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TENSOR ALGEBRAS IN FINITE TENSOR CATEGORIES

PAVEL ETINGOF, RYAN KINSER, AND CHELSEA WALTON

Abstract. This paper introduces methods for classifying actions of finite-dimensional Hopf algebras on

path algebras of quivers, and more generally on tensor algebras TB(V ) where B is semisimple. We work

within the broader framework of finite (multi-)tensor categories C, classifying tensor algebras in C in terms

of C-module categories. We obtain two classification results for actions of semisimple Hopf algebras: the

first for actions which preserve the ascending filtration on tensor algebras, and the second for actions which

preserve the descending filtration on completed tensor algebras. Extending to more general fusion categories,

we illustrate our classification result for tensor algebras in the pointed fusion categories Vec
ω
G and in group-

theoretical fusion categories, especially for the representation category of the Kac-Paljutkin Hopf algebra.

Contents

1. Introduction 2

2. Background material 3

2.1. (Multi-)Tensor categories and (multi-)fusion categories 3

2.2. Algebras, ideals, and (bi)modules in finite multi-tensor categories 4

3. Main results 5

3.1. Tensor algebras in finite multi-tensor categories 6

3.2. Classification of tensor algebras 8

3.3. Filtered actions of semisimple Hopf algebras on tensor algebras 10

4. Tensor algebras in pointed fusion categories 12

4.1. Module categories and bimodule categories over VecωG 12

4.2. Vec
ω
G-tensor algebras 14

4.2.1. Trivial ω. 14

4.2.2. Nontrivial ω. 17

5. Tensor algebras in group-theoretical fusion categories 18

5.1. Background and notation 18

5.2. Reconstruction 20

5.3. Rep(H8)-tensor algebras 22

6. Path algebras in group-theoretical fusion categories 24

6.1. Indecomposable k-commutative algebras in C(G,ω,K, α) 25

6.2. Exact factorization case 26

Acknowledgments 27

References 27

2010 Mathematics Subject Classification. 18D10, 16T05, 16D90.
Key words and phrases. tensor algebra, tensor category, module category, path algebra of a quiver, finite-dimensional Hopf

algebra.

1

http://arxiv.org/abs/1906.02828v4


2 PAVEL ETINGOF, RYAN KINSER, AND CHELSEA WALTON

1. Introduction

Let k be an algebraically closed field of characteristic 0. One motivation of this work is to continue the

last two authors’ study of finite quantum symmetries of path algebras of quivers kQ. As finite groups are

viewed classically as collections of finite symmetries (i.e., automorphisms of finite order) of a given algebra,

finite-dimensional Hopf algebras are widely accepted to be an algebraic structure that captures an algebra’s

finite quantum symmetries. The main two classes of finite-dimensional Hopf algebras over k are those that are

semisimple (as a k-algebra, that is, all of its modules can be decomposed into a direct sum of simple modules),

and those that are pointed (as a k-coalgebra, that is, all of its simple comodules are 1-dimensional). The

actions of finite-dimensional pointed Hopf algebras on path algebras were investigated previously in [KW16],

and one aim of the work here is to study actions of semisimple Hopf algebras on kQ. To achieve this, we

establish a broader framework: we analyze tensor algebras in finite multi-tensor categories, which includes

actions of finite-dimensional Hopf algebras on path algebras of quivers as a special case.

We begin by providing preliminary results on tensor algebras TS(E) in finite multi-tensor categories C;
here, S is an exact algebra in C and E is an S-bimodule in C; these are referred to as C-tensor algebras

[Definition 3.2]. (We can allow TS(E) to be in the ind-completion of C, but omit further mention of this

technicality throughout the introduction.) Our first result is that any tensor algebra in C can be decomposed

into minimal ones in the sense that E is indecomposable [Proposition 3.7]. Then one of our main results,

Theorem 3.11, classifies (minimal) tensor algebras in a given finite multi-tensor category C; this classification
is given in terms of C-module categories M and (indecomposable) objects in FunC(M,M). The classifica-

tion in Theorem 3.11 is up to equivalence of C-tensor algebras TS(E) [Definition 3.4], which is a notion of

equivalence induced by Morita equivalence of the base algebra S and resulting conjugacy class of E. This

framework and result are established in Sections 3.1 and 3.2.

In the case when C is multi-fusion, we show that there are only finitely many equivalence classes of

minimal faithful C-tensor algebras TS(E), up to Morita equivalence of S and up to conjugacy class of

E [Corollary 3.16]. We also study in Section 3.3 certain filtration preserving actions of semisimple Hopf

algebras on tensor k-algebras and their completions that do not fit within the framework above, a priori,

but can be classified up to equivalence by Theorem 3.11 with additional arguments. See Proposition 3.19

and Theorem 3.23.

Now an advantage of our categorical framework for studying finite-dimensional Hopf algebra actions

on tensor algebras is that there are many finite (multi-)tensor categories C over which (indecomposable)

semisimple C-module categories are concretely understood, especially in terms of elementary group-theoretic

data. Our main result [Theorem 3.11] then allows us to classify tensor algebras in such finite tensor categories

by elementary group-theoretic data. For instance, due to results of Ostrik [Ost03b] and Natale [Nat17], this

is true for the pointed fusion category Vec
ω
G, whose objects are G-graded finite-dimensional vector spaces,

for G a finite group, where the associativity constraint is given by ω ∈ H3(G, k×) [Proposition 4.3]. Using

this result, we study minimal VecωG-tensor algebras, via several detailed examples, in Section 4.

Indecomposable semisimple module categories over group-theoretical fusion categories C are also com-

pletely understood in terms of group-theoretic data, and we exploit this in Section 5 to examine tensor

algebras in such categories C, especially for those equipped with a fiber functor. We proceed in Section 5.2

to describe indecomposable semisimple algebras in C, then use this to explicitly classify indecomposable

semisimple algebras in the representation category of the Kac-Paljutkin Hopf algebra H8 in Section 5.3.

One could also apply Theorem 3.11 to study tensor algebras in other finite tensor categories for which

semisimple module categories are understood, and we leave this to future investigation. One could consider,

for instance, the Drinfeld center of VecωG, and the category Cq consisting of comodules over the quantized

function algebra Oq(SL2); see [Ost03b, Theorem 3.6], [Ost08, Theorem 2.1] [EO04, Theorem 2.5].
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Finally, in Section 6 we return to our study of finite-dimensional Hopf algebra actions on path algebras of

quivers, by first introducing the notion of a C-path algebra for a finite tensor category C equipped with a fiber

functor F [Definition 6.1]. This is simply a C-tensor algebra TS(E) in the case when F (S) is a commutative

k-algebra; see Remark 6.2 for justification of this terminology. We determine in this section necessary and

sufficient conditions for a C-tensor algebra to be a C-path algebra, for C group-theoretical, and end with a

discussion of Rep(H8)-path algebras in Example 6.13.

2. Background material

In this section, we provide a review of certain monoidal categories, namely (multi-)tensor and (multi-)

fusion categories. We also review module categories over and algebraic structures within these monoidal

categories. We refer the reader to the text [EGNO15] and the references therein for further details.

2.1. (Multi-)Tensor categories and (multi-)fusion categories. Let C be a k-linear abelian category.

We say that C is locally finite if each Hom space is a finite-dimensional k-vector space and if every object

has finite length. Given such a C, we write Ind(C) for the ind-completion of C.
By X ∈ C we mean that X is an object of C. A nonzero X ∈ C is simple (or irreducible) if 0 and X are

its only subobjects. A category C is semisimple if every object is a direct sum of simple objects. Moreover,

X ∈ C is projective if the functor HomC(X,–) is exact, and is indecomposable if it is nonzero and cannot be

decomposed as the direct sum of nonzero subobjects. Simple objects in a category C are indecomposable,

and the converse holds when C is semisimple. Let Irr(C) denote the set of isomorphism classes of simple

objects of C. We say that a locally finite k-linear abelian category C is finite if the cardinality of Irr(C)
is finite and if C has enough projectives (i.e., every simple object has a projective cover); in this case, the

cardinality of Irr(C) is referred to as the rank of C.
A multi-tensor category C is a locally finite, k-linear, abelian, rigid, monoidal category, i.e., C is equipped

with a bifunctor ⊗ : C×C → C, associativity isomorphisms {aX,Y,Z : (X⊗Y )⊗Z ∼→ X⊗(Y ⊗Z) |X,Y, Z ∈ C},
and a unit object 1 ∈ C with natural isomorphisms lX : 1 ⊗X

∼−→ X and rX : X ⊗ 1
∼−→ X for all X ∈ C,

and with isomorphism 1 ⊗ 1
∼−→ 1 all satisfying certain pentagon, triangle, and rigidity axioms [EGNO15,

Sections 2.1 and 2.10]. In particular, for any X ∈ C there exists objects X∗ and ∗X that serve as its left

dual and right dual, respectively, via (co)evaluation morphisms (co)evX in C.
We have the following result on decomposing the identity object in a multi-tensor category.

Lemma 2.1. In a multi-tensor category C, there is a decomposition 1 =
⊕

i 1i, where {1i}i are pairwise

non-isomorphic simple objects in C that satisfy 1i ⊗ 1j ∼= δij1i and 1∗
i
∼= ∗1i ∼= 1i. Furthermore, the set of

summands {1i}i are uniquely determined as subobjects of 1, up to reordering.

Proof. This is proved in [EGNO15, Section 4.3] except that the uniqueness is not explicitly mentioned. The

summands 1i are the images of a complete collection of primitive orthogonal idempotents in EndC(1). Since

EndC(1) is semisimple, thus isomorphic to a direct sum of finitely many copies of k [EGNO15, Theorem 4.3.1],

these primitive idempotents are uniquely determined from 1. Thus, the result holds. �

A multi-tensor category C is called a tensor category if EndC(1) ∼= k, that is, if 1 is a simple object of C.
Examples of tensor categories include:

• the categories Rep(G) and Rep(H) of finite-dimensional representations of a finite group G and of a

finite-dimensional Hopf algebra H , respectively; and

• the categories Vec, VecG, and Vec
ω
G of finite-dimensional k-vector spaces, those that are G-graded,

and those that are G-graded with associativity constraint ω ∈ Z3(G, k×), respectively.

Though not rigid, we also consider the category Vec of all vector spaces.
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A fiber functor on a tensor category C is an exact faithful tensor functor F : C → Vec such that F (1) = k,

equipped with natural isomorphisms F (X)⊗F (Y )
∼→ F (X⊗Y ) for all X,Y ∈ C. Examples of fiber functors

include forgetful functors on Rep(G), on Rep(H), and on VecG. But there does not exist a fiber functor on

Vec
ω
G when ω is cohomologically nontrivial [EGNO15, Example 5.1.3].

A tensor category C is called pointed if all of its simple objects are invertible, i.e., X⊗X∗ ∼= X∗⊗X ∼= 1 via

the co/evaluation maps for allX ∈ C. Examples of invertible objects include 1-dimensional representations in

Rep(G) for a groupG. Hence, Rep(G) is a pointed tensor category when G is an abelian group. The categories

Vec, VecG, and Vec
ω
G, for a finite group G, are also pointed tensor categories [EGNO15, Example 5.11.2].

A (multi-)fusion category is a finite semisimple (multi-)tensor category C. Examples of fusion categories

include Rep(H) where H is a semisimple Hopf algebra, and also include Vec, VecG, and Vec
ω
G.

Next, we turn our attention to module categories. A left module category over a multi-tensor category C
is a locally finite, k-linear abelian category M equipped with a bifunctor ⊗ : C ×M → M which is bilinear

on morphisms and exact in the first variable, a natural isomorphism for associativity satisfying the pentagon

axiom, and for eachM ∈ M a natural isomorphism 1⊗M ∼→M satisfying the triangle axiom. Right module

categories are defined analogously. A module category M over C is indecomposable if it is nonzero and is

not equivalent to a direct sum of two nontrivial module categories over C. Moreover, M is called faithful

if each simple object 1i ∈ C in Lemma 2.1 acts by a nonzero functor on M. Also, M is exact if for every

projective object P ∈ C and every object M ∈ M the object P ⊗M is projective in M. Note that any

semisimple module category is exact since any object in a semisimple category is projective. Furthermore,

if C is multi-fusion, then the exact module categories over C are precisely the semisimple ones.

The collection of (left/ right) module categories over a multi-tensor category C forms a 2-category, which is

denoted by Mod(C) [EGNO15, Remark 7.12.15]. For C-module categories M and N , denote by FunC(M,N )

the category consisting of right exact C-module functors M → N . We denote the category FunC(M,M) by

C∗
M and call it the dual category to C with respect to M.

Theorem 2.2. [EGNO15, Sections 7.11, 7.12] [ENO05, Theorems 2.15, 2.18] For any exact (resp., finite

semisimple) module categories M,N over a finite multi-tensor (resp., multi-fusion) category C, we have that

the category FunC(M,N ) is finite (resp., finite semisimple). Moreover, the category C∗
M is a finite tensor

(resp., fusion) category when C is a finite tensor (resp., fusion) category and M is indecomposable. �

Two (multi-)tensor categories C and D are categorically Morita equivalent if there exists an exact C-module

category M so that Dop is tensor equivalent to C∗
M. The following result shows that there is a bijection

between module categories over C and those over the dual C∗
M with respect to a faithful, exact module

category M.

Theorem 2.3. [EGNO15, Theorem 7.12.16] Let M be a faithful, exact module category over a multi-tensor

category C. Then the 2-functor Mod(C) → Mod((C∗
M)op) given by N 7→ FunC(M,N ) is a 2-equivalence. �

In other words, there is a natural bijection between exact module categories over two categorically Morita

equivalent multi-tensor categories.

2.2. Algebras, ideals, and (bi)modules in finite multi-tensor categories. Let C := (C,⊗, a, l, r,1)
be a multi-tensor category.

An algebra in C is a triple (A,m, u), where A ∈ C, and m : A ⊗ A → A (multiplication) and u : 1 → A

(unit) are morphisms in C that are compatible with the associativity constraint a and the unit constraints

l, r, respectively. A right module over an algebra (A,m, u) in C is a pair (M,ρrt), where M is an object of

C and ρrt : M ⊗ A → M is a morphism in C that is compatible with the associativity constraint a and the

unit constraints l, r. A left module (M,ρlt) over an algebra (A,m, u) is defined likewise. Let ModC-A be the

category of right modules over A; this is a left module category over C. Moreover, two algebras A and B in

C are called Morita equivalent if ModC-A and ModC-B are equivalent as left C-module categories.
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We say that an algebra A in C is semisimple (resp., indecomposable, exact) if the category ModC-A is a

semisimple (resp., indecomposable, exact) category.

Theorem 2.4. [EGNO15, Corollary 7.10.5] [Ost03a, Theorem 3.1] Given a finite multi-tensor (resp., multi-

fusion) category C, each exact (resp., finite semisimple) module category M over C is equivalent to ModC-A

for some exact (resp., semisimple) algebra A ∈ C. �

Example 2.5. [EGNO15, Examples 7.8.4, 7.8.11, 7.8.18, 7.10.2] Consider the algebra A = 1 in C. Since

ModC-1 is equivalent to C as C-module categories, we have that the algebra 1 is exact (resp., semisimple)

when C is finite (resp., finite semisimple), and it is indecomposable when C is a tensor category. In this

case, the algebra 1 is Morita equivalent to the algebra X ⊗ X∗ for any nonzero X ∈ C, where the latter

has multiplication m = idX ⊗ evX ⊗ idX∗ and unit u = coevX . Thus, ModC-(X ⊗X∗) is equivalent to C as

C-module categories as well, for any X ∈ C.

For instance, if C = Vec in the example above, then 1 = k. Moreover, for X an n-dimensional vector

space, the algebra X ⊗X∗ is isomorphic to the matrix algebra Matn(k), which is well-known to be Morita

equivalent to k in Vec.

Now we discuss bimodules in C. Let A,B be two algebras in C. An (A,B)-bimodule in C is a triple

(M,ρlt, ρrt), where M ∈ C and ρlt : A⊗M →M and ρrt : M ⊗B →M are morphisms in C so that (M,ρlt)

is a left A-module in C, (M,ρrt) is a right B-module in C, and ρlt ◦ (idA ⊗ ρrt) ◦ aA,M,B = ρrt ◦ (ρlt ⊗ idB)

as morphisms from A ⊗M ⊗ B to M in C. We write BimodC(A,B) (resp., BimodC(A)) for the category of

(A,B)-bimodules (resp., (A,A)-bimodules) in C.
Take two C-module categories M ∼ ModC-A and N ∼ ModC-B. Then, BimodC(A,B) is equivalent to

FunC(M,N ) [EGNO15, Proposition 7.11.1]. Moreover, C∗
M is tensor equivalent to BimodC(A)op [EGNO15,

Remark 7.12.5]. We also have by Theorem 2.2 the result below.

Proposition 2.6. [ENO05] Given an exact (resp., semisimple) algebra A in a finite multi-tensor (resp.,

multi-fusion) category C, we have that BimodC(A) is a finite multi-tensor (resp., multi-fusion) category with

unit object A, and it is a finite tensor (resp., fusion) category when C is a finite tensor (resp., fusion) category

and A is indecomposable. �

We get the following consequence.

Corollary 2.7. Given an exact (resp., semisimple) algebra A in a finite multi-tensor category (resp., multi-

fusion) C, we can uniquely decompose the algebra A ∈ BimodC(A) into a direct sum of indecomposable

subalgebras {Ai}i in BimodC(A), with Ai being pairwise non-isomorphic A-bimodules and Ai⊗AAj ∼= δijAi.

Proof. Consider A as 1BimodC(A). Now by Proposition 2.6 and Lemma 2.1, we have that A is uniquely a direct

sum of indecomposable, pairwise non-isomorphic objects Ai in BimodC(A) so that Ai ⊗A Aj ∼= δijAi. �

Finally, an ideal I of an algebra A ∈ C is an A-A-sub-bimodule of A in C, and with this one can form the

quotient algebra A/I in C. Moreover, an ideal I of A ∈ C can be realized as a subalgebra of A ∈ BimodC(A)

if I is a direct summand of A in BimodC(A); in this case, the unit A→ I is given by projection onto I.

3. Main results

Before providing a tensor-categorical framework for studying finite quantum symmetries of tensor algebras,

we review the connection to quivers that motivated this work.

Recall that a quiver is another name for a directed graph, in the context where the directed graph is used

to define an algebra. Formally, a (finite) quiver Q = (Q0, Q1, s, t) consists of a (finite) set of vertices Q0, a

(finite) set of arrows Q1, and two functions s, t : Q1 → Q0 giving the source and target of each arrow. We
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assume all quivers in this paper are finite. One can construct a path algebra kQ from a quiver Q which is a k-

algebra whose basis consists of all paths in Q, with multiplication of basis elements given by concatenation of

paths whenever it is defined and 0 otherwise. Such an algebra is naturally graded by path length. Moreover,

the path algebra kQ0 is taken to be the path algebra of the quiver (Q0, ∅) with no arrows; thus, kQ0 is a

commutative semisimple (so, exact) k-algebra.

Path algebras arise as a special case of the following construction. Given a finite dimensional semisimple k-

algebra B, and a B-bimodule V , we can construct the tensor algebra TB(V ) =
⊕

i≥0 V
⊗Bi, where V ⊗B0 = B.

It is an object of BimodVec(B) which admits an N-grading via TB(V )n = V ⊗Bn for n ∈ N. When B and

V both lie in Vec, the tensor algebra TB(V ) is finitely generated as a k-algebra and it is then an object of

Ind(BimodVec(B)). Observe that the path algebra kQ is isomorphic to the finitely generated tensor algebra

TkQ0
(kQ1), since kQ1 is naturally a kQ0-bimodule. Conversely, we have the following classical theorem.

Theorem 3.1 (P. Gabriel, see [ASS06, Ch. 2]). Every finitely generated tensor algebra TB(V ) as above is

Morita equivalent to the path algebra of a quiver. �

We move beyond Vec to finite multi-tensor categories as follows. In Section 3.1, we discuss tensor algebras

T with base algebras and generating bimodules in finite multi-tensor categories C; these are called C-tensor
algebras [Definition 3.2]. Our first result is that such T can be decomposed uniquely as a collection of minimal

ones in the sense of Definition 3.6 [Proposition 3.7]. In Section 3.2, we establish our main result on classifying

equivalence classes of C-tensor algebras in Theorem 3.11. Finally in Section 3.3 we take C = Rep(H), for

H a semisimple Hopf algebra, and show that any H-action on a tensor algebra that preserves its ascending

filtration must be isomorphic to a grade-preserving action [Proposition 3.19]; we then prove a similar result

for H-actions on completed tensor algebras that preserve the natural descending filtration [Theorem 3.23].

3.1. Tensor algebras in finite multi-tensor categories. Let C be a finite multi-tensor category. We

introduce the notion of a C-tensor algebra as follows.

Definition 3.2 (S, E, TS(E)). Fix S an exact algebra in C, and fix an S-bimodule E in Ind(C).
(a) Form the algebra TS(E) in Ind(C), or more specifically in BimodInd(C)(S), given by

TS(E) = S ⊕ E ⊕ (E ⊗S E)⊕ (E ⊗S E ⊗S E)⊕ · · · ,
with multiplication morphism given by the natural maps (E⊗Sn)⊗S (E⊗Sm) → E⊗S(n+m), and with

unit morphism induced from the unit of S by S →֒ TS(E). We call this a C-tensor algebra.

(b) We refer to S and E as the base algebra and generating bimodule of TS(E), respectively.

(c) If E also belongs to C, then we say that TS(E) is finitely generated (f.g.).

From now on, we concentrate on f.g. C-tensor algebras. In this case, note that E has finite length as an

S-bimodule in C by Proposition 2.6. Further, TS(E) admits a natural N-grading with (TS(E))n = E⊗Sn ∈ C
for n ∈ N, and is an object of Ind(BimodC(S)).

Example 3.3. Let Q be a finite quiver and kQ be its path algebra. Suppose we have an action of a finite-

dimensional Hopf algebra H on the algebra kQ preserving the grading by path length. Taking C = Rep(H),

the setup above makes S = kQ0 an exact algebra in C and E = kQ1 an S-bimodule in C. The identification

kQ ∼= TS(E) described above for k-algebras is an isomorphism of graded algebras in Ind(C). For example, this

could arise from a finite group G acting by directed graph automorphisms of Q and by extending linearly to

a kG-action on kQ. For H = kG, see related works of Reiten-Riedtmann [RR85] and of Demonet [Dem10].

Next, we introduce the notion of equivalence for C-tensor algebras. Consider C-tensor algebras TS(E) and

TS′(E′) and set M := ModC-S and M′ := ModC-S′.

Definition 3.4. An equivalence from TS(E) to TS′(E′) is a pair (F, ξ) where
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• F : M → M′ is an equivalence of C-module categories, realized by F (M) = M ⊗S X where

X = F (S) ∈ BimodC(S, S′);

• ξ : X̄ ⊗S E ⊗S X ∼−→ E′ is an isomorphism of S′-bimodules, where X̄ = F−1(S′) ∈ BimodC(S′, S)

realizes the C-module functor F−1.

Note that any C-module equivalence F : M → M′ defines a tensor equivalence F̂ : C∗
M → C∗

M′ , and

ξ is just an isomorphism F̂ (E)
∼−→ E′. On the other hand, a simple example illustrating equivalence of

tensor algebras defined by nonisomorphic generating bimodules is found in Example 3.17, and more subtle

examples throughout Section 4. Next, we show that equivalence of tensor algebras is sufficient to imply

Morita equivalence as algebras in C.

Proposition 3.5. An equivalence (F, ξ) as in Definition 3.4 induces an equivalence of C-module categories

from ModC-TS(E) to ModC-TS′(E′).

Proof. Retain the notation of Definition 3.4. The data defining a right TS(E)-module is equivalent to giving

(i) a right S-module Y , and (ii) a morphism of right S-modules φ : Y ⊗S E → Y . The corresponding right

TS′(E′)-module is given by (i) the right S′-module F (Y ) = Y ⊗SX and (ii) the morphism of right S′-modules

φ′ : (Y ⊗S X)⊗S′ E′ → Y ⊗S X given by the composition (omitting associativity and unit isomorphisms)

(Y ⊗S X)⊗S′ E′ idY ⊗SX ⊗ξ−1

−−−−−−−−−→ (Y ⊗S X)⊗S′ X̄ ⊗S E ⊗S X ∼= (Y ⊗S E)⊗S X φ⊗idX−−−−→ Y ⊗S X. �

Our first result is a unique decomposition theorem for f.g. C-tensor algebras TS(E) by writing them as a

combination of minimal components, as defined below.

Definition 3.6. Take an exact algebra S ∈ C and E ∈ BimodC(S), and a f.g. C-tensor algebra TS(E).

(a) We call TS(E) minimal when E is an indecomposable S-bimodule in C.
(b) If E = ⊕iEi, for Ei ∈ BimodC(S) indecomposable, then the f.g. C-tensor algebras {TS(Ei)}i are

called the minimal components of TS(E).

The result below is immediate from the Krull-Schmidt theorem applied to E [EGNO15, Theorem 1.5.7].

Proposition 3.7. Let TS(E) be a f.g. C-tensor algebra. Then the minimal components {TS(Ei)}i of TS(E)

are uniquely determined up to reordering and isomorphism class of Ei. Moreover, TS(E) = TS(⊕iEi) can

be reconstructed as a free product of its minimal components {TS(Ei)}i. �

Having fixed a minimal component, it will often be possible to simplify the base algebra, as illustrated in

the remark below.

Remark 3.8. Suppose we have a f.g. C-tensor algebra TS(E) and S decomposes as S = S′⊕S′′ as an algebra

in C. When S′ acts trivially on E (even for TS(E) minimal) so that TS(E) = S′⊕TS′′(E) as algebras, one can

study the smaller algebra TS′′(E) in place of TS(E), particularly for classification purposes. More generally,

if S has an ideal I that acts trivially on both sides of E, then we could replace S with S/I.

We keep S fixed in the definition of “minimal components” in order to reconstruct TS(E) from its minimal

components uniquely, prompting the terminology below.

Definition 3.9. We say that a f.g. C-tensor algebra TS(E) is (S-)faithful if there does not exist a nonzero

ideal I of S in C so that E ∈ BimodC(S/I).

Basic examples illustrating the minimal and faithful properties (or lack thereof) are shown in Figure 1.

We end this part by illustrating the failure of reconstructing TS(E) from the indecomposable summands

of E, if we were to further reduce the base algebras of minimal components of TS(E) that are not S-faithful.
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not minimal, not faithful minimal, not faithful faithful, not minimal minimal and faithful

Figure 1. Quivers with actions of G = Z2 (indicated by the dotted red arrow) that give

rise to path algebras in Rep(G), or Rep(G)-tensor algebras, with the properties listed above

Example 3.10. Let C = Rep(G) where G = 〈g〉 is cyclic of order 2, and consider the actions of G on the

following two quivers indicated by the dotted red arrow.

Q = Q′ =

This gives rise to two path algebras kQ and kQ′ with actions of G, and thus two f.g. C-tensor algebras as
in Example 3.3; call them TS(E) and TS(E

′). The minimal components of TS(E) and TS(E
′) are the path

algebras on the following two sets of quivers, respectively.

, and ,

If, in each minimal component, we removed the summands of S acting trivially on that component, we

would arrive at the same set of underlying quivers for both TS(E) and TS(E
′). In this case, we would be un-

able to uniquely reconstruct the original tensor algebras TS(E) and TS′(E′) from their minimal components,

since TS(E) 6∼= TS(E
′) as algebras in Ind(C) (i.e., they are not even isomorphic as k-algebras after forgetting

the action of G [LLX86]).

3.2. Classification of tensor algebras. When C is a finite multi-tensor category, the classification of

minimal (f.g.) C-tensor algebras can be carried out in terms of module categories over C as we see below.

Recall our notion of equivalence for C-tensor algebras in Definition 3.4.

Theorem 3.11. Let C be a finite multi-tensor category. Equivalence classes of (f.g.) C-tensor algebras are

in bijection with the pairs (M, [U ]), where

(i) M is an exact C-module category; and

(ii) [U ] is the conjugacy class of an object U in FunC(M,M) = C∗
M.

Here, U,U ′ ∈ C∗
M are conjugate if there exists an autoequivalence (i.e., an invertible object) F ∈ C∗

M so that

FUF−1 is isomorphic to U ′.

Furthermore, the equivalence classes of minimal (f.g.) C-tensor algebras are classified by the above data

when restricting to U indecomposable.

Proof. For any exact algebra S in C we have that ModC-S is an exact C-module category, by definition. On

the other hand, by Theorem 2.4, every exact C-module category is equivalent to one of the form ModC-S for

some exact algebra S in C. This shows that the choice for the base algebra S of a C-tensor algebra, up to

Morita equivalence of S, is determined by the data in (i), up to equivalence of C-module categories.
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Fixing such an S, it is immediate from Definition 3.4 that equivalence classes of C-tensor algebras TS(E) are

in bijection with conjugacy classes of objects U , and minimal tensor algebras correspond to indecomposable

U by definition. �

Let us consider in more detail the case of minimal C-tensor algebras. Classifying C-tensor algebras can

be carried out by first classifying base algebras S via exact C-module categories. Then, one needs to classify

indecomposable S-bimodules E, identifying those which are invertible in BimodC(S), and then compute

conjugates X̄ ⊗S E ⊗S X (where X varies over the invertible bimodules and X̄ denotes the inverse of X in

the bimodule category here and below) to identify a representative from each conjugacy class.

When S = S1 ⊕ S2 with each Si an indecomposable algebra in C, an S-bimodule can be identified with a

2×2 matrix E = (Eij) where each Eij is an (Si, Sj)-bimodule in C. Restricting to minimal, faithful C-tensor
algebras, we can assume

E =

(
0 E12

0 0

)
, E12 ∈ BimodC(S1, S2) indecomposable.

Without loss of generality we may consider invertible S-bimodules of the form

X =

(
X1 0

0 X2

)
, Xi an invertible Si-bimodule.

Then ⊗S corresponds to matrix multiplication and we compute the conjugation as

(3.12) X̄ ⊗S E ⊗S X =

(
X̄1 0

0 X̄2

)(
0 E12

0 0

)(
X1 0

0 X2

)
=

(
0 X̄1 ⊗S E12 ⊗S X2

0 0

)
.

A particular consequence is recorded in the following proposition.

Proposition 3.13. Let S be an indecomposable algebra in C and let E be a faithful, invertible S-bimodule

C. Then the tensor algebra TS⊕S(E) is equivalent to TS⊕S(S).

Proof. Considering (3.12) with X1 = E and X2 = S, we get that

X̄1 ⊗S E12 ⊗S X2 = Ē ⊗S E ⊗S S ∼= S.

This yields the desired result. �

The next consequence of Theorem 3.11 holds by Theorem 2.3. (The minimality condition can be removed

via Proposition 3.7.)

Corollary 3.14. A categorical Morita equivalence between finite multi-tensor categories C and D induces a

bijection between equivalence classes of (minimal) C-tensor algebras and of (minimal) D-tensor algebras. �

By Remark 4.5 below, we have such a bijection between (minimal) Rep(G)- and VecG-tensor algebras for

G a finite group. In general, the data in Theorem 3.11 depends intimately on the structure of C; we explore

this in Section 4 for C = Vec
ω
G, and in Sections 5 and 6 for C a group-theoretical fusion category.

This brings us to the following finiteness result in the case when C is a multi-fusion category, beginning

with a remark for C as above.

Remark 3.15. Recall from Corollary 2.7 that an exact algebra S in C has a unique decomposition into

indecomposable algebras S =
⊕

i Si. For any f.g. C-tensor algebra TS(E), this gives a decomposition of S-

bimodules E = ⊕i,jEij where each Eij ∈ BimodC(Si, Sj). Therefore, if TS(E) is a minimal C-tensor algebra,
at most two of the indecomposable summands of S can act nontrivially on E.

Corollary 3.16. In a multi-fusion category C, there are only finitely many minimal, faithful C-tensor alge-

bras, up to equivalence.
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Proof. Let TS(E) be a minimal, S-faithful C-tensor algebra. By Corollary 2.7 and Remark 3.15, S-faithfulness

implies that S has a unique decomposition into a direct sum of either 1 or 2 indecomposable algebras. By

Ocneanu rigidity [EGNO15, Corollary 9.1.6(ii)], the number of choices of these summands is finite, up to

equivalence. Then for any such base algebra S, Ocneanu rigidity again applies to the category BimodC(S) by

Proposition 2.6. Since TS(E) is assumed minimal, there are only finitely many choices of the indecomposable

S-bimodule E as well, thus finitely many equivalence classes. �

Example 3.17. Take C = Vec. Then the base algebra S of a minimal, faithful C-tensor algebra is Morita

equivalent to either k or k × k, by using both the fact that exact k-algebras are semisimple [EGNO15,

Example 7.5.4] and the Artin-Wedderburn theorem.

• If S = k, then an indecomposable faithful S-bimodule E must be k. Here, a minimal, faithful C-tensor
algebra is unique up to equivalence, and is a path algebra of a loop (isomorphic to k[x]).

• If S = k × k, then it has two isomorphism classes of indecomposable, faithful bimodules, yielding

C-tensor algebras isomorphic to
(
k k

0 k

)
and

(
k 0

k k

)
. But the two bimodules are conjugate by the

autoequivalence of ModC-S switching the actions of the two copies of k. Thus we have a unique

equivalence class of minimal, faithful C-tensor algebra over this S; it can be represented by the path

algebra of Dynkin type A2.

This shows that each equivalence class of a finitely generated Vec-tensor algebra is represented by a path

algebra of a finite quiver, as we know from Theorem 3.1.

Finally, we consider a special case of minimal C-tensor algebras TS(E) where the module category M of

Theorem 3.11 (corresponding to S) is C itself.

Example 3.18. Fix C a finite multi-tensor category. Here, we consider equivalence classes of minimal C-
tensor algebras TS(E) for S = 1, so M = ModC-S is C. (If C is tensor, we could take S = X ⊗ X∗ for

any nonzero X ∈ C; see Example 2.5.) The tensor equivalence FunC(C, C) ∼ Cop [EGNO15, Example 7.12.3]

shows that the equivalence classes of minimal C-tensor algebras of the form T1(E) are in bijection with

conjugacy classes of indecomposable objects in C.

3.3. Filtered actions of semisimple Hopf algebras on tensor algebras. In this part, we restrict our

attention to the case when C = Rep(H), the category of finite-dimensional representations of a semisim-

ple Hopf algebra H . We first study Hopf actions of H (see [Mon93, Rad12]) on the Vec-tensor algebras

TB(V ) discussed at beginning of Section 3; here, B is a finite-dimensional semisimple k-algebra and V is

a B-bimodule. We then examine H-actions on the degree-completed tensor algebras T̂B(V ) described in

Definition 3.20. We do not assume that these H-actions preserve grading (i.e., tensor algebras below are not

necessarily Rep(H)-tensor algebras as in Definition 3.2).

Recall that TB(V ) is naturally equipped with an ascending filtration as a k-vector space. Our first result

shows that an H-action preserving this filtration is isomorphic to a graded action.

Proposition 3.19. Let TB(V ) be a Vec-tensor algebra with an action of a semisimple Hopf algebra H that

preserves the ascending filtration of TB(V ). Then TB(V ) is isomorphic as a Rep(H)-module algebra to the

Rep(H)-tensor algebra TB(W ), where W := (B ⊕ V )/B as a B-bimodule in Rep(H). Therefore, the data of

Theorem 3.11 with C = Rep(H) classifies such actions.

Proof. The assumption that the H-action preserves the ascending filtration of TB(V ) gives us that B is an

algebra in Rep(H) and W := (B ⊕ V )/B is a B-bimodule in Rep(H). So, we get a short exact sequence of

B-bimodules in Rep(H),

0 → B → B ⊕ V →W → 0.

Since H and B are semisimple, this sequence splits by [CF86, Theorem 6]. Thus, we get an isomorphism

B ⊕W ∼= B ⊕ V of B-bimodules in Rep(H), as required. �
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Next, we consider H-actions on completed tensor algebras.

Definition 3.20. Let R = TB(V ) be a Vec-tensor algebra as above, and J the 2-sided ideal of R generated

by V . The degree-completion T̂B(V ) is the inverse limit of the system of k-algebras

· · · → R/J4 → R/J3 → R/J2 → R/J ∼= B.

We denote by Ĵ the closure of image of J under the natural injective map TB(V ) → T̂B(V ).

We include a proof of the following lemma, although it is presumably well known.

Lemma 3.21. The Jacobson radical of T̂B(V ) is the ideal Ĵ .

Proof. We write T := T̂B(V ). Since T/Ĵ ∼= B is semisimple, we know Ĵ contains the Jacobson radical of

T . On the other hand, let m be a maximal left ideal in T . Then m ⊇ Ĵ , because otherwise we would have

m+ Ĵ = T , and could write 1 = m+ j for some m ∈ m and j ∈ Ĵ . But then m = 1− j would be invertible

with inverse (1 − j)−1 = 1 + j + j2 + · · · , which makes sense because of the completion. This would be a

contradiction. So every maximal left ideal contains Ĵ , thus the Jacobson radical of T does as well. �

The following proposition shows that in the completed setting, H-actions automatically preserve the

descending filtration by degree.

Proposition 3.22. Any action of H on T̂B(V ) preserves Ĵ .

Proof. We again write T := T̂B(V ). Consider the coaction map ρ : T → H∗⊗T and consider the composition

ρ′ : T → H∗ ⊗ T/Ĵ of ρ with projection to T/Ĵ . Let K = ker ρ′, which is an ideal of finite codimension in

T because the codomain is finite dimensional. Applying the counit of H∗, we get the projection T → T/Ĵ

by the counit axiom, so K is contained in Ĵ . We claim that K is invariant under the H-action. Indeed,

for a ∈ K we have by coassociativity (1 ⊗ ρ′)ρ(a) = (∆ ⊗ 1)ρ′(a) = 0, so ρ(a) ∈ ker(1 ⊗ ρ′) = H∗ ⊗ K.

Thus, the action of H on T descends to an action on the finite dimensional algebra T/K. Now by [Lin03,

Theorem 2.1], the given H-action must preserve Ĵ/K, since Ĵ/K is the Jacobson radical of T/K. Thus, H

preserves Ĵ . �

Theorem 3.23. Any action of H on T̂B(V ) is isomorphic to a graded action of H on T̂B(V ).

Proof. First, by applying the integral of H (i.e., the idempotent of the trivial representation of H), the

natural projection Ĵ → J/J2 splits as a map of H-modules. This is also a morphism of B-bimodules, so the

universal property of the tensor algebra gives a map of algebras TB(J/J
2) → T̂B(V ), which is also a map

of H-modules. Now the codomain of this morphism is complete, so the universal property of completion

induces a map of H-module algebras T̂B(J/J
2) → T̂B(V ), which is an isomorphism. Since J/J2 ∼= V as

B-bimodules, this completes the proof. �

Corollary 3.24. For a tensor algebra TB(V ) in Vec (i.e., finite-dimensional over k) and a semisimple Hopf

algebra H, the data of Theorem 3.11 with C = Rep(H) classifies all actions of H on TB(V ).

Proof. When TB(V ) is finite-dimensional over k, it is equal to the degree-completed tensor algebra and the

theorem above applies. �

Remark 3.25. Every Ĵ-preserving H-action on TB(V ) extends to T̂B(V ) by continuity, so the data of

Theorem 3.11 with C = Rep(H) can be used to gain some information about H-actions of TB(V ) in gen-

eral. However, it may be that two nonisomorphic actions become isomorphic, or equivalent in the sense of

Definition 3.4, upon extension to the completion (although we do not know an example). So, we do not

immediately get a classification.

Remark 3.26. All results of this section also hold when k has positive characteristic, if we impose the

additional assumption that H is cosemisimple.
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4. Tensor algebras in pointed fusion categories

The goal of this section is to study minimal C-tensor algebras [Definition 3.2, 3.6] for the pointed fusion

categories C = Vec
ω
G. Due to Theorem 3.11, we first recall results on the classification of indecomposable

semisimple Vec
ω
G-module categories and on the categories of VecωG-module functors between such module

categories (bimodule categories); this is done in Section 4.1. We use this in Section 4.2 to study Vec
ω
G-tensor

algebras and provide several detailed examples of Theorem 3.11 there.

To classify minimal, faithful C-tensor algebras for a given C, Remark 3.15 allows us to restrict our attention

to base algebras with either one or two indecomposable summands. We proceed as such here.

4.1. Module categories and bimodule categories over Vec
ω
G. We begin by considering pointed fusion

categories, each of which is equivalent to some category Vec
ω
G. Here, G is a finite group with 3-cocycle

ω : G×G×G→ k
×, and objects of VecωG consist of finite-dimensional G-graded k-vector spaces with asso-

ciativity constraint determined by ω. Without loss of generality we assume all k×-cochains are normalized,

meaning that they take the value 1 when any coordinate of the input is the group identity.

Notation 4.1 (gx, gX , ψg, η|L). We collect a list of the most frequently used notation below.

• We write gx := gxg−1 and gX := {gx : x ∈ X}, for an element g ∈ G.

• Take a 2-cochain ψ on L ≤ G and an element g ∈ G. The 2-cochain ψg on L is defined by

ψg(g1, g2) = ψ(gg1,
gg2) for g1, g2 ∈ L.

• Let η be an n-cochain on G and L ≤ G. We write η|L for the restriction of η to L×n for n ∈ N.

The following module categories over Vec
ω
G play a central role throughout this work. Let G be a finite

group and ω a 3-cocycle on G. To a pair (L,ψ) where L ≤ G and ψ a 2-cochain on L satisfying dψ = ω|L,
we assign the indecomposable semisimple Vec

ω
G-module category M(L,ψ) as follows. First consider the

collection of non-isomorphic simple objects {δg}g∈G of VecωG, where δg is the 1-dimensional G-graded vector

space concentrated in degree g.

Definition 4.2 (M(L,ψ), A(L,ψ)). [Ost03b, Example 2.1] [EGNO15, Example 9.7.2] The twisted group

algebra A(L,ψ) in Vec
ω
G is

⊕
g∈L δg as an object in Vec

ω
G, with multiplication δg ⊗ δg′ = ψ(g, g′)δgg′ . We

define the Vec
ω
G-module category M(L,ψ) := ModVecωG-A(L,ψ).

If ω is trivial, then A(L,ψ) is an associative algebra in Vec. But in general A(L,ψ) is an associative algebra

only in Vec
ω
G. The following fundamental results of Ostrik and Natale tell us that these are the building

blocks of all module categories over VecωG (up to equivalence), and they give us a criterion for checking when

two such module categories are equivalent.

Proposition 4.3. [Ost03b, Example 2.1] [Nat17] Every indecomposable semisimple module category over

the fusion category Vec
ω
G is equivalent to some M(L,ψ), where

• L is a subgroup of G such that the class of ω|L is trivial in H3(L, k×), and

• ψ : L× L→ k
× is a 2-cochain on L satisfying dψ = ω|L.

Moreover, M(L,ψ) and M(L′, ψ′) are equivalent as VecωG-module categories if and only if there exists g ∈ G

such that L = gL′ and the class of the 2-cocycle ψ′−1ψgΩg|L′ is trivial in H2(L′, k×), where ψg is as in

Notation 4.1. Here, Ωg : G×G→ k
× is given by

(4.4) Ωg(g1, g2) =
ω(gg1,

gg2, g) ω(g, g1, g2)

ω(gg1, g, g2)
.

�

Remark 4.5. Indecomposable semisimple module categories over Rep(G) are determined by the same

data of Proposition 4.3 for VecG. Namely, Rep(G) and VecG are categorically Morita equivalent since

(VecG)
∗
Vec

∼ Rep(G) [EGNO15, Example 7.12.19], and as a result, there is a 2-equivalence between the
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2-category of semisimple module categories over VecG and over Rep(G) [Theorem 2.3]. See [Ost03b, Propo-

sition 2.3], a result due to Müger [M0̈3], and also [EGNO15, Example 7.4.9, Corollary 7.12.20] for direct

descriptions of indecomposable semisimple module categories over Rep(G).

We summarize some elementary observations in the following lemma which are useful for applying the

proposition above in specific examples.

Lemma 4.6. Suppose L ≤ G is a subgroup such that ω|L is trivial in H3(L, k×). Then the following hold.

(a) For every conjugate gL of L in G, we have that ω|gL is trivial in H3(gL, k×).

(b) If H2(L′, k×) is trivial, then the pairs (L′, ψ′) yielding module categories equivalent to that of (L,ψ)

are exactly those with L = gL′ for some g ∈ G.

Proof. (a) Let ψ ∈ H2(L, k×) be such that dψ = ω|L. It can be directly checked that d(ψg
−1

Ωg−1) = ω|gL.
(b) It is immediate since the condition comparing ψ, ψ′ in Proposition 4.3 is vacuous in this case. �

Remark 4.7. We also draw the reader’s attention to Natale’s example [Nat17, Example 3.6], which shows

that the 2-cocycle Ωg must be considered when computing equivalence classes of indecomposable semisimple

module categories: Even when ψ−1ψ′ is not a coboundary, it is possible for (L,ψ) and (L,ψ′) to yield

equivalent module categories. In order to get (L,ψ) 6∼ (L,ψ′), one must check for each g ∈ G with gL = L

that ψ′−1ψgΩg|L is nontrivial in H2(L, k×).

Now to describe the minimal VecωG-tensor algebras TS(E) up to equivalence, we may take S to be a direct

sum of twisted group algebras A(L,ψ) in Vec
ω
G.

Example 4.8. Continuing Example 3.18, note that if the pair (L,ψ) corresponds to the Vec
ω
G-module

category Vec
ω
G itself, then (L,ψ) = (〈e〉, 1).

Next, we consider the generating bimodules of minimal VecωG-tensor algebras by recalling a result of

Ostrik that classifies categories of functors between indecomposable semisimple VecωG-module categories. By

Remark 3.15, it is enough to consider (Si, Sj)-bimodules, where Si := A(Li, ψi) and Sj := A(Lj , ψj) are

indecomposable semisimple algebras. Also for the result below, we follow [Kar93, Section 3.1] and call a

projective representation of a group G with Schur multiplier ψ a ψ-representation of G.

Notation 4.9 (Lgi,j). Given two subgroups Li, Lj ≤ G and g ∈ G, we write Lgi,j := Li ∩ gLjg−1.

Proposition 4.10 (ψgi,j =: (ψiψ
−1
j )g, mi,j(g), M(g, ρ)). [Ost03b, Proposition 3.2] [GN09, Theorem 5.1]

Let (Li, ψi), (Lj , ψj) be two pairs determining indecomposable semisimple Vec
ω
G-module categories as in

Proposition 4.3. For each g ∈ G, the group Lgi,j has a well-defined 2-cocycle

(4.11) ψgi,j(ℓ, ℓ
′) := (ψiψ

−1
j )g(ℓ, ℓ

′) := ψi(ℓ, ℓ
′) · ψj(g−1ℓ′−1g, g−1ℓ−1g) · ω(ℓ, ℓ

′, g) · ω(ℓ, ℓ′g, g−1ℓ′−1g)

ω(ℓℓ′g, g−1ℓ′−1g, g−1ℓ−1g)
,

for ℓ, ℓ′ ∈ Lgi,j.

Moreover, let {gk}k∈Li\G/Lj
be a set of representatives of Li-Lj double cosets in G. Then the rank of the

category FunVecωG(M(Li, ψi),M(Lj , ψj)), or equivalently of the category of (A(Li, ψi), A(Lj , ψj))-bimodules

in Vec
ω
G, is equal to

(4.12)
∑
k∈Li\G/Lj

mi,j(gk)

where mi,j(g) is the number of linear equivalence classes of irreducible ψgi,j-representations of the group Lgi,j.

We get that the simple objects of this category are classified by the pairs (gk, ρ), where ρ is an irreducible

ψgki,j-representation of the group Lgki,j. The corresponding simple object M(gk, ρ) ∈ Vec
ω
G is supported on the

double coset LigkLj. �
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We introduced two notations above for the same 2-cocycle because the first is more convenient in this

section, while the latter notation is more convenient in Sections 5 and 6.

Now to understand the rank count above, recall that for a 2-cocycle φ on a group G, an element g ∈ G

is called φ-regular when φ(g, h) = φ(h, g) for all h ∈ CG(g), the centralizer of g in G [Kar93, Section 2.6].

Furthermore, φ-regularity of an element g depends only on the cohomology class of φ, and if g is φ-regular,

then so is every conjugate of g [Kar93, Lemma 2.6.1]. The following result of Schur can be found in [Kar93,

Theorem 6.1.1].

Theorem 4.13 (Schur). Let L be a group and ψ ∈ Z2(L, k×) a 2-cocycle. Then the number of linear

equivalence classes of irreducible ψ-representations of L is equal to the number of ψ-regular conjugacy classes

of L. �

We also introduce some terminology that will be used.

Definition 4.14. A finite group G is called Schur-trivial if H2(G, k×) = 1, and we call G sub-Schur-trivial

if each of its subgroups is Schur-trivial.

4.2. Vec
ω
G-tensor algebras. Now we study minimal, S-faithful VecωG-tensor algebras TS(E). By Remark 3.15,

we know that S has at most two summands, and is therefore Morita equivalent to A(L,ψ) or

A(Li, ψi)⊕A(Lj , ψj).

4.2.1. Trivial ω. We first consider the case when ω is cohomologically trivial. Without loss of generality

we assume throughout this section that ω = 1, the constant cochain, and note that Vec
1
G = VecG. The

classifying data for tensor algebras here is the same as in Rep(G); see Remark 4.5.

Proposition 4.15. Let [G] be a set of representatives of the conjugacy classes of subgroups L of G, let

NG(L) be the normalizer of L in G, and let |X/Γ| be the number of orbits of a group Γ acting on a set X.

Then the number of indecomposable semisimple base algebras in VecG, up to equivalence, is

(4.16)
∑

L∈[G]

|H2(L, k×)/NG(L)|.

So, if G is sub-Schur-trivial, then (4.16) is equal to #[G]; if, further, G is abelian, then (4.16) equals

#(L ≤ G).

Proof. We consider Proposition 4.3 in the case ω = 1, noting that ω|L = 1 on any L ≤ G. Therefore,

by Proposition 4.3 the collection of indecomposable module categories over the fusion category VecG is

parametrized by conjugacy classes of pairs (L,ψ) where L ≤ G is any subgroup and ψ ∈ H2(L, k×). The

relation (L,ψ) ∼ (L′, ψ′) simplifies to just L = gL′ and ψ′ = ψg ∈ H2(L′, k×) for some g ∈ G, since each

Ωg = 1. Then the count (4.16) follows from the orbit-stabilizer theorem applied to the conjugation action

of G on the set of pairs (L,ψ) as above. �

Next, we note a simplification for counting bimodules which occurs in the case when G is abelian.

Lemma 4.17. Suppose G is abelian and let (Li, ψi), (Lj , ψj) be as in Proposition 4.10. Then the number of

indecomposable (A(Li, ψi), A(Lj , ψj))-bimodules in VecG, up to isomorphism, is

(4.18)
|G||Li ∩ Lj |
|Li||Lj |

(number of ψei,j-regular conjugacy classes in Li ∩ Lj).

Proof. Since G is abelian, the number of representatives of (Li, Lj)-double cosets in G in Proposition 4.10

is (|G||Li ∩ Lj|)/(|Li||Lj|). Since ω = 1 and conjugation in G is trivial, ψgi,j = ψei,j for all g ∈ G. Then the

count follows from (4.12) and Theorem 4.13. �

By the two previous results, the examination of VecG is easier in the cases when G is abelian or is

sub-Schur-trivial. So we consider these cases in the four examples below, where G is:
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• a cyclic group Zn (that is, abelian and sub-Schur-trivial);

• the Klein-four group Z2 × Z2 (that is, abelian and not Schur-trivial);

• the symmetric group S3 of order 6 (that is, non-abelian and sub-Schur-trivial); and

• the dihedral group D8 of order 8 (that is, neither abelian nor Schur-trivial).

Example 4.19. Take G = 〈x | xn = e〉 ∼= Zn, which is abelian and sub-Schur trivial (see, e.g., [Kar93,

Proposition 10.1.1(ii)]). Let τ(n) denote the set of positive integers dividing n. If TS(E) is a minimal,

S-faithful tensor algebra in C, then we may take S = A(〈xm〉, 1) or S = A(〈xm〉, 1) ⊕ A(〈xm′ 〉, 1) for

m,m′ ∈ τ(n) by Proposition 4.15.

Suppose S = A(〈xm〉, 1) for m ∈ τ(n). From Proposition 4.10, the isomorphism classes of S-bimodules E

are classified by pairs (gk, ρ) where gk is a representative of a 〈xm〉-〈xm〉-double cosets (i.e. a 〈xm〉-coset)
in G, and ρ an irreducible representation of 〈xm〉. Since G is abelian, all its irreducible representations are

1-dimensional, and it is easy to see that nonisomorphic bimodules will not be conjugates of one another.

So, equivalence classes of tensor algebras with base algebra S are in bijection with isomorphism classes of

S-bimodules in this case.

On the other hand, suppose S = S1 ⊕ S2 with S1 = A(〈xm〉, 1) and S2 = A(〈xm′ 〉, 1) for m,m′ ∈ τ(n).

Then given any pair E,E′ ∈ BimodC(S1, S2), it can be shown by direct computation that there exist invertible

Si-bimodules Xi such that E′ ∼= X̄1 ⊗S E ⊗S X2 (where X̄1 is the inverse of X1 in BimodC(S1) as before).

Thus for each S with two indecomposable summands, there is only one equivalence class of minimal, faithful

tensor algebra TS(E).

Next, we consider an abelian group which has a cohomologically nontrivial 2-cocycle.

Example 4.20. Take G = 〈x, y : x2 = y2 = e, yx = xy〉 ∼= Z2 × Z2. There are five subgroups L of G up

to conjugacy: {〈e〉, 〈x〉, 〈y〉, 〈xy〉, G}, and H2(L, k×) is trivial for L 6= G. However, H2(G, k×) ∼= Z2 (see,

e.g., [Kar93, Proposition 10.7.1]), and a 2-cochain on G representing the nontrivial element of H2(G, k×) is

(4.21) µ(xi1yj1 , xi2yj2) = (−1)j1i2 , 0 ≤ iℓ, jℓ ≤ 1.

By Proposition 4.15, there are 6 indecomposable semisimple base algebras, up to equivalence.

Turning to bimodules, we can compute the quantity (4.18) (or equivalently, (4.12)) for every pair of

subgroups of G, and the result is summarized in the following table.

The value (4.12) for

(Li, ψi) ↓ and (Lj , ψj) →
(〈e〉, 1) (〈x〉, 1) (〈y〉, 1) (〈xy〉, 1) (G, 1) (G, µ)

(〈e〉, 1) 4 2 2 2 1 1

(〈x〉, 1) 2 4 1 1 2 2

(〈y〉, 1) 2 1 4 1 2 2

(〈xy〉, 1) 2 1 1 4 2 2

(G, 1) 1 2 2 2 4 1

(G, µ) 1 2 2 2 1 4

The count is simplified by noting that ψei,j is cohomologically trivial unless Li = Lj = G and either ψi or ψj

is µ. When ψei,j is cohomologically trivial, the quantity (4.18) is 4
|Li∩Lj|2
|Li||Lj| and so it can be directly computed

case-by-case. In the three cases where ψei,j is cohomologically nontrivial, we first have that |G\G/G| = 1.

Moreover, when ψi = ψj = µ, we get that ψei,j is symmetric so the number of ψei,j-regular conjugacy classes

in G is 4. On the other hand, when only one of ψi or ψj is µ, then it can be directly seen from (4.21) that the

only ψei,j-regular conjugacy class is {e}. Now by taking cases where S is either an indecomposable algebra in

VecZ2×Z2
or is a direct sum of two indecomposable algebras in VecZ2×Z2

, one can classify equivalence classes

of S-faithful VecZ2×Z2
-tensor algebras as done in Example 4.19.

Now we consider a nonabelian group where every subgroup has trivial second cohomology.
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Example 4.22. Take G = 〈r, s | r3 = s2 = (sr)2 = e〉 ∼= S3, the symmetric group on three letters, noting

that there are four subgroups L of G, up to conjugacy: {〈e〉, 〈s〉, 〈r〉, G}. Here, H2(L, k×) is trivial for all

L ≤ G (see, e.g. [Kar93, Proposition 10.1.1(ii) or Theorem 12.2.2]), so Proposition 4.15 implies that there are

four indecomposable semisimple base algebras S in VecG, up to equivalence. To illustrate equivalence versus

isomorphism of tensor algebras, we will describe the equivalence classes of C-tensor algebras of the form TS(E)

and TS⊕S(E) for each indecomposable S. Similar methods can be applied to the cases where S = S1 ⊕ S2

with S1 and S2 nonequivalent. The descriptions of the bimodules below all follow from Proposition 4.10.

For S = A(〈e〉), the 6 indecomposable bimodules are {δg : g ∈ S3} as objects in C, and are all invertible.

Conjugation of bimodules is conjugation in S3, so there are only 3 equivalence classes of tensor algebras of

the form TS(E). On the other hand, there is just one equivalence class of minimal, faithful tensor algebra

TS⊕S(E) by Proposition 3.13.

For S = A(〈s〉), there are 3 isoclasses of indecomposable bimodules. Two of them are δe ⊕ δs as objects

in C, one associated to the trivial representation and the other associated to the sign representation of 〈s〉.
The other indecomposable bimodule is δr⊕ δr2 ⊕ δsr⊕ δsr2 as an object of C. The first two are invertible and

conjugation by them acts trivially, so there are 3 conjugacy classes of minimal tensor algebras of the form

TS(E). On the other hand, there are just 2 equivalence classes of minimal tensor algebras TS⊕S(E) because

the first two are equivalent by Proposition 3.13.

For S = A(〈r〉), there are 6 isoclasses of indecomposable bimodules: three of them are δe ⊕ δr ⊕ δr2 as

objects in C, associated to the 3 irreducible representations of 〈r〉, and the other three are δs ⊕ δsr ⊕ δsr2 as

objects in C, also associated to the 3 irreducible representations of 〈r〉. All 6 of these bimodules are invertible.

It can be computed that this group of invertible bimodules is isomorphic to Z6 (generated by δs⊕ δsr ⊕ δsr2

with either nontrivial irreducible representation of 〈r〉). Thus conjugation is trivial, giving 6 equivalence

classes of minimal tensor algebras TS(E). Again by Proposition 3.13 there is only one equivalence class of

minimal tensor algebras TS⊕S(E).

For S = A(S3), there are 3 isoclasses of indecomposable bimodules, all having underlying object
⊕

g∈S3
δg

in C, associated to the 3 irreducible representations of S3. The two 1-dimensional representations give

invertible bimodules and again conjugation by them is trivial, so there are 3 equivalence classes of faithful,

minimal tensor algebras TS(E) and 2 equivalence classes of faithful, minimal tensor algebras TS⊕S(E).

Finally, we consider a nonabelian group in which some subgroups have non-trivial second cohomology.

Example 4.23. Take G to be the dihedral group D8 of order 8, with presentation

(4.24) D8 = 〈x, y, z | x2 = y2 = z2 = e, xy = yx, zx = yz, zy = xz〉.
Note that there are 8 subgroups L of G, up to conjugacy:

{〈e〉, 〈x〉 = z〈y〉, 〈z〉 = yz〈xyz〉, 〈xy〉, 〈x, y〉, 〈xy, z〉, 〈xz〉, G}.
Also, H2(G, k×) ∼= Z2 by [Kar93, Corollary 10.1.27]. The nontrivial cohomology class is represented by

(4.25) β(xi1yj1zn1 , xi2yj2zn2) = (−1)j1i2 , 0 ≤ iℓ, jℓ, nℓ ≤ 1.

By Proposition 4.15, up to equivalence, the indecomposable semisimple base algebras are represented by the

pairs (L,ψ):

{(〈e〉, 1), (〈x〉, 1), (〈z〉, 1), (〈xy〉, 1), (〈x, y〉, 1), (〈x, y〉, β|〈x,y〉), (〈xy, z〉, 1), (〈xy, z〉, β|〈xy,z〉), (〈xz〉, 1), (D8, 1), (D8, β)}.

We carry out the count of isomorphism classes of indecomposable bimodules for some special cases, but

we leave bimodule conjugacy class computations to the reader.

(a) At one extreme, we can take (Li, ψi) = (〈e〉, 1) = (Lj, ψj). The set of coset representatives {gk} in

Proposition 4.10 is the entire group D8. Each L
gk
i,j = 〈e〉, so each mi,j(gk) = 1 and the total count of

indecomposable bimodules is |D8| = 8.
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(b) Now consider (Li, ψi) = (〈x, y〉, 1) and (Lj , ψj) = (〈z〉, 1). In this case we have {gk} = {e} and

Lei,j = 〈e〉 with mi,j(e) = 1, so there is a unique bimodule for this pair.

(c) If we take (Li, ψi) = (〈xy, z〉, 1) and (Lj, ψj) = (〈z〉, 1), then {gk} = {e, x}. We have Lei,j = 〈z〉 and
Lxi,j = 〈e〉. So, mi,j(e) = 2 and mi,j(x) = 1, and there are three bimodules for this pair.

(d) Next, we examine the case Li = Lj = 〈x, y〉 for various choices of ψi, ψj . We have {gk} = {e, z}
and Lei,j = Lzi,j = 〈x, y〉. Note that H2(〈x, y〉, k×) ∼= Z2 is equal to {1, β|〈x,y〉}. If ψi = ψj = 1

or ψi = ψj = β|〈x,y〉, then ψei,j = ψzi,j = 1, and hence, mi,j(e) + mi,j(z) = 4 + 4 = 8. Else, if

either ψi = β|〈x,y〉 and ψj = 1, or, ψi = 1 and ψj = β|〈x,y〉, then ψei,j = ψzi,j = β|〈x,y〉; in this case,

mi,j(e) +mi,j(z) = 1 + 1 = 2. This uses the same reasoning as in Example 4.20.

(e) Now if (Li, ψi) = (Lj , ψj) = (D8, 1), then {gk} = {e}. By Theorem 4.13 we get that mi,j(e) = 5,

the number of conjugacy classes of elements in D8, or equivalently, the number of irreducible repre-

sentations of D8.

Example 4.23 will be used in Section 5.3 in the study of C-tensor algebras for C being the category of

finite-dimensional representations of the Kac-Patjutkin Hopf algebra H8.

4.2.2. Nontrivial ω. We now consider ω ∈ Z3(G, k×) cohomologically nontrivial. Note that the pairs (L,ψ)

parametrizing indecomposable semisimple Vec
ω
G-module categories in Proposition 4.3 are highly dependent

on the choice of ω. In particular, there will typically be fewer L for ω nontrivial as compared to the case

ω = 1 because of the requirement that ω restricted to L must be cohomologically trivial.

We study the case when G = Zn and when G = D8 for a specific ω ∈ H3(D8, k
×) used later in Section 5.3.

We leave other examples for the reader. In the examples below,

〈d〉t denotes the remainder of d modulo t.

Example 4.26. Continuing Example 4.19, take G = 〈x | xn = e〉 ∼= Zn. Let ζ be a primitive nth root

of 1. By [dWP, (2.3.18)] or [EGNO15, Example 2.6.4], the cohomology classes of 3-cocycles on G are

represented by

(4.27) ωℓ(x
i, xj , xk) = ζℓi(j+k−〈j+k〉n)/n, for ℓ = 0, 1, . . . , n− 1.

Since ω is cohomologically nontrivial in this section, we take ℓ > 0. Let τ(n) be the set of positive divisors

of n. Recall that the distinct subgroups of G are 〈xm〉 ∼= Zn/m for m ∈ τ(n). Fix L such a subgroup.

Let us consider the restriction of ωℓ to L. We can write

(4.28) ωℓ(x
mi, xmj , xmk) = (ζm)ℓi(mj+mk−〈mj+mk〉n)/n.

One can check that j + k − 〈mj + mk〉n/m = j + k − 〈j + k〉n/m, and thus we can rewrite (4.28) in the

standard form (4.27) applied to the cyclic group 〈xm〉, noting that ζm is a primitive (n/m)th root of 1:

ωℓ(x
mi, xmj , xmk) = (ζm)ℓi(j+k−〈j+k〉n/m)/(n/m)

This shows that ωℓ restricted to L is cohomologically trivial if and only if |L| = n/m divides ℓ. So by

Proposition 4.3 and Lemma 4.6(b), the indecomposable semisimple base algebras S in Vec
ωℓ

G are exactly the

algebras A(L, 1) where L = 〈xm〉 and n/m divides ℓ.

The study of minimal, faithful tensor algebras in Vec
ωℓ

G can then be carried out in exactly the same way

as in Example 4.19, but using only base algebras with summands as described in the previous paragraph.

Example 4.29. Continuing Example 4.23 with G = D8, consider the nontrivial 3-cocycle ω ∈ Z3(G, k×)

from [Kac68, Section 3.5] given below; this 3-cocycle will be of use in the next two sections. For subgroups

K = 〈z | z2 = e〉 and N = 〈x, y | x2 = y2 = e, xy = yx〉
of G, let ei,j be the dual basis for kN where ei,j(x

kyl) = δi,kδj,l and consider the maps

σ : K ×K → (kN )× and τ : N ×N → (kK)×
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defined as follows. Put σi,j(h, h
′) := σ(h, h′)(ei,j) and τzn(p, p′) := τ(p, p′)(zn) for h, h′ ∈ K and p, p′ ∈ N .

Define σ and τ by setting the value equal to 1 except for the following:

(4.30) σ1,0(z, z) = σ0,1(z, z) = −
√
−1,

(4.31)

τz(x, x) = τz(y, y) = τz(x, xy) = τz(xy, y) =
√
−1, τz(y, x) = −1, τz(xy, x) = τz(y, xy) = −

√
−1.

Now let

(4.32) ω(xi1yj1zn1 , xi2yj2zn2 , xi3yj3zn3) = σi1,j1(z
n2 , zn3)τzn3 (xj1yi1 , xi2yj2) 0 ≤ nℓ, iℓ, jℓ ≤ 1.

Recall the 8 conjugacy classes of subgroups of G listed in Example 4.23. We use formula 4.32 to directly

compute that ω|L is trivial in H3(L, k×) exactly when L is one of the following:

(4.33) {〈e〉, 〈x〉, 〈xy〉, 〈z〉, 〈x, y〉, 〈xy, z〉}.
Since the first four of these subgroups have trivial Schur multiplier, we get four nonequivalent indecom-

posable semisimple base algebras S from these. For the remaining two subgroups, their Schur multipliers are

each isomorphic to Z2, so we must consider the possibilities for equivalence as in Proposition 4.3. It turns

out that the two different choices of cocycle end up giving equivalent module categories, just as in [Nat17,

Example 3.6]. In more detail, first consider L = 〈x, y〉. From a direct substitution of (4.32) into (4.4) and

from the definitions of σ, τ , it can be calculated that

Ωz(x
i1yj1 , xi2yj2) = τz(x

i1yj1 , xj2yi2),

and that this represents a nontrivial cohomology class on 〈x, y〉. Therefore, the two pairs (〈x, y〉, 1) and

(〈x, y〉, β|〈x,y〉), where β is as in (4.25), give rise to equivalent module categories. For L = 〈xy, z〉, it can

be similarly computed that Ωx restricts to a nontrivial cohomology class on L, and therefore the two pairs

(〈xy, z〉, 1) and (〈xy, z〉, β|〈xy,z〉) give rise to equivalent module categories.

We end by briefly remarking on the count of indecomposable bimodules for some examples, building on

Example 4.23 (again, leaving bimodule conjugacy class computations to the reader). For each example where

every Lgki,j = 〈e〉, the count of indecomposable bimodules does not change. In fact, the only possibility where

the count can change is when some Lgki,j has nontrivial Schur multiplier, and the only possibility for this in

D8 is when Lgki,j
∼= Z2 × Z2.

5. Tensor algebras in group-theoretical fusion categories

In this section, we study C-tensor algebras [Definition 3.2, 3.6] for group-theoretical fusion categories C
[Definition 5.1], building on the work in the previous section. We begin by providing in Section 5.1 terminol-

ogy and preliminary results for group-theoretical fusion categories C := C(G,ω,K, α), and then we recall in

Section 5.2 the process of reconstructing a semisimple Hopf algebra whose representation category is tensor

equivalent to C. To obtain results on base algebras of C-tensor algebras, we also examine indecomposable

semisimple algebras in C in Section 5.2. Finally, in Section 5.3, we illustrate results by classifying all inde-

composable semisimple algebras in the category of finite-dimensional representations of the Kac-Paljutkin

Hopf algebra H8, up to Morita equivalence; this category is tensor equivalent to a group-theoretical fusion

category C(D8, ω,Z2, 1).

5.1. Background and notation. In this part we establish notation for group-theoretical fusion categories

and module categories over them. Recall the Vec
ω
G-module category M(K,α) from Definition 4.2.

Definition 5.1 (C(G,ω,K, α)). A fusion category is called group-theoretical if it is categorically Morita

equivalent to a pointed fusion category, that is, if it is equivalent to one of the form

C(G,ω,K, α) := ((VecωG)
∗
M(K,α))

op
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where G is a finite group, ω is a 3-cocycle G×G×G → k
×, K is a subgroup of G with ω|K trivial, and α

is a 2-cochain K ×K → k
× such that dα = ω|K .

Thus, C(G,ω,K, α) is tensor equivalent to the category of A(K,α)-bimodules in Vec
ω
G.

Example 5.2. The following are examples of group-theoretical fusion categories.

(1) We have that C(G,ω, 〈e〉, 1) ⊗∼ Vec
ω
G. Indeed, A(〈e〉, 1) = 1VecωG

, so

M(〈e〉, 1) ⊗∼ ModVecωG-A(〈e〉, 1)
⊗∼ Vec

ω
G.

Moreover, Cop ⊗∼ C∗
C . See Examples 2.5, 3.18, and 4.8.

(2) We obtain that C(G, 1, G, 1) ⊗∼ Rep(G) as follows. First, Rep(G)
⊗∼ (VecG)

∗
Vec

[Remark 4.5]. By

[Ost03b, Corollary 3.4], M(G, 1) has rank one. Thus,

(VecG)
∗
M(G,1) = FunVecG(M(G, 1),M(G, 1))

⊗∼ FunVecG(Vec,Vec) = (VecG)
∗
Vec
.

(3) We also have that Rep(H)
⊗∼ C(G,ω,K, 1), where H is the bicrossed product k

N τ#σ kK. Here,

(K,N) is a matched pair of finite groups (so that K and N act on each other in a certain fashion)

yielding a group G = N ⊲⊳ K that is a semi-direct product when either the action of N on K, or K

on N , is trivial (this is also called an exact factorization of G). The maps σ : K ×K → (kN )× and

τ : N ×N → (kK)× are compatible cocycles defining the multiplication and comultiplication of H ,

respectively. Moreover, ω ∈ H3(G, k×) represents the class ω(σ, τ) for the map ω : Opext(kN , kK) →
H3(G, k×) in the Kac sequence. In this case, H arises as the abelian extension

k → k
N → H → kK → k.

See [Nat03, Section 3 and Proposition 4.5] for more details.

As a special case of (3) above we continue Example 4.29 below; we will consider this example in more

detail in Section 5.3.

Example 5.3. Take the groups N = 〈x, y | x2 = y2 = e, xy = yx〉 and K = 〈z | z2 = e〉 from Example 4.29,

with the N -action onK trivial, and theK-action onN given by z·x = y and z·y = x. Thus, G = N⋊K ∼= D8.

With the cocycle ω = ω(σ, τ) given in (4.32), we get that C(G,ω,K, 1) ⊗∼ Rep(H8), for H8 the Kac-Paljutkin

semisimple Hopf algebra of dimension 8 [KP66, Kac68]; see Definition 5.20.

Using Proposition 4.10, we can describe the simple objects of C(G,ω,K, 1) in this case:

X0 :=M(x, ρ
〈e〉
triv), X1 :=M(e, ρKtriv), X2 :=M(e, ρKsign), X3 :=M(xy, ρKtriv), X4 :=M(xy, ρKsign).

Here, M(g, ρ) is the simple object corresponding to the K-K double coset KgK in G, with ρ an irreducible

(projective) representation of K ∩ gKg−1 (with trivial Schur multiplier). Indeed,

{〈z〉g〈z〉}g∈D8
= {e, z} ∪ {x, y, xz, yz} ∪ {xy, xyz},

and we take representatives g = e, x, xy and compute that K ∩ gKg−1 is K, 〈e〉, K, respectively.

From Theorem 2.3, we see that the following categories will play an essential role in studying group-

theoretical fusion categories.

Notation 5.4 (MK,α(L,ψ)). Fix a group G and 3-cocycle ω on G. We write

(5.5) MK,α(L,ψ) := FunVecωG(M(K,α),M(L,ψ)),

which is an indecomposable semisimple left C(G,ω,K, α)-module category by precomposition of functors.

As a consequence of Theorem 2.3, Proposition 4.3, and Proposition 4.10, we have the following result.
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Proposition 5.6. Every indecomposable semisimple module category over the group-theoretical fusion cat-

egory C(G,ω,K, α) is equivalent to some MK,α(L,ψ), where (L,ψ) is as in Proposition 4.3, and its sim-

ple objects are M(g, ρ) as in Proposition 4.10. The conditions for MK,α(L,ψ) and MK,α(L′, ψ′) to be

equivalent are the same as in Proposition 4.3, and the value (4.12) is the rank of the functor category

FunC(G,ω,K,α)(MK,α(Li, ψi),MK,α(Lj , ψj)). �

Example 5.7. Continuing Example 5.3, we saw in Example 4.29 that there are 6 equivalence classes of

indecomposable semisimple Vec
ω
D8

-module categories, parametrized by pairs (L, 1) where L is one of the

subgroups in (4.33). Thus the indecomposable semisimple module categories over C(D8, ω, 〈z〉, 1) ⊗∼ Rep(H8)

are exactly those of the form M〈z〉,1(L, 1) for L one of the subgroups in (4.33), up to equivalence.

5.2. Reconstruction. Next, we turn our attention to group-theoretical fusion categories that are tensor

equivalent to representation categories of semisimple Hopf algebras. We have the following reconstruction

theorem for finite tensor categories C equipped with a fiber functor F . Recall that the k-algebra End(F )

of functorial endomorphisms of F has the structure of a finite-dimensional Hopf algebra; see [EGNO15,

Sections 1.8, 5.2, 5.3] for details.

Theorem 5.8. [EGNO15, Theorem 5.3.12] Consider a finite tensor (resp., fusion) category C, and suppose

that C admits a fiber functor F . Then C is tensor equivalent to Rep(H), for H = End(F ) a finite-dimensional

(resp., semisimple) Hopf algebra. �

We remind the reader that there are group-theoretical fusion categories that do not admit any fiber

functor (e.g., VecωG for ω non-trivial, [EGNO15, Example 5.1.3]), and furthermore there exist semisimple

Hopf algebras whose representation categories are not group-theoretical [Nik08, Corollary 4.6]. In any case,

consider the result below.

Proposition 5.9. We have that a group-theoretical fusion category C := C(G,ω,K, α) admits a fiber functor

if and only if there exists a subgroup N ≤ G and 2-cochain γ on N such that dγ = ω|N where G = KN and

K ∩N has a unique irreducible ψei,j-representation as in (4.11). Here, ψi = α and ψj = γ. In this case, the

fiber functor is

(5.10) FV : C → Vec, X 7→ HomM0
(X ⊗ V, V ),

where M0 = MK,α(N, γ) and V is the unique simple object of M0.

Proof. Since C admits a fiber functor if and only if it has a semisimple module category of rank 1, from

Proposition 5.6 we see that this occurs if and only if there exists (N, γ) as in the statement with MK,α(N, γ)

of rank 1. This rank is counted in Proposition 4.10. �

Applying Theorem 5.8, this gives a criterion for C(G,ω,K, α) to be equivalent to the representation

category of a Hopf algebra. We fix notation for this situation, which will be studied in more detail for the

remainder of the paper.

Notation 5.11 (C, FV , M0, H(N, γ)). Assume that C := C(G,ω,K, α) admits a fiber functor, and fix one

FV : C → Vec as in Proposition 5.9. Take also M0 := MK,α(N, γ) as in Proposition 5.9. We write H(N, γ)

for the corresponding semisimple Hopf algebra obtained from the fiber functor FV . Note that the data

(G,ω,K, α) defining H(N, γ) is understood from context. Thus, we have Rep(H(N, γ))
⊗∼ C(G,ω,K, α).

Our next goal is to use the classification of indecomposable semisimple algebras in C from previous sections

to study indecomposable semisimple algebras in Rep(H(N, γ)) via the equivalence Rep(H(N, γ))
⊗∼ C. We

refer to such algebras as indecomposable semisimple H(N, γ)-algebras. To describe these algebras more

explicitly, we recall the internal End construction.
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Definition 5.12 (End(M)). [EGNO15, Section 7.8] LetM be a C-module category and fix an objectM ∈ M.

The internal End of M is the object in C that represents the functor C → Vec, X 7→ HomM(X ⊗M,M); it

is denoted by End(M). Namely, we get that

(5.13) HomM(X ⊗M,M) ∼= HomC(X,End(M)).

We have that End(M) is an algebra in C (see [EGNO15, Section 7.9]).

Example 5.14. For any finite-dimensional Hopf algebra H , we have End(k) ∼= H∗ as algebras in Rep(H)

(see [EGNO15, Example 7.9.11]). Applying this to H = End(FV ) using the equivalence of Proposition 5.9,

we get that FV (End(V )) = H∗ in Rep(H), for the simple object V ∈ M0.

Lemma 5.15 (AM , AM(g,ρ)). Every indecomposable semisimple H(N, γ)-algebra is Morita-equivalent in

Rep(H(N, γ)) to an algebra FV (AM ) where AM := AM(g,ρ) := End(M), with M = M(g, ρ) a simple object

of some MK,α(L,ψ) as in Proposition 5.6.

Furthermore, we have the dimension calculation:

(5.16) dimk FV (AM ) =
∑

X∈Irr(C)
mX(M) FPdimC X where mX(M) := dimk HomM(X ⊗M,M).

Proof. From the tensor equivalence Rep(H(N, γ))
⊗∼ C and Theorem 2.4, we see that indecomposable semisim-

ple H(N, γ)-algebras are in bijection with indecomposable semisimple C-module categories, which are all of

the form MK,α(L,ψ) by Proposition 5.6. Then from [EGNO15, Theorem 7.10.1] we have that an indecom-

posable semisimple module category MK,α(L,ψ) over C is equivalent to the category of AM -modules in C,
where M ∈ MK,α(L,ψ) can be taken to be any nonzero object.

For the dimension calculation, we can decompose AM as a direct sum of irreducibles in C to write

(5.17) AM =
⊕

X∈Irr(C)
mX(M) X.

Here we are using that mX(M) = dimk HomC(X,AM ) by (5.13), which gives the multiplicity of X in AM
since C is semisimple. Then the dimension calculation follows from [EGNO15, Proposition 4.5.7]: we obtain

that dimk FV (X) = FPdimVec FV (X) = FPdimC X . �

Lemma 5.18. There is a bijection between the collection of simple modules over the k-algebra FV (AM ) and

the collection of simple objects of the category FunC(M0,MK,α(L,ψ)).

Proof. Let B := End(V ), so we have M0 ∼ ModC-B and recall that MK,α(L,ψ)) ∼ ModC-AM . Then

FunC(M0,MK,α(L,ψ)) is equivalent to BimodC(B,AM ) [EGNO15, Proposition 7.11.1], which can be iden-

tified with the category of right AM -modules in the category of left B-modules in C, the latter of which is

identified with Vec via the functor FV . Thus, FunC(M0,MK,α(L,ψ)) is identified with the category of right

FV (AM )-modules in Vec as desired. �

Remark 5.19. Suppose that P is a simple object in Modk(FV (AM )) with corresponding simple object P ′

of Irr(FunC(M0,MK,α(L,ψ))) as in the lemma above. Then,

dimk P =

√
dimk FV (AM )

FPdim C FPdim P ′.

Indeed, consider the action of C∗
M0

on FunC(M0,MK,α(L,ψ)) via precomposition. Here, C∗
M0

is the repre-

sentation category of the dual Hopf algebra H(N, γ)∗; see Example 5.14. Now for any H∗-module X , we

have that

dimk(X ⊗ P ) = (dimkX)(dimk P ) = (FPdim X)(dimk P ).

This means that there exists a positive number λ such that dimk P = λ(FPdim P ′), as a function satisfying

the displayed equality above is a Frobenius-Perron eigenvector and thus is unique up to scaling. We get the

value λ taking the sum of squares of the last equation.
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5.3. Rep(H8)-tensor algebras. We now consider Example 5.3 in more detail. Consider the groups

N = 〈x, y | x2 = y2 = e, xy = yx〉 and K = 〈z | z2 = e〉 from Example 4.29 with the N -action on K

trivial, and the K-action on N given by z ·x = y and z · y = x. Thus, G = N ⋊K ∼= D8. Taking the cocycle

ω of (4.32), we obtain the group-theoretical fusion category C(G,ω,K, 1).
To obtain a Hopf algebra, we construct a fiber functor as in Section 5.2 by letting M0 = MK,1(N,µ)

with µ the nontrivial 2-cocycle on N of (4.21). Indeed, dµ = ω|N as

dµ(xi1yj1 , xi2yj2 , xi3yj3) = µ(xi1yj1 , xi2+i3yj2+j3) µ(xi2yj2 , xi3yj3)

µ−1(xi1+i2yj1+j2 , xi3yj3) µ−1(xi1yj1 , xi2yj2)

= (−1)j1(i2+i3)+j2i3−(j1+j2)i3−j1i2 = 1,

and ω|N is trivial. The resulting Hopf algebra is H(N,µ) = H8, the unique semisimple, noncommutative,

noncocommutative Hopf algebra of dimension 8 (up to isomorphism), and we have C(G,ω,K, 1) ⊗∼ Rep(H8).

See [Mas95, Theorem 2.13] or [Rad12, Section 16.3] for the presentation of H8 below.

Definition 5.20. [Kac68] The Kac-Paljutkin Hopf algebra H8 is defined by generators x, y, z subject to

relations

x2 = 1, y2 = 1, xy = yx, zx = yz, zy = xz, z2 = 1
2 (1 + x+ y − xy),

where x and y are grouplike elements, and

∆(z) = 1
2 (1 ⊗ 1 + y ⊗ 1 + 1⊗ x− y ⊗ x)(z ⊗ z), ǫ(z) = 1, S(z) = z.

Recall that H8 has 5 isomorphism classes of irreducible representations, which have the following explicit

descriptions (see, for example, [Rad12, p. 530]):

(5.21)
W0 := k

2, x · (v1, v2) = (−v1, v2), y · (v1, v2) = (v1,−v2), z · (v1, v2) = (v2, v1);

W1 := k1,1,1; W2 := k1,1,−1; W3 := k−1,−1,
√
−1; W4 := k−1,−1,−

√
−1;

where kλ,λ′,λ′′ denotes the 1-dimensional representation with x-, y,- z-action being scalar multiplication by

λ, λ′, λ′′, respectively.

Lemma 5.22. Via the equivalence C(G,ω,K, 1) ⊗∼ Rep(H8), each simple object Xi ∈ C(G,ω,K, 1) from

Example 5.3 corresponds to Wi ∈ Irr(Rep(H8)) in (5.21).

Proof. It is clear that the 2-dimensional objects should be in correspondence, soW0 corresponds to X0. Also

the unit object is W1 in one realization and X1 in the other, so they correspond. Now, W3, W4 are permuted

by complex conjugation, but X2 is clearly fixed by conjugation, soW3, W4 must correspond to X3, X4. Note

that whether W3 corresponds to X3 or X4 depends on the choice of the 3-cocycle ω (whether we use
√
−1

or −
√
−1 in its formula), but we make a choice for ω so that W3 corresponds to X3 and W4 to X4. �

We now classify indecomposable semisimple algebras in Rep(H8) using the general theory developed

above. We start by proving that the following list of semisimple H8-module algebras is a classification, up to

Morita equivalence, then afterwards explain how to obtain them from the tensor categorical approach. The

decomposition of each algebra as an H8-module is noted for future reference; these can be directly computed.

(i) S = k with x, y, z acting as the identity, so S ∼=W1.

(ii) S = k
2 with x, y acting as the identity and z · (a, b) = (b, a) for all (a, b) ∈ k

2, so S ∼=W1 ⊕W2.

(iii) S = k
2 with

x · (a, b) = y · (a, b) = (b, a), z · (a, b) = (aθ + bθ̄, bθ + aθ̄)

where θ = 1
2 (1 + i) and θ̄ = 1

2 (1 − i), so S ∼=W1 ⊕W3.



TENSOR ALGEBRAS IN FINITE TENSOR CATEGORIES 23

(iv) S = k
4 with

x · (a, b, c, d) = (a, b, d, c), y · (a, b, c, d) = (b, a, c, d), z · (a, b, c, d) = (c, d, a, b),

so S ∼=W0 ⊕W1 ⊕W2.

(v) S = k
4 with

x · (a, b, c, d) = y · (a, b, c, d) = (b, a, d, c), z · (a, b, c, d) = (cθ + dθ̄, dθ + cθ̄, aθ + bθ̄, bθ + aθ̄)

where θ = 1
2 (1 + i) and θ̄ = 1

2 (1 − i), as above, so S ∼=W1 ⊕W2 ⊕W3 ⊕W4.

(vi) S = H∗
8 with action (h ·f)(t) = f(S(h)t) for h, t ∈ H8 and f ∈ H∗

8 , so S
∼=W⊕2

0 ⊕W1⊕W2⊕W3⊕W4.

Theorem 5.23. The algebras (i)–(vi) above are pairwise Morita inequivalent in the tensor category Rep(H8),

and every indecomposable semisimple algebra in Rep(H8) is Morita equivalent to one on this list.

Proof. Using Theorem 3.11, Example 4.29, and Proposition 5.6, we see that there are 6 equivalence classes of

indecomposable semisimple H8-module algebras (which serve as base algebras of Rep(H8)-tensor algebras).

Since we have produced a list of 6 such algebras, it is enough to show that the algebras in the list are pairwise

Morita inequivalent.

Note that if two algebras S1 and S2 are Morita equivalent as H-module algebras, then they are also Morita

equivalent as H ′-module algebras, for any Hopf subalgebra H ′ of H . In particular, by taking H ′ = k, we

have by the Artin-Wedderburn theorem that it suffices to verify that the algebras S in (ii) and (iii), and that

the algebras S in (iv) and (v), are Morita inequivalent. For the former, take H ′ to be the Hopf subalgebra

〈x〉 generated by x; observe that S in (ii) is decomposable in Rep(〈x〉), whereas S in (iii) is not. For the

latter, observe that S in (iv) has three indecomposable summands in Rep(〈x〉), whereas S in (v) only has

two indecomposable summands. So, the result holds. �

The following example illustrates our classification.

Example 5.24. Consider the adjoint action of H8 on itself, recalling the algebra decomposition H8
∼=

k
4 ⊕Mat2(k). The ideal S = Mat2(k) ⊂ H8 is H8-stable with action

x ·
[
a b

c d

]
=

[
a −b
−c d

]
, y ·

[
a b

c d

]
=

[
a −b
−c d

]
, z ·

[
a b

c d

]
=

[
d c

−b a

]
,

and is an indecomposable semisimple algebra in Rep(H8) which is not on our list above. However, using

Example 2.5 we see it is Morita equivalent to the algebra in (i) above via Mat2(k) ∼= W0 ⊗W ∗
0 in Rep(H8),

where W0 is as in (5.21).

Remark 5.25. In the algebra (iii) we see that the trace of the action of z is 2θ = 1 + i. Therefore if we

also consider the H8-module algebra obtained by switching the roles of θ, θ̄ (complex conjugation), it has

the same dimension as the algebra in (iii), but they are not isomorphic as H8-module algebras. They are

Morita equivalent, however, by the same reasoning as in the proof of Theorem 5.23.

Recall from Example 5.7 that the indecomposable semisimple module categories over (and thus indecom-

posable algebras in) C(G,ω,K, 1) are in bijection with the subgroups L ≤ G of (4.33). We now show how to

match these subgroups with the algebras (i)–(vi).

Proposition 5.26. The following correspondence matches the indecomposable semisimple algebras in

C(G,ω,K, 1) and indecomposable semisimple H8-algebras. That is, for each pairing L ↔ S indicated be-

low, we have FV (AM ) ∼= S in Rep(H8), where M ∈ MK,1(L, 1) is any simple object.

(5.27) 〈e〉 ↔ (ii) 〈x〉 ↔ (iv) 〈xy〉 ↔ (v) 〈z〉 ↔ (i) 〈x, y〉 ↔ (vi) 〈xy, z〉 ↔ (iii)
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Proof. The multiplicity of each irreducible representation of H8 in the algebras (i)–(vi) has already been de-

scribed above. We will make the match by computing the multiplicity mX(M) of each X ∈ Irr(C(G,ω,K, α))
in AM using (5.16), and comparing these values using Lemma 5.22. In each case, take M =M(KeL, ρK∩L

triv ).

For L = 〈e〉, we have that K ∩L = 〈e〉. Moreover X0⊗M is supported on KxL∪KyL; so, mX0
(M) = 0.

For i = 1, 2, we have that Xi ⊗M is supported on KeL; so, mXi(M) = 1. Lastly, for j = 3, 4, we get that

Xj ⊗M is supported on KxyL; so, mXj (M) = 0. Therefore, AM = X1 ⊕X2 as an object in C in this case,

thus it matches with (ii) where S ∼=W1 ⊕W2 in Rep(H8).

On the other hand, take L = 〈xy, z〉 and we get K ∩L = K. Again, X0⊗M is supported on KxL∪KyL;
so, mX0

(M) = 0. For i = 1, 2, 3, 4, we have that Xi⊗M is supported on KeL, but the 2-cocycle on K ∩L is

trivial if and only if i = 1, 3 here. Therefore, AM = X1 ⊕X3 as an object in C in this case, thus it matches

with (iii) where S ∼=W1 ⊕W3 in Rep(H8).

The 4 remaining matchings of the algebras S with the subgroups L are computed similarly. �

Remark 5.28. The H8-module algebras (i)–(vi) were originally obtained by a variety of ad hoc methods

including hand computation and Maple code, and we were able to match them with the pairs (L,ψ) arising

in Proposition 4.3 after the fact. We note that all the algebras in our list occur as coideal subalgebras of H∗
8

(see the lattice diagram in [DT11, Figure 1]). In that diagram, the only Morita equivalences as H8-module

algebras are between I1 and I2, and between J2 and J4.

For a semisimple Hopf algebraH in general, an indecomposable semisimple H-module algebra S is isomor-

phic as anH-module algebra to a coideal subalgebra ofH∗ if and only if S has a 1-dimensional representation,

which is why all 6 algebras for H8 come as coideal subalgebras. However, different coideal subalgebras can

be Morita equivalent and even isomorphic as H-module algebras. In fact, every 1-dimensional representation

of such an algebra S gives a realization of S as a coideal subalgebra, by composing the coaction map with

this representation; such coideal subalgebras may or may not be the same for different 1-dimensional repre-

sentations. We leave this observation as a starting point for further investigation; cf. [EW14, Lemma 3.9].

Regarding indecomposable bimodules, Example 4.29 yields examples of such bimodules via Theorem 2.3

and the equivalence Rep(H8)
⊗∼ C(G,ω,K, 1). While we have explicit formulas in examples for actions of

H8 on some bimodules, we leave the systematic study of this to future work.

6. Path algebras in group-theoretical fusion categories

In this section, we return to one of the original motivations of this work and classify path algebras that

admit a grade-preserving action of a semisimple Hopf algebra H . Here, we restrict our attention to such H

whose representation category is group-theoretical [Definition 5.1].

For now, let us fix C = (C, F ) a finite tensor category equipped with a fiber functor F : C → Vec, and

begin by defining below a C-path algebra, which is a special type of C-tensor algebra [Definition 3.2].

Definition 6.1. We say that a C-tensor algebra TS(E) is a C-path algebra if F (S) is a commutative k-algebra.

In this case, we say that S is k-commutative, for short.

The notion of whether an exact algebra S in C is k-commutative depends on its Morita equivalence class

in C, but it does not depend on the choice of F : indeed, we have dimk F (S) = FPdimVec F (S) = FPdimC S

[EGNO15, Proposition 4.5.7], and computing this dimension is key to checking this property for a given

algebra. The terminology is motivated as follows.

Remark 6.2. If the base algebra S of TS(E) is k-commutative, then F (S) is a semisimple, finite-dimensional

commutative k-algebra, and thus, is a product of fields. In this case, F (S) can be realized as the path algebra

kQ0 on a finite set of vertices Q0. By choosing an appropriate basis Q1 of the generating bimodule E, we can

construct a quiver Q = (Q0, Q1) whose path algebra inherits a Hopf action of H := End(F ) and TS(E) ∼= kQ

as H-module algebras.
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For C = C(G,ω,K, α) a group-theoretical fusion category equipped with a fiber functor, a condition when

a C-tensor algebra is a C-path algebra is established in Corollary 6.10 in Section 6.1. This is achieved by

studying when the algebras AM from Lemma 5.15 are k-commutative [Proposition 6.8]. Then, the special

case when the groupG has an exact factorization is examined in Section 6.2; we end that section by continuing

Example 5.3 and the work of Section 5.3 for Rep(H8).

6.1. Indecomposable k-commutative algebras in C(G,ω,K, α). We continue as in Notation 5.11 to fix

a group-theoretical fusion category C := C(G,ω,K, α) equipped with fiber functor FV , so that it is tensor

equivalent to Rep(H(N, γ)). We also fix AM for M =M(g, ρ) ∈ M := MK,α(L,ψ) as in Lemma 5.15.

The results of this section require use of Frobenius-Perron dimension, which can be reviewed in [EGNO15,

Chapters 3 and 6]. Recall that the regular objects of C [EGNO15, Definition 6.1.6] and M are

(6.3) RC =
∑

X∈Irr(C)
(FPdimC X)X, RM =

∑

Z∈Irr(M)

(FPdimM Z)Z,

where we use the canonical normalization to define FPdimM, meaning FPdimMRM = FPdimC RC [EGNO15,

Exercise 7.16.8]. Note that these regular objects lie in the Grothendieck groups of C and M, respectively,

i.e. they are virtual objects rather than actual ones (e.g. FPdimM may not be an integer so these are not

well defined objects in general).

Lemma 6.4. Let Mi =M(gi, ρi) be the simple objects of M. Then we have for all i that

(6.5) FPdimMMi =

√
|K| |L|

|K ∩ giLg−1
i | dimk ρi.

Proof. There exists a positive number λ such that FPdimMMi = λ(dimkMi) for all i, since both FPdimMMi

and dimkMi are Frobenius-Perron eigenvectors of multiplication by X ∈ C, and such an eigenvector is unique

up to scaling. Thus,

FPdimMMi = λ
|K| |L|

|K ∩ giLg−1
i | dimk ρi.

So, summing the squares of these dimensions over all i, we get |G| = λ2 |K| |L| |G|, which yields

λ = (|K| |L|)−1/2. Thus, FPdimMMi = ((|K||L|)1/2/|K ∩ giLg−1
i |) dim ρi. �

Lemma 6.6. For the object M above, we have that dimk FV (AM ) = (FPdimMM)2.

Proof. We have that RC ⊗M is an eigenvector in Gr(M) for the left action of any X ∈ C, thus it must be

a scalar multiple of RM [ENO05, Proposition 8.5]. Since FPdimM(RC ⊗M) = (FPdimC RC)(FPdimMM),

the canonical normalization condition above gives RC ⊗M = (FPdimMM)RM. From (5.17) we see that

(5.16) can be rewritten as dimk FV (AM ) = dimk HomC(RC , AM ), then (5.13) gives the first equality of

dimk FV (AM ) = dimk HomM(RC ⊗M,M) = dimk HomM((FPdimMM)RM,M) = (FPdimMM)2. �

Next, we establish necessary and sufficient conditions for AM to be k-commutative.

Lemma 6.7. The rank of FunC(M0,MK,α(L,ψ)) is less than or equal to dimk FV (AM ), with equality if and

only if AM is k-commutative.

Proof. From Lemma 5.18, the simple objects of FunC(M0,MK,α(L,ψ)) are in bijection with simple FV (AM )-

modules. Since the k-algebra FV (AM ) is semisimple, the statement follows from the Artin-Wedderburn

theorem, recalling that a semisimple k-algebra is commutative if and only if each of its simple modules is

1-dimensional. �
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Proposition 6.8. Let mγ,ψ(h) denote the number of irreducible projective representations of the group

N ∩ hLh−1 with Schur multiplier γψ−1
h from (4.11). Then we have that

(6.9)
∑

h∈N\G/L
mγ,ψ(h) ≤ |K| |L|

|K ∩ gLg−1|2 (dim ρ)2.

This is an equality if and only if the algebra AM in C is k-commutative.

Proof. By Proposition 5.6, the left hand side is equal to the rank of FunC(M0,MK,α(L,ψ)). By Lemmas 6.4

and 6.6, the right hand side is equal to dimk FV (AM ), so this proposition is equivalent to Lemma 6.7. �

Now we can determine when a C(G,ω,K, α)-tensor algebra is equivalent to a C(G,ω,K, α)-path algebra

in the sense of Definition 6.1.

Corollary 6.10. Take C := C(G,ω,K, α) a group-theoretical fusion category equipped with a fiber functor,

and let TS(E) be a C-tensor algebra. Consider the decomposition of S into a direct sum of indecomposable

semisimple algebras Ai in C. Then, TS(E) is equivalent to a C-path algebra if and only if each Ai is Morita

equivalent to an algebra of the form AM(g,ρ) for which equality holds in (6.9). �

6.2. Exact factorization case. Keep the setting of the previous subsection. Below we also assume that

G = KN is an exact factorization, that is, we have |G| = |K| |N |.

Lemma 6.11. Suppose that G = KN is an exact factorization. Then, for any g ∈ G and any subgroup L

of G, we get
∑

h∈N\G/L
|N ∩ hLh−1| ≤ |K| |L|

|K ∩ gLg−1|2 .

Moreover, this is an equality if and only if |N ∩ hLh−1| · |K ∩ gLg−1| = |L| for each h ∈ G.

Proof. We can rewrite the inequality in question as

∑

h∈G

|N ∩ hLh−1|2
|N | · |L| ≤ |K| |L|

|K ∩ gLg−1|2

or ∑

h∈G
|N ∩ hLh−1|2 · |K ∩ gLg−1|2 ≤ |G| |L|2.

So, it suffices to show that for each h ∈ G we have |N ∩ hLh−1| · |K ∩ gLg−1| ≤ |L|. But this holds because
N ∩hLh−1 = h−1Nh∩L, and K∩gLg−1 = g−1Kg∩L, and G = (g−1Kg)(h−1Nh) is an exact factorization.

We also get that the inequality in the claim is an equality if and only if |N ∩ hLh−1| · |K ∩ gLg−1| = |L|
for each h ∈ G. �

Proposition 6.12. Suppose that G = KN is an exact factorization. Then an algebra AM(g,ρ) as in Lemma

5.15 is k-commutative if and only if the following conditions are simultaneously satisfied:

(a) dim ρ = 1 (hence, αψ−1
g is a coboundary on K ∩ gLg−1);

(b) the group N ∩ hLh−1 is abelian for all h ∈ G, and γψ−1
h is a coboundary on this group; and

(c) |N ∩ hLh−1| · |K ∩ gLg−1| = |L| for each h ∈ G.

Proof. Recall from Proposition 6.8 that mγ,ψ(h) denotes the number of irreducible projective representa-

tions of the group N ∩ hLh−1 with Schur multiplier γψ−1
h . So, using the Artin-Wedderburn theorem and

Lemma 6.11 we have
∑

h∈N\G/L
mγ,ψ(h) ≤

∑

h∈N\G/L
|N ∩ hLh−1| ≤ |K| |L|

|K ∩ gLg−1|2 ≤ |K| |L|
|K ∩ gLg−1|2 (dim ρ)2.
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Moreover, we know by Proposition 6.8 that AM(g,ρ) is k-commutative if and only if all three inequalities

are equalities. Now the first and third inequalities are equalities if and only if, respectively, conditions (b)

and (a) hold. By Lemma 6.11 the second inequality is an equality if and only if condition (c) holds. �

Now we finish Example 5.3 and the work in Section 5.3 below.

Example 6.13. Take G = D8, the exact factorization KN for K = Z2 = 〈z〉 and N = Z2 × Z2 = 〈x, y〉,
and C(D8, ω,Z2, 1)

⊗∼ Rep(H8). For each MK,1(L, 1) ∈ Irr(Mod(C)), we choose M = M(e, ρK∩L
triv ) as in

the proof of Proposition 5.26, and we study the k-commutativity of the indecomposable semisimple algebra

AM ∈ C via Proposition 6.12 as follows. Note that by our choice of M we always have that condition (a) of

Proposition 6.12 holds.

For L = 〈e〉, we have that K ∩L = 〈e〉 and that N ∩hLh−1 = 〈e〉 for all h ∈ G. Therefore, conditions (b)

and (c) of Proposition 6.12 hold, and AM is k-commutative in this case.

For L = 〈x〉 or 〈xy〉, we have that K ∩ L = 〈e〉 and that |N ∩ hLh−1| = 2 for all h ∈ G. So, Proposi-

tion 6.12(b,c) hold, and AM is k-commutative in these cases.

For L = 〈z〉, we have that K ∩L = 〈z〉 and that |N ∩hLh−1| = 1 for all h ∈ G. So, AM is k-commutative.

For L = 〈x, y〉, we have that K ∩ L = 〈e〉 and that N ∩ hLh−1 = N for all h ∈ G. Take h = e, and recall

from Section 5.3 that γ = µ of (4.21). Since ω|N is trivial, according to (4.11) we get

µµ−1
e (xi1yj1 , xi2yj2) = µ(xi1yj1 , xi2yj2) · µ(x−i2y−j2 , x−i1y−j1) = (−1)j1i2+i1j2 ,

which is a 2-cocycle on N cohomologous to µ. Therefore, µµ−1
e is not a coboundary on N . So AM is not

k-commutative in this case, as Proposition 6.12(b) fails.

For L = 〈xy, z〉, we have thatK∩L = 〈z〉 and that |N∩hLh−1| = 2 for all h ∈ G. So, Proposition 6.12(b,c)

hold, and AM is k-commutative in this case.

A complete count of the indecomposable bimodules for each pair of algebras above, and thus classification

of minimal faithful Rep(H8)-path algebras, will be carried out in future work.
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