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ABSTRACT

A comparative study of control designs at high angle-of-attack flights is conducted
on the High Angle-of-Attack Research Vehicle (HARV) of NASA/Langley Research
Center. Nonlinear model for the vehicle dynamics incorporating the high angle-of-attack
nonlinearities and the nonlinear inertial couplings is derived for the inner-loop/outer-loop
controller structure proposed in this thesis. The nonlinear technique of input-output
linearization is utilized in the inner-loop controller to handle the nonlinearities while robust
tracking control is provided through the outer-loop controller.

The performance of the nonlinear controller is compared with a LQG/LTR linear
control design based on a trim point linearized model. Realistic comparison and evaluation
of the controller designs are based on time simulations with a full-scale nonlinear model of
the HARYV provided by NASA/Langley. The time simulations show promising results for
the nonlinear method proposed in this study. The nonlinear design is demonstrated to have
a clear edge over the linear design in terms of superior performance at high angle-of-attack
flights.
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CHAPTER 1

INTRODUCTION

1.1 Background and Motivation

Current research conducted in NASA/Langley's High Angle-of-Attack Technology
Program [17] is concerned with the study of dynamics and controls of flights at very low
speeds and high angles of attack (o). Theoretical analyses are coordinated with wind
tunnel and flight tests to define high-o flow fields about high-performance aircraft. Special
maneuvers have been studied in simulations and on the High Angle-of-Attack Research
Vehicle (HARV) to explore the performance of future aircraft at high angles of attack.
Because of the diminished dynamic pressure at low-speed flights, conventional
aerodynamic control surfaces are less effective at high angles of attack. As a result, novel
controls are investigated to provide effective moments to control the aircraft at high o's. In
particular, the HARYV will be fitted with thrust vectoring vanes to provide extra pitch and
yaw controls at high angles of attack. The enhanced maneuverability will substantially
expand the controllable flight envelope beyond stall.

As a result, new control laws are required to combine the unconventional thrust
vectoring into the aircraft's fly-by-wire control system. With six degrees of freedom in
translational and rotational motions, ten aerodynamic control surfaces [2] and the throttle
control, the unaugmented aircraft is already a nontri\;ial multi-input—multi-output (MIMO)

control problem. The addition of the thrust vectoring vanes further increases the
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complexity of the problem. A recent study was performed by Voulgaris [22] tackling the
problem with the LQG/LTR and H.. multivariable linear design methodologies. His study
was based on linear models at trim points with moderate values of o.. The trim points were -
selected at o = 2.95, 5 and 25 deg, even though controllable flight up to 70 deg is
postulated by preliminary studies [17]. Furthermore, his simplified approach to the
problem was confined to the longitudinal motion of the aircraft. The emphasis of the study
was on the demonstration and comparison of the two design methodologies, together with
a systematic selection of the redundant control inputs. In the above study, little attention
was paid to the inherent dynamics of the aircraft at high . Besides, recent results [3, 11]
have shown that linear designs that attempt approximate inversion, like the LQG/LTR and
H.. methodologies, are very sensitive to structured uncertainties in the presence of lightly
damped poles. An inner-loop compensation was shown to be needed to desensitize the
plant for these linear design methods to apply. In [3, 11], an inner-loop/outer-loop
controller structure was needed to provide robustness to structured uncertainties facing
these linear design methods.

Conventional studies of steady flight, with decoupled longitudinal and lateral
motions, are based on the linearized equations of motion, neglecting all aerodynamic cross
couplings [7]. This simplified, decoupled linear model is severely limited for flights at
high a. At high angles of attack, highly nonlinear dynamics are caused by the unsteady
and nonlinear aerodynamic flowfields around the aircraft [9]. Examples of these
phenomena incfude vortex shedding and separation and reattachment of flows.
Consequently, the aerodynamic characteristics vary nonlinearly with o at high angles of
attack and a high degree of coupling exists between the lateral and longitudinal motions
because of inertial coupling. Attached in Appendix A are some plots showing the -
nonlinearities of the aerodynamic characteristics (please refer to Section 2.5.1 for the
definitions of the aerodynamic quantities shown in the plots). Meanwhile, the inertial

coupling is evidenced by product terms like those involving the roll rate and the crosswind
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velocity (PV) and others involving the yaw rate and the roll rate (RP) in the time derivatives
of the longitudinal variables. (The equations of motion are shown in equations 2-1 to 2-6
in Chapter 2.) Moreover, severe control problems are encountered because the
aerodynamic control surfaces become ineffective at low speeds and high o's. It is indeed a
challenge to maintain a sustained flight at the boundary of the expanded envelope.

Because of the severe nonlinear characteristics of the vehicle dynamics at high o,
one is tempted to venture outside the linear design domain (as represented by the LQG/LTR
and H.. designs by Voulgaris [22]), and choose to design with nonlinear methods. Indeed,
there has been previous work involving the use of nonlinear techniques for flight control.
Nonlinear inversion/sliding control tecﬁniques were used by Hedrick and Gopalswamy
[10] to design a pitch-axis control system for high-performance aircraft. Angle of attack
nonlinearities present in the aerodynamic coefficients were incorporated into the design
using inversion techniques and sliding controllers were employed for robustness to
modelling errors. Meyer et al. [16] used nonlinear transformations for linearization of the
aircraft dynamics. Garrad and Jordan [8] used a nonlinear optimal approach for the pitch
axis control of the F8 Crusader. Lane and Stengel [15] designed a controller for the
Navion general aviation aircraft incorporating the nonlinear vehicle dynamics (both
nonlinear inertial couplings and a-nonlinearities). Their design "decouples specific state
variables that ére of particular interest to the pilot" by the use of nonlinear inverse
dynamics. In [6], Elgersma and Morton designed a controller based on partial nonlinear
inversion. They computed the inverse dynamics of the invertible part of the nonlinear
system and studied the stability of the uninverted part of the system to ensure adequate
performance of the partially inverted system. Moreover, significant progress and
improverhents have been made in nonlinear design techniques like input-state linearization,
input-output linearization and sliding controls [4, 12, 19].

The goal of the thesis is an exploration of the nonlinear design alternative

-combining the nonlinear inversion/feedback linearization techniques and the robustness
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motivated inner-loop/outer-loop controller structure, while a comparison is drawn to a
baseline LQG/LTR linear design along Vouglaris's approach in [22]. The comparison is an
important part of the study providing concrete and realistic evaluations of the different

design approaches.

1.2 Contribution of the Thesis

Instead of designing around the simplified, decoupled linear model for the vehicle
dynamics, this thesis spends a substantial effort in developing a nonlinear model for the
vehicle dynamics starting from the rigid-body equations of motion. Undoubtedly,
simplifying assumptions are made along the development, but the reader is informed of
these assumptions, and can be alerted to the consequences of the violations of these
assumptions. On the other hand, despite these simplifying assumptions, the model still
captures a major part of the nonlinearities, like the nonlinear variations of the aerodynamic
characteristics with o, and the inertial coupling between the longitudinal and lateral
motions, which are totally ignored in the linear models. Moreover, previous nonlinear
approaches only involved the decoupled longitudinal motion [8, 10]. A totally nonlinear
approach is taken here to design for high performance.

In the meantime, by combining the robustness-motivated inner-loop/outer-loop
controller structure with the input-output linearization method for high performance, this
thesis has demonstrated a systematic way for designing robust, high-performance
controllers for highly nonlinear systems. Finally, the comparison with the conventional
linear LQG/LTR design provides realistic evaluations of the two different design
approaches by hooking up the controller designs with a full-scale nonlinear model of the
HARY for time simulations. Promising results are obtained for the nonlinear approach in

terms of superior performance and robustness at high-o flights.
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1.3 Organization of the Thesis

This thesis is organized into six chapters and six appendices. The current chapter
has described the background, motivation, and contribution of the thesis. Chapter 2 gives
a description of the High Angle-of-Attack Research Vehicle (HARV) and the derivation of
the nonlinear model of the vehicle dynamics. Chapter 3 describes the nonlinear design
method known as input-output linearization, which is applied on the HARYV in the inner-
loop compensator‘. Chapter 4 provides a description of the linear and nonlinear controller
designs proposed to be studied. Chapter 5 is a comparison between the baseline LQG/LTR
linear design along the approach of Voulgaris in [22] and the nonlinear inner-loop/outer-
loop designs incorporating input-output linearization techniques. Chapter 6 discusses the
results and proposes directions for future research.

The appendices include graphical results showing the nonlinear aerodynamic
characteristics of the vehicle, and validation of the nonlinear model developed in Chapter 2.
Meanwhile, complex mathematical expressions and numerical data involved in the design
and analysis of the control systems are also included in the appendices. Specifically,
Appendix A includes the plot showing the variations of the aerodynamic stability
derivatives with o.. Appendix B contains time simulation results verifying the nonlinear
model of the vehicle dynamics derived in Chapter 2. Algebraic details involved in the
derivation of the input-output linearizing controller are collected in Appendix C. Numerical
data for the linear models derived in Chapter 2 are presented in Appendix D. Plots of the
aerodynamic coefficients vs. the control surface deflections are shown in Appendix E.
Lastly, numerical data for the LQG/LTR controllers in Chapter 4 are included in Appendix
F.
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CHAPTER 2

VEHICLE DESCRIPTION AND MODEL
FORMULATION

2.1 Introduction

This chapter contains a brief description of the aircraft and the control inputs.
Rigid-body equations of motion are derived to describe the vehicle dynamics based on the
approach in [7]. From this set of nonlinear equations, a state-space description of the
vehicle dynamics is obtained incorporating the kinematics, aerodynamics and characteristics
of the propulsive elements. The derivation of the nonlinear model is completed with a
discussion about the determination of the aerodynamic and propulsive forces and moments,
given the state variables and control inputs. Linear models of the vehicle dynamics can also

be obtained from the nonlinear state-space model by perturbation about equilibrium points.

2.2 Description of the F18/High-Angle-of-Attack Research
Vehicle (HARV)

The F18 High Angle-of-Attack Research Vehicle is a modified version of the
F/A-18 "Homet" aircraft operated by NASA/Langley in the High Angle-of-Attack
Technology Program. It is equipped with a thrust vectoring control system providing

extra maneuverability for the F/A-18. The thrust vectoring control system is especially
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important at high angle-of-attack, low-speed flights when the low dynamic pressure
renders the aerodynamic control surfaces ineffective. |

The F/A-18 shown in Figure 2.1 [2] is outfitted with two General Electric F404
turbofan engines, each producing approximately 712 kN (16000 Ib) sea-level static thrust
at full power. The wing planform is a low-sweep, trapezoidal design with an area of 400
square feet. The aerodynamic control surfaces (illustrated in Figure 2.2 [2]) include:
(1) Leading edge and trailing edge flaps scheduled with angle-of-attack and Mach number.
(ii) Single slotted, drooped ailerons for take-off and landing, with + 25° deflection for
maneuvering and cruise conditions.
(iii) Twin rudders for directional control and roll coordination.
(iv) All moving stabilators.

As mentioned above, the leading and trailing edge flaps are scheduled with angle of
attack (o) and Mach number (M). However, for the flight conditions we are intérested in,

i.e. high o and low speed, the deflection schedule is almost constant. As a result, the flaps

are considered fixed in this thesis.

Additionally, controls for the propulsive elements include:
(v) Throttle positions regulating the thrust output of each individual engine.

(vi) Thrust vectoring control system (see Figure 2.3) providing multi-axis thrust vectoring.

20
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Figure 2.1 F/A-18 "Hornet " Aircraft
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Figure 2.3 Thrust Vectoring Control

22



2.3 Equations of Motion

The six-degree-of-freedom rigid-body equations of motion given here are based on
a coordinate system fixed in the aircraft, with origin at the center of mass (see illustration
in Figure 2.4). The equations are derived assuming symmetry of the airplane about the xz-

plane and the absence of any rotor gyroscopic effects.

X - mg sin 6 =m(U + QW - RV) 2-1)
Y +mg cos 6 =m(V + RU - PW) (2-2)
Z + mg cos 6 cos ¢ =m(W + PV - QU) (2-3)
L = LyuP - IR + QR(I; - Iyy) - Ix,PQ (24)
M = I,yQ + RP(Ixy - L) +1x;(P2 - R2) (2-5)

= [P + I;;R + PQlyy - Ixx) + I,QR (2-6)

where m is the mass of the airplane,
g is the acceleration of gravity,
P, Q, and R are the roll, pitch, and yaw rates,
Ixx, Iyy, and I, are the moments of inertia,
Ixz is the product of inertia | xz dm,
6, ¢, and v are the Euler angles corresponding to pitch, roll, and yaw,
X,Y,Z,L,M, and N are components of the external (aerodynamic and propulsive)
forces and moments along the x, y, and z axes respectively,
U, V, and W are components of the velocity of the airplane along the x, y, and z

axes.
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Figure 2.4 Orientation of the Body-Axis Coordinate System

2.4 State-Space Description of the Vehicle Dynamics

In the state-space form of description of dynamic system, we would like to express
the rate of change of the state variables as a function of the state variables and the coﬁtrol
inputs. We have to transform the equations of motion into the form of x = f(x,u), where x
is the state vector, and u is the vector of control inputs.

In equations 2-1 to 2-3, the velocity vector is represented in component form with
U, V, and W. On the other hand, the velocity vector is usually described by the more
familiar parameters: total airspeed (V}), angle of attack (a), and sideslip angle (B) (see
Figure 2.5 [7] for the definitions of o and B).

Projection of v, on xz plane

Trace of xz plane

(a) b}

Figure 2.5 (a) Definition of a

(b) Definition of B, viewed in plane of y and v, (velocity vector)

24



v

]

i,

If we switch from U, V, and W to the state variables Vi, a, and B, and solve for

the time derivatives of Vi, o, and B8, we get:

V; = g(cos 8 cos ¢ cos P sin a - sin 8 cos B €os o + cos 0 sin ¢ sin B)
+%cosﬂcosa+%cosﬁsina+%sinﬁ

(2-7)
d:Q-tanB(Pcosa+Rsinoc)+ g (cos O cos ¢ cos o + sin o sin 0)
V;cos B
+ 1 (—%sina+%cosa)
Vi cos B (2-8)
X . 1/, X Z . Y
ﬂ—Psma.-Rcosoz+Vt( mschosoc msmBsma+mcosB)
+£(sin9cosasin[3-cos9c0s¢sinocsinB+cosBcosesin¢)
Vi (29)

Solving for the time derivatives of the state variables P, Q and R from equations 2-4 to 2-6:

P = (A/B)PQ + (C/B)QR + (I,;/B)N (2-10)
Q = [(Izz - Ix)/Iyy] RP + (Ix/Iyy)(R? - P2) + M/I, (2-11)
R = (D/B)PQ + (E/B)QR + (I,/B)L + (I,,/B)N (2-12)

where A =115, + IxIxx - Ixzlyy
B = Inxlyz - Ixz?
C = -Iz2 - In? + L lyy
D = Inx2 + Ixz? - Inslyy

We also need the rate of change of the Euler angles, the state variables 6, ¢, and v

0=Qcos$-Rsin ¢ (2-13)
¢=P+Qsin¢ptan O+ R cos ¢ tan 6 (2-14)
V¥ =Q sin ¢ sec 8 + R cos ¢ sec 0 (2-15)
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For the altitude (h),
h =V, cos B cos (8 - &) (2-16)

The external forces and moments labeled X, Y, Z, L, M, and N include
contributions from both the aerodynamic, and propulsive elements of the aircraft. The
aerodynamic component is characterized by the non-dimensional aerodynamic coefficients
while the propulsive component depends on the thrust level, thrust vector setting and the
location of the engines. Breaking down the forces and moments into the corresponding

aerodynamic and propulsive elements, W€ obtain:

X =1/2 pV2S[Cpsin & - Cp cos o] +Tx (2-17)
Y =12 pV&SCy+ Ty (2-18)
7 =-1/2 pV2S[CLcos O+ Cp sin o] + Tz (2-19)
L=1/2 pVi2SbC1+ TL (2-20)
M= 1/2 pV2ScCym +Tm (2-21)
N =1/2 pV#SbCn + TN (2-22)

where CL, Cp, Cy are the aerodynamic coefficients for lift, drag, and side force,
Ci, Cm, Cn are the aerodynamic coefficients for the rolling, pitching, and yawing
moments,
Tx, Ty, Tz are components of the propulsive forces,
T, Tm, T are components of the propulsive moments about the center of mass,
S is the wing area,
b is the wing span,
and cis the average wing chord.
From equations 2- 17 to 2-18, we can see that the aerodynamic control surfaces become less
effective at low speeds, since they affect the dynamics through the aerodynamic forces and

moments, which go down with the dynamic pressure 1/2 pVid).
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Substituting in equations 2-7 to 2-9 the above expressions for the external forces and

moments, we get:

Vt=g(cos6cos¢cosBsina-sinecosBcosoc+cosOsin¢sinB)

LoV
2 mt S(-Cp cos B + Cy sin B)

+%(TxcosacosB+TYsinB+TzcosBsina)

+

(2-23)

g
V¢ cos B

o= Q - tan B(P cos & + R sin o) +

(cos 8 cos ¢ cos o + sin o sin 6)

(-Tx sin & + Tz cos @)
m V; cos (2-24)

. LoV,
B=Psina-Rcosa+2TS(CDsinB+CycosB)
+V£(sin6cosasin[3-cosecosq)sinasinB+cosBcosesinq))
t

+ (-Tx sin B cos ot + Ty cos P - Tz sin B sin o)
mV; B B B (2-25)

Furthermore, the state equations can be simplified if we consider flight regimes with small

sideslips, i.e. small . The following relations can then be used to simplify the state
equations:
sinfB=p,tanB=P,cosP=1.

After all the above manipulations, the final form of the state equations becomes:

Vi =>1/2 (p/m)V2S[-Cp + B Cy] + glcos 6 cos ¢ sin o - sin 8 cos o + B cos 0 sin ¢]
+1/m (cos o Tx+ BTy+ sin a Tz) (2-26)

d=Q+(g/V;)[cos9cos¢cosa+sinasin6]-BPcosa-BRsina

- 1/2 (p/m)V,SCL + 1/(Vym) [-sin & Tx + cos o Tz] (2-27)
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B- 1/2 (p/m)V,S[BCp + Cy] + g/V; [B(sin O cos a - cos O sin & cos ¢) + sin ¢ cos 6]

+Psina-Rcos a+ 1/(Vim) [Ty - TxP cos o -TzP sin o]

P = (A/B)PQ + (C/B)QR + (Izz/B)(1/2 pV,2SbC; + Tp)
+ (Ixz/B)(1/2 pV2SbCy + Ty) |

Q= (Ipz - Ixx)lyy RP +Ixz/lyy (R2-P2)+(1/2 pVScCy +Tw)lyy

R = (D/B)PQ + (E/B)QR + (Ixz/B)(1/2 pV?SbC; + TL)
+ (Ixx/B)(1/2 pV2SbCy + Tn)

é=Qcos4)-Rsin¢
q.>=P+Qsin¢tan0+Rcos¢tan9

y = Q sin ¢ sec © + R cos ¢ sec 6

(2-28)

(2-29)

(2-30)

(2-31)

(2-32)

(2-33)

(2-34)

At this point, we have dropped the altitude (h) from the state vector for the following

reasons. First, h is not affected directly by the controls. Secondly, for small perturbations

in altitude (particularly in a linearized model), h has negligible effects on the rest of the state

variables. Besides, h influences the dynamics only through the variation of air density (p)

with altitude (since we are going to neglect the effects of Mach number on the aerodynamic

coefficients). With information about h gathered from the altimeter, we can incorporate this

variation into the air density we have used to calculate the aerodynamic forces and

moments.
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2.5 Aerodynamic and Propulsive Forces and Moments

2.5.1 Approximations of the Aerodynamic Coefficients

The aerodynamic coefficients appearing in equations 2-26 to 2-31 can be
approximated by means of stability derivatives obtained at a range of values of o. The
stability derivatives are obtained by perturbing the states and controls (from the trim
settings) one at a time with different a's. The trim settings of the states and controls
(aerodynamic control surfaces) are selected to be those corresponding to a steady, level
flight. This leads to the following trim settings:

B=0,

P=Q=R=0,
and zero deflections for the rudders and ailerons.

However, the steady-level-flight setting of the stabilator (elevator) changes with the
value of a.. As a result, a single trim setting is selected for the stabilator corresponding to a
steady sﬁﬁght level flight at o = 35°. Table 2.1 shows the numerical values used for the

trim settings of the control surfaces.

Table 2.1 Trim Settings of Control Surfaces for the Determination of

Aerodynamic Coefficients
[Control Surface Deflection in Degree (down as positive)
Aileron 0
Rudder 0 (in as positive)
Stabilator -9.70415
Leading-Edge Flap 0
Trailing-Edge Flap 33

Assuming the effects of the Mach number are negligible at the flight regimes of interest
(low speed and high @), the aerodynamic coefficients can be approximated as:
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. oL, .. aCL N aCL _
Cr = Cuo@) + 504@) Q4557 (o) Adlsym + 5g (@) Stabaym 2-35)

CD = CDo(a) + ﬁa) Q + a—sm(a) Stabsym (2-36)

~3CY ) oCy . oCy )
Cy~¥(a) B+a—P(a) P+—ai(a)R

Ay, ro .y, . iy .
+ éAjl—asy(a) Aﬂasy + m(a) Rud + ma) Stabasy (2-37)
Ci = Cia +a—cl(a)- B+ a&(oz)-P + é)&(OL)-R
lasy B JoP dR
aC A aC; _ 0C; _
+ ——{a Allyy o) -Ailgsy + ——(aRu 1 o)-Rud + a—_(Staba,y o) Stab,gy 2.38)
_ oCm . oCum A dCym .
CM = CMo(a) + x‘(a) Q + m(a) Allsym + —BSta—bsym(a) Stabsym (2-39)
9N, 1.8+ PN 0).p + PN o). |
CN—-%((I) B+a—P(G) P+ﬁ—(a)R
8CN A aCN .‘ aCN .
+ m(a) Al].asy + ma) Rud + mu) Stabasy (2-40)

where Ailsym = (Deflection of Right Aileron + Deflection of Left Aileron) / 2
Stabgym = (Deflection of Right Stabilator + Deflection of Left Stabilator) /2
Ailyy = (Deflection of Right Aileron - Deflection of Left Aileron) /2
Rud = Deflection of the twin rudders acted in unison

Stabj,sy = (Deflection of Right - Deflection of Left Stabilator) / 2

and the functional dependence of the stability derivatives upon a is indicated as in

aCL Y aCM {
oQ ‘a), 3Stabsym‘a), etc.
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Stability derivatives involving the leading edge and trailing edge flaps are not included in
equations 2-35 to 2-40 because the flaps are assumed to be fixed as explained in Section
2.2,

The aerodynamic coefficients at the perturbed settings are obtained from the ACSL
(Advanced Continuous Simulation Language) simulation code provided by Doug Arbuckle
(previously with NASA/Langley, now with NASA Headquarters). The corresponding
stability derivatives are then calculated as the ratios of the changes in the coefficients over
the perturbations. For example, dCL/dQ is calculated as ACL/AQ where AQ is the
perturbation in Q, and ACL is the resulting change in the lift coefficient. The stability
derivatives listed in equations 2-34 to 2-39 are calculated at a set of values of oo. The
values of the stability derivatives at other settings of o can be easily obtained through linear
interpolations. (Furthermore, they can even be approximated as simple analytic functions
of a, and calculated as such.) Attached in Appendix A are some plots showing the
behavior of the stability derivatives at various values of a.

Two analytical models for the airplane dynamics are developed based on these
aerodynamics data. In the first model (model 1), the aerodynamic coefficients are obtained
through linear interpolation of the stability derivatives data set at the desired o.. In the
second model (model 2), the aerodynamic coefficients are calculated treating the stability
derivatives as simple analytic functions of o, obtained from the curve-fitting
approximations of the data set. As a comparison of these models with the "true" model
provided from Doug Arbuckle (the ACSL simulation codes), time simulations (using a
fourth-order Runge-Kutta integration scheme) were performed on all three models at ﬂight
settings slightly perturbed from a steady, level flight with fixed controls. The simulation
results are attached in Appendix B. When the airplane motion is purely longitudinal, both
models 1 and 2 seem to give acceptable results. Nevertheless, model 1 appears to be more
accurate. When lateral motion is involved, model 2 gives totally different results compared

with the other two models. This can be attributed to the bigger errors in the curve-fitting
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approximations of the lateral aerodynamic coefficients Cy, C1, and Cn. Since the lateral

motion is coupled with the longitudinal counterpart, big errors in the lateral states (B, P, R,
, and ) also lead to big errors in the longitudinal states (Vy, o, Q, and 6). Besides, B is -
assumed to be small in the derivations of the state equations (3a-3f). When P gets large (1Bl

> 5°), as in the results from model 2, the analytical model is no longer valid.

2.5.2 Propulsive Forces and Moments

The propulsive forces and moments depend on the throttle settings of the left and
right engines, the locations of the engines, and the orientations of the thrust vectoring
vanes. However, the key elements are the effective thrust output from each individual
engine through the thrust-vectoring vanes. Once we figure out the components of the
effective thrust from each engine, we can easily calculate the moments induced by the
engine forces.

The thrust-vectoring vanes are modelled as devices capable of deflecting the thrust
within a 30-deg cone from the nominal thrust line of each engine. However, the deflection
also causes a loss in the effective thrust by a factor of (1 - cos(c)), where G is the angle
between the deflected thrust and the nominal thrust line.

Taking into account the locations and orientations of the engines, the components of

the effective thrust from the left engine are as follows:

Tx) = T} cos(67)(cos(01)cosd + sin(oy)sin(1);)sind) | (2-41)

Ty = T} cos(61)(-cos(01)sind + sin(oy)sin(M)cosd) (2-42)

Tz = -T) cos(G1)sin(61)cos(My) (2-43)
For the right engine:

Tx, = Tr cos(0r)(cos(Or)cosd - sin(oy)sin(N;)sind) (2-44)

Tyr = Ty cos(0r)(cos(Cy)sind + sin(Cr)sin(MNy)cosd) | (2-45)

Tz, = -T cos(y)sin(6;)cos(T)r) (2-46)
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where T is the magnitude of the undeflected thrust,
Tx, Ty, and Tz are components of the effective thrust along the x, y, and z axes,

3 is the angle between the nominal thrust line and the center-line of the airplane,
o and T are the parameters describing the orientations of the deflected thrust,

and the subscripts 1 and r denote the left and right engine respectively.

The angles 8, ¢, and 1 are illustrated in Figure 2.6.

X
| y
5 | 5
Z | Ax
X' L L I

nominal thrust lines

Figure 2.6 Geometry of the Thrust Vectoring Parameters

Once the effective thrust from each engine is obtained, we can easily calculate the moments

induced about the center of mass:
TL =-(Ty1 + Tynzo + (Tz, - Tzpyo (2-47)
TMm = (Tz1 + Tzpxg + (Tx1 + Txp)zp (2-48)
TN = -(Tx; - TxDyo - (Ty1 + TyD%o 2-49)

where xg, yg, and zg are distances of the engines from the center of mass (see Figure 2.7).
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Figure 2.7 Geometry of the Engine Locations

2.6 Linear Model through Perturbation about Equilibrium Point

From the nonlinear state-space model x = f(x,u), we can obtain linear models by
perturbing the states and controls from their settings at the equilibrium points. Assuming

small state and control perturbations (6x and du), and keeping only the linear terms in the

Taylor series expansion, we get,

ox = Adx + Bdu (2-50)
where
A= af(a);,u) Ixo,llo, B= af(axu,lI) lXo,llo

and X, ug are the states and controls at the equilibrium point.

The elements of the A and B matrices can be approximated by measuring the state
derivatives when the system is perturbed one state or one control at a time:
(A)yj = O%; / Ox; (B = 0%k / Oy
where (A); is the element at the i-th row and j-th column of the matrix A,
(B )1 is the element at the k-th row and 1-th column of the matrix B,

d%; is the i-th component of the state derivative vector when the j-th component of
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the state vector is perturbed by dxj,

%y is the k-th component of the state derivative vector when the 1-th component of

the control vector is perturbed by du;.

2.7 Summary

This chapter provides some basic information about the physical system to be
controlled. Derivation of the nonlinear state-space model and the linearized model of the
vehicle dynamics are also included. The control designs in Chapter 3 and Chapter 4 will be
based on the models developed in this chapter.
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CHAPTER 3

INPUT-OUTPUT LINEARIZATION

3.1 Introduction

This chapter describes the nonlinear control design methodology known as input-
output linearization, and the general procedure in applying the linearization process to
control designs. Specifically, the input-output linearization method is applied to the HARV
and the resulting input-output linearized plant is compared to the uncompensated plant. For
the nonlinear control design covered in Chapter 4, input-output linearization is performed in
an inner-loop compensator, and an outer-loop compensator is then designed around the

linearized plant.

3.2 Motivation

Unlike nonlinear control system design, control design for linear systems has been
well established and understood. There exist many systematic and powerful linear design
techniques such as pole placement, LQR, LQG/LTR, and H.. [1, 5, 14, 20, 21].
However, almost all real physical systems are nonlinear in nature. The linear model
approximation may prove to be too crude or of limited range of validity, and the resulting

robust linear design may be too conservative. Although nonlinear designs are not as well
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understood, they hold promise for alleviating the conservatism in the linear model based
robust designs. Specifically, feedback linearization is a nonlinear design approach that
algebraically transforms a nonlinear system into a linear one. It is then hoped that, using
this approach, linear models of wide range of validity can be obtained, and thus alleviating
the need for gain scheduled linear controllers densely spaced along the operating envelope.
The resulting linearized system can then be handled by the powerful linear design methods.

Current techniques for feedback linearization include input-state linearization and
input-output linearization [12, 19]. Consider a nonlinear system of the form,

x = f(x,u)

y = h(x)

In input-state linearization, with a state transformation z = w(x) and an input
transformation u = g(x,v), the nonlinear system dynamics is transformed into a linear
time-invariant system Z = Az + Bv. One can then use linear techniques to design v.

In input-output linearization, one finds an input transformation u = g(x,v), so that
the transformed control input v, and the system output y can be related through a system of
linear differential equations. In other words, the input-output relation can be expressed in
terms of a transfer function matrix from v to y, and a linear system is established in an
input-output sense. Linear techniques can then be used to design v.

In this thesis, we are going to limit our discussion to input-output linearization,
which is the technique we use in the inner-loop/outer-loop control design described in
Chapter 4. Input-output linearization is performed with the inner-loop controller while the
outer-loop controller is designed around the linearized plant using linear control synthesis
techniques. The basic idea is to use the inner-loop controller to cancel out the nonlinear
effects, and then wrap a linear controller around the linearized plant. Figure 3.1 is a block

diagram of the proposed controller structure.
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Figure 3.1 Block Diagram of the Inner-Loop/Outer-Loop Controller

Structure

The motivation of the inner-loop/outer-loop controller structure also comes from the
recent results established in the sensitivity studies of the H.., methodology by Craig and
Inoue [3, 11]. It was found that the H.. methodology is very sensitive to structured
uncertainty in the presence of lightly damped poles. In fact, this problem exists for all
linear designs attempting approximate plant inversions including both LQG/LTR and He..
A technique called inner loop compensation was introduced to desensitize H.. designs to
structured uncertainty. The idea is to increase the damping of the lightly damped poles in
the inner-loop compensation either through full-state feedback, output feedback or other
feedback schemes. An H.. compensator was then designed around the inner-loop
compensated plant. In the studies cited above, the resulting designs were shown to be
robust to structured uncertainties.

In fact, the open-loop linear model for the HARV has a pair of lightly damped
unstable poles at the trim point of interest (numerical data are shown in Section 3.4).
Hence, it makes sense to use the inner-loop/outer-loop structure even if we are doing linear

designs. Meanwhile, because of the severe nonlinear characteristics of the vehicle
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dynamics (like inertial couplings, nonlinear variations of the aerodynamic characteristics
with the angle-of-attack), the linear model has a very limited validity. Since we are
linearizing around a steady straight level flight, a lot of terms involving the inertial
couplings are discarded in the linearized equations of motion (because we set P = Q=R=
B =¢ =0). The effects of inertial couplings are totally ignored in the linear models.
Besides, in the linear models, the aerodynamic characteristics are linearized around the trim
values of a selected, but we see in the plots shown in Appendix A that the aerodynamic
coefficients are hardly linear with o at all, especially when the airplane is around stall.
These compounding effects can result in large modelling errors and a robust linear
controller tolerating these errors may prove to be too conservative to provide any
performance. Thus, the need to design for high performance has led us to choose the
nonlinear approach of input-output linearization, directly incorporating all the dominant
nonlinear effects in the inner-loop controller design, while robustness is provided in a more
traditional way through the outer-loop feedback linear designs. The resulting structure
provides a systematic way of designing high-performance, robust controllers for nonlinear
systems. By using the proposed nonlinear approach, we can actually design a controller
for flight envelopes covering a large range of o, thus bypassing the traditional patchwork

approach of handling the a-nonlinearities through gain scheduling.

3.3 The Input-Output Linearization Process
3.3.1 General Procedure

Consider the multi-input multi-output system of the form
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x =f(x) + 2, gi(x) u;
i=1 (3-1a)

y1 =hy(x)
(3-1b)

¥Ym = hm(X)
where X is the state vector of dimension n,

uj's (i= 1, ..., M) are control inputs,

yj's =1, ..., m) are outputs,

f and g;'s are smooth vector fields,
and  hj's are smooth scalar functions.
If we collect the control inputs uj's into a vector u, the outputs yj’s into a vector y, hy's into
a vector h, and the vectors gj's into a matrix G, the state-space description of the system
can be written as

x=f(x) + G(x)u (3-2a)

y =h(x) (3-2b)
To obtain the input-output linearization of the system described by equations 3-2a and
3-2b, we repeatedly differentiate the outputs yj (with respect to time) until the inputs
appear. Let rj be the smallest integer such that at least one of the inputs appear in yi®,

After performing this procedure for every output yj, we get

y(ll'l)

=ax) + B(x)u
yi )
with
Llf.'lhl(x) LglL?- lhl ...... LgMLli_l-lhl
sw=| L Bes| T T
L;m m(x) LglL}m'lhm ______ LgML“m-lhm
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where the Lie derivative Lgh is the directional derivative of h along the direction of the

vector f, i.e. L¢h = Vh f, and repeated Lie derivatives are defined recursively
LPh=h
Ld h = LgLg-1 h) = V(Lg-1h) f fori=1,2, ...
The scalar function Lg L h(x) is simply
LgLeh=V(Leh) g
From equation 3-3, we see that the system can be input-output linearized by choosing u
such that
BXX)u=-ax)+v (3-4)

thus obtaining a linear system in an input-output sense from v to y,

Y v
S A
| HVm (3-5)

If the sum of the rj's ,T=r1] + ... + Iy, is smaller than n, part of the dynamics will not be
observable under the input-output relation between v and y. This part of the dynamics is
known as the intemal dynamics associated with the input-output linearization. The stability
of the internal dynamics has to be ensured to maintain the effectiveness of the control

design based on input-output linearization.

3.3.2 Application to the F18/HARV

The state-space description of the aircraft dynamics is derived in Chapter 2 under
equations 2-26 to 2-34. If we follow the procedure outlined in Section 2.5.1 to
approximate the aerodynamic coefficients (CL, Cp, Cm, etc.) by means of the stability
derivatives, the state-space description can be turmed into the form of equations 3-2a and
3-2b introduced in the previous section, and we can proceed with input-output linearization

as described there. In the case of the HARYV, the state vector is given by
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x=[Vy,aB,P, QR8¢ ylT,
with the state variables as defined in sections 2.3 and 2.4, while the control inputs are
given by

u = [Ailgyy, Stabsym, Ailasy, Rud, Stabagy, TXsym, Txasy, Ty1, Tyr, Tz1, Tz]T,
where Ailsym, Ailasy are the symmetric and asymmetric aileron deflections,

Stabsym, Stabasy are the symmetric and asymmetric stabilator deflections (actually

the perturbations from the trim settings listed in Table 2.1),

Rud is the deflection of the twin rudders acted in unison,

Txsym, TXasy are the symmetric and asymmetric thrust in the x-direction,

Ty), Ty are the y-components of the thrust for the left and right engines,

Tz, Tz, are the z-components of the thrust for the left and right engines,
and the symmetric quantities are defined as the average of the left and right quantities

Xsym = (X1 + Xp)/2
while the asymmetric quantities are defined as one half of the difference between the left
and right quantities

Xasy = (X; - X/2
e.g. Txgym = (Tx1 + Tx()/2, and Txasy = (Tx, - Txp)/2.

If we go back to the state equations in Chapter 2 (equations 2-32 to 2-34), we see

that the Euler angles (0, ¢, ) are not affected directly by the control inputs. The bottom

three rows of the G matrix in

x=f(x) + Gx)u
are all zero. As a result, the G matrix can be at most of rank six, and we can only control at
most six independent outputs.

For the outputs, we are going to choose
y= [Vt: o, B’ e’ ¢’ W]T

implying h(x) = Cx, with C a constant matrix.
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With the above choice of x, u, and y, we have established a design model for the HARV to
apply the input-output linearization method

X = f(x) + G(x) u (3-6a)

y = Cx , (3-6b)

The full expressions for f and G are quite lengthy and they are included, together
with the expression for C, in Section C.1 of Appendix C which contains the details of the
input-output linearizing controller. A note of caution is that the matrix G in equation (3-6a)
is a furiction of the state x only because of the way we approximate the aerodynamic
coefficients in Section 2.5.1. The stability derivatives involving the control surfaces (such
as BCM/aStabsym, JdCN/JRud, etc.) are assumed to be independent of the control surface
deflections. This may not be true if the control surfaces are far from the trim settings. In
that case, G is actually G(x,u). However, the mathematics in figuring out the linearizing
control u is much simpler if we assume G to be G(x) instead of G(x,u), as We shall see
later on in this section. We have to recognize the limitation of the approximation, and be
aware of the modelling errors when the controls are not near trim. Hopefully, the outer-
loop robust controller should be able to take care of the errors. (Included in Appendix E
are plots of the aerodynamic coefficients vs. the control surface deflections. These plots
may give us an idea about the extent of the validity of the stability derivative
approximations and the extent of the dependency of the G matrix with the controls.)

From the simulation results of the closed loop system presented later in Chapter 5,
it seems that the limitation cited above for our approach does not seem to offset the
advantages of our nonlinear method very much. The inertial couplings and o-nonlinearities
are the most serious shortcomings for the linear models. Errors resulting from the linear
control assumption seem to only have minor effects. In fact, the modelling errors resulting
from the G(x) assumption can be thought of as issues relating to the gain margins of the
system, which are much simpler to deal with in terms of robust control than the hard

nonlinearities of inertial couplings and high-o aerodynamics.
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Nevertheless, this is only a conjecture. A systematic and quantitative study of the
modelling errors resulting from our wayr of input-output linearization will be needed for
better understanding of the issue. Because of time constraints, this study has not been
conducted for the research effort reported in this thesis, although it will be a very valuable
piece of information for the outer-loop design and for the application of the nonlinear
method to flight control systems in general. This study is strongly suggested for future
research efforts.

In carrying out the linearization process, we need to differentiate 0, ¢, and y twice

for the inputs to appear, while Vi, o, and § only need to be differentiated once. After the

differentiation process is performed, we obtained

=a(x)+Bx)u

B, 3-7

The full expressions for a(x) and B(x) are included in Section C.2 in Appendix C. For
subsequent results presented in this chapter and the later chapters, the numerical values
used for a(x) and B(x) are based on the nonlinear model of the vehicle dynamics (model 1)
described in Section 2.5.1, which approximates the aerodynamic coefficients through linear
interpolations of the stability derivatives data set.

The next step is to find the control u such that B(x) u = -a(x) + v. Since B is a
rectangular matrix (it is of dimension 6 x 10), the problem is underconstrained and there are
more than one solutions for this matrix equation. A common trick is to solve the problem

in a least-squares sense by picking the u with the minimum weighed norm uTWu among
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the solutions satisfying equation 3-4. In other words, we are tuming the problem into a
constrained minimization
min (uTWu) with respect to u
subject to the constraint
ax)+BXxX)u=v

In some sense, the weighted norm uTWu is a measure of the control effort. By minimizing
uTWu, we are trying to pick the u that achieves the performance objective with minimum
effort. The weighting matrix W also lets us address the relative cost we attach to the
various control inputs. Using the method of Largrange multipliers, a close form solution to
the minimization problem is given by

u = [W-IBTBW-1BT)1] (-a + v) (3-8)
A reasonable choice for the weighting matrix is a diagonal matrix with the diagonal
elements being the square of the inverse of the maximum values allowed for each input,
i.e. W = diagonal(1/(uimax)? .-. 1/(uMmax)?). Numerical information about the W matrix
can be found in Section C.3 in Appendix C. One minor point about the control u is that we
are using the x, y, and z components of the engine thrusts to represent the propulsive
control inputs instead of the physical propulsive controls of engine throttles (which is
related to the magnitude of the engine thrusts T}, and Ty ) and the orientation of the thrust
vectoring vanes (the angles ¢ and N described in Section 2.5.2). We can easily calculate
the corresponding physical propulsive controls using the relations established in equations
2-41 to 2-46 in Section 2.5.2.
The resulting linearized system is of the form,

Ve=vi (3-9)

o =vy | (3-10)

B=v (-11)

0 =vs (3-12)

0=vs (3-13)
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or, in state-space form,

Z = Az + Byv
y=Cgz
with _ ~
(000000000 (100000
000000000 010000
000000000 001000
000010000 000000
A;=1000000000|,B,=/000100
000000100 000000
000000000 000010
000000001 000000
L000000000 L00000 1.
100000000
010000000
C = 001000000
11000100000
000001000
L000000010
and

. . T
z= [Vt’ av B9 e! e’ ¢’ ¢’ \‘I"’ \l”]
y= [V[’ a, B’ e’ q)r \|’]T

v = [v1, v2, v3, v4, vs, vg]T

(3-14)

(3-15)
(3-16)

Since the relative degree of the linearized system (the sum of the 1j's) is equal to the order

of the original nonlinear system (n = 9), the system has been fully linearized and there is no

internal dynamics associated with the linearization.

After seeing the derivation of the linearizing control, one may now understand why

G is assumed to have the form G(x) instead of G(x,u), which results in B(x) instead of

B(x,u). If B is of the form B(x,u), equation 3-4 will be nonlinear in u, and there is no

close form solution for the nonlinear equations in general. One has to resort to iterative

methods for solving the linearizing control, which complicates the situation with issues of

stability and convergence of the iterative schemes. In fact, no current nonlinear inversion

scheme includes the control dependency in the G matrix as a result of the above difficulty.
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Research on alternative approaches may be able to avoid or solve the difficulty, and
directly incorporate the control dependency into the controller design. However, as
suggested earlier, the modelling errors caused by the exclusion of the control dependency
in the G matrix seem to be benign enough to be handled through an outer-loop feedback
controller. In that case, all the complexity related to the inclusion of the control dependency

may not seem to be worthwhile.

3.4 Comparison of the Inner-Loop Compensated Plant to the
Uncompensated Plant

For the purpose of comparison with the input-output lineaiized system, a linear
model of the uncompensated plant is obtained as discussed in Section 2.6 at the trim point
corresponding to a straight level flight at

h = 15000 ft, Vi = 211.231 ft/sec (Mach 0.199771), and o = 35°.
The numerical data for the linear model can be found in Appendix D. Upon analysis of its
eigenstructure, it is found that there are no transmission zeros, and there are four pairs of
complex poles and a real pole at the origin. The pole at the origin corresponds to the lateral
mode of "heading displacement", in which only  differs from zero and is constant in time.
This is due to the fact that the airplane does not seek any particular heading. When the
airplane is disturbed, after recovery of a straight level flight, it will in general have some
heading other than the original heading before the disturbance. Two of the complex pole
pairs correspond to decoupled longitudinal motion since only longitudinal variables (Vy, ¢,
0, Q) are involved in the eigenvectors. One of the longitudinal pole pairs is actually
unstable and very lightly damped. The remaining complex pole pairs correspond to modes
where the longitudinal and lateral motions are coupled together. The poles of the linearized

model for the uncompensated plant are summarized in Table 3.1.
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Table 3.1 Poles of the Linearized Model for the Uncompensated Plant at
Trim Point h = 15000 ft, V= 211.231 ft/sec, oo = 35°

Pole Location Coupling Damping Ratio {  Natural Frequency
0.0063+0.1406;  Decoupled Long. Mode -0.0448 0.1407
-0.29511+0.3444j  Decoupled Long. Mode 0.6507 0.4535
-0.1301+0.1953j  Coupled Long./Lat. Mode 0.5544 0.2347
-0.424040.4127j  Coupled Long./Lat. Mode 0.7166 0.5917
0.0000 Decoupled Lat. Mode - -

(Long. = Longitudinal, Lat. = Lateral)

At first glance, we see that this is a very tough trim point for control design. The
system is unstable and the lightly damped pole pair would be extremely difficult for linear
control designs like H.. and LQG/LTR [3, 11]. Besides, the longitudinal and lateral modes
are coupled together. An integrated controller has to be designed for both the longitudinal
and lateral motions.

Looking back at the input-output linearized system, we see that the nominal system
described by equations 3-9 to 3-14, is relatively simple with all the poles located at the
origin and all the channels decoupled. One can actually use classical single-input—
single-output (SISO) control design techniques for each decoupled subsystem. However,
one has to bear in mind that the input-output linearization will not be perfect because of
parameter uncertainties and other modelling errors. In order to get some feeling about how
good the feedback linearization is, a linear model of the inner-loop compensated plant is
obtained through perturbation around the same trim point as the linear model of the
uncompensated plant. If we choose the state vector z, control vector v, and output vector
y as defined in equations 3-15 and 3-16, the state-space description of the inner-loop
compensated plant can be written generally as

7z =1(z,v) (3-17a)

y=Cz (3-17b)
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We are using f(z,v) to indicate that Z is in general a nonlinear function of both the states
and controls. C is a constant matrix relating the states and outputs we choose for the state
space representation. Perturbing around the trim point

zo = [211.231 ft/sec, 35°, 0°, 35°, 0°/sec, 0°, 0°/sec, 0°, 0°/sec]T

vo = [0 ft/sec2, 0°/sec, 0°/sec, 0°/sec2, 0°/sec2, 0°/sec2]T

the linear model of the inner-loop compensated plant is of the form

Zz=Adz+Bdv+d (3-18a)
y=Cz (3-18b)
where
of(z af(z,v)

A =—az’—v) Izo.Vo» B = av Izo.Vo’ d = f(Zo,Vo)

(d is an offset vector which results from the imperfect linearization: Z is nonzero even if
both z and v are zero)
and

dz is the perturbation of the state vector from the trim point, i.e. 8z = z - 7,

dv is the perturbation of the control vector from the trim point, i.e. dv = v - v
Since the exact form of f with the linearizing control is not known to us, the linear model
we are gétting in the form of 3-18a and 3-18b is purely a numerical one. The values of the
A and B matrices are obtained by numerically perturbing the states and controls one at a
time. d is obtained by setting z = v = 0, and the resulting z is then noted for d.

The matrix C in equation 3-18b is the same as C] in equation 3-16 since we use the
same definitions for z and y here. Because the linearization is not perfect, the matrices A
and B will not be the same as A] and Bj in equation 3-15, and d will be nonzero. Cross-
coupling terms will also appear in the A and B matrices. The numerical values of the A and
B matrices, and the d vector can be found in Appendix D. An interesting observation is
that all the poles of the linear model of the inner-loop compensated system are real. The

poles are located at s = 0, 0.0002, 0.0311, 0.1011, 0.2401, 13.4165, -0.0383, -0.5180,
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and -0.5578. We see that the poles are no longer all at the origin, but scatter around the
neighborhood of s = 0, with the exceptional case of the one at s = 13.4165, which
corresponds to an unstable lateral mode. Meanwhile, the eigenvectors all contain
corﬁponents from several variables, but they still decouple roughly into eigenvectors for
longitudinal modes and eigenvectors for lateral modes, except for the one which contains
all the state variables. There are also no transmission zeros. These results are not totally
unexpected since we know there is going to be some departure from the nominal input-
output linearized system because of the imperfect linearization. A robust outer-loop
controller is needed to overcome this departure while accomplishing satisfactory
performance for command following. The singular value plots for the linear models of the
uncompensated system and the inner-loop compensated system are shown in Figure 3.2
and Figure 3.3. In obtaining the singular values, the following scaling factors are used for

the uncompensated system.

For the outputs: 6 ft/sec for Vi,
1 deg for o, 0, and ¢,

0.2 deg for B,

and 0.5 deg for y.

For the controls: 14 deg for the stabilators,
| 30 deg for the rudders,
25 deg for the ailerons,
30 deg for the thrust vectoring,
and 12 deg for the throttles.
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Meanwhile, for the inner-loop compensated system, the scaling factors for the outputs are
the same as above while the scaling factors for the controls are as follows:

6 ft/sec? for vy,

1 deg/sec for v,

0.2 deg/sec for v3,

1 deg/sec? for v4 and vs,

and 0.5 deg/sec? for vg.

Looking at Figure 3.2 and Figure 3.3, we notice that the inner-loop compensated system is
much smoother in terms of the frequency response of the singular values, in contrast to the
sharp peaks occurring around ® = 0.1 rad/sec in the singular value plot of the
uncompensated system. One can definitely tell that Figure 3.3 is obtained from a
compensated system instead of a crude physical system. The singular value plot represents
a lumped and smooth system with no singular characteristics which are problematic for
plant inversions. In spite of the imperfect input-output linearization, the inner-loop

compensated system is a much better conditioned system to do linear control designs.
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Figure 3.2 Singular Values of the Uncompensated System
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3.5 Summary

The input-output linearization method is described briefly in this chapter. It forms
the basis of the nonlinear control design (inner-loop/outer-loop controller) in Chapter 4.
The linearization method is applied to the HARV and implemented in the inner-loop
compensator of the inner-loop/outer-loop controller structure. A comparison of the
feedback linearized system with the (uncompensated) Taylor series linearized system is also

presented to reveal the relative ease of designing the outer-loop controller around the input-
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output linearized system over designing around the linear model of the uncompensated

system.
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CHAPTER 4

CONTROLLER DESIGN

4.1 Introduction

As stated in Chapter 1, the goal of the thesis is to explore the nonlinear control
design alternatives for high-a. flights, as distinct from the traditional linear multi-input—
multi-output (MIMO) methods such as LQG/LTR and H... In this chapter, a linear design
using the LQG/LTR method is first obtained along the approach of Voulgaris in [22] (with
the extension of purely longitudinal motion to both longitudinal and lateral motions). This
design based on a linear model will serve as a baseline for comparison with the nonlinear
designs, namely the inner-loop/outer-loop controller structure with input-output
linearization, based on the nonlinear model of the vehicle dynamics derived in Chapter 2.
The controller designs described in this chapter are compared with one another later in
Chapter 5, by "hooking" them up with the full-scale nonlinear simulation model provided
by NASA/Langley for the HARV. Robustness and performance are thus directly checked
on the "real" plant, complete with modelling errors that were not included in the design

nonlinear model.

4.2 Design Based on the Linear Model (LQG/LTR)

4.2.1 Selection of Trim Point and the Corresponding Linear Model
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The linear model described in Section 3.4 is obtained at a trim point corresponding
to a straight level flight at an altitude of 15,000 ft and an angle of attack of 35°. This trim
point is chosen for its severe a-nonlinearity since the stall angle is approximately at
o = 40°. The aerodynamic characteristics change abruptly around stall with all the
nonlinear aerodynamic phenomena mentioned in Chapter 1. Besides, this trim point is
unstable, and requires active control for stability. Once again, the reader can refer to
Appendix D for the numerical values of the A, B, and C matrices and the definitions of the
state, output, and control vectors for the linear model. The same set of output variables are
chosen as in the input-output linearization process applied to the HARV in Section 3.3.2,
so that we can compare the tracking response of the linear and nonlinear designs directly.

Since the LQG/LTR method is based on the singular values of the loop transfer
function T(s) = C®(s)BK(s),! we have to scale the inputs and outputs appropriately for
meaningful comparison of the input and output quantities with different units of
measurements, and meaningful results for the singular values. For the trim point we have
chosen, the scaling factors used for the outputs are 6 ft/sec for Vi, 1 deg for o, 1/5 deg for
B, 1 deg for ¢, 1 deg for 6, and 1/2 deg for y. The scaling of the inputs is taken care of
through the pseudo-control approach described in the next section, which handles the

control redundancy of the system.

4.2.2 Design of the LQG/LTR Compensator

The LQG/LTR design procedure [1, 20] outlined here is very similar to the
approach used by Voulgaris in [22], except for the inclusion of both longitudinal and lateral
motions instead of just purely longitudinal motion as in [22]. The pseudo-control approach
developed in [22] is followed closely here to handle the control redundancy of the system.

Dynamic augmentation is also undertaken to add integrators in each input channel in order

1K(s) is the transfer function matrix of the LQG/LTR compensator and ®(s) = (sI - A)-L.
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to achieve zero steady state error to constant commands or disturbances. Since the design
procedure follows closely the steps outlined in [22], step-by-step details of the general
LQG/LTR methodology will not be presented in the following sections. Readers who are
unfamiliar with the LQG/LTR methodology can consult [1, 20, 22] for the step-by-step
details.

4.2.2.1 Pseudo-Control Approach for the Control Redundancy of the
System

Examining the structure of the linear model as shown in Section D.2 of Appendix
D, we see that the B matrix has a rank of six, which suggests that we can control six output
variables independently. With the six outputs defined by equation D-5 (in Appendix D)
and the ten control inputs defined by equation D-4 (in Appendix D), we have gotten
ourselves a rectangular MIMO system with more inputs than outputs. The idea of the
pseudo-control approach is to convert the system to a square one by designing around a

pseudo system Gy(s) with fictitious control input ve R%%! instead of the actual physical
control input ue R10x1 Since the rank of the B matrix is six, the input term Bu in the state
space description of the linear model can be replaced by Byv, where the column space of

By is the same as that of B. Taking into account the particular structure of B,

-2

Osx10 @-1)
with rank(B1) = 6.
A convenient choice of By is
Bv =[ I6x6 ]
O3x6 (4-2)

As a result, the state space description of the pseudo system with the fictitious input v is
given by
x = Ax + Byv (4-3a)
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y=Cx (4-3b)
with By given by equation 4-2.

With ve R6x1 and ye R6X1, the pseudo system is clearly a square system, and we can
- proceed with the design as in the case of a regular square system. The LQG/LTR
compensator designed for the pseudo system will be denoted by Ky(s). On the other hand,
we still have to figure out a way to transform the fictitious input v into the physical input u.
We know that v and u are related by Bu = Byv. From equations 4-1 and 4-2, this can be
replaced by

Bju=v (4-4)
Since B is rectangular (Bje R6*10), there will be infinitely many vectors u satisfying
equation 4-4 for a given v. One way to solve the problem is to pick the u that satisfies
equation 4-4 while minimizing the cost function J = uTWu, where W is a positive definite
weighting matrix. The close form solution of the minimization problem is given by

u=Tv 4-5)
where T = W-1B;TB;W-1B;T)-1 (4-6)
A reasonable choice for the W matrix is a diagonal matrix with its diagonal elements
corresponding to the inverses of the maximum values allowed for the control in each input
channel. In this way, the scaling of the control inputs mentioned in Section 4.2.1 are
actually handled through the weights assigned to the diagonal elements of the W matrix.
Finally, the actual LQG/LTR compensator is given by

K(s) = TKw(s) 4-7)

4.2.2.2 LQG/LTR Design for the Pseudo System

With the pseudo-control approach outlined in the previous section, the LQG/LTR

design is applied on the pseudo system Gy(s) instead of the actual system Gy(s).
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However, we are going to add an integrator to each input channel to achieve zero steady
state error for constant commands or disturbance. Therefore, the design plant model is
going to include both the dynamics of the augmented integrators and the pseudo system.
Figure 4.1 is an illustration of the dynamic augmentation with integrators for the design

plant model.

Figure 4.1 Augmentation with Integrators
The state space description of the augmented system G,(s) is given by

Xa = AgX, + Bu, (4-8a)

Ya=Caxa (4-8b)
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Augmentation with integrators at the plant inputs allows the designer extra freedom
to do loop shaping and to match singular values at both low and high frequencies. On

designing the target loop, we can partition the design parameter matrix L as:

L
L=
Ln] . (4-9)
Thus,
Ca(sI-Ap)-1L = C(sI-A)-1ByLy/s + CGI-A) 1Ly 4-10)
With the specific structure of A, '
A; O
A= 1 8x1 ]
Ay O (4-11)
this becomes
I-A;)] 0
Ca(sI-A,) 'L = C{ (k-4 o B,Li(1/s)
Ax(sI-Ap)y(1/s) 1/s
I-Ap)! O8x
. C{ (sI-Ap) 8x1 }Lh
Ax(sI-Ap)1(1/s) 1/s (4-12)
As s=jo—0, we get
I
Ca(sI-A,) L = -C 3%8 ]A 1B, 1Li(1/s)
( ) Ays [T Buili @-13)
where
(2
O1x6 (4-14)
and as s=j@-eo,
Ca(sE-A,) 'L = CLy/s (4-15)
Choosing
L= (c{ Igxs ]A'llel)'l, with s=jo—0
Asfs 4-16)
and Lp=CT(CCT)-1 4-17)

we get C,(sI-Ag)-1L = I/s, as s=jw—0, and s=jo—ree.
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From the Kalman frequency domain equality

Gill + Ggr(s)] = V1 + (L/WSHCa(sI - A, IL] (4-18)
where the Kalman filter loop transfer function matrix is given by

GKr(s) = Ca(sI-Ap)1H (4-19)
so for s=jm—0, and s=jw—reo,

Gi[Gkr(j©)] = (1/u12)/w (4-20)

With the choice of Lj and Lj,, we have managed to match the singular values of the target
filter loop at both low and high frequencies.

Using y = 1/4 (for a crossover frequency of 2 rad/sec), and s = j(10-9) for the calculation of

Lj, we obtain the target Kalman filter loop by solving the Filter Algebraic Riccati Equation

AT +ZA,T + LLT - (1/)ZC,TC,Z =0 (4-21)
The Kalman filter gain is given by,
H = (1/W)ZC,T (4-22)

and the Kalman filter loop transfer function matrix is given by equation 4-19.
The numerical value of H can be found in Appendix F. The resulting singular value plot of

the target loop transfer function is shown in Figure 4.2.
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Figure 4.2 Singular Value Plot of the Target Loop of the Linear

Design
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In the loop transfer recovery step, p is chosen to be 10-8 to recover the target loop
up to a decade above the crossover frequency. The gain matrix G in the LQG/LTR
controller is computed from the Control Algebraic Riccati Equation

KA, + A,TK + C,TC, - (1/p)KB,B,TK =0 (4-23)
and G=(1/p)B,"K (4-24)
The numerical value of the G matrix can be found in Appendix F, and the singular value

plot of the recovered loop is shown in Figure 4.3
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Figure 4.3 Singular Value Plot of the Recovered Loop of the

Linear Design

By absorbing the integrators in the plant inputs into the LQG/LTR controller, the state

space description of the LQG/LTR controller Ky(s) is given by
Z = (A,-B,G-HC,)z - He (4-25)

v =-Gz (4-26)

The physical control is given by u = Tv, with T given by equation 4-6.
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4.2.3 Step Responses of the LQG/LTR Linear Design Simulated
with Nominal Linear Model ’
Time simulations for unit (in scaled output units) step responses were performed
using the linear nominal model. The step response (in scaled output units) for unit
command in V; is shown in Figure 4.4. The step responses for unit command in o, B, and

0 look very similar to the one shown for V.

o
o0

e
=

scaled output
e
=N

0 1 2 3 4
time in sec
Figure 4.4 Step Response for Unit Command in Vi for the Linear

Design (Simulated with Nominal Linear Model)

The step response for unit command (in scaled unit) in  shows a little bump for ¢ initially,
indicating a little coupling between W and ¢. The step response is shown in Figure 4.5.
The step response for unit command (in scaled unit) in ¢ looks similar to Figure 4.5, but

with the roles of y and ¢ interchanged.
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scaled output

0.2/ PR

time in sec
Figure 4.5 Step Response for Unit Command in y for the Linear

Design (Simulated with Nominal Linear Model)

With the weighting matrix for the control chosen to be
W = diag(1/142, 1/142, 1/302, 1/302, 1/252, 1/252, 1/302, 1/302, 1/122, 1/122),
the control actions corresponding to the unit step commands are shown in Figure 4.6 to

Figure 4.11.
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Figure 4.6 Control Actions for Unit Step Command in Vi (6 f/sec)
for the Linear Design

(Simulated with Nominal linear Model)
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Figure 4.7 Control Actions for Unit Step Command in o (1 deg)
for the Linear Design

(Simulated with Nominal Linear Model)
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for the Linear Design

(Simulated with Nominal Linear Model)
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(Simulated with Nominal Linear Model)

One interesting observation is that when we turn off the thrust vectoring by
imposing large weights on DTVL and DTVR (the control inputs corresponding to thrust

vectoring), the aerodynamic controls exhibit large impulsive actions. This demonstrates the
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limitations of the aerodynamic controls at high a.. The corresponding time simulations

(using the nominal linear model) for the controls are shown in Figure 4.12 to Figure 4.17.
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4.3 Designs Based on the Nonlinear Model (Inner-Loop/Outer-Loop
Controller)

4.3.1 Structure of the Nonlinear Controller Designs

The nonlinear control designs are based on the inner-loop/outer-loop (IL/OL)
controller structure introduced in Section 3.2. The inner-loop compensator utilizes the
nonlinear technique of input-output linearization to transform the nonlinear physical system
into a linear systém, around which the outer-loop controller is designed. The inner-loop
controller component has been described in some detail in Chapter 3. The outer-loop
designs are discussed in the upcoming sections. Because of the simple structure of the
input-output linearized system, we can actually apply single-input—single-output (SISO)
design techniques for the outer-loop controller. As a result, the first design is based on
state feedback and pole placement techniques, applied to the decoupled single-integrator
(1/s) subsystems and the decoupled double-integrator (1/s2) subsystems. A second design
for the outer-loop compensator is an LQG/LTR controller augmented with integrators to the

input channels.

4.3.2 Designs of the Outer-Loop Controller

4.3.2.1 Outer-Loop Pole-Placement Controller with Static State-
Feedback
With the input-output linearization performed by the inner-loop compensator, the
resulting linearized system is actually reduced to six decoupled simple subsystems. For the

outputs, Vi, o, and B, the dynamics just consists of a single integrator.

Vi=v, | (4-27)
o= vy (4-28)
B=vs (4-29)
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For the other outputs, 8, ¢, and , the subsystems are just double integrators.

0=vs 4-30)
=vs (4-31)
V= "vs (4-32)

For the subsystems in equations 4-27 to 4-29, we can just use proportional control to
achieve pole placement with the control law

v=ke (4-33)
where v is the control, k is the gain of the controller and the error signal e is given by the
difference between the reference command r and the output y, e = r -y. This control law
results in a stable closed-loop pole at s = -k. The block diagram of the closed-loop system

is shown in Figure 4.18.

k 1/s

Figure 4.18 Block Diagram of the Single-Integrator System with

Proportional Control

For the subsystems in equations 4-30 to 4-32, we can place the closed-loop poles

as a double pole pair at s = -k by choosing
v = -2ky + k% . (4-34)

The block diagram of the resulting closed-loop system is shown in Figure 4.19.
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Figure 4.19 Block Diagram of the Double-Integrator System with
State Feedback Control

Figures 4-2b and 4-21 are the closed-loop step response (with zero initial conditions) of the
1/s and 1/s? subsystems connected with the corresponding control as in 4-33 and 4-34.

Applying 4-33 and 4-34 to the input-output linearized system, we finally get

Vi=v; = -kV, +kr; (4-35)
o = vy = -ka, +krp | (4-36)
B =vs = kB +krs (4-37)
0 = vq = -2k0 + k(x4 - 0) (4-38)
6 = vs = -2k + KX(rs - §) (4-39)
Y = ve = -2k + k(16 - W) (4-40)

with all the closed-loop poles placed at s = -k.

In equations 4-35 to 4-40, we have chosen all the k's in the different channels to be the
same. However, this does not have to be so. We may desire a different closed-loop
bandwidth for each individual output. The choice of the desired bandwidth depends on the
flight operation requirements and the limits imposed by the controls, such as saturation
limits and rate limits. Since the six output channels are decoupled in equations 4-35 to 4-
40, the different requirements can be easily accommodated by choosing the k for each
individual channel appropriately, taking into account the distinct characteristics of the

corresponding channel.
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Figure 4.21 Closed-Loop Step Response of the Double-integrator
System with State Feedback Control

4.3.2.2 Outer-Loop LQG/LTR Controller

The input-output linearized system is given by
Z=Az+ By 4-41)

y=Cgz (4-42)
with
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and

2= Vi, B,6,6, 0,6, ¥]

y=[Vi, B8 ¢ yIT

v = [v1, v2, v3, v4, Vs, v6]T
Once again, we augment the input channels with integrators, and design the controller
around the augmented system [A;, B,, Cj], just as in the case of the linear design in
Section 4.2.

In the target loop design, with the particular structure of A, for the augmented

system, we pick

L= Isx3 O3x3 }’ with s = jo -0

03x3 sIax3 (4-43)
to match the singular values at low frequencies,
and Lp=CT(CCT)! (4-44)

to match the singular values at high frequencies.

Using p = 1/4 (for a crossover frequency of 2 rad/sec), s = j(10'3) for the calculation of L,

and p = 10-8 the resulting singular value plots for the target loop and the recovered loop

are shown in Figure 4.22 and Figure 4.23 respectively.
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Figure 4.23 Singular Value Plot of the Recovered Loop of the
Outer-Loop LQG/LTR design

The state space description of the LQG/LTR controller takes the form as in equations 4-25
and 4-26. The numerical values of the G and H matrices of the LQG/LTR controller can be

found in Appendix F. Step responses of the closed-loop system (with zero initial
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conditions) for the oo and 6 channels, simulated with the nominal design model, are

included in Figure 4-24 and Figure 4-25.

output response
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Figure 4.24 Closed-Loop Step Response in the a-Channel of the
Outer-Loop LQG/LTR Design

(Simulated with Nominal Design Model)
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4.5 Summary

This chapter provides a description of the overall controller designs. The

developments of the linear and nonlinear designs are covered in some detail. Time history
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results simulated with the nominal design models are included to establish an upper bound

for the performance level of the controllers when used with the "real" nonlinear system.

86




e,

sy,

i

]

CHAPTER 5

EVALUATION AND COMPARISON OF THE
CONTROLLER DESIGNS

5.1 Introduction

In this chapter, we are going to compare and evaluate the controller designs we
developed in the previous chapter. In the comparison of the controller designs, the
LQG/LTR design based on the trim point linear model is referred to as Design 1. The
nonlinear design with the outer-loop pole-placement controller using state feedback is
referred to as Design 2. Lastly, the nonlinear design with the outer-loop LQG/LTR

controller is referred to as Design 3.

5.2 Stability of the Closed-Loop Systems

The least we should ask for in any design is stability of the closed-loop system. All
the designs described above provide closed-loop stability for the nominal design model.
However, because of modelling errors, this may not be the case if we hook up the
controllers with the real system. As a preliminary verification for the controller designs,
the controllers are hooked up with the nonlinear simulation code of the vehicle dynamics,
and time simulations are performed commanding the controller to regulate the airplane

around the trim point (h = 15000 ft, o = ® = 35°), where the designs are based on.
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For the LQG/LTR design based on the trim point linear model, nothing interesting
happens if we start the simulation with the states and controls at the trim settings. With
zero error signals, we have zero output (du) from the LQG/LTR controller and the controls
remain at the trim settings, so the plane just stays at the trim point. On the other hand, there
is a different story for the nonlinear designs in the absence of the outer-loop controller.
Because of parametric uncertainties and modelling errors, the linearizing controls computed
by the inner-loop compensator are actually different from the trim control settings. As a
result, even if the initial states of the aircraft are at the trim settings, the aircraft will not stay
at the trim point because the time derivative of the state vector is actually nonzero at t=0.1
In addition, we learn from the linear model of the inner-loop compensated system in
Section 3.4 that the inner-loop compensated system is actually unstable. Consequently,
regulating control from the outer-loop compensator is needed to remain in the
neighborhood around the trim point. Time simulation results of the regulators based on

Design 2 and Design 3 are shown in figures 5.1 and 5.2.

* IThe d vector in equation 3-18a is nonzero.
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As we see in Figure 5.1 and Figure 5.2, Design 2 holds on to the trim point gracefully
(though with a very little offset) while Design 3 fails to maintain a steady pitch angle at all.
Upon closer inspection of Design 3, we find that the reason for the poor performance may-
be due to the inexact cancellations of poles and zeros very close to the origin. Using the
nominal design model (we are not considering the nonlinearity in the real system yet), we

find that the closed-loop system has four poles very close to the origin, namely at

s = -0.001 % j(1.2904 x 10-%), -0.001 % j(3.9372 x 10-6), -0.001, and -9.9898 x 10-6.

The six closed-loop zeros that are supposed to cancel these poles are located at

s = -9.9911 x 10-4 % j(2.4315 x 10-5), -9.9911 x 10-4 + j(2.4315 x 10-5), and

-9.9911 x 10-4 £ j(2.4315 x 10-5). The inexact pole-zero cancellations leave us with a

residual long tail in the closed-loop responses if the modes corresponding to these slow-

moving closed-loop poles are excited. We can see this effect by looking at the regulation

response with a perturbed é, simulated with the nominal design model.

With 6 = -1, and the rest of the states equal to zero at time t = 0, we get the following time

response by commanding the states back to zero,

output theta in deg

4 6 8 10
time in sec
Figure 5.3 Regulator Response of Design 3 with Perturbed 0

at t = 0 (Simulated with Linear Nominal Design Model)

91



The same effect is also observed in the step response of 0, ifé is perturbed from zero at
t=0. With 8 = -1°/sec and the rest of the states equal to zero at t = ( sec, we get the
following time response of 8 by issuing a step command in 6 of 1°. There is a long and

slowly-rising tail trying to climb up to the commanded level in 6.

output theta in deg

time in sec
Figure 5.4 Step Response of Design 3

with Perturbed  att =0

(Simulated with Linear Nominal Design Model)

As a result, Design 3 does not seem to fare well even in the absence of modelling
errors. With the parametric uncertainties and modelling errors in performing the input-
output linearization, the resulting input-output linearized system is far from the nominal
design model. Design 3, handicapped with the inexact pole-zero cancellations, fails to
handle the perturbation in the pitching moment (through nonzero 9 in the offset vector d in
equation 3-18a). It is not even able to maintain a constant pitch angle. The augmenting
integrators in Design 3 are intended for extra robustness against modelling errors and
perturbations, since we do not really need them for the type-1 (single-integrator) and type-2

(double-integrator) systems we are dealing with. The outer-loop LQG/LTR design with
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augmented integrators seems to be a misguided effort and rather an overkill. The target
loop design is not handled very well with the way we match the singular values at low
frequencies, which in turn causes the inexact pole-zero cancellations. It seems that Design
2 using state feedback for the outer-loop control is more robust to modelling uncertainties,
resulting from the imperfect input-output linearization, than a dynamic controller (e.g.
Design 3) which only has access to the output variables. The dynamic controller structure
is less robust to the modelling uncertainties probably because of the way it achieves
approximate plant inversion through pole-zero cancellations. In the presence of parameter
uncertainties and modelling errors, the pole-zero cancellations will be inexact and the
resulting closed-loop system may exhibit drastic difference from the nominal design.
Consequently, from this point on, we limit the comparison mainly between Design 1 and

Design 2.

5.3 Comparison of the Linear and Nonlinear Designs through Time
Simulations of Tracking Response

The ultimate way to evaluate and compare the designs is to put them into the flight
control system and take the plane out for flight tests. Obviously, this may be costly or even
dangerous. The next best thing is to hook up the controller designs with a reasonably
accurate model of the nonlinear dynamics and perform time simulations for the desired
maneuvers. This is exactly how we evaluate and compare the controller designs in this
section. The time simulation is based on the nonlinear model of the vehicle dynamics
provided by NASA/Langley and a fourth-order Runge-Kutta integration scheme. The
nonlinear model used for the simulation includes nonlinear effects in the aerodynamics of
the vehicle, inertial couplings, nonlinearity in thrust vectoring and dynamics of the twin
turbofan engines. Dynamics of the control surface actuators and sensor noise are assumed

to be negligible.
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The first maneuver (maneuver 1) under consideration is a 0.2 deg step command in
0 from the trim level flight at h = 15000 ft , & = 35°. To avoid saturation in the controls
from the discontinuous step command, the reference step command is passed through a
prefilter with transfer function pr(s) = 2/s+2 before reaching the controllers. The results
of the time simulation are shown in Figure 5.5 to Figure 5.7. The discontinuities of &
(thrust vectoring angle) and 7 (thrust rotation angle) appearing in the time simulations are
due to the sign convention we pick to limit the values of the angles to within £90°. Positive
o corresponds to upward deflection of the thrust to provide a force in the -z direction (the z
axis is pointing down). Positive 1] corresponds to clockwise rotation of the thrust vector
about the x-axis after first being deflected up and down with an angle described by o©.
Readers can refer back to Figure 2.6 for the definitions of ¢ and 1. The thrust rotation
angle is not shown for Design 1 in the time simulation because 1 is kept zero for all time

for Design 1. In addition, the time histories for the airspeed are omitted because the

airspeed remains pretty constant around the trim value.
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Figure 5.5 Tracking Response of 0.2 deg Step in @ for Design 1
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Figure 5.6 Tracking Response of 0.2 deg Step in 0 for Design 2
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Figure 5.7 Tracking Response of 0.2 deg Step in 6 for Design 3

From Figure 5.5 and Figure 5.6, we see that both Design 1 and Design 2 do a
decent job in tracking the reference command. However, looking at the time histories of
the outputs and the controls, one cannot argue with the statement that the nonlinear design
(Design 2) does perform better. Design 2 tracks the command more accurately with gentler
control actions. It also maintains a smaller tracking offset at the end of the time simulation.

Wé have leamed in the previous section that Design 3 has trouble in controlling the
pitch angle. It is not surprising to see the poor tracking response presented in Figure 5.7
for a step command in 8. Actually, the time history plot of 0 is reminiscent to Figure 5.4,
the step response simulated with the nominal design model starting with a perturbed 9
at t = 0. We speculate that the perturbation in 9 caused by the imperfect input-output
linearization seems to build up a nonzero 9 at the beginning of the simulation. The

accumulating effects of the modelling error and disturbance in the pitching motion prove
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critical and the controller never has a chance to recover control of 8. The controller just
fails as time goes on.

Next, we are going to switch our comparison to a lateral maneuver (maneuver 2).

This time we will try a 0.1° step in heading . Once again, the reference command is

generated by passing the step through a prefilter, Gpf(s) = 2/s+2, to avoid control

saturation. The simulation results are shown in Figure 5.8 to Figure 5.10.
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Looking at figures 5.8 and 5.9, the difference in performance between Design 1
and Design 2 is more prominent than in the previous pitch maneuver. For Design 1, the
tracking response of the lateral variables are barely acceptable. The longitudinal variables
demonstrate relatively large fluctuations from the desired levels and offsets in o and 6 from
the commanded levels are easily noticeable at the end of the simulation. On the other hand,
Design 2 looks marvelous compared to Design 1 in terms of both the output and control
time histories. Tracking is more accurate and the control action is small. This difference in
performance may be explained by the fact that the linear model for the vehicle dynamics
used in Design 1 is obtained at a trim point with no angular motions (level flight). By
linearizing around the trim with B = ¢ = P = Q = R =0, a lot of the coupling terms in the
equations of motion disappear, and the effects of the inertial coupling are thus not included
in the linear model. Besides, in Design 1, we are limiting the thrust vectoring to remain in
a up-and-down fashion, which may hamper its capability for lateral control somewhat.
However, the omission of the inertial couplings seems to be by far the more important
factor. Design 3 seems to perform adequately for the lateral outputs, but it loses control on
0 as expected from our previous experience. This demonstrates again the importance of the
nonlinear inertial couplings in the control of lateral motion. Both designs, including the
effects of the cbuplings, fare better than Design 1 which ignores the coupling in the linear
design model.

The final pair of maneuvers are intended to study the effects of the a~nonlinearities
on the controllers. Starting from the level trim flight at h = 15000 ft, and a=35°, we first
command the aircraft to another level trim at h = 15000 ft, and 0=34.5" (maneuver 3a).
This corresponds to commanding V; form 211.231 ft/sec to 212.661 ft/sec, a. from 35° to
34.5°, and O from 35° to 34.5°. Once again the reference commands are generated by
passing the step commands through the prefilter, Gpf(s) = 2/s+2, to avoid control

saturations. Results of the time simulation are shown in Figure 5.11 to Figure 5.13.
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The next maneuver (maneuver 3b) is similar to the last one, but it covers a bigger
transition in a.. In this maneuver, we command the aircraft to switch from the level trim at
h = 15000 ft, and =35 to another level trim at h = 15000 ft , and a=33°. This
corresponds to commanding Vi from 211.231 ft/sec to 217.603 ft/sec, o from 35° to 33°,
and 8 from 35" to 33°. Since this maneuver represents a bigger transition than the previous
one, we are decreasing the bandwidth of the reference command prefilter to avoid the
anticipated control saturation. The transfer function of the prefilter used here is Gpp2A(s) =

0.4/s+0.4. The results of the time simulation are presented in Figure 5-14 to Figure 5-16.
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Figure 5.14 Tracking Response to Maneuver 3b for Design 1
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In maneuver 3a, both Design 1 and Design 2 do well in the tracking response. The
time histories for the outputs and controls are very similar in both designs. For Design 3,
we expect the same problem in the pitching control while the response in o looks very
good. In this maneuver, the airplane is still very close to the trim point about which the
controllers are designed. In maneuver 3b, we are forcing the vehicle to venture outside
farther from the design trim point, and the effects of the oi-nonlinearities on the
aerodynamics are more prominent than in maneuver 3a. Indeed, we see the performance of
Design 1 deteriorated considerably in maneuver 3b than in maneuver 3a, while Design 2
seems hardly affected by this larger excursion in o during the maneuver. The large
tracking errors of Design 1 in maneuver 3b really show the limitation of the linear trim
point model of the vehicle dynamics. A merely 2-degree maneuver in o is enough to
demonstrate the small validity region of the linear design model and the resulting drastic
deterioration of off-design performance of the linear controller based on it. Although
Design 3 has difficulty in controlling 6, it does not seem to be particularly affected by the
a-nonlinearities. The problem with Design 3 is with the outer-loop. The inner-loop
controller has performed its fair share in handling the o-nonlinearities. Consequently, we
see that the nonlinear designs really have an edge over the design based on the trim point

linear model.

5.4 Summary

The controller designs are evaluated and compared in this chapter using time
simulation with the "real" nonlinear model of the vehicle obtained from NASA/Langley.
The nonlinear designs are found to have an edge over the design based on the trim point
linear model. However, Design 3 is hampered by a flawed outer-loop design which makes
it an outcast in the comparison. A better LQG/LTR design (or other dynamic controller

design) may be needed for the outer-loop design in Design 3 to allow for a fairer
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comparison, or dynamic controllers may be inherently unsuitable for the outer-loop design.
A more thorough study is needed to substantiate this speculation. On the other hand,
Design 2 proves to be the winner in the evaluation and comparison when hooked up with
the "real” nonlinear model. The outer-loop pole-placement design of the decoupled
systems using state feedback is found to be not only simple and elegant but also robust to

the uncertainties and disturbances caused by the imperfect input-output linearization.
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CHAPTER 6

CONCLUSIONS AND FUTURE RESEARCH

6.1 Conclusions

The goal of this thesis has been an exploration of the nonlinear design alternatives
combining the nonlinear inversion/feedback linearization techniques‘ and the robustness
motivated inner-loop/outer-loop controller structure, while a comparison is also drawn to a
baseline LQG/LTR design based on a trim point linear model. The substantial effort spent
in understanding the nonlinear dynamics of the vehicle has proven to be well worthwhile
when the superiority in performance of the nonlinear inner-loop/outer-loop controller
design is demonstrated in the time simulation performed with the "real" nonlinear model of
the vehicle provided by NASA/Langley. To achieve a similar level of performance using
gain scheduling techniques with linear designs, one may have to choose a big selection of
operation points to carry out designs and tie them together by some kind of gain scheduling
algorithm. This does not seem to be a trivial task at all. Besides, given the severe
nonlinearities for the vehicle at high a, it is doubtful that a gain-scheduling approach could
even be practical. This again justifies our heavy initial investment in understanding the
nonlinear dynamics of the vehicle. One may argue that the nonlinear designs require a lot
of nontrivial computations in real time. However, with the continued success in the

semiconductor industry in developing powerful microprocessors, math-coprocessors, DSP
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(Digital Signal Processing) and RISC (Reduced Instruction Set Computer) chips, the
corﬁputation burden does not seem to be a big problem at all.

The superior performance of the nonlinear design over the traditional linear model
based LQG/LTR design provides very encouraging support for the application of nonlinear
design methods for flight controls at high angles of attack. The study conducted in this
thesis is only the beginning for further research in the area of nonlinear flight controls at
high o.. A number of issues still need to be addressed. However, judging by the results
obtained in this study, nonlinear designs combining the inner-loop/outer-loop controller
structure look very promising and seem to be the way to go for the flight control of high-

performance vehicle at high a.

6.2 Directions for Future Research

One of the important issues that remain to be addressed is the quantification of the
modelling errors, resulting from feedback linearization, and the subsequent robust design
of the outer-loop controller. As we saw in Chapter 4 and Chapter 5, Design 3 fares well
with the nominal design model, but it fails miserably in time simulation with the "real”
nonlinear model. The outer-loop controller in Design 3 is very sensitive to the imperfect
input-output linearization. More efforts are needed for the study of the modelling errors
facing the outer-loop controller, so we can design the outer-loop controller accordingly.
Besides, we mentioned in Chapter 3 that in the nonlinear model used for the input-output
linearization (equation 3-6a and 3-6b), the G matrix in equation 3-6a is actually a function
of both the state and the control, but we ignored the control dependency when we
performed the input-output linearization in the inner-loop controller. It is debatable that we
may be able to get better results if we include the control dependency in the inner-loop

controller, instead of ignoring the dependency in the first place and designing a robust

. outer-loop controller to make up for the error in the input-output linearization. So far, there
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is no current design method that incorporates the control dependency of the G matrix in
feedback linearization. Further research in new theory and design methodologies is needed
to address this issue.

Another issue that needs further study is the maneuvers we pick to evaluate the
controller designs. High-a flights are really pushing the limits of the aircraft. Some
maneuvers may be just impossible with the limitations imposed by the aerodynamic
characteristics of the aircraft. Besides, in real-life maneuvers, all the outputs are involved
at the same time. Well chosen test case maneuvers for the controller evaluation should
include good co-ordination among the various output variables. For example, in the bank-
to-turn maneuver, both the heading and roll angles are involved, at the very least. The
artificial 0.1° heading step in Chapter 5 is picked out of convenience. More realistic
maneuvers may provide better information about the controller performance. In addition,
the step commands are passed through a prefilter to limit the bandwidth of thé reference
commands, thus avoiding control saturation. A reatistic maneuver should have taken this '
into account, thus getting rid of the prefilter to avoid control saturation in the simulations.
Finally, since we bring up the issue of saturation, further work is needed to study the
effects of control saturation (which is nonlinear in nature). In [13], Kapasouris has dealt
with saturation explicitly in linear system. One should consider applying or extending the

methodology developed there for the nonlinear system that we are dealing with.
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APPENDIX A

VARIATION OF THE STABILITY DERIVATIVES
WITH THE ANGLE OF ATTACK

A.1 Variation of the Aerodynamic Coefficients with «
(Fixed Controls)

The following figures (Figure A.1 to Figure A.3) show the variation of the

aerodynamic coefficents with .
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Figure A.1 Cpg vs. &

113



o— 8.71570-6"x"73-2.25314-3"x"x+0.1362185°x-0.8307042 *
1.30200-5"x"*3-2.77976-3"x"x+0.1557236"x-0.8462419

alfa(deg)

Figure A2 Covs. o

o2 1.2417e-7"x"74-1 .5408¢-5"x""3+8.13590-4"x"x-0.0148433"x+0.1543307 4
o Cmo

Figure A.3 Cmo vs. o

114



)

s

sz

sy

A.2 Variation of the Stability Derivatives Involving the

The figures in this section show the plots of the stability derivatives involving the states vs.

a.

States with o
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A.3 Variation of the Stability Derivatives Involving the
Controls with o

The following figures show the plots of the stability derivatives involving the

aerodynamic controls vs o.
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APPENDIX B

TIME SIMULATION RESULTS FOR THE
VERIFICATION OF THE NONLINEAR
DYNAMICS MODEL

B.1 Time Simulations at Trim Point Number 1

The figures included in this section show the time simulation results of the two
analytical models for the nonlinear dyanmics of the F18/HARYV described in Section 2.5 at
the following trim point,

altitude = 15000 ft

o=0=35

B=¢=y=0

P=Q=R=0/sec
(Note: Results from the "true" model obtained from Doug Arbuckle have labels ending in

"true". Results from the analytical models described in Section 2.1 have labels

ending in "1" and "2", corresponding to model 1 and model 2 respectively.)

126



o

¥,

Figure B.1 Plots with a Perturbed by +1 deg from Trim

127



“. wewa theta0=36deg(1 deg perturbation)

f-\ thewmy
rsas -
;o

Figure B.2 Plots with 8 Perturbed by +1 deg from Trim

128




[N

oy

s

o

Aty

- w2
- etat "
—  slevue P
rs . 1o
h «15000 ft N \
Lo P perturbed by +1 deg/sec B
alfa(in deg) vs time P
1
Fyes l’ 1
|
:l AN . I’ '
Fae | \ AR f !
L T S : l
' Sl L7 ¢ i ,
rass h ! ! l
' “ ! |
' vl \
kL (- L
N |
t
F3as 1
1
]
1
bl 1
L]
1
[] ‘! IIO 195 2‘0 lll ‘” a9 « L)
-. va
Lo 1
Faa veus t
1
e h =15000 # N !
) . .
[ P perturbed by +1 deg/sec N )
o airspeed(in f/sec) vs time ' ' '
L . ; ' - .
1 + '
L ' 1 1
e : - . - - |
' ' i
Fa1s : . : ! P
' f '
1
L 77N l’ ' 1‘
e . 7 | - S
,/ \ / 1 |
23 2 Vo Lo
’ L v
’ ~ |l 1
a2 ;0 ]
l\“ ,/
Fay /
\ ’
\ ’ neisn
ra10 N /- .
g N v m B w w0 e
n M BN K
et P '
—  phvus ’ \ '
' \ '
)
Ly /’ \ :
' ' '
1 1 f
1 ' |
e . \ —
T ——— T
[} SN0 18’ 2o 8 ®» 3 w0 14 9
‘\\ L || "
- '
L ." | e
\ 1
)
h «15000 ft | |
Fao P perturbed by +1 deg/sec ' .
phi(in deg) vs time ' t
1 '
ll I
r'-*ls . \
1 I
1 |
} I
| 20 o oL )

Iy hew@
— tomt
o ™
» h =15000 ft
; P perturbed by +1 deg/sec
theta(in deg) vs time
™
»
2
L) ) L] L) 0 28 ) o'--' L]
- . bew2 -
o bewt 2N
~—  betmwue ,‘ \
ha . . , \
’ Al
/ \
- - ’ \
PN ’
Q 1 \0'\' 18 ’zq’ 29 20 P -
e~ Soraay
L2 .
1
\ 1
| |
] \ 1
\ I
h =15000 ft : )
e -P perturbed by +1 deg/sec . \ !
beta(in deg) vs time Y )
Lo ‘\ I'
N ;
N
N
N2
e - pemd o
o ,
— pee . ,
Lo , | :
7
, . 1
] ' |
Fe ‘ \ '
' 1 '
t ' 1
L ! \
: , ) .‘
! 1 '
t 1 tmetsen |
o ¢ 0. W20 s M - 0 & w0
N ! | I
i \\ ,, ! !
N ¥ i
N .’, . X
Fa . . . | B
h =15000 ft ! '
P perturbed by +1 deg/sec ' !
re psi(in dﬂg’ vs time | 1
. ;
re 1 1

Figure B.3 Plots with P Perturbed by +1 deg/sec from Trim

129




- Q(0)=1 deg/sec
ataw

Figure B.4 Plots with Q Perturbed by +1 deg/sec from Trim

130



N

R

by

P

frasam

)

Bl

h=15000 ft
Ly R perturbed by +1 deg/sec
alfa(in deg) vs time

k1o R perturbed by +1 deg/sec
theta(in deg) vs time

- w2
themt
G- T
\\ ”
~ s \
F0 : S \
\
\
1
\
k20 |
'
h=15000 ft !

L2 .
\ ’ ‘\ ’
] 7/ i
Fay ,‘ ’!-\\ L’ 0 s 10 18 20 2 2 ;‘ @ Ih 0
\ ,l ~ \\ ,’ P
F% L P10 A
" el see) N
9 ? 10 '.i 2 23 t ¥+ @ -
- va RN - bem2 IS \
"t / \ beeat ’ oo "
— virue : — butarwe ' 'y
Fso ! N , ' RPN
! re L, \ I} . N .-
1 ! ' -
/ ! i
: \ '
[ 300 ! —
,’ 18 ‘|a: 29 o @ -
t ' , et ome
' v
s k e . .'
" 1 I
' 1 1
. \ 1
260 ! - \ 1
” h=15000 ft | !
, R perturbed by «1 deg/seq )
| . ) | obota(in deg) vs time ' !
e h=15000 ft ' ‘ e \ !
A perturbed by +1 deg/sec ! . !
airspeed(in f/sec) vs ime ! L . ;
220 ’," ~. I. 4 AY ’
L. '~ maisnc) 1
= \s 20 J ~ /
fro - e © he15000 s ! ha15000 ft' 1
e R perturbed by +1 deg/sef- — pove Riperturbed by +1 deg/sfC
Frs - phi(in deg) vs time h ! psi(in deg) vs time

. .
s \
F20 \

[-2e . . . [

£ s
\
\
s \
v
)
ka0 '
\
\
\
rs A}
\
\ ’
A)
t.20 v

Figure B.5 Plots with R Perturbed by +1 deg/sec from Trim

131



aal | \
[\ l H [ 1]
— e | i — thetmirue
A i L .
[ 82 A i ‘| » ” \
i i i A
i P C
! N ;oo ! [ » '
' .., N, ' ~ , N
.”’.' ° ' l \.\ I’ “ ; : l - A N ’ ’ \‘ "
' W | i L N s |
Fasg s \‘ h 'I 34 N \\ I|
i P! i ' '
L als G i ! '
f . ! H sy A |
.‘ Vo ‘. ‘ '
Fata L ; \ !
!’ ‘\" | b2 . . . ‘- L
i - ha15000ft !
he=15000ft ' theta(in deg) vs time X
baes aifa(in deg)vs time : Lyn  beta perturbed by +1 deg '
beta perturbed by +1 deg i .
348 . . . . arvarsee) ' . |
0 8w 8 m # ® B 4 & @ o m % w © 4
zo @ o o2 ]
o T S et K A
— . — betatiue PN '
’ N
be e Y\ o
218 . . r' \ ,
he15000ft l , | i
airspeed(in ft/sec) vs time e e | !
beta penurbed by +1 deg 0 N 1E 15, 20 2 3 “ «
20 N k . R ~ “_- 7 \ inatse) |
\ t
\ '
214 1
) '
!
1
1
2 N ' ha15000ft 5
beta(in deg) vs time
— beta perturbed by +1 deg . !
B Fe : : : /
Mo & 0 % 20 26 w @ 9 o,
25 o2 el T
R ) 1
— phine — pawue '
2 . e . o1
1
'8 re i \\' : "
P '
10 . . o » ; I‘ i
. : - . l' ! '
s . . . . . L2 " . ‘. : . .
: B E N misen ’
ﬂ\*/m M 2. 3 2 3B 4 & o e WO m @ ow b w
s : L2 4 Il "
w . hetSOOOft. . i oatyigooon. . )
phi(in deg) vs time ! S ti | !
¢ '
s beta perturbed by.+1 deg boap_enurbed. by +1 d_‘ .‘. !
!
|‘ !
20 Lo t )
i 1
1 i
8 20 - '

Figure B.6 Plots with § Perturbed by +1 deg from Trim

13

2




o o ha15000 ft
— ) Agy. Stabilator perturbed by +3 deg
[ " alfa(in deg) vs time
"
1 1
Fes 1!
) 1
J I
iy ' '
1 1
] |
reo
n ]l
am,
 h=15000 ft
Asy. Stabilator perturbed by +3 deg
theta(in deg) vs ime
ot
= A he15000 ft HR.
T We 1.\ Asy.Stabilator perturbed by +3 deg — waly
[ sa0 Vi airspeed(in fvsec) vs time . ‘, '
: )
1 ‘I /\ matees)
[ Lo
' . FERY
- o Napm—de T W
l-; L S !
'. ~ 7
i
10 l. ) . . .
\ 1
o -
‘l ! h=15000 ft
re Asy: Stabilator perturbed by +3 deg
b beta(in deg) vs time
¥
- L %0 'lv 'l
B ] ~ ” - ~ ,
o . h=15000 :‘_ h=15000 ft P
R < . Asy.Stabilator perturbed by +3 deg Asy Stabilator perturbed by +3deg . ~
{5 phi(in deg) vs time psi(in deg) vs time e
. i ’
i
1!
e
:
rbray

- Figure B.11 Plots with Stabasy Perturbed by +3 deg from Trim

-~ 137



ha15000 ft
Asy. Aileron perturbed by +4 deg Ve
’ " alfa(in deg) vs time ! .
1 '
1
. - " Y
[ R . LJ o 100
‘l ' L)
k20 ) ,I .
! ’ _ ha15000 #t
A Asy. Aileron perturbed by +4 deg
oo ) theta(in deg) vs time
: i : '
Yoy
80 : [ : I
.: ‘I‘
[~ S u
¥ 1o o % @ W @ N B reo !
- n - beta2 ‘
_n 0 _ZLl neisooon
100 Lo : : Fs0 « 1 Asy. Aileron perturbed by +4 deg
v ~ h=15000t i beta(in deg) vs time
200 ! \ Asy. Ailgron perturbed by +4 deg. [
. \ airspeed(in ft/sec) vs time k2o b
| : Do
P
F10 i
P!
oy
R ;7 —
T
Dl Y
\ N [
0 ! i '
5 1 o
Vo '
Yo ')
ree ' N
v
T
too S
——
L e
— parus
| e ‘ ha15000ft y
Asy. Aileron perturbed by +4 deg -/ ,
psi(in deg) vs time /
’
| 0o ) . /
' 'l
1) | L ,/
|' 2, = " \\ /’ '
UL Y ha15000 f — D ,’
.20 . N . H i ’
ASy. Aileron perturbed by +4 deg 200 Lo . ,
g phi(in deg) vs time o .7
w0 ! A s’
:I 00 " ' ’ ’
" / ' )
a0 " ’ \\ .
p ’ -~ ne(sen
' 2 0 ? ‘I 100




=~
W

i

n,

oo

g

[

oy

- . e
— ot "l
- m '[ 1

=4 . . ;o . .

X .
‘ h «15000 #t ;o h =15000 #t
W;‘fmfed by +1 deg o phi perturbed by +1 deg
eg) vs time : \ theta(in deg) vs time
L 1
s ,r -
’ il
- | ) -\
AN f I - - L)
\
1' \ ! 'I N /’ ' 1’ 'l
| - ' ~ \
N RS ' ! el - o
) Yem s 4 v ! ! ! Lo
K ~ ! \ I | ) P
\ SN \ " R “ TR
) \ . ] i I 1
riss ' 1 ' ! !
' [ \ \ ' |
| ' ,' ' . ! 1
) v, \ i 1
I \ ' 1
! [ . !

- to- - P g V! matses
— e B P ® 0w W s ,,J
- - ‘. P~

o 4 \ a1 7N
—_— r — bewvus Y
!
F2ts ! ',' rl l\
h =15000 ft Lo N S
phi perturbed by +1 deg ' ! , |
z'allrs;aeeta(m tvsec) vs time [ . ' .
r ' PN ! 4 1
-~ A . l' | B tl !
, ‘\ , \ , , |‘ L ]
213 ! ' ! Vo 1 ,
r 7
/ \\ IV \ ’, PO r/ ' )
, . - V1S 2,2 ®» ¥ 0 & w0
(’ N/ \ ' ‘\ ’ \
k212 ’ VI N S !
, A P S , !
~— 1
7
- 1
N /
Lot 7 ‘
" \ / 1
\ ’ ] 1
\ ' . h=15000 ft !
\ ’ phi perturbed by +1 deg ) ,

t2ve 4! R beta(in deg) vs time \ .
a st- 10 18 0 3 W 3 0 Ls . ! )
Lo - on N : -~ pa@ _ T

phit Y pait A ]
- phivue ' \ ! — e ) i :
' \ ! £L - , 8 ;
re ' 1 ! 1" ! )
' ' X ~ h=15000 ft i ! ;
L, l' \ ' phi perturbed by +1 deg, '| \
[ ' , L, psi(in deg) vs time  / i 1
! \ 3 N
' ! 1 !
r2 1' .| ! ! ' N
r \ ! ! ' '
\ ' \ : ' \ PN,
n L / " - " L — J P M
[ s va ] I"zu 3 »' 33 0 [ 0 ° M—mﬁ——‘
Al , ' | “ . R e e
AN \ '
2 \ I’ T ' \ ; ' !
A | Sersan ! R |
L : ] b2 \', ,’. I| '
\ ' N ] . ;
il " he15000 ft \ ! N ," \I |
: ' N ! .
phi perturbed by +1 deg ' , .- ; i
o phi(in deg) vs time \ ) L | !
| ! - | )
) : ' )
Lo A ' ' .’

Figure B.7 Plots with ¢ Perturbed by +1 deg from Trim

133

Ve R e o it e e 0




T Ala (in deq) vs time
— 'stne  Sym. Aileron perturbed by -3 deg
e . . . ' " . N

f..",: Theta (in deg) vs time
_:. itwars  Sym. Aileron perturbed by -3 deg
Ve

’

N ‘Airspeed vs time : :
+ 'Sym. Aileron perturbed by -3 deg
\

Figure B.8 Plots with Ailsym Perturbed by -3 deg from Trim

134




iy

el

peenianiy

= — ,
« o Trim at h=150001t
“ . aifa-meta-JSdog
L [*® ° Sym.Stabilator perturtied by -3 deg
L
o ] )

s . . . }
Trim at hw 150001t
lw _ aifa=theta=35deg .
Sym.Stabilator perturbed by -3 deg
3 ? , [} ,. |p v‘a 14 l‘l 1‘0 I,l 'F 2 f , , '.° '.. 14 E E“:
- P
oo beemy
— betmwue ’
Lo . .t
L2 -
ko . .,} B «
[] 2 : . . 10 ; [T v;
L)
10 '
=
Trim at h=150001t Trim at h=15000 ft
voe © alfastheta=35deg : Bl dlfa=theta=35 deg
Sym.Stabilator perturbed by -3 deg | Sym. Stab.perturbed by -3 deg
(o3 ¢ ¢ b 0w 4 e W 0@ (= '
e - ouik
-t
— - -
e
ol ]
re
ras
- . .
) Trim at h=150001t
amera05deg ata-neta=35
| Sym Stabiator perurbed by -3 deg L' Sym.Stabilator perturbed by -3 deg

Figure B.9 Plots with Stabgym Perturbed by -3 deg from Trim

135




h=15000 #t [
I

Asy. Rudder perturbed by +4 deg i
I | o theta(in deg) vs time i
. !
[ hoisooon \ e b
. Rudder parturbed by +4 deg - | i
= alfa(in deg) vs time- [ : E——" i
0 o ™ ®» 4w o & "7 @ % ! it
o : :l.‘\'. Lo, ‘ . /r".'
[4e vrue ‘L — bewwue !
s H Le _ o |
i v N \
] k ha15000 ft ! :
he 15000 ft | i
Asy. Rudder perturbed by +4 deg i \‘\ rAsy. Rudder perturbed by +4 deg i
| sspirspeed(in fvsec) vs.time. . . . beta(in deg) vs time y % i
o0 -
el sen)
2%
el we)
H fn
N~ et
o e . AN — pewus N et
h=15000 #t i CN -
y. Rudder perturbed by +4 deg ‘.‘ N
'™ phi(in deg) vs time ‘ |
“

h=15000 ft
Asy. Rudder perturbed by +4 deg
‘psi(in deg) vs time

Figure B.10 Plots with Rud Perturbed by +4 deg from Trim

136



S

B.2 Time Simulations at Trim Point Number 2

The following figure shows the simulation results at the second trim point,

(Note:

altitude = 5000 ft

au=0=50"

B=¢=y=0

P=Q=R=0"/sec

This is a very hard trim point. It is highly unstable. No explicit perturbation is
introduced to initiate the time simulation. The imprecise representation of the trim

is enough to set the systemn adrift from the trim. Even the results from the "true”
model do not stay at the equilibrium point because of the inevitable minor offsets of

the controls from the exact trim settings.)

139



] ; h=5000 f#t - towa 'h=5000 ft
e et I alpha0=theta0=50deg Loa: Pt : /. alphaQeth
h A : eta0=50deg-
w— ' — o ron eg
el . .' , alpha(in deg) vs time A , \ theta(in deg) vs time
[ I ' \
i AENY ’ \
,’ ' [ o /’ \ 4’\
! ‘l ll ! AN ’ : """ I
Tl ’l o . \ ‘\'-‘. ’ \ ! '
\ ' ! v ! ' !
! \ ) ' Fas N ! N !
' - N \ '
i ' ! WL s e
L ! 'L i - ‘l !
o ™ '
Yo 1 | | —— e | 1
\\. (l L \ t \ ,’
\ ' “ ! " '
i
L" \\ /I‘; \ ' L se y /’
\ ’ \ ) \ Y
\ ’." \ i \ p
A , \ ' \ '
\ v \ o \
A \ ' k3o \ !
r« . \ , v ‘/.
\\ /( ‘\ !
’ C
A T S R B L B, ez 4+ e s were W
-. va — - et he5000 ft
Lows W - . ha5000 i ‘ K L. e . o , i _
" %  aiphadtheis0=Sodeg = — " Hian deg) ve e
airspeed(f/sec) vs time Lo S eg
II \ k%o ,- [ - .
1
Ftem [ ll ,l \ *
1 \ ’ \ i
I re c s Y
/ ' ’ ! I
, ] ,1 |' ) \
1m ' \ [
r /I \ 1“ 10 it I| e
aiieiaal NN vV, ’ i
L ' ,‘ Vo . ’ """"""""""""""" o ! )
| . \ s . P =
10 Ll ! A ° 2 . . . 10 2 "
P ‘I i . natoom |
=2 ’ .
T —7 ke v : .
1 ! L] i '
[ 190 \ o N 1 1l
' ! e I .
L w \ ;
[ 1 i
[ i
r"‘ IE +30 ' sTssl
Vi \ ‘ N '
i \ // A
N S SRR S T - -
- pre _ h=5000 ft N - el -
o L= TN aiphaOathetaO=50deg ' - o L
[ro- prinm < - I - phi(in deg) vs time -, - R naroem
. N ! F-v0 \
X A \ L \
° 2 . ¢« ' e 10 12 4 Y
' i LQ \
- e ' f \
..l 1 \
4 ! hs5000ft '
| 20 v ' - %0 alphaO=thetaOu50deq
! 1 psi(in deg) vs ime
! \
V . \ '
}‘@ \ "{ [0 \ /
' [ ' o
L v ) x‘ I/
! ’ 60 \ o
\ e \ Il
L s0 ' e \ ]
\ . \ '
1 , reo - : : v . . e
\ ’ \ ‘
FO 1 ;- \ ’
[ S ’
A ” RN

Figure B.13 Open-Loop Time Simulation Results at the Second

Trim Point

140




el

st

e

APPENDIX C

THE INPUT-OUTPUT LINEARIZING
CONTROLLER FOR THE HARYV

C.1 Design model of the HARV for Input-Output
Linearization

Plugging in the approximations of the aerodynamic coefficients through the stability
derivatives (equations 2-35 to 2-40) and the expressions for the propulsive forces and
moments (equations 2-41 to 2-49) into the state equations in Section 2.4 (equations 2-26 to

2-34), we obtain the design model in the form of

x =f(x) + G(X) u (C-1)
y=0Cx (C-2)
with x and u as defined in Section 3.3.2,
and  f(x) = [fi(x), ..., fo(x)]T (C-3)
G(x) = [g17(x), ..., g11T)]IT (C4)

The elements of the vector field f(x) are defined by

_1pVe b 5, a29Cy _ adCy , , a3Cy
f1(x) > m S(-Cpo aQQ+B ” +Ba—PP+BaTR)

+ g(cos 6 cos ¢ sin « - sin O cos & + B cos 0 sin ¢) (C-5)

141

wm - g vy Y G Svm e e o apme s mr e e e — 1 o e e meeemr v wr e



fz(x)=Q+-‘g7(cosOcos¢cosa+sinasin9)-B(Pcosa+Rsina)
t

-Lﬂ_‘.sc 9CL
2 m (Cro+ 0 Q) (C-6)
f3(x)=Psina-Rcosa+v-i[|3(sin9cosa-cosesinacosq))+sin¢cos9]
t
1PVt dCp oCy doCy daCy
*3m S[B(Cpo + X Q)+ ” B+ 5p P+ R R] cn
f4(x)=%PQ+%QR
1 2q 1 L aC, aCy aC,
+-2-pV,Sb%l(C1.,y+ 3 B+ 5 P+ 3R R)
1 Aav2enl JoCn dCN oCn
+2pV,Sb-]531=(aB B+ 5 P+ R R) .
2_p2 2
fs(x)=(lzz'lxx)RP+Ixz(R 'P)+l_pvt SC(CMO"’aCMQ) .
Iy 2 1, Q (C-9)
D-P E-QR
fol) = > 2= 21
1 2qh Ixz aC, daCi oC,
+2pV.Sb ]’;Z(Cl.,y+ 3 B+ 5 P+ R R)
1 av2enl oCN dCnN aCnN
+2pv,Sb-§1(aB B+53" P+32UR) 0
f7(x)=Qcos ¢ -R sin ¢ (C-11)
fg(x)=P+Qsin¢ptan0+ R cos p tan 0 (C-i2}
fo(x) = Q sin ¢ sec ® + R cos ¢ sec © (C-13)
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Emeon

The vector fields g; making up the matrix G are as follows

giT(x)=

g.T(x) =

0
1 pV S 9Cp

2 m ° 3Stabyy,
vatz aCy
2 m SP3ai.,

BE'BE'EI'@ 3™ o8

1PVi o CL
2 m " JAilgym
1PVrg dCL

"2 m " 3Stabyyy,

QOO

2

R

Boood

Vim

(C-14)

(C-15)



B 0 ]
m dStabgym
1PV: S dCy
2 m aAjluy
1 p_Vt S aCY
2 m ~ JRud
1 pVi S doCy
2 M " JStab,ey
-28 cos o
Vtm

0
1

Vtm
1
Vtm
-B sin &0
Vin
-B sin o
L Vtm

1
2

g3T(x) =

(C-16)

8 —
2
%& S b(l,, aC,

oCn
9Al,,, +1

“ aAﬂ,,y)
C

S b oy * e g

1 pve aC; oCn

2 B > %% 35aby, T ™ 55taby,,’

0
-2yolx,

B
'(ZOIzz + xOIxz)

B
pV¢
B

L
2

g4T(x) =

B
'(ZOIzz + XOIxz)
B
-Yolzz

B
YOIzz
— B

— (C-17)
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Py

gsT(x) =

g6T(X) =

_ ) _
1PVE o 9Cum
21, " 9Allym

1 pvtz Sc aCN[

2 Iy, dStabgym,

PVt2 aC,

# Ly 2N
Stabyy . OStaby,y

0
-2yolxx
B
-(zolxz + Xolxx)
B
~(Zolxz + Xolxx)
B
-yolxz

B
yolxz

—— S b(Ixz 3

. B

g7(x) = gg(x)=go(x)=[00000000000]

The outputs are given by y = Cx, with
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0O

]
SoooO—
COCO—~O
COO=OO
(=Tl el o)
COO0O0COO
SOCOO0O
QOO OO
O—OOOO
—OO0O00O

(C-21)

C.2 Derivation of the Linearizing Control

Starting from the design model in the previous section, we repeatedly differentiate
the outputs (w.r.t. time) until the inputs appear. V¢, a, and B only have to be differentiated

once while 0, ¢, and y have to be differentiated twice. Collecting these time derivatives

into the vector

w=[V, B0 6% (C-22)
we get

w=a(x)+B(Xx)u (C-23)
with  a(x) = [a1(x), ..., ag(x)]T (C-24)
and  B(x) = [bT(x), ..., beT(x)]T (C-25)

The components of the vector field a are given by

3Q

+ g(cos O cos ¢ sin o - sin 8 cos & + P cos O sin ¢) (C-26)

zaCY aCY oCy
2Q+B 3 B P+ Bﬁ‘*R

az(x)=Q+-8—(cosecos¢cosa+sinasine)-B(Pcosa+Rsina)

LeYe PV' S(Cro+ 2L =Q )
a3(x)=Psina-Rcos o+ V [B(sin 8 cos o - cos © sin & cos ¢) + sin ¢ cos 6]
t
m SBCoo+ Go- Q+ L B+ G5 P GRER] o
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(Ipz - I,‘,t)RPI;I'-yI,u,(R2 -P?) cos § - D-PQ ; E-QR sin ¢

- (Q sin ¢ + R cos ¢)(P + Q sin ¢ tan 6 + R cos ¢ tan 6)

cos ¢ aCm
C oM
L, (Cmo + RQ Q)

-%pvtzsb%ﬂsinq;(cl.,,a,a;;l B+

a4(x) =

+ % pVi3S c

aC, P+3C1

? PR B

-Lovas bIT;LsinMaCN B+
op (C-29)

(Izz - Ixx)RP + Ii(R? - P2)

Lyy
+D°PQ;E'QR cos ¢ tan 6 + PQ cos ¢ tan 0 - RP sin ¢ tan

+ (Q cos ¢ - R sin $)(Q sin ¢ + R cos ¢)(tan20 + sec20)

2
+lﬂ'—Scsin¢tan6(CMo+

APQ +CQR
B

sin ¢ tan 6 +

as(x) =

ICm_

Q Q)

Iz + Ixz cos ¢ tan 6 aC; aC; aC,
B B+3F P* R

Iy, + Iix cos ¢ tan 8 9Cy oCN oCN
B S P Pt R

+ 12~ pVSb (Crasy + 5 R)

+ % pViS b R)

(C-30)

(I - Ix)RP + I,(R? - P?) Sin ¢ sec 0 + D-PQ + E-QR
Iyy B

+ PQ cos ¢ sec 0 - RP sin ¢ sec ©

+2(Q cos ¢ - R sin ¢)(Q sin ¢ + R cos ¢) sec 8 tan 8

1pve
2 Iyy

ag(x) = cos ¢ sec 6

S ¢ sin ¢ sec 8(Cpmo + ﬁ'I-Q)

oQ
aC;
(Cilasy + +
lasy aﬂ B

+

Ixz cos ¢ sec ©
B

daC; aC;
# Tt R

Ixx cos ¢ sec © 9Cy oCN dCN
B (aﬂ B+ oP P+ dR

+ % pV2Shb R)

+ % pV2S b R)

(C-31)

147

e g g+ -t —p—— 4 e - e m ke e me - e e me e emay v e e e



The rows of the B matrix are given by

b1(x) = g1(x), b2(x) = g2(x), b3(x) = g3(x)
(the g's are defined in Section C.1)

Love

2YY

doCm

Al
1 PV aCm

2 Iy 0Stabgyp,

Vi aC,

Sc

Sc

+1

dCN

_LPY
5 bs““m"amla,,

Vi aC;

-1

+1

** 9Ail gy
dCN )

Sbsm(i)(I,uaR q
dC

** 9Rud
JdCN

)

2
pVv 2 .

B [

2zgcos ¢
Lyy
Yolxxsin ¢
B
(Zolxz - Xolxx) sin ¢
B
(zolxz - Xolxx) sin ¢
B
Xgc0s ¢ _ yolx,Sin ¢
Iyy 2B
X008 ¢  yolxzSin ¢
- Iyy 2B

bsT(x) =
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)
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]

i

paisa

bsT(x) =

1PV . aCuMm ]
2 _Iyy Scsm¢taneaAﬂ'ym
2
1 PV . aCm
21, Sesn et O o
lESb[(Iu+I cos¢tane)ﬂ+(1 + Iixcos ¢ tan 0)=2N |
2 B e dAilyy, % OAil,y
2
1PVi ‘ aC, oCN
2 B S b[(Iz + Ixzcos ¢ tan Gm + (Ixz + Ixxcos ¢ tan Om]
1PV aC, dCn
2 B S b[(I,; + I,cos ¢ tan e)a—sm + (Ixz + Ixxcos ¢ tan e)a—srb“;]
2zpsin ¢ tan ©
Lyy
-yo(Ixz + Ixxcos ¢ tan 0)
B
-[zo(Iz + Ixzcos ¢ tan 0) + xo(Ix; + IxxcOs ¢ tan 0)]
B
-[zo(Izz + Ixzcos ¢ tan 6) + xo(Ix; + Ixcos ¢ tan 0)]
B
Xpsin ¢ tan ) yo(Izz + Ixzcos ¢ tan 0)
Iyy 2B
xosin ¢ tan © + yo(Izz + Ixzcos ¢ tan 6)
Lyy 2B -
(C-34)
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— 2
pVe S csin ¢ sec © a(,:M
I, Al yym
2

LPYt o ¢singsec®—M _ 9Cum

2 - ¢ BStabsym

S cos ¢ sec O(Inaigl + IﬂaiCﬂN )
asy asy

|,,_

l.

2
2 oC oC
t 1 N

—— S bcos ¢ sec e(I"zaRu i + IxxaR d)

dC, 9CN
S b cos ¢ sec e(I“GStab“y + I“aStab,.y)

N
©
~w<w

AL
2

2z¢sin ¢ sec O
Iyy
-yolxxcos ¢ sec 6
B
(zolxz + XpIxx)cOs ¢ sec O
i B
(zolxz + Xplxx)cOs ¢ sec ©
) B
Xosin ¢ sec O yplxzcos ¢ sec 0
Ly 2B
Xosin ¢ sec 0 . yolxzcos ¢ sec 0

L Iyy 2B

Section 3.3.2.

Input-Output Linearizing Controller

(C-35)

The linearizing control is chosen such that a(x) + B(x) u = v, as discussed in detail in

C.3 Numerical Value of the Weighting Matrix W Used in the

At atrim point setting of steady level flight with h = 15000 feet, . = 6 =35, W is

chosen to be a diagonal matrix with diagonal elements: 1/(25)2, 1/(14)2, 1/(25)2, 1/(30)2

1/(14)2, 1/(9681)2, 1/(2000)2, 1/(4193)2, 1/(4193)2, 1/(4193)2, 1/(4193)2.
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APPENDIX D

LINEAR MODEL FOR THE UNCOMPENSATED
PLANT AND THE INNER-LOOP COMPENSATED
PLANT

D.1 Linear Model for the Uncompensated Plant

A linear model for the uncompensated plant is obtained by perturbing the system
from the following trim point:

h = 15000 ft,

Vi =211.231 ft/sec,

oa=0=35,

B=¢=0"

P =Q =R =0 deg/sec,

Left Aileron = Right Aileron = 0°,

Left Stabilator = Right Stabilator = -9.70415°,

Left Rudder = Right Rudder = 0°,

Left Engine Throttle = Right Engine Throttle = 119.817,

and Thrust Vectoring off (¢ =0°).
The resulting linear model is as follows

x = Ax + Bu . (D-1)

y=Cx (D-2)
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where the state vector is defined as

X= [Vb a’ B'v P’ Q’ R’ ¢v ev \V]T’ (D°3)
while the control vector is
u = [DSL, DSR, DRL, DRR, DAL, DAR, DTVL, DTVR, CPL, CPR]T (D-4)

with  DSL: perturbation of the left stabilator from the trim position (down as positive)
DSR: perturbation of the right stabilator from the trim position (down as positive)
DRL.: perturbation of the left rudder from the trim position (in as positive)
DRR: perturbation of the right stabilator from the trim position (in as positive)
DAL: perturbation of the left aileron from the trim position (down as positive)
DAR: perturbation of the right aileron from the trim position (down as positive)
DTVL: perturbation of the thrust vectoring angle (0) for the left engine (upward
thrust as positive)
DTVR: perturbation of the thrust vectoring angle (o) for the right engine (upward
thrust as positive)
CPL. pem:rbatioh of the left engine throttle from the trim setting
CPR: perturbation of the right engine throttle from the trim setting
(note: no lateral thrust vectoring is considered, the thrust vectoring vanes only go up and

down here, i.e. =0

and the output vector is defined by
y=[Vi, @B,9,6, T (D-5)

With angles in degree, airspeed in ft/sec, acceleration in ft/sec2, angular speeds in deg/sec,

angular accelerations in deg/sec2, and control inputs in deg, the numerical values for the A

and B matrices are
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oen

with

A1A2A; B1B;B;
A=|A4A5A6|, B =|ByBsBs
A7AgAg B7BgBg
[ -1.2097e-01 -1.8338e-01
A1=| .5.9543e-02 -1.0007e-01
L 0 0
[ 0 -9.5064e-05
A= 0 9.8425e-01
L 5.7342e-01 0
I 0 -5.6151e-01
Ay = 0 -5.6331e-08
L 1.2476e-01 0
[ 0 0
As=| -1.0822e-02 -1.40304e-01
0 0
[ -9.6166e-01 0
As= 0 -3.5657e-01
L 2.2700e-02 0
i 0 0
Ag= 0 1.9867e-09
0 0
A7 = 0343,
1 0
Ag= 0 1
0 0
Ag = 0343,

=

-7.3713e-02 -7.3713e-02
-2.2946e-02 -2.2946e-02
3.4418e-03 -3.4418e-03

9.0612¢-02 ]
4.9565¢-02 |,
-9.24549¢-01 |

0
0 ’
-8.2106e-01 |

0
0 ,
0 ]

-9.24549¢-01 |
7.0281e-02 |,
-4.0833e-02

7.3812e-01 |
0 )
-8.8919e-02

0
0 ,
0

0

7.0021e-01 }
1.2208e+00

1.6273e-03

1.7614e-03 }
-2.7075e-03
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D.2 Linear Model for the Inner-Loop Compensated Plant

B2=| 1.6273e-03
L 2.7075e-03
[ -7.9038e-02
B3=| -3.0502e-02
0
( 9.0742e-01
B4=| -4.9460e-01
L -4.8481e-02
[ 4.0002e¢-03
Bs=| 2.1631e-02
L -5.3668e-02
[ 5.6101e-01
Bs=| -1.0456e+00
[ -9.8077e-03
B7 =Bg = 0353,
Bog = 03x4.

[ 1.76143e-03  2.1826e-07

-3.5507e-03
3.3207e-03

-7.9038e-02
-3.0502¢-02
0

-9.0742e-01
-4.9460e-01
4.8481e-02

5.3193e-01
-3.4621e-02
-3.9160e-02

-5.6101e-01
-1.0456e+00
9.8077e-03

2.1826e-07
-3.5507e-03
-3.3207e-03

1.2560e-01
-2.3766e-02
-1.4378e-03

-4.0002¢-03 ]|

2.1631e-02
5.3668e-02

-5.3193e-01 ]

-3.4621e-02

3.9160e-02

-1.2357e-02
1.4967e-02
1.2036e-01

-2.3766e-02

1.2560e-01 }

1.4378e-03

1.2357e-02
1.4967e-02 |»

-1.2036e-01

The linear model for the inner-loop compensated plant is obtained at the same trim

point described in the previous section. It is of the form

where

Z=Az
y=Cz

+Bv+d

: . . . T
7= [Vtv 0., B, e, e’ ¢! ¢! "” ‘V]
y = [Vt, a, B, e’ ¢v W]T

v = [vq, v2, v3, v4, Vs, v6]T
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With angles in deg, airspeed in ft/sec, angular speeds in deg/sec, v in ft/sec2, v3 and v3 in

deg/sec, v4, v5 and vg in deg/sec2, the numerical values for A, B, d, and C are as follows

AjAzAs
A=|A4AsA¢
A7AgAg
with i
-3.4231e-02 -4.0842e-02 9.0353e-02
A1=| 9.0588¢-04 5.6175¢-03 4.7281e-02 |,
L0 0 -4.3770e-02 |
[ -2.7713e-02  1.9784e-01 0
Ar=| 3.3677e-03 -2.9337¢-02 0 :
i 0 0 1.0075¢-01 |
I 0 0 0 7
A3z = 0 0 0 ,
L 4.7027e-01 0 -8.1867e-01 |
r 0 0 0
As=| .7.7361e-03 8.3525¢-02 6.4617¢-02 |,
I 0 0 0 ]
[ 0 1 0 ]
As=| 52473e-02 -4.2637¢-01 0 ,
I 0 0 0 ]
7000
As={00 0|
(100
r 0 0 9.6184e-01 ]
A= 0 0 0 ,
i 0 0 1.7865¢+00 |
i 0 0 -1.2282e+00 |
Ag= 0 0 0 :
i 0 0 -2.4127e+00 _
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while

with

and

Ag 0

[ -6.3713e+00
-1.1114e+01

BB,
B =|B3B4
BsBe

[ 7.7137e-01
-2.9016e-03
L -2.1734e-03

1.5463e-04
-3.1183e-05
L 5.2602e-04

0
-3.0074e-01
L 0

i 0
8.1913e-01
L 0

1.9047e-01
0
L -3.0405e-03

[ -5.5213e-02
0
L 2.1088e-02

d = [-3.0430e-06, -1.7059¢-03, 0, 0, -1.7309¢-02, 0, 0, 0, 0]T,

0

-1.3908e+00
1.2559e-01
-7.0980e-03

-9.2778e-05
7.6439e-04
1.3710e-03

0
-1.0447e+01
0

0
9.9158e-03
0

-3.7845¢e-01
0
9.3192e-01

9.8368e-01
0
-3.3543e-02

1.0696e+01
1
1.9545e+01

5.1369e-02 |
-3.2262e-02
1.0194e-01

-4.1537e-05 ]|
9.4054e-03
-2.6591e-02

0 -
-4.1587e-01
0

0
4.4186e-02
0 i

9.2085e-01 |
0
-6.4013e-01

3.2940e-01 |
0

’

-

1.6430e+00 J
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APPENDIX E

PLOTS OF AERODYNAMIC COEFFICIENTS VS.
CONTROL SURFACE DEFLECTIONS

| "
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Figure E.1 C, Cm, and Cp vs. Ailgyy
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APPENDIX F

NUMERICAL VALUES FOR THE PARMERTERS

OF

THE LQG/LTR CONTROLLER DESIGNS IN

CHAPTER 4

F.1 Numerical Values for the Parameters of the LQG/LTR

where

Compensator Based on the Trim Point Linear Model

The state-space description of the LQG/LTR controller is given by

Z = (A,-B,G-HC,)z - He (F-1)
v =-Gz (F-2)
u=Tv (F-3)

v is the pseudo-control and u is the physical control,

T is the distribution matrix given by equation 4-6 in Chapter 4,

e is the error signal given by the difference between the command signal r and the
outputs y, e=r-y (F-4)

{
The numerical values of the matrices A.=A,-BaG-HC,, H, and G are as follows.
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e

)

o

H=

1.5034e+00 3.0666e-01
7.1290e-01  2.0460e-01
8.1971e-16  6.6582e-15
-3.7530e-16 -1.6053e-14
1.2865e-01  2.8095e-01
1.4167e-17 -3.2733e-16
1.2026e+01 -3.0051e-02
-5.0085e-03  2.0059e+00
6.8836e-16 -2.8024e-16
1.0557e-15 -1.4823e-14
-7.6231e-03  6.3732e-03
5.9598e-16 -1.3428e-16
1.0665e-15 -6.2280e-15
-4.2692¢-03  3.7743e-03
3.2325¢-16  1.4529e-16
G=
Columns 1 through 6
5.7614e+01 -7.7131e-02
-7.7131e-02  1.4132e+02
2.9107e-03 8.3516e-03
1.6593e-06  1.8004e-06
1.0286e-02  8.9559e-01
-1.3934e-06 -1.6685e-06
Columns 7 through 12
1.6597e+03 -6.2137e+00
-9.1393e+00 9.9857e+03
1.4152e-01  8.1040e-01
4.9130e-05 8.1232e-05
-2.9912e-01  2.8768e+01
-4.5061e-05 -8.0906e-05
Columns 13 through 15
3.3076e-03 -3.3660e+01
2.5641e-03 -3.4811e+01
3.0431e+01 5.2537e-01
9.7830e+03 1.6232e-04
-2.3298e-03  9.9999¢+03
2.0721e+03 -1.5556e-04

-3.6245e-02
-1.9826e-02
2.3059¢-02
3.6982e-01
-2.8112e-02
1.6333e-02
2.1002e-14
-1.2879e-15
4.0000e-01
-4.0146¢-14
-2.5569e-15
3.3277e-14
9.4747¢e-14
-5.1218e-15
1.8698e-14

2.9075e-03
8.3516e-03
3.1617e+02
5.5025e-01
1.2271e-03
-7.9898e-01

9.4450e-01
3.0111e+00
4.9981e+04
1.4938e+01
4.0168e-01
-4.0090e+01

-1.9349e-02
1.0775e-02
1.8390e+01

-4.1444¢+03

-2.0327e-02
1.9566e+04
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1.2200e-14
-1.4541e-15
-2.4953e-01
1.7454e-13
-2.8969e-15
-1.6939¢-16
4.8356e-15
-6.3921e-15
1.8756e-14
1.9680e-13
-1.0747e-14
1.6765¢e-14
2.0000e+00
-5.6227e-15
8.6565e-15

1.0320e-04
2.1111e-06
5.5024e-01
4.1705e+01
1.5352¢-04
2.2599e+00

2.8802e-03
4.8918e-03
1.8017e+02
8.7236e+02
2.0793e-03
1.0894e+02

1.0718e+00
-2.2286e-02
4.1784e-15
-1.1665e-14
1.1071e-02
-3.3439¢-16
-2.5615e-02
3.7743e-03
-9.8898e-16
-1.1818e-14
3.0444e-02
-1.4608e-16
-5.5918e-15
2.0152e+00
1.7658e-16

-1.0285e-02
8.9558e-01
1.2299e-03
8.8148e-07
4.2749¢+01

-7.9767e-07

-8.0225e-01
1.3608e+02
4.6307e-02
1.4919e-05
9.1413e+02

-1.5453e-05

7.6252e-15
6.7614e-16
1.0299e-08
-1.1890e-08
1.7837e-15
8.8293e-10
3.2284e-15
3.6266e-16
7.0066e-15
-5.8984e-09
9.8169e-16
8.4238e-09
1.5753e-14
1.3182e-16
1.0000e+00

2.0279e-04
6.3072e-05
-7.9901e-01
2.2599e+00
5.0572e-05
5.8626e+01

-1.3176e-03
-5.5100e-03
-2.5812e+02
1.1736e+02
-1.6912e-03
1.7214e+03



Ac=

Columns 1 through 6
-5.7614e+01 7.7131e-02

7.7131e-02 -1.4132e+02
-2.9107e-03  -8.3516e-03
-1.6593e-06 -1.8004e-06

1.0286e-02 -8.9559e-01

1.3934e-06 1.6685e-06

1.0000e+00 O

0 1.0000e+00

0 0

0 0

0 0

0 0

0 0

0 0

0 0
Columns 7 through 12
-1.6600e+03  5.9071e+00

9.0205e+00 -9.985%e+03
-1.4152e-01 -8.1040e-01
-4.9130e-05 -8.1232¢-05

2.7768e-01 -2.9049e+01

4.5061e-05  8.0906e-05
-2.1253e+00 -1.5333e-01
-5.8708e-02 -2.1060e+00
-1.1473e-16  2.8024e-16
-1.7595e-16  1.4823e-14
-9.5518e-03 -1.4668e-01
-9.9329e-17  1.3428e-16
-1.7775e-16  6.2280e-15

7.1153e-04 -3.7743e-03
-5.3876e-17 -1.4529e-16
Columns 13 through 15
-3.3076e-03  3.2588e+01
-2.5641e-03  3.4833e+01
-3.0181e+01 -5.2537e-01
-9.7830e+03 -1.6232e-04

2.3298e-03  -1.0000e+04
-2.0721e+03  1.5556e-04
-4.8356e-15  -5.3590e-01

6.3921e-15 -3.7744e-03

1.2476e-01  9.8898e-16
-1.9680e-13  1.1818e-14

1.0747e-14 -3.0444e-02
-1.6765¢-14  1.4608e-16
-2.0000e+00 5.5918e-15

5.6227e-15 -2.0152e+00
-8.6565e-15 -1.7658e-16

-2.9075e-03
-8.3516e-03
-3.1617e+02
-5.5025e-01
-1.2271e-03
7.9898e-01

.0000e+00

COOCOOO=OO

-7.6328e-01
-2.9120e+00
-4.9981e+04
-1.6787e+01
-2.6111e-01
4.0008e+01
9.0612e-02
4.9565e-02
-2.0576e+00
-9.2455e-01
7.0281e-02
-4.0833e-02
-4.7374e-13
2.5609e-14
-9.3490e-14

1.9349e-02
-1.0775e-02
-1.8390e+01
4.1444e+03
2.0327e-02
-1.9566e+04
-6.4567e-15
-7.2532e-16
-1.4013e-14
1.1797e-08
-1.9634e-15
-1.6848e-08
-3.1507e-14
-2.6365¢-16
-2.0000e+00
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-1.0320e-04
-2.1111e-06
-5.5024e-01
-4.1705e+01
-1.5352e-04
-2.2599e+00

0
0
0
1.0000e+00

SOOoOOOC

-2.8802¢-03
-4.8918e-03
-1.8017e+02
-8.7236e+02
-2.0793e-03
-1.0894e+02
0
0
5.7342¢-01
-9.6166e-01
0
2.2700e-02
1.0000e+00
0
0

1.0285e-02
-8.9558e-01
-1.2299e-03
-8.8148e-07
-4.2749e+01
7.9767e-07

cooco~o000

8.0225e-01
-1.3608e+02
-4.6307e-02
-1.4919e-05
-9.1413e+02

1.5453e-05
-9.5064e-05

9.8425e-01

0

0
-3.5657e-01

0

0

1.0000e+00

0

-2.0279e-04
-6.3072¢-05
7.9901e-01
-2.2599e+00
-5.0572e-05
-5.8626e+01

.0000e+00

COO=OO0O0OO

1.3176e-03
5.5100e-03
2.5812e+02
-1.1736e+02
1.6912e-03
-1.7214e+03
0
0
-8.2106e-01
7.3813e-01
0
-8.8918e-02
7.0021e-01
0
1.2208e+00



T=

-5.8908e+00
-5.8908e+00
1.5371e+00
1.5371e+00
-1.9065e+00
-1.9065¢+00
2.9150e+00
2.9150e+00
2.3365e+00
2.3365e+00

-2.9522e+01
-2.9522e+01
9.9685e+00
9.9685e+00
-1.4689¢+01
-1.4689¢+01
1.4539e+01
1.4539e+01
-8.3168e+00
8.3168e+00

1.4823e+01
-1.4823e+01
-7.4365e+01
7.4365¢+01
1.0162e+02
-1.0162e+02
-1.1948e+02
1.1948e+02
6.2459¢+01
-6.2459¢+01

1.1916e-01
-1.1916e-01
2.8716e-01
-2.8716e-01
1.1280e-01
-1.1280e-01
5.9371e-01
-5.9371e-01
5.0358e-03
-5.0358¢-03

1.3052¢+00
1.3052e+00
-4.1132e-01
-4.1132-01
5.8111e-01
5.8111e-01
-1.1224e+00
-1.1224e+00
6.5423e-02
6.5423e-02

3.9840e-01
-3.9840e-01
1.9163e+00
-1.9163e+00
2.9451e+00
-2.9451e+00
-3.3319e+00
3.3319e+00
4.1471e+00
-4.1471e+00

F.2 Numericél Values for the parameter of the Outer-Loop

LQG/LTR Compensator with Augmented Integrators

The state space description of the controller is given again by equations F-1 and F-

2, with v being the output of the outer-loop controller. The numerical values of the

matrices Ac=A,-B;G-HC,, H, and G are as follows.
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H=

2.0000e-06 O 0 0 0 0

0 2.0000e-06 0 0 0 0

0 0 2.0000e-06 O 0 0

0 0 0 2.0000e-06 0 0

0 0 0 0 2.0000e-06 O

0 0 0 0 0 2.0000e-06
2.0000e+00 0 0 0 0 0

0 2.0000e+00 O 0 0 0

0 0 2.0000e+00 0 0 0

0 0 0 2.0020e+00 0 0

0 0 0 4.0010e-03 0 0

0 0 0 0 2.0020e+00 O

0 0 0 0 4.0010e-03 O

0 0 0 0 0 2.0020e+00
0 0 0 0 0 4.0010e-03



G=

Columns 1 through 6
1.4142¢+02 0

C

Q

ocvoooco

—
g
~

lumns 13 thro

1.4142e+02

(=2
p—
~N

§
cococor~of oocoo

=

gh 15

N
Q0
W
)
o

&
[}

—o000O

0
0
1

0
0
0
0
0
1
0
0
0
0
0
0
0
0
9

4142e+02

.0000e+04

.2832e+02
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1.0000e+04  9.2832e+02

0 0
0 0
0 0
4.308%+01 0
0 4
0 0
0 0
0 0
0 0
0 0
0 0

.3089e+01

.3089e+01

.0000e+04

O=OOOO ~OOOOO




Ac=

Columns 1 through 6

-1.4142¢+02 O

.3089e+01
1.0000e+00

00000400000000

2 ;

% W

o0

R
40000000100

: -
2 :

COOTOOOOCO—~OOOO

;:

:

I O000O 00000 D

g

:

OO0 O0O—O0OOOOO

g

:

OO0 O00O 0000000

-1.4142e+02

0

-1.4142e+02 0

Columns 7 through 12

-1 0000e+04 0

-2.0020e+00

-4.0010e-03

COOCROOOO0CO—-OOO0OO

Ze
&
28

10010e-03

.0000e+04

g 8

T ¥

E 8

00&00000&000000

g

m ‘

0000020000000

2

:

0000200000000

-1.0000e+04

gh15

Columns 13 thro

0000090000000

.2832¢+02
1.0000e+00

=)

.0000e+04
-2.0020e+00
-4.0010e-03

uOOOOOIOOOOOOO

g

:

OO0 O0O~-OOO
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