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•  A brief review of numerical methods for sensitivity analysis of chaos is provided.
•  The space-split sensitivity (S3) method is numerically investigated using 1D chaotic maps.
•  The derivative of SRB density function is studied intuitively using 1D chaotic examples.
•  Computational advantage of S3 over the finite difference method is demonstrated.
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Sensitivity analysis in chaotic dynamical systems is a challenging task from a computational point
of  view.  In  this  work,  we  present  a  numerical  investigation  of  a  novel  approach,  known  as  the
space-split  sensitivity  or  S3  algorithm.  The  S3  algorithm  is  an  ergodic-averaging  method  to
differentiate  statistics  in  ergodic,  chaotic  systems,  rigorously  based  on  the  theory  of  hyperbolic
dynamics.  We  illustrate  S3  on  one-dimensional  chaotic  maps,  revealing  its  computational
advantage over naïve finite difference computations of the same statistical response. In addition,
we  provide  an  intuitive  explanation  of  the  key  components  of  the  S3  algorithm,  including  the
density gradient function.
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Sensitivity analysis is a discipline that studies the response of
outputs of a certain model to changes in input parameters. It in-
volves computing the derivatives of output quantities of interest
with  respect  to  specified  parameters.  This  mathematical  tool  is
essential  in  many  engineering  and  scientific  applications,  as  it
enables optimal design of structures [1,2] and fluid-thermal sys-
tems [3], analysis of heterogeneous flows [4], supply chain man-
agement [5], estimate errors and uncertainties in measurement,
modeling  and  numerical  computations  [6,7].  A  classic  example
from  fluid  mechanics  is  a  turbulent  flow  past  a  rigid  object,  in
which the sensitivity of the drag (resistance) forces with respect
to the Reynolds number and other flow parameters [8,9], is of in-
terest. Particularly, aerospace engineers use the computed sens-

itivity in the design of airfoils [10]. This mechanical phenomen-
on  is  governed  by  a  strongly  nonlinear  dynamical  system  and,
moreover, it  features  an  extra  difficulty,  namely  the  chaotic  be-
havior.

Computing such sensitivities in chaotic dynamical systems is
a challenging task. The primary issue is the so-called butterfly ef-
fect, which is a large sensitivity of the system to initial conditions.
This  concept  is  associated  with  the  classical  study  of  Edward
Lorenz  on  climate  prediction  [11].  Quantitatively,  it  means  that
any two points initially separated by an infinitesimal distance di-
verge  at  an  exponential  rate.  This  implies  the  prediction  of  far-
future states  in  chaotic  phenomena  is  hardly  possible.  We  ob-
serve this phenomenon in daily weather forecasts, as the predic-
tions  of  several  weeks  forward  tend  to  be  highly  inaccurate.
However, we  are  sometimes  interested  in  predicting  the  re-
sponse of long-time averaged behavior, to perturbations [8,9,12].
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In the last few decades, there have been different attempts to
compute  sensitivities  of  long-term  averages  in  chaotic  systems.
The conventional  methods [13,14],  which require solving either
tangent or adjoint equations, fail if the time-averaging window is
large. Due to butterfly effect, almost every infinitesimal perturba-
tion  to  the  system  expands  exponentially,  and  therefore  the
sensitivity  computed  using  the  tangent  or  adjoint  solutions
grows  equally  fast.  A  more  successful  family  of  methods  utilize
the  concept  of  shadowing  trajectories  [15–17]. However,  shad-
owing  methods  have  been  proven  to  have  a  systematic  error,
which can be non-zero if the connecting map between the base
and  shadowing  trajectory  is  not  differentiable  [18]. Some  ap-
proaches  adopt  the  Fluctuation-Dissipation  Theorem,  which  is
widely used in the statistical equilibrium analysis of turbulence,
Brownian  motion,  and  other  areas  [19].  Unfortunately,  they  are
inexact  as  well,  when they  do not  assume specific  properties  of
the physical systems, e.g.  Gaussian distribution of the equilibri-
um  state  [20].  Moreover,  they  require  solving  costly  Fokker-
Planck equations,  which  makes  them  infeasible  for  large  sys-
tems [21].  Another group of  methods for  sensitivity  analysis  are
trajectory-based  and  utilize  Ruelle's  linear  response  formula
[22]. Many  of  these  techniques,  generically  referred  to  as  en-
semble methods,  solve tangent/adjoint  equations and compute
ensemble  average  over  a  trajectory  to  estimate  the  sensitivity
[23,24]. The two major drawbacks of ensemble-based methods is
that they exhibit  slow convergence since they suffer  from expo-
nentially  increasing  variance  of  the  tangent/adjoint  equations
[12,23].

Space-split  sensitivty  (S3)  is  an  alternative  trajectory-based
method that uses Ruelle's formula [25]. However, unlike the en-
semble methods,  it  does  not  manifest  the  problem  of  unboun-
ded  variances.  Moreover,  the  S3  method  does  not  assume  that
the probability  distribution in  state  space is  of  a  particular  type
(e.g. Gaussian), and also does not rely on directly estimating the
probability  distribution  by  e.g.  discretizing  phase  space.  In  the
paper, we will closely review the basic concepts of the S3 meth-
od in the context of one-dimensional chaotic maps.

We  introduce  two  families  of  perturbed  one-dimensional
chaotic systems that can generally be expressed as

xk+1 =φ(xk ; s), x0 = xinit, (1)

xinit s
J

J

where  is  a  given  initial  condition,  while  denotes  a  scalar
parameter. Let  be a scalar observable. Our quantity of interest
is the infinite-time average or ergodic average of ,

〈J〉 := lim
N→∞

1

N

N−1∑
i=0

J (xi ; s). (2)

〈J〉
s φ

In  particular,  we  focus  on  the  relationship  between  and
the  parameter  for  .  In  addition,  we  review  the  concepts  of
Lyapunov exponents and ergodicity  through numerical  illustra-
tions on the two maps.

We consider  as  our  first  example,  perturbations  of  the  saw-
tooth map, also known as the dyadic transformation, defined in
the following way:

xk+1 =φ(xk ; s) = 2xk + s sin(2πxk ) mod 1, xk ∈ [0,1). (3)

[0,1)
s

It  is  a  periodic  map  that  maps  to  itself. Figure  1 illustrates
the sawtooth map for different values of the parameter .

s = 0,
x x +δx

2δx.
δx → 0,

x n = 0 x
log2 ≈ 0.693.

λ

A  natural  question  that  arises  is  whether  the  chosen  is  map
actually  chaotic.  Roughly  speaking,  a chaotic  map  shows  high
sensitivity to initial conditions. For example, consider  and
two phase points  and .  Under one iteration of the map,
these two points are now separated by a distance of  Thus, in
the  limit  a  trajectory  that  is  infinitesimally  separated
from  at  moves away from the trajectory of  at an expo-
nential rate of  This exponential growth of perturba-
tions to the state is the signature of chaotic systems and is meas-
ured  by  the  rate  of  asymptotic  growth,  known  as  the  Lyapunov
exponent (LE) and denoted by . More rigorously,  the Lyapun-
ov exponent is defined by

λ(s) = lim
n→∞

1

n

n−1∑
k=0

log

∣∣∣∣∂φ∂x
(xk ; s)

∣∣∣∣ , (4)

xinit

k λ> 0

which  clearly  indicates  that  the  infinite-time  averaged  rate  of
growth  converges  to  a  constant.  We  say  that  a  map  is  chaotic
when its LE is positive. Eq. (4) requires computing the derivative
of the map at points along a trajectory. Note that the value of the
Lyapunov  exponent  does  not  depend  on  initial  condition ,
nor  on  the  step . Figure  2 shows  that  for  all
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Fig. 1.   The sawtooth map at different values of parameter . Note if
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s ∈ (−1/(2π),1/π]

∂φ/∂x ≥ 1 x ∈ [0,1] s

 meaning  that  the  sawtooth  map  is  chaotic  in
this  regime.  This  can  be  easily  justified  by  the  observation  that

 for all , when  is in this regime.
s = 0

s = 0

s = 0 xinit

xinit

[0,1) xinit = 0.1
{0.2,0.4,0.6,0.8} xk = xk+4

k > 0

In case of the classical Bernoulli shift, i.e. when , a repet-
itive application  of  the  sawtooth  map  always  appears  to  con-
verge to  a  fixed  point  when  simulated  numerically.  This  is  be-
cause  all  machine-representable  numbers  with  a  fixed  number
of  digits  after  the  binary  point  are  dyadic-rational  numbers,
which converge to the fixed point 0 under this map, because the
sawtooth map at  is simply a leftshift operation on binary di-
gits. More details about this problem and possible remedies can
be found in A. Note also that if  and  is rational, the for-
ward  orbit  of  would  either  converge  to  a  fixed  point  or  be
periodic, containing a finite number of distinct values within the
interval . For example, if , then all future states be-
long to a four-element set, ,  and  for all

. This is an example of an unstable periodic orbit; in this pa-
per, we are interested in chaotic orbits, which are aperiodic and
unstable to perturbations.

Another  example  of  a  chaotic  map  is  the  cusp  map

φ : [0,1] → [0,h] defined as follows,

xk+1 =φ(xk ;h,γ) = h −
∣∣∣∣ 1

2
−xk

∣∣∣∣−(
h − 1

2

)
|1−2xk |γ . (5)

The  above  function  produces  a  spade-shaped  graph,  as
shown in Fig. 3.

s = {h,γ}
h γ

h γ

γ ∈ [0,1] h ≥ 0.6

The cusp map is a two-parameter map with , where
 is the height, while  is a parameter that determines the sharp-

ness of the tip. We use the definition Eq. (4) to compute the LE of
the cusp map at different values of  and .  From the positivity
of the Lyapunov exponent shown in Fig. 4, we see that the cusp
map is always chaotic if  and .

Historically,  the  cusp  map  has  been  used  as  a  one-dimen-
sional representation  of  the  three-dimensional  Lorenz'63  sys-
tem [11], a set of ordinary differential equations used as a model
for atmospheric convection. Specifically, the iterates of the cusp
map  are  local  maxima  of  the  third  coordinate  of  the  Lorenz'63
system [26].

〈J〉

0 1

The long-time average of the objective function, , was cal-
culated  using  100  million  iterates  of  the  map,  with  the  initial
condition chosen uniformly, at random between  and ,  in the
following way: 
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〈J〉 ≈ 1

N

N−1∑
i=0

J (xi ), (6)

xi+1 =φ(xi )where .  We  choose  a  sufficiently  large N  to  ensure
that  the  right  hand  side  converges  to  a  fixed  value,  within
numerical  precision. Figure  5 illustrates  examples  of  the  mean
statistics  (i.e.  long-time  averages)  and  their  dependence  on  the
map parameters for both the sawtooth and cusp map.

N →∞
x0 x0

0 1

ρ ρ

φ, A ⊂ (0,1)
ρ(A) =ρ(φ−1(A)). ρ

ρ

ρ,

s = 0
x0

(0,1)

In the  computation  of  the  long-time  averages  of  the  object-
ive  function,  we  used  the  concept  of  ergodicity.  This  property
guarantees that long-time averages do not depend on the initial
conditions.  That  is,  the  time  average  of  the  objective  function
(right hand side of Eq. (6)) converges, as , to a value inde-
pendent  of  the  initial  condition ,  for  almost  every  chosen
uniformly between  and . This limit equals the expected value
of the same objective function over an ensemble of initial condi-
tions  distributed  according  to  an ergodic,  invariant  probability
distribution .  This  probability  distribution  is  invariant  under

 in  the  sense  that  for  any  open  interval ,
 In addition,  is defined by the fact that expect-

ations  with  respect  to  are  the  same  as  infinite-time  averages
starting  from  a  point  uniformly  distributed  in  the  unit  interval.
Such  a  probability  distribution  is  known  as  the
Sinai–Ruelle–Bowen  (SRB)  distribution  [27], and  only  some-
times coincides with the uniform distribution (it does e.g. for the
sawtooth map at ). The above description can be mathem-
atically  rephrased  as  follows,  for  almost  every  uniformly dis-
tributed in ,

〈J〉 = lim
N→∞

1

N

N−1∑
i=0

J (xi ) =
∫

U
J (x)ρ(x) dx. (7)

〈J〉

Thus,  in  ergodic  systems,  there exist  two alternative ways of
computing  the  long-time  average,  either  through  the  averaging
of the time-series or ensemble averaging. The latter requires pri-
or computation of the probability distribution, which will be ex-
plained and illustrated in the next sections. Using these prelim-
inary concepts, we will review the space-split sensitivity method
to  compute  the  derivative  of  with respect  to  the  map  para-
meter.

〈J〉
s

ρ

φ : U →U

In Ref. [22], Ruelle rigorously derived a formula for the deriv-
ative of the quantity of interest, , with respect to the map para-
meter . This expression is an ensemble average (or expectation)
with  respect  to ,  which  can  be  simplified  for  one-dimensional
maps  to

d

ds

∫
U

J (x)ρ(x) dx =
∞∑

k=0

∫
U

f (x)
d
(

J ◦φk

)
(x)

dx
ρ(x) dx, (8)

where

f (x) := ∂φ
(
φ−1(x)

)
∂s

(9)

U
[0,1)

reflects the parameter perturbation of the map, while  refers to
the  unit  interval .  A  direct  evaluation  of  Eq. (8)  is
computationally  cumbersome  for  the  following  reason.  Notice
that  the  integrand  of  the  right  hand  side  of  Eq. (8)  involves  a
derivative of the composite function that can be expanded using
the chain rule to the form

d(J ◦φk )(x)

dx
=

[ dJ

dx
(φk (x))

] k−1∏
j=0

∂φ

∂x
(φ j (x)). (10)

k
k

k

As discussed earlier, for a large , the product of the derivatives
exponentially  grows  with .  However,  Ruelle's  series  converges
due  to  cancellations  of  these  large  quantities,  upon  taking  an
ensemble average.  This problem makes the direct  evaluation of
Ruelle's  formulation  computationally  impractical  since  a  large
number of trajectories are needed for these cancellations. More
precisely, since for a large ,

d
(

J ◦φk

)
dx

(x) ∼O(eλk ), (11)

x
O(e2λk )

s ∈ [−1/(2π),1/π] (∂φ/∂x) ∈ [1,4]
k,

at almost every , we need to increase the number of trajectories
by a factor of  in order to reduce the mean-squared error
in a linear fashion. For example, consider the sawtooth map with

.  In  this  case, .  One  can  easily
verify  that  even  for  moderate  values  of  an  overflow  error  is
encountered. Another challenge is that the evaluation of the SRB
distribution requires expensive computation of map probability
densities  [21].  In  a  recent  study  [25],  Ruelle's  formula  has  been
reformulated  to  a  different  ensemble  average,  known  as  the  S3
formula.  In  that  work,  the  latter  formula  has  been  derived  for
maps of  arbitrary  dimension,  and is  based on splitting the total
sensitivity  into  stable  and  unstable  contributions.  Note  the
notion  of  splitting  the  perturbation  space  is  irrelevant  for  1D
maps,  and  the  one-dimensional  perturbation  is,  by  the
definition  of  chaos,  unstable.  Therefore  we  will  skip  some
aspects  of  the  original  derivation,  and  note  that  our  derivation
represents only the unstable component of sensitivity in Ref. [25]
specialized to 1D.

The  S3  formula,  corresponding  to  Eqs. (8)–(9) , can  be  ex-
pressed as follows:

d

ds

∫
U

J (x)ρ(x) dx =−
∞∑

k=0

∫
U
∇ρ f (x) J

(
xk ) ρ(x) dx, (12)

where

∇ρ f (x) := 1

ρ(x)

d
(
ρ(x) f (x)

)
dx

= d f (x)

dx
+ f (x) g (x), (13)

g (x) := 1

ρ(x)

dρ(x)

dx
. (14)

d f /dx U
J d f /dx

g (x)

ρ

g
ρ(x)

For  one-dimensional  maps,  the  derivation  is  simple,  as  it
requires integrating Eq. (8) by parts and the fact that the integral
of  at  the  boundary  of  vanishes;  see  B  for  the  full
derivation.  We  observe  that  both  and   have  their
analytical  forms.  However,  the  function ,  which  will  be
referred  to  as density  gradient,  does  not  have  a  closed-form
expression, since the SRB distribution  is unknown. The density
gradient  represents  the  variation  in  phase  space  of  the
logarithm of ,

g (x) := 1

ρ(x)

dρ(x)

dx
= dlogρ(x)

dx
. (15)

g (x)In  the  next  section,  we  focus  on  further  interpreting ,  its
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computation and verification on the 1D maps introduced.
g (x)
g (x)

g (x)

We focus on the density  gradient  function,  denoted by .
First,  we  present  a  computable,  iterative  scheme  for .
Moreover, we provide an intuitive explanation for  and visu-
alize it on the maps introduced.

Based on the S3 formula (Eq. (12)), we can conclude the re-
cursive relation

g
(
φ(x)

)= g (x)

dφ(x)/dx
− d2φ(x)/dx2(

dφ(x)/dx
)2 (16)

g (x)

g (x)

g (xinit) = 0
g (φ(xinit)). x =φ(xinit),

K g (φK (xinit))
xinit

holds.  The full  derivation of Eq. (16) is  included in Appendix C.
This recursive procedure can be used to approximate  along
a trajectory in the asymptotic sense, which means that we need a
sufficiently  large  number  of  iterations  to  obtain  an  accurate
approximation of  [25]. In practice, we generate a sufficiently
long trajectory, compute first and second derivatives of the map
evaluated along the trajectory, and apply Eq. (16). We arbitrarily
set ,  to  start  the  recursive  procedure,  and  obtain

 The recursion is continued by setting  and
so  on.  For  a  sufficiently  large ,  the  true  value  of  is
approached, for almost every initial condition .

xk

x
xk

xk+1 =φ(xk ) ρ

ρ

To  intuitively  understand  the  density  gradient  formula  (Eq.
(16)),  we isolate the effects  of  each term in Eq. (16).  In order to
do this, we consider a small interval around an iterate  and ex-
amine  two  cases:  (1)  the  map  is  a  straight  line  on  this  interval
and (2) the map has a constant curvature on this interval. These
two cases are graphically shown on the left (numbered as 1) and
right (numbered as 2) hand sides of Fig. 6. The -axis represents
an  interval  around  an  iterate ,  and  the y -axis  an  interval
around .  The  density ,  around  each  interval,  is
shown adjacent to the axes, as a colormap. The colors reflect the
distribution of  on a logarithmic scale.

(x −ϵ, x +ϵ) φ(x)
dφ/dx

ρ(x −ϵ)
ρ(x +ϵ)

1. Consider a small region of  where the map 
has zero second derivative, i.e., the first derivative  is con-
stant. As shown in Fig. 6a, let us assume that the density on the
left side of the region, ,  is higher than the density on the
right  side, .  Due  probability  mass  conservation,  the
mapped density can be calculated using the following equation,

ρ(φ(x)) = ρ(x)

|dφ/dx| . (17)

dφ/dx > 0

φ(x)
x

φ(x)
x

Since  we  consider  case ,  we  drop  the  absolute  value.
On this  interval  where the map is  a  straight  line,  this  statement
says  that  the  density  around  is  a  constant  multiple  of  the
density  around .  On the logarithmic  scale,  the  density  around

 is  shifted  by  a  constant,  when  compared  to  the  density
around , since

logρ(φ(x)) = logρ(x)− log
dφ

dx
. (18)

y
x

dφ/dx

dφ/dx
x

dφ/dx

This relationship is  graphically depicted in Figure 6a,  where
the regions marked H and L, corresponding to higher and lower
densities, are shifted to the left. Notice that Eq. (18) implies that
the difference, on the logarithmic scale, between the higher and
lower densities on the -axis  equals the difference between the
higher and lower densities on the -axis. However, the small in-
terval is stretched by a factor of  under one iteration of the
map.  Thus,  the  derivative  of  the  logarithm  of  density  decreases
by a factor of . Mathematically,  we can see this  by differ-
entiating both sides of the equation with respect to  (and using
that  is constant),(

1

ρ

dρ

dx

)∣∣∣
φ(x)

dφ

dx
=

(
1

ρ

dρ

dx

)∣∣∣
x
. (19)

gFrom the definition of , this reduces to

g (φ(x)) = g (x)

dφ/dx
, (20)

d2φ/dx2 = 0
which  is  confirmed  by  our  formula,  Eq. (16) ,  by  setting

.
g

g (x)
g ◦φ(x)

ρ

dφ/dx

1
H

φ(x)
L x

x g

2. To isolate the effect of curvature of the map on , we con-
sider  a  curved  map  and  a  constant  density  region.  Thus,  by
definition,  vanishes in the interval considered. We now de-
scribe that  becomes non-zero on this interval due to the
curvature of the map. Note that Eq. (18) still applies, since it is a
restatement of probability mass conservation. This means that 
is  reduced  by  a  factor  equal  to  the  slope  of  the  map  at  every
point. This is graphically depicted in Fig. 6, in which we have as-
sumed  that  is  an  increasing  function  that  crosses  the
value  at  the  point  indicated  using  dashed  lines.  To  the  left  of
this  point,  the  density  is  therefore  increased  (shown  as )
around  and to the right, the density is decreased (shown as

), when compared to its uniform value around . Note also the
larger the first derivative of the map, the lower the density on the
y-axis. Again, by taking the derivative of Eq. (18) with respect to

, and using the definition of , we obtain

g (φ(x)) =− d2φ/dx2

(dφ/dx)2
. (21)

(dφ/dx)(x)
dx x

φ

x

As mentioned in Case 1, the first derivative  gives
the factor  by which a  length  around  is stretched (or  com-
pressed) by . The second derivative gives us the change of this
stretching (or compression) as a function of . Thus, the effect of
a non-zero second derivative is felt by the derivative of the dens-
ity,  and  can  again  be  derived  from  measure  preservation  or
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Fig. 6.   A graphical representation of two different scenarios in one-
dimensional maps, to intuitively understand the derivation of the
quantity . The bold lines illustrate the map, while shaded bars ad-
jacent to each axis represent the corresponding density distribution
on that axis. The region around H  corresponds to a high value of
density, while the region around L  to low values. The slope of the
line is indicated as t
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probability mass conservation.

s

Then we show numerical results of the density gradient pro-
cedure  in  two  examples,  the  sawtooth  and  cusp  maps,  which
were introduced in Eqs. (3) and (5) respectively. Figure 7 shows
the stationary probability densities of the sawtooth map at differ-
ent values of .

s
−1/(2π) 1/π

g (x)
s

[log(ρ(x +ϵ))− log(ρ(x −ϵ))]/(2ϵ).

We  observe  that  all  curves  appear  differentiable,  however
their  derivatives are large,  near the interval  boundaries,  when 
is  close to  or  .  In Fig.  8,  we show the distribution of
the  (averaged)  density  gradient  function, ,  computed  using
Eq. (16), at different values of , and compare it against its finite
difference approximation: 

Note that the expected value of the density gradient is always
zero since∫

U
g (x) ρ(x) dx =

∫
U

∂ρ

∂x
dx = [

ρ(x)
]1

0 = 0. (22)

We repeat a similar experiment for the cusp map, whose res-
ults are presented in Figs. 9 and 10.

γ

γ ρ(x)

dρ/dx g (x)

We observe a behavior similar  to the sawtooth map.  Similar
to  the  sawtooth  density,  the  densities  computed  for  the  cusp
map appear to be differentiable over a range of the parameter .
However, as  gets close to 1, the density  acquires large de-
rivatives  at  the  boundaries  of  the  interval.  The  boundedness  of

 is  needed  for  the  computation  of  to  be  well-condi-
tioned.

ρ

The evaluation of Eq. (12) is the main focus of this paper. In
practice,  expectations  with  respect  to ,  or  ensemble  averages,
are computed by time-averaging on a single typical trajectory. As
mentioned earlier, a time average converges to the ensemble av-
erage of the function, as the length of the trajectory approaches
infinity.  Thus,  Eq. (12)  can  be  written  as  follows,  replacing  the
ensemble averages with ergodic averages
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Fig. 7.   The plot shows the empirically estimated stationary probab-
ility  distributions achieved by the sawtooth map (Eq.  (3)).  Every
curve was generated using 125,829,120,000 samples and counting
the number of solutions in each of 2048 bins of equal length in the
interval 
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ion as for the sawtooth case
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d

ds

∫
U

J (x)ρ(x) dx

=−
∞∑

k=0

lim
N→∞

1

N

N−1∑
n=0

(
∇ρ f (xn ) J

(
xn+k )

)
, (23)

xi =φi (xinit) i
xinit. g

where  is  the  point  at  time ,  along  a  trajectory
starting  at  a  typical  point  Using  the  definition  of ,  and
taking a long trajectory,

d

ds

∫
U

J (x)ρ(x) dx

≈− 1

N

∞∑
k=0

N−1∑
n=0

( d f (xn )

dx
+ f (xn )g (xn )

)
J
(
xn+k ). (24)

δc

c

To numerically verify Eq. (24), we consider a set of objective
functions, each of which is an indicator function denoted by ,
and defined such that its value is a constant 1 in a small interval
around  and  zero  everywhere  else  on  the  unit  interval.  Note
every Riemann-integrable function can be approximated,  to ar-
bitrary precision, by linear combinations of such indicator func-
tions. With this particular choice, Eq. (24) gives us the gradient of
the probability density, since

d

ds

∫
U
δc (x)ρ(x; s) dx =

∫
U
δc (x)

∂ρ(x; s)

∂s
dx ≈ ∂ρ(c; s)

∂s
. (25)

c [0,1)

dρ/ds
dρ/ds

s

Thus, by varying the constant  in the interval , and us-
ing the density gradient computed using Eq. (15), one can com-
pute  over the unit  interval  by using Eq. (24).  This can be
compared  with  the  finite  difference  approximation  of 
generated  using  slightly  perturbed  values  of  and approximat-
ing the density empirically. These estimates can then be used to
calculate the derivatives  of  any other  function with a  differenti-
able statistics, using numerical quadrature. The choice of indic-
ator  functions  exhibits  yet  another  advantage  of  the  S3  method
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J (x)

over  Ruelle's  formula (Eq. (8)).  The former is  also  applicable  to
objective  functions  that  have  non-differentiable  points,  since
unlike  a  direct  evaluation  of  Ruelle's  formula,  the  derivative  of

 is  not used. Figure 11 shows numerical  results  for the cusp
map, in which the density gradient is computed using the space-
split  formula  (Eq. (24) ) and  compared  with  the  central  differ-
ence derivative.

We observe that only a few terms of the series are required to
produce  accurate  sensitivities. Figure  12 clearly  indicates  that
the consecutive terms of the series in Eq. (23) exponentially de-
cay in norm.

We  repeat  a  similar  experiment  for  the  sawtooth  map  (see
Figs. 13 and 14).

In this case, we only need three terms of Eq. (24) to obtain a
result that  is  indistinguishable from its  finite difference approx-
imation. The consecutive terms of Eq. (24) also decay exponen-
tially in norm.

k
∇ρ f J k ∇ρ f

k k
k →∞

Note that each term of Eq. (12) is in the form of a lag-  time
correlation between  and . We use the term "lag- " as 
and  the  objective  function  are  evaluated  at  two  different  states
that are  steps apart. In mixing systems, the lag-  time correla-
tions converges  to  zero as . Moreover,  for  a  family  of  dy-
namical  systems  known  as  Axiom  A,  the  rate  of  decay  of  time
correlations is proven to be exponential [27]. In the case of one-
dimensional  maps,  Axiom  A  systems  are  the  ones  in  which  the
derivative of the map is different than 1 everywhere. All the map
examples we consider in this paper satisfy this requirement. This
guarantees  that  only  a  small  number  of  time  correlation  terms
are needed to secure high accuracy of the sensitivity approxima-
tion.

Finally,  we  compare  the  space-split  sensitivity  and  classical
finite  difference  method  in  terms  of  computational  efficiency.

Figures  15 and  16 ,  generated  respectively  for  the  sawtooth  and
cusp  maps,  clearly  indicate  that  the  S3  method  outperforms  its
competitor. We observe that the former requires a few orders of
magnitude fewer samples to guarantee a similar error.

This is a very promising observation in the context of analys-
ing higher-dimensional systems, since the large cost of generat-
ing very  long  trajectories  can  make  such  computations  infeas-
ible. Note in the case of  both the S3 and finite difference meth-
ods, the error is upper-bounded as follows [25],

er r or ≤ Cp
N

, (26)

N C

C
δs

where  denotes  the  number  of  samples,  while  is  some
positive number. This means we observe a convergence rate of a
typical  Monte  Carlo  simulation  in  both  methods.  However,  the
factor  is  substantially  larger  in  case  of  finite  differencing.
Moreover decreasing the step size (indicated as ) in the finite
difference  calculation,  worsens  the  accuracy,  due  the
dominance of statistical noise.

We demonstrate a new method to compute the statistical lin-
ear response of chaotic systems, to changes in input parameters.
This  method,  known  as  space-split  sensitivity  or  S3,  is  used  to
compute the derivatives with respect to parameters of the long-
time average of an objective function. In the S3 method, a quant-
ity  called density  gradient,  defined  as  the  derivative  of  the  log
density with  respect  to  the  state,  is  obtained  using  a  computa-
tionally efficient ergodic averaging scheme. An intuitive explana-
tion of this iterative ergodic averaging scheme, based on probab-
ility  mass  conservation,  is  discussed  in  this  paper.  The  density
gradient plays a key role in the computation of  linear response.
Specifically,  the  sum  of  time  correlations  between  the  density
gradient and the objective function partially determines the de-
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Fig. 15.   Relative error of the space-split and finite difference meth-
ods as a function of the trajectory length. We compute the paramet-
ric derivative of density of the sawtooth map at  on the left
boundary ( ). For the S3 computation (curve marked with ( )),
we consider only first three terms of Eq. (12), which corresponds to
the line marked with ( ) in Fig. 13. For the finite difference approx-
imation,  we calculate densities at   (curve marked
with ( )) and  (curve marked with ( )). We also
computed the S3 approximation using 125,829,120,000 samples and
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rivative of  the  mean  statistic  of  the  objective  function  with  re-
spect  to  the  parameter.  The  computational  efficiency  of  the  S3
formula when compared to finite difference, which requires sev-
eral  orders  of  magnitude  more  samples,  stems  precisely  from
this new formula to efficiently estimate the density gradient.

In this work, we restrict ourselves to expanding maps in 1D,
which are  simple  examples  of  chaotic  systems.  These examples
nevertheless  give  rich  insight  into  chaotic  linear  response,  and
specifically  into  the  behavior  of  the  density  gradient.  Our  study
shows  that  in  same  cases  the  derivative  of  the  density  gradient
might  be  very  large,  which  corresponds  to  heavy  tailedness  of
the  density  gradient  distribution.  This  phenomenon,  as  well  as
its  implication  for  analysis  of  higher-dimensional  maps,  is  the
main topic of our future work.
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s = 0
xn+1 = 2xn mod 1

xn xn+1 > 1
N > 0

xn = 0 n ≥ N

1−ϵ ϵ

ϵ= 10−6

Consider  the case ,  Eq.  (3)  can be compactly  expressed
using  the  modulo  operator,  i.e. .  It  means
we multiply  by 2 and if , then we also subtract 1. Using
floating  point  arithmetic,  we  will  observe  that  there  exist 
such that  for all , which contradicts the assumption
of  chaotic  behavior.  This  phenomenon  is  due  to  the  round-off
errors  associated with the modulo operator.  To circumvent this
problem, one can change the divisor parameter (of  the modulo
operation)  from  1  to ,  where  is  a  small  number,  e.g.

.  Another  possible  (and simple)  workaround might  be  a
change of variables such that the domain of the new variable has
irrational length. Note this approach would also require a modi-
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fication of the objective function.

Appendix B. Derivation of the S3 formula for 1D maps

v ◦φk = vk v
U = (0,1) k

k = 0

In  this  section,  we  will  show  Eqs. (8)  and  (9)  are  equivalent  to
Eqs. (12)–(14) .  Throughout  this  derivation  we  will  use  a  short-
hand  notation  for  the  composition ,  where  is  some
scalar  function  defined  on ,  while  is  some  integer.  If

, the subscript is dropped. First, note∫
U

f
dJk

dx
ρ dx =

∫
U

d

dx

(
f Jk

)
ρ dx −

∫
U

Jk
d f

dx
ρ dx. (B1)

Integrate the first term of Eq. (27) by parts,∫
U

d

dx

(
f Jk

)
ρ dx = [

f Jk ρ
]UR

UL
−

∫
U

f Jk
∂ρ

∂x
dx, (B2)

UL = 0 UR = 1
U

where  and   correspond  to  the  left  and  right
boundary  of ,  respectively.  Since  the  domain  is  periodic,  the
first  term  of  Eq. (28)  vanishes.  Thus,  we  can  combine  Eqs. (27)
and (28) to conclude that∫

U
f

dJk

dx
ρ dx =−

∫
U

Jk

(
∂ f

∂x
+ 1

ρ

∂ρ

∂x

)
ρ dx. (B3)

gAppendix C. Derivation of the iterative procedure for  in 1D
maps

g
h

U = (0,1) UL = 0 UR = 1
g = (1/ρ)(∂ρ/∂x)

The purpose of this section is to derive the iterative procedure to
calculate  the  density  gradient .  We  use  the  same  notational
convention as in Appendix B. Let us consider a function  that is
integrable in  and vanishes at  and .  Using
the  definition ,  and  integrating  by  parts,  we
obtain∫

U
g h ρ dx =

∫
U

h
dρ

dx
dx = [

h ρ
]UR

UL
−

∫
U

dh

dx
ρ dx

=−
∫

U

dh

dx
ρ dx. (C1)

The  key  property  used  in  this  derivation  is  the  density

φ φ

ρ f∫
U f ρ dx = ∫

U f ◦φk ρ dx k

preservation  of .  We  say  that  the  map  is  density-preserving
with  respect  to  the  density ,  if  for  any  scalar  observable ,

 holds  for  any  integer .  This  implies
the left hand side of Eq. (30) can be expressed as∫

U
g h ρ dx =

∫
U

g1 h1 ρ dx. (C2)

We  now  apply  the  density  preservation  together  with  the  chain
rule to the right hand side of Eq. (30), which gives rise to

−
∫

U

dh

dx
ρ dx =−

∫
U

(
dh

dx

)
1

ρ dx =−
∫

U

dh1

dx

1

dφ/dx
ρ dx. (C3)

Note

dh1

dx

1

dφ/dx
= d

dx

(
h1

dφ/dx

)
−h1

d

dx

(
1

dφ/dx

)
= d

dx

(
h1

dφ/dx

)
+h1

d2φ/dx2

(dφ/dx)2
, (C4)

h1(UL) = h1(UR ) = 0and using , integrate by parts to get,

−
∫

U

d

dx

(
h1

dφ/dx

)
ρ dx =−

[
h1

dφ/dx
ρ

]UR

UL

+
∫

U

h1

dφ/dx

dρ

dx
dx

=
∫

U

h1

dφ/dx

dρ

dx
dx. (C5)

Combine Eqs. (32)–(34) to observe that

−
∫

U

dh

dx
ρ dx =

∫
U

h1

[
g

dφ/dx
− d2φ/dx2

(dφ/dx)2

]
ρ dx. (C6)

Finally,  by  combining  Eqs. (30),  (31) ,  and (35) ,  we  obtain  the
following identity,∫

U
h1 g1 ρ dx =

∫
U

h1

[
g

dφ/dx
− d2φ/dx2

(dφ/dx)2

]
ρ dx, (C7)

from which we infer that

g1 = g

dφ/dx
− d2φ/dx2

(dφ/dx)2
. (C8)
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