1, and B.2 for the same reason.

Example 6.1 Revisited. For the example we have shown throughout this section, we obtain the following
individual optimal runs and synchronization sequences.

16

T | 0 2 3 4 5 6
b

] a bal a abl b
51 ({2}’ {2}) ([Z)’(Z)) ({2}7{2}) ((2)7@) ((2)7@) ((2)7@)
L4(.) P1, 7 p1,7
r5 a b c b c b
s2 | ({1L{1h) (0,0) ({1h{1}) (©,0) (©,0) (©,0)
L(.) P2, T P3 P2,™ Ps P2,

In a line corresponding to a synchronization sequence s;, first and second elements of the tuple at position k
are sﬁwm and sﬁnotify, respectively. The symbol O denotes an empty wait-set, or notify-set, i.e., the robot
does mot wait for, or notify, any other robot at that position of its run.

We finally summarize our robust solution in Alg. 7, and show that it provides a solution to Prob. 3.4.

We analyze the overall complexity of Alg. 7 in Prop. 6.10.

Algorithm 7: RoBUST-MULTI-ROBOT-OPTIMAL-RUN

Input: Transition systems {T4,..., T}, corresponding deviation values and an LTL specification ¢
of the form (1).
Output: A set of runs {r¥,..., 75 } that satisfies ¢ and minimizes (2), a set of synchronization
sequences {s1,...,$n} that guarantees correctness in the field (if applicable), and the
bound on the performance of the team in the field.

Construct the team transition system T using Alg. 1.
Find an optimal run r},,,, on T using OPTIMAL-RUN (Smith et al., 2011).
Insert new traveling states to r7,,,, and transition systems {T1,..., T} (See. Sec. 6.1).
Obtain individual runs {r¥,..., 75 } using Def. 4.4.
if ¢ is not trace-closed then
LGenerate synchronization sequences {s1,..., s} using SYNC-SEQ (Alg. 4).

(<221 BNV VR

~

Find the bound on optimality as given in Prop. 6.5.

Proposition 6.9. Alg. 7 solves Prob. 3.4 when the traveling times of the robots are uncertain during de-
ployment.

Proof. Note that Alg. 7 combines all steps outlined in this section. The planned word wyeqm generated by
the entire team satisfies ¢, and minimizes (2), as shown in (Smith et al., 2011). If the mission specification
¢ is trace-closed, correctness during deployment is guaranteed by construction as given in Prop. 6.3. If ¢ is
not trace-closed, the synchronization sequences guarantee correctness by ensuring that the @ieqm generated
in the field never violates ¢ for given deviation values. Therefore, Alg. 7 solves Prob. 3.4. |

Proposition 6.10. Suppose that a group of m identical robots are expected to satisfy an LTL specification
¢ in a common environment with Q vertices, A edges and a largest edge weight of W. Further assume that
K is the total length of the prefix and the first suffix cycle of the optimal satisfying run, and the intervals
of the events of a robot do not overlap. Then, for typical cases where m << @, K < Q, the complexity of
Alg. 7is O((Q™ + A™W)3 . 200D,

Proof. For the above mentioned case, the worst-case complexity of lines 1-4 of Alg. 7 becomes O((Q™ +
A™W)3.2009D) from Prop. 5.3. The check for trace-closedness at line 5 can be done in time 0(20(|¢|)22O(‘¢D)
(Peled et al., 1998). If this check fails, we generate synchronization sequences using Alg. 4, which runs in
time O(m?K (W + E)). From Prop. 6.7, W is O(2™ m*™*3K) and the number of states of W is O(m?K).
Thus, E is O(2°0"?Dm2K) (Baier and Katoen, 2008) and Alg. 4 becomes O(2mm*™+5 K2 4 20(~¢Dmt 2).
Notice that, the check for trace-closedness at line 5 of Alg. 7 is beneficial only if £ < W. If not, we can simply
assume that the result is false and proceed with the generation of the synchronization sequences using Alg. 4.
Then, the overall worst-case complexity of Alg. 7 is O((Q™ + AW)320U¢D 4. 2mpam+5 |2 4 20179 mt 2),
For typical cases where m << @ and K < @, the complexity becomes O((Q™ + A™W)? . 20019, []

17

7 Implementation and Case Studies

We implemented our algorithms in python as the LTL Optimal Multi-Agent Planner (LOMAP) package,
which is publicly available online!. LOMAP uses the NetworkX graph package described in (Hagberg et al.,
2008) to represent various models in our implementation and the LTL2BA software described in (Gastin and
Oddoux, 2001) to convert LTL specifications to Biichi automata. LOMAP also includes an enhanced version
of the OPTIMAL-RUN (Smith et al., 2011) algorithm which returns the path with the shortest suffix-cycle
when there are multiple optimal paths in terms of the cost function (2). Furthermore, this new version can
be executed on a computer cluster in a distributed fashion to be able to solve problems with large resource
requirements. For the following case studies, we took advantage of this functionality to run LOMAP on a
computing cluster consisting of five m2.2zlarge Amazon Elastic Compute Cloud? instances each with 34.2
GB of memory and 2.67 GHz quad-core processing power. A typical usage of our package is as follows:

(i) The user defines the transition systems {T4, ..., T,,} that model the robots moving in the environment
in a plain text file using LOMAP’s format.

(ii) Then, the user writes a short python script that defines the mission specification expressed in LTL in
the form of (1) and calls the appropriate LOMAP function.

(iii) Finally, the trajectory of the team and the value of the cost function are returned if the mission
specification can be satisfied. Otherwise, our implementation shows an error message and quits.

In the following, we present various case studies considering persistent surveillance missions in the envi-
ronment shown in Figs. 4(a) and 4(b). This environment is a road network consisting of roads, intersections,
and regions for data gathering and upload. In this network, road segments are connected to each other via in-
tersections, and the surveillance target is located in the middle, surrounded by four data gathering locations.
For our case studies, we considered two Pololu m3pi robots with mbed development boards. We realized the
environment using lines of black tape that correspond to the roads and intersections of the road network.
The robots can navigate in the environment and can sense whether they are at an intersection or not using
their infrared reflection sensors. The robots can also communicate with each other and a computer using
Xbee wireless modules. In our case studies, inter-robot communication is used for synchronization of the
robots, whereas computer-robot communication is used for deploying the robots according to the trajectory
generated using our implementation.

The robots that we consider in our experiments have uncertain traveling times. In order to obtain their
upper and lower deviation values, we measured the time it takes for both of the robots to complete the
cycle “U2, 10, 11, 12, 1, 2, 21, 22, 23, 9, 10, U2” in Fig. 4(c) and recorded the maximum and minimum
values among 20 trials. We chose this cycle because it tests all the motion primitives of the robots: “left-
turn, right-turn, u-turn, and go-straight”. The average time for both robots to complete this cycle was
approximately 17 seconds. We used this information to obtain the weights of the model given in Fig. 4(c),
which were used as the nominal values in our computations. The maximum and minimum times for robot
1 to complete this cycle were 17.67 and 16.68 seconds, respectively. The maximum and minimum times for
robot 2 were 17.56 and 16.77 seconds, respectively. Using these measurements we obtained the following
deviation values: p; = 1.039,p; = 0.981,p3 = 1.033, p2 = 0.986. In the following, we take these deviation
values as o1 = pz = 1.04 and p; = po = 0.98 after adding a small margin of safety.

Fig. 4(c) illustrates the transition systems T; and T that model the motion of the robots in this road
network. The sets of states Q1 and Q, are the sets of labels assigned to intersections and regions. The
transition relations §; and do give how the intersections and regions are connected and the weight maps w;
and wy capture the time it takes for robots to take a transition. For our experiments, we assume that the
transition systems T; and Ty are identical except for their initial states and the sets of propositions that
can be satisfied at their states.To be able to differentiate between data gatherings and uploads performed at

LLTL Optimal Multi-Agent Planner (LOMAP) Python Package is available at http://hyness.bu.edu/lomap/.
2 Amazon EC2 is a commercial cluster computing service available at http://aws.amazon.com/ec2/.

18

b 63

i

TE z

-

Aﬁ\
||
@‘_—wé
SO

5]
€]
R
(=]

T

; 1
éﬁ@?ﬂw
ez "
(@) (b) ©

Figure 4: Fig. 4(a) shows our experimental platform where the roads are marked by black tape and the robots are labeled 1 and
2. Fig. 4(b) gives a schematic illustration of this road network. The surveillance target is in the middle. Regions highlighted
in yellow are data gathering locations and regions highlighted in green are data upload locations. The transition system that
models the motion of the robots is given in Fig. 4(c). The weight of each transition captures the time it takes for the robots to
complete that transition.

different locations by different robots we define the set of propositions as

IT ={gather,upload, rigather, r2gather, riupload, r2upload, gatherl, gather2, gather3,
gather4,uploadl,upload2,rigatherl, rigather2, rigather3,rigather4, r2gatheri,
r2gather2, r2gather3, r2gather4, riuploadl, riupload2, r2uploadl, r2upload2}.

Propositions gather and upload mean data has been gathered and uploaded, respectively, whereas propo-
sitions of the form gatherY and uploadY, where Y € {1,2, 3,4}, capture the locations of data gather and
upload as well. For instance, gather3 means data has been gathered at gather location 3. Propositions of the
form rXgather and rXupload, where X € {1, 2}, mean robot X has gathered and uploaded data, respectively.
Finally, we use propositions of the form rXgatherY and rXuploadY, where X € {1,2} and Y € {1, 2, 3,4}, to
capture both the location and the subject of the data gather and upload, ¢.e., r2Uploadl means robot 2 has
uploaded data at upload location 1. Consequently, we define the sets II; and Il as

IT, ={gather,upload, rigather,riupload, gatherl, gather2, gather3, gather4, uploadl,
upload2, rigatherl, rigather2, rigather3, rigather4, riuploadl, riupload2}, and

II, ={gather, upload, r2gather, r2upload, gatherl, gather2, gather3, gather4, uploadi,
upload2, r2gatherl, r2gather2, r2gather3, r2gather4, r2uploadl, r2upload2};

and assign the propositions in II; and I, to the states of Ty and T as given in Thl. 1. Note that all

| Region | Propositions of Robot 1 \ Propositions of Robot 2 \
G1 {gather, gather1, rigather,rigatherl} | {gather, gatherl, r2gather, r2gatheril}
G2 {gather, gather2, rigather, rigather2} | {gather, gather2 r2gather, r2gather2}
G3 {gather, gather3, rigather,rigather3} | {gather, gather3, r2gather, r2gather3}
G4 {gather, gather4, rigather,rigatherd} | {gather, gather4, r2gather, r2gather4}
Ul {upload,uploadl, riupload,riuploadl} | {upload,uploadl,r2upload, r2uploadl}
U2 {upload, upload2, riupload, riupload2} | {upload, upload?2, r2upload, r2upload2}

Table 1: Assignment of the propositions to the regions in the environment.

19

propositions in IT can be written in terms of the propositions of the last form, and therefore we could have
a set Il consisting of eight propositions of the form rXgatherY and rXuploadY. However, for the sake of
clarity and simplicity, we choose to define II as given above, because otherwise we would have to use the long
boolean expression riGatherl V...V riGather4 V r2Gatherl V ...V r2Gather4 to express a data gather
event, instead of using a single proposition, i.e., gather.

Case-Study 1 — The first mission specification that we consider is as follows: “Each robot must re-
peatedly visit data gather locations to gather data and go to an upload location to upload their data before
gathering data again. The maximum time between successive data gatherings must be minimized.” This
mission specification can be expressed in LTL in the form of (1) as

¢1 :=G(rigather = X(—-rlgather U riupload)) A
G(r2gather = X(—r2gather U r2upload)) A GF,

where 7 := gather is set as the optimizing proposition. Since the traveling times of our robots are uncertain,
we use our robust solution (Sec. 5). It takes 32.5 minutes for our method to obtain an optimal satisfying team
trajectory, and the cost in terms of (2) is 10. For this case, since ¢, is trace-closed, the robots synchronize
only at the beginning of their suffix-cycles. The upper bound on the value of the cost as given by Prop. 6.5 is
11.6 seconds whereas the maximum value of the cost observed in the field after 10 iterations of this trajectory
was 10.66 seconds. For comparison, it also takes approximately 32.5 minutes for our exact solution to return
the same trajectory with the same cost. Fig. 5(a) illustrates the optimal team trajectory that we obtain for
formula ¢;. As discussed in Sec. 4.2, optimal satisfying runs obtained using our approach always consist of
a finite prefix followed by infinite repetitions of a finite suffix-cycle. In the figures that we present in this
section, we omit the prefix for the sake of clarity, and use red and blue lines to illustrate the infinite periodic
runs of robots 1 and 2, respectively. We use filled circles to represent the beginning of the suffix-cycles of
the robots and white triangles to represent the synchronization points.

Case-Study 2 — In some missions, sequential data gatherings at different locations may not be enough
to obtain the desired information about the surveillance target. In such cases, synchronous data gatherings
by multiple robots may be more desirable. For instance, one can use photographs taken synchronously from
different angles to recover depth information which may be used to construct an approximate 3-d model of
the surveillance target. Also, time-synchronous eavesdropping of radio communications at different locations
may substantially increase the chances of recovering useful information from surveillance data. An example
mission specification for such a case would be: “Robots must repeatedly gather data in a synchronous fashion,
and upload their data before gathering data again.” This mission specification can be written in LTL as

¢2 :=G(gather = (rilgather A r2gather)) A G(rlgather = X(—-rigatherl{riupload))A
G(r2gather = X(—r2gatherl{r2upload)) A GFr

where 7 := rigather Ar2gather. Both of our robust (Sec. 6) and exact (Sec. 5) solutions take approximately
20 seconds to compute the trajectory illustrated in Fig. 5(b). The cost of this trajectory in terms of (2) is
20. The significant drop in computation from case-study 1 can be explained by the reduction in the size
of the solution space in which the OPTIMAL-RUN algorithm has to work. The previous case-study requires
4656 executions of Dijkstra’s algorithm, whereas this case study requires only 680 executions of Dijkstra’s
algorithm on a significantly smaller graph. We were, however, unable to execute this trajectory as our
experimental setup does not allow multiple robots to be at the same region at the same time. Next, we
discuss how we can address this issue and obtain a more desirable run.

Case-Study 3 — Fig. 5(b) shows that lock-step motion of the robots is an optimal team trajectory for
¢2. However, as our motivation for synchronous surveillance is to gather data synchronously from different
locations, we can include this requirement in our specification to eliminate such undesired behaviors. Then,
the mission specification can be written as

@3 :=p2 A G(—(rigatherl A r2gatherl) A ~(rigather2 A r2gather2)A
—(rlgather3 A r2gather3) A ~(rigather4 A r2gather4))

where ¢ is the specification of the previous case study with 7 := rigather A r2gather and the rest of ¢
forbids robots to gather data at the same place at the same time. Fig. 5(c) illustrates the optimal team

20

trajectory we obtain for ¢3 using our robust approach. Notice that in addition to synchronizing at the
beginning of their suffix-cycles, the robots also synchronize with each other before gathering data in order
not to violate the mission specification. It takes 45 seconds for our robust solution to compute this trajectory
and the cost is 20. After 10 iterations of this trajectory, the maximum value of the cost observed in the field
was 21 seconds, which is less than the upper bound of 22 seconds given by our approach. Extension 1 shows
the execution of this trajectory by the robots.

LY

= E

=N —¥ —
T8 -1 1%

| L Hal | el |

— e —
lﬂi@’ Y dﬁif
(a) (b) (c)

Figure 5: Team trajectories for case studies 1, 2, and 3. Red and blue lines illustrate trajectories of robot 1 and 2, respectively.
Yellow regions are data gathering locations and green regions are data upload locations. Filled circles represent the beginning
of the suffix-cycles of the robots and the white triangles represent synchronization points.

Case-Study 4 — Now, we consider the case where we need to assign each robot a specific region for data
gathering while still requiring them to gather data synchronously. This is typical in scenarios where data
gathering capabilities of the robots are not identical and the robots need to visit specific regions to gather
useful surveillance. An example specification where robot 1 is assigned to G4 and robot 2 is assigned to G2
would be:

¢4 :=G(gather = (rlgather4 A r2gather2)) A G(rigather = X(—rigatherl/riupload))A
G(r2gather = X(—r2gatherl{r2upload)) A GFr

where 7 := rigather1Ar2gather4. Notice that it is the sub-formula G(gather = (rigather4Ar2gather?))
is ¢4 that enforces the first robot to gather data at G4 and the second robot to gather data at G2. Fig. 6(a)
illustrates the optimal team trajectory we obtain for ¢4 using our robust approach. For this case, total
computation time is 20 seconds and the cost is 24 with an upper bound of 26.4 seconds. After 10 iterations
of this trajectory, maximum value of the cost observed in the field never exceeded 25.3 seconds.

Case-Study 5 — In all of the case studies that we have considered so far, some of the data gathering
locations have not been visited in order to optimize the team trajectory. Also, we have had the requirement
that the robots must go to a dedicated upload region to upload their data before their next data gathering.
However, in many cases, robots have uninterrupted links to their bases by means of some sort of wireless
communication channel, and are not required to visit an upload location to upload their data. Now, we
consider the case where the robots are required to visit all of the data gathering locations and are not
required to visit an upload region before each data gathering. This can be expressed in LTL as

¢5 := GFgatherl A GFgather2 A GFgather3 A GFgather4 A GFn
where the optimizing proposition is set as 7w := gather. Fig. 6(b) illustrates the optimal team trajectory we

obtain for ¢5. For this case, it took 23 minutes for our robust approach to obtain this trajectory. The cost

21

of this trajectory is 3, with an upper bound of 5.1 seconds. Since ¢5 is trace-closed, the robots synchronize
only at the beginning of their suffix-cycles. It is interesting to note that the optimal solution for this case
is to have robot 2 repeatedly gather data at G4 while using robot 1 to visit the remaining data gathering
locations. Here, the trajectory of robot 2 minimizes the cost by gathering data as frequently as possible
whereas the trajectory of robot 1 satisfies the rest of mission specification by visiting the remaining data
gathering locations.

1%3’ iy

[

_&Q Ly
(a) (b)

Figure 6: Team trajectories for case studies 4 and 5. Red and blue lines illustrate trajectories of robot 1 and 2, respectively.
Yellow regions are data gathering locations and green regions are data upload locations. Filled circles represent the beginning
of the suffix-cycles of the robots and the white triangles represent synchronization points.

8 Conclusions and Future Work

In this paper we presented a method for automatic planning of optimal paths for a team of robots subject
to temporal logic constraints. We considered mission specifications expressed in LTL where an optimizing
proposition must repeatedly be satisfied. We provided an algorithm to model the asynchronous behavior
of the team as a whole, which let us extend our previous work on single robot optimal path planning to
multiple robots. The motion plan that our method provides is optimal in the sense that it minimizes the
maximum time in between successive satisfying instances of the optimizing proposition. Our approach is
general and robust enough to handle cases where the robots cannot follow planned trajectories exactly. If
the traveling times observed in the field deviate from those given by the models of the robots, our method
leverages the communication capabilities of the robots to guarantee that the mission specification is never
violated while overall communication effort is minimized. Our method also provides an upper bound on the
difference between the performance in the field and the optimal performance in case of uncertain traveling
times. We experimentally evaluated our approach and demonstrated its relevance in persistent surveillance
missions in a road network environment

In order to be able to obtain a globally optimal team trajectory, our method constructs a relatively
large model that captures all members of the team and the mission specification. Thus, the main drawback
of this approach is its complexity. While the method presented in this paper can be extended to Markov
Decision Processes (MDPs) and different cost functions, the most rewarding direction for future research
seems likely to be in the area of distributed synthesis of optimal multi robot motion plans for general mission
specifications.

22

Bibliography
C. Baier and J.-P. Katoen. Principles of Model Checking. MIT Press, 2008.

A. Bianco and L. de Alfaro. Model checking of probabilistic and nondeterministic systems. In Foundations
of Software Technology and Theoretical Computer Science, Lecture Notes in Computer Science, pages
499-513. Springer Berlin / Heidelberg, 1995.

Y. Chen, X. C. Ding, and C. Belta. Synthesis of distributed control and communication schemes from global
LTL specifications. In 2011 IEEE Conference on Decision and Control (CDC 2011), pages 27182723,
Orlando, FL, 2011.

Y. Chen, X. C. Ding, A. Stefanescu, and C. Belta. A formal approach to the deployment of distributed
robotic teams. IEEE Trans. Robotics, 28(1):158-171, 2012.

H. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. E. Kavraki, and S. Thrun. MIT Press,
2005.

E. M. Clarke, D. Peled, and O. Grumberg. Model checking. MIT Press, 1999.

X. C. Ding, S. L. Smith, C. Belta, and D. Rus. MDP optimal control under temporal logic constraints. In
2011 IEEE Conference on Decision and Control (CDC 2011), pages 532-538, Orlando, FL, 2011.

P. Gastin and D. Oddoux. Fast LTL to Biichi automata translation. Lecture Notes in Computer Science,
pages 53-65, 2001.

A. A. Hagberg, D. A. Schult, and P. J. Swart. Exploring network structure, dynamics, and function using
NetworkX. In Proceedings of the 7th Python in Science Conference (SciPy2008), pages 11-15, Pasadena,
CA, 2008.

J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to Automata Theory, Languages, and Compu-
tation. Addison Wesley, 2007.

S. Karaman and E. Frazzoli. Vehicle routing problem with metric temporal logic specifications. In IFEE
Conf. on Decision and Control, pages 3953-3958, Cancin, México, 2008a.

S. Karaman and E. Frazzoli. Complex mission optimization for multiple-uavs using linear temporal logic. In
American Control Conference, pages 2003-2009, Seattle, WA, 2008b.

L. Kavraki, P. Svestka, J. Latombe, and M. Overmars. Probabilistic roadmaps for path planning in high-
dimensional configuration spaces. IEEE Trans. Robotics and Automation, 12(4):566-580, 1996.

M. Kloetzer and C. Belta. Automatic deployment of distributed teams of robots from temporal logic speci-
fications. IEEE Trans. Robotics, 26(1):48-61, 2010.

H. Kress-Gazit, G. Fainekos, and G. J. Pappas. Where’s waldo? sensor-based temporal logic motion planning,.
In IEEE Intl. Conf. Robotics and Automation, pages 3116-3121, 2007.

H. Kress-Gazit, T. Wongpiromsarn, and U. Topcu. Correct, reactive robot control from abstraction and
temporal logic specifications. Special Issue of the IEEE Robotics & Automation Magazine on Formal
Methods for Robotics and Automation, 18:65-74, 2011.

J. Kuffner and S. LaValle. Rrt-connect: An efficient approach to single-query path planning. In IEEFE Intl.
Conf. Robotics and Automation, page 9951001, 2000.

M. Kwiatkowska, G. Norman, and D. Parker. Probabilistic symbolic model checking with prism: A hybrid
approach. In International Journal on Software Tools for Technology Transfer, pages 52—-66. Springer,
2002.

S. M. LaValle. Cambridge University Press, 2006.

23

T. Lozano-Perez. Spatial planning: A configuration space approach. IEEE Trans. Comput., 32(2):108-120,
1983.

M.Kloetzer and C. Belta. Dealing with non-determinism in symbolic control. In M. Egerstedt and B. Mishra,
editors, Hybrid Systems: Computation and Control: 11th International Workshop, Lecture Notes in Com-
puter Science, pages 287-300. Springer Berlin / Heidelberg, 2008.

D. Peled, T. Wilke, and P. Wolper. An algorithmic approach for checking closure properties of temporal
logic specifications and omega-regular languages. Theor. Comput. Sci., 195(2):183-203, 1998.

M. M. Quottrup, T. Bak, and R. Izadi-Zamanabadi. Multi-robot motion planning: A timed automata
approach. In IEEFE Intl. Conf. Robotics and Automation, pages 4417-4422, New Orleans, LA, 2004.

E. Rimon and D. E. Koditschek. Exact robot navigation using artificial potential functions. IEEE Trans.
Robotics and Automation, 8(5):501-518, 1992.

S. L. Smith, J. Tamové, C. Belta, and D. Rus. Optimal path planning for surveillance with temporal logic
constraints. Intl. Journal of Robotics Research, 30(14):1695-1708, 2011.

P. Tabuada and G. J. Pappas. Linear time logic control of discrete-time linear systems. IEEFE Transactions
on Automatic Control, 51(12):1862-1877, 2006.

W. Thomas. Infinite games and verification. In CAV, pages 5864, 2002.

P. Toth and D. Vigo, editors. The Vehicle Routing Problem. Monographs on Discrete Mathematics and
Applications. STAM, 2001. ISBN 0898715792.

A. Ulusoy, S. L. Smith, X. C. Ding, C. Belta, and D. Rus. Optimal path planning for surveillance with
temporal logic constraints. In IEEE/RSJ Intl. Conf. Intelligent Robots & Systems, pages 3087-3092, San
Francisco, CA, USA, Sep 2011.

A. Ulusoy, S. L. Smith, and C. Belta. Optimal multi-robot path planning with LTL constraints: Guaranteeing
correctness through synchronization. In Intl. Symp. on Distributed and Autonomous Robotic Systems,
Baltimore, MD, USA, 2012a.

A. Ulusoy, S. L. Smith, X. C. Ding, and C. Belta. Robust multi-robot optimal path planning with temporal
logic constraints. In IEEE Intl. Conf. Robotics and Automation, pages 4693-4698, St. Paul, MN, USA,
May 2012b.

B. Yordanov, J. Tumova, I. Cerna, J. Barnat, and C. Belta. Temporal logic control of discrete-time piecewise
affine systems. IEEE Trans. Automatic Control; 57(6):1491-1504, 2012.

24

A Index to Multimedia Extensions

’ Extension \ Media Type \ Description ‘

] 1 | Video [Execution of the trajectory in case-study 3. |

B Generation of Event Sequences

In this section, we discuss how we generate the event sequences and corresponding sets of start states that
we process in Alg. 6 (Sec. 6.3). In the following, we use the terms position, robot-position pair, event, and
event sequence in the same manner as we defined them in Sec. 6.3.

As discussed previously, Alg. 6 relies on Alg. 8 to construct the transition system W that generates all
possible words that can be observed in the field. Alg. 8 is a loop (lines 3-28) that processes a dictionary
called ¢, short for timeline, which we construct using Alg. 9 (line 1). We present Alg. 9 later in this section.
A dictionary is a data structure that comprises a set keys, a set of values and a function that maps each
key to a value. In the case of tI, the keys are time intervals and the values are sets of events. Due to
non-deterministic traveling times, the time at which an event occurs in the field, in general, is not a single
point but an interval. The dictionary ¢/ captures this information by dividing the time from the beginning
of the run till the end of the first suffix-cycle to disjoint intervals and by associating a set of events with
each interval. The set of events that corresponds to some interval in ¢/ is the set of events that can occur
in that interval. In tl, the sets of events that correspond to different intervals are not guaranteed to be
disjoint. Thus, events can span multiple intervals and can occur in either one of the intervals that they
span. Suppose that the sets of events {(1,1)}, {(1,1),(2,1)}, {(1,1)} correspond to the intervals [0.8,0.9),
[0.9,1.1], (1.1,1.2], respectively. Then, the event (1,1) can occur in either one of the three intervals, whereas
event (2,1) can only occur in the interval [0.9, 1.1].

The first part of Alg. 8 (lines 6-12) takes this fact into account while computing all possible position
sequences that can be achieved by each robot at each interval. At lines 7-9, we first construct three sets of
positions for each robot i: the set posip;s of positions that the robot can reach at this interval, the set pos,,e,
of positions that the robot can reach at either this interval or the previous interval, and the set pos, ez of
positions that the robot can reach at either this interval or the next interval. Then, at line 10, we iterate
over the elements of the product posprey X Pospeqt. For each element (prev,next) of this product set, we
interpret prev as the last position that is reached in the previous interval and next as the first position that
is reached in the next interval, and we obtain the remaining set of positions pos};,;, to be reached at this
interval as given in line 11. If pos},,. is not empty, we sort it in ascending order and add it to robot_seq([i],
which gives the set of all possible position sequences that can be achieved by robot ¢ at this interval.

In a given interval, events of different robots can occur in any order with respect to each other, including
simultaneously. The second part of Alg. 8 (lines 14-27) addresses this by generating all possible event
sequences that can be achieved by the robotic team. At line 14 we consider all combinations of position
sequences that can be achieved by the robots by iterating over the elements of the product robot_seq[1] x

. X robot_seq|m]. Next, we define mazx_event_cnt as the maximum number of events that can occur in
this interval, assuming that the robots reach the positions in seq_tuple sequentially (line 16). In order to
generate all possible event sequences, we use the variable event_seq to interpret the current interval as a box
with maz_event_cnt bins labeled {1, ..., maz_event_cnt} (line 20). For each robot i, we compute all leneq[i]
ordered combinations of the sequence {1,...,max_event_cnt} (line 17) and iterate over the elements of the
product all_perms[1] x ... x all_perms[m] (line 19). Each element of this product set is a tuple that gives how
the events of individual robots are ordered with respect to the events of the other robots. Next, we obtain
the event sequence corresponding to each perm_tuple by placing the events of the robots into event_seq
according to the positions given by the perm_tuple (lines 21-23). Notice that, as events of different robots
can occur simultaneously, we may end up with some empty bins in event_seq. We remove such empty
entries of event_seq at line 24. Next, we check event_seq against the wait-sets of the robots to make sure
it is a valid event sequence. To be able to do this, we need the position information of all robots, including
those that do not reach a new position in event_seq. We use the array called last_pos to keep track of the
positions of the robots. Each element last_pos[i] of this array gives the last position reached by robot i before
this interval, and we update it as given in line 28. At line 25 we use this information to check the newly
computed event sequence event_seq against the wait-sets {1 wait, - - - » Sm,wait} Of the robots. If any robot

25

Algorithm 8: GENERATE-EVENT-SEQ

Input: W, {r1,...,7m}, {S1,wait>- - s Smowait}» {T1,..., Tm}, and pg, ps, i = 1,...,m.
Output: Yields a valid event sequence and the corresponding set of starting states.

1 Obtain dictionary ¢/ using COMPUTE-TIMELINE (Alg. 9).

2 ivs = Sorted list of intervals of tl, len;,s = length of ivs, last_pos[i] =0Vi € {1,...,m}.

3 foreach [=1...len;,s do

4 | eventsipis = tl[ivs[l]], eventsyrey, = 0, eventsyesr = 0, robot_seq = array of m empty sets.
5 | if [> 1 then eventsyre, = tl[ivs[l — 1]], if | < len;,s then events,es = tlivs[l + 1]].

6 | foreachie {1,...,m} do

7 posinis = {e|(i,e) € eventsins}-

8 POSprev = {€](1,€) € eventspre, N eventsin,s}.

9 POSnext = {€|(i,€) € eventspert N eventsipnis}-
10 foreach tuple (prev, next) in posprey X POSpest do
11 Lpos;his = {p|p € posipis,p > prev,p < next}.
12 if pos), .. # 0 then sort pos},,. in ascending order and add to robot_seq|i].
13 | Set robot_seq[i] = {[|} if robot_seq[i]| =0 Vi€ {1,...,m}.
14 | foreach seq_tuple in robot_seq[1] X ... X robot_seq[m] do
15 lenseq[i] = length of seq_tupleli] Vi e {1,...,m}.

16 maz_event_cnt =Y 1w lengeq[i], all_perms = array of m empty sets.

17 all_perms[i] = all lengeq[i] ordered combinations of {1, ..., max_event_ent} Vi € {1,...,m}.
18 Set all_permsl[i] = {[|} if all_perms[i] =0V i€ {1,...,n}.

19 foreach perm_tuple in all_perms[1] x ... x all_perms[m| do
20 event_seq = array of max_event_cnt empty sets.
21 foreach i € {1,...,m} do
22 foreach n € {1,...,leng,[i]} do
23 L LAdd event (i, seq_tupleli][n]) to event_seq[perm_tuple[i][n]].
24 Remove those entries with event_seq[i] = 0 for i € {1, ..., maz_event_cnt}.
25 if wait-set checks fail then continue.
26 start_states = {q|q € Qw, for all i € {1,...,m} if i & r then ¢[i] = (last_pos|i],last_pos[i] + 1),

else ¢[i] can be both seq_tuple[i][l] — 1 and (seq_tuple[i][l] — 1, seq_tupleli][1])}.

27 Yield (event_seq, start_states).
28 | foreach event (i,p) in eventsipis \ €ventsner: do if last_posli] < p then last_pos[i] = p.

26

leaves some position earlier than any of the robots it has to wait there, then we ignore this event_seq and
proceed with the next one. Next, at line 26, we compute the set of start states of W at which event_seq can
start occurring. Finally, at line 27 we yield the event_seq along with the corresponding set of start states.
At the next call, Alg. 8 continues execution from line 14 with the next seq_tuple, and eventually from line 6
with the next interval. Once all the intervals of tl are considered, Alg. 8 terminates causing the loop that it
is called in Alg. 6 to terminate as well.

Proposition B.1. For the case where the timeline tl can be constructed in O(T) time, contains I intervals
with at most m events per interval and one event per robot per interval, the worst-case per-call (lines 6-28)
complexity of Alg. 8 is O(m*™), and the worst-case overall complexity of Alg. 8 is O(Im*™ +T).

Proof. The complexity of the first part of the algorithm (lines 6-12) is O(m ((m — 1)/2)?), i.e., O(m3/4),
where we take posinis = 1, p0Spres = POSpest = (M — 1)/2 to achieve the highest number of iterations at
lines 10-12. Since we assume that there is at most one event per robot per interval, the maximum values of
lengeq[t] and maz_event_cnt are 1 and m. Then, |all_perms[i]| is at most m, and the complexity of the inner
loop at lines 19-27 becomes O(m™*1). Since each |robot_seq[i]| is O(m?3/4), the complexity of the second
part of the algorithm (lines 14-28) becomes O(m*™*t/4™). As O(m*™+1/4™) > O(m3/4) and m < 4™
for m > 1 the per-call complexity of Alg. 8 is O(m*™). Since we assume that ¢/ has I intervals and the
complexity of constructing ¢/ is O(T), the overall complexity of Alg. 8 becomes O(I m*™ 4 T). [|

We use Alg. 9 to construct the dictionary tl, short for timeline, that we use in Alg. 8. As discussed earlier,
since the runs of the robots are periodic, we consider only the prefix and the first suffix-cycle of the runs of
the robots during the construction of ¢/. The first part of Alg. 9 (lines 1-7) computes the intervals in which
the events of the robots can occur, i.e., the intervals in which the robots can depart their current states. The
interval in which some event (i, k) of robot ¢ can occur is determined by the deviation values p;, p;, the time
w(rF=t rk) it takes for the robot to reach r¥ from its previous position 7¥ 1, wait-set sﬁwait of the robot
for position k, and the interval in which the robot has departed from its previous position, i.e., the interval
corresponding to the previous event (i, k — 1). As the robots start their runs in a synchronized way, we set
the interval of the first events of all robots to [0, 0] at line 3. For all other positions, we first construct the
set waits_for of robots that robot 7 has to wait for either directly or indirectly at that position (line 4). The
set of robots that robot ¢ has to wait for directly at position k is simply given by Sf,wair The set of robots
that robot ¢ has to wait for indirectly at position k, on the other hand, is computed recursively by forming a
set equal to sﬁ wait> and then, by adding the wait-sets of each robot in that set until the set stops changing.
For the sake of conciseness, we also include the robot 7 itself in the set waits_for. Next, at lines 56 we
calculate the earliest and latest time that the event (i, k) can occur by using the models of the robots in the
set waits_for and the intervals of their previous events. Then, at line 7, we save the interval of event (i, k)
in the event_ivs array.

The second part of Alg. 9 (lines 8-28), projects the intervals in event_ivs to a common event timeline
by considering each position k of each robot i. The variable ¢l is a dictionary of sets of events keyed by
intervals. To be able to use this dictionary by iterating over its keys as discussed earlier, we need to make
sure that its keys, which are intervals, do not intersect with each other. To this end, we maintain the queue
projection_queue to hold the remaining parts of the intersecting intervals that we may need to break up
during the projection. We start the projection by adding the interval of the event (i,k) to the projection
queue. Then, for each interval new_iv in the projection queue, we check all the intervals in ¢l to see if any
of them intersects with new_iv. If not, we add this interval new_iv to the timeline along with its event set
(line 28). If, on the other hand, the interval new_iv intersects with some interval old_iv in I, we set the
interval int_iv to be the intersection of new_iv and old_iv and add it to the timeline with the appropriate set
of events (line 17). Next, at lines 18-27 we check to see if we need to break the old_iv or new_iv. If old_iv
extends beyond new_iv from the beginning or the end, we break it appropriately by defining a new entry for
the extending parts and removing the old entry that corresponds to old_iv from ¢tI. If, on the other hand,
new v extends beyond old_iv, we do not add the extending parts to tl directly as they may intersect with
other intervals already in . Instead, we add the extending parts of new_iv to the projection queue so that
they are processed in the coming iterations. Alg. 9 terminates once it processes all events of all robots up
to the end of the first suffix-cycle of their runs.

27

Algorithm 9: COMPUTE-TIMELINE

Input: Individual runs {r1,..., 7y}, wait-sets {s1 wait; - - - s Sm,wait }, transition systems
{T1,..., Ty}, and deviation values p;, ps,i = 1,...,m of the robots.
Output: The dictionary ¢l of sets of events keyed by disjoint intervals.

1 fork=1,...,end do

2 |fori=1,...,m do

3 if k is 1 then event_ivs[i][k] = [0,0] else

4 waits_for = {i} U {j|i waits for j at pos k either directly or indirectly}.
5 earliest = max;cwaits_for (€vent_ivs[j][k — 1].start + p; * w; (T?il,).
6 latest = maxjcwaits_for (event_ivs[j][k — 1].end + 75 * w; (’Ffil, 7';‘3))
7 event_ivs[i][k] = [earliest, latest].

8 fork=1,...,end do

9 |fori=1,...,mdo
10 projection_queue = {event_ivs[i][k]}.
11 foreach new_iv € projection_queue do
12 intersected = False.
13 foreach old_iv € tl do
14 int_iv is the intersection of new_iv and old_iv.

15 if new_iv intersects with old_iv then

16 intersected = True.

17 tlint_iv] = tl{old_iv] U {(i,k)}.

18 if old_iv.start < new_iv.start then

19 tl[[old_iv.start, new_iv.start)] = tl{old_iv].
20 LRemove old_iv from tl.
21 if old_iv.end > new_iv.end then
22 tl[(new_iv.end, old_iv.end)] = tl[old_iv].
23 LRemove old_v from tl.
24 if new_iv.start < old_iv.start then
25 LAdd [new_iv.start, old_iv.start) to projection_queue.
26 if new_iv.end > old_iv.end then
27 LAdd (old_iv.end, new_iv.end] to projection_queue.
28 if intersected is False then tl[new_iv] = {(i,k)}

29 Return ¢/.

28

Proposition B.2. For the case where the total length of the prefix and the first suffix cycle is K and the
intervals of the events of a robot do not overlap, the worst-case complexity of Alg. 9 is O((mK)?).

Proof. In the worst-case, each robot waits for every other robot, thus computation of each event_ivs[i][k]
at lines 4-7 takes time O(3m). Then, the complexity of the first part of the algorithm (lines 1-7) is
O(m?K). In the second part of the algorithm (lines 8-28), in the worst-case, each projected interval intersects
with previously defined intervals resulting in 2 additional intervals per projection. Thus, we have at most
2m — 1 intervals for each position and at most K(2m — 1) intervals in total. Consequently, the loop at
lines 11-28 executes 3 times for each projection, and the worst-case complexity of the second part of the
algorithm (lines 8-28) becomes O(3mK (K (2m — 1))). Thus, the overall worst-case complexity of Alg. 9 is
O((mK)?). |

29

