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ARTICLE

Sequence-to-function deep learning frameworks
for engineered riboregulators
Jacqueline A. Valeri 1,2,5, Katherine M. Collins1,3,5, Pradeep Ramesh1,5, Miguel A. Alcantar 2,

Bianca A. Lepe1,2, Timothy K. Lu2,4,6✉ & Diogo M. Camacho 1,6✉

While synthetic biology has revolutionized our approaches to medicine, agriculture, and

energy, the design of completely novel biological circuit components beyond naturally-

derived templates remains challenging due to poorly understood design rules. Toehold

switches, which are programmable nucleic acid sensors, face an analogous design bottleneck;

our limited understanding of how sequence impacts functionality often necessitates expen-

sive, time-consuming screens to identify effective switches. Here, we introduce Sequence-

based Toehold Optimization and Redesign Model (STORM) and Nucleic-Acid Speech

(NuSpeak), two orthogonal and synergistic deep learning architectures to characterize and

optimize toeholds. Applying techniques from computer vision and natural language proces-

sing, we ‘un-box’ our models using convolutional filters, attention maps, and in silico

mutagenesis. Through transfer-learning, we redesign sub-optimal toehold sensors, even with

sparse training data, experimentally validating their improved performance. This work pro-

vides sequence-to-function deep learning frameworks for toehold selection and design,

augmenting our ability to construct potent biological circuit components and precision

diagnostics.
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Advances in synthetic biology have shifted paradigms in
biotechnology by drawing inspiration from nature. While
researchers have successfully isolated and adapted tem-

plates from naturally occurring circuit parts—such as inducible
promoters, terminators, and riboswitches—forward-engineering
of components remains challenging1. The workflow to develop a
single biological circuit may require weeks of screening and fine-
tuning in order to perform a desired function. As such, there is a
strong need for in silico screening of circuit parts in order to ease
integration of both naturally occurring and redesigned synthetic
components into engineered biological systems.

In order to address the complexity of prediction and design of
biological circuit parts, computational tools can aid in modeling
and redesigning nucleic acid sensors, such as riboswitches. Since
the discovery of naturally occurring riboregulators—RNA mole-
cules that alter their translation rate in the presence of small
molecules or nucleic acids via changes in secondary structure2,3—
synthetic biologists have co-opted these circuit components for a
variety of uses, from synthetic gene circuit construction4,5 to gene
regulation6,7.

The toehold switch, a particularly versatile synthetic ribor-
egulator, is able to detect and respond to the presence of RNA
molecules via linear–linear hybridization interactions8. The
anatomy of a typical toehold switch consists of an unstructured
RNA strand, followed by a hairpin that sequesters the
Shine–Dalgarno sequence such that a downstream protein coding
sequence is not translated when the switch is in the OFF state
(Fig. 1a, Supplementary Table S1). The toehold can be flexibly
programmed such that the unstructured switch RNA and
ascending stem of the hairpin (positions 1–30) are com-
plementary to an arbitrary trigger 30-nucleotide RNA sequence—
which upon hybridization to the switch subsequently melts the
hairpin (toehold ON state), thereby exposing the Shine–Dalgarno
sequence to the ribosome, which then initiates translation of the
sequestered coding sequence. This fundamentally inducible nat-
ure of toehold switches has led to their successful use in both low-
cost, freeze-dried, paper-based diagnostics9–11, as well as multi-
plexable components in complex genetic circuits with low
crosstalk12,13.

Although toehold switches have become an effective and
modular component of the synthetic biology toolkit, broad
understanding of switch design has been limited by the small
number of available toehold switches and the lack of effective
design rules for achieving optimal performance. Sequence-based
computational tools, which take into account thermodynamic
equilibria and hybridization energies, have been developed to
predict RNA secondary structure prior to experimental valida-
tion14–17. However, when applied to multi-state toehold switches,
these tools can lack predictive power and require time-intensive
experimental screening, with correlations as low as 0.22 between
predicted and measured efficacy17. Accordingly, an improved and
interpretable prediction framework would rapidly expand the
applicability of these versatile riboregulators for biological
applications.

To improve toehold switch design and prediction, we took
inspiration from the broader field of machine learning. Machine
learning approaches have been applied successfully to systems
and synthetic biology1,18 and in motif finding and DNA sequence
prediction tasks19–21, among many other applications in biology
and medicine. Today, most commonly used deep learning algo-
rithms for synthetic biology are broadly derived from either
computer vision or natural language processing (NLP) based
approaches22. Convolutional neural nets (CNNs)23 comprise the
backbone of most computer vision-based algorithms and excel at
elucidating important sequence motifs in biological sequences, as
convolutional layers offer a high level of interpretability. When

CNNs are applied to images, consecutive convolutional layers
learn increasingly abstract features; for example, in facial recog-
nition tasks, edges and curves are learned in the first convolu-
tional layer, followed by eyes, noses, and mouths, accumulating
higher-order features through the layers23. As secondary structure
is an important feature of toehold switches, a convolutional
architecture may be able to function as a motif detector and learn
additive features of motifs or partial motifs of the linear RNA
sequence.

To learn nonlocal interactions and overcome potential limita-
tions of CNNs applied to biologically relevant sequences, lan-
guage models can be built using recurrent neural nets (RNNs)24,
which can consider the entire sequence as a whole instead of fixed
window lengths as in CNNs25. These RNNs can learn long-range
dependencies amongst sequences and sequence motifs in an
unsupervised manner by employing a serially connected chain of
long short-term memory neurons (LSTMs)26, which learn a
contextual representation of words in a sequence. RNNs, like
other deep learning models, can be paired with natural language
processing techniques such as tokenization and word embed-
dings. As a result, a composite RNN-language model (LM),
herein referred to as the language model, can learn the broader
“grammar” dictating the ordering of these words. Since language
models have achieved state-of-the-art performance on human
language tasks27, similar architectures may extend to biological
language families such as RNA and DNA. Analogous to Latin
being the parent language for all Indo-European romance lan-
guages, RNA architectures such as toeholds, riboswitches, and
CRISPR gRNAs, may be able to be thought of as distinct
descendant-languages that lie within the parent RNA language
family.

In this work, we construct two complementary yet orthogonal
deep learning models to uncover design rules in toeholds given
that both frameworks have unique advantages for sequence
modeling and machine learning-assisted sequence design. In
addition, the two trained models lend themselves to a “con-
sensus” approach, where we can ensure any biological meaning
derived from our models are not artifacts of a particular archi-
tecture. Influenced by work indicating that hybrid CNN/RNN
architectures can boost model accuracy for biological problems
given sufficient training data28, we develop an integrated pipeline
with both models to exploit the “wisdom of crowds”29. Given the
large amounts of training data required by common deep learn-
ing approaches, we partner with Angenent-Mari et al.30 to design
and generate a dataset of toeholds that are complementary to
human genomic elements, RNA viruses, and random sequences.
The toeholds are experimentally characterized with a coupled
flow-cytometry and deep-sequencing pipeline, inspired by pre-
vious flow-seq methodologies31. While Angenent-Mari et al.30

evaluate a variety of deep learning architectures trained on
thermodynamic parameters, raw nucleic acid sequences, and
base-pair complementarity matrices, we extend this investigation
to explain, adapt, and tune the predictions made by two
sequence-to-function models, a traditional CNN-based regressor
and a language model-based classifier (Fig. 1b). Using previously
established explainable AI techniques, we examine motifs or
partial motifs detected by the convolutional filters as well as
positional importance of nucleotides. We then provide examples
of utilizing our deep neural networks synergistically to char-
acterize toeholds that sense pathogenic genomes. Finally, we
extend both models to rationally re-engineer poorly-performing
toeholds, creating the NLP-based, nucleotide-centric language
model Nucleic Acid Speech (NuSpeak) and a CNN-based
Sequence-based Toehold Optimization and Redesign Model
(STORM). These models achieve divergent purposes, as they
optimize both sensors for pathogens and toeholds as synthetic
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circuit components, respectively. Sequence-to-function frame-
works such as the ones proposed here enable researchers to
rapidly cycle through many possible design choices and select
circuitries with optimal performance, while elucidating under-
lying design principles for riboregulators. Application of these
frameworks to other training data and training tasks is both direct
and desirable, as methods such as transfer learning allow for
translation between different experimental set-ups. Intersecting
the cutting-edge features and techniques of both deep learning
and synthetic biology holds important implications for human
health and biotechnology.

Results
Nucleotide over-representation in good and poor toeholds. A
dataset of 244,000 toehold switches, including sequences tiled
from viruses and the human genome as well as random sequences
(see “Methods”), was designed jointly with Angenent-Mari

et al.30, with 91,534 switches meeting well-defined quality con-
trol criteria after experimental characterization. We conducted a
traditional bioinformatics over-representation investigation and
started by splitting sequences into the top 25th and bottom 75th
percentile based on the experimental ON/OFF values. We then
visualized each average position weight matrix as sequence logos,
normalized with respect to the background nucleotide probability
distribution (Fig. 1c, d). Stratification into high- and low-
performing sequences shows differential nucleotide composition
immediately before the SD sequence, with uracil appearing over-
represented and guanine under-represented in good toeholds (top
25%) and the converse true for poorly-performing toeholds
(bottom 75%). An enrichment for NUA in positions 22–24 is
highlighted in the top-performing logo with 10.3% of the top 25%
of sequences containing the NUA motif. This triplet corresponds
to the three-nucleotide bulge directly opposite from the AUG
start codon, suggesting that high-performing sequences may have
an NUA at this bulge to prevent hybridization to the start codon
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Fig. 1 Deep learning frameworks are needed to accurately stratify toehold switches. a Toehold switches modify their secondary structure in response to
the presence of a complementary RNA molecule known as a trigger. In absence of the trigger, the Shine-Dalgarno sequence, or ribosome binding site
(RBS), remains inaccessible and the reporter protein is not translated (OFF state). Upon binding of the trigger to the switch, the hairpin melts, allowing
ribosome recruitment to the Shine–Dalgarno sequence and subsequent translation of the downstream reporter GFP protein (ON state). A modified ON
state switch was built for experimental testing so that one molecule could be tested with trigger and switch fused together. b Two deep learning
frameworks employing different strategies from computer vision and natural language processing were used to classify and predict toehold switch
performance. c Sequence logos were calculated for the top 25% (N= 22,884) and d bottom 75% (N= 68,650) of sequences according to the
experimental ON/OFF ratios. Weight corresponds to the log2 of each nucleotide probability normalized by the background frequency of that nucleotide in
the set of all experimentally tested toeholds. Highlight indicates the motif found in positions 22–24 (Supplementary Fig. S1). e Chaos-game-representations
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(Supplementary Fig. S1). Interestingly, 38.6% of top sequences
contain a U in position 22 and 35.3% of top sequences contain an
A in position 23, implying that single nucleotides belonging to the
NUA motif are more prevalent than the complete motif. In
addition, positions 15, 18, and 21 show over- and under-
representation of adenine in bad and good toeholds respectively.
These positions are directly opposite in the toehold stem to the
first nucleotides of the only three in-frame coding triplets of the
descending stem. This suggests that U in positions 51, 54, and 57
is detrimental to toehold performance, possibly due to the fact
that the N-terminus of the reporter protein cannot tolerate an in-
frame stop codon (i.e., UAA, UGA), which would terminate
translation of the reporter protein.

To further understand how changes to the coding part of the
sequence (positions 51–59) affect toehold performance, we
conducted a broader analysis of the in-frame amino acids
(Supplementary Fig. S2) and as expected found that in-frame stop
codons occurred less often at the N-terminus of high-performing
sequences. In addition, though an unstructured linker region
separates the switch from the reporter gene, toehold sequences
appear sensitive to changes to in-frame amino acids at the N-
terminus of the protein. Small hydrophobic amino acids such as
valine, alanine, and glycine appear more often in the N-terminus of
high-performing sequences than low-performing ones; top
sequences also appear to contain less proline at the N-terminus,
suggesting a slight preference for amino acids lacking a secondary
amine. However, due to the nature of the study, it is difficult to
disentangle whether the observed enrichments for certain amino
acids are due to structural changes at the RNA level or protein level,
or perhaps due to differences in tRNA abundance.

To elucidate any macroscopic sequence patterns between good
and bad toeholds, we utilized chaos-game-representations (CGR)
which provide an informative and lossless encoding scheme by
which any nucleic-acid sequence can be fully represented with
just three numbers (length, XCGR, and YCGR) (Fig. 1e, f). Since all
toeholds within our dataset have the same length of 59
nucleotides, a two-dimensional CGR vector, consisting only of
XCGR, and YCGR, is sufficient to represent any given toehold
sequence. Furthermore, since the trigger-binding region (first 30
nucleotides) is the principal variable region across all the
toeholds, we computed its two-dimensional CGR coordinates,
and observed an enrichment of A-rich codons amongst good
performers (Fig. 1e).

Biophysical properties are not predictive for top switches. The
large size of the dataset allowed us to conduct an unbiased eva-
luation of toeholds’ biophysical properties suggested by other
studies14,17. As previous reports have indicated that GC content is
important for the strength of the ON and OFF state stabilities8,
we compared the GC content distributions for top-performing
sequences to that of all sequences (Supplementary Fig. S3A). Our
results suggest that successful toeholds may have a range of
acceptable GC content between 20 and 60%, implying a necessity
for some A–U base pairing in the switch.

In addition, multiple secondary structure prediction tools rely
on thermodynamic modeling14–17; for example, the NUPACK
software package calculates the equilibrium Gibbs free energy
values for many possible secondary structures based on a
provided RNA sequence, and reports to the user the most likely
structure based on a minimum free energy (MFE) determina-
tion14. Because MFE is thought to be a predictive metric8,14,16,17,
we assessed the MFE distribution in top-performing sequences
against that of all sequences (Supplementary Fig. S3B). High-
performing sequences had a statistically significantly higher MFE
distribution than the set of all sequences, possibly due to an over-

stable hairpin that does not readily melt in the presence of the
trigger. Although top sequences exhibit statistically significant
shifts in both GC content and MFE distributions, these properties
lack sufficient predictive power due to their broad range of
acceptable values.

Interpretability of deep learning framework predictions. As no
single or combinations of biophysical properties were found to be
sufficiently predictive of switch performance, deep learning
sequence-to-function models using both CNNs and RNNs were
built to predict toehold behavior. Given the recent advancements
in both accuracy and accessibility of deep learning1,32, a CNN23

was constructed to take RNA sequences as inputs, employing two
convolutional layers to identify plausible motifs and partial motifs
in the input sequences33 (Fig. 1b). Following the convolutional
layers, the model employs a multi-layer perceptron (MLP) with
three dense layers, where every node in a given layer is connected
to every node in the previous layer, to synthesize the features
from the convolutions to output an ON and OFF prediction for
each toehold sequence (see “Methods”).

Given the vast number of weights and nonlinear functions that
form the backbone of neural networks, it can be challenging to
deduce why a model made the predictions it did32. While recent
work such as soft explainable decision trees34 have enabled
researchers to look inside this “black-box” by using a neural
network to train a decision tree, we chose to visualize weights
and activations of our trained model directly35. Taking inspira-
tion from work in the fields of image recognition and geno-
mics23,36–38, we “un-boxed” the first convolutional layer to
visualize the features our model deemed important by interpret-
ing the filter weights learned from input sequences as sequence
logos (Fig. 2a). To understand trends in convolutional filters, we
trained the CNN 20 times and explored the frequencies of three-
mers in the resulting ensemble of filters (Fig. 2b). When
compared to the expected value under a uniform distribution,
the “CCC” three-mer occurs almost 2.5× more often than
expected, suggesting the model may learn this motif for improved
prediction. Additionally, the trained model learns to ignore
sequences over-represented in the experimental toeholds—AGA
and GAG, for example—that are part of the SD sequence and
thereby conserved across all toeholds, indicating that the CNN
learns to discern which positions are significant during the
training process.

Similarly, we also constructed an encoder-decoder architecture
to learn the language of toehold sequences, where each k-mer is
treated as a “word” or “token” and each toehold sequence is a
“sentence”. The LM encoder takes an RNA sequence that has
been tokenized, or split into k-mers, as its input, and passes the
tokens through an embedding layer, which maps each k-mer to a
vector representation. The vector is then passed through a four-
layer quasi-recurrent neural network (QRNN)39 to return a 400-
dimensional vector. In this LM pre-training step40, the encoder
learns a meaningful, context-dependent representation for each
unique token found within the input corpus, which can then be
extended with a linear classification layer to predict if a given
toehold is good or bad. When augmented with a decoder that
maps vectors back into tokens, the complete LM can generate
meaningful sequences of arbitrary length within the language
space.

In order to generate a sufficiently diverse and large toehold
corpus, we first trained a LM on a set of 4 million synthetic toeholds
generated in silico (see “Methods”). To determine whether the LM
had learned a meaningful representation of toeholds, we mapped
the 400-dimensional representation of a toehold sequence
onto a reduced dimension manifold with UMAP41 (Fig. 2c), and
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compared to both scrambled and shuffled—which are scrambled
after tokenization—input sequences, as well as random sequences.
We observed no overlap between real toehold sequences and
controls on the two-dimensional manifold, suggesting that the LM
captured the importance of motif order in a toehold sequence.

Given the success of the LM classifier on synthetic sequences,
we used the toehold dataset from Angenent-Mari et al.30 to train
a sequence classifier. The UMAP manifold of 5000 randomly
sampled sequences color-coded by the predicted classes suggests
that the classifier has learned to bifurcate good and bad
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performers (Fig. 2d). Unsurprisingly, sequences with classification
probabilities close to 0.5 populate the decision boundary. This
classifier is ~3.7 fold and ~6.2 fold more predictive than classifiers
that use shuffled and scrambled toeholds, respectively, again
reinforcing the notion that sequence motif order is important for
differentiating toehold performance and demonstrating that the
model has learned more than k-mer frequencies.

Positional importance of nucleotides and model attention. To
understand how variations in a toehold sequence might affect
model predictions, we conducted a mutagenesis scan across sets
of 2500 random experimental toeholds. For each position in the
toehold, we mutated all four possible base pairs at each position
and calculated the standard deviation of the CNN-based model’s
ON (Fig. 2e) and OFF (Fig. 2f) predictions. Spikes in effect sizes
at positions 15, 18, and 21, mirror the important positions in the
sequence logos (Fig. 1c, d), suggesting the model learned posi-
tional importance of nucleotides. In parallel, a set of 500 ran-
domly chosen good toeholds were serially mutated at each
position with a random nucleotide and fed back into the LM to
compute classification probabilities (Fig. 2g). Echoing the prior
mutational analyses, positions 26–30 were shown to have the
biggest impact on toehold performance.

To ascertain the models’ decision-making processes and
further identify important regions in the toehold sequence, we
first calculated the language model’s intrinsic self-attention on a
set of 5000 randomly sampled toeholds (Fig. 2h). The self-
attention map suggests that the ascending stem, specifically the
last 12 nucleotides of the switch region, has the biggest influence
on classification decision. Unsurprisingly, given that the RBS and
start codon do not vary across the dataset, the model learns to
ignore these regions. These results are mirrored in the saliency
maps computed on the CNN-based model, where we evaluated
the importance of each position in 100 random sequences
towards maximizing the ON value (Fig. 2i) and minimizing the
OFF value (Fig. 2j). Here, a higher saliency, computed by
summing gradients across nucleotides at each position (see
“Methods”), indicates that the nucleotide was considered to be
more influential in the model’s ON or OFF prediction process. To
understand if the sequence saliency varies with the experimental
values of the ON or OFF prediction, saliency maps for sets of
high- and poorly-performing toeholds were evaluated (Supple-
mentary Fig. S4). Poorly-performing toehold maps show similarly
low activation in the first 12 nucleotides as their high-performing
counterparts, suggesting that the model learns the relationship
between different regions of toeholds and predicted function.

Models predict toehold performance even with sparse data.
Expanding the comparison between both model architectures on
the same task, we systematically evaluated how the language
model classifies good and bad toeholds for three ON/OFF
thresholds (Fig. 3a, Supplementary Fig. S5), in addition to how
the CNN-based model predicts the ON and OFF states as con-
tinuous values (Fig. 3b–d). Interestingly, we observed that all
models had higher correlative metrics based on switch ON values
alone. These results suggest that the models are able to learn
features distinguishing a high ON value more readily, possibly
resulting from variance in the OFF state due to autofluorescence
not being subtracted out8. Since the ON/OFF ratio is an internally
normalized performance metric and the fluorescence data were
sorted into four bins, we chose an ON/OFF ratio of top 25% as
the optimal threshold combination for the language model. As an
additional validation experiment, toeholds corresponding to those
obtained by tiling viral genomes were held-out during the clas-
sifier training phase (Supplementary Fig. S6). We subsequently
fed these sequences into the trained model and scored the pre-
dictions, and observed similar performance (average MCC~0.50)
across toeholds sensing 20 different viral genomes.

We also evaluated our models against more established, off-
the-shelf methods (see “Methods”). When comparing the LM
with other commonly used NLP architectures based on either
term-frequency inverse document frequency (tf-idf)42 or skip-
gram based word-embeddings43 (Supplementary Fig. S7), we
observed that skip-gram-based word-embedding models were on-
average ~1.8 fold more predictive than the tf-idf models. The LM
significantly outperformed all other word-embedding-based
architectures, including a bidirectional LSTM44 paired with a
self-attention layer45, considered state-of-the-art for NLP senti-
ment classification tasks.

To elucidate whether the models were saturated, we computed
learning curves for both sets of architectures (Fig. 3e–g). Despite
training on small dataset sizes (N= 736), both models were able
to generate meaningful predictions (MCC~0.19 and R2~0.6)
relative to scrambled and shuffled controls. We hypothesized that
the low variance associated with the language model predictions
is a direct consequence of pre-training on the in silico set of 4
million toehold sequences, which results in a stable word-
embedding, while the CNN is likely robust to smaller datasets due
to its convolutional architecture46. Other commonly used word-
embedding architectures had significantly higher variance in
predictive performance across all training sample sizes and do not
appear to saturate (Supplementary Fig. S8). Collectively, these
data demonstrate the power of these architectures to train on
considerably less data than anticipated.

Fig. 2 Interpretable machine learning tools can extract intrinsic characteristics of toehold sequences. a To understand the sequence patterns registered
by the convolutional neural network (CNN)-based model, the learned filter weights for each of the 10 filters of width 5 in the first convolutional layer can be
visualized as sequence logos similar to position weight matrices, with two examples shown here. b To understand trends in these filters, the frequency of
all three-mers in filters from 20 separately trained models were examined relative to their expected value in a uniformly distributed collection of three-
mers, alongside bootstrapped sets of the experimental toeholds and a collection of scrambled toeholds. c The language model (LM) learns an embedding
of synthetic toehold sequences (N= 5000) distinct from other nucleic acid sequences, including scrambled toeholds. d The LM embedding of 5000
experimentally tested toehold sequences cluster according to predicted classes. e To investigate the relative importance of each position in the toehold
sequence, the effect of single base pair in silico mutations were evaluated on the CNN-based model for both ON and (f) OFF predictions, as well as for (g)
language model predictions. For the CNN-based predictions, shaded area indicates the mean ± 95% confidence interval of 2500 sequences for the top 5%
of sequences (blue circle), bottom 5% of sequences (green triangle), and a random sample of sequences (yellow triangle). For LM-based predictions,
shaded area indicates the mean ± standard deviation of 5000 sequences. h White box tools were used to evaluate the “attention” of the language model
for 5000 sequences randomly selected from the held-out test set, where attention represents the normalized contribution of each k-mer in a sequence for
the class that the sequence belongs to. Shaded area indicates mean ± standard deviation. i In parallel, saliency maps were generated for 100 sequences to
elucidate the importance of each nucleotide to the CNN-based model’s ON and j OFF predictions, with saliency serving as a proxy for the model’s attention
to the nucleotide at that position.
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Transfer learning and extending our models to unseen gen-
omes. Considering the unique advantages of both the language
model and CNN architectures, we incorporated both archi-
tectures into a pipeline for designing toeholds that optimally
detect any arbitrary nucleic-acid sequence, such as a fragment of a
viral genome (Fig. 4a). While our models achieved robust per-
formance on predicting toehold sensors tested by Angenent-Mari
et al.30, we sought to ensure their generalizability for scoring
toehold sensors that detect free trigger RNA, given that the utility
of toehold diagnostics applications stem from their ability to bind
and detect exogenous RNAs. We thus explored our model per-
formance on a smaller set of 168 sequences from Green et al.8

that had been tested in a context containing free trigger RNA
rather than with a fused trigger.

As the pre-trained LM achieved a Matthew’s Correlation
Coefficient (MCC) of only 0.42 on the Green et al. dataset8,
compared with 0.51 on the Angenent-Mari et al. dataset30, we
hypothesized that a more predictive model could be constructed
by fine-tuning our pretrained language model on toeholds tested
in a free trigger context8, using transfer learning techniques to
bridge the gap. Transfer learning allows for recycling of
information, typically from a more general task to a more
context-specific task which may have less training data avail-
able47. We incorporated the 168 free-trigger sequences from
Green et al.8 as our second, smaller training set. As research has

shown that transferring weights from any number of layers can
improve the accuracy of a re-trained model48, we froze the first
three QRNN layers of our pre-trained model, permitting only the
weights in the fourth QRNN layer and classification layer to vary
during training. This method achieved an MCC of 0.56 with a
small held-out validation set, constituting a 33% improvement.
As the CNN-based model showed a low R2 of 1.87e-4 on ON/
OFF values predicted for the Green et al. sequences8, we then
carried out the same transfer learning protocol for the CNN-
based model by freezing the weights of the convolutional layers
and allowing only the dense layer weights to vary during training.
We observed an average R2 of 0.18 and an average Spearman
correlation of 0.36 over five-fold cross validation, again with small
held-out validation sets.

We were also interested in the performance of the models on
an external validation set. We evaluated the rank correlation of
the CNN-based model predictions on 24 unseen Zika toeholds
from Pardee et al.10 (Fig. 4b). When compared to our previous
model, a model trained only on the 168 free-trigger sequences,
and a transfer learning model initialized but not frozen with the
weights of the pre-trained model, we confirmed that freezing the
weights achieves the highest rank correlation of around 0.2
compared to the negligible correlations achieved by other models.
Though these correlations may seem low, the experimental setup
for the Pardee et al. sequences10 was vastly different: the
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Fig. 3 Models can accurately predict toehold performance with sparse data. a The language model (LM) trained on toehold embeddings only accurately
classifies real toeholds (blue circle), not shuffled (gray triangle, p= 2.45 × 10−14) or scrambled sequences (gray square, p= 5.03 × 10−15), as assessed by
Matthews Correlation Coefficient (MCC). While language models trained on shuffled toeholds and scrambled toeholds are also more accurate for real than
shuffled (p= 1.18 × 10−6, p= 4.41 × 10−4) and more accurate for real than scrambled toeholds (p= 1.58 × 10−8, p= 2.01 × 10−5), they fail to achieve the
accuracy of the LM trained on real toeholds. b The convolutional neural network (CNN)-based model predictions for both ON and OFF are significantly
higher than predictions on scrambled toeholds in five-fold cross validation, evaluated with R2 for ON and OFF (p= 2.97 × 10−14, p= 4.19 × 10−12),
c Spearman correlation (p= 1.46 × 10−12, p= 9.09 × 10−13), and (d) MSE (p= 9.59 × 10−12, p= 2.12 × 10−9). For (a–d), N= 5 cross validation folds. e Data
ablation studies were performed with both the LM and CNN-based model, evaluating both real toeholds (blue circle), shuffled sequences (gray triangle)
and scrambled sequences (gray square). LM performance does not drop off steeply with half as much data and continues to perform better on real vs.
shuffled (p= 9.23 × 10−9) and real vs. scrambled (p= 6.65 × 10−10) with just 736 training examples. For (e), N= 5 trials. f Similarly, the CNN-based model
performance does not drop off steeply for either ON or (g) OFF prediction with half as much data and has significantly different R2 values at a training size
of 736 samples for both ON and OFF predictions (p= 7.23 × 10−7, p= 0.028). For (f, g), N= 10 trials. For all panels, error bars represent mean ± standard
deviation and all tests are two-tailed t-tests.
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researchers use lacZ activity as a readout and add an amplification
step before detection so true trigger concentrations are unknown.
Similarly, the language model accurately classifies all 24 toeholds
as being good, consistent with the in-depth in silico screening
process undertaken by Pardee et al.10 to narrow a field of

thousands of potential sequences to the 24 toeholds, based on
rigorous secondary structure analyses, BLAST searches, and
multiple constraints on the linear sequence. Unlike a model
trained only on Green et al. sequences8, which is likely underfit
given the sparse training data, we can achieve meaningful
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the genome of a pathogen, creation of an in silico corpus, and utilizing both the natural language processing (NLP)-based and convolutional neural network
(CNN)-based models to generate a list of sensors for experimental validation. b To balance the utility of the large Angenent-Mari et al.30 dataset with the
nature of the Green et al. dataset8, which tested toeholds with free RNA as opposed to switch-trigger fusions, we used transfer learning to fine-tune the
existing model and achieve a higher degree of correlation with the predictions on an external validation set of free-trigger Zika toeholds10 (N= 24). Data are
shown for the CNN-based model rank predictions. c The NuSpeak optimization pipeline was designed to maintain base-pairing complementarity in the
switch while producing all possible variants of positions 21–30. Sequences are then run through the consensus pipeline with fine-tuned models as above to
produce a ranked list of sensors for a given region. d In contrast to traditional model training, which uses gradient descent to optimize the model’s weights
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experimentally tested sequences (N= 354, p= 4.54 × 10−33). f Likewise, the Sequence-based Toehold Optimization and Redesign Model (STORM) was
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biological predictions by conducting this fine-tuning step. Armed
with these more predictive models, we integrated both the re-
trained language model and re-trained CNN-based model into a
pipeline that tiles any genomic sequence and returns a list of all
possible toehold sensors ranked by their predicted ON/OFF value
(Fig. 4a).

To illustrate the value of our approach, and in a proof-of-
concept demonstration to address the acute need for sensors that
can rapidly detect emerging infectious diseases based on
pathogenic genomic RNA, such as the current COVID-19
pandemic, we identified four regions of interest in the SARS-
CoV-2 genome based on their uniqueness and orthogonality to
other known human respiratory diseases49,50. We selected
toehold sequences via consensus by both the LM and the CNN-
based models (see “Methods”). We ligated each toehold sequence
to a GFP reporter protein via a PCR reaction (see “Methods”) in
order to obtain a readily measurable readout upon toehold switch
induction. We evaluated predictions experimentally by measuring
the fold change in the fluorescence between the ON (trigger
present) and the OFF (trigger absent) states. For both the
consensus model and the transfer learning CNN alone (see below,
Fig. 4g, h), we found significant separation between “predicted
good” and “predicted bad” sensors, consistent with our models.

Optimizing sequences with NuSpeak and STORM. As recent
results suggest synthetic riboswitches are amenable to improve-
ment with machine learning approaches51,52, we sought to further
optimize sequences. To that end, we constructed two optimiza-
tion pipelines, coined NuSpeak (Fig. 4c) and STORM (Fig. 4d).
These two frameworks differ primarily in their utility, where
NuSpeak partly preserves the original trigger sequence, main-
taining target fidelity, and STORM allows complete redesign of
the toehold. In NuSpeak, the last 9 nucleotides of the ascending
stem (positions 21–30) are randomly varied across all possible
combinations (49= 262,144 variants/sequence) and each variant
is evaluated with the re-trained LM and CNN-based models.
Importantly, the optimized toehold maintains base pairing with
the intended target for the first 21 nucleotides, and in an in silico
analysis of 100 toeholds, NuSpeak significantly increases the ON/
OFF ratio for a majority of the sequences (Fig. 4e). Though it
appears that the top performers may deteriorate slightly during
optimization, it is possible that these sequences are already
located in a local fitness maximum, which may render further
optimization difficult to achieve. Finally, to elucidate design rules
for engineering good toehold sensors, we calculated a position-
wise nucleotide frequency map for the ten best predicted variants
for each parent sequence and found an enrichment of uracil in
the last four positions of the switch region (Supplementary
Fig. S9), echoing the results from sequence logos (Fig. 1c). This
depletion of GCs in the ascending stem may suggest that the
toehold un-winding in the presence of a trigger is aided by a
reduction in the number of hydrogen bonds that must be over-
come by the ribosome.

Given limitations in current biological circuit design processes,
we additionally built a framework to rationally redesign circuit
components without maintaining complementarity to a trigger
sequence. We converted our initial pre-trained CNN-based model
to build a Sequence-based Toehold Optimization and Redesign
Model, STORM (Fig. 4d), by adapting the SeqProp method
introduced in Bogard et al.21 Rather than using gradient descent
as in the previous classification and regression tasks, we used
gradient ascent to optimize sequences to meet target ON and OFF
values. To evaluate the utility of STORM, we optimized the 100
worst experimental toeholds (Fig. 4f), with a significant increase
in in silico predicted ON/OFF values after optimization. Saliency

maps of pre- and post-optimization sequences (Supplementary
Fig. S10) reveal that the model attention decreases on the first 12
nucleotides for some optimized sequences, suggesting that
optimization improves toehold performance by modifying select
regions.

We sought to experimentally validate these results for both
platforms by optimizing the aforementioned sensors built from
the SARS-CoV-2 genome. We measured an average fold-change
of ~4.7 for sequences optimized with NuSpeak compared with an
average fold-change of ~1.8 for the parent sequences, corre-
sponding to ~160% improvement in sensor performance (Fig. 4g).
We also applied STORM to the four “predicted bad” SARS-CoV-
2 viral RNA sensors, and demonstrated experimentally that the
optimized toeholds exhibited statistically significant increases in
performance (Fig. 4h), with improvements in performance of
28.4×, 1.45×, 9.66×, and 2.34×, respectively, for each of the four
optimized toeholds. As the sequence optimization process may
create a toehold that is not complementary with the original
intended biological target, we envision STORM being utilized as a
valuable tool for unconstrained sequence development, such as in
biological circuit component construction. As such, we built a
website [https://storm-toehold.herokuapp.com] to make this
prediction and redesign framework accessible to any interested
researcher.

Discussion
Given the power of modular, programmable riboregulators for
diverse design applications, there is a compelling need to better
integrate computational and experimental approaches. We aimed
to address this prediction and design bottleneck by building
STORM and NuSpeak, two deep learning frameworks that allow
for the characterization, interpretation, and optimization of toe-
hold switches and require only the RNA or DNA sequence of the
trigger as input. We provide the trained models and frameworks
with which to interrogate them on GitHub and a dedicated
website, constituting an accessible resource for synthetic biolo-
gists who incorporate toeholds into their work.

To take advantage of a potential boost in accuracy achieved by
hybrid CNN-RNN architectures28, we developed two com-
plementary models. We built a CNN to function as a “motif
detector” for toeholds, with several potential benefits such as the
potential to capitalize on local underlying structure to train with
fewer examples46. However, CNNs can be limited to local
sequence interactions in that they only consider a fixed number of
base pairs in a sliding window, with length defined by the
hyperparameters of the model. With the recent successes of
language models in protein modeling53 and promoter strength
prediction54, as well as the development of natural language
processing techniques to elucidate RNA secondary structure55, we
implemented an language-based LSTM to further elucidate toe-
hold sensor properties. As LSTMs consider the entire biological
sequence as a whole, these model architectures are well poised to
learn long-range interactions in RNA structure. In addition, while
the one-hot encoding used by the CNN treats each nucleotide as
an independent feature, the tokenization used as input to the
LSTM implemented in our work organizes the input data into
three-mers, which more closely map to codons. By using this
NLP-based model in concert with convolutional architectures, we
were able to reinforce the conclusions learned by each
architecture.

Both models presented here offer insight into toehold design
and performance prediction, underscoring the importance of
designing models with interpretability in mind. Rather than
treating the model as a black box and trusting its predictions,
recent advancements in machine learning have emphasized the
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importance of understanding how and why models reach their
conclusions35,56–58. We thus employ attention and saliency maps
as valuable tools to identify possible areas of model
confusion35,56. The CNN-based model gives us an opportunity to
directly visualize the learned motifs of the network, highlighting
potentially interesting biological features. Additionally, our ability
to un-box the language model is a direct consequence of its
QRNN architecture (a stateful architecture where the hidden state
of the model is stored as a 400-dimensional vector and updated
during training rather than reset in every training batch). We
explore this hidden state with UMAPs to reveal that the LM has
gained a meaningful understanding of toehold sequences beyond
base-pair frequencies and complementarity. Synthetic biology can
thus benefit from applying interpretable methods to deep learning
frameworks, regardless of model type.

Furthermore, we highlighted the utility of employing transfer
learning techniques that use large datasets to seed models with a
set of learned weights and then fine-tune on smaller, context-
specific datasets to further refine the weights. After using data
ablation studies to identify how both models perform with
varying dataset sizes, we found that our models maintain high
performance even when trained on an order of magnitude less
data than present in the Angenent-Mari et al. dataset30. Inspired
by recent work on transfer learning for transcriptomics59,
wherein biological patterns learned from larger datasets can be
adapted to identify gene expression patterns in rare disease
cohorts with few training examples, we took advantage of the
models’ flexibility to train with smaller datasets by using estab-
lished transfer learning techniques so as to increase prediction
accuracy in different toehold contexts (e.g., fused- vs. free-trig-
ger). Finally, we demonstrated the practical value of this transfer-
learning approach by using the fine-tuned models to identify
optimal sensors for the SARS-CoV-2 genome (Fig. 4g, h).

As the switch-trigger fusion used to generate a large toehold
dataset (Fig. 1a) has fundamentally different effective con-
centrations and stoichiometries of the trigger and switch as
compared to its free-trigger counterpart, we hypothesize that our
fine-tuning step is important in achieving generalizability for both
models. The differences between experimental setups, including
altered concentrations of chaperones, ribosomes, and transcrip-
tional co-factors, were bridged by recycling model weights. As
demonstrated in our language model training, an in silico corpus
is particularly useful for training stable word and sentence
embeddings. This advantage can be especially pronounced in
instances where the amount of training data is sparse or not
uniformly sampled from the sequence space, which is often the
case for nucleic acid datasets. These two transfer learning tech-
niques of recycling weights and building an in silico corpus may
offer an exciting avenue to translate results between experimental
setups, especially in synthetic biology studies, which often have
small or sparse datasets. Such approaches may be useful for
enhancing design and biomining efforts to find synthetic biology
parts based on only a few context-specific examples, augmented
with recycled information from a larger dataset of related
components.

In addition, we introduced two sequence optimization pipe-
lines for divergent purposes. While the consensus model NuSpeak
pipeline maintains base pairing complementarity and offers uti-
lity for pathogen sensor development, the STORM framework
can be used to optimize toehold sequences for any performance
constraints. Though gradient ascent is not a new concept60, the
application of generative models to redesign linear sequences for
the end goal of improving function has been recently gaining
traction in protein engineering61. For instance, generative
adversarial networks62 (GANs)—a modeling paradigm that
simultaneously trains two competing neural networks—are being

used to teach networks to produce realistic protein structure
maps63. However, GANs remain challenging to train and define
for biological tasks. By comparison, STORM readily converts our
existing predictive CNN into a generative design tool without
extensive re-training. In applications beyond engineered ribor-
egulators, STORM could be used as a guide for nucleic acid
modeling problems such as combinatorial biological circuit
design, as well as to look inside of and augment existing pre-
diction frameworks.

It is important to note that the tools developed here are not
constrained to any single riboregulator design or dataset. Our
neural network architectures can be adapted for any RNA or
DNA sequence with a measurable performance, dependent only
on a robust enough dataset to perform model training or re-
training. Similarly, white-box tools such as attention maps and in
silico mutagenesis are broadly model-agnostic, with applicability
to any nucleic acid dataset. With the advent of tools to design,
test, and process high-throughput biological datasets, machine
learning could be exploited as a means to glean insight into
biological circuit components, tools, and phenomena.

Methods
Toehold sequence generation. In order to define the sequences to be tested (see
Angenent-Mari et al.30), we performed a sequence tiling on a variety of prokaryotic
genomes, as well as the complete set of human transcriptional regulators. Briefly,
each chosen sequence was tiled with a sequence length of 30 nucleotides and a
stride of five nucleotides. Additionally, we generated a set of 10,000 random
sequences of length 30, drawing each nucleotide from a uniform distribution at
each position. This approach resulted in a set of 244,000 sequences to be synthe-
sized and tested experimentally.

Data filtering and visualization. 244,000 toehold sequences were tested by
Angenent-Mari et al.30 and the experimental data were obtained as logarithm-
transformed GFP fluorescence measured at both the modified ON state (with
trigger present, fused to the switch sequence) and OFF state (without trigger).
Measurements were normalized and quality control was performed as indicated in
Angenent-Mari et al.30, resulting in 91,534 sequences. All sequence logos were
visualized with LogoMaker64. In addition, a final filtering step was applied prior to
training the neural network, where sequences were split into 1000 bins for both ON
and OFF distributions, and bins were down-sampled to the mean number of
counts across all bins (Supplementary Fig. S11). The union of sequences from both
the ON and OFF filtering stage was carried forward, resulting in 81,155 switches.
Given remaining artifacts in the ON and OFF distributions, we would like to direct
the reader towards experiments performed by Angenent-Mari et al.30, where the
authors evaluate the MLP model performance with a variety of methods, including
re-sampling of under-represented continuous data points to achieve a balanced
distribution, and find insignificant differences in models trained without this step.

CGR representations for sequences were computed using an implementation
published by Yin et al.65. The CGR coordinates of the set were scaled between −1
and 1, and the third (length) dimension was omitted. These coordinates were
subsequently plotted using a 2D kernel density estimate with the seaborn package
in order to observe macroscopic sequence patterns.

Convolutional model architecture. The model was constructed of two convolu-
tional layers to detect genomic motifs33,35,66,67. The first convolutional layer
consisted of 10 filters of width 5; the second convolutional layer consisted of five
filters of width 3. The filters, or weight matrices, were convolved over nucleotide
channels and point-wise multiplied with the input sequence, with the magnitude of
this multiplication, or activation, corresponding to the degree of similarity between
the filter pattern and the input35. Activations from the second convolutional layer
were flattened into a one-dimensional vector and fed as input to three fully con-
nected layers with successively decreasing numbers of nodes (150, 60, 15, respec-
tively). All layers applied the rectified linear unit nonlinearity function to node
outputs32 and these activations were passed independently to two output layers: the
ON and OFF prediction outputs, respectively. The last fully connected layer uti-
lized linear activation to output continuous ON and OFF values. After each layer, a
dropout rate68 of 0.3 was applied, and the ridge regression (L2 regularization)
coefficient on the activations was set to 0.001 to decrease the risk of overfitting by
constraining the values of the weights32. Errors between true and predicted ON and
OFF values were computed over small batches of 128 toehold sequences per
iteration using a mean squared error loss function. This loss information was
backpropagated through the model, and stochastic gradient descent was used to
update the weights of the model such that the disparity between model predictions
and true value was minimized32. The Adam optimizer was used with a learning rate
of 0.005 to train the model at a speed that achieved fast convergence without over-
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or under-shooting the optimal model fit. Weights were updated with respect to
both ON prediction and OFF prediction simultaneously. Keras with a Tensor-
Flow69 backend was used to construct and optimize the model.

To assess the best architecture performance and train the final model, the data
were shuffled and iteratively split using tenfold cross validation; the test set per fold
was further split in half to be used as validation toehold sequences to select the
optimal number of training epochs. A stratified split method enabled the cross-
validation to be conducted with the class imbalance preserved in each fold. A
deployable model was trained on 85% of the data, with 15% held-out as validation
data to enable early stopping in training.

Hyperparameter optimization for convolutional model. Architecture design
parameters were selected randomly rather than combinatorically as in a traditional
grid search to enable a broader search of the architecture landscape within time and
computation constraints70. The convolutional hyperparameters were varied to
maximize the convolutional layers’ ability to learn a sufficient number of short,
meaningful patterns of relevant nucleotide combinations33,67. To find the optimal
convolutional model architecture, several hyperparameters were varied and ran-
domly sampled (Supplementary Data 1). The number of filters tested in the first
layer were 5, 10, and 15, testing each combination with filter widths of 3, 5, or 7.
The number of filters tested in the second layer were 5 and 10, with filter widths of
3, 5, or 7. We also tested a select number of architectures with filter widths of 10,
15, and 20, to ensure these shorter filter widths did not restrict the model accuracy.
Additional hyperparameters, such as dropout rate, L2 regularization, and Adam
optimizer learning rate, were varied to curtail overfitting and modify how the space
of weights was explored during training: the dropout rates tested were 0.1, 0.3, and
0.5; L2 regularization values tested were 0 and 0.0001; and learning rate values
tested were 0.0005 and 0.001. For all hyperparameter combinations, R2 and
Spearman correlation coefficients were evaluated across both ON and OFF values
to ensure model predictions are sufficiently consistent with experimental results.
Model simplicity was prioritized to avoid unnecessary complexity (i.e., more
convolutional filters than needed) that did not augment the biological interpret-
ability of the model.

Five-fold cross validation was used to train and evaluate each parameter
combination. For each fold, and for ON and OFF predictions separately, R2 and
Spearman’s rank correlation were calculated to estimate the generalizability of the
model. The best architecture was selected by sorting the results by their combined
average R2 over ON and OFF prediction, and choosing an architecture with first
layer filters that would enable downstream interpretation of biologically-
meaningful motifs and maximal ability to decode predictions in the context of
toehold design rules.

Language model construction. The LM was trained on an in silico corpus of 4
million synthetic toehold sequences. We generated random 30 nucleotide
sequences by sampling each nucleotide with uniform probability, and filled in the
remainder of the 59 nucleotide sequence with the basic set of toehold structural
rules (Fig. 1a, Supplementary Table S1). These in silico sequences were sampled
from a vast sequence space (430), and thus had little collinearity (Supplementary
Fig. S12), as evidenced by the fact that the distribution of pairwise edit distances are
approximately centered at 22 nucleotides and 35 nucleotides for the switch region
and complete toehold respectively.

The basal NuSpeak architecture was derived from the PyTorch71

implementation of ULMFit72 provided by fastai [https://docs.fast.ai/]. Custom
tokenization and vocabulary functions were written using the fastai NLP wrapper
in order to process genomic sequences as opposed to human languages. In brief,
our modified ULMFit consists of a four-layer QRNN39,40 with 1552 hidden
activations in each layer, sandwiched between an embedding layer and a decoder
layer. The LM classifier, likewise, consists of an embedding layer, a four-layer
QRNN, and a linear classifier head, in lieu of the decoder. As suggested in Merity
et al.73, we found that tying the weights between the embedding and output
decoder layer reduced LM perplexity after training. Dropouts for the output,
hidden, input, and embedding layers were set to 0.15, 0.20, 0.30, and 0.05,
respectively. Weight-decay dropout was set to 0.25 across all layers and weight-
decay was set to 0.1 to provide strong L2 regularization during LM training. Most of
these parameters were kept the same when training the LM classifier, with the
exception of the output dropout, which was set to 0.5. Both the LM encoder and
classifier were trained using the Ranger optimizer [https://github.com/lessw2020/
Ranger-Deep-Learning-Optimizer], which synergistically combines a Rectified
Adam with the LookAhead optimization approach as described in Zhang et al.74. In
addition, all models were trained using a batch size of 128 with back-propagation-
through-time set to 60 in mixed-precision so as to maximize generalizability. A
cosine learning rate schedule75 was used during LM training for a total of 15
epochs, while a label smoothing cross-entropy loss76 was used while training the
classifier. Furthermore, to obtain a direction-agnostic view of toehold sequences,
forwards and backwards models were separately trained and subsequently averaged
during model prediction on the held-out test sets.

Language model evaluation. A random sampling of 5000 sequences from the
experimental dataset were fed into the pre-trained LM encoder, which was trained

to identify the top 25% vs the bottom 75% of toeholds. The 400-dimensional
hidden state of the LM encoder was concatenated and averaged across all tokens
for each input sequence in the randomly selected sample. For comparison, shuffled
and scrambled input sequences, as well as random 59 nucleotide sequences, were
also fed into the pre-trained toehold LM encoder. The shuffled input sequence was
generated by shuffling the order of tokens in a tokenized input sequence and
provides insight on the extent to which the model learns k-mer frequencies.
Meanwhile, the scrambled input sequence was generated by first scrambling the
real input sequence prior to tokenization, and offers insight on the extent to which
the model learns nucleotide frequencies. We focused exclusively on classification
tasks given that the architectures developed thus far in NLP are tailored for clas-
sification77, though we note it would be possible to add a linear output layer for
regression on top of the model discussed here.

In addition, to assess the impact of language model pre-training for the
classification task, we built and trained a naïve classifier which also consists of an
embedding layer, followed by a four-layer QRNN and a linear classifier head.
Tokenized sequences from the experimental dataset were then directly fed into the
naïve model without pre-training on in silico sequences. We observed that pre-
training the LM on the in silico set of 4 million toeholds significantly stabilizes the
model’s word embeddings and yields statistically better performance on held-out
test sets. To evaluate attention of the model, the fastai intrinsic attention function
was used [https://github.com/fastai/fastai1/blob/master/fastai/text/interpret.py],
which calculates the contribution of each k-mer in a sequence for the resulting
gradient, given a classification prediction.

Language model comparison. We compared the language model to other NLP-
based models. To compute tf-idf matrices, input sequences were tokenized in the
same manner as for the language model, and tf-idf models were constructed using
unigrams and bi-grams of three-mers (scikit-learn). The Naïve-Bayes, Logistic
Regression, and Random Forest algorithms were used from off-the-shelf imple-
mentations provided in scikit-learn, along with a grid search used for optimizing
their respective hyperparameters. To compute skip-gram embeddings, input
sequences were again tokenized into three-mers with stride 3, and a word2vec
algorithm78 [https://radimrehurek.com/gensim/models/word2vec.html] was used
to learn contextual word embeddings across the entire experimental dataset. The
pre-trained word embeddings were then used as inputs to an array of deep learning
architectures as shown in Supplementary Fig. S7, connected to a simple classifier
head. Deep learning architectures were built using off-the-shelf implementations
provided by Keras and Tensorflow69. The self-attention layer was sourced from
Keras [https://github.com/CyberZHG/keras-self-attention] for the attention-based
architecture. All model specific hyperparameter details are enumerated in the
source code files.

Saliency maps. Saliency maps were generated to visualize which positions and
nucleotides mattered most towards high ON and low OFF model
predictions35,56,57. The keras-vis package was used to analyze how small changes in
a given input toehold sequence change the model’s output predictions. The gra-
dients were computed to highlight changes to the input sequence that produce
large changes in the output predictions, revealing which positions in the toehold
sequence were prioritized the most when predicting ON and OFF values. A sal-
iency (i.e., an “importance score”) for each position and each nucleotide at that
position was calculated by summing the gradients across all positions and
nucleotides for each toehold. This saliency was normalized by the number of times
a given nucleotide appeared at that position to control for more frequent
nucleotides.

Consensus model. For the consensus model, we first used transfer learning to
freeze weights of both the NLP-based and CNN-based model, and re-trained both
on a set of 168 toehold sequences from Green et al.8 for fine-tuning. For the CNN-
based model, we modified the last output layer to output one value—the combined
ON/OFF ratio alone—to be compatible with the normalized ON values reported in
Green et al.8 An in silico external validation was conducted by comparing the ranks
of the 24 Series A toeholds tested in Pardee et al.10 with the ranks predicted by the
original model, a model trained on Green et al. sequences8 alone, and the transfer
learning models.

We then implemented a consensus algorithm to pick out toehold sequences that
were both classified as good with high probability by the LM, and predicted to yield
high ON/OFF ratios by the CNN model. In brief, our simplex routine consisted of
rank ordering by the geometric mean of the classification probability score and the
predicted ON/OFF ratio score. We used the geometric mean over the arithmetic
mean since it is more robust to extremes in either model. Of the sequences that
passed through both models, eight “predicted good” and eight “predicted bad” were
chosen to be experimentally validated. These eight test sequences were chosen at
random amongst the list of sequences that passed both models. Experimentally
tested sequences are detailed in Supplementary Table S2.

We separately chose five “predicted good” and four “predicted bad” sequences
ranked by the CNN-based model as comparison, restricting our set to nine
toeholds due to experimental limitations. We generated the list of all possible
25,220 sequences in the SARS-CoV-2 regions of interest and again took advantage
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of the consensus approach, and we ran each sequence through the original CNN,
the transfer learning model, and the model trained on Green et al. sequences8

alone. Although the model trained on Green et al. sequences8 alone is likely
underfit given the sparse data, we had an abundance of sensors that passed the
filtering criteria from the two previously described models and thus sought to
further filter these top predictions. We then picked the top five sequences and four
of the bottom six sequences, filtered by those that had the least negative MFE as
predicted by NUPACK. Experimentally tested sequences are detailed in
Supplementary Table S3.

Optimization methods. To optimize sequences using the consensus model (aka
NuSpeak), we generated all possible variants by modifying the last nine nucleotides of
each “predicted bad” 30 nucleotide sequence validated with the consensus model. The
variants for each parent sequence were fed back into the pre-trained classifier to
determine a classification probability score for each sequence, after which all
sequences were fed into the pre-trained CNN regressor to predict the ON/OFF ratio.
Our simplex routine was then used to identify variants that passed both sets of models
and we selected eight optimized sequences for experimental validation.

To optimize sequences using the STORM, we converted our CNN-based
predictive pipeline to redesign poorly performing toehold switches via gradient
ascent. The 20 toeholds with the lowest ON/OFF ratio were one-hot encoded and
fed as inputs to the static model. A target ON/OFF value of 1 was set and supplied
to SeqProp, an open-source python package that enables streamlined development
of gradient ascent pipelines for genomic and RNA biology applications21. Toehold
design constraints were ignored during optimization, as the entire 59 nucleotide
sequence was allowed to vary freely.

After optimization, we “fixed” each sequence such that the modified toehold
switch contained the conserved sequences and base pairing within the hairpin was
preserved. We also offer the ability to incorporate these base pairing constraints in
the loss function itself, but found that the model sometimes settled into a local
minimum and did not optimize effectively. At each iteration, the ON/OFF value of
the initial toehold sequence were predicted and the difference between the
predicted values and target values was computed. This discrepancy between
predicted and target values was then propagated back through the model to update
the input sequence in the direction that decreased the difference between the
predicted ON/OFF value and the target. The updated toehold position weight
matrix was used as input to the next round of optimization, and at the last round of
iteration, the final sequence was composed of nucleotides with the highest
probabilities in the position weight matrix. At each iteration, there is a balance
between exploration and exploitation with an entropy parameter, as in some
Bayesian optimization frameworks. Each sensor went through five rounds of
optimization, and the resulting sequence with the highest ON/OFF value was
chosen. Improvements in performance were quantified as the fold-change of the
ON/OFF fold-changes between pre- and post-optimization.

Toehold switch validation. Toehold switch reactions were validated in cell-free
protein synthesis systems as described in Pardee et al.9 In brief, switches were
individually ordered as 109nt Ultramer DNA oligonucleotides (IDT) consisting of
a T7 promoter, 59 nucleotide switch region, common linker, and the first 5
nucleotides of a GFP sequence. Ultramers were added to a GFP gene (GFPmut3b-
ASV with T7 terminator) through PCR amplification using Q5 high-fidelity
polymerase (NEB). Resultant amplicons were treated with DpnI (NEB) to remove
residual template DNA, and subsequently purified using a MinElute PCR pur-
ification Kit (Qiagen). Separately, triggers were synthesized from oligos consisting
of antisense T7 promoter and antisense trigger sequence annealed to the sense
strand of the T7 promoter using the HiScribe T7 Quick High Yield RNA Synthesis
Kit (NEB). Reactions were incubated for 16 h at 37 °C, treated with DNaseI (NEB),
and purified using the RNA Clean & Concentrator-25 kit (Zymo Research). Cell-
free toehold switch reactions were performed using the PURExpress In Vitro
Protein Synthesis Kit (NEB). Each reaction contained NEB Solution A (40% v/v),
NEB Solution B (30% v/v), Murine RNase inhibitor (0.5% v/v; NEB), purified
toehold switch PCR product (5 nM), and either no-trigger RNA (OFF state) or
10μM of trigger RNA (ON state). All reactions contained 5μL total volume and
were carried out in triplicate within 384-well plates (Corning 3544) at 37 °C. GFP
expression (485 nm excitation, 520 nm emission) was monitored on a plate reader
(Molecular Devices SpectraMax M3) every 5 min for 150 min. OFF and ON values
were taken as endpoint GFP fluorescence from reactions without trigger and with
trigger, respectively. The GFP sequence used in this study can be accessed on
Benchling [https://benchling.com/s/seq-Su3ovggGNrVRzsPxjAeA].

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Complete toehold screening data is provided with Angenent-Mari et al. as well as in the
data folder of a public GitHub repository engineered-riboregulator-ML [github.com/
midas-wyss/engineered-riboregulator-ML/tree/master/data]. Any other relevant data are
available from the authors upon reasonable request. Source data are provided with
this paper.

Code availability
Python code for neural net construction, training, and prediction can be found at this
public GitHub repository engineered-riboregulator-ML [github.com/midas-wyss/
engineered-riboregulator-ML].
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