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Reagents that bind tightly and specifically to biomolecules
of interest remain essential in the exploration of biology and
in their ultimate application to medicine. Besides ligands for
receptors of known specificity, agents commonly used for this
purpose are monoclonal antibodies derived from mice, rabbits,
and other animals. However, such antibodies can be expensive
to produce, challenging to engineer, and are not necessarily sta-
ble in the context of the cellular cytoplasm, a reducing environ-
ment. Heavy chain–only antibodies, discovered in camelids,
have been truncated to yield single-domain antibody fragments
(VHHs or nanobodies) that overcome many of these shortcom-
ings. Whereas they are known as crystallization chaperones for
membrane proteins or as simple alternatives to conventional
antibodies, nanobodies have been applied in settings where the
use of standard antibodies or their derivatives would be imprac-
tical or impossible. We review recent examples in which the
unique properties of nanobodies have been combinedwith com-
plementary methods, such as chemical functionalization, to
provide tools with unique and useful properties.

Tools to detect, visualize, and modulate the properties of
proteins are essential to understand the function of the targets
recognized and the biology that follows. Introduction of exoge-
nous expression vectors and CRISPR/Cas gene-editing tools
provide an unprecedented ability to introduce, alter, or elimi-
nate proteins of choice in cells or intact organisms. These
approaches are designed to modify biological processes of in-
terest. Introduction of expression vectors allows production of
proteins of choice, WT or mutant, including versions fused
with fluorescent proteins or other tags for visualization. Expres-
sion of proteins from nonnative loci, as in exogenous expres-
sion vectors, or as fusion proteins with tags often alters expres-
sion levels, subcellular localization, and biological function.
The development of antibody fragments that can interact with
and perturb endogenous proteins in cells and organisms with-
out the need for genomic modification would be useful. Nano-
bodies have unique qualities that make them well-suited for
this goal.
Nanobodies, like full-size conventional antibodies, show the

affinity and antigen specificity required for specific targeting of
molecules of interest, even though they comprise only a single
variable region. Nanobodies have several useful features not

regularly found in conventional antibodies. These include their
small size, the capacity to bind and stabilize specific receptor
conformations, and their availability in high yield from bacte-
rial expression systems. Nanobodies have been widely used to
target soluble protein antigens or those found at the surface of
cells (e.g. for structural studies and imaging applications (for
reviews see Refs. 1 and 2). Similar to full-sized antibodies, nano-
bodies are suitable for flow cytometry, immunoprecipitation,
affinity purification, andmicroscopy (3–7). Although nanobod-
ies are often applied in settings that could just as well use stand-
ard, full-size antibodies, we emphasize scenarios where the use
of a nanobody provides advantages. In this review, we cover
topics including methods for the identification of target-spe-
cific nanobodies, functionalization of nanobodies using chemi-
cal and enzymatic methods, and the use of nanobodies that
engage targets inside or at the surface of the cell as well as viral
targets. We cover the development of nanobody-epitope tag
pairs and the use of nanobodies in synthetic biology. This
reviewmay serve as an accessible resource for scientists looking
to identify nanobodies useful for their system of interest. We
focus on areas such as nanobody functionalization and syn-
thetic biology, in which methods and use of nanobodies are
rapidly evolving.

Screening platforms

Conventional antibodies (Igs) consist of two identical heavy
(H) and light (L) chains that pair to form a stably folded protein,
with an antigen-binding site to which the two variable (V)
domains, VH and VL, contribute. Both interchain and intra-
chain disulfides and N-linked glycosylation are needed for
effective assembly of Igs. These requirements preclude the
proper assembly of full-size antibodies in the reducing environ-
ment of the cytoplasm. Single-chain variable fragments (scFvs)
consist of the variable domains from the heavy and light chains,
connected by a linker. Although some scFvs can function in the
cytoplasm, many scFvs require intrachain disulfides to afford
stability and appropriate heavy-light chain pairing. Heavy
chain–only antibodies from camelids fold and function in the
absence of light chains. These camelid immunoglobulin heavy
chains can be shrunk to just their variable domains (Fig. 1) to
yield VHHs or nanobodies, which can retain antigen binding in
the absence of disulfide bond formation. They can thus be used
in the cytosol of live cells, as discussed below. This feature of
nanobodies is one of the signature advantages of their applica-
tion, relative to more conventional alternatives, as discussed
below.
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Methods to identify nanobodies that bind to targets of inter-
est are essential for their effective deployment (8). Target-bind-
ing nanobody clones are usually isolated from screening highly
diverse pools of nanobodies. Such pools must be sufficiently
large to contain appropriately specific nanobodies, a suitable
screening method must be at hand to identify specific binders,
and such binders should retain their properties in the relevant
contexts, as in the case of cytoplasmic expression or when deal-
ing with membrane proteins. Screening methods that provide
nanobodies with desirable functional properties (receptor an-
tagonism, agonism), selectivity for specific target conforma-
tions (structural studies, biosensors), and functionality in dif-
ferent subcellular localization (cytoplasmic, cell surface) are
in short supply and constitute an area of emphasis for future
exploration. Both immunization and screening strategies
ought to be designed with the final application(s) of the
resulting nanobodies in mind. For example, immunization
with unfolded, denatured proteins is more likely to yield
reagents that are useful in immunoblotting or immunohisto-
chemistry on fixed samples.
For library construction, B cells from naive or immunized

camelids can serve as the point of departure, as can cultured
camelid B cells exposed to antigens of interest (9). Purified pro-
teins (10), cells or cell lysates containing antigens of interest
(11, 12), or recombinant DNA to induce antigen expression in
the host (13, 14) can serve as immunogens. DNA-based immu-
nization has been particularly valuable for the generation of
nanobodies against properly folded membrane proteins (15,
16). The diversity of nanobody sequences available in a given
pool can be further expanded through mutagenesis. Both natu-
ral diversity mutagenesis, in which residues at positions in a
nanobody with high diversity in naturally occurring collections
of nanobodies are varied (17), and virus-mediated directed evo-
lution (18) can increase diversity and identify novel nanobodies.
Important features in the screening approach include the
source of the nanobody pool (synthetic versus naive versus
immunized library) (8, 19), the mechanism by which nanobody

proteins are produced and displayed (phage display versus yeast
display versus bacterial display versus ribosome display versus
DNA/RNA display) (20), and the method by which antigens of
interest are presented for selection (peptide or protein immobi-
lization on solid support versus display of antigens on the cell
surface versus labeled soluble antigen) (21). Given the impor-
tance of identifying nanobodies that bind to membrane pro-
teins, a variety of approaches have yielded nanobodies that bind
to intact, properly folded membrane targets (22–24) and that
either block or induce activation (25).
The defining feature of a display method is the mechanism

by which the biochemical properties of the nanobodies are
linked to the genetic information encoding the nanobodies.
The type of display method used also dictates the diversity of
the library of nanobody sequences used. Phage display, in which
nanobodies are fused in frame with viral proteins for display on
the surface of phages—typically an M13 derivative—that en-
capsulate the relevant DNA sequence, is commonly used to
pan for nanobodies (26, 27). Phage display libraries with a di-
versity of 107 to 108 clones are common. Display-based
approaches can also be applied using model single-cell organ-
isms, such as Escherichia coli (20), Staphylococcus sp. (28, 29),
and yeast (30, 31).
Yeast display platforms have succeeded in the identification

of nanobodies that bind to specific conformations of cell sur-
face proteins, such as G protein–coupled receptors (GPCRs)
(30, 31). Bacterial and yeast display platforms of a complexity
comparable with that of phage libraries have the advantage that
antigen-binding clones can be detected and enriched by flow
cytometry (20).
Ribosome display relies on a covalent bond between the

nanobody and the encoding RNA chain. Both the translated
nanobody sequence and the RNA that encodes it remain teth-
ered to the ribosome when the mRNA lacks a stop codon.
Nanobodies that bind to cellmembrane proteins in specific con-
formations were thus obtained (32–34). An approach called
RNAdisplay or cDNAdisplay relies on the antibiotic puromycin

Figure 1. Structures of human and camelid Igs and fragments. Conventional human Igs (i.e. IgG) have been truncated to provide functional fragments
(Fab and scFv) that contain variable regions from the light and heavy chains. In the case of the scFv, a linker is required to facilitate appropriate pairing of
heavy- and light-chain variable regions. A subset of antibodies from camelids consists of only the heavy chains. Expression of the isolated variable region from
heavy chain–only antibodies provides functional single-domain antibodies (VHHs/nanobodies).
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applied in vitro to enter the ribosomal active site and form a
cross-linking covalent bond with the nascent nanobody poly-
peptide and the encoding RNA sequence to enable selection
(35, 36). Library complexity (up to 1012 unique clones) used in
in vitro selection techniques can exceed by far those used in
phage, bacterial, and yeast display, but screening then requires
multiple rounds of selection to arrive at individual high-affinity
binders (33).
Alternative methods of screening have been developed to

identify nanobodies that function in their intended environ-
ment. In one suchmethod, nanobody-coding sequences (minus
the signal peptide) were inserted into lentiviral vectors for
expression in the cytoplasm of mammalian cells. Nanobodies
that protected cells from a lytic infection with influenza A virus
or vesicular stomatitis virus were then identified through
enrichment of surviving cells and recovery by PCR of the pro-
tective nanobody sequences (37). A similar approach was used
to identify a nanobody that protected against porcine repro-
ductive and respiratory syndrome virus (38). The use of a func-
tional readout, like cell survival, ensured that the nanobodies
were functional in the cytosol. The size of the library tested in
the lentivirus-based approach is similar to that used in phage
display (;107 clones). Another method to identify nanobodies
that are functional in the cytosol involves a yeast two-hybrid
system, in which propagation of the yeast is contingent on the
interaction of a nanobody clone with a target antigen of interest
(39). This approach yielded nanobodies that bind HIV VPR and
capsid proteins and the hemagglutinin-neuraminidase protein
of the Newcastle disease virus (40, 41).

Chemical and enzymatic functionalization

Conventional recombinant expression in bacteria produces
nanobodies in high yields, providing ample material for chemi-
cal functionalization. Conjugation of nanobodies with fluores-
cent dyes, small-molecule drugs, oligonucleotides, and other
moieties allows complex yet controlled functionalization of
nanobodies to extend their application to a wide range of areas,
including imaging, therapeutics, and detection, and as delivery
agents. Early examples of nanobody functionalization mostly
relied on reactivity of cysteine and lysine residues using malei-
mide (42) and N-hydroxysuccinimide ester–based chemistry
(43, 44). Nanobodies typically require the introduction of
an unpaired Cys and disulfide reduction prior to labeling.
N-Hydroxysuccinimide ester–based labeling lacks selectivity,
resulting in heterogeneous mixtures of labeled proteins. Exces-
sive labeling of nanobodies can cause loss of antigen recognition
and specificity and result in altered pharmacokinetic properties
(45–47). Chemoenzymatic labeling methods, incorporation of
unnatural amino acids, and expressed protein ligation are there-
fore attractive alternatives for the bioconjugation of nanobodies,
as will be summarized below (Fig. 2). These methods enable the
conjugation of nanobodies with a virtually unlimited selection
of chemical cargoes. Even with these advances, it remains diffi-
cult to use nanobody conjugates prepared in vitro to address
biology inside of live cells because of their membrane imperme-
ability. The development of robust methods for delivery of
nanobodies across the cell membrane (48–50) or labeling in

cells with minimal background will empower new and powerful
applications with conjugates.

Oldenlandia affinis asparaginyl endopeptidase (OaAEP1)

Asparaginyl endopeptidases (AEPs) are an increasingly
attractive class of enzymes for protein modification. AEPs are
nominally Cys proteases that recognize a tripeptide motif, Asn/
Asp-Xaa-Yaa, and generate a thioester intermediate C-termi-
nally of the Asn or Asp residue. The thioester can be then
attacked by a suitable nucleophile: a dipeptide Gly/Ala-Zaa,
where Zaa is a hydrophobic amino acid residue. AEPs of plant
origin, such asOaAEP1 fromO. affinis, catalyze head-to-tail cy-
clization of peptides and have been used to prepare cyclic pep-
tides (51–53). The slow kinetics of OaAEP1 limited its applica-
tion for protein labeling. Substitution of cysteine residue 247 by
an alanine residue enhances OaAEP1’s catalytic efficiency,
making it an efficient tool for protein modification (54). The
mutant OaAEP1 has been applied to the modification of nano-
bodies. By screening different nucleophiles, a Gly-Val dipeptide
was identified that readily served as a nucleophile in the ligation
reaction, but the product of that reaction (Asn-Gly-Val) was
poorly recognized by the enzyme. This yields a ligation product
resistant to the reverse reaction, a common shortcoming of en-
zymatic labeling methods such as sortagging (see “Sortase A”)
(55). The use of OaAEP1 with Asn-Gly-Leu–based modified
tripeptides allowed efficient modification of the N terminus of
a nanobody with the Gly-Val sequence at the N terminus. The
use of OaAEP1 thus enabled conjugation of nanobodies with a
broad range of different molecules: dyes, lipids, biotin, tetra-
zine, azide, cyclooctene, small-molecule drugs, PEG oligomers,
D-amino acids, and b amino acids (55).
The resistance of the Asn-Gly-Val sequence—the ligation

product—to attack by OaAEP1 allowed efficient site-specific
modification of a nanobody both at the C andN terminus using
the same enzyme, making possible the preparation of doubly
functionalized nanobodies (55), as follows. A C-terminal NGL
sequence is enzymatically modified first with a Gly-Val modi-
fied peptide, yielding a cleavage-resistant product. The N-ter-
minal modification required transient protection of the future
N-terminal Gly-Val nucleophile by a TEV protease recognition
sequence. Its removal freed up the N terminus for a second
OaAEP reaction. Obviously, this method is not limited to mod-
ification of nanobodies and can be applied to other proteins of
interest, and it might be particularly useful for single-molecule
studies. It is also worth noting that, although not observed dur-
ing nanobody modification, unwanted cleavage within the pro-
tein of interest is a side reaction that can occur while using
enzyme from the AEP family.

Tub-tag

Tubulin tyrosine ligase (TTL) modifies the C terminus of a
protein through conjugation of an unnatural tyrosine residue.
This modified tyrosine can be equipped with a wide range of
chemical substituents and thus serves to introduce into the
newly modified protein important functionalities, such as
azides, aldehydes, iodides, alkynes, and dyes. The TTL enzyme
recognizes a glutamic acid–rich 14-amino acid sequence, also
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called Tub-tag (VDSVEGEGEEEGEE), which must be placed at
the C terminus of the protein of interest. Labeling with TTL
and Tub-tag has been used to modify nanobodies (56) with flu-
orescent coumarin and biotin derivatives. Recombinantly pro-
duced nanobodies equippedwith a Tub-tag sequence were like-
wise used to prepare nanobody-based immunoprecipitation
tools and superresolution probes (56, 57).

Formylglycine-generating enzyme

Formylglycine-generating enzymes allow the post-transla-
tional modification of cysteine or serine residues within distinct
consensus motifs ((C/S)XPXR) to produce formylglycine. Such
aldehydes are of particular interest as they can selectively react
with hydrazides and amino-oxy moieties for site-specific
modification of proteins (58, 59). This approach was used to
install an aldehyde motif on two nanobodies that recognize
different epitopes on human b2-microglobulin (60). This
method allowed the preparation of C-to-C–linked homo-
dimer nanobodies using an unusual method: aqueous solu-
tions of formylglycine-containing nanobodies and bivalent
hydrazide or aminoxy linkers were frozen at 220 °C. This
reduction in temperature and freezing drastically increased

the rate of dimer formation. Using a sequential approach in
which one nanobody was reacted with an excess of the biva-
lent linker, followed by the addition of the second nanobody,
yielded heterodimeric bivalent C-to-C–linked conjugates
that were superior in antigen binding relative to C-to-N–
linked dimers provided by simple genetic fusion.

Butelase 1

Butelase 1 is also a cysteine protease of the AEP family found
in the seed pods of Clitoria ternatea. It recognizes a C-terminal
Asn/Asp-containing tripeptide motif, Asn/Asp-His-Val, to
form an Asn/Asp-Xaa-Yaa peptide bond, where Xaa can be any
amino acid and Yaa is a hydrophobic residue. Butelase 1 is
more than 10,000 times faster than other known ligases, with
catalytic efficiencies of up to 1,340,000 M

21 s21 (61, 62). This
unique characteristic has made butelase 1 a powerful tool for
the preparation of cyclic peptides and proteins or for the direct
labeling of a protein (61, 63). Our group used this enzyme to-
gether with sortase A to prepare homodimeric and heterodi-
meric nanobody conjugates connected via DNA linkers (64).
The use of dsDNA as linker between two nanobodies imparts
rigidity on the linkage and is a straightforward method to

Figure 2. Recent examples of nanobody bioconjugation. A, enzymatic approaches, including OaAEP1 (a), formylglycine-generating enzyme (b), tubulin
Butelase and tubulin tyrosine ligase need to be switched in the figure legend (Butelase is panel c, Tubulin tyrosine ligase is panel d) and sortase A (e). B, incor-
poration of unnatural amino acids by stop codon suppression. C, expressed protein ligation. See the Chemical and Enzymatic Functionalization section for a
discussion of strengths and drawbacks of these approaches and associated references.
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control the length of spacing. Such control can be precious for
biophysical studies (65). Although butelase 1 is an attractive
enzyme for protein engineering, a major drawback remains its
availability. Despite new approaches to produce it in bacteria
(66, 67), the main source of butelase 1 remains its extraction
from seed pods ofClitoria ternatea (62).

Sortase A

Sortase A is an enzyme from Staphylococcus aureus that rec-
ognizes the amino acid sequence LPXTGGwith high specificity
(68). This tag can be placed at the C terminus of the protein of
interest but also internal to its sequence, as long as the recogni-
tion tag remains accessible (69). After recognition, sortase A
cleaves between the threonine and glycine residue to form a thi-
oacyl intermediate. An N-terminal polyglycine equipped with a
payload of choice can attack this intermediate and form a new
peptide bond (70). We have used this approach to prepare
diverse nanobody conjugates: nanobody dimers through C-to-
C fusion (71), bispecific nanobodies against GFP and mouse
class II major histocompatibility complex (71), nanobodies la-
beled with radionuclides for PET imaging in vivo (72, 73), nano-
body-drug conjugates against B-cell lymphoma (74), and many
fluorescently labeled versions (73). The orthogonality of sortase
A and butelase 1 allowed the preparation, in a one-pot reaction,
of C-C fusion nanobody dimers linked together with PEG and
oligonucleotide linkers (64). Proteins equipped with a suitably
exposed stretch of Gly residues at the N terminus can be la-
beled with LPXTG-based peptides in a similar way (75).

Native chemical and expressed protein ligation

Native chemical ligation links unprotected polypeptides
through an amide bond that relies on the reaction of a C-termi-
nal thioester with an N-terminal Cys. Expressed protein liga-
tion is based on the naturally occurring splicing of proteins,
which proceeds via formation of a thioester intermediate (76).
The protein of interest is expressed as a fusion with a mutant
version of an intein. Activation with a thiol-containing small
molecule, such as 2-mercaptoethanol, generates a C-terminal
thioester on the protein of interest, such as a nanobody. Using
this thioester, native chemical ligation can be used to attach the
desired Cys-containing moiety to the nanobody. The expressed
protein ligation approach was used to install on nanobodies
two distinct arginine-rich cell-penetrating peptides (CPPs) for
comparison. These synthetic CPPs contained D-amino acids,
are cyclized, and are therefore impossible to introduce by
standard genetic means (48). After attachment of the CPPs to
an anti-GFP nanobody, these conjugates were delivered to the
interior of the cell with an efficiency of up to 95% of cells, in dif-
ferent cell lines, and at relatively low concentrations (10 mM).
Nucleolar localization caused by CPP-nucleic acid interactions
could be avoided by attaching the CPP via a disulfide linkage.

Unnatural amino acid incorporation using stop codon
suppression

Introduction of an unnatural bio-orthogonally functional-
ized amino acid can be achieved by using the cellular transla-

tional machinery and reassignment of a stop codon (77, 78).
This new functional group then enables conjugation of a pay-
load of choice in a site-selective manner. For example, a bifunc-
tional unnatural amino acid derivative was introduced into an
anti EGFR nanobody. The modified amino acid (AmAzZLys)
contains an aryl amine and an azido group, which allows the
conjugation of two different probes in orthogonal and selective
fashion.Moreover, the azidemoiety was used to perform a pho-
toinduced cross-linking reaction to EGFR upon antigen bind-
ing (79). Although attractive in principle, codon reassignment
remains technically demanding and often suffers from reduced
yields compared with conventional productionmethods.

Targeting membrane proteins

The high stability, propensity to bind and stabilize specific
receptor conformations, and ease of production by recombi-
nant expression make nanobodies well-suited for studying
membrane proteins. These characteristics have inspired
investigators from a variety of disciplines to use nanobodies.
Immense efforts have gone into the identification of mem-
brane protein–binding nanobodies. These efforts have posi-
tioned nanobodies as useful reagents for structural studies of
membrane proteins using cryo-EM (80, 81) in a way analo-
gous to past work with X-ray crystallography (10) (see also
Fig. 3).
Visualization of the trafficking of membrane proteins using

monovalent nanobodies avoids cross-linking–induced artifacts
that can arise from the use of bivalent antibodies (82, 83).
Nanobodies that bind Igs frommice (84), rabbits (84), pigs (85),
and humans (86) can facilitate their use in place of conventional
secondary antibodies (87). Nanobodies have also proven useful
for affinity purification of delicate membrane protein com-
plexes (6, 88), but these are properties they share with conven-
tional antibodies of similar specificity.
Structural biologists are well-aware of the ability of nanobod-

ies to facilitate crystallization of otherwise difficult-to-crystal-
lize proteins. Nanobodies frequently contribute to crystal-
packing contacts that facilitate structure determination (Fig.
3A). Structures where even two nanobodies bind to a single
polypeptide have been produced (Fig. 3B). The binding of
nanobodies to discontinuous epitopes that span more than one
protein can also facilitate crystallization of the nanobody-
bound complex (Fig. 3C). The single-domain nature of nano-
bodies implies that the universe of epitopes they can sample
overlaps with, but is distinct from, that of conventional Igs.
These unconventional modes of nanobody-antigen interaction
should inspire new modes of application in biological settings,
such as nanobody-induced target heterodimerization and tar-
get-induced nanobody dimerization. Moreover, such nanobod-
ies can stabilize a receptor in a particular, functionally relevant
conformation, as shown for various GPCRs and bacterial pro-
teins. Structural studies have benefited from the use of nano-
bodies as chaperones, most notably for membrane proteins
such as GPCRs (89–91). In most cases, GPCR-binding nano-
bodies generated for structural studies bind the cytoplasmic
face of the protein (89, 92, 93) and have visualized different
conformers of the GPCRs to which they bind. These features
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have been exploited by intracellular expression of GPCR-bind-
ing nanobodies, as will be discussed below. Nanobodies that
bind to the extracellular domain of GPCRs facilitated crystalli-
zation of metabolic glutamate receptor-2 (mGluR2) (94) and of
the apelin receptor (95). The latter enabled the first identifica-
tion of nanobodies that activate a GPCR (25, 95). Bacterial
membrane proteins have also been trapped by conformation-
specific nanobodies, both for structural characterization (96,
97) and for inhibition of their activity (98). Several accounts
and reviews cover the development of nanobodies as reagents
for structural studies (10) and their use as chaperones (2, 90). A
comprehensive overview of structures containing nanobodies
was published (99), and a regularly updated database is avail-
able online (100).
Conformation-specific nanobodies that bind the cytoplasmic

face of GPCRs have been valuable for structural studies of
GPCRs in distinct conformations (101–105). When expressed
in cells, they can serve as sensors to report on the localization of
active receptors. Several mGluR2-binding nanobodies that
bind the receptor ectodomain act as positive allosteric modula-
tors and sensitize the receptors to respond to subthreshold lev-
els of glutamate (94, 106). A nanobody that binds the extracel-
lular face of CXCR4 reports on conformational changes
induced by small-molecule allosteric modulators (107). The use
of nanobodies that lock b2-adrenergic receptor (b2AR) into
active or inactive receptor conformations allowed identification
of small-molecule agonists, antagonists, and inverse agonists
using binding assays (108). The high yield of nanobodies from
recombinant expression systems and the variety of chemical
functionalization methods available have enabled the synthesis
of conjugates between nanobodies and other complex mole-
cules. A small-molecule ligand for mGlu2R was tethered to the
receptor through a GFP-specific nanobody that recognized
GFP grafted onto the receptor(109). The use of a photoactivat-
able ligand provided reversible photocontrol of receptor activa-

tion on a time scale of seconds. In another approach, using a
combination of enzymatic labeling and click chemistry, a trun-
cated peptide ligand (PTH1-11) for the parathyroid hormone re-
ceptor (PTHR) was conjugated to a PTHR-specific nanobody
(Fig. 4) (110). Conjugation of a suboptimal peptide ligand to the
nanobody enhanced the potency of the peptide by.100-fold in
some cases and improved selectivity for one PTHR subtype
over another. In a separate set of studies, the nanobodies that
recognize surface proteins on antigen-presenting cells were
conjugated to weakly immunogenic peptides, including those
with nonnatural amino acids. These conjugates showed dra-
matically enhanced immunogenicity relative to free peptides in
vitro and in vivo (111, 112). It was thus possible to generate
antibodies against the otherwise poorly immunogenic cycloti-
des, heavily disulfide-bonded circular peptides found in plants
(113).

Targeting extracellular proteins

Many nanobodies were developed to target soluble extracel-
lular proteins. The list of such targets continues to expand at a
rapid pace. The only nanobody currently approved for clinical
use targets the secreted protein vonWillebrand factor to treat a
blood-clotting disorder (114). More nanobodies will find appli-
cation as therapeutics and diagnostics, as evidenced by a wealth
of preclinical data, some of which are summarized below.
Nanobodies’ small size endows them with a short circulatory
t½ and superior tissue penetration. These two features in com-
bination distinguish nanobodies from full-size conventional Igs
and will determine the investigative and therapeutic areas to
which they can be applied. One ongoing challenge is to identify
targets, either extracellular or otherwise, for which nanobody
application has advantages over conventional antibodies.
Nanobodies can be used to block a variety of biological

processes, such as placental growth factor-induced angiogen-
esis in cancer (115); the action of inflammatory proteins, such

Figure 3. Three examples of nanobodies used as crystallization chaperones. A, in the structure of nucleoporin Nup133 from S. cerevisiae, three nanobod-
ies (shades of orange) generated the critical packing interface necessary to build up the crystal lattice (PDB code 6X04). B, in the structure of the nucleoporin
complex of Nup107 and Nup133 from H. sapiens two different nanobodies that bind the Nup107 moiety in separate locations were co-crystallized (PDB code
6X03). C, in the TorsinA-LULL1 complex structure, the nanobody recognizes both binding partners and binds neither TorsinA (white) nor LULL1 (gray) individu-
ally (PDB codes 5J1S and 5J1T).
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as tumor necrosis factor, interleukin-23, granulocyte colony–
stimulating factor, and macrophage migration inhibitory fac-
tor (116–120); and the action of various toxins and venoms
(121–123). A chimeric heavy chain–only antibody consisting of
a proprotein convertase subtilisin/kexin type 9–binding nano-
body and a portion of the human immunoglobulin heavy chain
lowers low-density lipoprotein levels when administered in
transgenic rats (124). Nanobodies against neuronal tau (125),
human prion protein (126), and a-synuclein (127) provided
insight into structural transitions that lead to amyloid formation
(126) and served as sensors to differentiate between fibrils at
characteristically different stages (127). Nanobodies raised
against b2-microglobulin, a protein for which mutations fre-
quently lead to amyloidosis, have illuminated structural features
of aggregation intermediates inmutant versions ofb2-microglo-
bulin (128, 129). They can prevent amyloid formation (130) and
remove b2-microglobulin from blood to treat dialysis-related
amyloidosis (131). Gelsolin, a protein for which mutations lead
to aberrant proteolytic processing and the formation of amyloi-
dogenic fragments, has likewise been targeted with nanobodies.
Nanobodies that bind gelsolin prevent proteolysis, either extrac-
ellularly or in the secretory pathway and reduce amyloidosis
(132, 133). In vivo delivery of gelsolin-binding nanobodies using
a viral vector reduces the amyloid burden in a mouse model
(134). Anti-gelsolin nanobodies have also been used to visualize
gelsolin amyloid deposits by SPECT/CT (135).

Early evaluation of nanobodies raised against carbonic anhy-
drase and amylase demonstrated inhibitory activity for several
of them (136), encouraging further experiments to deploy
nanobodies to modulate enzyme activity. Nanobodies that bind
to and inhibit the protease urokinase-type plasminogen activa-
tor (uPA) (137–139), which can contribute to cancer metasta-
sis, may find clinical application. Crystallization of complexes
between uPA and nanobodies shows how substrate binds and
reveals the conformational equilibria that contribute (137,
139). An inhibitory nanobody against matrix metalloprotease-
8, one of;25 matrix metalloprotease family members in mam-
mals that contribute to inflammatory responses, provides
protection against pathological inflammation induced by lipo-
polysaccharide (140). Nanobodies that bind b-secretase affect
enzyme function, with two nanobodies increasing and one in-
hibiting activity (141). Injection of the inhibitory nanobody
directly into the cerebrospinal fluid decreased deposition of
b-amyloid as a result of b-secretase inhibition in a mouse
model of Alzheimer’s disease (141). g-Secretase, also relevant
for Alzheimer’s disease, has likewise been targeted for inhibi-
tion by nanobodies (22). Nanobodies raised against plasmino-
gen activator inhibitor-1 induced a profibrinolytic effect
through stimulation of protease activity via neutralization of
the protease inhibitor (142, 143). Nanobodies that bind throm-
bin-activatable fibrinolysis inhibitor (procarboxypeptidase U)
block protease activation and thereby promote fibrinolysis
(144). Combined, these examples demonstrate the versatility
of the various nanobody platforms in their application to
extracellular space.

Targeting intracellular proteins

Many nanobodies require neither glycosylation nor disulfide
bond formation to retain their antigen-binding properties.
They can thus be expressed as targeting reagents in the reduc-
ing environment of the cytosol. Conventional antibodies and
their fragments mostly rely on their entry into the endoplasmic
reticulum for assembly and glycosylation. The cytosol pre-
cludes association of immunoglobulin heavy and light chains,
thus compromising their intracellular assembly into a func-
tional unit. Intracellular nanobodies are typically introduced
through transfection of DNA. This allows expression of nano-
bodies in either a constitutive or an inducible manner. Nano-
bodies can be expressed asmonomeric units tomodulate the ac-
tivity of their targets upon binding or as fusions with fluorescent
proteins or taggable protein domains for visualization of targets.
Nanobodies, their variants, and fusions have also been used to
redirect protein localization, induce protein degradation, and
serve as biological sensors of protein conformation, abundance,
and localization. Nanobodies that target nuclear proteins are of-
ten equipped with a nuclear localization sequence, although this
is not always required (145). One of the main bottlenecks
restricting the deployment of nanobodies in cells is the paucity
of intracellular target-specific nanobodies. We provide sum-
mary of many relevant examples below without making claims
as to completeness of the list provided (Table 1).
Transfection-based approaches do not allow direct instal-

lation on nanobodies of bright organic fluorophores, which

Figure 4. Nanobody-ligand conjugates to target a G protein–coupled re-
ceptor. Synthetic fragments of parathyroid hormone were site-specifically
linked to nanobodies to provide conjugates (bottom right) with biological ac-
tivity (EC50) superior to the free ligand (bottom left). Structures are based on
human parathyroid hormone receptor (gray) in complex with PTH (orange)
(PDB code 6FJ3) and a generic VHH (blue) with complementarity-determining
regions highlighted (red) (PDB code 3K1K). The binding of the nanobody to
PTHR1 (bottom right) is shown in two possible orientations as the actual site
of binding is unknown.
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mostly requires chemical methods applied to purified nano-
bodies. Delivery of labeled nanobodies and other antibody
derivatives across the plasma membrane (146) has relied on
appending cell-penetrating peptides (48, 147, 148), mutagen-
esis of nanobody surface residues to increase their positive
charge (149), complexation with cell-penetrating mesopo-
rous silica nanoparticles (150), and the use of a microflui-
dics-based cell permeabilization platform (49). Cell-pene-
trating nanobodies have been used for imaging (48, 49), to
inhibit EGFR function from the cytoplasmic side of the
membrane in lung cancer cells (147), and to evaluate the im-
portance of subcellular localization in photosensitizer-
induced cell killing (148). The design of methods to deliver
proteins such as nanobodies across the plasma membrane is
an area of active research, but accumulation of most such ex-
ogenously added proteins in the endocytic compartment is
difficult to avoid and remains a major confounding factor.
Nanobodies that bind intracellular proteins enable charac-

terization and modulation of proteins of interest and can
avoid the need for genetic modification of the target protein.
A summary of several nanobodies that target intracellular
proteins is shown in Table 1. Targets include mammalian
and bacterial proteins; soluble cytoplasmic proteins and
those embedded in membranes; and proteins in the nucleus,
endoplasmic reticulum membrane, and inner leaflet of the
plasma membrane. Nanobodies can inhibit intracellular sig-
naling proteins, such as the transcription factor STAT3
(151), the uridyltransferase TUT4 (152), apicomplexan cal-
cium-dependent kinase (153), the actin-capping protein
CapG (154), the AMPylation enzyme HypeE (155) and the
Salmonella ADP-ribosylation enzyme SpvB (156). A nano-
body that targets an allosteric site on a bacterial LRRK2

GTPase homologue modulates oligomerization and enzy-
matic activity (157). The ER-localized E2 enzyme UBC6e is
targeted by a nanobody that augments enzymatic activity
without obvious biological consequences (158). A biological
sensing platform that relies on the expression of two nano-
bodies that bind to different epitopes on GFP, each linked to
one part of a transcription factor, converts the production of
intracellular GFP to a transcriptional output (159).
Intracellular proteins that require oligomerization and those

trafficked through the endoplasmic reticulum have also been
probed using nanobodies. Co-translational delivery of a nano-
body to the endoplasmic reticulum prevents aberrant process-
ing and aggregation of a variant of the secreted form of gelsolin
(132). Expression of a nanobody that recognizes ASC, an adap-
tor protein important in inflammasome assembly, enabled vis-
ualization of inflammasome assembly in cells and altered the
morphology of assembled inflammasomes (160). Nanobodies
raised against the active (GTP-bound) forms of the GTPases
RhoA and dynamin enabled tracking of active enzymes in living
cells (161, 162). Using these tools, active RhoA was detected at
the inner plasmamembrane upon overt activation; active dyna-
min was formed in stochastic bursts associated with membrane
fission. A nanobody that binds and inhibits the function of
b/g-subunit complex of the heterotrimeric G proteins showed
that blockade of b/g-subunit function has minimal impact on
Ga function (163). The expression of nanobodies that inhibit
the actin-bundling protein L-plastin uncovered a role for this
protein and the T cell integrin LFA-1 in facilitating the forma-
tion of the immune synapse (164, 165). Two proteins found in
the plasma membrane, VGLUT and P-glycoprotein, are tar-
geted at their cytoplasmic faces by nanobodies that inhibit their
function (166, 167).

Table 1
Summary of nanobodies used to target intracellular proteins
Note that this table does not include nanobodies used primarily for structural studies or those that target viral proteins and secreted proteins. The use of GFP-targeting
nanobodies in this context is discussed in the text.

Intracellular target (function) Speciesa Application and biological impact Reference

Cytoplasmic proteins
STAT3 (transcription factor) H Slows breast cancer growth in vitro and in vivo 151
TUT4 (uridytransferase) H, M Blocks microRNA uridylation and degradation 152
Calcium-dependent kinase T Inhibits kinase activity, crystallization chaperone 153
CapG (actin-capping enzyme) H Blocks actin binding, inhibits cancer metastasis 154
HypE (AMPylation) H Inhibits or activates enzyme, cellular imaging 155
SpvB (ADP-ribosylation) S Inhibits enzyme, blocks cytoskeletal changes 156
ASC (inflammasome adaptor) H Interrupts assembly, cellular imaging 160
Roco (GTPase) B Destabilizes dimer, enhances GTP hydrolysis 157
RhoA (GTPase) H Either inhibits RhoA or tracks localization 19, 161
RhoB (GTPase) H Targeted degradation of GTP-bound RhoB 190
Gb/g (GTPase subunit) H Blockade of signaling following GPCR activation 163
L-plastin (actin-bundling protein) H Inhibits enzyme function, defective immune synapse formation 164, 165
p53 (tumor suppressor protein) H Relocalization to mitochondria or protection from proteasomal degradation 175, 176
H2A/H2B (histone) Y, M, H Directs ubiquitination to induce DNA damage signaling, imaging 189
UBC6e (E2 enzyme) M, H Enhances enzyme function in vitro 158
Dynamin (GTPase) H Binds GTP-bound enzyme, visualization of localization 162

Intracellular face of plasma membrane protein
VGLUT (Glu transporter) R Inhibits glutamate transport, visualization 166
P-glycoprotein (transporter) M Inhibits function in vitro 167
b2AR (GPCR) H Binds and stabilizes the receptor active or inactive states for structural studies

and visualization
194, 195

Muscarinic acetylcholine receptor (GPCR) H Binds and stabilizes the receptor active state for structural studies 92
k- and m-opioid receptors (GPCR) H Binds and stabilizes the receptor active or inactive states for structural studies

and visualization
103, 198, 199

CaV1/CaV2 (high voltage–activated calcium channel) H, M, G Expressed as E3 fusion to ubiquitinate, redirect localization, inhibit function 188
aSpecies of the antigen bound by the referenced nanobody. H, human; M, murine; B, bacterial; S, Salmonella; Y, yeast; R, rat; G, guinea pig.

JBC REVIEWS: Exploring cellular biochemistry with nanobodies

15314 J. Biol. Chem. (2020) 295(45) 15307–15327



Intracellular nanobody constructs can be adapted to yield
fusion proteins that enable the relocalization, destruction, or
enzymaticmodification of nanobody-bound targets. The fusion
of a nanobody toO-GlcNAc transferase enabled directed glyco-
sylation of proteins targeted by the nanobody fusion (168), a
post-translational modification that is otherwise widespread.
Nanobodies, expressed as fusions with tags that dictate a partic-
ular subcellular localization, can redirect the localization of
proteins of interest and serve to control protein diffusion. GFP-
binding nanobodies routed to subcellular sites have been used
to assess the impact of redirecting GFP-tagged targets in living
multicellular organisms (Fig. 5A) (169–171). Forced mislocali-
zation of the drosophila regulatory myosin light chain, tagged
with GFP, to either the basolateral or apical membrane, caused
an alteration in the shape of wing cells or aberrant sibling cell
asymmetry in neural cells (169, 170). Membrane anchoring of a
protein essential for the development of cellular polarity in
Caenorhabditis elegans revealed the importance of clustering
for asymmetry (171). This approach has been used to redirect
mRNAs engineered to contain the GFP-binding binding
sequenceMS2, which showed that forcedmRNA relocalization
also caused protein relocalization (172). In a variation on this
approach, a secreted protein was tethered to the cell surface,
with rates of diffusion controlled by the strength of the nano-
body-epitope interaction employed, to assess the importance of
local and distal action of secreted proteins (173, 174). This

approach showed that diffusion of a secretedmorphogenic pro-
tein in Drosophila is essential for proper wing patterning (173).
A p53-binding nanobody with a mitochondrial localization tag
showed that mitochondrial mislocalization led to loss of cell vi-
ability in some cases (Fig. 5B) (175). A p53-binding nanobody
that blocked the degradation of p53 mediated by human papil-
lomavirus E6 protein failed to promote apoptosis (176).
The targeting function of nanobodies can be exploited to link

particular substrates to the degradation machinery. The modu-
lar nature of nanobodies thus enabled their use in a variety of
fusion proteins for targeted degradation of proteins of interest
(177). This approach typically involves genetic fusion of a nano-
body with a (fragment of a) ubiquitin ligase (E3), which recruits
the endogenous ubiquitinationmachinery to tag nanobody-tar-
geted proteins for degradation by the proteasome. One widely
deployed version of this approach relies on a fusion of a nano-
body that binds GFP/YFP with an F-box protein domain from
the Skp cullin F-box E3 complex, which can degrade GFP/YFP-
tagged proteins (Fig. 5A) (178, 179). An alternative version uses
von Hippel–Lindau (VHL)-nanobody fusions to degrade GFP-
tagged proteins (180, 181). Targeted degradation using this
approach, in combination with expression under tissue-specific
promoters, has enabled evaluation of the role of targeted pro-
teins in specific tissues in Drosophila development (182, 183).
Tissue-specific degradation of myosin-II showed it is not essen-
tial for tracheal elongation or the closure of the dorsal opening

Figure 5. Nanobodies as redirecting and sensing agents in live cells. A, use of GFP-binding nanobodies to redirect tagged proteins to subcellular locations
or for degradation. B, use of a p53-binding nanobody to block HPV E6-mediated ubiquitination and degradation. C, use of orthogonal anti-NP nanobodies as
biosensors coupled to a transcriptional output (214). The DNA-binding domain (DBD) and VP64 activation domain are separately fused to anti-NP nanobodies
(VHHs). UAS, upstream activator sequence that binds DBD. Transcription of the reporter gene produces GFP. D, use of nanobodies as biosensors to detect
active and inactive states of GPCRs.
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during development of Drosophila. Alternative versions of
nanobody-mediated target degradation, relying on other E3
fragments, have also been developed for application in zebra-
fish (184, 185) and C. elegans (186). The use of nanobody-E3
fragment fusions to target cell surface ion channels, either as a
YFP fusion or as the WT protein, showed that ubiquitylation
can have divergent consequences for the trafficking and func-
tion of cell surface proteins (187, 188). An E3 fragment–nano-
body fusion that bound directly to the histone H2A-H2B pro-
tein dimer enabled targeted ubiquitylation of histones and
caused signaling associated with DNA damage (189). A nano-
body that selectively bound to the active (GTP-bound) form of
RhoB GTPase was applied as an F-box fusion to knock down
active RhoB. It showed that the GTP-bound fraction of RhoB
mediates its role in cell invasion (190). Control of the properties
of the E3 fragment–nanobody produced in cells, such as
expression level and degradation rate, allows quantitative con-
trol of cellular protein levels (191).
Specialized, targeted approaches have produced nanobodies

that bind to the target only when found in a specific conforma-
tion, with a particular emphasis on membrane proteins. These
approaches rely on screening with antigens locked into the
desired conformation: amyloidogenic protein variants at vari-
ous stages of self-assembly, complexes formed by protein-pro-
tein interactions, and receptors bound to ligands constitute
some of the targets of conformation-specific nanobodies (30).
They have served as biosensors to visualize the distribution of
proteins in a specific conformation in living cells (Fig. 5D) (192,
193), with a particular emphasis on GPCRs. A nanobody raised
against the b2AR, used as a chaperone to facilitate its crystalli-
zation (89), binds to the cytoplasmic face ofb2AR and stabilizes
its active state, much like a G protein would. This same nano-
body, when expressed as a fluorescent fusion protein served as
a biosensor to visualize ligand-bound b2AR in its active state
(194). Surprisingly, activated b2AR was found both at the
plasma membrane and in early endosomes. Further characteri-
zation of other b2AR-binding nanobodies identified one that
bound to and stabilized the inactive form of b2AR (101, 195).
This assembly of nanobodies enabled the classification of sev-
eral b2AR ligands as agonists, antagonists, or inverse agonists
(101, 108). Certain b-adrenergic receptor ligands affect the
conformation of receptor molecules found in the Golgi, sug-
gesting that receptors en route to the cell surface can be acti-
vated by cell-permeable ligands (196). This possibility is of in-
terest also in view of the exclusive Golgi localization of GPCRs
such as GPR107 (197). Conformation-specific nanobodies have
been applied for similar applications to the muscarinic acetyl-
choline receptor (92) and for the k- and m-opioid receptors
(103, 198, 199). Although these conformation-specific nano-
bodies are restricted to the indicated receptors, study of a nano-
body specific for the k-opioid receptor in its active state showed
that the intracellular loop fragment responsible for nanobody
binding could be grafted onto other GPCRs with retention of
binding, highlighting the exciting possibility of designing recep-
tor chimeras bound by conformation-specific nanobodies
(103). This select set of examples shows that intracellular
expression of nanobodies directed against cytoplasmic targets
clearly is a feasible approach to modulate cellular functions.

However, considerable efforts must be expended to identify
nanobodies with the desired properties. As methods for the
production of large and completely synthetic nanobody libra-
ries improve, the need for deliberate immunization of animals
is reduced. Synthetic libraries may also make it possible to
obtain nanobodies against proteins that are not immunogenic
in camelids.

Targeting viral proteins

Nanobodies have been used to target viral proteins. Inhibi-
tion of viral entry by nanobodies is well-documented (200,
201). The recent description of camelid-derived nanobodies ca-
pable of neutralizing SARS-CoV-2, the coronavirus responsible
for the COVID-19 pandemic, is one such example (202, 203).
There are fewer examples of nanobodies that target cytoplas-
mic viral proteins. Because infected cells produce cytoplasmic
proteins required for proper virus replication, assembly, and
release, nanobody-mediated interference with intracellular vi-
ral proteins requires cytoplasmic expression as well. Inhibition
of viral polymerases by a cytoplasmically expressed nanobody
inhibits influenza propagation (204). A nanobody that blocks
multimerization of HIV REV causes defects in viral RNA trans-
port and inhibits virus production (205). HIV NEF is a non-
structural protein that alters protein trafficking in infected
cells, and a nanobody directed against NEF blocks these effects
(206). Nanobodies that target viral nucleoproteins (NPs) inhibit
viral fitness by several mechanisms, including indirect inhibi-
tion of polymerase function (207), inhibition of nuclear import
of viral ribonucleoproteins (208), and disruption of virus as-
sembly by NP cross-linking with dimeric nanobodies (209). A
nanobody that binds grapevine fanleaf virus capsid protein pro-
vides resistance to the virus when expressed in plant cells (210,
211) These few examples show that cytoplasmically expressed
viral proteins can serve as excellent nanobody targets to explore
aspects of viral replication that might be more challenging to
study otherwise. For example, the many essential roles of influ-
enza NP havemade a dissection of its various functions difficult
by standard mutagenesis. The use of NP-specific nanobodies
has uncovered novel aspects of nuclear localization (208).
Nanobodies that target viral proteins can be turned into tun-

able biological tools and sensors. A nanobody-fluorescent pro-
tein fusion that recognized the HIV capsid protein p21 was
deliberately destabilized by introducingmutations that resulted
in rapid degradation of the fusion protein (212). This fusion
was stabilized upon binding of p21, thus providing a fluorescent
reporter of HIV infection (212). Intracellular expression of
influenza NP-specific nanobodies enabled the tracking of viral
distribution (213). Use of a pair of orthogonal anti-influenza
NP nanobodies linked to different domains of a transcription
factor, which must be brought into proximity to function, pro-
vided a method in which transcription of a fluorescent protein
reporter is controlled by the presence of NP (Fig. 5C) (214). A
nanobody that blocks nuclear import of influenza ribonucleo-
proteins through occlusion of interactions of the viral nuclear
localization sequence with its host receptor was repurposed as
a way to control viral infectivity: engraftment of the nuclear
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localization sequence onto the nanobody itself restored infec-
tivity (215).

Epitope tags

Antibodies that target peptide fragments of less than 20
amino acids, commonly called epitope tags, have been widely
applied to target tagged proteins of interest in a variety
of assays, including microscopy, immunohistochemistry, im-
munoblotting, and immunoprecipitation experiments (216).
Such epitope tags are valuable when high-quality antibodies or
nanobodies against the protein portion of the tagged protein
are lacking (7) and to avoid cross-reactions with related pro-
teins. Small epitope tags can be preferable to the use of GFP, as
the presence of a GFP moiety can impact protein behavior
(217). Only a handful of nanobodies that recognize short pep-
tides suitable as epitope tags have been reported thus far. The
reason for the scarcity of nanobodies that recognize epitope
tags in a variety of settings is unknown butmost likely relates to
the often convex nature of their antigen-binding portion (para-
tope) and the need to achieve the necessary buried surface area
upon binding of antigen through interaction with a single vari-
able region, instead of the conventional VH-VL pair. The
reported nanobody-peptide epitope pairs are summarized in
Table 2.
A nanobody (NbSyn2) raised against a-synuclein binds to

the extreme C terminus of the protein, involving the four termi-
nal amino acids (EPEA) (127, 218). Although the tetrapeptide
epitope tag is the smallest nanobody tag reported, the NbSyn2-
EPEA interaction is of lower affinity (Kd ;190 nM) than other
nanobody-epitope tag pairs and requires that EPEA be placed
at the C terminus (127). There is a report of nanobodies that
recognize the myc tag (219) derived from the c-Myc protein,
but the affinities of these nanobodies have not been reported,
and they have not been widely tested. A different nanobody-
epitope tag pair resulted from characterization of nanobodies
raised against b-catenin (BC2 nanobody) (4, 5). The BC2 nano-
body binds to a 12-residue epitope with high affinity (Kd ;2-6
nM). This tag can be placed at the N or C terminus of the pro-
tein of interest with retention of binding (4) and has been used
in proteomics and superresolution microscopy studies. Opti-
mal results in the latter application required the use of a homo-
dimeric nanobody construct to increase avidity (4, 220). A
nanobody that recognizes a 14-mer peptide with high affinity

(Kd ;1 nM), derived from the endoplasmic reticulum-localized
protein UBC6e (6E tag) is nanobody VHH05 (158). Incorpora-
tion of the 6E tag into the extracellular portion of a GPCR
enabled efficient delivery of ligands linked to VHH05 to a
tagged receptor, resulting in potent activation (110). Most
nanobody-recognized epitopes are derived from endogenous
cellular proteins and can be used in a heterologous setting but
may cause high background in applications where the endoge-
nous protein is present. This complication was circumvented
by generating a nanobody (NbAlfa) that binds with very high af-
finity (Kd ;20 pM) to a synthetic 14-mer helical peptide (Alfa
tag) not found in nature (6). NbAlfa was used for affinity purifi-
cation, high-sensitivity immunoblotting, and superresolution
microscopy (6).Whether the introduction of a tag with a strong
propensity toward helical structure and book-ended by proline
residues disrupts the structure and function of proteins engi-
neered to contain it must be determined on a case-by-case
basis.
In a system designed to evaluate translation kinetics in live

cells, efforts to identify nanobody-epitope tag pairs that func-
tion in live cells evaluated seven different candidate nano-
body-epitope tag pairs. Only a single nanobody-epitope tag
pair was found to function in cells (221). This pair (dubbed
“moon tag”) consists of a nanobody raised against the HIV
envelope protein gp41 and a 15-mer peptide that interact
with an affinity of ;30 nM (222). The moon tag was used
along with an orthogonal epitope recognition pair based on
an scFv antibody (named “sun tag”) to demonstrate a high
degree of stochasticity and variation in translation kinetics in
live cells (221). Both the moon tag and the alfa tag system can
be used to deliver a nanobody-fluorescent protein fusion to a
subcellular site of choice (nucleus, mitochondria, cell mem-
brane) when the nanobodies carry the appropriate targeting
signals (223). The orthogonality of the moon tag and alfa tag
suggests the potential for multiplexing (223). The VHH05-6E
pair can also efficiently redirect subcellular protein localiza-
tion.4 An important consideration for the selection of tag-
specific nanobodies is a lack of cross-reactivity with the
species of origin in which these nanobodies will be used.
Nanobodies against pathogen-specific antigens may provide
a possible source of such reagents.

Table 2
Summary of nanobody-epitope tag pairs and applications
Listed affinities were determined using a variety of methods as described in the listed references.

Name Affinity Sequence/applications Notes References

nM
EPEA 190 EPEA/affinity purification, flow cytometry Tag must be at C terminus, cross-reacts with

a-synuclein, marketed as C-tag
127, 168, 218

myc ND EQKLISEEDL/enzyme-linked immunoassay Not extensively characterized 219
BC2 2–6 PDRVRAVSHWSS/affinity purification, immunoblotting,

(superresolution) microscopy
Cross-reacts with endogenous b-catenin, marketed

as Spot-tag
4, 220

6E tag 1 QADQEAKELARQIS/affinity purification, immunoblotting,
cell surface tethering of GPCR ligand

Reacts with endogenous UBC6e 110, 158

Alfa 0.02 SRLEEELRRRLTE/affinity purification, immunoblotting,
superresolution microscopy, target relocalization in live cells

Tag adopts a-helical structure 6, 221, 223

Moon 30 KNEQELLELDKWASL/live-cell microscopy Tag derived from HIV gp41 221
PepTag 0.6 AVERYLKDQQLLGIW/immunoprecipitation, live-cell

microscopy
Tag derived from HIV gp41, helical, previously

named VHH 2E7
239, 240

4N. McCaul, J. Ling, and H. L. Ploegh et al., unpublished observation.
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Synthetic biology with nanobodies

The adaptable and modular nature of nanobodies makes it
possible to reprogram, or report on, cell function. Two widely
deployed examples of this approach are the targeted degrada-
tion of cellular proteins tagged with GFP (discussed above) and
the expression of nanobody-containing chimeric antigen recep-
tors in T cells (CAR-Ts) (reviewed recently (224)). Many of the
applications of nanobodies in synthetic biology described below
rely on widely deployed clones that target GFP or viral proteins.
Extension of these approaches to epitope tag–targeting nano-
bodies will expand their adaptability.
One goal of synthetic biology is to allow cells to bind or

respond to molecules for which they do not have a natural re-
ceptor. This goal can be achieved through expression of cell
surface protein fusions that contain nanobodies that bind to a
molecule of interest. Adaptation of the NOTCH signaling path-
way through introduction of a nanobody-sensing element
enabled initiation of transcriptional responses in mammalian
cells in the presence of extracellular GFP (Fig. 6A) (225). An
analogous platform developed in bacteria used a nanobody
fused to a dimerizable DNA-binding domain, which then
enabled caffeine-stimulated induction of transcription (Fig. 6B)
(226). Modification of a bacterial flagellar protein by insertion

of a GFP-binding nanobody yielded bacteria that bound GFP
with retention of flagellar structure (Fig. 6C) (227). Other bac-
terial outer membrane proteins could also be expressed as
fusions with a GFP-binding nanobody (228). Modification of
the bacterial hemoglobin protease gene yielded membrane
vesicles (OMVs) equipped with a recognition tag for Spy-
Catcher that allowed production of nanobody-modified OMVs
(229). The ability to equip bacteria or their outer membrane
vesicles with nanobodies sets the stage for delivery to desired
biological sites through nanobody targeting. A glycosylphos-
phatidylinositol-anchored version of a nanobody that binds to
HIV gp41 protects susceptible cells from HIV infection, even
where the free nanobody itself fails to protect (230). Nanobod-
ies localized at the cell surface can trap secreted proteins near
their site of secretion (169, 173). Variation in the strength of the
interaction between cell surface nanobody and secreted protein
can then be used to control protein diffusivity (174).
Nanobody variants that are unstable in mammalian cells

unless bound to their target can report on relative protein
abundance (212). Several nanobody constructs whose
function or localization can be controlled by light or small
molecules have been reported. This approach can achieve
improved spatial (localized illumination) and temporal

Figure 6. Application of nanobodies in synthetic biology. A, use of nanobodies as recognition elements in programmable synNotch constructs (225). Upon
ligand binding, sometimes found on the surface of neighbor cells, synNotch receptors undergo a conformational change that promotes cleavage and release
of an intracellularly linked transcription factor. B, nanobodies as recognition elements in bacterial constructs for sensing of extracellular ligands (226). The addi-
tion of caffeine causes clustering of extracellular single-domain antibodies and subsequent assembly of split DBDs and a transcriptional output. C, scheme for
attachment of nanobodies to bacterial outer membranes or OMVs using SpyCatcher/SpyTag (229). An outer membrane protease, hemoglobin protease
(gray), is linked to SpyTag (red). A SpyCatcher/nanobody fusion (black/gold) covalently labels the hemoglobin protease-SpyTag fusion.
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control of cellular function relative to processes that require
transcription and translation, which take much longer. The
fusion of nanobodies with proteins that engage in light-
stimulated interactions with binding partners enables light-
directed routing of nanobodies or nanobody-bound targets to
large clusters formed by protein hetero-oligomerization
(231) or to specific subcellular compartments (232). In these
examples, illumination controls only the nanobodies’ local-
ization and therefore access to targets with restricted subcel-
lular localization. An alternative strategy hinges on coupling
illumination with nanobody function directly. Proteins that
heterodimerize upon illumination have been fused with
nanobody fragments to enable light-stimulated binding and
inhibition of the nanobody targets by light-induced reassem-
bly of nanobodies inside cells (233). Introduction of a photo-
responsive protein into the nanobody framework regions also
enabled light-induced or light-inhibited nanobody function,
although many constructs retained target binding to some
extent even in the absence of illumination (234). To enable
small-molecule control of nanobodies, a dihydrofolate reduc-
tase variant, which folds only upon ligand binding, was
inserted into a nanobody complementarity-determining
region (235), which allowed small-molecule control of nano-
body binding. A different strategy for generating photores-
ponsive nanobodies relies on stop codon suppression to
incorporate a nonnatural photocaged tyrosine residue into a
nanobody complementarity-determining region (236, 237).
Nanobodies with an appropriately placed caged tyrosine,
produced through recombinant expression in bacteria,
failed to bind to targets expressed on the cell surface, but
upon irradiation, binding was restored.

Concluding remarks

Properties unique to nanobodies make them useful tools,
with features that differentiate them from conventional anti-
bodies and synthetic recognition modules. Nanobodies have
proven their worth as chaperones for structural studies, partic-
ularly in the study of membrane proteins such as GPCRs (10).
Expanding efforts to apply nanobodies as intracellular reagents
and to equip nanobodies with synthetic moieties using chemi-
cal and enzymatic methods are opening up exciting new
possibilities.
Nanobodies appear particularly well-suited to report on cel-

lular events that happen on a rapid timescale, where reporters
based on transcription and translation may be too sluggish.
The specialized properties of nanobodies have allowed insight
at high temporal resolution into complex and stochastic events,
such as the dynamics of protein translation (221), endomem-
brane trafficking (162), and receptor conformational changes
(103). Designs that turn on or off the function of nanobodies
with light (233) or small molecules (235) will allow unprece-
dented temporal control over processes such as protein degra-
dation (191), subcellular relocalization (175), and even post-
translational modifications (168). This strategy relies on the
availability of nanobodies that target proteins of interest in the
context of the cytoplasm, of which there is a substantial but still
limited selection. New screening methods to identify nanobod-

ies against new targets will allow extension to other targets.
The emergence of nanobodies that bind epitope tags in the
cytoplasmwill help to bridge this gap (223).
Chemical and enzymatic labeling strategies applied to nano-

bodies provide semisynthetic conjugates with properties not
achievable without this combination. The use of nanobodies
chemically modified with moieties for visualization as in vivo
imaging agents is an example (1). The conjugation of nanobod-
ies with synthetic ligands for cell surface receptors provides a
path toward conjugates with improved receptor selectivity
(110) and light-responsiveness (109). The ability to site-specifi-
cally modify nanobodies at more than one position should ena-
ble further elaboration (55). The ability to prepare nanobodies
through chemical synthesis would permit the ultimate level of
control for nanobody chemical functionality (238). The unique
properties of nanobodies have firmly secured their place in the
biochemist’s toolbox, with yet more exciting and original appli-
cations to emerge.
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