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Highlights 

• Provide results for a heat wave in the tropics, which is scarce in the literature 

• Ground observations show no heat wave-UHI synergy 

• WRF simulation agrees well with observation and shows no heat wave-UHI synergy 

• Found no significant change in UHI-contributing factors during the heat wave 
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Abstract 

Heat waves are unusually high temperature events over consecutive days and may cause 

adverse impacts such as morbidity and mortality. The interaction between heat waves and 

urban heat island (UHI) effects has remained a subject of debate, as some studies prove heat 

wave-UHI synergy while others do not. Furthermore, heat waves affect tropical cities more 

severely than mid-latitude cities, but there is a disproportionate lack of heat wave studies 

focusing on tropical cities. We attempt to narrow this gap by studying the heat wave in 

Singapore in April 2016 using ground observations and the Weather Research and Forecasting 

(WRF) model. Compared to non-heat wave days, the ground observations show that daytime 

temperatures can be 3 °C higher during the heat wave. Despite the temperature spike, the UHI 

intensity is not amplified during the heat wave, maintaining its peak near 2.5 °C during both 

heat wave and non-heat wave periods. WRF simulation results also agree well with 

measurements and predict UHI peaks near 2.5 °C during both periods, showing no heat wave-

UHI synergy. The spatially averaged UHI intensity also shows no such synergy. There is no 

significant change of wind speed, soil moisture availability or heat storage flux during the heat 

wave. Therefore, the lack of heat wave-UHI synergy in our study is consistent with current 

understanding of factors contributing to UHI. This study shows that the heat wave-UHI 

interaction in a tropical city can be different from that in cities in the temperate climate zone 

and more studies should be conducted in tropical cities, which are projected to suffer larger 

impacts of increasing heat stress. 

Keywords: heat wave-UHI synergy, ground observations, WRF, tropics, extreme temperature 
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1. Introduction 

Heat waves are extreme heat events lasting for consecutive days. Heat waves bring 

severe economic, societal, agricultural and health consequences. For example, the deadly heat 

waves in Chicago in 1995 (Whitman et al., 1997) and Paris in 2003 (Dousset et al., 2011) were 

estimated to cause 514 and 4,867 heat-related deaths, respectively. The heat wave in April 2016 

in Southeast Asia greatly reduced food supplies from Malaysia and the price of vegetables in 

Singapore spiked (Lin, 2016). Heat waves also strain the infrastructure in dense cities (Li, 2018; 

Miller et al., 2008). Due to their adverse impacts, numerous studies have been performed to 

characterize, analyze, and predict heat waves using observations (Perkins et al., 2012), 

reanalysis data (Li, 2020), regional climate models (Fischer and Schär, 2010), and global 

circulation models (Meehl and Tebaldi, 2004). 

Heat waves are projected to occur more frequently and more intensely, last longer, and 

cause higher mortality under enhanced greenhouse gas emission conditions (Coumou and 

Rahmstorf, 2012; Guo et al., 2018; Meehl and Tebaldi, 2004). Heat waves could also 

exacerbate the urban heat island (UHI) effect (Founda and Santamouris, 2017; Li and Bou-

Zeid, 2013) by altering the sensible and latent heat unsymmetrically (D. Li et al., 2015) and 

changing the wind speeds (D. Li et al., 2016). Nevertheless, the coupling between heat waves 

and UHI effect has not been fully understood and remains a subject of debate.  

On one hand, many researchers have reported synergistic interactions between heat 

waves and UHI. Zhao et al. (2018) reported that the UHI intensities averaged across 50 cities 

in the United States were 0.4 to 0.6 °C higher during heat waves. In the Northeastern United 

States, Ramamurthy and Bou-Zeid (2017) found that the UHI intensities in New York City, 

Washington D.C. and Baltimore were amplified by 1-2°C during the 2016 heat waves, but no 

such amplification was found in Philadelphia. Other studies on New York City (Ramamurthy 

et al., 2017) and Washington, D.C. (Li and Bou-Zeid, 2013) also reported positive synergy 

between heat waves and UHI intensities. Schatz and Kucharik (2015) showed that the July 

2012 heat wave in Madison, Wisconsin, amplified the UHI intensity and in fact, they found 

that UHI intensity correlates positively with the daily maximum temperature. Unger et al. (2020) 

showed that UHI can be amplified by up to three times (from about 1 °C to 3°C) during a heat 

wave in Szeged, Hungary. Founda and Santamouris (2017) claimed to be the first to study the 

interaction between heat waves and UHI in a coastal city. They reported that the summer 2016 

heat wave in Athens amplified the UHI intensity by up to 3.5 °C. In another coastal city, 
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Shanghai, Ao et al. (2019) also reported amplification of UHI during heat waves between 2013 

and 2018, but with a smaller magnitude of 0.8 °C. Jiang et al. (2019) studied heat waves 

between 2013 and 2018 in Shanghai, Beijing and Guangzhou and found that heat waves 

intensified the UHI intensity in Shanghai by 1.0 °C, close to the 0.8 °C reported in Ao et al. 

(2019). A similar magnitude of UHI amplification was observed in Beijing and Guangzhou 

(1.2 °C and 0.9 °C, respectively). Other studies of Beijing (He et al., 2020; D. Li et al., 2015) 

also reported significant synergy between heat waves and UHI intensity. 

On the other hand, some researchers found no synergistic interactions between heat 

waves and UHI. In addition to the aforementioned study of Philadelphia that showed no such 

synergy (Ramamurthy and Bou-Zeid, 2017), Basara et al. (2010) found that in in Oklahoma 

City, the UHI intensity during summer 2008 heat wave was similar to that during (non-heat 

wave) summer 2003 (Basara et al., 2008). Scott et al. (2018) averaged 15 heat waves in 

Baltimore between 2000 and 2015 as a composite event and found no synergy between heat 

waves and UHI. Extending the study to 54 cities, they concluded that UHI tends to decrease 

during heat waves. 

The brief literature review not only highlights contradicting results on heat wave-UHI 

interaction, but also reveals the lack of studies of heat waves in the tropics. Although the 

projected increase of heat stress is the largest over the tropics (Fischer et al., 2012), most studies 

of heat waves have been focusing predominantly on mid-latitude cities, especially in North 

America, Europe and Australia (Argüeso et al., 2016; Mora et al., 2017). Furthermore, Im et 

al. (2017) has emphasized the need to perform separate studies for different regions due to their 

unique geographies and climates, yet there have been no studies of heat waves in Singapore or 

neighboring tropical cities. We aim to narrow this gap by analyzing a heat wave in Singapore 

in April 2016 and its effects on the UHI intensity. 

2. Methodology 
2.1 Study Area 

Singapore is an island nation with about 700 km2 land area, located between 1°09'N to 

1°29'N, and 103°36'E to 104°25'E. Its climate is classified as equatorial rainforest, fully humid 

(Af) under the Köppen-Geiger climate classification (Kottek et al., 2006). The annual rainfall 

is 2166 mm, with December marking the heaviest monthly rainfall above 300 mm 

(Meteorological Service Singapore, 2020). The daily temperature variation is small, with daily 

minima between 23 °C and 25 °C and daily maxima between 31 °C and 33 °C. The monthly 
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temperature variation is within a narrow range: the warmest months (May and June) have daily 

mean temperatures of 27.8 °C, while the coldest months (December and January) have daily 

mean temperatures of 26.0 °C. The daily relative humidity ranges between 60% in the 

afternoons and 90% in the early mornings (Meteorological Service Singapore, 2020). 

There are 15 weather stations across Singapore providing real-time data on the website 

of the Meteorological Service Singapore but not all stations are suitable for UHI estimation. 

As highlighted by Stewart (2011), UHI should be estimated by fewer representative sites 

instead of more unrepresentative sties. As a “City in a Garden” (Ng, 2019), Singapore has a 

high green view index (X. Li et al., 2015) of 29.3 %, surpassing some exemplars of green cities 

such as Vancouver (25.9%) and Amsterdam (20.6%) (Ratti et al., 2016). Although urban 

greenery is generally beneficial, they render most of the weather stations unsuitable for UHI 

estimation. To estimate UHI, an urban station should be in a central urban area with 70% or 

higher impervious surface and 20% or lower vegetation cover within 1 km2 of the station, while 

a rural station should be outside urban areas with 65% or higher vegetation cover (Jiang et al., 

2019). Among the 15 weather stations, only the Tai Seng station (1°20'24"N, 103°53'16"E) and 

the Pulau Ubin station (1°25'00"N, 103°58'02"E) satisfy the requirements for an urban and a 

rural station, respectively, and are thus selected for UHI quantification. Figure 1(a) shows the 

location of both weather stations and the land use/land cover map in Singapore (Li et al., 2013). 

Figure 1(b) and Figure 1(c) show the aerial photograph of the surroundings of the Tai Seng 

station and Pulau Ubin stations, correspond to the compact midrise and dense tree local climate 

zones, respectively (Stewart and Oke, 2012). The Tai Seng station and the Pulau Ubin station 

are located at 36 m and 27 m above mean sea level, respectively (both are about 15 m above 

ground). The weather station data are available at a temporal resolution of five minutes but are 

averaged every minute. For example, the temperature at 08:05 local time (LT) is averaged 

between 08:04 and 08:05 LT. The next available temperature is at 08:10 LT, which is averaged 

between 08:09 and 08:10. Occasionally, the weather stations do not provide any data due to 

maintenance or equipment failure. The accuracies for temperature, relative humidity (RH) and 
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wind speed measurements are ±0.2 °C, ±2% RH and ±0.3 m/s, respectively (Meteorological 

Service Singapore, 2017). 

 

Figure 1. (a) The land use/land cover map of Singapore and the surrounding (from Li et al., 2013) with the two 

black dots indicating the locations of the urban (Tai Seng) and rural (Pulau Ubin) weather stations. The 

surroundings of (b) the Tai Seng station and (c) the Pulau Ubin station (both images from Google Map). 

2.2 Heat waves in Singapore 

The Meteorological Service Singapore defines a heat wave as three or more consecutive 

days with daily maximum temperatures exceeding 35 °C and daily mean temperatures 

exceeding 29 °C based on three designated stations with long-term temperature records 

(Meteorological Service Singapore, 2020). Note that this definition does not include the effects 

of humidity. The apparent temperature, or the sultriness index (Steadman, 1979), considers 

both temperature and humidity and is a more representative measure of heat stress on humans, 

especially in tropical cities. During the 2016 heat wave in Singapore, the Tai Seng station 

recorded a maximum temperature of 35.3 °C and a relative humidity of 53%, corresponding to 

an apparent temperature of 43 °C. 

There were six heat waves in Singapore since record-keeping began in 1979; three 

occurred in 1983, one each in 1998, 2010, and 2016 (Timbal et al., 2018). This study focuses 

on the most recent heat wave on April 17-19, 2016, as data is only available after April 2011 

when the Tai Seng station started operating. By comparing the maximum temperatures 

recorded at the Changi station (the longest operating station since 1982), the heat waves in 

1983 recorded a maximum temperature of 35.8 °C, while the heat waves in 1998 and 2010 

recorded a maximum temperature of 34.7 °C and 35.5 °C, respectively. These relatively similar 
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maximum temperatures show that the April 2016 heat wave in our study is representative of 

all historical heat waves in Singapore. 

To compare the UHI magnitude during the heat wave to that of non-heat wave days, a 

period of “pre-heat wave” and “post-heat wave” are identified before and after the heat wave 

(Li and Bou-Zeid, 2013). The pre- and post-heat wave periods are April 3-5 and April 24-27, 

corresponding to three consecutive days with daily mean temperatures lower than 29.8 °C 

(monthly mean temperature on April 2016 at the Tai Seng station) before and after the heat 

wave, respectively. Table 1 summarizes the daily maximum and daily mean temperatures at 

the Tai Seng station during the pre-, heat wave, and post-heat wave periods. 

Table 1. Daily maximum and daily mean temperatures at the Tai Seng station during the pre-, heat wave, and 
post-heat wave periods. 

Period Date Max temperature (°C) Mean temperature (°C) 

Pre-heat 
wave 

April 3 32.2 29.1 
April 4 32.2 29.4 
April 5 31.5 29.5 

Heat wave 
April 17 33.9 30.5 
April 18 35.3 31.0 
April 19 33.9 31.0 

Post-heat 
wave 

April 24 32.0 29.7 
April 25 33.3 29.6 
April 26 31.9 29.7 

 

2.3 WRF Model Description and Validation 

The Weather Research and Forecasting (WRF) model is one of the state-of-the-art 

regional climate models (Tapiador et al., 2020) and has been successfully applied to simulate 

many heat wave events (Founda and Santamouris, 2017; Jandaghian and Berardi, 2020a; Li 

and Bou-Zeid, 2013; Rastogi et al., 2020; Valmassoi et al., 2020). We use WRF version 3.8.1 

with the Advanced Research WRF dynamics core developed by the National Center for 

Atmospheric Research (Skamarock et al., 2008). The Noah land surface model (LSM) provides 

surface heat fluxes and skin temperatures as the lower boundary conditions. The Noah LSM is 

coupled to a single-layer urban canopy model (SLUCM) (Kusaka et al., 2001; Kusaka and 

Kimura, 2004) to model the urban effects on the overlying atmosphere. The urban 

parameterizations have been studied in detail and validated in Li et al. (2013) and are not 

repeated here. The land use/land cover type is shown in Figure 1. The urban areas are 

categorized into three sub-categories, namely low-intensity residential, high-intensity 
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residential, and commercial/industrial areas. The diurnal profiles of anthropogenic heat data in 

Quah and Roth (2012) are used. The low-intensity residential, high-intensity residential, and 

commercial/industrial areas have peak anthropogenic heat of 13, 18, and 113 W m-2, 

respectively. 

The WRF model has five one-way nested domains as shown in Figure 2. The smallest 

domain (d05) has a grid size of 0.3 km by 0.3 km and a time step of 1 s. The grid ratio is 3 and 

the time step fractional number is 3, i.e., domain d04 has a grid size of 0.9 km by 0.9 km and 

a time step of 3 s. The largest domain (d01) has a grid size of 24.3 km by 24.3 km and a time 

step of 81 s. Note that the fine grid resolution in d05 is in the “terra incognita”, or grey zone, 

in planetary boundary layer (PBL) modelling (Wyngaard, 2004). This means that the 

momentum and heat fluxes in the PBL are partly resolved, in contrast to traditional PBL 

parameterizations that cannot resolve any turbulence (Shin and Dudhia, 2016). Previous 

validation studies on Singapore using a similar fine grid have confirmed that the simulation 

results agree well with measurements (Li et al., 2013; X.-X. Li et al., 2016; Li and Norford, 

2016). 

 

Figure 2. The five nested domains in the WRF model. The smallest domain (d05) is shown in Figure 1 with the 

land use land cover map. 

The Mellor-Yamada-Janjić PBL scheme and the Goddard microphysics scheme are 

employed. Other physical parameterizations employed are the Rapid Radiative Transfer Model 

long-wave radiation scheme, the Dudhia short-wave radiation scheme, the Monin-Obukhov 

surface layer scheme, and the Kain-Fritsch cumulus scheme (only for d01 and d02). The initial 
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and boundary conditions are obtained from NCEP’s Global Data Assimilation System (GDAS) 

6-hourly data with 0.25° spatial resolution (National Centers for Environmental Prediction, 

2015). The WRF simulations are conducted for the period from 31st March 2016 08:00 LT to 

1st May 2016 08:00 LT. The first 16 hours are considered as a ramp-up period and excluded 

from the data analysis. The simulation results are exported every simulated hour (i.e., every 

3600 time steps for d05). 

Figure 3 compares the simulated 2-m air temperature, 2-m relative humidity, and 10-m 

wind speed with measurements at both the rural and urban stations for April 2016. For 

temperature and relative humidity, Figure 3(a)-(d) show that the simulation captures the diurnal 

profiles well. The rural station has root mean square errors (RMSEs) of 1.8 °C and 8.7 %, 

respectively, while the urban station has RMSEs of 1.6 °C and 8.8 %, respectively. Given the 

various parameterizations adopted, WRF simulations are considered accurate with RMSEs 

smaller than 2 °C for temperature and 10 % for relative humidity (Ramamurthy et al., 2017). 

For wind speed, Figure 3(e)-(f) show that WRF consistently overpredicts the wind speeds at 

both stations, with RMSEs of 1.9 m s-1 and 1.6 m s-1, respectively. Simulated wind speed could 

be different from measurements due to simplification in parameterizing the land surface 

(Ramamurthy and Bou-Zeid, 2017; Salamanca et al., 2011). However, this does not influence 

our finding that wind speed is not affected by the heat wave, which will be discussed in Section 

3.3. 
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Figure 3. Comparison WRF simulation with measurements and the RMSE at both the rural and urban stations for: 

(a)-(b) 2-m air temperature, (c)-(d) 2-m relative humidity, and (e)-(f) 10-m wind speed. 
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2.4 Two Methods to Calculate UHI Intensity 

There are two methods to calculate UHI intensity. The first method calculates the UHI 

intensity as the temperature difference between a selected urban area and a reference rural area. 

This method is straightforward and calculates the UHI intensity of a specific site. The second 

method, namely the “urban increment” method, extracts the impact of urbanization by taking 

the difference between a control case and an experimental case with all urban areas replaced 

by rural areas (Bohnenstengel et al., 2011). This method has the advantage of showing the 

spatial distribution of UHI (which will be discussed in Section 3.4.3). To obtain the urban 

increment of temperature in our study, another WRF simulation is run with all the urban 

categories replaced by rural category (broadleaf forest as it is the main rural type in Singapore). 

The original case with urban areas is named “Control Case,” while the case with only rural 

areas is named “Forest Case.” The urban increment is then calculated by taking the difference 

of these two cases (Control Case minus Forest Case). Previous study has verified that both 

methods provide similar UHI in both the diurnal variation and magnitude (Li et al., 2013). 

3. Results and Discussion 

The result analysis focuses on three periods: pre-heat wave (April 3-5), heat wave 

(April 17-19) and post-heat wave (April 24-26). For each of these periods, all parameters (2-m 

air temperature, 2-m relative humidity and 10-m wind speed) are averaged over the three 

selected days. For example, the pre-heat wave 2-m air temperature is the average temperature 

of April 3, 4, and 5. 

3.1 2-m air temperature 

Figure 4 shows the 3-day averaged 2-m air temperature for both the rural and urban 

stations during the pre-heat wave, heat wave, and post-heat wave periods. The measurements 

(labelled “mea”) are shown as open symbols while the WRF simulations are shown as lines. 

For the rural station, the measurements show no significant difference among the three periods 

except between 1200 and 1900 LT, where temperatures during the heat wave could be 3 °C 

higher than those during pre-heat wave and post-heat wave. The WRF simulation captures the 

diurnal profile well, but underpredicts both daytime and nighttime temperatures during the heat 

wave and nighttime temperatures during the post-heat wave. For the urban station, the 

measurements show no significant difference among the three periods except between 1100 

and 1800 LT, where temperatures during the heat wave could be 3 °C higher than those during 

pre-heat wave and post-heat wave. The WRF simulation captures the diurnal profile of the 
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urban station well, but shows a similar bias as observed at the rural station, where the 

temperatures tend to be underpredicted during the heat wave and post-heat wave, especially 

between 0000 and 1100 LT.  

Overall, Figure 4 suggests that the heat wave only increases the temperatures between 

1200 and 1900 LT at both stations. During the heat wave, both the rural and urban stations 

recorded the coolest hour at 0700 LT, while the warmest hour was recorded at 1500 LT. WRF 

results show good agreement with measurements with some biases, but the biases have the 

same sign so they partially cancel each other in the urban heat island intensity calculation, 

which will be further discussed in Section 3.4.  

 

Figure 4. Hourly temperature (3-day averaged) during the pre-heat wave (“pre”), heat wave (“hw”), and post-heat 

wave (“post”) periods for both rural and urban stations. Open symbols (“mea”) are from measurements and lines 

(“WRF”) are from WRF simulation. 

3.2 2-m Relative Humidity 

Figure 5 shows the 3-day averaged 2-m relative humidity for both the rural and urban 

stations during the pre-heat wave, heat wave, and post-heat wave periods. Measured relative 

humidity shows a distinctive diurnal profile, with the rural stations recorded about 60-70% 

relative humidity during daytime and up to 100% relative humidity during nighttime. The urban 

station has a similar profile, but the peak is lower at 90%. The only significant difference among 

the three periods is observed between 1200 and 1900 LT, where the relative humidity is lower 

during the heat wave compared to that during pre-heat wave and post-heat wave. WRF 

simulation captures the same profiles and peaks at both stations, confirming WRF’s capability 

to accurately simulate relative humidity. 
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Figure 5. Hourly relative humidity (3-day averaged) during the pre-heat wave (“pre”), heat wave (“hw”), and post-

heat wave (“post”) periods for both rural and urban stations. Open symbols (“mea”) are from measurements and 

lines (“WRF”) are from WRF simulations. 

3.3 10-m Wind Speed 

Figure 6 shows the 3-day averaged 10-m wind speed for both the rural and urban 

stations during the pre-heat wave, heat wave, and post-heat wave periods. From the 

measurements in Figure 6, there is no reduction of wind speed at both stations during the heat 

wave in this study. Despite the over-prediction of wind speed especially at the rural station, the 

WRF simulation shows a similar profile during the pre-heat wave, heat wave and post-heat 

wave periods. In other words, both measurements and simulation suggest that wind speeds are 

not influenced during the heat wave. 

 

Figure 6. Hourly wind speeds (3-day averaged) during the pre-heat wave (“pre”), heat wave (“hw”), and post-heat 

wave (“post”) periods for both rural and urban stations. Open symbols (“mea”) are from measurements and lines 

(“WRF”) are from WRF simulations. 

3.4 UHI Intensity 

3.4.1 UHI Intensity Based on Two Stations 

The UHI intensities are calculated by taking the temperature difference between the 

urban and rural stations in Figure 4 (the first method discussed in Section 0). Figure 7 compares 
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the 3-day averaged UHI intensities during the pre-heat wave, heat wave, and post-heat wave 

periods. Overall, the measurements show no apparent synergy between UHI intensity and the 

heat wave. The peaks during pre-heat wave, heat wave, and post-heat wave periods are equally 

high, reaching about 2.5 °C. The diurnal profiles are also similar, with the peak UHI intensities 

recorded at midnight and zero or negative UHI intensities recorded during the daytime. The 

WRF simulation correctly predicts the diurnal profile and the peak UHI at about 2.5 °C. More 

importantly, there is no significant deviation among the three UHI profiles from WRF 

simulation, consistent with the measurements that show no synergy between UHI intensity and 

the heat wave. 

 

Figure 7. UHI intensity at the urban station during the pre-heat wave (“pre”), heat wave (“hw”), and post-heat 

wave (“post”) period. Open symbols (“mea”) are from measurements and lines (“WRF”) are from WRF 

simulations. 

3.4.2 Spatially Averaged UHI Intensity 

The UHI profiles in Figure 7 is calculated based on only two points (the rural and urban 

stations). With the WRF model shown to be accurately predicting the 2-m air temperatures, we 

can use the validated WRF simulation to plot the temperature distribution over all of Singapore. 

The spatially averaged UHI profiles can then be extracted from these temperature maps. Figure 

8 shows the temperature maps during the pre-heat wave, heat wave, and post-heat wave periods. 

For brevity, only the temperature maps at 0700 LT and 1500 LT are plotted, as they correspond 

to the coolest and warmest hour during the heat wave. 

Figure 8(a) shows that at 0700 LT, the southern part of Singapore is consistently 

warmer than the northern part for all three periods. Referring to the land use/land cover map in 

Figure 1, the warmer regions correspond to urban areas, while the cooler regions correspond 

to rural areas. There is no significant difference of temperature distribution among the pre-heat 
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wave, heat wave, and post-heat wave periods. In contrast, at 1500 LT, Figure 8(b) shows a 

distinctive temperature distribution during the heat wave compared to those during the pre-heat 

wave and post-heat wave periods. During the pre-heat wave period, most areas have 

temperatures lower than 33 °C, whereas during the heat wave, almost the entire Singapore 

(except the southernmost part) has high temperatures above 33 °C. During the post-heat wave 

period, only the norther part of Singapore experiences high temperatures (but not as high as the 

temperatures during the heat wave). 

 

Figure 8. Three-day averaged 2-m air temperature during pre-heat wave, heat wave, and post-heat wave at (a) 

07:00 LT and (b) 15:00 LT. Note the different scales for (a) and (b). 

 With temperature maps such as those in Figure 8, we can derive the spatially averaged 

UHI profiles. There are three urban categories in the WRF model: low-intensity residential, 

high-intensity residential, and commercial or industrial (see Figure 1 for the land use/land cover 

map). Broadleaf forest is taken as the rural category because it is the main rural type in 

Singapore. The average temperature of each category is calculated by spatially averaging the 

temperatures of all grids corresponding to the category. For example, the average temperature 

of the rural category is calculated by spatially averaging the temperatures of all broadleaf forest 

grids. The spatially averaged UHI is then calculated as the difference of (spatially averaged) 

temperatures between each urban category and the rural category. 

Figure 9(a)-(c) show the spatially averaged UHI intensities of low-intensity residential 

areas, high-intensity residential areas, and commercial or industrial areas, respectively. No 

apparent synergy between UHI intensity and heat wave is observed. All three urban categories 

observed a similar diurnal profile: UHI intensities fluctuate near zero between 1000 and 1600 

LT, rise between 1600 and 1900 LT, stay near their peaks between 1900 and 0700 LT, and 
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decrease between 0700 and 1000 LT. Low-intensity residential areas have the lowest UHI peak 

at about 1 °C, while the commercial or industrial areas have the highest UHI peaks at about 

2 °C. This is expected because the commercial or industrial areas have anthropogenic heat 

about an order of magnitude higher than that of the residential areas. The urban station used to 

calculate the measured UHI intensity is located in an industrial area. The UHI profiles in Figure 

9(c) resemble the measured UHI profiles in Figure 7, justifying that the two selected stations 

are representative of rural and urban (commercial or industrial) sites.  

 

Figure 9. Spatially averaged profiles of UHI intensity obtained from WRF during the pre-heat wave (“pre”), heat 

wave (“hw”), and post-heat wave (“post”) period for: (a) low-intensity residential, (b) high-intensity residential, 

and (c) commercial/industrial. 

3.4.3 UHI Intensity Calculated by the Urban Increment Method 

The temperature maps in Figure 8 do not directly show the spatial distribution of UHI. 

Although we can refer to Figure 1 to identify urban and rural areas and then refer back to Figure 

8 for the corresponding temperatures at these areas, this process is tedious. To visualize the 

spatial distribution of UHI, we use the urban increment method (outlined in Section 0) to 

calculate the UHI intensity for the entire Singapore Island. Figure 10 plots the spatially 

averaged urban increment of temperature. Compared to the UHI intensity in Figure 9, the urban 

increment of temperature in Figure 10 shows a similar diurnal profile. Although the latter has 

slightly higher nighttime peaks, the conclusion that no synergy between UHI intensity and heat 

wave still holds, since there is no apparent difference among the pre-heat wave, heat wave, and 

post-heat wave periods. The close resemblance of Figure 9 and Figure 10 verifies that the urban 

increment of temperature can be used as an indicator of UHI intensity. We can then plot the 

maps of urban increment to visualize the spatial distribution of UHI intensity. 
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Figure 10. The “urban increment” (i.e., Control Case minus Forest Case) of spatially averaged temperatures during 

the pre-heat wave (“pre”), heat wave (“hw”), and post-heat wave (“post”) period for: (a) low-intensity residential, 

(b) high-intensity residential, and (c) commercial/industrial areas. 

Figure 11 compares the 3-day averaged UHI intensity calculated by the urban increment 

method during pre-heat wave, heat wave, and post-heat wave periods. For brevity, only the 

UHI maps at 0700 LT and 1500 LT results are shown. At 0700 LT, Figure 11(a) shows that 

overall, all three maps show about the same UHI distribution and magnitude. Urban areas, 

especially those at the southern part of Singapore, consistently display positive UHI intensity 

up to 3 °C. There is no amplification of UHI intensity during the heat wave. At 1500 LT, Figure 

11(b) shows that although there are some areas with observable UHI effects (could be either 

positive or negative), these areas are small and overall, no significant difference is observed 

among the three periods. In summary, Figure 11 confirms that there is no synergy between UHI 

intensity and heat wave for the April 2016 heat wave in Singapore. 

 

Figure 11. Three-day averaged urban increment of 2-m air temperature (Control Case – Forest Case) during pre-

heat wave, heat wave, and post-heat wave periods at (a) 07:00 LT and (b) 15:00 LT. 

3.5 Contributing Factors of UHI 

The UHI phenomenon is complex and involves many coupled factors, including 

synoptic conditions, urban population, vegetation fraction, building materials, sky view factor, 

-1

0

1

2

3

0 4 8 12 16 20 24U
rb

an
 In

cr
em

en
t (

°C
)

Local time (h)

pre hw post
(c)

-1

0

1

2

3

0 4 8 12 16 20 24U
rb

an
 In

cr
em

en
t (

°C
)

Local time (h)

pre hw post
(a)

-1

0

1

2

3

0 4 8 12 16 20 24U
rb

an
 In

cr
em

en
t (

°C
)

Local time (h)

pre hw post
(b)



Atmospheric Research     DOI: 10.1016/j.atmosres.2020.105134 

 18 

and many more (Rizwan et al., 2008; Stewart, 2019). Since our study spans only one month 

(April 2016), many of these factors such as population and building materials do not change 

over the entire study period and can be excluded from the analysis of heat wave-UHI synergy. 

We explore four major factors that could affect the UHI intensity: wind speed, soil moisture 

availability, heat storage flux, and the roughness lengths and surface resistance (Li and Bou-

Zeid, 2013, 2014; Ramamurthy et al., 2017) to investigate why there is no observable synergy 

between the April 2016 heat wave in Singapore and the UHI effect. 

3.5.1 Wind Speed 

As shown in Figure 6, wind speeds during the pre-heat wave, heat wave and post-heat 

wave have the same diurnal profile. Wind speed during daytime is slightly higher than that 

during nighttime. There is no significant deviation of wind speed during the heat wave 

compared to the pre- and post-heat wave periods. Contrary to other studies showing reduction 

in wind speed during heat waves and the associated heat wave-UHI amplification (Ao et al., 

2019; Li and Bou-Zeid, 2013; Ramamurthy et al., 2017), no reduction of wind speed is 

observed during the heat wave in our study. As reduced wind speed can enhance the UHI 

intensity (Li and Bou-Zeid, 2013), the lack of heat wave-UHI synergy in our study is consistent 

with no observable reduction in wind speed. 

3.5.2 Soil Moisture Availability 

Low soil moisture availability can lead to more frequent, longer-lasting heat waves 

(Hirschi et al., 2011) and amplifies the temperature anomalies during heat waves (Fischer et 

al., 2007). Figure 12 plots the spatially averaged top (0-10 cm) volumetric soil moisture (unit 

m3m-3) calculated in WRF for all three urban categories and the rural category. During the pre-

heat wave period, all four categories have about the same soil moisture (about 0.25 m3m-3). 

Starting from April 13, the urban areas lose moisture faster than the rural areas as indicated by 

the steeper negative slope. During the heat wave, the urban categories have a soil moisture of 

about 0.23 m3m-3, while the soil moisture of rural areas is about 0.25 m3m-3, i.e., the urban-

rural difference soil moisture deficit is 0.02 m3m-3. During the post-heat wave period, the soil 

moisture of the urban areas drops to 0.20 m3m-3, while the soil moisture of the rural areas drops 

to 0.23 m3m-3, i.e., the urban-rural soil moisture deficit is 0.03 m3m-3. The urban-rural soil 

moisture deficit during the heat wave (0.02 m3m-3) is not significantly different than those 

during the pre-heat wave period (< 0.01 m3m-3) and the post-heat wave period (0.03 m3m-3) 

and therefore, the UHI intensity is not amplified during the heat wave. As a comparison to the 
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2006 heat wave in New York City, the urban-rural soil moisture deficit during the heat wave 

can exceed 1.0 m3m-3, thus triggering an amplification of UHI intensity (Ramamurthy et al., 

2017). 

 

Figure 12. Spatially averaged top soil moisture of the rural (broadleaf forest) and urban categories (low-intensity 

residential, high-intensity residential, and commercial/industrial) in April 2016. 

3.5.3 Heat Storage Flux 

The difference in heat storage flux across urban and rural areas influences the UHI 

intensity. In urban areas, buildings and other urban structures store the heat during daytime and 

release the heat at nighttime. As urban areas are mostly covered with impervious surfaces, most 

of the stored heat is released as sensible heat and induces the UHI effect. For example, in New 

York City, heat storage flux can induce a UHI intensity up to 6 °C (Ramamurthy et al., 2017). 

Therefore, the UHI intensity is expected to increase if the heat storage flux across the urban 

areas is amplified during a heat wave. 

The heat storage flux is a component in the surface energy balance, where Q* + QF = 

QH + QE + ΔQS. Here, Q* is the net all-wave radiation, QF is the anthropogenic heat, QH is the 

sensible heat flux, QE is the latent heat flux, and ΔQS is the net heat storage flux (Oke, 1988). 

Figure 13 plots the spatially averaged ΔQS, Q*, QH, and QE for the rural (broadleaf forest) and 

urban categories (low-intensity residential, high-intensity residential, and 

commercial/industrial areas). ΔQS is expected to increase during heat waves. For example, Sun 

et al. (2017) summarized four studies of heat waves in different cities: Beijing (Wang et al., 

2014), Lodz (Offerle et al., 2006), London (Kotthaus and Grimmond, 2014), and Swindon 

(Ward et al., 2013). They concluded that all four cities (none is in the tropics) have increased 

ΔQS during heat waves. Interestingly, our study in Singapore shows otherwise: ΔQS across both 

urban and rural areas remains relatively constant. During daytime, the ΔQS peaks remain 

unchanged during the heat wave compared to those during the pre- and post-heat wave periods. 

During nighttime when the stored heat is released (a main contributor to UHI), the magnitude 
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of ΔQS also shows no significant difference between the heat wave and non-heat wave periods, 

consistent with no amplification in both observed and simulated UHI intensity. 

To understand the relatively unchanged ΔQS during heat wave, we look at other 

components in the surface energy balance. During the heat wave, Q* is up to 100 Wm-2 higher 

for the rural category and up to 170 Wm-2 higher for the urban categories. This higher Q* is 

likely due to an increase in the incoming shortwave radiation with clear sky conditions during 

heat waves (Black et al., 2004). This higher Q* increases the overall surface energy budget for 

both urban and rural categories. The higher Q* is distributed to QH in urban areas and to QE in 

rural areas, as shown by the QH and QE plots in Figure 13. All three urban categories show an 

increase in QH during the heat wave, while the rural category shows an increase in QE. Overall, 

the additional Q* is partitioned to QH and QE without altering ΔQS. 
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Figure 13. Spatially averaged net heat storage flux (ΔQS), net all-wave radiation (Q*), sensible heat flux (QH), and latent heat flux (QE) during pre-heat wave (“pre”), heat 
wave (“hw”), and post-heat wave (“post”) for rural (broadleaf forest) and urban categories (low-intensity residential, high-intensity residential, and commercial/industrial 
areas). Note the different scales for ΔQS, Q*, QH, and QE. 

 

Figure 14. Spatially averaged friction velocity (U*) and thermal roughness length (z0T) during pre-heat wave (“pre”), heat wave (“hw”), and post-heat wave (“post”) for rural 
(broadleaf forest) and urban categories (low-intensity residential, high-intensity residential, and commercial/industrial areas).  
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3.5.4 Roughness Lengths and Surface Resistance 

As the UHI intensity is sensitive to the roughness lengths (both momentum and thermal) 

and the surface resistance, it is worthwhile exploring whether the heat wave has affected any 

of these parameters. The 2-m air temperature, T2, is a diagnostic variable calculated as: 

("! − "") = #!
$%"#&#

 (1) 

where TS is the surface temperature; QH is the sensible heat flux, ρ is the air density, and  Ch2 

and U2 are the transfer coefficient and wind speed at 2 m (Li and Bou-Zeid, 2014). From the 

Monin–Obukhov Similarity Theory (Monin and Obukhov, 1954): 

&'" = (#

)*+, #$%-./&,
#
'-01*+2

#
$%(

3./",#'-4
 (2) 

where κ is the von Kármán constant, z0 is the momentum roughness length; z0T is the thermal 

roughness length; L is the Obukhov length scale; ψm is a correction function for momentum; 

and ψh is a correction function for heat. In WRF, z0 depends only on the land use/land cover 

type and does not change throughout the simulation but z0T can change with time. The Mellor-

Yamada-Janjić PBL scheme parameterizes z0T as: 

'56 = '5(.5.8(√:; (3) 

where Re = z0U*/ν is the roughness Reynolds number based on the friction velocity U* and ν 

is the kinematic viscosity of air. Given that z0 and ν are constants, z0T depends only on U*. 

Figure 14 plots the spatially averaged U* and z0T of the rural and urban categories. The diurnal 

profiles show that the heat wave has no significant effects on U* and therefore, z0T is not altered 

during the heat wave. Consequently, Ch2 is also not affected by the heat wave in both rural and 

urban areas.  

 The surface resistance, Rc, is the resistance of water vapour flowing through 

evapotranspiration. Due to a high fraction of impervious surfaces, urban areas have larger Rc 

and lower rate of evapotranspiration than rural areas, which in turn induces the UHI effects 

(Atkinson, 2003). Following Chen & Dudhia (2001) and Jacquemin & Noilhan (1990), Rc is 

calculated as: 

)% = :)&*+
(=>?)A,A#A-A.

 (4) 

where Rcmin is the minimum resistance; LAI is the leaf area index; F1, F2, F3 and F4 are the 

fractional conductances (between 0 and 1) representing the effects of solar radiation, vapor 
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pressure deficit, air temperature, and soil moisture. The parameterizations of F1-F4 are provided 

in both references (Chen and Dudhia, 2001; Jacquemin and Noilhan, 1990). Overall, the 

combined effects of F1-F4 are not sensitive to the heat wave, as the daytime-averaged Rc of the 

rural area are 36.7, 34.6, and 36.3 s m-1 during the pre-, heat wave, and post-heat wave periods, 

respectively, close to the typical Rc of 50 s m-1 for rural areas (Atkinson, 2003). The nighttime-

averaged Rc is about 650 s m-1 during all three periods. The nighttime Rc is much larger than 

the daytime Rc because F1 becomes very small (~0.006) due to the absence of solar radiance 

during nighttime. Urban areas have much larger Rc than rural areas due to the large fraction of 

impervious surface (where Rc is infinitely large). During both the heat wave and non-heat wave 

periods, low-intensity residential areas, high-intensity residential areas, and commercial or 

industrial areas have daytime Rc of about 700, 1100, and 2200 s m-1, respectively. During 

nighttime, Rc exceeds 10,000 s m-1 for all three urban categories. Overall, no significant change 

of Rc is observed during the heat wave in our study.  

4. Limitations and Future Work 

This study adopted the anthropogenic heat data in Quah and Roth (2012), which 

estimated the anthropogenic heat from traffic, buildings, and human for 2008 and 2009. During 

a heat wave, the cooling demand for buildings is expected to surge (Li, 2018), thereby 

increasing anthropogenic heat from buildings. Using anthropogenic heat data derived from 

non-heat wave years can cause under-prediction of UHI intensity. Unfortunately, there is no 

available anthropogenic heat data for Singapore during extreme events. Quantifying 

anthropogenic heat during a heat wave in tropical cities like Singapore and its effects on UHI 

intensity can be carried out to obtain more accurate inputs for further studies. 

We adopted the single-layer urban canopy model, which does not resolve the height 

variability of buildings within the same urban land use type and allows only a fixed profile of 

anthropogenic heat. On the other hand, the more complex multi-layer urban canopy model can 

explicitly resolve anthropogenic heat released from buildings through building effect 

parameterization and building energy modeling (Jandaghian and Berardi, 2020b; Mughal et al., 

2019). The single-layer urban canopy model also tends to underestimate latent heat flux (Liu 

et al., 2017). Improved urban canopy models, such as the Princeton Urban Canopy Model (Li 

and Bou-Zeid, 2014), can also improve the performance of WRF in predicting UHI. Given the 

highly non-linear interactions of multiple parameters in urban climate modeling, more complex 

models do not guarantee improvements in accuracy (Grimmond et al., 2011; Salamanca et al., 
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2011). However, since there are relatively few studies focusing on the tropics, it is worthwhile 

to extend the study of heat wave-UHI interaction using more complex models, especially on 

the modeling of anthropogenic heat and latent heat during heat waves in tropical cities, which 

can be very different than those of cities in the temperate climate zone. 

Our study is limited towards a tropical coastal city and should not be generalized to 

other tropical cities. Furthermore, this is a case study based on a single heat wave event so the 

conclusions may be different if we examine more events as an ensemble. For example, Li and 

Bou-Zeid (2013) showed synergistic effects between UHI and a heat wave event in Baltimore, 

but the ensemble study in Scott et al. (2018) found no such effects in Baltimore. Nonetheless, 

this limitation could be a strength: it can motivate more future studies of heat waves in the 

tropics. Argüeso et al. (2016) have warned that our current knowledge is biased towards the 

heat waves in North America and Europe. The findings in our case study hypothesize that heat 

wave-UHI synergy in a tropical city is weaker than that in the mid-latitude cities. 

5. Conclusion 

The April 2016 heat wave in Singapore was studied using ground observations and the 

Weather Research and Forecasting (WRF) model. Two weather stations, one in an urban area 

and one in a rural area (Figure 1), were used to calculate the UHI intensity during the pre-heat 

wave (April 3-5), heat wave (April 17-19), and post-heat wave (April 24-26) periods. The key 

findings are: 

• The temperatures measured at both stations showed that during the heat wave, daytime 

temperatures could be 3 °C higher than those during the pre- and post-heat wave periods. 

• Despite the temperature spike, the heat wave did not amplify the UHI intensity, where the 

UHI peaks reach about 2.5 °C during both heat wave and non-heat wave periods. 

• WRF simulation results agree well with measurements in predicting both the diurnal profile 

and the peak UHI. 

• WRF simulation results show no heat wave-UHI synergy, consistent with the 

measurements.  

• The spatially averaged UHI intensity of all urban areas in Singapore also shows no heat 

wave-UHI synergy. 

We explored four major factors that contribute to the UHI effect: wind speeds, soil 

moisture availability, heat storage flux, and the roughness lengths and surface resistance. No 
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wind speed reduction was observed during the heat wave. The urban-rural soil moisture deficit 

was not significantly altered during the heat wave. The heat storage flux was not amplified 

during the heat wave. The roughness lengths and surface resistance were not altered during the 

heat wave. Despite the higher temperature during the heat wave, all four aforementioned factors 

remain relatively unchanged during the heat wave. Consequently, no amplification of UHI 

intensity was observed during the heat wave. 

Contrary to some studies in the literature that showed positive synergy between heat 

waves and UHI, we observe no such synergy for the heat wave in April 2016 in Singapore. The 

current understanding of heat waves has been biased towards cities in the temperate climate 

zones. We hope that our study of a tropical city can narrow this gap and motivate future studies 

of heat waves in the tropics, which are projected to have the largest increase of heat stress in a 

warming climate. 
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