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Abstract

This thesis explores the Synchronized Overlap-Add (SOLA) technique for real-time time-
scale modification of speech in telephony and voice-mail environments. Numerous methods of
reducing computational requirements and the associated effects on quality are detailed. The
performance of various windowing and update functions are compared. It quantifies many
of the undesirable effects such as reverberation, clicks, and warble associated with certain
choices of parameters, and reveals parameter interactions that account for high quality output
associated with low analysis shifts. A slightly modified version of the SOLA algorithm, SOLA-
b, is presented which significantly simplifies implementation and can reduce computations
several-fold without an accompanying loss of quality. An outline for implementation on real-
time signal processing hardware is provided.
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Chapter 1

Introduction

1.1 Time-Scale Modification of Speech

Time-scale modification of speech refers to Processing performed on speech signals that changes
the perceived rate of articulation without affecting the pitch or intelligibility of the speech.
Such modification can be categorized into two classes: time-scale compression (or speed-up)
which increases the rate of articulation; and time-scale expansion (or slow-down) which de-
creases the. rate of articulation. Speed-up is generally desired when a segment of speech
contains little pertinent information and the goal is to extract the informational content in as
little time as possible (i.e. a verbose speech) or when searching for a specific utterance quickly.
Alternatively, the goal of slow-down in most cases is to dgcrease the rate of articulation to aid
in comprehension or dictation of rapidly spoken speech segments with important information,
such as an address or phone number. ,

A good time-scale modification (TSM) algorithm is one that produces “natural-sounding”
speech over the range of playback rates that is of interest to the end user (possibly from three
times slow down to two or three times speed up). Intelligibility, tonal quality, and speaker
recognition should be preserved, and Processing artifacts (pops, clicks, burbles, reverberation,
etc.) should be kept to a minimum. A convénjent method for modifying the time-scale of

speech has many useful applications.



1.1.1 Time-Scale Compression and Applications

During compression the informational content (data) of the modified signal is reduced relative
to the original signal, resulting in a segment of shorter duration. The goal of such modifica-
tion is to increase the perceived rate of articulation without introducing undesired artifacts.
Ideally the modification should remove an integer multiple of the local pitch period. These
deletions should be distributed evenly throughout the segment, and to preserve intelligibility,
no phoneme should be completely removed.

Compression, or speed-up, applied to normal speech would allow more information to be
transferred in a given time interval than is possible by speaking quickly. This technique would
allow shorter commercials, “speed-reading™ for the blind, and the ability to compress movies

into convenient time slots without deletions.

1.1.2 Time-Scale Expansion and Applications

During slow-down the informational content (data) of the modified signal must be increased
relative to the original signal, resulting in a segment of longer duration. Such modification
would slow the perceived rate of articulation. Thus stringent constraints are placed on the
quality of the resulting signal. Ideally the expansion employed should insert additional pitch
periods distributed evenly throughout the entire segment. This proves to be difficult, how-
ever, as the local pitch period varies across phonemes and may be difficult to gauge during
nonperiodic portions of the speech signal such as fricatives.

Slow-down would increase the intelligibility of speech which is difficult to understand, or
could be used to aid in the transcription of information in rapidly spoken segments. Addi-

tionally, fluent speech could be slowed to aid those learning foreign languages.

1.1.3 Data Compression Applications

The ability to perform high quality compression and expansion provides means for a time-
based voice compression system. If time-scale compression could be fo]lowed‘ by eipansion
without error, combining the two techniques would reduce the data required for coding and
storing speech signals. This method of compression could be combined with other compression

techniques to further reduce the bit rate [3][14]. Time-scale compressed speech could be coded
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using alternate techniques such as vector quantization, quadrature mirror filtering, and pulse
code modulation. After decoding, the time-scale compressed signal could be expanded by an

appropriate factor to obtain speech with the original time-scale.

1.2 Existing Time-Scale Modification Techniques

Several algorithms have been developed to achieve time-scale modifications based on the
inherent structure of the speech signal. Time-domain techniques rely on the periodic nature
of speech, while analysis/synthesis techniques exploit redundancies in the signal to reduce the

speech waveform into a limited set of time varying parameters.

1.2.1 Time-Domain Algorithms—TDHS and SOLA

Time-domain tt;.chm'ques operate by inserting or deleting segments of the speech signal. This
method, ﬁrsf proposed by Fairbanks in the 1940’s, results in discontinuities in the transitions |
between inserted or deleted segments. Such discontinuities lead to bothersome clicks and pops
in the resulting time-scaled signal. Several attempts (4] [11] have been made to minimize the
effects of inter-segment transitions m the final signal by improving the splicing technique or
windowing adjoining segments. These techniques improve quality at the expense of increasing
complexity. |

The Time-Domain Harmonic Scaling (TDHS) algorithm [4] employs multiple correlations
of signal segments to determine local pitch periods along intervals of the input signal. A
triangular windowing function is aligned with the pitch periods and the resulting segments
are added such that pitch periods are inserted or deleted to create a- time-scale modified sig-
nal. The algorithni requires accurate pitch determination to operate successfully, thus pitch
variations in| the input signal must be tracked accurately. In general, the pitch period is
stationary only over very short intervals and may vary drastically between phonemes. Con-
sequently, the length of the triangular window must vary as well as the length of inserted or
deleted segments, which increases complexity. Numerous methods for determining pitch in
the time-domain have been forwarded [8][7][12][10].

TDHS provides good quality in the class of low complexity time-domain algorithms. It




uses pitch-synchronous windowing intervals and variable length windowing functions to reduce
- inter-segment discontinuities in the output signal. An interesting alternative is the Synchro-
nized Overlap-Add (SOLA) algorithm originally proposed by Roucos and Wilgus [11]. The
SOLA algorithm has low complexity and operates in the time-domain, but does not rely on
pitch tracking. Because SOLA uses fixed window lengths and fixed windowing intervals, it
has certain advantages for real-time implementation.

This thesis explores the SOLA technique for real-time time-scale modification of speech.
The algorithm operates by segmenting the input signal, then adding these segments with
different interframe shifts to construct a time-scale modified signal. The input signal segments
are aligned to maximize the correlation of overlapping segments before they are added. It
is this alignment that distinguishes the SOLA technique from a simple overlap-add (OLA)
technique and drastically 'improves the quality of the output signal.

1.2.2 Frequency-Domain Algorithms

Another class of algorithms for time-scale modification of speech operate on frequency-domain
representations of short segments of the speech signai known as Short-Time Fourier Transforms
(STFTs). These algorithms offer distinct advantages in that they are usually very robust
and perform equally well on music and non-speech signals. Many can also be shown to
converge to minima of mathematical distance functions, as opposed to the more heuristic
time-domain techniques. Several frequency-domain algorithms provide superior quality but
* are computationally intensive. For many applications however the computational burdens of
these algorithms do not outweigh the benefits.

The method proposed by Portnoff [5] reconstructs a modified speech signal from modified
versions of its original STF Ts magnitude and phase. The technique is performed by computing
STFTs of fixed duration at fixed intervals along the input signal. Using the STFT magnitude
and an unwrapped STFT phase, intermediate STFTs are interpolated for expansion or deleted
for compression. The inverse of each STFT generates a fixed amount of data points which
are then windowed and added to form the final output. Varying the number of STFTs
varies the duration of the output signal obtained. This algorithm proves prohibitive in real

time implementations however, because the Fourier transform and inverse Fourier transform




operations require many computations. Also, slight errors in the phase unwrapping operation
reduce signal quality sﬁbstantiaﬂy.

An algorithm proposed by Griffin and Lim [1] computes fixed duration STFTs along the
input signal at a fixed analysis interval, and along an initial guess signal at a fixed synthesis
interval. The ratio of the synthesis and analysis intervals determines the time-scale modifica-
tion performed. A compressed signal will be obtained when the synthesis shift is less than the
analysis shift. The algorithm then minimizes the error between the STFT magnitudes of the
guess signal and the STFT magnitudes of the input signal. This is accomplished by iteratively
updating the initial guess signal. At each iteration the STFT magnitude of the current guess
signal is modified and the guess signal is replaced with the inverse STFT of the modified STFT
magnitude and original STFT phase of the current guess signal. After numerous iterations, .
this method will converge to a global minimum of the mean-square error between the input
signal STFT magnitudes and guess signal STFT magnitudes. It is a non-causal process in
' that each iteration modifies the entire signal. Again this technique provides good results but

proves to be so costly that an efficient real-time implementation is not practical.

1.2.3 Analysis/Synthesis Algorithms

A third class of TSM algorithms operate by reducing the speech signal into a set of time
varying parameters (analysis) which can be time-scaled and used to reconstruct a time-scale
modified signal (synthesis) [6][9]. For example, a method suggested by Quatrieri and McAulay
6] assumes a limited number of sinusoids. During analysis a limited set of sinusoids is used
to model the speech signal. By varying the rate at which the sequence of sinusoids is played
back, the time-scale of the signal can be modified. These algorithms require less computation
than frequency domain techniques, but are restricted to signals which can be represented by a
limited number of time-varying parameters. Analysis/Synthesis algorithms generally perform

poorly on more complex signals, such as speech corrupted by noise or containing music.



1.3 Summary

Numerous time-scale modification techniques providing éup erior quality are available. Frequency-
domain techniques prove difficult to implement in real-time however. The class of time-domain
a.lgorithms currently available provide the most feasible real-time implementations. The SOLA
algorithm appears particularly promising in its implementation. |

This thesis focuses on the Synchronized Overlap-Add (SOLA) algorithm for time-scale
modification of speech. It explores the SOLA algorithm as an alternative to the more compu-
tationally intensive frequency-domain and analysis /synthesis algorithms and outlines methods
for improving the quality/computation ratio of the SOLA algorithm. Additionally, the effects
of parameter interactions on output signal quality are examined, and a robust implementation
for telephony quality speech is provided.

All tests are performed on speech which has been bandlimited to 3.8 kHz and sampled
at 8 kHz. Nu.mbers appearing in parentheses after durations in milliseconds refer to the

corresponding number of samples of a signal sampled at 8 kHz unless otherwise specified.
The following outline may be used to direct the reader to specific topics of interest:

Chapter 1 presents several applications and previous methods for time-scale modification

of speech.
Chapter 2 introduces the SOLA algorithm originally proposed by Roucos and Wilgus.

This chai)ter outlines the parameters set and basic operation of the algorithm. A measure of
the actual time-scale modification performed by the algofithm is given and an estimate of the
computations required for shift determination is provided.

Chapter 3 provides a more in-depth look at the parameter set interaction and events wilich
lead to undesirable artifacts in the output signal. The effects of individual parameters are
provided and the proper range of values outlined. From this the interactions of the parameters
are examined to provide insight into the origin of undesirable artifacts in the output signal.
Equations to prevent invalid pé.ra.meter sets are provided and measures of the amount of
overlap and averaging defined. These equations allow the nature and extent of undesirable
artifacts in the final signal to be predicted for a given choice of parameters. Additionally,

predictability in the shift values for certain parameter sets is detailed and proposed as a




rheans of reducing the average computational requirements.

Chapter 4 provides an indication of the robustness of the SOLA algorithm by examining its
performance on music, speech with multiple speakers, and speech in the presence of correlated
and uncorrelated noise.

Chapter 5 presents several methods of reducing the computational requirements of the
SOLA technique. The performance of the algorithm using alternate windowing, alignment,
and update functions is presented and evaluated. The robustness of the original algorithm
leads to several computationally improved versions which provide equal quality.

Chapter 6 introduces a slightly modified version of the SOLA algorithm. This method
further simplifies implementation, while maintaining the same output signal quality over the
range of desired time-scale modifications. '

Chapter 7 summarizes the work performed in this study and draws various conclusions.
Additionally, it presents several topics for future investigation.

Appendix 1 contains data from listen tests conducted to examine the effects of various

' parameter combinations.

Criteria

Due to the subjective nature of the quality measurement, implementations are compared in
double-blind A-B preference tests (see [2], Appendix F). Sentences A4 and B are played
in pairs and listeners indicate a preference for either 4 or B . For comparison purposes,
implementation A is said to have a higher quality to computation ratio than implementation

B if:

e The computational requirements of A and B are comparable, and the output of A is

consistently preferred to that of B in listen tests.

¢ There is no preference between the output of A or B, and A requires fewer computations.




Chapter 2

The Synchronized Overlap-Add
Algorithm

2.1 Introduction

The Synchronized Overlap-Add (SOLA) algorithm was developed by Roucos and Wilgus [11]
in an attempt to reduce the number of iterations required for high-quality time-scale modified
speech via the Griffin-Lim technique. They sought to accomplish this by providing the algo-
rithm with an initial guess closer to the desired signal than random noise. This section gives
the formal definition of the SOLA technique, introduces the parameter set for the algorithm,

and provides an overview of its operation.

2.2 Origins

The Griffin-Lim technique starts with an initial guess of random noise for the time-scale
modified signal. This signal is then iteratively modified until its short-time fourier transform
(STFT) magnitudes taken at a fixed synthesis interval match the STFT magnitudes of the
original signal taken at a different analysis interval. Roucos and Wilgus attempted to reduce
the number of iterations required for high-quality output by providing an initial guess signal
closer to the desired signal than random noise. The initial guess produced by one of their

techniques, the Synchronized Overlap-Add, however, was reported to be of such high quality




that no iterations by the Griffin-Lim algorithm were required.

Roucos and Wilgus realized that the overlap-add step of the Griffin-Lim algorithm was
working against the desired result. In greatly simplified terms the problem can be summarized
as follows: If windowed frames of an input signal are taken using an interframe “analysis”
shift of §, sample points, then simply overlap-added with a different interframe “synthesis”
shift of 5, sample points, periods in the overlapping portions of the signal will interfere when
S5 # Sa. The interference may be constructive or destructive, and affects various frequencies
differently.

The effect of a simple overlap-add with differing analysis and synthesis shifts will now
be examined. Figure 2-3 illustrates a time-signal consisting of evenly spaced impulses. This
signal is windowed using a fixed interframe interval, S,, as shown in the diagram labeled -
analysis windowing of input signal of Figure 2-3. The windows of input taken with a fixed
interframe interval, every S, points, are then a,ddedt with §, points between them to decrease
the time-scale of the signal (§, < §,). Note the spacing between impulses has changed in
the region of overlap! The overlap-add does not preserve the periodicity of the original signal
in fhe_regions of overlap. The signal obtained differs greatly from the original input signal
when S, # S5,. The signal that results has the desired time-scale, but no longer resembles
the original input. This modified signal is referred to as the rate-modified-unshifted signal in
Figures 2-2 and 2-3. ,

This is where the concept of phase is important. Each windowed segment of the input
signal contains impulses with their original spacing. The position, or phase, of these windows
in the signal is changed however by the overlap-add at a different shift. The abrupt changes
in the phase at window boundaries lead to discontinuities in the overlap-added signal (rate-
modified unshifted signal). The local period is no longer continuous throughout the signal;
i.e., the regions of overlap in the rate-modified unshifted signal in Figure 2-3 contain impulses
whose spacing differs from the original signal.

To extend this idea one step further, suppose the impulses in the above example represent
the locations of peaks in a cosinusoidal time signal. The period of the cosine corresponds to
the spacing between impulses. It is now evident that discontinuities will result at each window

boundary in the rate-modified unshifted signal in Figure 2-3. The regions of overlap will no



longer resemble the original time-signal as the differing phases of the segments cause construc-
tive and destructive interference in the regions of overlap. Interference and discontinuities lead
to percéptible harmonics, clicks, and pops in the output signal. |

The interference in the signal arises from the large linear phase inconsistency between
successive windows. Each window, z,(mS,) where m is the window number, is shifted in
time by m(S, — S,) during the overlap-add step. Thus adjacent windows differ in phase
by (5, — S,) samples. Correcting this phase inconsistency by simply shifting each window,
z,(mS,), by an amount —m(S, — S,) returns each window to its original position and results
in the original input signal. To modify the time-scale of the signal, a different interframe shift
must be used. If the signal contains a single cosinusoid, then each window may be shifted by
modulo m(s+':s“l (where 7, is the period of the input signal) without altering the periodicity
of the signal. The shift of individual windows will vary, but over the entire signal the average
interframe synthesis shift will be S,. Were the period of the signal to vary slowly, windows

could be aligned in this same manner, provided 7,, reflects the local period over the range of
windows being overlap-added.

This technique aligns the local periods before they are overlap-added and preserves the
phase. Very few signals contain a single frequéncy however, making the above scheme of little
use. Aligning windows with respect to the highest amplitude local period in the overlapping
region is the next obvious alternative. Roucos and Wilgus proposed time-aligning windows
on the basis of signal similarity before adding them. This is accomplished by maximizing the
crosscorrelation of overlapping windows. The crosscorrelation aligns the windows before the
overlap-add step, preserving the magnitude and phase (i.e. the local period). They dubbed
this process “Synchronized Overlap-Add” or “SOLA” to distinguish it from the Griffin-Lim
“Overlap-Add” which performs no shifting.

2.3 Formal Definition

‘The SOLA algorithm modifies the time-scale of a signal in two steps, analysis and synthesis.
The analysis step consists of windowing the input signal every S, (Shift analysis) samples. The
synthesis step consists of overlap-adding the windows from the analysis step every S, (Shift

synthesis) samples. Each new window is aligned with the sum of previous windows before

10



being added. This reduces discontinuities arising from the different interframe intervals used
du.ring analysis and synthesis. The resulting time-scale modified signal is free of detectable
harmonics, clicks, and pops.

In the “Synchronized Overlap-Add” algorithm, windows are added synchronously with the
local period. The time-scale modified siénal, y(n), obtained using the “Synchronized Overlap-
Add” of windowed segments, z,,(n) = w(n)z(n) (where z(n) is the input signal and w(n) is

the windowing function), is given by:

1. Initializing the signals y,,(n) and r(n).

Yu(n) = 2u(n) forn=0...Winlen -1 (2.1)
r(n) = w(n)

2. Updating ¥, (n) and r(n) by each new frame of the input signal, z,(n), as follows:

Yu(mS, — k(m) + ) + zw(mSa +j) for0<j < Lm ~1

z,(mSs +7) for L, < j < Winlen—1
(2.2)

: yw(msa-k(m)'}'j) =

Sy = k(m)+17)4 S,+j) for0<j<Lm—1
S — Ky fy = | TS HOR)$ )% wlmS5) for 05

w(mS, + 7) for L, < j < Winlen -1
(2.3)
k(m) = max R;’;(k) (2.4)
Lm—-1
Z yw(mss—k+j)zw(m5a+j)
RI(k) = (2.5)
Lm-1 Lm-1
{Z yi(mSa—kH)] [Z wi,(msaw)}
7=0 j=0
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3. Normalizing y,,(n) by the buffer of appropriately shifted windowing functions r(n) to

obtain the final output y(n):

(i) = el for all s

As outlined in the above equations, k(m) > 0, corresponds to a shift backward along the
time-axis of the mth frame that maximizes the normalized crosscorrelation RT, between the
mth window and rate-modified shifted signal composed of windows 0 — m — 1. L., is the
number of overlapping points between the new window z,,(mS,+j) and the existing sequence
Yuw(mS, — k(m) + j) for the current frame m, and winlen is the number of data points in
~ each window frame z,,,('ms,, + 7). It is important to remember in subsequent discussions that
k(m) positive in the expression y,(mS, — k(m) + j) moves the region of overlap backwards
along the time-axis. Thus the above equations define an implementation in which each new
window is targeted to the maximally advanced (right-most) position on the shift interval and
is then shifted backward to test shifts aiong the interval. Section 2.8 shows how this method
is equivalent to other less easily represented methods. ‘

Maximizing thé crosscorrelation insures the current window is added and averaged with
the most similar region of the reconstructed signal as it exists at that point. The shifting
operation insures the largest amplitude periodicity of the signal will be preserved in the rate-
modified signal. This signal will be called the rate-modified shifted signal to distinguish it
from the rate-modified unshifted signal obtained by simply overlap-adding.

A time-scale modified signal is constructed by adding overlapping segments of speech such
that similar regions in the segments are aligned and then scaling the sum appropriately. The
operation does not distort the waveform provided the overlapping portions of the signal are
very similar. Averaging the overlapping portions smoothes transitions between waveforms in
adjacent windows. This technique preserves the local pitch period while allowing time-scale
modification by changing the relative overlap between neighboring windows of the-original

and time-scale modified signals.
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Figure 2-1: Parameters for SOLA algorithm.

2.3.1 Parameters

There are four distinct parameters for the SOLA algorithm: window length, analysis shift, -

synthesis shift, and shift search interval.

e Window Length (winlen): The duration of windowed segments of the input speech.
This parameter is identical for both the input and output buffers, and represents the
smallest unit of speech manipulated by the algorithm.

e Analysis Shift (S,): The interframe interval between successive windows along the input
signal.

o Synthesis Shift (5,): The interframe interval between windows along the unshifted out-
put signal.

o Shift Search Interval (Kmsz): The duration of the interval over which a window may be
shifted for alignment with previous windows.

For convenience, a time-scale modification factor, a = %:, is defined. The approximate
duration of the modified signal is given by: a * (Duration of input signal). For time-scale
compression or speed-up, a will be less than 1; i.e., §, < S,. For time-scale expansion or
slow-down, a will be greater than 1; ie., §, > S,. For §, = S, @ = 1 and there is no

time-scale change.
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2.3.2 Normalized Crosscorrelation

The normalized crosscorrelation (Equation 2.5) is used to evaluate the similarity between
overlapping éegments. The window to be added is shifted along the shift interval and a nor-
malized crosscorrelation evaluated at each location. The normalized crosscorrelation function
is maximal when the largest amplitude periodicities in the segments are aligned. The cross-
correlation is well suited for this application as the human ear tends to focus on the highest
amplitude frequencies in the signal.

Experimental experience has shown the number of overlapping sample points, L,,, should
be greater than 20. This choice of L,, insures an accurate indication of alignment for uncorre-
lated, semi-correlated, and highly correlated segments. Although the number of overlapping
sample points can be reduced for highly correlated segments,! the normalized crosscorrelation
must also provide an accurate measure of the similarity between less correlated segments.
Note that the normalized crosscorrelation always attains its peak magnitude of £1 with only
one overlapping point. For Gaussian white-random noise the variance in the correlation func-

tion decreases as 11:, and the standard deviation as —2=. To increase our confidence in the

VIm
indication of alignment provided by the correlation function, the standard deviation of the

function should be much less than 1. Thus we desire:

1
—<1

VIn

Call Ola,;;, the minimum number of overlapping points between windows to accurately deter-
mine their correlation. Preliminary results indicate that 20 data points provide a very robust

indication of the correlation for most speech segments sampled at 8 kHz.

2.3.3 Cotlnputational Requirements

The computational requirements of the SOLA technique are determined by the choice of pa-
rameter values. The input signal is windowed every S, points. The number of windowed

segments, or frames, per unit time is therefore inversely proportional to S,. For each frame,

1The actual number of points depends on the similarity between the segments. As with matched filter
design, the greater the similarity. the less points needed to indicate correlation.

14



we must determine the proper shift value such that the crosscorrelation with previous frames
will be maximized. For each possible shift value on the interval [0, Kmaz], a normalized
crosscorrelation must be evaluated to determine which shift gives the highest correlation.
The inner product calculations (IPC in equations below) in the normalized crosscorrelation
require a total of 5 multiplies and 3 adds for every overlapping point. The minimum overlap-
ping points on the shift interval (MOPOSI in equations) varies from frame to frame, but on
average, MOPOSI = winlen — §,. Tt is important to note the distinction between MOPOSI
and Ola;, which is the minimum number of points necessary for confidence in the crosscor-
relation computation. MOPOSI will always be greater than Ola,,;, for reasons detailed in

Section 3.3.2.

Thus we may express the required computations as proportional to:

[ # frames J {[# shift evaluations] [a.vg. # computations
output sample frame shifteval

[aIS ] {[KT“] [MOPOSI + %] (IPC] + [MOPOSI] [update computa.tions]}

x [al.S' ] {[MOPOSI + K’;“] [Kmaz] [[PC] + [MOPOSI] [update computations]} (2.6)

] + [update comps.]}

MOPOSI = winlen — S_, 2 Olamin + Kma::

From Equation 2.6 we see that the order of the computations required is primarily a
function of Kpmez, @, MOPOSI = winlen — a8q, and §,. Although Equation 2.6 is only
an approximation of the total number of operations required to implement the algorithm, it
i]lﬁstra.tes two important points. First, shift determination forms the bulk of the computations

required for each frame. Second, S, and a determine the number of frames per output sample.

2.4 Operation of SOLA for Time-Scale Modification

Time-scale modification is accomplished by changing the interframe shift used for construction

relative to the interframe shift used for analysis. Time-scale compression uses a synthesis
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shift that is smaller than the analysis shift to construct a time-scale compressed signal (see
Figure 2-2). Time-scale expansion uses a synthesis shift that is larger than the analysis shift

to construct a time-scale expanded signal (see Figure 2-4).

2.4.1 Time-Scale Compression

Time-scale compression is achieved by decreasing the interframe shift used to reconstruct the
modified signal relative to the interframe shift used on the original signal as shown in Figure 2-
2. Thus speed-up by a factor of two (halving the time-scale of the signal) is accomplished by
using a synthesis shift that is half the analysis shift, @ = 0.5. The increase in the amount
of overlap between frames results in a compressed time-scale, while shifting to maximize the
crosscorrelation aligns the periodicities in the segments preserving the periodic structure.
Increasing the overlap betfveen segments combines multiple periods into one, reducing the
number of periods in the signal while maintaining the characteristics of the waveform provided
the overlapping portions are similar.

Figure 2-3 details the sequence of events in the construction of a time-scale compressed
signal. The output signal is initialized with the first window, window 0, of the input signal.
Subsequent windows are targeted to their respective locations and then shifted to maximize
their crosscorrelation with the existing output buffer. Window I is targeted S, points into
the output signal and is then shifted appropriately along the shift interval as shown on axis
labelled window 1 shifted in Figure 2-3. Window 2 is likewise targeted 2S5, into the output
buffer and shifted appropriately (see axis labelled windc;w 2 shifted, Figure 2-3). The output
buffer is then scaled by identically shifted windowing functions (in this example rectangular
windows are assumed so z,(n) = z(n)) to give the final output.

The overlay of the windows in Figures 2-2 and 2-3 illustrates the local optimality of
the algorithm. Note the shift of subsequent windows is not taken into consideration when

determining the shift for the current window.

2.4.2 Time-Scale Expansion

Time-scale expansion is achieved by increasing the interframe shift used to reconstruct the

signal relative to the interframe shift used on the original signal, as shown in Figure 2-4.
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Figure 2-2: Overview of time-scale compression.

-— Sa, Sa —

’ L Pl 1 3 ) #I!I% L] L) ﬂ

analysis windowing of input signal

S, S5, —— ,
3 L 14 Ll : I | X (X I ’ 3 1
—k, rate-modified unshifted signal
i | i : t L | S} ' L3 L3 3 $ I
~—k, window 1 shifted

S o T |
2 ol

N
" =2 | window 2 shifted

N Y T

final output

Figure 2-3: Detail of Synchronized Overlap-Add for time-scale compression.‘
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Slow-down by a factor of two (doubling the time-scale of the signal) is accomplished by using
a synthesis shift that is twice the analysis shift, @ = 2. The decrease in the amount of overlap
expands the time-scale, while shifting to maximize the cross-correlation aligns the periodicities
in the segments preserving the periodic structure. As the overlap is decreased, portions of the
input signal are replicated in the output signal (see Figure 2-4). Thus a region of the input
signal now appears twice in the output signal. Shifting insures replicated portions are aligned
with periodicities in neighboring windows.

Figure 2-5 details the sequence of events in the construction of a time-scale expanded signal.
The output signal is initialized with window 0 of the input signal. Window I is targeted S,
sample points into the output signal and is then shifted appropriately as shown on the axis
labelled window 1 shifted in Figure 2-5. Window 2 is likewise targeted 2S5, into the output .
signal and shifted appropriately (see axis labeled window 2 shifted, Figure 2-5). Note both
window 0 and window I contain the fourth, fifth and sixth impulses of the input signal. The
increase in the interframe shift interval (decrease in the amount of overlap between windows)
causes the fourth and sixth impulses to appear in window 0 and window I respectively. This
results in the replication of two impulses. Window I is then shifted to align the fifth impulse
from window 0 with the fourth impulse from window 1. In the region of overlap, the fifth
impulse from window 0 is added to the fourth impulse from window I and the sum is divided
by two.

The sh.ifting aligns periods in the regions of overlap reducing discontinuities in the signal.
(Note the phase change in windows I and 2 in Figure 2-4). The resulting final output is free
of detectable harmonics, clicks, and pops since the discontinuities at window junctions have

been substantially reduced.

2.5 Actual Time-Scale Modification Performed

Each window is targeted to a position corresponding to its ideal time-scaled position, m x 5,
where m is the window number, but is then shifted to align its local periodicities with those of
the previous window (see Figures 2-2 and 2-4). The shifts do not accurnulate since the target
position of a window is independent of any previous shifts. Each shift, however, is dependent

on the shift of the window before it. The shifting can be viewed as a forward-moving process
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Figure 2-5: Detail of Synchronized Overlap-Add for time-scale expansion.
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along the rate-modiﬁed;unshifted signal which moves the mth window, W,,, an amount less
than K. to align it with the sum of the previous m — 1 shifted windows, Wy to W,,,_;. In
Figures 2-2 and 2-4, window 1 is correlated with window 0 and shifted appropriately. Next,
window 2 is correlated with window I (which has moved) and shifted appropriately. Note,
however, that the shift of the last window is the only shift which alters the duration of the
output signal.

The duration of the input signal is assumed to be very long compared to the length of a
window. In this case the duration of the rate-modified signal is ‘a.ccu.rately represented by the
ratio of the synthesis and analysis shifts, a = %‘- The actual du:atién of the rate-modified-

shifted signal can be computed as follows:

d; = duration of input signal
d, = duration of output signal
K.t = shift of last window
d; — winlen ’

number of frames = 5

d, = (number of frames)(S,)+ winlen — Kiyy:
d; — winlen

:-( Sa

= (d; — winlen)a + winlen — Koy

)(S8,) + winlen — Kijgy

d, = ad;+ (1 - a)winlen — Kigq (2.7)

d, ~ ad; for d;> winlen and d; > Kzt (2.8)

2.6 Variable Rate Time-Scale Expansion

. In most applications uniform time-scale modification is desired. In these applications a is
constant over the entire signal. Variable rate time-scale modification is easily achieved by
simply varying the value of a along the signal. This can be accomplished in several ways:
the analysis shift along the input can be held constant while varying the synthesis shift, the
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synthesis shift can be held constant wi:.ile varying the analysis shift along the input, or both
the analysis shift and synthesis shifts can be varied.

The ability to vary either or both of the interframe shift parameters is desirable and
the proper choice depends on the application. If specific portions of the input signal are to
be modified with different time-scale fa.'ctérrs, changing the analysis shift appropriately along
these portions is all that is necessary. Alternatively, if the time-scale modification desired is
output signal dependent, the synthesis shift should be changed appropriately. The interframe
shift parameters are subject to the same constraints that apply for constant rate time-scale
modification, thus varying both §, and 5, may be required when substantial changes in the

time-scale modification factor are desired.

2.7 Global versus Local Maximization of the Crosscorrela-
tion

The overlays of windows in Figu;es 2-3 and 2-5 expose the local optimization performed by
the SOLA algorithm. The shift of a current window is computed without regard for its ef-
fect on subsequent window alignment. Reducing the crosscorrelation of a current window,
max R, (k), may increase the crosscorrelation of several subsequent windows, max R7;!(k),
max R, 2(k), max RT;F3(k), increasing the global crosscorrelation. Maximizing the global
crosscorrelations would require non-causal processing of the signal, thus eliminating the pos-

sibility of performing real-time time-scale modification. .

2.8 Direction of Shifts

This sectionlwill show that the processes of delaying, advancing, or any combination of the
two are sufficient for aligning the windows.

A windo;;v can be delayed or advanced in time from its target position to align it with
previous windows. Either method will provide the desired result of pitch period alignment.
The normalized crosscorrelation, however, can give unreliable results when the number of
overlapping points is small (less than Olamin). Regardless of the method employed, the

forward-most position on the shift interval must be such that at least Olami, data points
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Figure 2-6: Different methods of searching the shift interval.

overlap (see Section 2.3.2). This restriction is further detailed in Section 3.3.2.

Note in Figure 2-6 that identical alignment in the rate-modified shifted signal is obtained
by targeting windows to different positions and searching the same shift interval. Each results
in a movement of the window such that the periodicities are aligned.

The process of shifting backward along the time axis from a given target point, Ta, is
identical to shifting in both directioné by Lzzlﬂ with a target point, Tb = Ta — K—lg-ﬂ, on
the time axis. Recall that the ratio %:- determines the rate change, and the actual value of
S, varies for each .window. It is important to note that during steady-state operation, the
duration of the shift interval is the same in both cases and the distance between shift intervals
is S, in both cases. Thus the two methods are equivalent.

An implementation in which the target positions of the windows corresponded to the
forward-most position on the shift interval (i.e., all shifts backward) was compared with an
implementation in which the target positions of the windows corresponded to the backward-
most position on the shift interval (i.e., all shifts forward). There was no detectable difference
between speech produced by the two different methods over the range of compression and

expansion, 0.5 < a < 2.0.

2.9 Summary

In this section we have introduced the SOLA algorithm originally suggested by Roucos and
Wilgus as an initial guess for the Griffin-Lim algorithm. The parameter set was defined and
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operation of the algorithm for time-scale expansion and compression was outlined in detail.
An indication of the order of computations in terms of the parameters was provided to indicate
the relative importance of each parameter’s effect on the computations required.

The SOLA procedure for modifying the time-scale of speech offers many advantages over
previous time-domain techniques. Pitch extraction is not required; and explicit splicing oper-
ations are not performed. The algorithm operates in the time domain and attempts to align
periodicities in overlapping segments of speech by maximizing the crosscorrelation between
the two overlapping segments.

In many applications it is desirable to perform all window shifting in a single direction.
This can greatly simplify implementation. It has been shown that shifting in either direction
is adequéte for aligning the pitch periods.
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Chapter 3

Parameter Set Interactions

3.1 Introduction

In Chapter 2 the parameters for the SOLA algorithm were defined. This chapter will detail
the interactions of the parameters and develop the concept of a parameter set. Current lit-
erature on the SOLA algorithm [11] [14] [3] [13] provides only ad hoc information about the
correct choice of parameters. Investigations into the operation of the algorithm have shown
that output signal quality is entirely predictable from the parameters chosen. Equations are
preéented which explain many of fhe deleteribus effects observed for cérta.in parameter sets.
This chapter presents the restrictions on the parameter set imposed for efficient implementa-
tion, and restrictions necessary for high quality output. A “solution space” for the parameter
set is alsé given. ' v

The proper choice of para.méters depends on the nature of the input signal and the time-
scale moa.iﬁca.tion desired. Successful operation of the SOLA algorithm is heavily tied to the
nature of the speech signal being processed. This chapter introduces a simplified model for

the synthesis of speech to better understand the speech signal.

3.2 The Speech Signal

At this point it is important to present several underlying assumptions being made about

the nature of the speech signal. A popular model for human speech consists of an excitation

24




source and a time varying filter (the vocal tract). The excitation source may be.glottal pulses
in the case of voiced speech such as vowels, or random noise excitation in the case of frication.
The speéch signal can therefore be modeled as the output of this time varying ﬁlt‘er excited
by one or both of the excitation sources. Such a model accurately represents almost all of the

waveforms encountered in human speech.

3.2.1 Voiced Speech

The vocal tract transfer function is controlled by the position of the tongue, teeth, and lips.
As the position of these does not change instantaneously, the transfer function is for the most
part slowly varying. The period of the glottal pulses from the vocal chords varies among
speakers across the range 2.5 msec to 12.5 msec. During steady-state portions of the speech
signal the vocal tract is excited by several glottal pulses before significant changes occur in
the transfer function. This results in a signal which contains several very similar periods and

is said to be stationary over short intervals.

3.2.2 Fricated Speech

In portions of speech where the vocal tract is excited by random noise, phonemes such as “S”
and “th”, the speech signal resembles the random noise excitation source. The waveform in
such regions is uncorrelated and contains numerous discontinuities with no periodic structure.
The lack of any periodic structure means that added discontinuities in the output signal in

these regions are relatively undetectable.

3.2.3 Abrupt Changes in the Speech Signal

Abrupt changes represent a special problem for dividing the input signal into units of speech.
Sudden onsets of voiced or fricated phonemes occur at word boundaries and around plosives.
Similarly, rapid attenuation or changes in volume violate the stationarity assumption over the
. window duration.

Ideally no window should contain such trahsitory portions of the speech signal. Dividing
the dissimilar portions of the signal on these boundaries would help maintain the similarity

assumption throughout the window. Such a scheme is not easily implemented, however, nor
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is it proposed. Rather, the window iength is chosen short enough such that violations of
the stationarity assumption are limited to regions where the input changes abruptly. The
window length must remain fixed throughout the algorithm, thus it is impossible to eliminate
transitory portions from all windows. In cases where abrupt transitions are separated by less

than a window length, it is impossible to eliminate all of them from a window.

3.2.4 Effect of Different Articulation Rates

The goal of any time-scale modification algorithm is to scale the articulation rate while main-
taining natural sounding speech. When humans speak rapidly, the speech contains unequally
shortened phonemes. The duration of stops and plosives remains constant, while voiced
phonemes and nasals are abbreviated and run together. Silent portions of speech are usu-
ally eliminated and words tend to run together. Slowly articulated speech contains extended
durations of silence and expanded voiced phonemes.

The SOLA algorithm modifies the time-scale evenly over the entire signal according to
the shifts that lead to maximum correlation in the overlapping portions. The time-scale
modified speech produced by the algorithm is therefore not identical to that of a human
speaker. Nonetheless, the speech remains clearly intelligible at articulation rates exceeding

those capable of most humans.

3.3 Parameter Set Restrictions

Each parameter has specific effects on the processing that occurs during the Synchronized

Overlap-Add procedure. As previously outlined, blocks of speech (windows) are taken every

S, points along the input signal, targeted to positions every S5, points along the output

signal, then shifted to maximize the correlation of the overlapping portions. The goal of this
process is the addition or deletion of integef multiples of pitch periods in the output signal.
Each parameter contributes to the success or failure of this process. The interaction of the
parameters is crucial for obtaining the desired result. A poorly chosen parameter set can lead
to needless computations or undesirable results in the output signal such as reverberation or

pitch fracturing (see Section 3.3.1). The crucial operation in the algorithm is the alignment
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of the windows. Alignment is most important during periodic portions of the signal where
errors in alignment are easily detected. To obtain the desired result, the overlapping portions
of the windows must be highly correlated. Therefore each window must be similar in periodic
structure over the region of overlap with previous windows.

The correct choices for the window length and shift search interval depend solely on the
input signal. The correct choices for S, and S, parameters however depend on the time-scale

modification and quality desired as well as the computational resources available.

3.3.1 Window Length and Shift Search Interval: Input Signal Dependent,

a Independent Parameters
Window Length -

The SOLA algorithm operates by manipulating windowed segments of speech to modify the
time-scale of signals. The window length parameter sets the size of the smallest manipulable
unit of speech and therefore has the same duration in both the input and rate-modified output
signals. The windows are treated as units of speech, and are assumed to be relatively stationary
in character. The window length must be chosen carefully to avoid violating this assumption,
namely: short enough that the speech signal characteristics do not change drastically over the
duration of the window, and long enough to contain two pitch periods. The correct choice for
this parameter is entirely dependent on the input signal’s characteristics.

Each window must contain at least two pitch periods, one for alignment and one to advance
the output signal. To meet this criteria for male speech the window must be longer than 25
msec (200 samples). Window lengths greater than 40 msec (320 samples) lead to slight
reverberation in the output signal and when window lengths approach 50 msec (400 samples)
there is notiteable reverberation in the output signal. The reverberation is most pronounced
for female speech due to the shorter pitch periods. The source of reverberation is detailed in
Section 3.4.

For slow-down the length of the window is further constrained by the sYnthesis' shift, S,
between windows. The duration of each window must be long enough that there are no gaps
in the oﬁtput signal.

The interaction of the window length parameter with the other parameters affects com-
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putation and quality in the output signal. These effects will be developed later. Since the
correct choice for this parameter is entirely dependent on the input signal, it will have the
same value for both expansion and compression.

A formal listen test was performed to determine the preferred window lengths for male and

female speech. The results are summarized in Appendix A. These results indicate that different

~ window durations are preferable for male and female speech. Window lengths between 25msec

(200 samples) and 37.5 msec (300 samples) are long enough to contain two pitch periods in
male speech and yet short enough that reverberation is not noticeable for female speech.
Female speech processed using the longer windows required for male speech was not detected
as significantly lower in quality (see results of listen test in Figure A-4). Thus the proper
choice of window length will provide high quality output for both male and fernale speech.

A value of 256 sample points was chosen as it fell within the range of 200 and 300 where
few listeners indicated a preference (see listen test results in Figure A-4), and provides a block _

of data conveniently manipulated by most processors.

Shift Search Interval

The duration of the shift search interval, K/naz, (see Section 2.3.1 ) limits the d.isfance a win-
dow may be shifted along the time-axis for pitch period alignment across window boundaries.
To accomplish this, K, mae Must be greater or equal to the largest pitch period encountered.
Note the pitch phase in the current window may be one sample ahead of the pitch phase
in the previous window at the forward-most position of the shift interval. For this situation
the current window must be shifted backward the distance of a full pitch period minus one
sample because a forward shift of one sample is not possible. In this scenario the pitch period
is aligned wijth the previous pitch period rather than the pitch period at the forward-most
position of the shift search interval provided the correlation with the previous pitch period is
higher.

If Kz is chosen to be smaller than the largest pitch period encountered, it will not be
possible to align the periods in all cases. A discontinuity will result at the window boundary
distorting the local period in the signal. This phenomena is referred to as “pitch fracturing”

because the local period is fractured at the discontinuity. Figure 3-1 illustrates the effect of

28



pitch fracturing. Recall the shift, k(m), required to align the period in a current window
represents a uniformly distributed random variable on the interval [0, K4z, thus proper
alignment will be obtained a fraction of the time. The probability of successful alignment is

given by:

K . .
TMH-L.T. for 0 < K4 < pitch period
Probability of alignment = pitch perio ™
1 for K,,qz > pitch period

(3.1)

Note for |Kmqq| greater than the largest pitch period, successful alignment is always pos-
sible. The preferred value for Ko, depends solely on the input signal pitch periods and is
different for male and females. Ideally K. should equal the duration of a pitch period. In
practice an implementation suited for very long pitch periods, 12.5 msec (100 samples), is
inefficient for pitch periods of shorter duration, bﬁt does not adversely affect the quality of
the output signal for speech with shorter pitch periods.

In Section 3.4.3 it will be shown that the value K maz also determines the maximum length
of a replicated feature in the output signal. See Section 3.4.3 for a detailed explanation. For
this reason K, should not exceed 25.0 msec (200 samples) as the time-scale of the output

signal jitters and results in a jerky sound.

3.3.2 Analysis Shift: An o Dependent Parameter

The anal}{sis shift has a very large effect on the quality of the output signal as well as the
computational requirements (sée Equations 3.2, 3.3 and 2.6). The analysis shift sets the
number 6f frames i)er unit time. The lower the shift the more frames. Consequently it is
desirable to set the shift as large as possible. The analysis shift, synthesis shift and window

length interact to determine several important attributes of the resulting signal.

Effect on Averaging and Multiple Window Appearances

In Section 2.3.1 a time-scale modification factor, @ was introduced, §, = aS,. For a given a,
S, determines S, and vice-versa. The interframe shifts used during analysis, S, and synthesis,

S, interact with the window length, winlen, to determine several important attributes of the
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Figure 3-1: Pitch fracturing which occurs when the shift interval (Kmoz) is less than a pitch
period’s duration. Note the distance between the second and third pitch pulses is significantly
less than the distance between the first and second pitch pulses. This “fracturing” of the local
period occurs when K., is less than the duration of a pitch period, which prevents proper
alignment of the pitch periods in the two segments.
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construction process.

The average number of windows containing any given input sample is given by:

winlen

Sa

AWO = (3.2)

This is illustrated in Figures 3-4 and 3-5 and its importance is detailed in Section 3.4.7 .

Each sample in the final output signal is comprised of one window or the sum of several

overlapping windows scaled appropriately. The average number of overlapping windows which
give rise to a single sample in the output signal is given by:
winlen _ winlen

SWO = S = o, - (3.3)

This can be seen in Figure 3-6 and its importance is detailed in Section 3.4.7 .
Note in Figure 3-5 the sample marked z was overlapped by 4 windows during analysis, but
samples in the output signal shown in Figure 3-6 are comprised of the sum of only 3 windows

since a > 1.

Restriction Imposed by Correlation Overlap

The values for §, and S, must be greater than or equal to one sample. Additionally, the
synthesis interframe interval, §,, must be small énough that each window overlaps the previous
window in the rate-modified-shifted signal (see Figures 2-2, 2-3, 2-4, 2-5, and 3-2).

The distance between the starting points of adjaceﬁt windows is given by the synthesis
shift, §,, and the difference between each window’s shift, |k(m — 1) — k(m)| < Kmaee. The
maximurh distance between the starting points of adjacent windows is then S, + Knqs. |

The following discussion assumes an implementation in which each window is targeted
to the right-most position of the shift interval, then shifted backward (left) along the shift
interval to evaluate the crosscorrelation at each position. '

Note that the right-most point (i.e. k(m) = 0 in Equations 2.2 and 2.3) on the shift
interval designated, Target,,, for the mth window, W,,, must be Olamin points less than the
end of the previous window, W,,_1, which has been shifted. This insures that Ola;, points
are available for all crosscorrelation calculations of the already shifted W,,—; and W,. All
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Figure 3-2: Requirements for Olamin overlapping points between windows.

other positions on the shift interval will contain increased regions of overlap. The end of the
previous window, Wp,_1, after shifting is given by Target,_1 + winlen — k(m — 1).

For the mth window, Wi,:

e Define: Targetm, = m* S,
o Initial constraint:

End of output signal — Olamin > Targetm , (3.4)

e where:

End of output signal = Targetm,_1 + winlen — k(m-1)
Adhering to the aforementioned constraints, restricts the parameter set as follows:

Targetm_1 + winlen — k(m — 1) = Olamin 2> Targetn

winlen — k(m — 1) — Olamin 2 Target, — Targetm_1

Noting: Targets — Targetm—1 = s k(m —1) < Kmaz; and a = -i:i- gives:
winlen — Kmaz — Olamin = S.=0aS,

‘w’lnlen - KZQ; - Olamzn 2 Sa (3.5)

The upper-bound imposed on S, by Equation 3.5 fixes the analysis resolution required by

the algorithm in terms of a, winlen, Olam;n and Kmaz. Consequently the number of frames

and shift determinations per unit time is fixed.

Assu.m.iné fixed values for Knaz and Olamin, for a given time-scale modification factor
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a, the window length determines the resolution required. It is important to note from the
previously stated constraints (Section 2.3.1) that window lengths longer than 40.0 msec (320
samples) lead to violations of the stationarity assumption in most speech and detectahle
reverberation in the time-scale modified signal.

Recall that this restriction was imposed to insure Ola;, overlapping data points for all
possible shifts on the shift interval. Violating this restriction did not produce poor quality
output in'many cases. Violating Equation 3.4 just means we can no longer search over the

range of K4, shifts, but instead can only consider shifts in the range:
[max{0, S, — winlen + k(m — 1) + Olamin}, Kmas) (3.6)

The interval of shifts containing Olan,;, samples in the crosscorrelation has been reduced. The
reduction in the duration of the shift interval decreases the chances of successful alignment
as given in Eéuation 3.1. Note that K 2, which represents the duration of the shift interval
in Equation 3.1, is replaced by the duration of the reduced shift interval and the duration is
dependent on the previous shift.

Duration of reduced
shift interval = Kmez — (5 — winlen + k(m — 1) + Olamin)

= Kpmoz — 5, + winlen — k(m — 1) — Olamin (3.7)

Wheﬁ less than Olam;, points overla.ﬁ, the crosscorrelation is zero by definition. If the
correlatipn is poéitive for sh.ifts.in which Olan;, points overlap, the corresponding shift will
be used. ‘I.f the correlation is negative for all shifts containing Ola,,;, or greater overlapping
points, the algorithm should use the shift which abuts the new window to the output signal
to avoid gaps between windows.

Violations of Equation 3.4 increase the likelihood of pitch fracturing in the output signal
since the shift interval duration is reduced (Equation 3.7). Thus adhering to Equation 3.4
is more important for male speech with longer periods. Experiments using parameter sets
which violate Equation 3.4 provided high quality time-scale modified speech in cases where

a ~ 1. No degradation in quality was detected for female or male speech when Equation 3.4
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was violated with o ~ 1.

Analysis Shift for Time-Scale Compression, a < 1

The goal in time-scale compression is to correlate the current window with the latter portion
of the previous window. Aligning and summing the overlapping portions and scaling appro-
priately effectively removes an integer multiple of pitch periods. The analysis shift must not
be too large or drastic speech signal changes over the interval will cause difficulty in aligning
adjacent windows. If the analysis shift is too small however, excessive overlapping between
frames will tend to remove the distinctions in the pitch periods and attenuate higher frequen-
cies. This phenomena becomes more pronounced at high compression rates (a < 0.5) where
S, is generally less than half of §,.

.: The undesirable side effects of high averaging in the output signal for compression result
from repeated additions of slightly differing waveforms. The sampling rate is seldom an
 integer multiple of the pitch period. This leads to phase differences between frequencies in
| the sampled signal. When multiple samples are averaged to form the output signal, lower
amplitude high frequencies can destructively interfere. These effects are less pronounced for
the lower frequencies as they are less subject 1:,0 inter-sample phase changes.

Recall from Equation 3.2 that the average number of overlapping windows giving rise to

a sample in the output signal (Synthesis Window Overlap, SWO) is given by:

winlen  winlen

5. " ab. =SWO

While the number of windows containing any given input sample (Analysis Window Over-

lap, AWO) is given by:
| winlen

—— = AW
3 AWO

It is desirable to reduce the amount of averaging (SWO) during compression as much as
possible. Note that SWO increases faster than AWO for decreasing 5, when a < 1. Therefore
S, should be chosen to be as large as possible. Reverberation in the time-scale compressed
signal is eliminated by choosing a value for §, greater or equal to the window length. This

gives AWO < 1, insuring that no portion of the input appears in more than one window.
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Figure 3-3: Effects of increasing analysis shift during compression.

The proper value for S, is the largest value such that the windows remain correlated. Too
long a shift will violate the highly correlated assumption of stationarity and periodic similarity
between consecutive windows. As 5, increases, the similarity between neighboring and next-
neighboring windows quickly diminishes. The resulting speech tends to sound choppy due to
the greater changes in the signal that occur over the interval 25,. Note in the Figure 3-3
thal; next-neighbofing wiﬁdowé are abutted while the intervening window is overlapped and
averaged across the junction.

The proposed %‘- = §, = winlen combination for compression by a factor of two (a =
0.5) in this case illustrates that next-neighboring windows are abutted in the rate-modified
unshifted signal. Although each window is shifted in the final output, the speech signal must
remain similar over the interval of the intervening window for proper alignment and good
quality. The duration of the overlapping speech segment across the junction is also critical.
The importance of the stationarity requirement over a window length is apparent in this
exaﬁple.

The analysis shift, S;, may actually exceed a Windc')‘w length. In‘this case, §; — winlen
data points are discarded and do not appear in the output signal. The increase in S, reduces
averaging at high (a < 0.67) compression rates (Equation 3.3 ). The duration of the signal
which may be deleted, however, is input signal dependent. Rapidly articulated and highly
fricated spee|ch contains short duration key features, the loss of which gives rise to a short
chopping-sounding output signal. Care must be taken to insure that no essential information
in the input signal is skipped.

It was observed that skipping up to 6.25 msec (50 samples) did not reduce the intelligibility
of the output signal. For this case §, exceeded winlen by 6.25 msec (50 samples). Skipping

segments greater than 8 msec (64 samples) led to loss of intelligibility and clarity in the
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time-scale compressed output.

Conclusion The amount of data that can be skipped will vary with the rate of articulation
in the original speech and therefore it is best to set §, equal to a window length for robust
time-scale compression. This insures that no crucial portions of the speech signal will be

discarded, while simultaneously preventing reverberation.

Analysis Shift for Time-Scale Expansion, a > 1

During time-scale expansion, the decrease in overlap between windows causes portions of the
input signal to be replicated, expanding the time-scale (Figures 2-4 and 2-5). Reverberation
can not be eliminated in time-scale expanded speech as portions of the input signal are required
to appear in multiple windows. Note that for expansion, the analysis window overlap, AWO,
will be greater than the synthesis window overlap, SWO. Equations 3.2 and 3.5 clearly support
this. Equation 3.2 requires S, greater than or equal to winlen to insure no segment of the

input signal appears in multiple windows. To meet the requirement of Equation 3.5, however,

requires S, be less than 2% where a > 1.

During the shifting process, portions of a current window are correlated with regions of the
input signal (S, — S;) points further along the time-axis. The distance (5, — §o = So(a —1))
must be small enough that the regions remain similar in periodic structure. Too large an
analysis shift, S,, forces windows to overlap in regions of low correlation. The quantity
S, — S, also plays an important role in the duration of the input signal replicated. If excessive,

the resulting signal sounds stutterant due to discontinuities caused by the long duration of

krepljca.ted portions. This effect will be further detailed in Section 3.4.3.

Conclusion: The amount of averaging during synthesis is reduced during expansion. The
synthesis shift for expansion must be substantially less than a window length. Consequently,
the analysis shift must be even less which increases computations. Large analysis shifts lead
to undesirable artifacts in the time-scale expanded signal such as pre-echo and reveri)eration.

The source of reverberation and how it may be reduced are the topics of the next section.
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3.4 Source of Reverberation in the Output Signal

3.4.1 Introduction

Reverberation has been noted by several authors [3] [14] as an undesirable side eﬁéct of
expansion via the SOLA algorithm. The source of this reverberation is identifiable in terms
.of the parameter set. In this section a detailed description of the source of reverberation in
the time-scale modified signal is provided. Using this information, accurate predictions for
the quality of the output can be made. The detailed investigation into the mechanism of
the SOLA algorithm for slow-down provides insight into methods for reducing the required
number of shift computations.

Informal experiments suggest that reverberation arises from repeated appearances of a
single “feature” over a small region of the output signal. Such a “feature” must differ from
adjacent portions of the signal to be detected as unique. Thus the “feature” described must
be longer than a pitch period, and represent a nonstationarity in the signal. Events such as a
sudden change in amplitude between adjacent periods or changes in the pitch period waveform
represent “features” which occur often in the voice signal during stop consonants and word
boundaries. For the critical voiced portions of the signal the occurrence of “features” is largely
due to abrupt changes in amplitude. Figure 3-12 illustrates the problem of replicating segments
of an input signal whose amplitude varies over a window length: amplitude discontinuities
arise in the time-scale expanded signal as earlier portions of the input signal are joined with
latter portions of the input signal contained in previous windows. This effect is detail further

in Section 3.4.7.

3.4.2 Reverberation during Time-Scale Compression

During time-scale compression, portions of the input signal will appear in multiple windows if
the a.nalyvsis shift is less than a window length. The distance between multiple appearances of
the same input signal segment can be large enough in the rate-modified-unshifted signal that
overlapping the multiple appearances is not possible. This occurs when the shift to realign
the regions contained in multiple windows lies outside the range of possible shift values (i.e.,

> Kpmaz) along the shift search interval. In this case, segments of the input signal appear
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multiply over a short region of the output signal as a pre and post echo which is perceived
as reverberant. This effect is easily eliminated by forcing S, to be greater than or equal to
a window length for speed-up. In all tested cases of time-scale compression this technique

provided excellent quality rate-modified speech.

3.4.3 Reverberation During Time-Scale Expansion

During time-scale expansion, portions of the input signal are purposely replicated in the output
signal. For time-scale expansion S, must always be less than a window length to avoid gaps in
the output signal and erroneous correlation indications. (see Equation 3.5 ). Analysis window
overlap (AWO>1) is necessary for repetition of segments or pitch periods in the output signal
(Figures 3-4 and 3-5 ). In the rate-modified-unshifted signal, short segments of the input -
signal are replicated at every window jﬁncture (the segments between the z’s in Figure 3-6
)- The duration of these segments is given by (S, —.Sa) (see rate-modified-unshifted signal in
Figure 3-7 ). The shifting process applies a “borrow from Betty and give to Sue” like procedure
to align periodicities in the windows and consolidate the small replicated portions into larger
sections which results in the replication of input signal segments. Figure 3-8 illustrates the
effects of the shifting process which occur on the intermediate rate-modified-unshifted signal
in Figure 3-7. The larger replicated portions do not have to be an integer multiple of the

i pitch period but will vary in duration between (S, — S;) and Kypqz + (55 — ) samples. The
rate-modified-shifted signal then contains windows whose phase alignment is continuous over
correlated portions of the signal. _

Figures 3-4 through 3-8 assume a single feature, z, in the input signal. Note that the
number c;f windows which contain the feature, z, is given by AWO, or %, as shown
in Figure 3-4. Also note the feature shifts toward the beginning of each window by S, in
successive windows as shown in Figure 3-5. '

Each window, W,,, is targeted to the position n x S, in the rate-modified-unshifted output
signal as shown in Figure 3-6.
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The distance between appearances -of the feature z in the rate-modified-unshifted signal is
therefore given by S, — §,, and the maximum distance between the first occurrence of z and
the last occurrence z is given by ((’“—% = number of windows containing ) — 1)(§, — S,)
as illustrated in Figures 3-7 and 3-8. |

The process of shifting to ma.x.imjz;e the crosscorrelation between adjacent windows can
be viewed as a forward-moving process (see Section 2.5) which moves from left to right along
the rate-modified-unshifted signal to create the rate-modified-shifted signal. The normalized
crosscorrelation function will be maximum (i.e. equal to 1) when the overlapping portions of
the signals z(mS$, + j) and y(mS, — k(m)+ j) are identical. Thus the algorithm will return a
shift value, k(m), that overlaps the feature z in the current window, W,,,, with the z appearing
in the previous window, W,,_;. The shift to accomplish this is: k(m) = §, — S,, and undoes
the expansion. Thus the right hand side of Equation 2.2 becomes:

Yu[mSs — k(m) + j] + z4[mS, +j] with k(m)=8§, -5,
= yw[mss' (Ss _Sa)+j]+zw[msa+j]
= Yul(m=-1)8,+ S.+ 7]+ 2u[(m —1)S. + S + 7]

At the next frame, the new window is advanced S, along the input signal, m = m + 1 and

k(m + 1) = 2(S, — S,) provided 2(S, = §,) < Kmaz- Thus the output signal is given by:-

Yul(m +1)S, + So — k(m+ 1) + j] with k(m+1) =2(S, - Sa)
= y[(m+1)S, — 2(S, — 5.) + j] + zu[(m + 1)S, + j]
= Yul(m—1)8, + 25 + j] + 2u[(m — 1)5s + 25, + j]

Note that for frames m and m + 1, the output signal is constructed by simply adding the two
new windows, W, and W,,1, to the existing signal, y,[(m — 1)S, — k(m — 1) + j}, with the
analysis shift, §;. The windows are overlap-added with the identical interframe shift used
during analysis. This shifting process is more appropriately dubbed an “overlay” process
since the output signal is reconstructed using the analysis shift, and identical segments of

input “overlay” one another in the final output signal.
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The shifting operation will overlay multiple occurrences of the feature z on top of one
another until the shift required to align z in a given window with the overlay “pile” of z’s
exceeds K., (see Figure 3-8). At this point the shift returned will be the best possible
alignment of the new window with the end of the previous series of shifted windows. The
feature z in this window now becomes a “seed” for the next “overlay pile” and all subsequent
windows containing z will be shifted onto this “pile” until the required shift exceeds K,o-—in

which case the process repeats—or the feature no longer appears in subsequent windows.

Duration of input signal replicated

It is interesting to note that since the overlay process merely replicates portions of the input
signal uﬁtil the shift to do so exceed K maz, it may appear that using a larger value of (5, —
Sa) = Sa(@ — 1) would increase efficiency. The quality of the signal suffers however when
Sa(a— 1) exceeds K,a,. This is apparently due to the long length of input signal replicated.

The values of S5(a — 1) and K. fix the distance between piles of features in the output
signal. Thus S;(a — 1) determines the minimum portion of input signal replicated and S,(a -
1) + Kmqz determines the maximum size of a replicated feature. To create a new pile, the
distance from an ovc‘curring feature to an existing pile must be greater than Knqz. As the shift
to align this feature is outside the range of possible shift values, a shift inside the range of shift
values with the highest correlation is used. This shift must be between 0 and K42 Assuming
the previoué window, W,,,_; was shifted exactly K .. to align the feature it contained with
the previous pile, leads to the following results: A shift of k(m) = 0 for the current window
will give the largest distance between the previous pile and new seed; this distance is Kpqz +
(S, - Sa.) and represents the portion of the input signal that is replicated in the final output.
Alternatively a shift of k(m) = Kpnqe will result in the smallest distance between piles; in this
case both W,, and W,,_; have been transposed by K., and the distance between the pile
and new seed remains (5, —vSa = S.(a — 1)). The distance between piles, d, and thus the

duration of input signal replicated, is given by:

(Ss - Sa) S dS Kmaz + (Sa - Sa) _
Sa(a~1) <d< Kmez+ Sa(a—1) (3.8)
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In speech where the multiple pitch periods occur over the interval [0, K, ], multiple periods
will be replicated as a unit during time-scale expansion. The replication of multiple pitch
periods in this case increases the chance of perceived reverberation since amplitude differences
in adjacent periods are preserved. This effect is detailed in Section 3.4.7.

Note that z may represent a single sample or a sequence of any number of samples.
The feature z need not be a distinguishable feature. In all cases the current window will
be maximally correlated with the existing signal when identical portions of the input signal
overlap. As z may be any sequence of samples, it is apparent that this process will occur
repeatedly. A sequence of samples, y, immediately following z will initiate the same process.
As the sequence of samples z no longer appears in the current window, the new sequence
of samples y plays the same role. The overlay process occurs continually, merely transposed
along the time-axis.

This effect became apparent in observations of the crosscorrelation function for small anal- _
ysis shifts. Each crosscorrelation frame contained a single distinctive peak for both periodic
and random noise portions of fhe signal. The position of the peak in the frame changed by
an amount (§, — §;) in subsequent frames. The distinctive spike during random noise and
silence portions of the output signal indicated that this high correlation was not due to pe-
riodicities in the signal. Figure 3-9 contains several crosscorrelation functions separated by
short segments of zeros to distinguish the crosscorrelation functions of individual frames. The
distinctive spikes correspm-ld to shifts which overlap common regions of the input signal. The
position of each spike moves an amount (S, — §,) between frames since the shift to a overlay
common region in the current window with a previous “pile” increases by (S, — §,). In frames

which do not contain the distinctive spike, no overlay with previous windows was possible.

3.4.4 Eﬁ'élct of Parameter Set on Feature Replication

Table 3.1 is provided to give an indication of the number of features produced by the in-
teractions of the four parameters which lead to input signal replication during time-scale
expansion.

From Table 3.1 we see that the number of features in the final output is determined by the

interaction of all four parameters. For integral time-scale expansion, i.e. a = 2,3, .. integer,
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Feature spread

a | Winlen| Sa | Ss | Kmaz "’—’g%‘- Average # features
2 400 150 | 300 | 100 2.67 251 2.51
2| 400 125 | 250 | 100 3.20 275 2.75
2 { 400 100 | 200 | 100 4.00 300 3.00
2 400 70 | 140 | 100 5.71 330 3.30
2 400 50 | 100 [ 100 8.00 350 3.50
2 400 40 | 80 100 10.00 360 3.60
2 400 20 | 40 100 20.00 380 3.80
2 400 10 | 20 100 40.00 390 3.90
2 400 5 10 100 80.00 395 3.95
2 300 90 | 180 | 100 3.33 210 2.10
2 300 70 | 140 | 100 4.29 230 2.30
2 300 50 | 100 | 100 .| 6.00 250 2.50
2 300 40 | 80 100 8.00 280 2.80
2 300 20 | 40 100 15.00 280 2.80
2 300 10 | 20 100 30.00 290 2.90
2 300 5 10 100 60.00 295 2.95
2 300 1 2 100 { 300.00 299 2.99
2| 200 40 | 80 100 5.00 160 1.60
2 200 20 | 40 100 10.00 180 1.80
2 200 10 | 20 100 20.00 190 - 1.90
2 200 5 10 100 40.00 195 1.95
2 200 1 2 100 | 200.00 199 1.99

Table 3.1: Feature replication for time-scale expansion-by-two via several combinations of
parameters. Entries are given in sample numbers (8 kHz sampling rate) with each sample
corresponding to 125 usec.
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the number of features in the output signal after shifting should be exactly a. The data above
shows that several combinations result in a number of features which exceeds a. The presence
of these extra features is the source of perceived reverberation in the output signal.

Several favorable combinations appear: those in which the maximum spread of the features
in the rate-modified-unshifted signal is an integer multiple of K,,,.. In this case there should
be an integer multiple of full “piles” after the shifting operation. A full “pile” is one that
contains n features where n is the number of overlapping windows giving rise to the output
signal in a particular region. Of these favorable combinations, only the sets with winlen = 200
samples and winlen = 300 samples approach the desired number of replicated features with
substantial envelope averaging.

We desire the maximum spread of features in the rate-modified unshifted signal to be an

integer multiple of K45t

[(features in unshifted signal) — 1](§, — 5,) = Maximum spread in unshifted signal

[winlen

- 1] [So(a = 1)] = (winlen - S;)(a=1) = NK oo

(winlen — §3)(a - 1)
Kma:

= N an integer (3.9)

The fractional remainder of the left hand side of Equation 3.9 gives the fullness of the
incomplete piles in the shifted signal. No fractional remainder corresponds to completely
filled piles, while 0.5 corresponds to initial or final piles which are half full. It is obvious
that slight changes in the value of Ko, make it relatively easy to meet this goal. The ideal
parameter sets appear to be those combinations which have as large an S, as possible while
maintaining an average number of features in the output signal equal to a.

Unfortunately this is not the case. The observed output using these parameters is stut-
terant, and amplitude envelope discontinuities are readily detected in the output. This is
attributed to two factors: the long duration of replicated segments (fixed by $,(a — 1)), and
low averaging. Discontinuities occur when the averaging factor is extremely low (SWO= 1.5)
because there is no smoothing in the transitions between un-overlapped and overlapped por-

tions of the signal. The averaging factor improves with smaller synthesis shifts (§, = aS,),
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but the corresponding decrease in analysis shift, S,, increases computations. These two con-
trasting relationships work against each other and reinforce the quality at computational cost
tradeoff. Note the influence of the time-scale modification factor, a. The beneficial output
signal averaging, SWO= %’l, decreases with increasing a for a fixed value of S,, and thus
fixed computation. This indicates 1I;hat the quality of the output signal will suffer as  increases
without a corresponding increase in computation (decrease in S,). The computation/quality
tradeoff must be weighted differently for different time-scale modification factors. No choice

of parameters will satisfy both for all scale changes.

3.4.5. Pre-Echo in Time-Scale Expanded Signals

If the length of replicated segments in the time-scale expanded signal is longer than 12.5 msec,

these segments are detected as distinct repetitions of speech.fragments in the output signal.

This leads to stuttering and reverberation in the expanded signal. Figure 3-10 exemplifies .
this effect. Note the fragment of speech present before the onset of the uttérance. This leads

to clicks and stuttering in the output signal because too long a segment of the input signal

is replicated rather than single pitch periods. These effects significantly detract from signal

quality. Methods to reduce this effect are explored in Chapter 5. |

3.4.86 The Role of “SWO” in Minority Feature Attenuation

Let us now step back and examine the effects of “SWO” and “piles” in the context of the
expansion process described so far. During time-scale expansion with (5, — S,) < Kmazs
the variability, Kmqz, in the actual synthesis shift used allows multiply-overlapping windows
to»regain their analysis configuration (See Figure 3-8). Each new window is shifted to a
position §, points further along the time-axis than thé previous window (i.e. its position
during analysis). Such a configuration tends to maximize the crosscorrelation provided the
output signal resembles the input signal over the shift interval. This leads to segments of the
unnormalized output signal consisting of multiple overlays of some region of the input-signal.
The term “overlay” is used to describe.the case when the same feature appears in mﬁltiple
windows and the window are positioned such that these features are aligned as in Figure 3-8.

When this region of the output is normalized, we obtain an identical segment of the input
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signal.

When it is not possible for a window to obtain the offset with previous windows used
during analysis, no overlay with previous windows will occur. Rather the most similar regions
are overlapped. Although subsequent windows may overlap this region, overlays are no longer
possible as the region no longer corresponds to a segment of the input. Overlays may occur
in portions outside the region of overlap of a newly added window, however, since this region
represents an unaltered segment of the input.

Many regions of the output signal are comprised of multiply-overlapped windows in which
one or more of the overlapping windows contain different portions of the input signal. The
sum of these similar regions from different sections of the input signal are divided by the
total number of overla;pping windows. If such a region consists of the sum of 6 overlays of a
feature (or segment) z from the input signal and a similar but different feature (or segment)
Y, the resulting region. of normalized output will strongly resemble the feature (or segment)
z. Note in this case the feature (or segment) y has been attenuated and feature (or segment)
z predominates in the normalized output. Although both z and y are similar, the minority
feature y is attenuated. In a region consisting of 3 overlays of y and 3 overlays of z, the output

will contain characteristics of both ¢ and y in equal proportion.

3.4.7 The Role of “Piles” and “SWO?” in Transitions, Perceived Reverber-

afion, and Mino.rity Feature Attenuation

Now that the role of the “piles” and the concept of “overlay” have been examined, let’s
explore additional benefits of using low analysis and synthesis shifts. During expansion with
(S, - Sa) < Kmaz, the algorithm repeatedly overlays several windows then crosscorrelates
when overlaying is no longer possible for the new window. The process of overlaying then
begins anew with the un-overlapped porfion of the window added. This Fzpand on Demand
process is represented pictorially in Figure 3-11.

In the modified regions of the output signal (regions where overlays with previous windows
were not possible), a staircase fade between original regions occurs. The distance between steps

is §,. For small §,, the staircase approaches a linear fade. Note in Figure 3-11 the start of

the first modified region contains three overlays of a previous input signal segment and one

49



FY b c d € 1 B n 1
input signal
f contributes 3/5 to final output
g contributes 2/5 to final output
full pile
r — S
5 ]
2/3 full pile B |
[ 5 n_i
T
e
Sa e [ e 2]
[ e 1
d e |
[ : S,k
L_c ) | i
{ [ g el
{b c |
b c ]
la__ D c

[ original input

[ mod | original | modified | original |

time-scale expanded signal

Figure 3-11: The process of overlaying which occurs during time-scale expansion with small

analysis and synthesis shifts.

50




window of more recent input signal with similar characteristics. The end of this modified
region contains a single \;vindow of the previous input signal segment and three overlays of the
more recent input signal segment.

The transition between “overlay” regions and modified regions can result in an amplitude
discontinuity when S, is too large. The overlay region which corresponds to a segment of the
input signal, is abutted with a similar periodic region of the new window. When SWO is low
(%;:” < 4) the transition to the new window is abrupt because little averaging occurs. In
many cases the periodic region of the new window will have significantly different amplitude.
A large amplitude difference leads to a discontinuity in the time-scaled signal. Figure 3-12
illustrates this phenomena. Amplitude discontinuities are readily apparent in the time-scale
expanded signal. When large analysis shifts are used, little averaging occurs in the modified
signal; and the amplitude of each windowed segment of input is preserved. Pre-echo associated
with large analysis shifts is also readily apparent in the expanded signal.

The increased qua]jfy associated with small S, during time-scale expansion can be at-
tributed to these effects which occur in the modified regions of the output signal. Note that a
longer window increases envelop averaging (increases SWO) by winlen/a$,, while the num-
ber of features (indicative of AWO) is increased by only winlen/S§,. This indicates a longer
window will give better results for a fixed analysis shift. For large analysis shifts, §, > 6.25
msec (50 samples), during time-scale expansion, §, = 28,, the quality of the time scale ex-
panded signal produced using winlen = 25 msec (200 samples) was noticeably improved when
compared to the signal produced using winlen = 37.5 msec (300 samples). This improvement
is due to minority feature attenuation of pre-echo which is not noticeably improved by using
different 'ﬁpdating schemes with winlen = 25 msec (200 samples) (see Section 5.9.4 and 5.9.3).

It is interesting to note that the high-quality associated with low analysis shifts results
from the nature of the reconstruction process rather than a more detailed analysis of the
ihput signal. An analysis shift of 2.5 msec (20 sé.mples) corresponds to an advance of less
than a single pitch period for all but the highest-pitched speakers. The subsequent synthesis
shift is approximately a single pitch period in length for female speakers, and less than half
a single pitch period for male speakers when a = 2. Operation with such a low analysis

shift is clearly inefficient since only a fraizction of the signal changes between windows. The
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real improvement in quality arises from the interaction of the parameters leading to overlays,
minority feature attenuation, and smooth transitions in the rate-modified signal. These results
were first observed for time-scale expansion of a signal which contained a single impulse using
various analysis shifts. Figures 3-13 through 3-17 illustrate the effects of minority feature
attenuation and the distance (time) between replicated features. Note in the figures that
the distance between impulses (“piles”) increases with increasing analysis shift. This follows
directly from Equation 3.8. The attenuation of minority features, the leading and lagging
replicated features in the figures, decreases with decreasing SWO (increasing analysis shift).

This follows directly from Equation 3.3.

3.4.8 Summary

Each sample in the rate-modified shifted signal is scaled by the number of overlapping windows
summed to create that sample. Thus all windows céntribute equally. Shifts that do not overlay
previous windows, those truly utilizing the normalized crosscorrelation calculation, lead to the
creation of new “piles” some distance ((5, — S;); Kmaz + (5, — 5,)] from previous “piles”. In
most cases the window length will be greater tha.ﬁ 2K maz (Section 2.3.1) so that the tails of
windows comprising the previous pile overlap with the window containing the new “pile”. The
sum of the overlapping portions are divided by the total windows contributing to the sum,
weighting a feature in the final output by its number of occurrences in the unscaled, rate-
modified signal. The greater the number of average overlapping windows, SWO, the greater
the attenuation for incomplete “piles”. The quality of the output signal is increased for higher
resolutions becatse as the number of overlapping windows contributing to the output signal

increases the attenuation of incomplete or half empty piles increases.

3.5 Prediction

The process described in Section 3.4.3 indicates that a portion of the shift values returned by
the algorithm are entirely predictable when a given feature appears in multiple windows and
the distance between features appearances in the rate-modified-unshifted signal is less than

Kmoz. Section 3.3.2 shows that for slow-down, portions of the input signal will always be
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contained in multiple windows, and the analysis shift may be chosen so the distance between
features allows prediction.

The distance between successive feature appearances in the rate-modified-unshifted signal
is (§s — Sq). A backward shift k(m) = §, — S, for the current window, W,,, will align
the feature appearance in the current window with the feature appearance in the previous
window, W,,,_;. If the previous window has been shifted backward by an amount k(m — 1),
the current window must be shifted by an amount k(m) = k(m — 1) 4+ (5, — S,) to align the
feature appearances in W,,, and W,,_1. If this distance is less than K., then the normalized
crosscorrelation calculation is unnecessary for determining the shift of the current window as

the value maximizing the crosscorrelation can be predicted. Thus:

k(m)z k(m—1)+(5,—5a) for k(m—1)+(5,—5¢,) < Koz (310)
: max RT (k) for k(m — 1) + (S, — Sa) > Kmas

In a similar m.lanner the shifts for time-scale compression may also be predicted. However,
this _would only arise in an implementation where multiple windows contain the same feature
and the shift to overlay features is within the shift search interval. In such an implementation,
small analysis shifts would permit overlays to occur on the shift interval and thus certain shifts
would be predictable. For time-scale compression the analysis shift is in general large enough
(Sa = Kmas) that prediction cannot and need not be utilized.

During time-scale compression the distance between appearances for compression is also
given by (S, — S,) only now S, > S,. The features move backward in time with each
appearance. For compression it was shown that no features should appear in more than one
window and the analysis shift is such that the quantity (S, — §5) = Sao(a — 1) is greater than

Koz for reasonable choices of §, and K ,q-.

3.6 Concluding Summary of Parameter Set Equations

Now that the interactions of the parameters have been outlined, the solution space for the
parameter set can be defined. The constraints fall into two classes: those arising from the

nature of implementation, algorithm defined constraints; and those which determine output

59




signal quality, quality defined constraints. The two classes of restrictions compete in many
instances and define the quality versus computation tradeoff.
This section recapitulates the previously outlined constraints. In summary we have the

following set of linear equations:

3.6.1 Algorithm Defined

Maximum window displacement: Fixed value.

K, ..z > Largest Pitch Period in Speech Signal

Kooz > 110 samples

Kmaz > 13.75 msec

Number of overlapping points for indication of correlation: Fixed value.
Olamin > 30
winlen — Kpaz — Olamin > S,
a
Order of Computation: Goal: Minimize.

(computation for indication of correlation)  (range of shift values) * (number of frames)

(winlen — a8,)(Kmaz)?| _ (winlen — §4)(Kmaz)?a
0 o ] -0 [ =

3.6.2 Quality Defined

Time-Scale Compression

Averaging in output signal: Goal: Minimize.

winlen _ (winlen)a

S, Sa
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Multiple window appearances of input signal segments: Goal: Eliminate.

winlen

Se

Reverberation in output signal is eliminated by preventing any input feature from appearing

in multiple windows.

Time-Scale Expansion

Averaging in output signal: Goal: Maximize.

winlen _ (winlen)a

S, Sa

Multiple window appearances of input signal segments: Always greater than 1.

winlen >1
Sa )

Eliminating reverberation in output signal by preventing any input feature from appearing in
multiple windows is not possible. Reverberation is reduced, however by high averaging during

output signal construction.

3.7 Summary

Chapter 2 presented the SOLA algorithm and defined the four parameters inherent in the
algorithm. In this chapter the concept of a parameter set was defined as constraints on pa-
rameter combinations were introduced. Only certain combinations of parameters provide the
desired hjgh-'quality time-scale modified speech. Events associated with reverberation, stut-
tering, and poor quality in the time-scaled signal were shown to be consequences of parameter
interactions in poorly chosen parameter sets. The source of perceived reverberation in the
time-scale modified output signal produced by the SOLA algorithm was examined in detail.
The concepts of “features”, “piles”, and “overlays” were introduced and used to support the
observations of output signal quality for various parameter sets. The effects of low analysis

shifts, shift interval duration, and window length on reverberation have been provided in close
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detail. The observed improvement for time-scale expansion with low analysis shifts was sup-
ported by the theorized interaction of the parameter set. 'Understanding the interaction of
the parameter set for time-scale expansion led to a method of predicting the shift values in

many cases, reducing the number of costly shift determinations.
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Chapter 4

Robustness of SOLA algorithm

This chapter is intended to give a relative measure of the robustness of the SOLA algorithm
for both time-scale compression and expansion. Several signals were processed in an attempt

to “fool” the algorithm. Throughout these tests the algorithm has proven to be very robust.

4.1 Speech Containing Noise

In telephony applications speech is often corrupted by varying amounts of random noise.
This noise is usually apparent as a slight background hiss in the signal. Even under ideal
circumstances digitized speech will contain a very slight amount of background noise associated
with quantization during the analog to digital conversion. Some amount of random noise in
present in almost all speech signals. Occasionally telephony speech will contain correlated
noise. Correlated noise is simply an echo of the original signal delayed by some amount. This
type of néise occurs less frequently than random noise in modern communication systems, but
can significantly degrade signal quality.

A robust time-scale modification technique for use in telephony applications must be able
to operate on signals containing noise. Ideally such a technique would provide uniform quality
across the range of modifications desired regardless of the noise contained in the signal. The
performance of the SOLA algorithm on signals corrupted by significant amounts of noise is

detailed below.
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4.1.1 Speech with White Random Noise

Random noise is by nature highly uncorrelated. Voiced speech on the other hand is higlﬁy
correlated. Thus the normalized crosscorrelation used to determine the shift values remains
relatively unaffected by random noise in speech signal. The crosscorrelation function of noisy
speech no longer resembles a smooth continuous waveform for voiced portions of the signal.
Random noise in the speech signal leads to noise in the correlation Wa\'reform, however, the
characteristics of the correlation waveform such as period and amplitude are preserved. Errors
in alignment due to noise in the correlation waveform are masked by the random noise in the
speech signal. Those portions of the speech signal composed of randoﬁ noise are not affected
by the added random noise as discontinuities in such signals remain undetected for the most

part.

Tests Performed

To determine what effect, if any, random noise has on the SOLA algorithm, random noise
was added to utteraﬁces before and after time-scale modification. The random noise was
added such that the segmental SNR! varied over the signal from a maximum of 10.53 to a
minimum of —43.80. Measured with 0.192 second damping?, the damped segmental SNR had
a maximum of 4.21 and a minimum of —32.19.

In the following tests, time-scale expansion was accomplished using a window length of
25 msec (200 samples), analysis shift of 2.5 msec (20 samples), synthesis shift of 5 msec
(40 samples), and a maximum shift value of 12.5 msec (100 samples) on speech sampled at
8 kHz. Time-scale compression was accomplished using a windoyv length of 32 msec (256
samples), analysis shift of 32 msec (256 samples), synthesis shift of 16 msec (128 samples),
and a maximum shift value of 12.5 msec (100 samples).

Both male and female speech were time-scale compressed and expanded via the SOLA
algorithm. White random noise was then added to these time-scale modified signals to create

several “standards” for comparison purposes. Random noise was also added to the original

!The power in each signal was computed over segments of 32 msec (256 samples).
?Segmental SNR with 0.192 second damping was calculated by averaging 6 consecutive single segment SNR
values. :
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utterances from male and female spéakers to create “noisy utterances”. These “noisy ut-
terances” were time-scale modified (compressed and expanded) by the same factors as the
standards. Comparisons of the time-scale modified “noisy utterances” and the “standards”
indicate that random noise has no effect on the quality of the speech produced by the algo-
rithm. For both expansion and compl:ession the speech corrupted by noise suffered no loss
in intelligibility during processing. The noise floor was slightly modified during time-scale
expansion however.

Time-scale expansion via the SOLA algorithm produces slightly noticeable changes in the
noise. Replicating portions of the input signal is inherent to the operation of the algorithm
during expansion. This replication occurs at quasi-periodic intervals along the output signal.
The replication becomes slightly audible as a subtle warble in the random noise background
of utterances containing significant background noise. The effect is most pronounced for
male speech expanded by a factor of two. This effect was not observed for female speech or
time-scale compressed male or female speech. The detectable change in the noise background
for male speech which was not apparent for female speech is most likely due to the greater
fluctuations along the shift interval associated with the longer local period in the signal.
Specifically, the presence of a single or partial period in the replicated portions of the input
signal may place added emphasis on the background noise as a single period takes on more
cha;acteristics of the noise than multiple periods.

The change in the random noise background during time-scale expansion prompted ex-
periments using only random noise as input to the SOLA algorithm. The same warbling was
noted, and increased when the output of one expansion was used as input for subsequent ex-
pansions. After several expansions the output was distinctly periodic. This result is expécted
for time-scale expansion as portions of the input signal are replicated in a quasi-periodic man-
ner. Subsequent expansions lock on to these quasi-periods and reinforce the slight correlatjon.
The highest amplitude frequency with a period smaller than K. will be successfully aligned
via the crosscorrelation and consequently reinforced as other frequencies are added without
regard to phase and tend to be attenuated due to destructive interference.

Operation of the SOLA algorithm on signals containing random noise provided significant

insight. The results obtained by repeating processing of random noise exposed the quasi-
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periodic nature of the SOLA algorithm. During time-scale modification of a speech signal,
these quasi-periods in the algorithm operate in synchrony with the local periods in the signal
and remain undetected. Observation of the crosscorrelation function of random noise also
exposed the predictability of shift values during time-scale expansion with low analysis shifts

(See Section 3.4.7).

4.1.2 Speech with Correlated Noise

Reverberation or echo in a signal is highly correlated with the original signal. This correlated
noise alters the signal and affects the crosscorrelation used to determine the shift values.
The delayed attenuated signal interferes constructively and destructively with periods in the
original signal. This interference can significantly alter the periodic structure of the resulting
signal. Subsequent time-scale modification of reverberant signals should at best preserve this
altered periodic structure. Recovering the original signal from a reverberant signal is an active
research topic known as echo cancellation.

When two periodic signals are addéd, the period of the resulting signal can approach the
greatest common multiple of the two individual periods. Reverberation in speech can lead to
signals whose local‘period may exceed K,,,. Theoretically this is cause for concern, however,
tests performed indicate that possible fractﬁring of periods greater than K., occur rarely in
telephony speech and remain undetected in time-scale modified reverberant signals.

Just as the periodic structure of a reverberant signal will differ from the original, the
crosscorrelation of a reverberant and original signal will differ. The crosscorrelation function
is corrupted by the correlated noise and the characteristics of the function are significantly
changed. The time-scale modified speech is of the same perceived quality as the reverberant
input signal, The algorithm will align the greatest amplitude local periods in the signal.
Thus the original signal and echo signal are aligned with themselves rather than each other
assuming the original signal has greater amplitude in the region of overlap. The alternative
aligns the original signal with echo and the echo signal with nothing, which should not have

as high a crosscorrelation.
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Tests Performed

To create a reverberant signal, an echo signal was constructed by delaying an utterance by 32
msec (256 points for 8 kHz sampling) and scaling it by 0.3. This echo was then added to the
original signal to create the reverberant test signal. The length of the delay was chosen such
that the reverberation was easily detected without rendering the test signal u.n.inte]ligibie.
The performance of the algorithm in this test should reflect performance for different delays.

Both male and female reverberant test signals were constructed in this manner. These
signals were then time-scale expanded using a window length of 25 msec (200 samples), analysis
shift of 2.5 msec (20 samples), synthesis shift of 5 msec (40 samples), and a maximum shift
value of 12.5 msec (100 samples) on speech sampled at 8 kHz. Time-scale compression was
accoﬁphéhed using a window leﬁgth of 32 msec (256 samples), analysis shift of 32 msec (256
samples), synthesis shift of 16 msec (128 samples), and a maximum shift value of 12.5 msec
(100 samples).

No increase or decrease in reverberation was detected for male or fel.:na.le speech after
compression or expansion. The performance in this test is harder to gauge accurately as no
“standards” exist. Creating a reverberant signal from the compressed or expanded original
signal yields substantially different output. Thus subjective measures must be used.

No period-fracturing due to local periods exceeding K., in male speech was detected
in the output signal although a small number of plots of the crosscorrelation functions did
not contain complete periods. While this limited tesi: set does not rule out the possibility
of such occurrences being detected, it indicates that most instances of fracturing involving
frequencies lower than 80 Hz remain undetected in the reverberant signal. Section 4.2 explores

this observation in further detail.

4.2 Speech Containing Multiple Speakers

Speech containing multiple speakers represents a complex waveform whose maximum local
period can significantly exceed the sum of the two individual periods. This presents a problem
when both speakers have low pitch which can be partially corrected by increasing K nq5. Note

from Section 3.4.3 however that the value of K,,,, affects the duration of the input signal
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replicated during time-scale expansion. Therefore K,,;; must remain less than a window

length to insure uniform time-scale modification of the output signal.

Tests Performed

Test files containing two speakers were created by adding utterances from two male speakers,
and utterances from a male and female speaker. These two test files were then processed and
compared with “standards” obtained by time-scale expanding and cdmpressing the utterances
individually before adding them. The test files containing multiple speakers were processed
using the same parameter set as speech from a single speaker.

The SOLA algorithm provided high-quality time-scale modified speech containing multiple
speakers over the desﬁed range of compression and expansion. No degradation due to period-
fracturing was detectable in the utterance containing two male speakers. It was noted that
tracking a single utterance in multiple utterances by different speakers can be quite difficult.
The ability to track a single utterance was not improved in the time-scale expanded signal,
and was virtually impossible in time-scale compressed signals.

Speech processed with K, equal to twice the pitch period actually resulted in speech of
lower quality due to the long duration of replicated segments of the input signal. Refer back
to Section 3.4.3 for details.

The performance of the algorithm using parameters for single speakers on speech con-
taining multiple speakers is likely due to the fact that £req"uencies below 70 Hz are sharply
attenuated in telephony speech. Even in studio-quality recc;rdjngs the absence of frequencies
whose periods approach two male pitch periods are often undetected. Frequencies in this range
do not nofma.lly occur in speech and thus tend to be ignored when listening to speech. If the
local period in multiple-speaker utterances exceeds that of Km,, (i.e. below 80 Hz), some
period fracturing will occur. Recall however that the crosscorrelation will successfully align
the highest amplitude frequency above 80 Hz. The results obtained from this test indicate

.that only frequencies above 80 Hz are detected by the human ear when listening to speech in

telephony environments, or frequencies below 80 Hz are undetected due to their attenuation.
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4.3 Complex Non-Speech Signals

Non-Speech signals such as music containing electric guitar and piano were expanded and
compressed via the SOLA algorithm. The performance of the algorithm on non-speech sig-
nals was better than expected. The crosscorrelation aligns the highest amplitude frequencies
present in adjacent windows. In most cases these higher amplitude frequencies prévide the
most essential information used by the human ear. The music was processed using the same
parameter sets as for voice, a.]iowing frequencies down to 80 Hz to be aligned. The resulting
output was easily recognizable and of good quality. In telephony applications, frequencies be-
low 70 Hz are sharply attenuated, thus any misalignment of these low-amplitude frequencies

will result in extremely small discontinuities.

4.4 Robustness of the Crosscorrelation For Shift Determina-

tion

In cases where the crosscorrelation function is distorted or excessive precision rounding occurs,
the 2nd highest peak may be selected for the shift value. This can have two effects depending
on the duration of the signal’s period. Recall that the crosscorrelation function is periodic with
the local period in the overlapping portions of the windows. The function is therefore periodic
with the pitch pulse excitation. Figures 4-1 and 4-2 represent graphs of the crosscorrelation of
several frames of voiced speéch. In the graphs, the crosscorrelation functions of two windows
in a given frame are separated by short segments of zeros.

If the largest amplitude periodicity in the signal is less than half K, the 2nd highest peak
will most likely correspond to aligm'm_ent of the current window with an alternate period. This
can be seen in the crosscorrelation function of windows of voiced fernale speech in Figure 4-2.
The shift returned is offset by an amount equal to the duration of the periodicity in the signal.
This will provide good alignment in most cases and not give rise to drastic discontinuities.

If the largest amplitude periodicity in the signal is approximately K4z, only one period
of the crosscorrelation will occur on the interval [0, K,,,;]. The longer duration of the period
in this case results in a rounder peak. This can be seen in the crosscorrelation function of

windows of voiced male speech in Figure 4-1. In this case the second highest peak will occur
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one sample to either side of the highest peak. This shift returned will be offset by one sample.
This small misalignment does not have a drastic effect however as such a delay represents a
small peréentage phase lag for the longer duration period. ’

To simulate errors, the highest peak of the correlation function was masked during pro-
cessing. The speech obtained from this processing was indistinguishable from the speech
processed with the standard implementation. This result is exploited in Chapter 5 to reduce

the computational requirements for shift determination.

4.5 Conclusion

This Chapter has shown the SOLA algorithm to be very robust for speech corrupted by
noise which is present in many telephony applications. The algorithm performance was not
significantly a.ﬂ'ected by random or correlated noise. In addition, the algorithm performed
equally well on bandlimited, telephony-quality music. .
Note that no objective measure is available for evaluating the performance of the algorithm
with the standards. This is an unfortunate consequence of the locally optimal nature of the
shifts selected by the algorithm. An accurate signal to noise ratio calculation requires identical

phases in the reference and test signal.
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Chapter 5
Computational Savings

5.1 Introduction

This chapter details several methods which reduce the SOLA algorithm’s computational re-
quirements for time-scale compression and expansion. The methods are focused on the shift
determination step of the algorithm since this forms the bulk of the computational load.

The algorithm’s robustness as'detailéd in Chapter 4 indicates that it may be possible to
reduce the number of computations while maintaining high quality time-scaled speech. Ideally
the algorithm should be “tuned” to operate on speech signals, making full use of inherent
redundancies. It is also desirable to exploit the human ear’s inability to detect certain errors
that can arise in the modified speech.

As méntioned earlier, shift values have increased importance in portions of speech where
the signal is stationa.ry and sloﬁly varying, such as vowels. The signal is highly correlated,
making errors in alignment more pronounced and easily detected. Those portions of speech
which are aperiodic, such as fricatives, generally arise from random noise excitation of the
vocal tract. Alignment of these portions is less critical as the signal lacks any distinct periodic
structure. Reductions in computation can be accomplished by exploiting these speech signal
properties.

An unfortunate consequence of dealing with a subjective measure such as perceived quality
is that no easy criteria for evaluation exists. The shifts returned by different alignment

functions may differ radically while the speech produced is indistinguishable. This makes an
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objective evaluation of the performance of computationally reduced functions difficult. In
the following sections numerous functions which reduce the required computations for shift
determination are demonstrated. In all cases the resulting speech was compared with that
obtained using the standard crosscorrelation technique. Attempts to quantitatively measure
the performance are difficult beyond the following measures: “indistinguishable”, “slightly

worse but barely detectable”, “noticeably reduced quality”, and “objectionably degraded”.

5.2 Predicting Shifts for Time-Scale Expansion

Chapter 3 detailed the source of reverberation and clicks in time-scale expanded signals. It
was noted that in many cases the shifts which maximize the crosscorrelation are entirely

predictable. Exploiting this predictability allows using lower analysis shifts, §,, without an

accompanying increase in computation. This is possible because the number of predictable

shifts also increases. The peak load of the algorithm, however, is not reduced as it may still
be neceséary to determine shift values via the crosscorrelation for several successive windows.

Observations of the shift values returned by calls to the crosscorrelation procedure showed
that in a few cases, approximately 3 to 5 pércent of the time, the shifts returned did ﬁot
correspond to those predicted. For example, when (S, — S;) = 20 successive shifts should
increment by 20 (i.e. 20 40 60 80...). Occasionally a shift would be violate the pattern, only
to have the next shift complete the pattern (i.e. 20 57 60 80...). Rarer still, approximately
1 percent of the time, there' were occasional instances of violations leading to the initiation
of new patterns (i.e. 20 57 77 97..). The cause of such violations in the .predicta.bi]ity of
the signa.l is likely due to the fact that windows are added and their sum is used in subse-
quent correlation evaluations. Because the sum may change the nature of the signal (such
is the case when dissimilar windows are added) the shift with the maximum correlation may
change. These excursions from the predicted patterns may correspond to alignment with
previous pitch periods or alignment with the summed signal. Note when SWO is high, the
crosscorrelation will be operating on an output signal composed almost entirely of overlapped
previous windows. This signal will in many cases differ significantly from the original input
and thus the crosscorrelation may not be maximum when “features” overlap.

Due to the rare instances of prediction rule violations, an implementation which predicts
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the shifts according to the rule outlined in Chapter 3 (Equation 3.10) was implemented. The
speech obtained from this technique was of high quality and indistinguishable from speech pro-
duced without exploiting the predictability. The average computational load is substantially
reduced by applying the prediction rule when low analysis shifts are used. The reduction in
the number of critical shift determinations has the added benefit of reducing the importance
of the correct shift determination for low analysis shifts, as fewer shifts are determined by the
alignment function. In all tested cases, predicting the shifts provided high quality output and
maintained the local period in the signal.

Prediction essentially allows the algorithm to operate in the Ezpand on Demand fashion
where small analysis shifts are used without a significant increase in computations. A straight-
forward extension to the SOLA algorithm utilizing prediction would calculate the distance to
the next window whose shift would not be predictable. Intervening segments would merely be
copied to the output buffer. This method resorts to shift determination via crosscorrelation

and updates to the output buffer only when shifts are not predictable.

5.3 Average versus Peak Computational Load with Predic-
tion

Recall that shifts were determined to be predictable when the shift which overlays identical

segments is contained on the shift interval, or when:

IK —-1| + (Sa - Sa)

IN

| K mas|

Knot|+ Sa(a—1) < [Komasl

We would like to estimate the number of predictable shifts obtained from a nonpredictable
shift. To detenmne this we examine the number of pred.lctable shifts that will occur for each
value of a nonpredictable shift. The interval (0, Kynaz) is therefore divided into N equally
spaced segments starting at the value K,,,,. The number of segments, IV, is given by [ & (s—ﬂgﬁ
The width of the first N — 1 segments is given by (S5 — Sa), the width of the Nth segment is
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given by the fractional remainder of [%ﬁf:-]

We assume the value of the shift which maximizes the crosscorrelation is uniformly dis-
tributed along the shift interval after several frames. Thus all shifts occur with equal likeli-
hood, and the probability that a shift falls within a specific interval V is (width of N)/K nqa.

The number of shifts predictable from a previous shift depends solely on the value of the
previous shift. For the interval (Kmaz — (S5 — Sa); Kmaz), no shifts are predictable. The
number of predictable shifts increases by one with each segment N as the shift moves away
from Kmaz. A shift which falls in the N'th segment (segment containing k(m) = 0) will result
in Kpnaz/(Ss — S,) predictable shifts.

The expected value for the number of predictable shifts from an unpredictable computed
shift is approximately:"

@) = 3 (- M5

3R n.S';(a—l)

E(z) = 1- 2227 )

(z) ngo[ A
E(z) = #”fl) (5.1)

Equation 5.1 indicates that the expected number of predictable shifts goes as 1/25,. When

utilizing prediction, the fraction of shifts which must be computed is then

1 1
E(z)+1 —(m”sf aaz_s 4 ]

K
15 (a=1) o ?ﬁfﬁ N (5.2)
alCx—
. % For Toetaeyy > 1

&

Thus the computational cost associated with increasing the number of frames (1/8; in
Equation 2.6) is offset by the decrease in the number of shifts which must actually be calculated
when 25,(a — 1) € Kpqz- '
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5.4 Reduced Shift Resolution

The initial implementation of the crosscorrelation procedure computes a crosscorrelation value
for éach possible shift in the range 0 to K nqz. Pitch periods take on values betweer 3.75 msec
and 125 msec (30 to 100 samples at a sampling rate of 8 kHz). In general, the sampling rate
is not an integer multiple of the pitch period. Thus the number of samples per pitch period
will vary by one or two samples. Tests have shown that restricting shifts to n samples, where

n takes on values 2 or 3, results in time-scaled speech which is indistinguishable from the

higher resolution provided when n = 1. Reduced shift resolution effectively subsamples the

correlation function. Thus a major peak may be missed if it is extremely narrow. Such narrow
peaks are unlikely in the crosscorrelation function of speech however. The reduced resolution
will affect alignment of speech with shérter pitch periods the greatest, because a shift of
one sample represents a larger relative offset. Lower-pitched speech is less affected since the
misa.].ignmenf is small relative to the pitch period. The coarse alignment of the windows can’
cause the period of voiced segments in the time-scaled output to jitter by ~ +n/2 samples.
Re&ucing the resolution also forces misalignment of the higher harmonic frequencies from the
pitch pulses.

Several assumptions are made in restricting the resolution of the shift values. The most im-
portant assumption is that misalignment of higher frequency harmonics does not substantially
reduce the perceived quality. Each increase in n represents a “decimation” of the possible sam-
ple alignments. Thus higher frequencies are no longer capable of being aligned. This effect
increases into lower frequencies with increasing n, as frequencies above (sampling rate)/2n
are aliased lower into the spectrum. Note however that these frequencies will not always be
aligned in the standard implementation, since the highest amplitude frequencies dominate the
crosscorrelation. The higher amplitude periods in the signal are not always integer multiples
of the higher frequencies’ shorter periods, nor are these shorter periods integer multiples of
the sampling period. (See chapter 3 on output signal averaging during time-scale compression
for a discussion of these effects). .

The previous assumption is valid if the highest amplitude frequencies in the signal are
centered well below the point where this “aliasing” occurs. Thus assuming pitch pulses occur

at frequencies below 400 Hz, reducing the shift resolution by 3 means the phase misalignment
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between periods at 400 Hz will not exceed 36 degrees. If the pitch pulses occur below 100 Hz,
reducing the shift resolution by 3 will give rise to a phase misalignment not greater than 13.5

degrees.

Results

Time-scale modified male and female speech using reduced shift resolution with n — 2 was
indistinguishable from speech obtained with n = 1 over the range of @ = 0.5 to a = 2. Time-
scaled speech processed with n = 3 was noticeably lower in quality than n = 1, yet clearly
intelligible. The reduction in quality was most evident in the time-scale expanded by 2 signal.

Reducing the shift resolution beyond every third sample led to a noticeable degradation
in quality for time-scale expanded (a = 2) female speech. For very high pitched speakers
the signal takes on a harsh coarse sound. This effect was not as pronounced for time-scale
expanded (a = 2) male speech with substantially lower pitch. The quality of time-scale
- compressed speech (a = 0.5) was far less affected by reduced shift resolutions. However all
values of n > 4 gave noticeably degraded time-scale compressed and expanded speech with

varying degrees of intelligibility.

5.5 Data Reduction for Correlation

The number ofb data points used in the correlation calculation may also be substantially
reduced without affecting thé resulting crosscorrelation indication. Recall that speech signals
are composed largely of voiced and unvoiced segments. The voiced segménts are largely
periodic and relatively stationary over short durations. The unvoiced regions tend to resemble
random noise and are aperiodic. Again, due to the length of the periods for voiced speech (30
to 100 sampies at 8 kHz sampling rate), the correlation calculation may be computed using
decimated data. Decimating the data in the correlation relies on similar assumptions that
were made for reducing the shift resolution. We assume that frequencies which are aliased
lower into the spectrum will not substantially interfere with the alignment of higher amplitude
pitch periods. Decimation occurs in both sequences, so similar aliasing occurs in each, and

the crosscorrelation may not be significantly affected.
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The amount of decimation howevér depends on the spectral content of the signal. If
an anti-aliasing filter is applied to the input speech signal before the crosscorrelation step,
bandlimiting the input signal to 400 Hz, decimation by 10 is possible before aliasing of the
400 Hz sinusoidal signal occurs. Bandlimiting the signal in this case reduces the complex
speech waveform to a sinusoid Wavefofrﬁ. This sinusoidal signal, sampled at 8 kHz, may be
decimated by 10 without aliasing affecting the shift determination. The decimated signal is
adequate for representing the overall trends in the sinusoidal waveform. Tests on unfiltered
input (bandlimited to 3.8 kHz), however, indicate that limiting the decimation factor to 4
or less maintains a confident indication of alignment. Each decimation corresponds to a
folding of each windowed segment’s spectrum. Decimation by n of a signal sampled at'8 kHz
corresponds to superimposing the signal’s spectrum at 812(%, thus decimation by 4 results

‘ina superimposed ('aliased) spectrum at 2000 Hz.

Experiments using the standard shift resolution and different decimation factors for the
crosscorrelation indicate no detectable difference in output quality for decimation of the data
by 2, 3, or 4. Decimation beyond a factor of 4 was not explored due to the diminishing returns

in terms of computational savings and increased susceptibility to noise.

5.6 The Normalized Crosscorrelation Function

The normalized crosscorrelation is designed to provide a measure of the relative correlation
between two segments. An unnormalized correlation product varies With the amplitude of the
data points. Thus the unnormalized function can give a misleading indication of alignment;
i.e., the highest correlation product may not correspond to the most correlated alignment. To
correct for the effects of increasing or decreasing amplitudes in the segments to be correlated,
the correlati'on product is divided by the power in the two segments. This removes the
amplitude bias that can arise from amplitude variations over several periods and restricts the

crosscorrelation function to the interval -1, +1].

79




5.6.1 Adaptations to the Normalized Crosscorrelation

The normalized crosscorrelation function used to determine the shift values proves to be
computationally expensive. The denominator term accounts for more than two thirds of the
total computations involved, and includes a computationally intensive square root operation.
Computing these in real-time with a typical hardware implementation proves difficult. Several
methods of reducing the computational requirements of the normalized crosscorrelation were
explored.

Using an urmorma-lized crosscorrelation function with a variable number of points provided
poor sh.if'é values with a noticeable reduction in quality. Calculating the denominator term once
and using it for subsequent shift values has no normalizing effect since only the maximum over
an interval is selected 3;5 the best shift value. Therefore any fixed value for the denominator
will be no better than setting it equal to one. One possible method would be to update the
denominator Aperiod.ica].ly over the range of shift values since the signals are assumed to be

slowly varying over voiced regions.

5.6.2 Periodic Updates to Denominator

The method of periodic denominator updates proved very effective. By updating thé denomi-
nator in the normalized crosscorrelation every 15 shift values, the amplitude bias is drastically
reduced. The correlation products are divided by a function which is staircase in nature, yet
proves effective because the change in power over the shift range of 15 samples in most cases
is small. Recalculating the denominator is highly redundant since the same samples are used
for calculating the power. The sum of the square of the samples need not be recalculated for
each shift. Rather, the value of the previous sum can be stored between shifts and modified
appropriately Before the square root operation. If the number of overlapping points increases
with each shift, the denominator sum from the previous shift is updated by adding the square
of the additional samples before the square root operation.

Another alternative to the standard denominator is to use the power in one of the windows
rather than both to normalize against changing amplitudes in the signals. Although this
method is less justifiable, the results were of such quality that this method could not be

dismissed. Either choice of windows is equally justified.
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5.6.3 Two Alternatives to Square Root Function

As the square root of an unbounded number is a rather slippery calculation using standard
ALU operations, an effective alternative is desirable. Using the product of the sum of the
absolute value of samples in the denominator rather than the square root of the product of

the sum of the squares of the samples provides equal quality output. Thus:

Lm-1 Lm—-1
Y. ly(mS, —k(m) + )| Y [e(mS, + )] (5.3)
=0 7=0
replaces
Lm—1 Ln-1
Z y2(mS, — k(m) + j5) Z z2(mS, + j) (5.4)
7=0 . 7=0

Another method exploits the simplicity of computing logz on binary numbers. A log,

can be implemented by simply determining the bit position (b-p) of a binary number which

contains the most significant 1 (MS1). The rightmost bit-position is defined as position 0,

with subsequent bit-positions incrementing to the left. Using the well known identity:

' 1
log[vz] = 5 logz
and exploiting the simplicity of computing the log, of a binary number we have:
VT = 2o VE

where

log,[v/z] = %log2 z = %(bit position of MS1 in binary number)

o3 log; = _ o(bit position of MS1)/2

Additional precision to the log, approximation can be obtained by appending an arbitrary
number of the bits immediately to the right of the most significant 1 to the number representmg
the bit position of the most significant 1.

Recall that the purpose of the square root is to correct for variation in the power in the

segments, thus the nearest integer power of 2 should suffice and the bit position approximation
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vz > log, z | b-p of MS1 | 2(b-p of MS1) [ o[(b-p of MS1/2)]
4.47 20 4.32 4 16 4
- 7.07 50 5.64 5 32 8
10.00 100 6.64 6 64 8
22.36 | 500 8.97 8 256 16
31.62 | 1,000 | 9.97 9 512 32
70.71 | 5,000 | 12.29 12 4,096 64
100.00 | 10,000 | 13.28 13 8,192 128
223.60 | 50,000 | 15.61 15 32,768 256

Table 5.1: Comparison of log, approximation for square root.

should be adequate. This scheme provides a simple approximation for the square root in the
normalized crosscorrelation. The error in this scheme is exponential, as the square root of
numbers on the interval (27, 271 ~1) is given by the square root of 2. This scheme provided
good results for time-scale compression and only slightly lower quality than the standard

normalized crosscorrelation for time-scale expansion.

5.6.4 Unnormalized Correlation with Fixed Data Points

Fixing the number of data points used in an unnormalized correlation provided speech that
was indistinguishable from the normalized variable length correlation. In this method, only
the numerator is used for evaluation of a shift’s correlation. Although this function is a crude

approszﬁation to the normalized function,_the quality of output does not appreciably suffer
| and the computations and complexity are drastically reduced. This implementation requires
careful choice of parameters as the minimum number of overlapping points for all possible

shifts must be used. See Section 5.8 for further information on using fixed lengths during shift

determination.

5.7 Alternate Functions for Aligning Windows

The previously outlined methods for computational savings reduce the complexity associated
with computing a normalized crosscorrelation-like function. The goal of shifting, however, is

to obtain the alignment that maximizes signal similarity in terms of magnitude and phase.
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Many alternative functions give an indication of similarity between signals. Several of these
were tested and evaluated. Unfortunately the gains in simplicity for many cases are not easily
realized since current signal processing hardware has been optimized for multiply-accumulate
operations.

The following class of | functions was explored as an alternative to the computationally
intensive normalized crosscorrelation. Several of the functions offer distinct advantages in
that a sum or difference need only be normalized by the number of overlapping points used
in the calculation. This results in a bounded divide operation (division by a number on a
pre-computed bounded interval). Bounded division can be implemented using multiplication
by a fraction. A look-up table for the appropriate multiplication value is all that is required.
Alternatively the number of points used to compute the sum or difference may be fixed,
‘eliminating the need for any normalization over the range of shift values. The minimum
number of overlapping points for all shifts on the shift interval must be used in this case,

~ consequently all available data will not be used for all shifts.

5.7.1 Least Difference
Rationale

If two signals are identical, the difference between them will be zero when they overlap ex-
actly. If the signals are similar in periodic structure, the accumulated absolute difference as
a function of lag will be minimum at a point which aligns the periodicities. Such a function
requires no normalization and may prove adequate for aligning similar windows of speech.

The accu_mulated difference is given by:

Lpm-1

- Dn= Y

=0

y(mS, — k(m) +5) — e(mS, + J)

T (5.5)

There are several distinct advantages of the least difference function. First no square
root is required, and no multiplications are necessary. The function still requires a divide to
normalize for the varying amounts of overlapping points used in the surmn, but this divide is
bounded by the range of overlapping points for shifts on the shift interval. This bounded

divide can be implemented using multiplication by fractions. Alternatively, this divide may
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be eliminated by fixing the number of points used to the lowest number encountered, in which

case all sums may be compared equally.

Results

The lea_st difference method provides goo'd results for male speech, but somewhat lower quality
for female speech. The reduced quality arises from stutterant sounding friéatives during short
portions of the speech signal; the speech obtained, however, was highly intelligible.

Using a fixed number of points results in extremely poor quality when the number of

overlapping points used to compute the difference is less than a pitch period. The time-scale

compressed speech obtained using the least difference function was indistinguishable from that

obtained using the normalized crosscorrelation function. Time-scale expanded speech varied
in quality ;however, with the performance for time-scale expansion of female speech being
much worse than male speech. The resulting female speech was noticeably lower in quality

than speech obtained from the standard algorithm. The decreased performance for shorter

pitch periods is most likely due to the fact that small alignment errors have greater affects on

smaller pitch periods.

5.7.2 Same Sign Total
Rationale

After several attempts at further reducing the required computations, it became apparent
that an ideal function should give an indication of the alignment/ con-elation between windows
without requiring a denominator term to normalize the function; Alignment affects the quality
most during periodic portions of the speech signal. These regions of speech represent voiced
segments which have periods between 3.75 and 12.5 msec (30 and 100 samples at 8 kHz
sampling rate). If we assume the pitch period is the highest amplitude frequency in these
regions, it is valid to assume that the shift which results in the highest number of agreeing
signs will also align these periods.

Lyn-1
RZ, (k)= 3 sign{y(m$, - k(m) + j)}sign {z(mS, + j)} (5.6)

j=0
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This method weights all samples equally which eliminates the need for normalizing the
function by the Power in the signals. The technique makes full use of the periodic structyure
of those portions most sensitive to alignment. In essence, the complicated speech waveform
is rendered into a Square wave of fixed amplitude whose Zero crossings match those of the
speech signal. The number of agreeing signs is identical to a crosscorrelation on this unity
amplitude square wave., The resulting function is therefore a good approximation to the more

complicated crosscorrelation yet requires no multiplications.

corresponds to the bit offset between buffers providing the largest number of 0's (false for
XOR) in the XOR result. Many DSP chips perform this type of “population count” of bits
on numbers in a single instruction. Note that such an implementation would allow operation
on blocks of the input data rather than single samples (8 samples for byte operations, 16 for
word operations etc..).

Alternatively the signal could be pre-processed to +1 or -1 for all samples. A single
bit multiply-accumulate would correspond to the nu.mbe; of agreeing signs; and assuming less
than 256 overlapping points, only 8 bits plus a sign bit would be required for the accumulation

sum.

Results

The speech produced by the same sign total technique is indistinguishable from the speech ob-
tained using,the standard crosscorrelation function for time scale compression and of slightly
lower quality than the standard crosscorrelation function for expansion by a factor of two. The
technique however is not nearly as robust as the normalized crosscorrelation to the methods of
decimation and reduced shift resolution. Decimating the data used for the sum and reducing
the resolution of the shifts resu.lteci in speech of significantly lower quality than comparably
decimated crosscorrelation techniques. Note that a shift of one sample in this scheme elimi-

nates two agreeing signs per zero crossingi Thus the robustness of this technique to decimation
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Figure 5-1: Number of data points available for fixed point shift determinations.

depends largely on the number of zero crossings in the signal.

5.8 Fixing the Number of Overlapping Points in Shift Eval-

uations

Using a fixed number of overlapping data points has several effects that must be noted. In

implementations with variable numbers of overlapping points, the value of the alignment func-

tion (crosscorrelation, least difference, etc. .. ) obtained reflects the correlation or similarity of

all overlapping points.

If the minimum number of overlapping points, P,;., across the shift interval is used, the
value obtained is not indicative of thé similarity of all overlapping points, but rather a fraction
of the overlapping points. Only P,;, points in each window will be used in all alignment
evaluations even though substantially more points will be added. The effect of the addition
of points other than the P,;”-n used in the evaluation, is not taken into account. The measure
obtained represents only a fraction of the effect of adding the window if an insufficient number
of points are used. It is therefore necessary to raise the number of minimum overlapping points
to insure a substantial portion of the points in the window are used tc; evaluate the alignment
for all shifts.

Recallingl from Section 3.3.2, the number of overlapping points between the current win-

dow, W, and the rate-modified shifted signal is:

overlapping points = winlen — §, — k(m — 1)
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As k(m — 1) may take on values between (0, Ko.) we have:

minimum number of overlapping points = Winlen - §, — K

mazx

Table 5.2 provides an indication of the minimum number of overlapping points available

for different parameter combinations. The minimum number of overlapping points increases

a | Winlen | S, | S, | Kmez | number of points used in correlation
2 400 | 100 | 200 | 100 100
2 400 | 050 | 100 | 100 200
2 400 | 020 | 040 | 100 260
2 300 | 050 | 100 | 100 100
2 300 | 020|040 | 100 160
2 300 | 010|020 100 180
2 200 | 035 | 070 | 100 030
2 | 200 |020]040]| 100 ' 060
2 200 | 010 | 020 | 100 080
0.5] 400 | 400 | 200 | 100 100
05| 400 | 200|100 100 200
0.5| 400 |100|050| 100 ' 250
05| 400 |050|025( 100 275
0.5| 300 |300] 150 100 050
05| 300 |200f|100| 100 | - 100
0.5| 300 {100|050| 100 150
0.5| 300 |050|025]| 100 175
0.5 200 | 200|100 100 000
0.5| 200 | 100|050 100 050
05| 200 |050]{025( 100 075
0.5| .200 | 020|010 100 090

Table 5.2: Number of points available for fixed point alignment functions.

'

with increasing window length or decreasing analysis shift. Such changes are limited, however,

due to the undesirable effects in terms of reverberation and computation respectively.

Conclusion

The fixed-length methods provide good quality output for many of the alignment functions

when the proper choice of parameters is used. The quality of the output obtained for a given
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number of points is highly reflective of the robustness of the method employed. "Of all align-
ment functions which do not require a denominator term for normalization, the unnormalized
crosscorrelation method from Section 5.6.4 provided the best results using a fixed number of

overlapping points in shift evaluations since it was the most robust of methods with similar

computational efficiency.

5.9 TUpdate Functions

As the benefit of using low analysis shifts became apparent, a weighting function to provide
" the same effect was desired. Several update functions were tested in an effort to reduce the

required computations and storage for implementation.

5.9.1 Equal Contribution Weighting Versus Time-Order Dependent Weight-
ing

. Equal Contribution Weighting

Summing all overlapping samples in the rate-modified shifted signal prior to normalization
weights the contribution from all windows equally. This has been the method of choice
for several authors [14] [11] [13]. Such an implementation requires a divide and a separate
buffer containing identically shifted overlapping window functions to determine the proper
scaling factor for a given sample. Maintaining the normalization buffer requires construction
of an additional signal, r(n), in parallel with the unnormalized rate-modified-unshifted speech
signal, y(n) (See Equation 2.3). This places additional memory and computational burdens
on the resources used to implement the algorithm.

The division operation required for equal contribution weighting varies in complexity with
the windowing function used. For rectangular windows, the denominator is a small integer,
and a lookup table can be used to convert the divide to multiplication by a fraction. When
other windowing functions are used, however, a true division will be necessary since the sum
of the overlapping shifted window functions can take on numerous values. True division can

be costly to implement on some DSP chips.
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Conclusion

Equal contribution weighting effectively doubles the storage required to implement the algo-

rithm and increases the number of operations.

Time-Order Dependent Weighting

Averaging each new window with the existing signal during each frame was explored as an
alternative to equal contribution weighting. This method eliminates the need for: a parallel
normalization buffer by incorporating a time or order dependent weighting. In this scheme the
weighting function, f(j) may be applied to a window multiple times. If a window overlaps a
portion of the output signal constructed by the addition of two previous windows, the weight-
ing function is applied again, thus a recursion of the weighting operation. The operations

associated with Equations 2.2, 2.3, and 3 are replaced by

y(mS, — k(m) + ) =
(1-7(7))y(mS, — k(m) +7) + f(i)z(mSa+j) for0<j<Lm—1 (5.)
z(mS, + j) for Ly < j < Winlen — 1

The function f(j) is a weighting function such that 0 < f (7) £ 1. Since the weighting function
- isless than one, each application of the weighting function reduces the contribution of previous

windows when multiple windows overlap.

Recursive Addition Updating

The simblest type of time-order dependent weighting is to add the overlapping portion with the
existing signal and immediately divide by two. Thus f(j) = 1/2 Vj. Subsequent overlapping
windows are then added to the previously constructed signal andrthe sum divided by two.
Averaging the windows at each frame incorporates a time/order dependent weighting when
multiple windows overlap (SWO > 2). The first window is weighted by 3= where n is the total
number of overlapping windows contributing to a given section of the signal (i.e., the number
of applications of f(j) to a region of the output signal). In this case the most recent window

added in the region of overlap is always weighted by % This technique offers two distinct
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advantages: the division by 2 operation can be accomplished by shifting the sum of the
output signal and new window one bit to the right, and the need for a separate normalization
buffer is eliminated. Such a scheme can only be accomplished when rectangular windowing
functions are used for the speech. More complicated windowing functions require keepmg

track of the overlapped windowing functions.

Results

The speech obtained using recursive weighting with f(7) = % Vj was compared with speech
obtained using equal contribution weighting. Recursive weighting provided speech that was
slightly lower in quality than the original algorithm for time-scale compression (a=10.5) and
not noticeably different for time-scale expansion (a = 2). The difference in performance is
most likely due to the higher number of overlapping windows during compression and the
deleterious effects of recursive weighting which occur for higher values of SWO associated

with compression.

5.9.2 Conclusion

Recall from Section 3.4.6 that in equal contribution weighting, portions of the unnormalized
output are weighted by the sum of overlapping windows. This attenuates the least frequently
occurring features in the sum. Recursive windowing, however, attenuates the most frequently
weighted window. This effectively removes incomplete “piles” or sections of overlay at the
leading edge of multiple feature occurrences in the output signal as desired, but eliminates
any attenuation of incomplete piles at the trailing edge of multiple overlay segments. There
is no longer a staircase fade between modified and original segments. The last window added
will always have a sign.iﬁcant'contribution to the final output and may or may not contain
the features present in previously overlay segments.

Preliminary tests were inconclusive as to which caused greater perceived reverberation
in time-scale expanded-by-two signals containing four multiple feature appearances: equal
contribution weighting which gives two unattenuated features (due to full piles) occurring
between attenuated features (due to incomplete piles), or recursive weighting which results in

three essentially unattenuated features. The order dependent weighting scheme that occurs
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with recursive windowing has the undesirable effect of discarding the information in the first
6verlapping windows. In many cases, crucial features in the speech signal may be unduly
attenuated. Stop consonants and plosives may be so reduced that they are undetected in the
output signal, thus detracting from the perceived quality. This attenuation increases with
increasing SWO, making time-scale compression more susceptible to these deleterious effects.
During compression, weighting all windows equally is desired since the contribution from
each window is equally important and smooth transitions result. During expansion it is
desirable to place added emphasis on the most recently overlapped window and reduce the
contribution from previous windows. Previous windows may contain distinct input signal
features which cannot be aligned with corresponding features in the current window. This
can lead to reverberation and pre-echo when large analysis shifts are used (see Figure 3-10.
Reducing the contribution of previous windows can increase the perceived quality when large
analysis shifts are used by attenuating pre-echo. .
Setting f(j) = 1 Vj reportedly provided time-scale expanded speech of high quality [13].
Speech obtained using this technique was highly intelligible but of lower quality for time-
scale expansion than equal contribution weighting or recursive weighting with a linear update
function. Time-scale compression using this technique was significantly lower in Qua].ity than

equal contribution weighting or recursive weighting with a linear update function.

5.9.3 Windowing Functions and Weighting.

It was noted that a major source of reverberation and reduced quality in the time-scale ex-
panded signal was due to amplitude changes in the input signal at word boundaries. Significant

gains in éignal quality were noted when triangular windows were used across pitch periods

~ in Time-Domain Harmonic Scaling [4]. Makhoul also reported improvements in signal qual-

ity using triangular windows [3]. Each sum of overlapping samples is divided by the sum of
overlapping window functions, thus the contribution of a window in the sum depends on its
distance from the center of the window in the input signal and its shift relative to the center
of neighboring windows. Figure 5-2 illustrates a simple case where two triangular windows
overlap. In the region of overlap the signal is divided by the sum of windowing functions.

Note the contribution of speech from a window decreases with increasing distance from the
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Figure 5-2: Triangular Weighting.

center of its window in the region of overlap. In cases where there is no overlap the speech is
normalized by the windowing function and is identical to the original input.

The effectiveness of triangular windowing is greatest during compression when regions of
the output signal are comprised of several overlapping windows. During time-scale expansion,
however, the overlap between windows is decreased. In this case many portions of the time-
scaled signal consist of a single window or overlapped windows with the same interframe
interval used during analysis'. Thus many regions of the output signal correspond to portions
of the input signal exactly. By using triangular windowing functions, the transition to the new
window is more gradual because the contribution of the new window is gradually increased
in the region of overlap. Linearly increasing the contribution of the leading edge of the new
window reduces discontinuities associated with the transition between windows.

It was noted that the speech obtained for time-scale compression using triangular windows
was no better than rectangular windows. No distinguishable improvement was obtained using'
triangular weighting, a.n‘d‘ in ceftain cases the quality was worse.

The primary motivation for using a more complicated window was to improve the time-
scale expanded signal quality by reducing envelope discontinuities. Triangular weighting does
smooth the boundaries between overlapping windows, but as shown in Figure 5-3, the win-
dowing functiion does not significantly reduce the pre-echoing discontinuities associated with
large analysis and synthesis shifts. Note the time-expanded signals obtained using rectangular
(corv100.mu) and triangular (cortv100.mu) windows in Figure 5-3 both exhibit the pre-echoing
and signal discontinuities associated with too large an analysis shift. The triangular window-

ing does exhibit smoother amplitude envelope transitions which improve the signal quality

!Recall from Sections 3.4.6 and 3.4.7 that small analysis shifts result in regions of overlay. The net result is
a replicated portion of signal is identical to input signal after normalization.
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slightly. However the presence of substantial pre-echo in both signals (see Figure 5-3) lead to

objectionable choppiness.

Summary

Triangular windowing was shown to smooth envelope discontinuities in the time-scale ex-
panded output signal improving perceived quality. However, amplitude énvelope discontinu-
ities are apparent only when large analysis shifts (S, > 10 msec) are used during time-scale
expansion. These effects are not detectable at lower analysis shifts. The reduction in signal
quality using analysis shifts greater than 10 msec (80 samples) is caused primarily by pre-
echoing which is not reduced when triangular windows are used. Triangular windowing carries
the added burden of maintaining a parallel buffer of overlapping windowing functions that
must be used to scale the rate-modified shifted signal to obtain the final output. Because of
the increased complexity associated with triangular windowing and the relatively small gains
. achieved during time-scale expansion, this process was abandoned for real-time hardware im-
plementations. I conclude that this scheme, with its added complexity, offers no improvement

over simply decreasing the analysis shift.

5.9.4 Linear Recursive Weighting

It has been shown that discontinuities can arise at the boundary of overlay and modified
regions in the rate-modified shifted signal because no smoothing occurs when SWO is low.
Triangular windowing does provide a more gradual transition in the window on the right-hand
side of the boundary when mﬁltiple windows overlap. Indeed this was the primary motivation
for pursuing a more complicated weighting scheme! As an alternative to triangular windowing,
recursive linear weighting was explored.

Linear recursive weighting eliminates the need for a parallel normalization buffer by linearly
weighting the overlapping portions before adding them. Linear recursive weighting uses the
following weighting function in Equation 5.7 to update the output signal:

f4) = (5.8)

2
Lm
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The quantity L., represents the number of overlapping points between the windows and is
bounded on a finite interval. A look-up table may be used to obtain f(j) for all possible j
and L, thus no division is required. As before, this scheme results in a time/order weighting
of the data in overlapping windows.

Although the number of overlapping points will vary from window to window, the total
number of overlapping points cannot exceed a window length. A look up table containing
appropriate scale factors for a window length’s worth of overlapping points may be used when
fewer points overlap by skipping appropriate entries. Although this leads to added complex-
ity, the gain in quality justifies the added computations for very high quality applications. In
Chapter 6, methods which fix the overlap region are introduced, further simplifying imple-
mentation of this update technique.

Results

Recursive linear weighting was compared with equal contribution weighting. No significant
improvement was noted for speed up (« = 0.5) using linear recursive weighting when compared
with equal contribution weighting. A slight lowering in the spurious noise floor was barely
detectable. This is jikely due to the decreased influence of data near the window edges.

Recursive linear weighting improved the output signal quality for expansion (@ = 2, a =
1.5) such that the analysis shift could be doubled with the resulting output remaining equal
or superior in quality to the standard equal contribution weighting scheme. Recursive linear
weighting did not, however, prevent Pre-echoing associated with large analysis shifts (S, > 10
msec) used during time-scale expansion.

Note that utilizing prediction allows a decrease in the analysis shift with only a small
increase in the average computational load from the overhead associated with each frame.
This reduces the emphasis on using large analysis shifts to save computations. Linear recursive
weighting, however, offers the added benefit of reducing peak load and overhead, since fewer

frames are used over a given section of the input.
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5.10 Hardware, Computation, and Implementation Issues

The tradeoffs for implementing the alignment function must be fully investigated for determin-
ing the optimal implementation for real-time hardware. Specifically, issues such as overflow,
underflow, data access, and memory maintenance drastically affect the number of operations
required for implementation.

The number of operations necessary to implement the algorithm is extremely architecture
dependent. To illustrate this dependency, the computational requirements of three shift-
determination methods are compared in terms of the different operations required. To deter-

mine the true cost of each implementation, the following measures are defined:

e «a: The number of shift calculations.

B: The number of operations associated with computing the numerator of the crosscor-

relation (multiplying the signals z(n) and y(n — k)).

~: The number of operations associated with computing the denominator (i.e., power

in z(n) by squaring and summing the samples).

e §: The number of operations associated with the division operation (6, and 4, refer to

bounded and unbounded division respectively).

€: The frequency of the denominator calculation.

€: The operations required to compare the current shift’s alignment function value with
the existing maximum alignment function value on the shift interval (i.e., picking the

peak).

e (: The operations required to load data from memory into the internal registers.

Using the above representations, the approximate number of operations for the standard

normalized crosscorrelation exceeds:

Cost = a[{(8 + 2e7) + ops required for sqrt() + € + 8]

A modified version of the algorithm, designated cross33upitrm for the function it calls, uses

data decimation by 3, a shift resolution of 3, periodic updates to the denominator function,
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and the power in the new window only for the denominator calculation. The approximate

number of operations for the crossd3upltrm version exceeds:

al B  ev €
Costx — |((=+==)+=+46,
0s 3[((3+53)+3+ J

The crosssign version of the SOLA algorithm counts the number of agreeing signs in the
region of overlap and normalizes this quantity by the number of overlapping samples. The

approximate number of operations for the crosssign version exceeds:
1
Cost ~ a [E( ¢ + operations for 16-bit XOR) + % + 65]

This estimate reflects implementation of the CTosssign version on an architecture which per-
forms 16-bit XOR in a singlevinstruction cycle (typivcal of most DSP microprocessors) and an
implementation in which only the sign bits of samples are used in shift determinations. The
sign bits are “packed” into 16-bit integers for the XOR operation which reduces the operations
required to load and operate on the data by 1/16. The operations required to compare values
of the alignment function are reduced by 1 /2 since the number of agreeing signs cannot exceed
256 (2°) for overlapping segments of less than 256 samples. This means only single bytes need

be compared.

5.10.1 Integer and Fixed Precision Implementations

~ The SOLA algorithm is well smted for mteger implementation on current DSP chips. The
crosscorrelation represents the most difficult operation to implement. The large unbounded
nature of the sum in the multiply-accumulate used to evaluate the correlation proves the most
cumbersome! A 16-bit linear representation for the speech signal results in 32-bit intermediate
product terms during the crosscorrelation computation. Provided the number of product
terms (i.e. number of overlapping data points) is less than 256, the accumulated sum of each
correlation will not exceed a number easily represented by 40-bits.

Precision becomes an issue only after the divide associated with the normalization step.
This issue can be easily side-stepped using one of the various correlation-indicating functions

that do not require unbounded division. Small errors due to rounding or truncation of the
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16-bit speech data are not detected by the human ear.

5.10.2 Storage Requirement

The storage requirement for implementing the SOLA algorithm can be reduced to two buffers.
One contains the new window of data to be added to the output signal, the other contains
the most recently constructed portion of the output signal. .

The buffer containing the new window to be added is used in the correlation calculation
and then added to the output buffer with the appropriate shift. The new-window buffer
requires a fixed length equal to the window length used and is overwritten with new data each
frame.

The output signal buffer is used for both the correlation computation and the update
procedure. Since the position of the window to be added is bounded by the shift interval,
only a portion of the newly constructed output signal needs to be stored. The output signal
. buffer requires a fixed length equal to (winlen — S, + Kpnos). To allow time-scale expansion
and compression over a wide range of synthesis shifts (5,) using fixed hardware resources, a
length of (winlen + K o) should be used. .

After determining the proper shift for the current window, the existing signal must be
updated. Construction of the output signal using one of the previously outlined recursive
weighting update functions can be accomplished using a circular buffer with (winlen - S, +

K maz) data elements. The output signal is generated as follows:

1. The output buffer is initialized with the first frame of input. The initialization is ac-
complished by copying the first window of data clockwise into the output buffer starting

at the 0 or 12 o’clock position.

2. The correlation of the new-window ‘bu.ffer with the output buffer is evaluated for each
shift on the interval [0, K,..2).

3. Add the new window to the output buffer with the shift that maximizes the correlation
between buffers.

4. §, data points from the output buffer are output as finished speech. The data points
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are output from (Target(m — 1) - Kmaz) to (Targét(m) — Komaz). This is final output

since it will be unaffected by the addition of subsequent windows.

5. Zero the output buffer from (Target(m — 1) — K maz) to (Target(m) — Kngy).

6. Loop back to step 2 using the next window of data in the new-window buffer.

This implementation offers two principal advantages: fixed memory requirements and
fixed worst-case computational loads. Assuming 16-bit data is used, the storage required will
be less than 1250 bytes. The computations required will be less than 100 operations per
output sample, on the order of 50 operations per output sample for shift determination and

50 operations per output sample for data transfer and memory management.

5.11 Summary

In Chapter 5 inethods which reduce the computational requirements of the SOLA algorithm
were examined. Numerous update equations were tested in an attempt to increase the analysis
shift and thus reduce the required number of computations. None however afforded the ability
of exceeding an analysis shift of approximately 8.75 msec (70 samples) for expansion without
a noticeable decrease in quality. This hard limit is imposed by the mechanisms of the SOLA
algorithm for time-scale expansion.

The combined savings in computation using decimated data, reduced shift resolution,
and modified alignment functions allowed substantial reductions (by more than a factor of
50) in computational requirements. During the more computationally intensive time-scale
expansion, exploiting prediction in the algorithm allowed small analysis shifts to be used
withbut increasing the average computational load. Predicting shifts reduced the average
-computa.tion'a.l load by approximately a factor of 4. The total reduction in computation
amounts to a peak load reduction of % for compression and expansion, and an average load
reduction of .2% for expansion. These reductions do not significantly reduce the perceived
quality for time-scale modified speech signals.

The number of computations required for shift determination exploiting these reductions
is approximately 40 to 50 operations per output sample. The total required operations will

vary with the implementation and update function used, as well as the quality desired.
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Chapter 6

SOLA-b: A Modified SOLA
Algorithm

6.1 Introduction

The previous chapter was dedicated to modifications of the SOLA algorithm which would
reduce computation and aid in implementation. Substantial reduction in computational load
was shown to be possible without an associated loss of quality or robustness provided by
the original SOLA technique. Implementing the SOLA algorithm for operation on real-time
signal processing architectures exposes some key obstacles which can easily be side-stepped
with minor modifications to the original algorithm.

Recall that each new window is displaced from its target position in the output signal. It’s
final position may lie anywhere within the shift interval. Thus the synthesis interframe shift
varies with each frame. The variable synthesis shift during the construction of the output
buffer gives rise to a signal whose growth rate varies frame to frame. The fixed distance
between target positions of new windows leads to a variable number of data points available
for each crosscorrelation calculation and variable length overlapping regions.

The variable length overlap region requires the weighting function, f(j) in Equafion 5.7,
be defined over a variable length interval. This complicates use of linear update functions,
in which the values of f(j) are dependent on the total length of the overlap interval. The

variability in the number of data points available for the crosscorrelation and update functions
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requires knowledge of the previous shift value to determine the current number of data points
in the output signal buffer. This increases storage and computational requirements since
the number of data points must he calculated and stored between frames. Additionally, the
computations and time required to generate a given number of output samples will vary,
requiring that the worst-case latency be used.

An implementation in which the region of overia.p is fixed significantly reduces complexity.
All values of the weighting function, f(j), are fixed. The computational requirements and
output signal generation time are fixed. Such gains are easily achieved by varying the analysis
interframe shift and fixing the synthesis interframe shift. This new algorithm, a variation of

the original SOLA, will be called the SOLA-b algorithm.

6.2 SOLA-b Definition

The goal of the “Synchronized-Overlap Add” technique was to maximize the similarity be-
tween overlapping portions during construction of the output signal. This goal was achieved
by fixing the analysis shift and varying the synthesis shift. The goal can also be realized by
varying the analysis shift along the input signal while fixing the synthesis shift. In this im-
plementation the first p samples in each new window overlap the last p samples in the output
signal. The starting position of each analysis window is allowed to vary dynamically so the
crosscorrelation of the first p points in the new window with the last p points in the output
signal is maximized.

The time-scale modified signal, y(n), obtained using the SOLA-b technique for aligning

input signal segments, z(n), is given by:

1. Initializing the signals y(n).

y(n) =z(n) for n =0...Winlen — 1 (6.1)
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2. Updating y(n) by each new frame of the input signal, (n), as follows:

y(mS, +j) =
(1= f(7))y(mSs +7) + f(i)z(mSa+ k(m) +j) for0<j<P-1 (6.2)
z(mS, + k(m) + 7) for P < j < Winlen - 1 .
k(m) = max R7, (k) (6.3)
Ln-1 2
S { Y. y(mS, +j)z(mSa + k + j)}
RT(k) = —m— (6.4)
[ Z :cz(mSa—{- k+ j)}
j=0
Lom—1 ‘
S = sgn [ z y(mS, + j)z(mS, + k +j)}
7=0
L, = P VYm

This technique offers several benefits. At each frame the output signal is extended a fixed
amount, winlen — p. Thus the region of overlap is constant, the number data points in the
crosscorrelation is fixed for all shifts. As previously mentioned this allows fixing the values
of the update function, f(7), so they may be pre-computed and accessed when needed. In
addition, the same data points in the output signal (the last p data points) are used in each
crosscorrelation evaluation, thus only the first p data points of the sliding analysis window

change in the correlation calculation between shifts. This leads to the simplified normalized
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Crosscorrelation, The original normalized crosscorrelation

Lym-1

Y. u(mS, + J)2(mS, + & + )
) =0
RT(E) = : (6.5)
L1 Lm-1
Z yz(m.S',-}-j) Z z:z(mSa-}-k-l-j)
7=0 i=0 )
Ola,,,, < L,< winlen
can be simplified to:
Ln-1
Y y(ms, +7)z(mS, + k 4 j)
Ro(k) = 2= (6.6)
Lpm—~1
2. 2X(mS, 4k 4 7)
7=0
L, = winlen — Ss=P ¥m

The quantity [Zf’;b“l y¥(ms, + J )] in Equatijon 6.5 remains constant duringthe shift de.
terminatijon of the current window. Since only the maximum of the normalized Crosscorrelation
is desired during each shift determination, this constant can be removed With no effect op the
location of the maximum, only its valye, This reduces the number of multiply~accumulate

Operations by 1/3,

Lm—-1 2
s [ > y(ms, t7)z(mS, + & + j)]

7=0

F—— (6.7)
[ Z 2¥(mS, + & +j)}

_;‘:0

=0

Lin-1
§ = sgn [Z y(mS, +7)z(mS, + & +j)]

L, = winlen — §, = p Ym

Note that this simplified Crosscorrelation Provides identjca] results since, for our purposes,
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it is mathematically equivalent to the s-tandard normalized crosscorrelation. Again, the value
L., is fixed in this new implementation.

Also note that for the proper choice of parameters, no region of overlap will contain a
previous region of overlap. In this case the crosscorrelations and shift determination can be
computed using only the input signal. ’fhe last p data points at the end of every window will
be identical to the last p data points of the output signal at every step of the dutput signal
construction. Thus we can compute the location in the input signal corresponding to the
start of the last p samples in a window, W,,,. Note this location depends on the choice of S,
and the shift k(m) associated with W,,,. The location corresponding to the start of the next
window, W11, is then computed. Note that the starting location of Wi, depends solely
on the value of ‘S."" Thus a buﬁ'er of input signal samples of length Ko, + 2P is adequate for

determining the shift of a window.

6.3 Comparison of SOLA-b and SOLA

6.3.1 Tests Performed

Performance of the SOLA-b technique was compared to the SOLA for time-scale compression

and expansion of male and female speech.

Time-Scale Compression

Male and female speech were time-scale compressed via .the standard SOLA algorithm using
a window length of 32 msec (256 samples), analysis shift of 32 msec (256 samples), synthesis
shift of 16 msec (128 samples), and a maximum shift value of 12.5 msec (100 samples). The
output obtained was compared with the same male and female speech obtained using the
SOLA-b method. Icientica.l values for the parameter set were used for the SOLA-b method.
The speech obtained from the two differing methods was indistinguishable for both the male
and female speech. :

To test performance at moderate compression (a ~ 1), male and female speech was pro-
cessed via the SOLA and SOLA-b algorithms using identical parameter sets. The parameter
set used in this test was specified by a window length of 32 msec (256 samples), analysis shift
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of 32 msec (256 samples), synthesis shift of 25 msec (200 samples), and a maximum shift
value of 12.5 msec (100 samples). No difference was detected in the speech obtained using the
differing methods.

Time-Scale Expansion

Male and female speech was processed via the SOLA and SOLA-b algorithms using identical
parameter sets. For the parameter set specified by a window length of 32 msec (256 samples),
analysis shift of 12.5 msec (100 samples), synthesis shift of 25 msec (200 samples), and a
maximum shift value of 12.5 msec (100 samples), the SOLA-b algorithm produced speech
that was superior in quality to speech using the SOLA technique. The speech however was
not of high quality due to the ill conditioned parameter set for the SOLA algorithm which
effectively reduces the shift interval by violating Equation 3.4.

Performances of the two techniques were compared using other parameter sets: a window
length of 32 msec (256 samples), analysis shift of 5 msec (40 samples), synthesis shift of 10
msec (80 samples), and a maximum shift value of 12.5 msec (100 samples). For this parameter

set, there was no distinguishable difference in quality between the two methods.

8.3.2 Performance: Quality and Computation

It is important to note that the computational requirements are not equal in both algorithms.
Namely the fixed number of overlapping points in the SOLA-b algorithm requires less cross-

correlation computations than the corresponding SOLA algorithm. This is due to the fact

that shifting the synthesis windows backward along the shift interval in the SOLA algorithm

increases the number of overlapping points between windows. The SOLA-b technique of shift-

ing the analysis windows results in the same number of overlapping points for all shifts along

the shift interval.

The SOLA-b algorithm is free of many restrictions associated with the SOLA algorithm.
SOLA-b is not constrained by Equation 3.4 for high-quality operation. Using SOLA, the
window length parameter is restricted to be larger than Kpmaz + Olamin +.5, (see Section 3.3.2,
equations 3.5, 3.6, 3.7), since the growth of the output signal varies by up to K4, for each

frame. The larger window length required due to parameter set interactions leads to larger
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overlap regions than necessary for the crosscorrelation evaluations. In the SOLA-b technique
the signal is extended a fixed amount with each frame, and the number of overlapping points
is determined by the minimum necessary for the crosscorrelation computation. Furthermore,
since only a minimum number of overlapping sample points (Olamin) are required in the
crosscorrelation calculation (Section 3.3.2), only Olamin data points need be evaluated during
all shifts along the shift interval. This results in substantial computational savings since SOLA
requires at least Olamin + Kmae overlapping points when evaluating the left-most shift along
the shift interval.

The computational requirements for SOLA are given by:

# frames ] {[# shift evaluations] [avg. # computations] }
[output sample frame shifteval + [update comps.|
x [a.IS’ ] {[me] [MOPOSI + K—;—E] [[PC] + [MOPOSI] [update computa.tions]} (6.8)

MOPOSI must be greater than Olamin+ Kmaz to prevent a gap in the output stream when
the previous window is maximally shifted. This is a direct consequence from Equation 3.5.

Equation 6.9 sets a lower bound on the window length for the SOLA algorithm: winlen >

. Olamin + Kmaz + S,- Note that for SOLA-b, the sole requirement on window length is that

it be Olamin points greater than §,, which results in a smaller number of overlapping points

for most i)arameter sets. Thus the computation requirements for SOLA-b become:

o [aIS ] {|K maz) [winlen — §,] [IPC] + Olamin[update computations|}

1 [cxlS ] {[Kmaz] [Ol@min) [IPC] + Olamin[update computations]} (6.10)

Using Equation 6.8 and Equation 6.10 for the SOLA and SOLA-b algorithms respectively,

with comparable parameters (more specifically, identical frame rates), we can compare the
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performance of both algorithms in terms of their computational requirements: IPC/frame
(inner product computations per frame) and Update/frames (updates per frame).

From the equations above it is clear that for a given frame rate, the SOLA algorithm
requires Koz more minimum overlapping points than SOLA-b. Furthermore, the number
of points in each crosscorrelation evaluation increases as the window is shifted. Because the
number of additional points is fixed for a giveﬁ frame rate, the computational overhead can
be calculated exactly.

Using Equations 6.8 and 6.10 with Kmez = 100 and Olam;, = 30 and noting that
the IPC for SOLA-b are 2/3 the IPC for SOLA using the modified crosscorrelation, SOLA-
b requires 1/9 the computations for shift determination. The advantage of the SOLA-b
algorithm increases with smaller values of Olamin. Values as low as 20 overlapping sample
points have been used without degradation of the output signal, at which point the SOLA-b
requires 1/13 the number of IPC computations in the SOLA algorithm.

Additionally, SOLA-b requires fewer update computations per frame. SOLA-b updates
only Olam;n points per frame and copies 5, to the output while the SOLA technique updates
Konaz + Olamin points on average and copies S,.

To test the effect of shortened window lengths on performance of the SOLA-b .algorith.m

the following parameter sets were compared.

winlen = 256 winlen = 110
Se = 40 S, =40
S, =80 versus S, =80

Komaz = 100 Koz = 100

Note that the number of frames is the same in each parameter set, but the number of
overlapping points and thus crosscorrelation computations has been significantly reduced using
a shorter window length. The output obtained using the shorter window length was of slightly
better quality than the output using the more computationally intensive window length. This
pleasant result most likely results from the decreased amount of averaging that occurs when

shorter window lengths are used.
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Overlap-Replace Update Function Using SOLA-b

The high ;luaJity obtained using small regions of overlap (= Olamiy) in the SOLA-b algorithm
prompted experiments using an overlap replace rather than update scheme. This scheme,
proposed by Wayman, Reinke, and Wilson [WRW89), overwrites the overlapping region of the
signal with the new window. The performance of this technique for time-scale compression was
poor. Relatively large overwrite regions lead to bad splices as the signal changes significantly
across window boundaries. The performance of this technique for time-scale expansion was

significantly lower than the overlap-add using SOLA-b for the two parameter sets used:

‘ winlen = 256 winlen = 110
S, =40 S, =40
S,=80 and S,=80

Koz = 100 Kpee = 100

6.4 Summary

This chapter introduced a modified version of the SOLA algorithm, SOLA-b, which greatly
simplifies implementation. It provides time-scale modified speech of equal quality with signifi-
cantly reduced computational requirements. The SOLA-b algorithm operates most efficiently
when winlen — §, = Ol@min. In this case the SOLA-b update resembles splicing more than

averaging, since most new data points are appended to the output buffer rather than averaged.

108




t
|
i
|

Chapter 7

Conclusions and Topics for Future

Investigations

This Chapter presents conclusions based on the body of work presented in this thesis. No new
information is presented in the conclusion section of this cha.pter\, rather it serves to highlight
important findings. Several topic for future investigation and future applications are presented

in the “Future Investigations” section.

7.1 Conclusions

7.1.1 Parameter Selection for SOLA Algorithm

Listen tests (See Appendix A) indicate that 25 msec window lengths were preferred for female
speech, while 37.5 msec window lengths were preferred for male speech. A window length
of 32.0 msec (256 samples) is compatible with both male and female speech with no loss in

quality.

Time-Scale Compression

An analysis shift equal to the window length should be used. This choice eliminates rever-
beration in the output signal by insuring no segment of input appears in more than one

window.
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Time-Scale Expansion

An analysis shift of not more than 6.25 msec should be used in conjunction with shift prediction

to reduce computation.

Time-Scale Compression with Subsequent Expansion for Data Reduction

The analysis shift used for compression should be less than that for normal expansion due
to the reduced stationarity of the signal. If possible, the window length used should contain

between two and three pitch periods.

Alignment Function

The quality of speech obtained by decimating data by a factor of three and reducing the shift
resolution by 2 provided speech which was indistinguishable from the standard technique with
one-sixth the computations. This technique is highly recommended.

7.1.2 Computational Requirements

- The modified versions of the SOLA algorithm and the SOLA-b algorithm can easily pfocess
telephony quality speech (bandlimited to 4 kHz and sampled at 8kHz) in real-time using
currently available signal processing chips. For signals sampled at higher rates, increased

processing speed may required parallel processing for real-time applications.

7.1.3 Intelligibility Enhancement

Ad hoc experiments performed by time-scale expanding rapidly articulated speech which was

difficult to understand indicated no increase in intelligibility. If a segment of speech is difficult
1

to understand as a result of slurring or careless articulation, time-scale expansion will not

improve its intelligibility.

7.1.4 SOLA Performance on Broad-Band Speech

The SOLA algorithm was used to time-scale compress speech sampled at 44.2 kHz. The
resulting speech was of high quality and did not expose any abnormalities in the output that
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might have been masked by the operation on telephony-quality speech.

7.1.5 The Winning Algorithm

From the experiments conducted during this thesis, the SOLA-b algorithm provided the best
quality:computation ratio of the standard and reduced computation versions of the SOLA
algorithm. The SOLA-b algorithm operates most efficiently when the number of overlapping
points is small. The linear weighting update function significantly improves quality when large
analysis shifts are used. The benefits of linear updating are less apparent when small analysis

shifts are used.

7.2 Future Investigations

7.2.1 Introduction

This section introduces topics for further investigation. The SOLA algorithrh has been shown
to provide high-quality time-scale modified speech with relatively low computational require-
ments. This thesis explored several techniques for increasing the quality to computation ratio,

and revealed parameter interactions that account for reverberation in the output signal.

7.2.2 Increased Intelligibility of Time-Scale Modified Signals

To develop more ﬁatu.ra.l sounding time-scale mod.iﬁcatibn, techniques which preserve the time-
scale of critical phonemes while modifying others may be explored. Presumably additional
pre-processing of the speech signal may be useful in detecting critical phoneme segments of
the signa.i. The crosscorrelation provides information about the local pitch and may be useful

in making voiced/unvoiced decisions.

7.2.3 Parallel Processing for Shift Determination

The task of determining the shift value which maximizes the crosscorrelation of a particular .
window lends itself to parallel processing techniques. The crosscorrelations may be computed
in parallel to reduce latency and increase throughput in the algorithm. The parameter set

may be chosen such that the shifts of each window can be determined from the input signal.
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7.2.4 Input Signal versus Rate-Modified Signal Operations

One specific drawback of the SOLA algorithm is its inherent operation on the rate-modified
unshifted signal rather than the input signal for the shift determinations. This prevents pre-
computing appropriate shift values for the construction of the output signal. The TDHS
aigorithm forwarded by Malah [4] offers just such an advantage, as the pitch is estimated in a
Pre-processing pass on the input signal and used to perform insertion or deletions as required.
-For a limited range of parameter sets, the shift values in the SOLA and SOLA-b algorithms
can be determined from the input signal alone. The range of time-scale modifications is limited
however.

In interactive applications it is desirable to perform time-scale modification at different
rates during various portions of the speech signal. A hybrid algorithm combining pitch infor-
mation from the input signal with the displacement of windows in the rate-modified unshifted
signal would allow predicting the shift which would maximize the correlation with previous
windows. During the less critical random noise sections of the signal the time-scale could be
preserved, or windows could be added without shifting.

During voiced portions of the signal, the shift that maximizes the correlation between the
current and previous window is given by the sum of the fractional period at the end of the
previous window and the fractional period at the beginning of the current window modulo
the pitch period.

Performmg time-scale modlﬁcatlon v1a the SOLA a.lgonthm prowdes information in the
from of shift values which 1nd.1ca.te the dlsta.nce between similar portions of the speech signal.
It may be p0551b1e to utilize mforma.tlon obtained from a computing the shifts at low analysis
- resolutions to infer the shifts that would be appropriate for construction of the modified signal
using differenit synthesis shifts. Pre-computing all shift values at alow analysis shift and adding
pairs of shift values does not result in the same shift obtained by doubling S, because the

offset between consecutive windows in the rate-modified unshifted signal is increases by S,.

7.2.5 Pitch Synchronous or Hybrid TDHS algorithm

Time-Domain Harmonic Scaling makes use of the local pitch period to determine the amount

of shift between frames. This technique is advantageous in time-scale expansion of speech
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with long pitch periods. With knowledge of the local pitch period, the algorithm can advance
an integer multiple of the local period before up dating the current pitch estimate. The SOLA
algorithm advances a fixed amount regardless of the local pitch. Utilizing pitch information

to determine the analysis shift may provide an algorithm with improved performance.

7.2.6 Speech Boundary Detector

Observations of the crosscorrelation across the frame sequence led to the several possible
applications of similar functions. Since the crosscorrelation provides an accurate indication of
the similarity between signals irrespective of their amplitudes, the correlation of a single unit
with neighboring units could be used to give an indication of the duration of a single unit

type in the speech signal.

7.2.7 Speech Redundancy Reduction

. One interestiﬁg application of time-scale compression for coding and speech processing involves
reducing redundancies in the speech signal via SOLA time-scale compression. The normalized
crosscorrelation function gives a quantitative evaluation of signal similarity. If consecutive
frames above a certain correlation value were deleted from the signal many of the redundancies
could be eliminated. The goal of such processing is to obtain a series of individual pitch
periods, each differing from its neighbors by some threshold value. The number of redundant
periods removed could be stored and used later to construct a time-expanded signal that
resembled the original. The reconstructed signal would undoubtedly suffer in quality, but

possibly remain intelligible.

7.2.8 Intelligibility Enhancement

Speech recognition efforts continue to improve the ability to detect important features in a con-
tinuous speech signal. Accurate knowledge of specific phoneme boundaries could be combined
with SOLA time-scale modification to produce more naturally sounding time-scale modified
speech and possibly increase intelligibility. Preserving critical portions of the speech signal

while time-scale modifying others would provide a powerful means for enhancing intelligibility.
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7.2.9 Data Compression

Several attempts have been made to reduce the data required for speech coding [14] [3]. The
limiting factor in compression is the duration of the shortest phoneme. It may be possible to
increase the quality by varying the amount of compression/expansion with the signal. Long
stationary segments in a speech signal are prime candidates for compression. Short rapidly
changing segments, however, are difficult to compress and re-expand without significant al-

teration.

7.2.10 Voice Mail Applications

Time-scale modification of speech is particularly attractive in voice messaging systems. A
high-quality time-scale modification feature would allow users to speed through long mes-
sages without missing information. Users familiar with the messaging system could speed-up
prompts frorﬁ the voice messaging system to save time. Message segments containing impor-
tant information, such as names, addresses, or phone numbers, could be time-scale exph.nded

to aid in transcription.

Issues

Several issues surround time-scale modification in voice-messaging. The first and foremost
is whether such a feature would be utilized. Although the benefits of such a feature are
clear, several other issues play significant roles in its utilization. The user interface should
allow simple and seamless transitions between time-scale modified and normal speech without
pauses or deletions. Also, to be useful, the quality of the time-scale modified speech should
be such that users would not have to replay the message at normal speed to be assured of its

content.

Merging Time-Scale Modification with Data Compression-Decompression

By far the most interesting and challenging problem that remains in real-time applications
involving data-compressed stored speech is incorporating the SOLA technique before decom-
pression. Most voice messaging systems employ some sort of data compression-decompression

scheme to reduce storage requirements of voice messages. Data compression-decompression
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often forms the bulk of the computational requirements in voice messaging systems. In addi-
tion to the computational burdens of performing time-scale modification, speed-up (time-scale
compression) requires decompressing the voice data at an increased rate. Speed-up by a factor
of two requires decoding of the data at twice the normal rate. This can present significant
difficulties because the computational requirements of the messaging system are more than
doubled.
| If the SOLA algorithm were to operate on the compressed data representing the speech
signal before decompression, a significant reduction in computations may be possible. Sub-
band coding is one technique which may allow this. Sub-band coding divides the speech signal
into frequency bands, then dynamically allocates bits to represent information in the sub-
bands accordingly. The division into sub-bands represents a linear, time-invariant operation.
Moreover, the simple overlap-add update employed by the SOLA algorithm is also linear and
time-invariant. It may be possible to perform the overlap-add in the sub-band domain prior
to decompression. This would allow time-scale compressed messages to be data-decompressed
at a normal rate.
Many sub-band coders decimate the data in the sub-bands of the signal. Decimation
restricts the shift résolution of the SOLA algorithm in such a scheme because no intra-sample
overlap-adding is possible for data in the sub-bands. The time-scale modification performed,

however, is dependent only on the ratio §,/5,, thus the decimation rate does not limit the

choice of modification factors.
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Appendix A

Listen Tests

Due to the sub jeétive nature of the quality measurement, implementations were compared
in double-blind A-B preference tests. Sentences A and B were played in pairs and listeners
indicated a pfeference for either A or B.

Each test pair of sentences A versus B represents an utterance selected é.t random from a
grdup of 8 utterances. Sentences A and B are two versions of the selected utterance processed
using a parameter set A and B respectively. The number of trials reflects the number of
different test pairs (a single utterance) used to compare parameter sets A and B. In cases
where more than one test pair is used, the order in which the pairs are presented to the
listener is forced to be random and equal plus or minus one. This is done to counteract any
order-dependent bias associated with the comparison. |

All tests were performed on speech bandlimited to 3.8 kHz and sampled at 8 kHz. Numbers
appearing in parentheses after durations in milliseconds refer to the corresponding number
of samples of a signal sampled at 8 kHz unless otherwise noted. Eight different utterances
-collected from eight different speakers (4 male and 4 female) were used for the listen tests.

A.1 Listen Test I

The first listen test was used to determine the preferred window length and analysis shift for
time-scale compression by a factor of two. Four groups of parameter sets were chosen for this

test:
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P-set # | a | winlen | S, | S, | Kmaz
1 1| 100 |100] 50 | 100
5 |1]| 200 |200]100] 100
3 % 300 300 | 150 | 100
s |3| 400 |400|200| 100

This selection allowed comparisons of different analysis shifts on different utterances to
determine the point at which degradation in the output signal became detectable. The goals of
this test are tﬁo-fold. First, the amount of averaging, AWO=1 and SWO=2, is held constant
throughout the parameter sets, and multiple fea_ture appearances are eliminated to isolate the
effects of analysis shift and window length. A relative measure of the stationarity of each
speech signal can be inferred from the results. Additionally, the affects of different window
lengths for the units of speech used in the algorithm can be gauged.

Because the affect of block size is most easily isolated using time-scale compression, the
listen test was restricted to time-scale compression by a factor of 2 (¢ = 0.5). To limit the

number of test sentence pairs evaluated by the listeners, the following pairs were compared:

Sentence A | Sentence B | Number of trial—ﬂ
P-set #3 P-set #1
P-set #3 P-set #2
P-set #3 P-set #3
P-set #3 P-set #4

N W o0 o

The _foundati.on of this test was based on the results of earlier findings indicating that
12.5 msec (100) was inadequate for male speech while 50 msec (400) was excessive for female
speech. The preferred value was therefore predetermine& to fall within the range of 25 to 37.5
msec (200 to 300).

A.1.1 Summary

The results presented in Figures A-1 and A-2 indicate a slight preference among listeners for
a window length of 12.5 msec (100) over 37.5 ms (300) for female speech, but for male speech
a window length of 37.5 ms (300) was clearly preferable to 12.5 ms (100). The combined
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responses, however, confirm that the degradation in quality (pitch fracturing) associated with
the shorter 12.5 ms (100) window length for male speech is worse than the degradation (slight
reverberation) associated with the longer window length 37.5 ms ( 300) for female speech.
This preference is the result of pitch period differences among the two categories. A
window length of 25.0 ms (200) provided comparable quality to the 37.5 ms (300) window for
both male and female speakers. Due to the differing effects of window lengths on perceived
quality it is better to use a longer window with slight reverberation than risk pitch fracturing
using too short a window. Since using 256 sample points provides a convenient data block size
for computation, a window length of 32 ms (256 sample points) is suggested as a reasonable

compromise between 25 and 37.5 msec (200 and 300).
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A.1.2 Listen Test Results for Speed-Up Using Various Window Lengths

Percent Preferences
for Window length

A: 37.5 ms 100
B: 12.5 ms 75
50
25 I'—-I
I ' S —— .

A>>B A>B A=B A<B A<<B

Figure A-1: 37.5 ms window (A) v.s. 12.5 ms window (B): Responses for female speech only.

Percent Preferences

for Window length
100
A: 37.5 ms
B: 12.5 ms 75
50
25
—

A>>B A>B A=B A<B A<«B

Figure A-2: 37.5 ms window (A) v.s. 12.5 ms window (B): responses for male speech only.

Percent Preferences

for Window length 100
A: 37.5 ms
B: 12.5 ms 75
50
25 |_|
1 [ |

A>>B A>B A=B A<B A<<B

Figure A-3: 37.5 ms window(A) v.s. 12.5 ms window(B): Combined responses for male and
female speech.
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Percent Preferences
for Window length

A: 37.5 ms 100
B: 25.0 ms 75
50

% — ]

A>>B A>B A=B A<B A<<B

Figure A-4: 37.5 ms window (A) v.s. 25.0 ms window (B): Combined responses for male and
female speech.

Percent Preferences
for Window length

A: 37.5 ms 100
B: 37.5 ms 75
50
25

- —

A>>B A>B A=B A<B A<<B

Figure A-5: 37.5 ms window (A) v.s. 37.5 ms window (B): Combined responses for male and
female speech.

Percent Preferences
for Window length

A: 37.5 ms 100
B: 50.0 ms 75
50

2 — |_| 1

A>>B A>B A=B A<B A<«B

Figure A-6: 37.5 ms window (A) v.s. 50.0 ms window (B): Combined responses for male and
female speech.
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A.2 Listen Test II

The second listen test was performed to determine the point at which increases in the value of
S, resulted in speech of detectably lower quality. This test also allowed additional information
on the effects of window length, analysis shift, and output signal averaging on the quality of
time-scale expanded-by-two speech (@ = 2) to be examined. The following parameter sets

were chosen for this test:

To limit the number of test sentence pairs evaluated by the listeners, the following pairs .

were compared:

Pset# | a| winlen | S; | Sy | Kmaz | AWO | SWO
220 2 200 20 | 40 100 | 10 5
320 2 300 20 | 40 100 | 15 7.5
380 2 300 80 | 160 | 100 | 03.75 | 1.875
312 2 300 125 ( 250 | 100 | 02.4 | 1.2

Sentence A | Sentence B ?umber of trials
P-set #320 | P-set #220 6
P-set #320 | P-set #380 5
P-set #320 | P-set #320 3
P-set #320 | P-set #312 6

A.2.1 Averaging in Output Signal

The first comparison was used to gauge the effect of window length and output signal averaging
on the perceivgd quality of time-scale expanded speech from several different speakers. The
results indicate no perceptible difference between averaging indexes of AWO = 5 vs. AWQ
= 7.5 for a fixed analysis shift of 2.5 ms (20 samples).

A.2.2 Analysis Shift

The effect of increasing the analysis shift from 2.5 ms (20) to 10.0 ms (80) to 15.625 ms
(125) were evaluated. The results indicate a distinct preference for the 2.5 ms (20) shift over

the 10.0 ms (80) shift when a difference was detected. For much of the speech, however, no
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obvious difference was detectable (see Figure A.8). The decrease in quality from increasing
the shift to 15.625 msec (125) is readily apparent from the listeners’ preferences (see Figure
A.9). From the data it can be inferred that values for the analysis shift between 2.5 ms (20)

and 6.25 ms (50) should provide speech of equal perceived quality.

A.2.4 Summary

This test was performed to estimate the points at which increases in the number of frames /unit
time offered no perceptual improvement in quality. The critical point appears to fall just
slightly below 10.0 ms for time-scale expansion by a factor of two using a window length of

37.5 msec and a shift search interval of 12.5 msec.
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A.2.3 Listen Test Results for Slow-Down Using Several Analysis Resolu-

tions
100
75
Percent Preferences

for Window length 50

A: 37.5 ms

B: 25.0 ms
25

A>>B A>B A=B A<B A<<B

Figure A-T: Differing window lengths for a fixed Analysis Shift of 2.5 ms.

100
75
Percent Preferences
for Analysis Shift 50
~A:2.5ms
B: 10 ms
25

. [ ] S

A>>B A>B A=B A<B A<<B

Figure A-8: Differing Analysis Shifts for a fixed Window Length of 37.5 ms: 2.5 ms (A) v.s.
10.0 ms (B).
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100

75
Percent Preferences
for Analysis Shift 50
A:25ms
B: 15.625 ms
25
1 —

A>>B A>B A=B A<B A<«B

i
I
|
i
i
i

Figure A-9: Differing Analysis Shifts for a fixed Window Length of 37.5 ms: 2.5 ms (A) v.s.
15.625 ms (B). ' : '

100
75
Percent Preferences
for Analysis Shift 50
A:2.5ms
B: 2.5 ms
: 25
. A>>B A>B A=B A<B A<<B

Figure A-10: Identical Analysis Shifts for fixed Window Length of 37.5 ms: 2.5 ms (A) v.s.
2.5 ms (B).
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