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Abstract

The ability to collectively toss a common coin among n parties in the presence of faults is an
important primitive in the arsenal of randomized distributed protocols. In the case of dishonest
majority, it was shown to be impossible to achieve less than 1

r
bias in O(r) rounds (Cleve STOC

’86). In the case of honest majority, in contrast, unconditionally secure O(1)-round protocols for
generating common perfectly unbiased coins follow from general completeness theorems on multi-
party secure protocols in the perfectly secure channels model (e.g., BGW, CCD STOC ’88).

However, in the multi-party protocols with faulty minority, parties need to generate and hold
local secret values which are assumed to be perfectly hidden from malicious parties: an assumption
which is crucial to proving the resulting common coin is unbiased. This assumption unfortunately
does not seem to hold in practice, as attackers can launch side-channel attacks on the local state of
honest parties and leak information on their secrets.

In this work, we present an O(1)-round protocol for collectively generating an unbiased common
coin, in the presence of leakage on the local state of the honest parties. We tolerate t ≤ ( 1

3
−

ε)n computationally-unbounded Byzantine faults and in addition a Ω(1)-fraction leakage on each
(honest) party’s secret state. Our results hold in the memory leakage model (of Akavia, Goldwasser,
Vaikuntanathan ’08) adapted to the distributed setting.

Another contribution of our work is a tool we use to achieve collective coin flipping – leakage-
resilient verifiable secret sharing. Informally, this is a variant of ordinary VSS in which secrecy
guarantees are maintained even if information is leaked on individual shares of the secret.

∗Supported by NDSEG graduate fellowship.
†This work was supported in part by Trustworthy Computing: NSF CCF-1018064 and PROCEED: DARPA FA8750-

11-2-0225.
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1 Introduction

Randomization, and the the ability to keep your local randomness and local state private, are funda-
mental ingredients at the disposal of fault tolerant distributed algorithms. This was realized originating
with the work of Rabin [Rab83] introducing the power of a shared global common coin to obtain a
dramatic reduction in round complexity with respect to Ben-Or’s asynchronous randomized consensus
algorithm [Ben83]1; and continued to be utilized in many beautiful distributed algorithms to this day
in various network models: synchronous and asynchronous, faulty majority and faulty minority, private
channels and full information, and networks with and without broadcast channels.

The assumption that a party’s local state – including its local randomness and the values of its
secret cryptographic keys – is perfectly hidden from an adversary, is an assumption that has undergone
much scrutiny in the past few years in the cryptographic community. This is in light of accumulating
evidence which shows that in practice physical measurements (so called side-channel attacks) can be
made on honest parties’ devices, which result in leakage from their local state that can completely
compromise the security of the cryptographic algorithm. Indeed, a considerable amount of effort in the
cryptographic community is devoted today to develop new cryptographic schemes which are resistant to
leakage (e.g., [Riv97, CDH+00, ISW03, MR04, DP08, AGV09, NS09, KV09, BKKV10, DHLW10] and
many more). Several models of leakage have been considered. The one most relevant to this work is
that an adversary can adaptively choose polynomial time length-shrinking leakage functions and receive
the value of the leakage functions on the secret state of the device [AGV09].

We propose to mirror this line of work in the regime of distributed fault tolerant algorithms. Namely,
to address the question of how leakage from the local state of non-faulty parties affects the correctness
of fault-tolerant distributed protocols. Here, in addition to the fact that some of the parties are faulty
and fully compromised, the adversary who is coordinating the action of the faulty parties can obtain
partial information in the form of leakage on the local state of all honest parties. This potentially
may enable the adversary to alter the course of the protocol’s execution. We note that in this context,
the coordinating adversary can adaptively choose the leakage function, depending on the history of
communication it sees thus far.

Randomized distributed algorithms address many different tasks. In some tasks, such as Byzantine
agreement, leader election, and collective coin tossing, the parties have no secret inputs and the emphasis
is on getting the correct distribution over the outputs rather than on input privacy. In other tasks such
as secure distributed function evaluation, both perfect input privacy and the correctness of output
distribution are required.

In this paper, we focus on the output correctness aspect of distributed protocols in the presence of
leakage attacks. In particular, we provide a fault-tolerant and leakage-resilient protocol for collective
unbiased coin tossing among n parties.

The problem of collective coin tossing in a distributed setting has received a lot of prior attention,
starting with the work of Rabin [Rab83] on distributed consensus. When there is no honest majority
of parties, results from the two-party setting by [Cle86] showed that a bias of 1

r must be incurred by
any O(r)-round protocol (this was recently shown optimal in a work of Moran et al. [MNS09]). Loosely
speaking, the problem is that a dishonest party can bias the output by doing the following: At the
last round, before sending his final message, he can compute the outcome, and abort if he does not
favor this outcome, thus biasing the output. When there is an honest majority of parties, this attack
can be prevented using verifiable secret sharing (VSS), a notion defined by Chor, Goldwasser, Micali,
and Awerbuch [CGMA85]. Verifiable secret sharing allows each of the n parties to toss a coin locally
and share it among the n parties. After all the local coins have been shared via a VSS, the parties
reconstruct the coin. The output coin is set to be the result of simply taking the exclusive or of the
local coins. The works of ([BGW88, CCD88]) on secure multi-party computation show how to achieve
VSS in expected O(1) rounds, and thus how to construct an unbiased coin tossing protocol that runs
in O(1) rounds. These results ([BGW88, CCD88]) hold unconditionally in the synchronous network

1Ben-Or’s ingenious protocol does not require the local coin outcomes to remain ever private. All that is required of
the coin is to be random. Alas, the number of rounds is exponential.
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model with less than a third Byzantine faults, assuming perfectly secure channels of communication
between pairs of users and the use of a broadcast channel.

However, each of these protocols require the parties to generate and hold secret values, and security
is guaranteed only under the assumption that these secrets are completely hidden from the adversarial
view. It is easy to check that these protocols are no longer secure if the adversary obtains some partial
information about these secrets. This is the starting point of our work.

Before we go on to state our results, we remark that the more general problem of multi-party secure
function evaluation (SFE), which addresses both correctness and privacy of parties’ inputs, runs into
immediate definitional problems in the presence of leakage attacks. Since leakage on the private inputs
is available to the adversary, it is impossible to meet the SFE problem specification as is, since they
require the inputs of honest parties to remain private beyond what is revealed by the SFE output value.
Possible ways out of this conundrum may be to relax the attack model to allow some form of a leak-free
pre-processing phase, or to relax the security guarantees of an SFE. We do not explore these relaxations
here.

1.1 Our Results

We construct a leakage-resilient collective coin-tossing protocol in synchronous point-to-point networks
with a broadcast channel and secure communication channels between pairs of parties.

We allow up to one third colluding statically corrupted malicious parties. Namely, a computationally
unbounded rushing adversary sees the internal state of all corrupted parties and can set the messages
of these parties at any round, as a function of all honest parties’ messages up to (and including) this
round. In addition, the adversary can make leakage queries at every round in the form of specifying a
leakage function, and obtain the result of the leakage function applied to each honest parties internal
state.

We allow the adversary to leak arbitrary functions of each party’s secret state, as long as the total
number of bits leaked from each party is at most some (pre-specified) λ fraction of its entire secret
state.2 Each leakage query is applied to the secret state of a single party. Since participants of a
distributed protocol typically run on different physical hardware (and reside in different locations), we
believe that it is reasonable to assume each leakage query modeling a physical measurement reveals
information about each party’s execution separately. To maximize generality within this setting, we
allow the leakage queries on different parties’ secret states to be interleaved (i.e., leak some from party
i then some from party j, and then some more from party i), and the choice of leakage queries to be
adaptively selected as a function of prior leakage. We remark that this distributed leakage model is
similar to the earlier model used by Akavia et al. [AGH10] in their work on public-key encryption in
which the secret key of the decryption algorithm is distributed among two parties.

Informally, let us call a protocol (t, λ)-leakage-resilient if it achieves its desired functionality in
presence of an adversary who can control up to t parties and can request leakage queries for functions
which output up to a λ-fraction of the internal secret state of each honest party (as above). We can
now state our main theorem, to be formally stated within the paper.

Theorem For any constants δ, ε > 0, any λ ≤ δ(1−ε)
10+6δ , any n ≥ (3 + δ)t, and any m, there exists a

(t, λ)-leakage-resilient n-party distributed protocol that generates a value v ∈ {0, 1}m, and terminates
in O(1) rounds satisfying:

• Agreement: At the conclusion of the protocol, each party outputs a value vi ∈ {0, 1}m. For all
honest parties Pi, Pj , it holds that vi = vj .

• Randomness: With all but negligible probability (in n), the distribution of the honest output
value v is exponentially close to uniform in {0, 1}m.

A few remarks are in order.
2Our methods extend to also tolerate the Naor and Segev [NS09] leakage model which allows leakage functions which

are not necessarily shrinking but leave the internal local state with enough min-entropy.
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Fairness: We emphasize that our protocol achieves fairness, in the sense that even if the dishonest
parties abort prematurely, the honest parties will output a random string.

Strings versus Bits: We emphasize that the output of our coin tossing protocol can be a long random
string, as opposed to just a single bit. In the leak-free setting, this point is not worth emphasizing,
since the coin-tossing protocol can be run in parallel to output as many bits as desired. However, in the
leaky setting, if we run many protocols in parallel, our leakage bounds may deteriorate very quickly: if
we run k protocols, where each protocol can tolerate leakage of up to a λ fraction, then in the resulting
parallel execution, the leakage rate becomes only λ

k . Thus, to maintain our leakage bounds we would
need to run the protocol sequentially, resulting in many rounds of communication. Our protocol has
the property that it can output as many bits as desired in constant rounds with constant leakage rate.

Weakening the Secure Channels Assumption: Note that our leakage model immediately implies
we can tolerate leakage of information from the secure communication channels, as parties’ messages
are computed as a function of public information and their personal secret state. To remove the
secure channels assumption altogether, we would need to send the messages between honest parties
using encryption, which would necessitate a computational assumption supporting the strength of the
encryption algorithm. Furthermore, one would have to consider whether leakage from the secret keys
of the decryption algorithm and the randomness used by the encryption algorithm can be tolerated.3

Relation to Using Imperfect Random Sources in Distributed Computing: The question of
achieving O(1)-round Byzantine Agreement and multi-party computation when parties do not have
access to perfect local randomness, but rather to independent imperfect random sources such as min-
entropy sources [GSV05, KLRZ08, KLR09], seems strongly related to our work here. Indeed, one may
naturally view a random secret with leakage as a secret a-priori drawn from a min-entropy source. The
crucial difference between these works and our own is that our leakage model allows the adversary to
leak adaptively during the protocol, as opposed to non-adaptively before the protocol begins. More
specifically, the approach taken in [GSV05, KLRZ08, KLR09] is to first generate truly random strings
from the weak random sources, and then to use these random strings in the underlying protocol execu-
tion. This approach will not work in our setting, since the adversary can simply choose to leak on the
newly generated random strings.

On the other hand, we note that the works of [GSV05, KLRZ08, KLR09] consider randomness
coming from an arbitrary min-entropy distribution, whereas our model considers perfect randomness
that is being leaked so as to leave min-entropy in the distribution.

Coin Flipping versus Byzantine Agreement: Achieving a weak form of collective coin tossing
was in itself an important building block to construct Byzantine agreement protocols in many works,
most notably in the work of Dwork, Shmoys and Stockmeyer [DSS90], and the work of Feldman Micali
[FM85]. Our schemes to construct collective coin tossing utilize broadcast channels as a primitive (which
are equivalent to Byzantine agreement), and thus obviously cannot be used to construct Byzantine
agreement. It is an interesting question for future research how to achieve coin tossing in the presence
of leakage without assuming broadcast channels.

Using Collective Coin Tossing to Force Honest Behavior: An important usage of coin tossing
dates back to the work of Goldwasser and Micali [GM82] on mental poker protocols. Here they propose
the idea of forcing the local coins used by parties in a protocol to be the result of a common coin toss,
to ensure that parties do not rig their coins. In this case, the result of the collective coin toss will be
known only to one party Alice, and yet all other parties will be able to verify (via, say, zero-knowledge

3A very recent theorem by Bitansky, Canetti, and Halevi [BCH11] shows that by sending messages using non-
committing encryption (introduced by Canetti, Feige, Goldreich and Naor [CFGN96]), protocols in the secure channel
model can be transformed into leakage-resilient secure protocols without assuming secure channels.
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protocols) that Alice is using the result of the collective coins in her computations. This idea was later
used in the compiler of [GMW87] from the n-party secure function evaluation (SFE) protocol with
honest-but-curious majority to an SFE protocol with malicious majority. Our collective coin tossing
protocol can similarly be turned into one where only one party Alice knows the result but all other
parties can verify that Alice (via, say, a leakage-resilient zero knowledge protocol [BCH11]) is using the
result of the collective coins in her computations.

1.1.1 Leakage-Resilient VSS

The main tool we use in our construction, which is of independent interest, is a new weakly leakage-
resilient verifiable secret sharing scheme (WLR-VSS). Verifiable secret sharing extends Shamir’s [Sha79]
secret sharing to ensure not only secrecy (i.e., faulty parties do not have any information about the
dealer’s secret) and robustness (i.e., honest parties can reconstruct the secret even if faulty parties do
not provide their true shares), but also to ensure reconstruction even if the dealer is dishonest. WLR-
VSS is a VSS scheme with the additional guarantee that given the view of any adversary who corrupts
up to t parties and leaks λ-fraction of each honest party’s secret state, the secret still retains a constant
fraction of its original entropy. We refer to this property as weak leakage resilience.

We are now ready to state our second main theorem.

Theorem (WLR-VSS): Let n = (3 + δ)t for some constant δ > 0. Then for any constants ε < 1

and λ ≤ δ(1−ε)
10+6δ , there exists a VSS protocol (Share,Reconstruct) that runs in O(1) rounds and tolerates

t malicious parties and up to λ-fraction leakage of the secret state of each (honest) party, with the
following modified secrecy guarantee:

If the dealer is honest during the sharing phase, then for any adversary A controlling up to t
parties and leaking up to λ fraction of each (honest) party’ secret state, with overwhelming prob-
ability over y ← viewA(S) it holds that H∞(S|viewA(S) = y) ≥ εH∞(S), where viewA(s) denotes
the view of A at the conclusion of the sharing phase of the protocol using secret s.

In addition, we define and obtain a stronger version of leakage-resilient VSS, with the requirement
that the secret looks uniform even if all the shares were partially leaked. We do not need this stronger
version for our collective coin tossing application; however, we believe that it is of independent interest.
We refer the reader to Section 4.3 for details.

1.2 Overview of Our Solution

Let us first see why simple and known common coin tossing protocols are not resilient to leakage.
Consider the following well-known coin tossing protocol paradigm: First, each party Pi chooses a
random value ri and secret shares it to all other parties using a verifiable secret sharing (VSS) protocol.
Then, all the parties reveal their shares and reconstruct r1, . . . , rn. Finally, the parties output ⊕ri.
This protocol is not resilient to leakage for several reasons.

First, the reduction from coin tossing to VSS fails. For example, a malicious party Pj can simply
leak from each party Pi the least significant bit of ri, and then choose rj such that the xor of these
least significant bits is zero. This way, Pj can bias the output string so that the least significant bit
will always be zero. So, the problem is that in the leaky setting, we cannot claim that the ri’s look
random to the adversary. Instead, all we can claim is that they have high min-entropy in the view of
the adversary. To address this first problem, the first idea is to use a multi-source extractor instead of
the xor function. Namely, output Ext(r1, . . . , rn), where Ext is an extractor that takes n independent
sources and outputs a string that is statistically close to uniform. Note however, that we cannot use any
such multi-source extractor, since some of the sources (i.e., some of the rj ’s) may be chosen maliciously.
Thus, what we need is a multi-source extractor that outputs a (statistically close to) uniform string,
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even if some of the sources are arbitrary, but independent of the “honest” sources. Indeed, such an
extractor was constructed by Kamp, Rao, Vadhan and Zuckerman [KRVZ06].

Secondly, VSS protocols by and large are not resilient to leakage. Consider a single VSS protocol
execution in the above paradigm. If the adversary leaks λ-fraction from each share, the total number
of bits leaked is too large (indeed, potentially larger than the size of the secret being shared), and we
cannot even guarantee that the secret ri still has any min-entropy left. Thus, we cannot use any VSS
scheme, but rather we need to use a leakage-resilient one, with the guarantee that even if λ-fraction of
each share is leaked, the secret still has high min-entropy. Indeed, we construct such a weakly leakage-
resilient VSS in Section 4.2 (as informally defined earlier in this introduction). We note that many
distributed protocols use VSS protocols, which immediately make them susceptible to leakage. Thus,
we are hopeful that our leakage-resilient VSS scheme may be used in other protocols as well.

Finally, two technical difficulties remain. In the above coin-tossing paradigm utilizing VSS (or even
a weakly leakage-resilient WLR-VSS), each party shares his random value with all other n parties, and
thus each honest party holds information on all secret values ri. Since the leakage is computed on
a party’s entire secret state, by leaking from honest parties, the adversary may learn information on
the joint distribution of the ri’s. But, this creates a dependency issue: recall that the output of the
multi-source extractor is only guaranteed to be random if the inputs ri are independent. Further, in
this paradigm the secret state of each party will be quite large, consisting of n secret shares (one for
each secret value ri). This can potentially yield poor leakage bounds, with leakage rate less than 1

n if
we want to ensure no share of one particular secret can be entirely leaked.

We avoid these problems by ensuring that each of the n parties will never hold more than one share
of any of the random values ri. To this end, we follow a two-step approach. The first step is a universe
reduction idea similar to the one going back to Bracha [Bra84]. Instead of having all parties generate
and secret share random strings ri, we elect a small committee E (of size approximately log2 n), and
only the members of E choose a random string ri which will be shared via WLR-VSS (and later used
in the construction of the collective coin). We utilize Feige’s protocol [Fei99] to elect this committee,
which guarantees with high probability that the fraction of faulty parties in the elected committee is the
same as in the global network. The second idea is that members of this committee do not WLR-VSS
the ri they chose to all n parties, but rather each WLR-VSS his ri to a small secondary committee.
Namely, for every party i ∈ E all parties elect a secondary subcommittee Ei, and party Pi will WLR-
VSS her random string ri only to parties in Ei. We need to ensure that all the secondary committees
Ei are disjoint, to avoid the case where one party has many shares, and thus will be vulnerable to
small leakage rate. One may be tempted to simply force these committees to be disjoint by eliminating
members that appear in previous committees. Indeed, we follow this approach. However, care must
be taken when eliminating parties, since we may eliminate too many honest parties, and remain with
dishonest majority. In Proposition 5.1, we modify Feige’s lightest bit leader election protocol [Fei99]
to select such disjoint committees, where we carefully choose the parameters so that when eliminating
recurring honest parties, we have the guarantee that (with overwhelming probability) we are left with
enough honest parties. In particular, we need to ensure that the sub-committees Ei are not too small.
See details in Section 5.

1.3 Paper Organization

In Section 2 we introduce some preliminaries and notation. Section 3 contains a discussion on the leakage
model considered in this paper. In Section 4 we define and construct a leakage-resilient verifiable secret
sharing scheme, a tool used in our construction. In Section 5 we present a protocol for electing several
disjoint committees. Section 6 contains the construction and proof of our leakage-resilient coin tossing
protocol.
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2 Preliminaries

2.1 Verifiable Secret Sharing

A secret sharing protocol, a notion introduced by Shamir [Sha79], is a protocol that allows a dealer who
holds a secret input s, to share his secret among n parties. The guarantee is that even if t of the parties
are malicious, they gain no information about the secret s. Moreover, the (honest) parties can recover
the secret s from all the shares, even if the malicious parties give malicious shares. Namely, the shares
form a codeword that can be efficiently decoded even in the presence of errors.

Note that a secret sharing scheme does not give any guarantee for a dishonest dealer. A verifiable
secret sharing (VSS) scheme, introduced by Chor et al. [CGMA85], is a secret sharing scheme that
has the additional guarantee that after the sharing phase, a dishonest dealer is either rejected, or is
committed to a single secret s, that the honest parties can later reconstruct.

Definition 2.1 (Verifiable Secret Sharing). An n-party VSS protocol tolerating t malicious parties is
a two-phase protocol for parties P = {P1, ..., Pn}, where a distinguished dealer P ∗ ∈ P holds an initial
input s, such that the following conditions hold for any adversary controlling at most t parties:

• Reconstruction: Even if the dealer is dishonest, at the end of the sharing phase, the joint view
of the honest parties defines a value s′ (which can be computed in polynomial time from this view)
such that at the end of the reconstruction phase, all honest parties will output s′.

• Validity: If the dealer is honest, then s′ = s.

• Secrecy: If the dealer is honest during the sharing phase, then at the end of this phase the joint
view of the malicious parties is independent of the dealer’s input s.

2.2 Multi-Source Randomness Extractors

A multi-source randomness extractor is a deterministic function which takes as input independent
sources, each with sufficient amount of entropy, and outputs a string that is statistically close to uniform.
The notion of entropy that is used is min-entropy.

Definition 2.2. A random variable X ⊆ {0, 1}n is said to have min entropy k, denoted by H∞(X) = k,
if for every x ∈ {0, 1}n, Pr[X = x] ≤ 1

2k
. It is said to have min-entropy rate α if H∞(X) ≥ αn.

2.2.1 Two-Source Extractors

Constructions of two-source extractors are given, for example, by Raz [Raz05] and Bourgain [Bou05].
We use the following simplified version of the Bourgain result in the construction of strongly leakage-
resilient VSS in Section 4.3.

Theorem 2.3 ([Bou05]). There exists a polynomial-time computable two-source extractor Ext2 : ({0, 1}d)2 →
{0, 1}m that takes as input two independent sources X and Y and outputs an m-bit string that is ε-close
to uniform, as long as H∞(X), H∞(Y ) ≥ 1

2d, and where m = Ω(d) and ε = 2−Ω(d).

2.2.2 Robust Multi-Source Extractors

A multi-source extractor is an extractor that takes as input several independent sources, each with
sufficient amount of entropy, and outputs a string that is statistically close to uniform. In this work, we
need such a multi-source extractor that extracts randomness even if some of the sources are “malicious,”
but independent of the “honest” ones.4 Such an extractor, which we refer to as a robust multi-source
extractor, was constructed by Kamp, Rao, Vadhan and Zuckerman [KRVZ06].

4Note that if the malicious sources may depend on the honest ones, then such (deterministic) extractors do not exist.
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Theorem 2.4 ([KRVZ06]). For any constant δ > 0 and every n ∈ N, there is a polynomial-time
computable robust multi-source extractor Ext :

(
{0, 1}d

)n → {0, 1}m that takes as input n independent
sources, each in {0, 1}d, and produces an m-bit string that is ε-close to uniform, as long as the min-

entropy rate of the combined sources is δ, and where m = 0.99δnd and ε = 2−Ω((nd)/ log3(nd)).

2.3 Leakage Lemma

In this section, we prove a lemma regarding entropy loss due to leakage.

Lemma 2.5. Let X be a random variable and L a leakage function on the support of X. Then for
sufficiently large n,

Pr
y←L(X)

[
H∞(X|L(X) = y) ≤ H∞(X)− |L(X)| − log2 n

]
= negl(n).

Proof. Define the set Bad = {y ∈ L(X) : H∞(X|L(X) = y) < H∞(X)− |L(X)| − log2 n}. Suppose for
contradiction Pry←L(X)[y ∈ Bad] > 1

nc for some constant c > 0. Comparing to the average min-entropy

H̃∞(), as defined by Dodis et al. [DORS08], we have

H̃∞(X|L(X)) := − logEy←L(X)2
−H∞(X|L(X)=y)

= − log
(

Pr[y ∈ Bad] · Ey←Bad2
−H∞(X|L(X)=y) + Pr[y /∈ Bad] · Ey←L(X)\Bad2

−H∞(X|L(X)=y)
)

≤ − log
(

Pr[y ∈ Bad] · Ey←Bad2
−H∞(X|L(X)=y)

)
≤ − log

( 1

nc
· 2−(H∞(X)−|L(X)|−log2 n)

)
= c log n+H∞(X)− |L(X)| − log2 n

< H∞(X)− |L(X)|.

But, it is shown in [DORS08] that H̃∞(X|L(X)) ≥ H∞(X) − |L(X)|, yielding a contradiction. Thus,
the lemma holds.

2.4 Feige Committee Election Protocol

Our leakage-resilient coin flipping protocol uses Feige’s lightest bin committee election protocol as a
subroutine [Fei99]. Feige’s protocol gives a method for selecting a committee of approximately k parties
for a given parameter k.5 It consists of one round, in which each party chooses and broadcasts a random
bin in

[
n
k

]
. The committee consists of the parties in the lightest bin.

Lemma 2.6 (Feige). For any constant β > 0 and any k < n, Feige’s lightest bin protocol is a 1-round
public-coin protocol for electing a committee E such that for any set of corrupted parties C ⊂ [n] of size
t = βn,

1. |E| ≤ k,

2. Pr[|E \ C| ≤ (1− β − ε)k] < n
k e
− ε2k

2(1−β) ∀ constant ε > 0,

3. Pr
[
|E∩C|
|E| ≥ β + ε

]
< n

k e
− ε2k

2(1−β) ∀ constant ε > 0.

5In Feige’s original work [Fei99], he considered the specific case of k = logn. For our purpose, we need to elect larger
committees (to achieve negligible error), and thus we consider general k.
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Proof. We first note that by the pigeonhole principle, the lightest bin necessarily contains no more than
n/(nk ) = k parties, implying property (1).

For each bin b and honest party i, we define the indicator variable Xi,b to be 1 if and only if party
i selects bin b. Since we consider only honest parties, this is a Bernoulli random variable with p = k

n .
For a particular bin b, we can now bound the probability that few honest parties selected this bin as
compared to the expected value (1− β)k.

Pr

[∑
i/∈C

Xi,b < (1− β − ε)k

]
= Pr

[∑
i/∈C

Xi,b <

(
1− ε

1− β

)
(1− β) k

]
< e−(1−β)k( ε

1−β )2/2

= e−
ε2k

2(1−β) ,

where the second inequality holds by a Chernoff bound.6 This proves property (2). Now, taking a union
bound, the probability that any bin b has fewer than (1− β − ε)k honest parties will be

Pr[∃ Bin b :
∑
i/∈C

Xi,b < (1− β − ε)k] <
n

k
e−

ε2k
2(1−β) ,

proving property (2). Finally, combining properties (1) and (2), we have that with probability 1 −
n
k e
− ε2k

2(1−β) ,
|E ∩ C|
|E|

= 1− |E \ C|
|E|

≤ 1− (1− β − ε)k
k

= β + ε,

implying property (3).

Corollary 2.7. Feige’s lightest bin protocol for k = log2 n is a 1-round public-coin protocol such that
for any set of corrupted parties C of size βn, for any constant ε > 0, with overwhelming probability in
n, a committee E will be elected such that (1−β−ε) log2 n ≤ |E| ≤ log2 n and |E \C| ≥ (1−β−ε) log2 n.

3 Modeling Leakage in Distributed Protocols

We consider synchronous point-to-point networks with a broadcast channel. Point-to-point channels
are assumed to be authenticated and to provide partial privacy guarantees (see discussion below). We
consider n-party protocols where up to t statically corrupted parties perform arbitrary malicious faults.
More precisely, we consider a computationally unbounded adversary who sees the internal state of all
corrupted parties and controls their actions. We also assume the adversary is rushing, i.e. in any round
he can wait until all honest parties send their messages before selecting the messages of corrupted
parties. Our results hold information theoretically, with no computational assumptions.

In this work we propose a strengthening of the standard model, where in addition the adversary is
able to leak a constant fraction of information on the secret state of each (honest) party. We model
this by allowing the adversary to adaptively make leakage queries (i, f) throughout the protocol, where
i ∈ [n] and f : {0, 1}∗ → {0, 1}, and giving him the evaluation of f on the secret state of party i.
Note that this also captures leakage on communication channels, as parties’ messages are computed as
a function of public information and their personal secret state; thus, we do not need to assume fully
private channels, but rather channels that achieve privacy with bounded information leakage.

For simplicity, we consider length-bounded leakage. Namely, we require that no more than λ|statei|
leakage queries can be made on any single party i’s secret state for some leakage rate λ, where |statei|
denotes the maximal size of the secret state of party i at any given time during the protocol. But, our

6Exact Chernoff bound used: For X1, ..., Xn independent Bernoulli random variables and µ = E[
∑
iXi], then for

0 < δ < 1, it holds that Pr[
∑
iXi < (1− δ)µ] < e−µδ

2/2.
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constructions work equally well in the more general model of [NS09] where the output length of the
leakage on statei is not restricted, as long as the entropy of statei is decreased by no more than the
fraction λ.

Note that in this model, each leakage query is applied to the secret state of a single party. Since
participants of a distributed protocol typically run on different physical hardware (and in fact in many
cases in different locations across the world), it is reasonable to assume each physical attack reveals
information about one party’s execution. To maximize generality within this setting, we allow leakage
queries on different parties’ secret states to be intermingled (i.e., leak some from party i then some from
party j, and then some more from party i), and to be adaptively selected as a function of prior leakage.

We say that a distributed protocol is λ leakage resilient if its original properties are satisfied even
against this type of strengthened leakage adversary. In this paper, we will focus on constructing a
leakage-resilient unbiased coin tossing protocol.

Definition 3.1 (Leakage-Resilient Distributed Coin Tossing). A protocol for parties P = {P1, ..., Pn} is
a λ leakage-resilient m-bit distributed coin tossing protocol tolerating t malicious parties if the following
conditions hold for any adversary controlling at most t parties and leaking up to λ-fraction of the secret
state of each (honest) party:

• Agreement: At the conclusion of the protocol, each party outputs a value vi ∈ {0, 1}m. For all
honest parties Pi, Pj, it holds that vi = vj.

• Randomness: With overwhelming probability in n (even if malicious parties abort prematurely),
the distribution of the honest output value v given the view of the adversary is statistically close
to uniform in {0, 1}m.

4 Verifiable Secret Sharing with Leakage

One of the subroutines in our leakage-resilient coin tossing protocol is a protocol achieving verifiable
secret sharing (VSS) in the presence of leakage. Recall the standard VSS guarantee is that for any
adversary A who corrupts up to t parties, a dishonest dealer is committed to a single secret which
will be reconstructed by honest parties, and the secret input s of an honest dealer retains full entropy
given the view of A at the conclusion of the sharing phase. For our purposes, we will need stronger
guarantees, where for any adversary A who corrupts up to t parties and leaks λ-fraction of each honest
party’s secret state, the VSS reconstruction property still holds, and the secret input s of an honest
dealer retains a constant fraction of its original entropy given the entire view of A (including leakage).
We refer to this property as weak leakage resilience.

In Section 4.1, we show that a modified version of the Shamir secret sharing scheme [Sha79] satisfies
a notion of weak leakage resilience. In Section 4.2, we use this underlying secret sharing scheme to
construct a weakly leakage-resilient VSS protocol by incorporating a method of verifying that the
dealer has distributed good shares.

We note that one can define a stronger version of leakage-resilient VSS, with the requirement that
the secret looks uniform even if all the shares are partially leaked. Although this stronger version is not
required for our coin-tossing construction, we believe that it is of independent interest. We formally
define and construct such a protocol in Section 4.3.

4.1 Weakly Leakage-Resilient Secret Sharing

Recall in the standard Shamir secret sharing scheme, to secret share an input s the dealer samples a
random degree d polynomial a0 + a1x+ · · ·+ adx

d ∈ F[x] such that a0 = s, and generates the shares by
evaluating the polynomial at different points. The degree d of the polynomial is typically chosen to be
equal to the number of assumed corrupted parties, t.

We modify the standard Shamir secret sharing scheme in two ways. First, we take d to be strictly
greater than the number of corrupted parties. Second, we take the relative size of the secret to be
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larger: instead of s being a single element s ∈ F embedded as the single coefficient a0, we consider secrets
s ∈ Fd−t+1 consisting of d−t+1 elements, embedded as the first several coefficients s = a0||a1|| · · · ||ad−t
(where || denotes concatenation). The reason we embed s only as a0, ..., ad−t as opposed to all a0, ..., ad
is to avoid the situation where shares of corrupted parties give information about the secret s. By
increasing the degree and making our secrets larger while maintaining the size of each secret share,
we can allow a higher fraction of leakage from honest shares without reducing the entropy of s by too
much.

This leaves us with the question of how to set d, given values for n and t. The larger the d we
choose, the more leakage we will be able to tolerate while maintaining entropy in the secret s. However,
we also require the original secret to be recoverable even if t parties reveal incorrect shares. To achieve
this we rely on the decoding properties of the Shamir secret sharing scheme when viewed as a Reed-
Solomon error-correcting code [MS81]. Namely, we can uniquely (and efficiently) decode any vector

of secret shares with up to
⌊
n−(d+1)

2

⌋
errors. To guarantee decoding of up to t errors, we must have

d ≤ n − 2t − 1. To maximize leakage resilience while maintaining unique decoding, we will thus take
d = n− 2t− 1.

We now formalize the scheme described above. In future discussions, we will refer to it as the
“modified Shamir” secret sharing scheme and denote it as (SS,RecSS).

• SS(n, t, s). Let d = n− 2t− 1. Split the secret s into (d− t+ 1) pieces: s = a0|| · · · ||ad−t. Choose
t random values ad−t+1, ..., ad ← F. The secret share for party Pi is the evaluation f(i), where
f(x) = a0 + a1x+ · · ·+ adx

d.

• RecSS(m1, ...,mn). Use Reed-Solomon decoding on the vector of shares (m1, ...,mn) to yield
(a0, ..., ad). Output s = a0|| · · · ||ad−t.

Proposition 4.1. For n = (3 + δ)t, the following properties hold.

1. Unique Decoding: Given any vector (s1, ..., sn) of distance at most t from a valid codeword corre-
sponding to a secret s, the output of RecSS(s1, ..., sn) will be s.

2. Leakage Resilience: For any adversary corrupting up to t parties and leaking a total of ` bits on
the secret state of honest parties, with overwhelming probability in n, the secret s retains at least
H∞(S)− `− log2 n = δt log |F| − `− log2 n bits of min-entropy.

Proof. Property 1 holds immediately from the decoding property of Reed-Solomon codes [MS81]. Prop-
erty 2 holds since H∞(S) = (d − t + 1) log |F| = ((n − 2t − 1) + 1) log |F| = δt log |F|, together with a
standard entropy argument (see Lemma 2.5).

4.2 Weakly Leakage-Resilient VSS

In our coin tossing protocol, we make use of a VSS protocol satisfying the following notion of weak
leakage resilience.

Definition 4.2 (Weakly Leakage-Resilient VSS). A (λ, ε)-weakly leakage-resilient VSS protocol tol-
erating t malicious parties for parties P = {P1, ..., Pn} is a protocol with two phases (sharing and
reconstruction), where a distinguished dealer P ∗ ∈ P holds an initial input s, such that with overwhelm-
ing probability in n, the following conditions hold for any adversary A controlling at most t parties and
leaking up to λ fraction of the secret state of each (honest) party:

• Reconstruction: Even if the dealer is dishonest, at the end of the sharing phase, the joint view
of the honest parties defines a value s′ (which can be computed in polynomial time from this view)
such that at the end of the reconstruction phase, all honest parties will output s′.

• Validity: If the dealer is honest, then s′ = s.

11



• Secrecy: If the dealer is honest during the sharing phase, then it holds with overwhelming proba-
bility over y ← viewA(S) that H∞(S|viewA(S) = y) ≥ εH∞(S), where viewA(s) denotes the view
of A at the conclusion of the sharing phase of the protocol using secret s.

We now construct a (λ, ε)-weakly leakage-resilient VSS protocol (ShareLR,RecLR), taking inspiration
from the VSS construction of [BGW88]. We use as a black box the modified Shamir secret sharing
scheme with polynomial degree d = n− 2t− 1 (see Section 4.1 above).

Let F be a field such that log |F| = 2n. We define the protocol (ShareLR,RecLR) as follows.

• ShareLR(s):

1. Round 1: The dealer P ∗ selects two values r, r′ ← Fδt uniformly at random, and runs
three independent executions of the modified Shamir secret sharing algorithm (as defined
in Section 4.1): (s1, ..., sn) ← SS(n, t, s), (r1, ..., rn) ← SS(n, t, r), (r′1, ..., r

′
n) ← SS(n, t, r′).

Recall the modified Shamir scheme uses polynomial degree d = n− 2t− 1. To each party i,
the dealer sends the corresponding three shares si, ri, and r′i.

2. Round 2: Each party Pi broadcasts three random pairs of bits αi, βi, γi ∈ {0, 1}2. Take
α, β, γ to be the corresponding elements in F with bit descriptions (α1, ..., αn), (β1, ..., βn),
(γ1, ..., γn). (Recall log |F| = 2n).

3. Round 3: Each party Pi broadcasts the linear combination of his shares

αsi + βri + γr′i ∈ F.

4. Round 4: Consider the received vector v = (v1, ..., vn), where supposedly vi = αsi + βri +
γr′i ∀i.

– If v is a valid codeword (i.e., all points lie on a degree-d polynomial), the dealer is
accepted, and the sharing phase concludes.

– If v is distance > t away from a valid codeword, the dealer is rejected, and the sharing
phase concludes.

– Otherwise, let D ⊂ [n] be the components i in disagreement with those of the nearest
codeword. For each i ∈ D, the dealer P ∗ broadcasts all three shares si, ri, r

′
i. If any

linear combination αsi +βri + γr′i with i ∈ D is inconsistent with the nearest codeword,
the dealer is rejected. Otherwise, all parties continue to the next step.

5. Rounds 5-6: Repeat Rounds 2-3. That is, each party broadcasts a new triple of random
α̃i, β̃i, γ̃i and then broadcasts the linear combination ṽi = α̃si + β̃ri + γ̃r′i of his shares.

6. Local Computation: Consider the new vector ṽ of values received in Round 6, where
∀i ∈ D we use the values (s,ri, r

′
i) broadcast by the dealer in Round 4.

– If ṽ is distance > t away from a valid codeword, the dealer is rejected.

– Otherwise, let D̃ be the set of parties whose components differ from the codeword closest
to ṽ.

∗ If D ∩ D̃ 6= ∅ or |D ∪ D̃| > t, then the dealer is rejected.

∗ Otherwise, the dealer is accepted.

• RecLR():

1. Round 1: Each party Pi broadcasts his share si.

2. Local Computation: Locally, Pi runs the modified Shamir secret sharing reconstruction
algorithm s′ ← RecSS(s′1, ..., s

′
n), where s′i is the value broadcast by party Pi, and outputs

this value s′.
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Theorem 4.3. Let n = (3+δ)t for some constant δ > 0. Then for any constants ε < 1 and λ ≤ δ(1−ε)
10+6δ ,

the protocol (ShareLR,RecLR) described above is a (λ, ε)-weakly leakage-resilient VSS protocol tolerating
t malicious parties that runs in O(1) rounds.

Proof. We show that (ShareLR,RecLR) satisfies the validity, reconstruction, and secrecy properties de-
scribed in Definition 4.2.

Validity. If the dealer is honest, then only malicious parties can complain of bad shares; the dealer
will broadcast honest shares to the complaining parties and thus will not be rejected. Further, by the
unique decoding property of the underlying modified Shamir secret sharing scheme (Property 4.1.1),
any secret sharing of s with up to t corrupted shares will be uniquely decoded to yield the original
secret s.

Reconstruction. Consider the case of a dishonest dealer: we show that if the dealer is not rejected,
then at the end of the sharing phase all honest parties hold consistent shares of some value s. This will
be sufficient to argue that all honest parties will output s at the conclusion of the reconstruction phase,
again by Property 4.1.1.

Lemma 4.4. If the dealer is accepted in the sharing phase of the protocol, then at the conclusion of the
sharing phase all honest parties hold shares consistent with a single degree-d polynomial.

Before we prove the lemma, we introduce some notation and prove a claim that we will invoke later.
Let H ⊆ [n] be the set of honest parties. For any vector v ∈ Fn and subset W ⊆ [n], we denote by vW
the vector in F|W | formed by taking the components vi with i ∈ W . We say that a set of shares vW is
“d-consistent” if the interpolation of the corresponding points yields a polynomial of degree no greater
than d. Note that any set of at most d+ 1 shares is trivially d-consistent.

Claim 4.5. Let p1, p2, p3 ∈ F[x] be polynomials with deg p1 > d. Then for any distributions A,B,C
over F such that H∞(A), H∞(B), H∞(C) ≥ k, it holds that

Pr
α←A,β←B,
γ←C

[deg(αp1 + βp2 + γp3) ≤ d] ≤ 1

2k−1
.

Proof. Consider the term of highest degree axd
′
in p1, and let bxd

′
and cxd

′
be the terms of corresponding

degree in p2 and p3.

Pr[deg(αp1 + βp2 + γp3) ≤ d] ≤ Pr[αa+ βb+ γc = 0]

≤ Pr[α = 0] + Pr[αa+ βb+ γc = 0|α 6= 0]

≤ 1

2k
+ Pr[a = −α−1(βb+ γc)|α 6= 0]

≤ 1

2k
+

1

2k
=

1

2k−1
.

We will use this claim to argue that if any collection of shares sW (or rW or r′W ) of size |W | > d+ 1
is not d-consistent (ie, they interpolate to a polynomial of degree strictly greater than d), then with
high probability over the choice of α, β, γ, the linear combination of these shares αsW + βrW + γr′W
will not be d-consistent.

Proof of Lemma 4.4. Consider the vector v = (v1, ..., vn) received in Round 4 of the protocol, where
allegedly vi = αsi + βri + γr′i ∀i. Recall if v is distance greater than t from any codeword, then the
dealer is rejected at this stage, and the lemma holds. Otherwise, there exists a unique codeword closest
to v, corresponding to some polynomial p of degree d, and we define D ⊆ H be the set of honest parties
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i for which vi 6= p(i).7 For each such party i ∈ D, update their shares si, ri, r
′
i with the corresponding

values broadcast by the dealer.
Consider the collection of shares vH\D. By definition of D, this collection of remaining shares is

d-consistent. Since these are honest parties, we know that vi = αsi + βri + γr′i for each i ∈ H \ D.
Claim 4.5 tells us that for any set W ⊂ [n] chosen before α, β, γ,

Pr
α,β,γ

[(vW d-consistent) ∧ (sW not d-consistent)] ≤ 2−(k−1),

where k = H∞(α) = H∞(β) = H∞(γ). Note since |αi| = |βi| = |γi| = 2 and the number of honest
parties is n − t, then k ≥ 2(n − t). In our case, the set H \ D is not defined a priori, but rather is
determined as a function of the random variables α, β, γ themselves, so we cannot apply this claim for
W = H \D outright. But,

Pr
α,β,γ

[(vH\D d-consistent)∧(sH\D not d-consistent)]

≤ Pr
α,β,γ

[∃W ⊆ [n] s.t. (vW d-consistent) ∧ (sW not d-consistent)]

≤ (2n)(2−(k−1))

= (2n)2−2(n−t)+1

= 2Ω(n),

where the second inequality follows from the union bound and Claim 4.1, and the last equality follows
from the fact that n = (3 + δ)t. The same probability bound holds for rH\D and r′H\D in the place

of sH\D. Thus, by a simple union bound, the probability that any one of sH\D, rH\D, or r′H\D is not
d-consistent given that v is d-consistent is negligible, and thus we will assume it is not the case.

In particular, this implies the shares ṽH\D, defined by ṽi = α̃si + β̃ri + γ̃r′i ∀i ∈ H \ D, are d-
consistent. Consider the rest of this vector ṽ = (ṽ1, ..., ṽn) received in Round 5 of the protocol. We
wish to show that either the updated shares of s held by honest parties (sH) are all d-consistent, or the
vector ṽ will lead us to reject the dealer. We consider two cases:

Case 1: ṽH is d-consistent. In this case, by Claim 4.5, with probability at least 1 − 2−(k−1) =
1−negl(n) we have that sH is d-consistent, and we are done. (Note that here Claim 4.5 can be applied
directly, since the set H does not depend on α̃, β̃, γ̃).

Case 2: ṽH is not d-consistent. We show that in this case the dealer is rejected. If ṽ is distance
greater than t from any codeword, then the dealer is rejected immediately, and we are done. Otherwise,
there is a unique closest codeword to ṽ, corresponding to some polynomial p̃ of degree d. Let D̃ ⊆ H
be the set of honest parties i for which ṽi 6= p̃(i). If D ∩ D̃ 6= ∅, then the dealer will be rejected,
and again we are done. So assume ṽi = p̃(i) for all i ∈ D. We know that ṼH\D is d-consistent,
corresponding to the evaluations of some degree d polynomial p′. But, since we are in the case that
ṽH is not d-consistent, it must be that p′ 6= p̃. Since p′ and p̃ are polynomials of degree d, this
means p′(i) can equal p̃(i) for at most d values of i. Thus, |D̃| ≥ |H \ D| − d. But, this means
|D ∪ D̃| ≥ |D| + (|H \D| − d) = |H| − d = (2 + δ)t − ((1 + δ)t − 1) = t + 1, and therefore the dealer
will be rejected.

Secrecy. We now consider the case of an honest dealer, and show that even an adversary who
corrupts t parties and leaks cannot learn too much about the secret value s.

Lemma 4.6. Let s ← Fδt. Let A be a computationally unbounded adversary for the VSS protocol
who adaptively leaks a total of ` bits from shares of honest parties during the execution of the protocol.

7Note the minor inconsistency in notation, where before we defined D to be the set of all parties (not just honest
parties) whose component is in disagreement.
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Let viewA(s) denote the view of A at the conclusion of the sharing phase. Then with overwhelming
probability in n,

H∞(S|viewA(s)) ≥ H∞(S)− `− log2 n,

where the probability is taken over s← S and the random coins of all parties.

Proof. At the conclusion of the sharing phase, the adversary has received three pieces of information:
(1) the secret shares of corrupted parties {si, ri, r′i}i∈C , (2) the answers to his leakage queries L, and
(3) the linear combinations (αs+ βr + γr′), (α̃s+ β̃r + γ̃r′).

H∞(S|viewA(s)) = H∞
(
S|({si, ri, r′i}i∈C , L, (αS + βR+ γR′), (α̃S + β̃R+ γ̃R′))

)
≥ H∞

(
S|({si, ri, r′i}i∈C , (αS + βR+ γR′), (α̃S + β̃R+ γ̃R′))

)
− `− log2 n

with overwhelming probability, since |L| ≤ ` (see Lemma 2.5).

= H∞
(
S|((αS + βR+ γR′), (α̃S + β̃R+ γ̃R′))

)
− `− log2 n

since any t shares are independent of S,R,R′.

= H∞(S)− `− log2 n

with overwhelming probability, since αS + βR+ γR′ and α̃S + β̃R+ γ̃R′ are

independent of S for any nonzero fixed choice of coefficients α, β, γ, α̃, β̃, γ̃.

What remains is to prove that H∞(S) − ` − log2 n ≥ εH∞(S), where ` is the total amount of

leakage. Recall that the adversary can leak λ = δ(1−ε)
10+6δ fraction of each honest party’s secret state.

The secret state of each non-dealer party consists of precisely three elements of F, corresponding to
his shares si, ri, and r′i. Note that αi, βi, γi, α̃i, β̃i, γ̃i are broadcast immediately after being generated,
and thus are not part of the secret state. The dealer must hold additional secret information, since he
must be able to produce a valid secret share for any complaining party in Round 4. Thus, he must
store 3(d + 1) = 3(1 + δ)t secret elements of F, corresponding to the coefficients of the secret sharing
polynomials for s, r, and r′. Thus,

` = λ
∑
i/∈C

|statei| = λ
(

(n− t)(3 log |F|) + 3(d+ 1) log |F|
)

= λ
(

(2 + δ)t(3 log |F|) + 3(1 + δ)t log |F|
)

= 3t log |F|λ
(
2 + δ + 1 + δ

)
= 3t log |F|λ(3 + 2δ)

Combining this with Lemma 4.6, we have that with overwhelming probability:

H∞(S|viewA(s)) ≥ H∞(S)− `− log2 n

= δt log |F| − 3t log |F|λ(3 + 2δ)− log2 n

= t log |F|
(
δ − λ3(3 + 2δ)− log2 n

t log |F|

)
≥ t log |F|

(
δ − λ

(
(9 + 6δ) +

1

n

))
≥ t log |F|

(
δ − λ(10 + 6δ)

)
= t log |F|

(
δ − δ(1− ε)

10 + 6δ
(10 + 6δ)

)
= εδt log |F| = εH∞(S)
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Thus, the protocol (ShareLR,RecLR) satisfies the properties of a (λ, ε)-weakly leakage-resilient VSS
protocol.

4.3 Strongly Leakage-Resilient (Oblivious) VSS

For our coin tossing protocol, we only need VSS achieving a weak notion of leakage resilience, where for
any adversary who corrupts t parties and leaks a constant fraction of the secret state of the remaining
parties, the secret still retains a constant fraction of its original entropy. However, one can also consider
a stronger version of leakage resilience, where the secret retains its full entropy.

Naturally, this notion cannot be achieved if any party knows the secret in its entirety, since the
adversary can simply leak on this value outright. In particular, this immediately rules out the possibility
of standard VSS, since the dealer himself cannot know the secret! We thus put forth the notion of
oblivious secret sharing, where the dealer secret shares a random value without knowing its value. We
also show that this is, in fact, achievable (see below). We believe that leakage-resilient oblivious VSS
primitives can serve as a useful building block for constructing future leakage-resilient protocols, which
anyway make use of VSS in this fashion (e.g., in [FM85] to achieve Byzantine Agreement).

Definition 4.7 (Strongly Leakage-Resilient (Oblivious) VSS). A λ-strongly leakage-resilient (oblivious)
VSS protocol tolerating t malicious parties for parties P = {P1, ..., Pn} is a protocol with two phases
(sharing and reconstruction), such that with overwhelming probability in n, the following conditions hold
for any adversary controlling at most t parties and leaking up to λ fraction of the secret state of each
(honest) party:

• Reconstruction: Even if the dealer is dishonest, at the end of the sharing phase, the joint view
of the honest parties defines a value s′ (which can be computed efficiently from this view) such
that at the end of the reconstruction phase, all honest parties will output s′.

• Secrecy: If the dealer is honest during the sharing phase, then it holds with overwhelming proba-
bility over y ← viewA that at the end of this phase the view of the adversary (consisting of shares
of corrupted parties and leakage on remaining shares) is independent of this value s′.

Even without leakage considerations, it is not immediately clear whether one can hope to achieve
oblivious secret sharing robust to malicious parties. Consider, as an example, the Shamir secret sharing
scheme. The dealer can sample random values for individual shares; but in order to ultimately make
the shares consistent, he must somehow sample from a polynomial—without knowing the polynomial!

We show that this can be done. In Appendix A, we present a λ-strongly leakage-resilient (oblivious)
VSS protocol for λ = Ω(1), tolerating t ≤ n

3+δ malicious parties (for any constant δ > 0). Our
construction uses the tool of a weakly leakage-resilient VSS protocol as a black box (see Definition 4.2).
At a high level, the protocol works by having the dealer sample and share two random values x and y
using the weakly leakage-resilient protocol; the final output will be Ext2(x, y), where Ext2 is a two-source
extractor. To ensure that information is never leaked on x and y together, the dealer first samples and
verifiably secret shares x, erases it, then samples and verifiably secret shares y. (Note that we do not
need to assume complete erasures, but rather can allow some fraction of information to remain, which is
simply treated as leakage). As before, to ensure independence, instead of sharing x and y to all parties,
he will share x and y among two disjoint committees, which are selected by all parties using a version
of the Feige committee election protocol.

Theorem 4.8. Let n = (3 + δ)t for any constant δ > 0. Then for any constant λ ≤ δ
4(5+3δ) , there

exists a strongly leakage-resilient (oblivious) VSS protocol tolerating t malicious parties that runs in
O(1) rounds.

Proof. See Appendix A.
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5 Disjoint Committee Election

We now exhibit a 1-round public-coin protocol for electing m = log2 n disjoint “good” committees
E1, ..., Em of size approximately n1/2.

Let m = log2 n and k = n1/2. We consider m parallel repetitions of the Feige lightest bin protocol
with n

k bins (See Section 2.4). Then, to ensure disjointness of the committees, we remove parties who
are elected to multiple committees from all but the first in which they appear.

More explicitly, we define the protocol ElectDisj as follows. In a single round, each party i ∈ [n]
broadcasts m random values ri1, ..., r

i
m ←

[
n
k

]
. Locally, everyone iterates through j = 1, ...,m, setting

Ej to be the set of parties in the lightest bin in the jth election, defined by r1
j , ..., r

n
j ; then, to ensure

disjointness, all parties who have been previously elected to any committee are removed from Ej , and
this becomes the final jth elected committee.

Proposition 5.1. The protocol ElectDisj 1-round public-coin protocol for electing m = log2 n committees
Ei such that for any constants β, ε > 0, and any set of corrupted parties C ⊂ [n] of size βn, the following
events simultaneously occur with overwhelming probability in n:

1. ∀i 6= j, Ei ∩ Ej = ∅,

2. ∀i, (1− β − ε)n1/2 ≤ |Ei| ≤ n1/2,

3. ∀i, |Ei∩C||Ei| < β + ε.

Proof. By construction, property (1) holds immediately. Further, by Corollary 2.7, each Ej is of size at
most k and has at least (1 − β − ε

2 )k honest parties before erasures. It thus remains to show that by
removing parties who appear in multiple committees, we do not decrease the number of honest parties
in any committee by too much.

Consider an execution of the protocol. In particular, consider the placement of all honest parties in
bins for all of the parallel elections, ignoring any actions of malicious parties. We will prove that with
overwhelming probability, for any choice of j ∈ [m] and any choice of bins B1, ..., Bm (one from each
election), the number of honest parties that would be erased from Bj , given that B1, ..., Bj are elected,
is at most ε

2k. That is,

Pr
[
∃ j ∈ [m], {Bj′}j′≤j s.t.

∣∣∣Bj ∩ ( ⋃
j′<j

Bj′
)∣∣∣ > ε

2
k
]

= negl(n). (1)

If equation (1) holds, then with overwhelming probability, even after erasing recurring parties, each
elected committee must contain at least (1 − β − ε

2 )k − ε
2k = (1 − β − ε)k honest parties, implying

property (2). Further, since each |Ei| ≤ k, then with overwhelming probability we will have

|Ei ∩ C|
|Ei|

= 1− |Ei \ C|
|Ei|

≤ 1− (1− β − ε)k
k

= β + ε,

implying property (3).
We now prove that equation (1) holds. Consider any fixed choice of j ∈ [m] and bins B1, ..., Bj .

Denote by Sj the set
⋃
j′<j Bj′ . We can assume that(

1− β − ε

2

)
(j − 1)k ≤ |Sj | ≤ (j − 1)k; (2)

the lower bound is guaranteed with overwhelming probability by Corollary 2.7, and the upper bound
can be assumed since any bin with more than k parties will never be elected as a lightest bin, and thus
can be ignored.

For each party i ∈ Sj , let Xi be the indicator variable that is equal to 1 iff party Pi selected bin
Bj in the jth election. Namely,

∑
i∈Sj Xi = |Bj ∩ (

⋃
j′<j Bj′)|. Since we are considering only honest
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parties, Pi selects a bin uniformly at random, and so the Xi are Bernoulli variables with probability k
n .

By equation (2) above, the expected value of the sum µ = E[
∑
i∈Sj Xi] satisfies

µ ≤ (j − 1)k
k

n
≤ (log2 n)

(n1/2)2

n
= log2 n, and

µ ≥
(

1− β − ε

2

)
(j − 1)k

k

n
≥
(

1− β − ε

2

)
.

For any constant ζ > 0, the Chernoff bound8 gives us

Pr
[ ∑
i∈Sj

Xi > nζµ
]
< 2−n

ζµ < 2−cn
ζ

,

where c = (1−β− ε
2 ). Taking a union bound over all possible values of j ∈ {1, ...,m} and all (nk )j ≤ (nk )m

choices of bins B1, ..., Bj , we have

Pr
[
∃ j ∈ [m], {Bj′}j′≤j s.t.

∑
i∈Sj

Xi > nζ log2 n
]
≤ m

(n
k

)m
2−cn

ζ

≤ 2−cn
ζ/2

,

which is negligible in n. Since
∑
i∈Sj Xi = |Bj ∩ (

⋃
j′<j Bj′)|, and nζ log2 n < ε

2k = ε
2n

1/2 for any

ζ < 1
2 , this implies equation (1). Hence, by the discussion above, properties (2) and (3) hold.

6 Unbiased Coin Tossing with Leakage

In this section, we construct our final leakage-resilient coin tossing protocol, as characterized by Def-
inition 3.1. Our construction makes black-box use of the tools developed in the previous sections: in
particular, a weakly leakage-resilient verifiable secret sharing (VSS) protocol (from Section 4.2), and a
disjoint committee election protocol (from Section 5).

Recall we are within the model of a synchronous point-to-point network with broadcast, and that
channels are assumed to be authenticated and private (with leakage). Our results are information
theoretic, without cryptographic assumptions.

Theorem 6.1. For any constants δ, ε > 0, any λ ≤ δ(1−ε)
10+6δ , any n ≥ (3 + δ)t, and any m, there exists a

λ-leakage-resilient n-party distributed coin tossing protocol tolerating t malicious parties that generates
m unbiased random bits, and terminates in O(1) rounds.

Proof. Let δ′ be any constant such that δ′ < δ. We construct the desired coin tossing protocol using
the following tools, with the corresponding listed parameters:

1. Elect: Feige’s 1-round public-coin protocol to elect a primary committee of size approximately
log2 n, as in Corollary 2.7.

2. ElectDisj: a 1-round public-coin protocol for electing log2 n disjoint secondary committees of size
n′ ≈ n1/2,9 as in Proposition 5.1.

3. (ShareLR,RecLR): a (λ, ε)-weakly leakage-resilient VSS protocol for n′ parties, tolerating t′ ≤ n′

3+δ′

malicious parties, terminating in O(1) rounds, as in Theorem 4.3.

4. Ext : ({0, 1}d)log2 n → {0, 1}m: a robust multi-source extractor, where m = .99( 2
3 log2 n)(εd), as

in Theorem 2.4. We interpret each element {0, 1}d as an element of Fδ′t′ (d = δ′t′ log |F|) where
the size of F depends on the desired output length m.

8Exact Chernoff bound: For X1, ..., Xn independent Bernoulli random variables and µ = E[
∑
iXi], then for a > 6, it

holds that Pr[
∑
iXi > aµ] < 2−aµ.

9Note that we will use prime notation (e.g., n′, t′, δ′) to denote parameters pertaining to the secondary committees.
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We now construct the desired coin tossing protocol.

CoinToss:

1. Step 1: Run Elect to elect a primary committee of approximate size log2 n (see Corollary 2.7).
Denote the set of indices of elected parties by E ⊂ [n].

2. Step 2: Run the ElectDisj protocol on the remaining parties [n] \ E to elect |E| disjoint secondary
committees E ′1, ..., E ′|E|, each of size approximately n1/2 (see Proposition 5.1).

3. Step 3: ∀i ∈ E , Pi samples a random value ri ← Fδ′t′ and verifiably secret shares it among the
parties in his corresponding secondary committee, E ′i . That is, he acts as a dealer in an execution
of ShareLR(ri).

4. Step 4: For each i ∈ E , all parties in the secondary committee E ′i execute the reconstruction
phase ri ← RecLR() on the shares dealt by Pi. For any party i ∈ E who was rejected as a dealer
in the previous step, set ri = 0. Each secondary committee member broadcasts his reconstructed
value for ri.

5. Local Computation: Let r∗i be the most common value received from the parties in secondary
committee E ′i in the previous step. Output r ← Ext({r∗i }i∈E).

By Proposition 5.1, with overwhelming probability in n, the disjoint secondary committees E ′i will
be “good,” in that they each have size n1/2−ζ ≤ |E ′i | ≤ n1/2 for any constant ζ > 0 and it holds
that n′i ≥ (3 + δ′)t′i, where n′i = |E ′i | and t′i = |E ′i ∩ C|. We will thus assume this is the case. Since
n′i ≥ (3 + δ′)t′i, the validity, reconstruction, and secrecy properties of the (λ, ε)-weakly leakage-resilient
VSS protocol (see Definition 4.2) will hold for the ith execution of (ShareLR,RecLR) with overwhelming
probability in n′i (and thus in n).

We now show that the protocol CoinToss satisfies the desired agreement and randomness properties
(see Definition 3.1).

Agreement By the reconstruction property of the leakage-resilient VSS protocol, for each Pi ∈ E ,
the honest parties in E ′i will agree on the reconstructed value ri ← RecLR() and will broadcast this value
to all parties in Step 4 (where ri = 0 if Pi was rejected as a dealer in the sharing phase of the VSS).
Since a majority of the parties in E ′i are honest, all honest parties in [n] will agree on r∗i = ri for each
i, and so will agree on the final output r.

Randomness Consider the values ri reconstructed by each secondary committee E ′i . By the recon-
struction property of the leakage-resilient VSS, each ri is fully determined by the conclusion of the
sharing phase (Step 3 of the CoinToss protocol). The secrecy property of the leakage-resilient VSS
implies that at the end of the sharing phase, even given the view of the adversary (viewA), each honest
party’s ri retains at least ε ·(δ′t′ log |F|) bits of entropy. Therefore, conditioned on viewA (which includes
leakage), the random variables r∗1 , ..., r

∗
|E| ∈ Fδ′t′ are independent, where for all j ∈ E ∩ C we think of

r∗j as fixed. Further, together they have total min-entropy at least (|E \ C|)(εδ′t′ log |F|). By Corollary

2.7, |E \ C| ≥ (1− 1
3+δ − ζ) log2 n for any constant ζ > 0 with overwhelming probability in n. Since the

extractor we use can extract even when many of the sources r∗j are fixed, we can simply take the loose

bound |E \ C| ≥ 2
3 log2 n. By Theorem 2.4, the final output r = Ext({r∗i }i∈C) will be statistically close

to uniform over {0, 1}m with m = .99( 2
3 log2 n)(εδ′t′ log |F|).
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A Proof of Theorem 4.8

In this section, we provide a construction and proof of a strongly leakage-resilient (oblivious) VSS
protocol.

Proof of Theorem 4.8. Let δ′ be any constant such that δ′ < δ. Fix any constant 0 < ε < 1. We
construct the desired protocol (ShareSLR,RecSLR), making use of the following tools:

1. Elect: Feige’s 1-round public-coin protocol to elect a primary committee of size approximately
n′ = nε, as in Lemma 2.6.

2. (ShareWLR,RecWLR): a
(
λ, 1

2

)
-weakly leakage-resilient VSS protocol for n′ parties tolerating t′ =

n′

3+δ′ corrupted parties, terminating in O(1) rounds, as in Theorem 4.3. (Recall 1
2 refers to the

fraction of entropy guaranteed to remain in the secret.)

3. Ext2 : {0, 1}k × {0, 1}k → {0, 1}m: a two-source extractor, where k = δ′t′ log |F| and m = Ω(k),
as in Theorem 2.3.

• ShareSLR():

1. Step 1: Run Elect to elect a committee E1 of approximate size n′ = nε from the set of
non-dealer parties [n] \ {P ∗} (see Lemma 2.6).

2. Step 2: The dealer P ∗ samples a random value x ← Fδ′t′ and verifiably secret shares it
among the parties in the committee E1. That is, he acts as a dealer in an execution of
ShareWLR(x). He then erases x (and all values related to x).

3. Step 3: Run Elect to elect a second committee E2 of approximate size n′ from [n]\({P ∗}∪E1)
(see Lemma 2.6).

4. Step 4: The dealer P ∗ samples a random value y ← Fδ′t′ and verifiably secret shares it
among the parties in the committee E2. That is, he acts as a dealer in an execution of
ShareWLR(y). He then erases y (and all values related to y).

5. Step 5: Each party in E1 and E2 broadcasts Accept or Reject, corresponding to whether the
dealer was accepted or rejected in ShareWLR(x) during Step 2 or 4, respectively.

6. Local Computation: The dealer is accepted if a majority of parties in both E1 and E2
broadcast Accept. Otherwise, the dealer is rejected.

• RecSLR():

1. Step 1: All parties in E1 (respectively, E2) execute the reconstruction phase x ← RecWLR()
(resp, y ← RecWLR()), on the shares dealt in Step 2 (resp, Step 4). Each committee member
broadcasts his reconstructed value of x (resp, y).

2. Local computation: Let x∗, y∗ be the most common value received from the parties in E1
and E2, respectively, in the previous step. Output s← Ext2(x∗, y∗).

By Lemma 2.6, with overwhelming probability in n, both committees E1, E2 will be “good,” in that
they each have size nε/2 ≤ |Ei| ≤ nε and it holds that n′i ≥ (3 + δ′)t′i, where n′i = |Ei| and t′i = |Ei ∩ C|
for i ∈ {1, 2}. We will thus assume this is the case. Since n′i ≥ (3 + δ′)t′i, the validity, reconstruction,
and secrecy properties of the (λ, 1

2 )-weakly leakage-resilient VSS protocol (see Definition 4.2) will hold
for the ith execution of (ShareWLR,RecWLR) with overwhelming probability in n′i (and thus in n).

We now show that (ShareSLR,RecSLR) satisfies the reconstruction and secrecy properties given in
Definition 4.7.
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Reconstruction By the reconstruction property of the underlying λ-weakly leakage-resilient VSS
protocol, the honest parties in E1 (respectively, in E2) will agree on the reconstructed value x′ ←
RecWLR() (resp, y′ ← RecWLR), and will broadcast this value to all parties in Step 1 of the reconstruction
phase. Since a majority of the parties in Ei are honest, all honest parties in [n] will agree on the values
of x∗ = x, y∗ = y, and thus will output the same value Ext2(x∗, y∗).

Secrecy Assume the dealer is honest. Note that since the dealer erases x (and all values related to x)
before generating y, any leakage function will be a function of purely x or y, when conditioned on prior
leakage. Thus, conditioned on the leakage, the reconstructed values of x and y will be independent. By
the secrecy property of the underlying λ-weakly leakage-resilient VSS protocol, given the view of the
adversary, both x and y retain at least 1

2 of their original entropy. Therefore, by Theorem 2.3, the final
output Ext2(x, y) will be statistically close to uniform over {0, 1}m for m = Ω(k).
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