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Abstract

Concatenation is a method of building long codes out of
shorter ones; it attempts to meet the problem of decoding
complexity by breaking the required computation into

manageable segments. We present theoretical and
computational results bearing on the efficiency and
complexity of concatenated codes; the major theoretical

results are:

1) Concatenation of an arbitrarily large number of codes
can vield a probability of error decreasing exponentially
with the overall block length, while the decoding complexity
increases only algebraically;

2) Concatenation of a finite number of codes vyields an
error exponent inferior to that attainable with a single
stage, but nonzero at all rates below capacity.

Computations support these theoretical results, and in
addition give insight into the relationship between
modulation and coding.

This approach illuminates the special power and
usefulness of the class of Reed-Solomon codes, We give an
original presentation of their structure and properties,
from which we derive the properties of all BCH codes; we
determine thelr weight distribution, and consider in detail
the implementation of their decodingzg algorithm, which we
have extended to correct both erasures and errors and have
otherwise improved. We show that on a particularly suitable
channel, RS codes can achieve the performance specified by
the coding theorem,

Finally, we present a generalization of the use of
erasures in minimum distance decoding, and discuss the
appropriate decoding techniques, which are an linteresting
hybrid between decoding and detection.
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Chapter 1. Introduction

It will soon be twenty vears since Shannon’ announced
the coding theorem. The promise of that theorem was great:
a probability of error exponentially small in the bfock
length at anvy information rate below channel capacity.
Finding a way of implementing even moderately long codes,
howéver, proved much more difficult than was at first
imagined; only recently, in fact, have there been invented
codes and decoding methods powerful enough to Iimprove
communications system performance significantly vyet simple
enough to be attractive to build. )

The work described here is an approach to the preblem
of coding and decoding comp}exity. It is based on the
premise that we may not mind using codes ten to a hundred
times longer than the <coding theoram proves to. be
sufficient, If by so doing we arrive at a code we can
implement. The idea is basically that used In designing any
1arge system: Dbreak the systen down into subsystems of a
s5ize we can handie, which can be joined toﬁether to perform
vthe functions of the large svstem. A system so designed may
be suboptimal in comparison with a single system designed

~all of a piece, but as long as the nonoptinalities are not
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crippling, the segmented approach may be the preferred

engineering solution.

1,1 The Codins Theoremn for Discrets Memorvless Channels

The coding theorem is an existence theoren. 1t applies

to many types of channels, but generally it 1is similar to
the coding theorem for hlock codes on discrete mamoryless
| ] : . e . , . 5
channels, which will now be stated In 1ts most mouern Torm,

A discrete memnorvless channel has | inputs x; ,

.

outputs ﬁ" and a characteristic transition probability
matrix p}',;E.Pr(yj_ /%;). 0On each use of the channel, one of
the inputs x is selected by the transnmitter. The
output Vi is,p; ; the memcry]essness of the channel implias
that these probabilities are the sane for each transmission,
regardless of what happened on any other transmissiocn. A

L

code word of length H for such a channel then consists of a

sequence of N symhols, each of which cones from an 1-symhol
a]@haSez and denotes one of the | channel ihputs; upon  the
transmission of such a word, a received word of fength B
hecomes avai]able to the receiver, where how the received
symbols are from a J-symbol alphabet and correspond to the
channel outputs. A block code of length N and rate R (nats)
mn' MR o N

consists of e code words of length i, Clearly e £ 1 ;

sometimes we will use the dimensionless rate r, 0 £ r = 1,

defined by I" = e or R = r 1n I.
The problem of the receiver is generally to decide

which of the e?? code words was sent, given the received
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word; a wrong choice we call an error. We shall assume
throughout the thesis that all code words are equally
likely; then the optimal strategy for the receiver in

principle, though rarely feasible, 1s to compute the

probability of getting the received word, given each code

{

word,  and to choose that code word vfor which this
pkobabi1ity is greatest; this strategy 1is called maximuwn
likelihood decoding. The coding theorem then asserts that
there exists a block code of length M and rate R such that
with maximum likelihood decoding the probability of decoding

error is bounded by

() £ e

-WVE (R)

where E(R), the error exponent, is characteristic of the

channel, and is positive for all rates less than C, called
City.

Figure 1 shows the error exponent for the binary

syrmmetric channel whose crossover probability is .0l-- that
is, the discrete memoryless channel with transition
probability matrix p, = p,, = .99, Pz = P, = .01 As is

typical, this curve has three segments: two convex CUrves
joined by a straight-line segment of slope -1. Ga]lagef5has
shown that the high-rate curved segment and the
straight-line part of the error exponent are given by
_ max '
£(R) = oce= 1 EO(F )—- y/d
i ) f
. : —
~where [=

z ‘
£, (B p)= i L& P ?1_57/17]/ S

j=/ c=/
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- . . . Lot qs e .
P being any |=-dimensional vector of probabilities P: ; this

D

is called the unexpurgated error exponent, in deference to
the fact that a certain purge of poor code words is involved
in the argument which vields the low-rate curved sehmenf, or
expurgated error exponent. An anélogous formula exists for
‘the exponent when the inputs and outputs form continuocus
rather than discrete sets. It should be mentioned that a
lower bound to Pr(e) is known which shows that in the range
of the high=-rate curved segment, this exponent is the true
one, in the sense that there is no c¢ode which can attain
Pr(e)% e“E‘GQ)For Ex(R) > E(R) and I arbitrarily large.

Thus for any rate less than capnacity, the probability
of error can be made to decrease exponentially with the
block Tength., The deficiencies of the coding theoren are
that it does not‘specify a particular code that achieves
this performance, nor does it offer an attractive decoding
method., The former deficiency 1is not grave, since the
relatively easily implemented classes of linear codesé and
“convolutional codes7contain members satisfying the coding
‘theorem. It has largely been the decoding problem which has

stymied the application of codes to real systems, and it is

this problem which concatenation attempts to meet.

1.2 The Concatenation Apnroach
The idea behind concatenated codes is simple. Supnpose
we set up a coder and decoder for some channel; then the

coder~channel ~decoder chain can be considered frem the

~outside as a superchannel with exp HR inputs (the code
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words), exp HPR outputs (the decoder's guesses) and a
U4 = ’

transition probability matrix characterized by a high

0]

probability of getting the output corresponding to the
correct input. |If the original channel is memoryless, the
superchannel must be also, if the code is not changed from
block to block. 1t is now reasonable to think of designing
a code Tor the superchannel of length n, dimensionless rate
r, and with symbols from an e”‘-symbo] alphabet. This done,
we can abandon the fiction of the superchannel, and obsarve
that we have created a code for the original channel of
length ni, with (eﬂg)“r code words, and therefore rate IR
(nats). These ideas are illustrated inOFigure 2, where the

two codes and their associated coders and decoders are

labelled inner and outer, respectively.

T Superedey 7! _ D T eTer eS8 — — o
R T T "a:: I —— .? ‘ —\
VA AL - A AR | u-!-e_/
— = = — 1 e T ———=
} Su.‘ua..rw"\.o-vsv\-l_i 1
—_ . — v — — e— — — ._‘
Figuee 2.

By concatenating codes, we can achieve very long codes,
capable of being decoded by two decoders suited to much
shorter codes. We thus realize considerable savings in
comp]exity, but at some sacrifice in performance. In

Chapter 5 we find that this sacrifice comes in the magni tude

of the attainable error exponent; however, we find that the
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attainable probability of error still decreases
exponentially with block length for all rates less than
capacity. |

The outer code will always be one of a «class of
non=binary BCH codes called Reed-Solomon” codes, first
because these are the only general non-binary codes Kknown,
and secondly, because they can be implemented relatively
easily, both for coding and for decoding. But further, we
discover in Chapter 5 that under <certain convenient
suppositions about the superchannel, these codes are capable
of métching the pérformance of the coding theoream. Decause
of their remarkable suitability for our application, we
devote considerable time in Chapter 3 to a development of
thelir structure and properties, and in Chapter &4 to the

detailed exposition of their decoding algorithm.

1.3 Hodulation

The‘ functions of any data terminal are comuonly
berFormed by a concatenation of devices; for example, a
fransmitting station might consist of an ana]og4to—digital
converter, a coder, a modulator, and an antenna. Coding
theory is normally concerned only with thev coding stage,
which fypica]]y accepts a stream of bits and delivers to the
modulator a éoded stream of symbols. To this point in this
thesis, only the efficient design of this stase has been
considered, and, through what follows, this concentration
will ]érge]y | continue, since this problen 1is most

susceptible to analvtical treatment.
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By a raw channel, we shall mean whatever of the

physical channel and associated terminal equipment are
beyond our design control. It may happen that the channel
already exists in such a form, say with a certain Kkind of
repeater, that it must be fed binary symbols, and in this
case the raw channel is discrete. Sometimes, however, we
have hore freedom to choose the types of signals, the amount
of bandwidth, or the amount of diversity to be used, and we
must properly consider these questions together with coding
to arrive at the most effective and economical signal
desfgn.

When we are thus free to select some paraneters of the
channel, the channel contemplated by algebraic coding
thedry, which for one thing has a fixed number of inputs and
outputs, is no longer a wuseful model. 'A more  general

R~

approach to communication theory, usually described by th

.

headings modulation theory, signal design, and <detection

‘theory, is then appropriate. Few general theoretical

results are obtainable in these disciplines, which must

-

largely be content with analyzing the performance of various
interesting systems, Chapter 6 reports the results of a
computational search for coding schemes meeting certain

standards of performance, where both discrete raw channels

and channels permitting some choice of wmodulation are

cons idered, This gives considerable insight into the
relationship between modulation and coding. In particular

it is shown that non-binary modulation with re]ative]y
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simple codes can be strikingly superior either to
complicated modulation with no coding, or to Dbinary

modulation with complicated binary codes.

1,4 Channels with Memory

Another reason for the infrequent use of codes in real
communications systems has been that real channels are
usually not mermoryless. Typically, a channel will nhave long
periods in which it is good, causing only scattered random

errors, separated by short had periods or bursts of noise.

o

Statistical fluctuations having such an appearance will be
observed even on a memoryless channel; the reguirement of
long codes imposed by the coding theorem may be interpreted
as insuring that the channel be used‘ for enough
transmissions that the probability of a statistical
fluctuation bad enough to cause an error is very small
indeed. The coding theoren can be extended to channpels with
memory, but now the block lengths must generally be very
.much longer, so that the channel has time to run through all
its tricks in a block length.

| (I a | return channel from the. receiver to the
transmitter is available, it may be used to adapt the coding
Scheme at the transmitter to the type of noise current]y
being obserVed at the receiver, or to request retransmission
of blocks which the receivef cannot decodefi’without such &
feedback channel, if the loss of information during bursts
-is unécceptéb]e, some variant of a technique called

. . . .. -, /0 . : . ,
interlacing is usually envisioned, In interlacing the coder
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codes n blocks of length N at once, and then transmits the n

first symbols, the n second symbols, and so forth through

"the n Hth symbols, At the receiver the blocks are

unscrambled and decoded individually. It is <clear that a
burst of length b n can affect no more than one symbol in
anv block, so that If the memory time of the channel is on
the order of n or less the received block of ni symbols will
generally be decodable.

Concatenation obviously shares the burst-resistant
properties of interlacing when the memory timg of the
channel is on the order of the inner code block Tlength or
less, for a burst then will usually affect no more than one
or two Symbo]s in the outer code, which will geﬁera]]y be
guite correctable. Because of the difficulty of
constructing .adequate models of real channels with menory,

it is difficult to pursue analysis of the burst-resistance

- of concatenated codes, but it may be anticipated that this

feature will prove useful in real applications.

1,5 Concatenating Convolutional Godes

We shall consider only block codes in what follows.
The principles of concatenation are clearly applicable to

any type of code, however. For example, a simple

.convolutional code with threshold decoding is capable of

correcting scattered random errors, but when channel errors

are too tightly bunched the decoder is thrown off stride for

a while, and until it becomes resynchronized causes a great

many decoding errors. From the outside, such a channel
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appears to be an ideal bursty channel, where errors do not
occur at all except 1in the well-defined bursts. Very
efficient codes are known for such channels, and could be
used as outer codes. The reader will no doubt be able to

conceive of other applications.

1.6 Outline of the Thesis

The thesis consists of six largely self-sufficient
chapters, with two appendices. It is anticipated that many
readers will find that the chapters are arrahgei roughly in
inverse order of interest. Ve therefore outline here the
substance of each chapter and the connhections between
chapters.

Chapter 2 begins with an elaborate nresentation of the
concepts of minimum distance decoding, which has two
purposes: to acquaint the reader with the’ substance anda
utility of these concepts, and to lay the groundwork for a

generalization of the use of erasures in minimum distance

decoding which appears in Section 2.3. Thouzgh  this

cr

‘generalization s an interesting hybrid between the

techniques of detection and of decoding, it is not wused in
subsequent chapters, and therefore the reader a]%eady
familiar with mininun distance decoding will be able to skip
this chaptef on first reading.

Chapter 3 is an attempt to provide a fast, direct route
for the reader of little background to an understanding of

BCH codes and their properties. Ermphasis is placed on the

important non-hinary Reed-Solomon codes. Though the

oo @R T W W S0 S e T - ———— e e A7 <3 A S e < ¢ e e e o
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nresentation is novel, the only new results in the chapter
concern the weight distribution of RS codes and the
implementation of much shortened RS codes, so that the
reader already familiar with BCH codes will also be able to
skip this chapter.

Chapter ) reports an extension of the
Gorenétein-Zier]er aerror-correcting algorithm for BCH codes
so that both erasures and errors can be simultaneously
corrected. Also, the final step in the GZ algarithm is
substantia]ly simplified. A close analysis of the
compiexity of implementing this algorithin with a compu%er
concludes the chapter, and only the results of this analysis
are used in the last two chapters. Appendix A contains
variants on this decoding algorithm of more restricted
interest.

Chapter 5 contains our major theoretical results on the
efficiency and complexity of cdncatenated codes, and Chapter
6 rapdkts the results of a computational prozgram which
evaluated the performance of concatenated codes under a
variety of specifications. The reader interested chiefly in
‘the theoretical and practical properties of these codes will
turn his attentfon first to these two chapters. Appendix B
develops the formulas used in the computational progran of
Chapter 6.

| Forrulas, tables,  and figures are numbered
consecutively within each section, except }jn Chapter h;

where a single numbering is wused for the whole chapter,



chapter 1. Introduction ' PAGE 19

Reference to a formula 'in another section of the same
chapter is by section number, wpoint, formula number,
Sections are numbered consecutively within chapters;
subsections are numbered by the decimal system, so that for
example the subsections of Section 5.1 would be 5,11, 5.12,
and so forth. References for each chapter are found at the

end of that chapter,

1.7 References

1. Shannon, C.E., and W. Weaver, A Mathematical Theory f

Communication, U. of 11linois Press, Urbana, 1949, Also
appears in BSTJ 27, 379 and 623 (1948).

2. ¥Wozencraft, J.McR., and B. Reiffen, Sequential Decoding,
MIT Press and John Wilev & Sons, #tlew York, 1861.

3. Massey, J.L., Threshold Decoding, MIT Press and John
Wiley & Sons, Mew York, 1963. '

L. Peterson, W.lW,, Error-Correcting Codes, MIT Press and
John Wiley & Sons, Mew York, 1961.

5., Gallager, R.G., "A Simple Derivation of the Coding
Theorem and Some Applications," |1EEE Trans. Info. Thy.

JT-11, 1 (1965).

6. Slepian, D., "A Class of Binary Signalling Alphabets,"
“BSTJ 35, 203 (1956).,

7. Elias, P., "Coding for !loisy Channels," [IRE Convention
Record, Part &L, 37 (1955). See Peterson, Chapter 12,

8. Reed, 1.S., and G, Solomon, '"Polynomial Codes over
Certain Finite Fields," J. SIAM 8, 300 (1960). :

9. Wozencraft, J.McR., and M. Horstein, "Coding for Two-iay
Channels,'" lnformation Theory (Fourth London Symposium), C.
Cherry (ed.), Butterworths, Washington, 1961. p. 11.

10. Peterson, op. cit., Section L.6 and Chapter 10.




PAGE 20

Chapter 2, Minimum Distance Decoding

In this chapter we introduce the concepts of distance
énd minimum distance codes, and discuss how these concepts
simplify decoding. We describe the use of erasures, and of
a new generalization of erasures., Using the Chernoff bound,
we discover the parameters of these schemes which maxi@ize
the probability of correct decoding; using the Gilbert
bound, we compute the exponent of this probability for each
of three minimum disfance decoding schemes over a few simple

channels.

2.1 Frrors-0Onlyv Decoding

In Chapter 1 we described how an inner code of length H
“and rate R could be concatenated with an outer code of
length n and dimensionless rate r to yield a code of overall
length nN and rate fR for some raw channel. Suppose noOw one
of the e“m« words of this code is selected at random vand
transmitted-- how do we decode what is received?

The optimum decoding rule ramains whét it always s
when inputs are equally Tlikely: the maximum likelihood
decoding rule. In this case, given a received seﬂuence'? of
length nM, the rule would be to compute Pr(F\F) for each of
fho R o

—
he e code words f.
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The whole point of concatenation, however, is to break
the decoding process into manageable segments, at the nprice
of suboptimality. The basic simplification made possible by
the concatenated structure of the code 1is that the Iinner

decoder can decode (make a hard decision on) each

-~
o
O
I
<

3

“

N-symhol sequence independently. In doing so, it is in
effect discarding all information about the received
. o ) . e .n NR . y .

M-symbol block except which of the e inner code words was
most likely, given that block. This preliminary processing

enormously simplifies the task of the outer decoder, which

. ' . , . Ny R
is to make a final choice of one of the ¢~ total code
words.

Let q=e"k: When the inner dJdecoder makes a hard

decision, the outer coder and decoder see effectively a
g-input, q-output superchannel. Ve assume the raw channel

and thus the superchannel are memoryless. 38y a svmbol error

we shall mean the event in which any output but the one

"corresponding to the input actually transmitted is received.

Hormally the probability of symbol error is low; it is then

convenient to assume that all incorrect transmissicns are
equally probable-- that is, to assume that the transition

nrobability matrix of the superchannel is

P s
. — L:/.-A'
Pl = -y Co) (1)
\'—P b (=J’)

where p is the probability of decoding error in the Iinner

decoder, hence of symbol error in the superchannel. e call

a channel with such a . transition probability matrix an ldeal
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superchannel with g inputs and probability of error p.
Recall that the maximum likelihood rule, given ¥, is to

choose the input sequence T for which the probability of

—

. . —_— . . . .
receiving r given f 1Is greatest. vihen the channel s
memoryless,

} w
P T = TPl 150
But since log x is a monotonic function of x, this s

equivalent to maximizing

o F PG - Bl Toiaty. (@)

Mow for an ideal superchannel, substituting Egqns. 1 into

Eqn. 2, we want to maxinize
. -

Z a (e, ,§:), (3)

<
v=1

where

\oe‘_ C\—P)) Y“-:F;_‘)
P . .

Define the Hamming weight a(r;, f;) by

o) V'C=¥'C' (4)
1) VC#?\.)

e (‘r't. )%;) =

N

a_(_v-c“’.;\’_—‘;

since

P
| a’ (v ,?;): \oﬁ (l=p) = [Io:h Cq—l)(l‘P)] a (v, _\ZL))
maximizing Faqn. 3 is equivalent to maximizing
- B
m \O% (-9 + ‘.\cc\ (.'c;':f\u-p)—l g-‘CL("'L m“'l\.
Assuming p/(q-1) <(1-p), this is equivalent to minimizing
“wn
dy &, T)= Z o, 6). (5)

L=\

- =, . . . 1 —_ - .
du(r,f) is called the Hamming distance between T and f, and

is simply the number of places in which they differ. For an
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ideal superchannel, the ﬁaximum likelihood decoding rule 1is
therefore to choose that code word which is closest to the
received word in Hamming distance,

Though this distance has been defined between a
received word and a code word, there is no difficulty 1in
extending the definition to apply between any two code
words. We then define the minimum distance of a code as the
minimun Hamming distance between any two words in the code.

A code with large minimum distance is desirable on two
counts., First, as we shall now show, it insures that all
combinations of less than or equal to a certain number t of
symbol errors in n uses of the channel will be correctable.
For suppose‘? is sent and t symbol errors occur, 50 that
r. #f. in t places. Then from Egn. 5

do (%5) = ¢, (&)

Take some other code word T. We separate the places into

three disjoint sets, such that

| o f fi=q0)
‘€ S o fo#q. ond ve=§o (7)

)

Se o Ci# qe oo vi#ES.

We note that the set Se can have no more than t elements.,

‘Now the distance between ¥ and Z,

C=1

du(#.3) = Z aln,q0) (3)

= 2 ala,g) + Z alre@i) v 2 alvigi),

ceSy ‘e s, ‘eSe
.can be lower-bounded by use of the re]étions
aluql) = alqifd =0, (€S
o-Crihq)) = (g, 6D = 1, (eS¢ (4)

alv,q:.) 2 alq;,§)-1=0, (e Se,



EERs e

Chapter 2. Minimum Distance Decoding PAGE 24

where besides Eqns. 7 we have used a=0 and the fact that

for i€ Se, ri#g:. Substituting Eqns. 9 in Eqan. 3,
du C‘f’@i\Z&u (-‘i:f) - I1Sel = d-+, (o)

where we have defined %! as the number of elements in S,
and used the fact that d,(Z,F)zd if & and T are different
words in a code with minimum distance d. Combining Eqns. 6
and 10, we have proved that

&H(v’—‘}) < cQ“(V’,‘ED W 2t <4, (1)
In other words, if tg is the largest integer such that 2tp,<d,
it is impossible for any combination of t, or fewer symbol
errdrs to cause the received word to be closer to any other
code wofd than to the sent word. herefore no decoding
error will occur.,

Another virtue of a large mininum distance follows fron
reinterpreting the above argument.' Suppose we hypothssize
the transmission of a particular code word; civen the

received word, this hypothesis implies the occurrence of =a

particular sequence of errors, |f this sequence is such

~that the Hamming distance criterion of Eqn. 11 is satisfied,

then we say that the received word s within the minimun

distance of that code word. (This may seen an unnecessarily

elaborate way of expressing this concept, but, as with this

3

whole development, we are taking great pains now soO that the

L

generalizations of the next two sections will follow

easily.) Further, the preceding argument shows that there

‘can be no more than one code word within the minimum
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distéﬁce of thé réééived.word. Therefore, if by some means
fﬁe deééder ééﬁerates a code word which it discovers to be
within the minimum distance of the received word, it can
without furtﬁer édO' announce that word as its maximun
likelihood choice, since it knows that it is impossible that
there be any other code word as close or closer 1o the
2-5
receiyed word. This property is the basis for a number of

clever decoding schemes proposed recently, and will be use!

C
3
3]
.
W

in the generalized minimun distance decoding of Sect

A final simplification which iIs freguently made Is  to
set the outer decoder to decode only when there is & code
1

word within the minimnun distance of the received word. Such

a scherme we call arrors-only decoding. There will of coursa

in general be received words beyond the mnminiman distance
from all code - words, and on such words an errors-only
decoder will fail. tormally a decoding failure is not

distinguished from a decoding error, though it is detectable

while an error is not.

2.2 Deletions-and=Errors Decoding

i

The simplifications of the previous section werc
bought, we recal], at the price of denying to the outer
decoder all information about what the inner decoder
received except which of the inner code words was wmost
probable,‘given that reception. In this and the following
section we investigate technigues of relaying somewhat nore
information to the oute? decoder, hopefully without fuch

complicating its task. These techniques are generalizations

R R,
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of errors-only decoding, and will be developed In ti

framework introduced in the preceding section.

We continue to require the inner decoder to make a hard
decision about which code word was sent. However, we NOwW
permit i£ to send along with its guess some indication of
how reliable it considers its guess to be. In the simplest

such strategy, the inner decoder indicates either that its

guess is fully reliable or completely unreliable; the

latter avent is called a deletion, or erasure, The inner

decoder normally would delete whenever the evidence of the

received word did not clearly indicate which code word was

sent; also, a decoding failure, which can occur in

errors-only decoding, would be treated as a deletion, with
some arbitrary word chosen as the guess.
In order to make use of this reliability information in

minimum distance decoding, we define the Elias weight by

O ri mlabta ond r;:=f;;

— _ "
blrpfi)E | P, riwasd,
1, p, pelenble and ri FFe,
_where,5 is an arbitrary number between zero and one. hen

. . 6 .
the Elias distance between a received word T and a code word

-

f is defined as

(7 F)ZE 6Cr, 1), (2)
¢/

Note that Elias distance is not defined between two code
words .
We shall let our dedoding rule be to choose ~ that code

word which is closest in Elias distance to the recelved
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: —
word. Let us then suppose that some word f from a code of

minimum (Hamming) distance d is transmitted, and in the n
transmissions 1) s deletions occur, and 2) t of the symbols
classed as reliable are actually incorrect. Then
A (P P) =t +fs ’ (3)

Take some other code word E. iWle separate the places into
disjoint sets, such that

So iFficgd;

Se iff¢ fft'/ ros /)A, r peleable

¢ € (4)
o "iﬂ i;‘.fc' /tyz'l ry Méd}
So P u 1 2l petiaile
Mote that
1%l (5)

and 181 23
Mow the distance between T and éacan be lowerbounded by the
relations

bCr, 902 aly., /)= 0O, Fe8

, (,-‘-Ji‘-): é;/?{’z') =/, ‘~€5(_3 (L)

b ("4',/;)= a.(ﬁ-,/})—/fﬂ=,ﬁ; (€54

6(r,0)2 a Gife)-/= 0 [€S,;

where we have used Eqns. 1 and 4. Now

J Fi) £ b(l‘)f,)
2 Z. a-[; /;);—54(/4‘,/’) Z[a. g - /f/ﬁjf.fl;-Qs,N’

453
= 4, (f,_i) - (r-B)I3y1 =141

| 7)
2 d- (/-P)s-L, ¢
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where we have used Eqns. 2,5,6, and the fact that the
minimum Hamming distance between two code words is d. From

Egqns. 3 and 7, we have proved that /
de (F7)>8 (F, ) if t+ps<d- (/-F)s -
! T aies 2 d (8)

(The vanishing of/’ shows why we took it to be arbitrarvy.)
Thus with a decoding rule based on Elias distance, we are
assured of decoding correctly if 2t+s< d, in perfect analogy
to errors-only decoding.‘ tlhen we decode only out to the
minimum distance-- that is, when the distance criterion of
Egn. 8 is apparently satisfied-- we call this

deletions—-and-errors decoding.

That erasures could be used with minimum distance codes
in this way >has long been recognized, but few actual
decoding schemes have been proposed, One of our chief
concerns4 in Chapter 3 will be to develop a
deletions-and-errors decoding algorithm for the Iimportant
class of BCH codes. There wie find that such an algorithm is
very ]jtt]e more complicated than that appropriate to

errors-only decoding.

2.3 Generalized Hinimum Distance Decoding

A further step in the same direction, not previously

investigated, is to permit the inner decoder to classify its

choice in one of a group of J reliability classes Cj,

1
rather than just two as in the previous section. Ws define

the genecralized weight by

(ri) 4:) (A’" i i cass & and ri i
cCry, f[ - Pg/') r; {n MC/ M » ¢£., ; (
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4 . » '
where 0 9/%,—/%w £ 1. It will develop that only the
difference L. _
:/&_e/’/é/
of these weights is irmportant; 0</ will be c¢alled the

reliability weight or simply weiiht corresponding to class
Cj.‘ He have Df#y7f 1; a large weight corresponds to a
class we consider gquite reliable, and a small weight to a
class considered unreliable; indeed, ifay<d* , we shall say
class q, is less reliable than Cj4 . The casedv' =0
corresponds to an erasure, and ofﬁj =1 to the fully reliable

symbols of the preceding section.

Let us now define a generalized distance

do (A7) E‘%c(f;-,/’;). )

o
&
)

)
n we suppose the transmission of some word f from a code

of minimum distance d, and the reception of a word in which

nv: symbols are received correctly and placed in class C/ ,

and n%f are received incorroct]v ir.(v'. Then
&é—" (r "/,) Z [ne//él./ tn. ﬂc/] (3>

.'Take some other code word p, and define the sets tb' 5 o,

and'S&j by

A d‘f-f

€ NI f it go sl i disacy; (P

{4/ (/ [#/4) £l /}_WL!M(’

Note that , Y /
S &,
/ / _
/;.,fn/ | RENC)

8/ ¢/.'

e v T B S § Ty e s s son & 5 & M- mm e o
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Using Egns. 1 and &4, we have
- N > - - -
C(/‘wf“)-a,(f“[(’_.)~01 450/oj
Pl ( . = . A - L. . .
r, 7«.) a'(iL/ 1[:) /f’del -/6{/) (ch/’)'
c'[ﬁi.fi) 2 “*(?LJf') ‘/7‘/55/' :ﬁc'/.; [55{/)
where the second re]atlon depends on r, =t. #g., iéfiy « MNow

zg(j)zéat_,;,) o
224Gt +z[z(4(, £) /fﬁe,)fé (alyi, £)-147%)]

@)

¢€f
=4, (f, )/é L(r- 4,)/;@,/* /- P/)/Sel/]
__J [C/ ﬁe/)ﬁf_ +{/ /<3 )h.z/.]_ (7)
Thus, USing Eagns. 3 d 71}J€ have ”FOer tgnt
£, (rj >4, (£ ) 4/’/2 [C1-Pejr /5° )"c/f'(/ g *’54/')"‘/]“?)
J
or_ i[(/ 1\/)/)&/-/-(/1"'0\/),‘,2/]‘ . (,?)
/ /

Therefore if generalized distance is used as the decoding
criterion, no decoding error will be made whenever n‘f and
nej are such that the inequality of Fgn. &8 1is satisfied,
When jn addition we decode only out to the minirum
distance-- that is, whenever this inequality is apparently
‘satisfied-- we say we are doing genesralized minimunm distance
degodingQ

This generalization is not interesting wunless we can

exhibit a reasonable decoding scheme which makes use of this
distance criterion. The theorem which appears below shows
that a decoder which can perform de]etions-and-errors

decoding can be adapted to perform generalized =minimum
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distance decoding.
He imagine that for the purpose of allowing a
deletions-and~errors decoder to work on a received word, we

V4
make a temporary assignment of the weightp&'=l to the set of

reliability classes Cj for which j €é€ R, say, and of the
weightd} =0 to the remaining reliablity classes Cﬁ, i € E,
say. 'This means that provisionally all receptions in the
classes 9:, JE€E, are considered to be erased, and all
others to be reliable., We then let the deletions-and-errors

decoder attempt to decode the resulting word, which it will

be able to do if (see Eqn..2.8)

‘Zaéi hﬁ/ *’jfi (vhy'*ﬂej) <A, (N

I'f it succeeds, it announces some code word which is within
the minimum  distance according to the Flias distance
criterion of Eqn. 9. We then take this announced word and
see whether it also satisfies the generalized distance

criterion of Eqn. 8, now with the original weightsdg . I

it does, then it is the unique code word within the minimum

distance of the received word, and can therefore be

announced as the choice of the outer decoder.

WHe are not guaranteed of succeeding with this method
for any particular provisional assignmant of the %;' .
However, the following theorem and its corollary show that a
small number of such trials must succeed Iif the recelved

word is within the minirmum distance according to the

criterion of Egn. 8.

N ———— e e e
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Let the classes be ordered according to decreasing
reliability, so that o«/ 31“} if 3 < k. Define the

J=-dimensional vector

E(oﬂ,) A, - ),g/)

Let the sets R, consist of all j%a, and E, of all j2za+l,
0& a< J. Leta&é be the J-dimensional vector with ones In
the first a places and zeroes thereafter, which represents
the provisional assignment of weights corresponding to R=R
and E=E, . The idea of the following theorem is that ;? is

—
. . ' s
inside the convex hull whose extreme points are 1tne Ka

while the expression on the left in Eqn. 8 is a linear
function of s, which must take on its minimum value over the
convex hull at some extreme point-- that is, at one of the

—
nrovisiona] assignmentsuuf.

THEOREM: |f££ [/.(/)hcl'rC/h(/)nelj J and pgl/Za(A )@L/.L/é

there is sorm integer a such thatZZ n,_/ +‘4_ (n.: ,.,,el) ﬁ
/ '/ at/
Proof: Let J

,C(,,f) 5/% [(/ —a(j)hL/ i (/TLA/')/);/]'

f is clearly a linear function of the J=dimensional

£
vectori'. Note that J
7C(o<4_) ZZ Nef s 2 (n;+na)
/-a+/ / /
We prove the theorem by supposing that T(Aa) for all &

such that Ofeafd, and exhibiting a contradiction. For let

)05/—A1J

Yo 200 Koy, LtatJ]
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We see that : u)
O <22 27 O %a £ and £ Aa-7
A0
so that *hegaa_canhye treated as probabilities. But now

= Z Aﬁ.o&

a:o
Therefore b)

f(ﬂ /’(éﬂa_o(a,) z{_Aa_f(o(_) J_Z}@

Thus if f(x;): d4, all a, then Flx)> d, in rmntraAictlon to

-

the given conditions. Therefore f(fZJ must be less than d
for at least one value of a. QED

The import of this theorem is that iif there is some
code word which satisfies the generalized distance criterion
of Eqn..8, then there must be some provisional assignnent in
which the least reliable classes are erased and the rest are
not which will enable a deletions-and-errors decoder to
succeed in finding that code word. Jut a deletions-
and-errors decoder will succeed only if there are anparently
no errors and d-1 erasures, or one error and d-3 erasures,
and so forth up to t, errors and d-ZQ,-l erasures, wiere  ty,

is the largest integer such that 2t, < d-1. If by a trial we

then mean an operation in which the d-1-2i least reliable

o

symbols are erased, the resulting provisional word decoded
by a deletions-and-errors decoder, and the vresulting code
word (if the decoder finds one) checked by Eqn. &, then we

nave the corollary:

COROLLARY: ta+1‘é'(d+1)/2 trials suffice to decoda any

received word which Is within the ninirum distance by th

8]
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generalized distance criterion of Egqn. 8, regardless of how

many reliability classes there are.

The maximum number of trials is then proportional only to d.
Further, many of the trials-- perhaps all-= may succeed, 50
that the average number of trials may be apnreciably less

than the maxinum,

2.4 Parformance of Mininun Distance Decoding Schemes

Our primary objective in this section 1is to develop
exponentially tight bounds on the probability of error
-achievable with the three types of minimum distance decoding
discussed above, and with these bounds to‘ compare the
performance of the three schemaes.

In the course of optimizing these bounds, however, e
shall discover how best to assign the weights “7. to the

different reliability classes. Since the complexity of the

S

decoder is unaffected by the number of classes we recognize,
we shall let each distinguishable H=symbol sequence of
outputs A form a separate reliability class, and let our
‘analysis tell us how to group them. Assuming as usual that
all code words are equally likely, the task of the inner
decoder is to assign to the received v, an ¥ and an %7 ’

where x; is the code word x for which Pr(%ﬁ x) is greatest,

andﬁj is the reliability weight which we determine below,

2.41  The Chernoff Bound .

We shall require a bound on the probability that a sum

of independent identically distributed random variables
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exceeds é certaln duanti‘ty.

The bounding technique we use is that of Chernoff;' the
derivation which follows is due to Gallager.‘? This bound s
‘kpown to be exponentially tight, in the sense that no bound
of the form Pr(e)# e"'E* where E+* is greater than the
Chernoff bound exponent, can hold for arbitrarily large n.

Let y;, 1 = i % n, he n independent, identically

distributed random variables, each with moment=-generating

f ion

J

f(S) FF/— £ Pl"(é()z.sy'

and semi-invariant moment-renerating function

p (s)= /nf[s),

Define vy to be the largest value that vy can assune, and vy
max

Let Y be the sum of the vy, and let Pr{Y 2 nd) be the

orobabllity that Y exceeds nd, where vy,>d> V. Then |
| H[Y:AJ):Zﬂ (3,,,1“...,yn)}q(é’”‘f”.../%)
ihore £ Lgiga,  gn)= (2 V22 y 2n 85
o OHen wise. .
Clearly, for any s®0, we can bound f by

Jr[//, 7;J -..}y,,)f zsC-Y"nJJ

Mer  Fr (VZ0d) =f_4_2.5"£_~nuf 2 25 7o Y

:L'HSJ /_'/! éTy‘ 4-;/
avs .
=y -.n.[s f“/“-(f’)j 51\_0

/ ,
where we have used the fact that the average of a product of

independent random variables is the product of their
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averages., To get the tightest bound, we maximize over s,

and let

E(s)= ox I_SS—- v—(ﬂ‘) )

Szo

Setting the derivative of the bracketed quantity to Zero, we

obtain )
(s
$= pitsy= 2327
q (<)
It can easily be shown that L) =7V, s = Yoo ¢

and that p(s) is a monotonically increasing function of S,
Therefore if vaa2827, there is a nonnegative s  for which
b= W (s), and substitution of this s in (s§ - Ms)) gzives
£(8).

As an example which will be usefuyl latef, consider the
variable y which fakes on the value one with probability p

‘and zero with probability 1-p. Then
cb(s): Pes 4 \-p
8 = '..L‘(S) =.—Ef——— M

P+ \—p )

2 l-p .

e* == P )
SO-p) w \—P

E@)= 51w pU-8) ~ \ =3

= —%lup — (-8l t-p) —A (),

where
HAGE)IE -5 s —U-8) lwe CA-8)),
Then if 1Z9Z P

=Sl p - (=8 Yl (l-p) =¥ (£ ]
Pr(yzms) = e LBNP ! :

This can be interpreted as a bound on the probability

of getting more than n occurrences of a certain event in n
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independent trials, where the probability of that event in a
single trial is p.

From this result we can derive one more fact which we

n

shall need. Let p 1/2; then

?‘WL\/Z ’VL%) = [-és (-’::‘) 2‘14. = 2—'“- e—»{af(ﬁ)‘
It follows that )
o d(k
k) = e ]

2,42 Optimization of Weishts

We now show that the probability of decoding error or
failure for minimum distance decoding 1s the nprobability
that a certain sum of independent identically distributed
random variables exceeds a certain aquantity, and therefore
that we can use the Chernoff bound,

Let a code word from a code of lengcth n  and =inimum
distance d be transmitted. From previous sections, we know
that a mininum distance decoder will fail to decode or

decode incorrectly if and only If

E e Q) + A Qroeg)] 2 4 Q)
where in the case of errors-only decoding, all Xy= 1; of
deletions-and-errors decoding, o(é = 0 or 1; and  of

zeneralized minimunm distance decoding, 0=o¢y =1,

Assuming that the channel is memoryless and that thare
is no correlation between inputs, the probabilities D e of a
correct reception in class Cp and Pey of an incorract

reception in class Cé are constant and Independent fron

symbol to symbol., Consider the random variabla which for
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each symbol assumes the Qa]ue (1- ocj ) if the symbol is
received correctly and is given weightvx%, and (1+u%) if the
symbol is received in orrectly and given weight Xj - These
are then | independent, identically distributed randdm
variables with the common mormlent-generating function

q(ﬂ"' ZLP::.}@SU—DLU + ,Pe-ae—s(\*-u.ﬂ] (2)

Further, the condition of Eqn. 1 is just the condition that

)
(L

the sum of these n random variables be greater than or equal
to d. Letting & = d4/n, we have by the Chernof: bound that
the probability Pr(e) of error or failure is upperbounded by

Prie) < 6"’“‘51(8)) (3)
where

E(S) = [58_ Vh(s)] @)

p(s) being the natural logarithm of the s(s) of Egn. 2.
This bound is valid for any particular assigninent of thezx&
to the re]lablllty classes; however, we are free to vary

the x& to maximize this bound. Let

E(8) = ™Max E/(g) = pwax [sg — ()] (s7)
%y

It is convenient and illumlnatlng to maximize first over thetxs

distribution:

E()= wax [s8 - puc ()]

where

P_Mts) = ""D'Z'f;"‘ p.k\ = M;:‘i“ \wod(s.\= 15N u::;« ah(ﬂ = |u ﬁu‘(S) .

His) is minimized by minimizing g(s), which we now do for

the three types of minimum distance decoding.

()
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For errors-only decoding, there is no chojce in the o,

which must all equal one; therefore

qm(s\ = ﬁ(S): e_zs-[ % P‘-A] A I% P,_a] ' (_7)

’ ..1

The total probability of symbol error is p = %;mﬂ : making
. , 1 .

the substitutions s'=2s and 3=5/2, we see that this bound

degenerates into the Chernoff bound of Section 2.41 on

£

getting more than d/2 symbol errors in a sequence of n

transmissions, as might be expected.

For deletions-and-errors decoding, we can assign some
outputs to a set E of erased symbols and the remainder to a
set R of reliable symbols; we want to choose these sets so
as to minimize g(s), In symbois, xé =0, all je€E, and ‘”3 =
1, all jeR, so

gls) = &% [;’{ﬂ Peﬂ ¥ esisechﬂ +pe)) + [,G&Pc{;] :
Assigning a particular output yé ;o E or R makes no
difference if

E5Pa + Py = <7 (Pejrpe)

or

‘-a

)

-3
Pc; =<

where we have defined LS' the error likelihood ratio, as
pei/pes; we shall discuss the significance of Lj below. Ue
see that to minimize g(s), we let jef if Ly > e™® and jeR if
{1v< e® -~ that is, comparison of Lj to a threshold which is

a function of s is the optimum criterion of whether to erase

or not., Then
'%,.,(s\--- e"Pc(s) + 25 Ppals) + Pels),
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where
‘ . . . < =S
Pl Foe Py ) deRhy=e

l.{- ‘_:\7-2_3 (8)

?1“):3?:(‘1"-&*?%.0 ) y €€
and  Petsd = 1 - Pe(s) = PALS).

Finally, for generalized minimum distance decoding, we
have

940 = ZTpgerd o pye )]

2}
which we can minimize with respect to a single oL § by setting

the derivative

(s) —oC, .
93504'5) - ‘SP'¢§-€$U o) + Speaes(\m\\)

to zero, as long as Osax&f 1. The resulting condition is

=

€;L»q _ EL& La)

or

Vhenever Li is such that-(1n LX)/QS 71, we let o =1, while

whenever -(1n Li)/25< 0, we let &4 = 0. Then

qw(_s)=e’-5 [’emp‘d'] [)G&P‘:d]*e [ (”“a +P°))]"'e Zeezm‘d]
where
JER if L= e Tt

(4)

jeE 1If

—
Q- .
-t

and je G otherwise,

and we have used ™4 = $p°i/p°5 when j €G.
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Let us examine for a moment the error likelihood ratio
Ll. Denote by Pr (x;,yh) the probability of transmitting x
and receiving yé; the ratio Lq between the probability
that x; was not transmitted, given the reception of Vijr and
the probablility that x; was transmitted (the alternate

hvpothesis) is

L; - 1-Pleily) _ Z P (xir 19;) _ 2P (%, %)
Pr (xl.jl?,) Pr (x; ,1") Pr (x‘:)\_““\’

The optimum decision rule for the inner decoder is to choose

that x; for which Pr(x;\ya) is maximum, or equivalently for

which Lij s minimum. But now for this x¢,

p°8 = Pr(x;,yé) and pej = LééPr(x;,yJ).
Thus

We have seen that the optimum reliability welghts are
proportional to the L}; thus the error likelihood ratio is
theoretically central to the inner decoder‘s
decisioh-making, both to its choice of a particular output
~and to its adding of reliability fnformation to that choice.
(The statistician will recognize the LgJ as sufficient
statistics, and will appreciate that the simplification of
minimurl distance decoding consists in its requiring of these

statistics only the largest, and the corresponding value of

The minimum value Li can assune is zero; the maximunm,
‘when all g inputs are equally likely given yj, is g=-1. When

q=2, therefore, Ls cannot exceed one. It follows that for
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ceneralized minimum distance decoding with binary inputs the
set £ of Egqn. 9 is enpty.

In the discussion of the Chernoff bound we asserted
that it was valid only when SZ,L(D), or in this case
821*{j0). When s=0, the sets R and E of Eqns. 8 and 9
become identicai; namely

jenr if Lj21;

j€eE if Lj <1.
Therefore p. (0) is identical for deletions-and-errors and
generalized mininum distance decoding. If thora is no

output with L"< 1 (as will alwavs be true when there are

only two inputs), then wi(0) for these two

will
‘equal that for errors-only decoding as well; otherwisn it

will be less., In this latter case, the use of deletions
permits the probability of error to decrease exponantially
with n for a smaller minimum distance nd , hence a larger
rate, than without deletions.

Ye now maximize over s. From Egns. 7,8, and 9, wl 5)

has the gensral form

PLW_(_S\.—_ \u.[é"’ Pals) + es P,(S\ + p,(s)—_\ )

Setting the derivative of (s$ - pfs)) to zero,twe obtain

Ze™ p.(s) + @3p,(s)+ e*p,(s) +e*p,/(s) + pJ(s) ’

= ! (s)= : (\ﬁ}
8 P ) ez"?,,cﬂ-vesp.(ﬂ + pels)
which has a solution when 2= ® Z wL(0), Substituting the
value of s thus obtained into (s§ - Ms)), we obtain L(%),
~and thus a bound of the form ¢
Bule) = e~ wE(8) W

\

© g =y e x g 1e - -
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1

Ue would prefer a bound which guaranteed the existence
of a code of dimensionless rate r and length n with

probability of decoding failure or error bounded by
Pole) = e EF

L=
The Gilbert bouné asserts for large n the existence of a
code with a q=-symbol alphabet, minimum distance Sn, and
dimensionless rate r, where

\\Aq 1w q

Y‘£_1"

Substitution of r for & in Eqn. 11, using this relation with

the equality sign, gives us the bound we want.

Comparlsons

To get some feeling for the relative performance of
these three progressively more involved minimum distance
decoding schemes, the error exponents for each of them were
computed over a few simple channels, with the wuse of the
bounds of the previous subsection.

In order to be ab]e to compute the error likelihood
ratio easily, we considered only channels with two inputs.
Figure 1 displays a typical result; these curves are for a
channel with additive Gaussian noise of unit variance and a
signal of amplitude eifher +3 or =3, which is a high signal
to noise ratio. At lower signal to noise ratios the curves
are closer. We also considered a two-dimensional Rayleigh

fading channel for various signal to noise ratios.




Chapter 2. Minimum Distance Decoding ‘ PAGE Ul
(&10 of
Flevre 1
' MINIMUM DISTAMNCE DEobDInG EXPol EXTS
_Forc A CRUSS/IAN CHANNVEL WITH L=3

ol =k

)

.57 po=

s -

| | CENERALIZED MINIMUM DisTAUCE EXPoNenT
:{_9

| 2e ) :

} LETIOMS - AND ERRORS EXPonE T

b

Lo |-

)

!

5 ERRORS -ONLY EXPONENT

)

5

i

u |

973

= ,
TS

. ,
.25 .S
| DIMENSIOULESS RATE ,




Chapter 2, Minimum Distance Decoding 4 PAGE 45

Fdr these channels; at least, we observed that though
improvement is of course obtained in going from one decoding
scheme to the next more complicated, this improvement is
quite slight at high rates, and even at Jlow rates, where
improvement is greatest, the exponent for generallized
minimum distance decoding is never greater than twice that
for errors-only decoding. The step between errors-only and
deletions~-and-errors decoding is comparable to, and slightly
greater than, the step between the latter and generalized
minimum distance decoding.

From these computations and some of the computations
reported in Chapter 6, it would seem that the use of
deletions offers substantial improvements in performance
only'when very poor outputs (with error 1likelihood ratios
greater than one) exist, and that otherwise only moderate

returns are to be expected.
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Chapter 3. BCH Codes
The purpose of this chapter is to make the important

class of BCH codes accessible to the read with little

C
D
=

previous background, and to do so with enmphasis on the
nonb inary BCH.  codes, particularly the RS codes, whose

poverful properties are insufficiently widely known.

The presentation is quite single=minded in its omissior

P
I¥e)
5
O
O
j
2
0

of all but the essentials needed to under

[}

tana Ch
The reader interested in a mofe rounded exposition is
referred to the comprehensive and sti]i timely book by
Peterson1 In particular, the treatment of finite fields
which follows will be unsatisfactory to the reader who

4

desires some depth of understanding about the properties we
~ ' A TE Z . . — I R S . o
assert; Albert” is a widely recomiended mathenatical text.

3,1 Finite Fields

Mathematically, the finite field GF(g) consists of g
elements which can be added, subtracted, wmultiplied, and
divided almost like numbers. There is always a field
element called zero (0), which has the Dproperty that any

field element ﬁ plus or mMminus zero is - There is also an

Ne

element called one (1), such that P-l =P' further, ,6-0 =

Q. If p is not zero, it has a nultiplicative Iinverse
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which is that unique Fi_e]ci element which satisfies the
equation p-p"= 1; division by ﬁ is accomplished DLV
multiplication by ,6"

The simplest examples of finite fields are the integers
!'?IOJU]O a prime number p. For instance, take p=5; then
there are five elements in the field, which we shall write
b, 1, 11, v, and Vv, to distinguish them from the integers
to which they correspond. Addition, subtraction, and
multiplication are carried out by converting these numbers

to their integer equivalents and doing arithmetic modulo 5.

For instance, ! + !Il = IV since 1 + 3 = bt mod 5; Il + 1V
= 11, since 3 + 4 = 2 mod 5; I-11]l = 11!l sincé 1-3 = 3 mod
5; 111-1V = 11 since 3.4 = 2 mod 5. Figure 1 gives the

complete addition and multiplication tables for GF(5).

| ITo1t 1y v )! 1T 111y
l 111 1v v ] | | T 111 1V ¥
et ovov 1 re by v o0 v
mmrhivo v (111 rrrfree o v 11 v
v vt 1 1ty v iy o1y
v o1y v lv v v v v

Addition Table v Multiplication Table

Figure 1. Arithmetic in GF(5)

Note that V + ﬁ = p, if {9 is any member of the field;
therefore Y must be the zero element. Also V-ﬁ =V, !-p =(-”,

so | must be the one element. Since I-1 = I1.11l = 1VY.-lVY =

I =1, 1t = 0, 1t =11, and 1VTY = v,

I,
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=
b
jop]
-
=
w

6B~ p° Bt g7
| | | 1 |
1l v 11 11
[ I I VAR N ! 1
v 1 v 1 v
v Y Y v v

Figure 2, The Powers of the Field Elements

vln Figure 2 we have constructed by these rules a chart
of the first five powers of the field elements. |t is to be
observed that in every case ,6‘=/6, while with the exception
of the zero element V, ,54'= I. Furthermdre, both 1] and 111
have the property that their first four powers are distinct,
;and therefore vield the four nonzero field e]emehts.
Therefore if we let x denote the element I, say, | =&° =oct
=, (11 =0£3, and 1V = o«™, which gives us a convenient
representation of the field elements for multiplication and
division, in the same way that the lTogarithmic relationship
X = 10""‘*“x gives us a convenient representation of the real
numbers for mu]tip]icatign and division.

Figure 3 displays the two repreéentations _of GF(5)
which are convenient for addition and multiplication. 1

b

'5 corresponds to a and &2, and X corresponds to ¢ and occo‘,

then ,6+Xe—> a+c mod 5, P-Ké—> a-& mod 5, /3_1(4__,“[1:+& wand 4]’
and ﬁ-“"-'e——vo(u'&m‘&‘ﬂwherea—a means 'corresponds to' and the

. . . 4
'mod L' in the exponent arises since olf= x°® = 1.

TEGER T T W memeeeeeveweclwE T T 0 3T s e 3 o < U8 mm——y
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—l*, =] x,s o 1 0 1

| 1 ox<° 00 1 010 O

11 2 & l1]1 0 110 1

i 3 o3

v b | x™ Fig. 4. Tables for GF(2)
v 0 0

Figure 3. Representations for GF(5)

‘The prime field of most practical interest is GF(2),
whose two elements are simply 0 and 1. Addition and
multiplication tables for GF(2) appear in Figure 4,

It can be shown-that the general finite field GF(q) has
q =_6” eléments, where p is again a prime, called the
characteristic of the field, and m is an arbitrary integer.
As with GF(5), we find it possible to construct two
representations of GF(q), one convenient for addition, one
for multiplication. For addi tion, an elementjﬁ of GF(q) is
represented by a sequence of m integers, b,, Doseessbue To
add £ to ¥, we add b to g, b, to c,, and so forth, all
modulo p., For multiplication, it is always possib]é to find

a prim?tive,element &, such that the first q-1 powers of

-

yield the g-1 nonzero field elements, Thus o7’ =«°= 1 (or
else the first q-1 powers would not be distinct), and
multiplication is accomplished by adding exponents mod g-1.
We have also, if /5 is any nonzero element, Fq-"'-? CYE R
(o87V )" = 1% =1, and thus for anyﬂ, zero or not, ,6‘7=/°'.
Thus all that remains to specify the properties of
GF(q) is to make the one-to-one identification between the
‘addition and multiplication representations. - Though this is

easily done by using polynomials with coefficients from
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' GF(p)tbjg'is not necessary to Kknow precisely what this
identifféation is to understand what follows. (In fact,
avoiding thls point is the essential simplification of our
presentation.) We note only that the zero element must be
represented by a seguence of m zeroes.

As an example of the general finite field, we use GF(4)
= GF(i”), for which an addition table, multiplication table,

and representation table are displayed in Figure 5.

0 b {0 1 a b | +,-lx.2
olo 1 b oV o0 0 0 O 0 |00 0
1( 1 0\ a. 1) 0 ll a b 1101 oc®
ala b 1 at0d a b 1 a {10 | o<
bib a 0 blo b 1 a b |11 o< -
Addition Multiplication Representations

Figure 5. Tables for GF(4)

Note that GF(4) contains two elements which can be

identified as the two elements of GF(2), namely 0 and 1. In
this case GF(2) is said to be a subfield of GF (4). In

general GF((g')) is a subfield of GF(q) if and only if a =
a'%, whére a is an integer. |In particular, ifq=0p", the
prime field GF(p) is a subfield of GF(q).

The following paragraph is needed only to understand
our later comments on shortened RS codes. For addition, we
have expressed the elements of GF(q) as a seguence of m
elements from GF(p), and added place-by-place according to
the addition rules of GF(p), that 1is, modulo p.
Multiplication of an element of GF(q) by some member b of

the subfield GF(p) amounts to multiplication by an integer b

modulo p, which amounts to b= fo]d addition of the element of
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GF(&) td “itself, which finally amounts to term-by-term
multiplication of each of the m terms of the element by b
mod p. (It thus follows that multiplication of any element
of GF(p™) by p gives a sequence of zeroes, that is, the zero
element of GF(p™).) It is perhaps then plausible that the
following facts are true, as they aré? if q = q'a] elements
from GF(q) can always be expressed as a sequence of b
elements from GF(q'), such that addition of two elements
from GF(q) can be carried out place-by=-place according to
the rules of addition in GF(a'), and multiplication of .an
elehent from GF(q) by an element ﬁs from GF(q') can be
carried out by term-by-term multiplication of eachi element
in the sequence representing GF(q) by /5 according to the

rules of multiplication in GF(q').

As an example, we can write the elements of GF(16) as

oo Vo «O 5<*0O
o\ VA o< ) oc ™ |
Oo¢ B3 oL X > X
O™  1o* x> o o

where « is a primitive element of GF(4). Then, wusing Fig.
5, (1) +lxo) = («*0), for example, while ot-(x1) = (xie).

We have observed above that pB=0 for all e]ementsﬁ
in a field of characteristic p. In partfcular, if
p=2, B+f =10, so that F==-P and addition is the same as
subtraction in a field of characteristic two. Further,
(p+3)? =/&' e . CpEr BN 4 YT, by the
.binohia] theorem; but every term but the first and last are

multiplied by p, therefore zero, and (p+bf = ﬂr+ (3B ¢
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when P and ¥ are elements of a field of characteristic P.

i r des

We know from the'coding theorem that codes containing
an exponentially large number of code words are required‘ to
achieve an exponentially low probability of error. Linear
‘codegscan contain such a great number of words, vyet remain
feasible to generate; they can facilitate minimum distance
decoding, as we shall see; finally, as a class they can be
shown to obey the coding theorem. They have therefore been
overwhelmingly the codes most studied.

Assume that we have a channel with g inputs, where q is
a prime power, so that we can identify the different inputs
with the elements of a finite field GF(a). A gggg_uggg—¥ of

length n for such a channel consists of a sequence of n

elements from GF(q). We shall write ¥ = (F,, f_,.u., f.L),
where f. occupies the ith place. The weight w(?) of T is

defined as the number of nonzero elements in f.

A linear combination of two words ?, and—?L is written
ﬁf?l + K?;, where f and ¥ are each elements of GF(q), and
where ordinary vectorial (that is, place-by-place) addition

-
in GF(q) is implied. For example, if f = (f, , f_, f,5 )

and ¥, = (f,, f._, f. ), then f, - F_= (f =-f , f_~f._,

A linear code of length n is a subset of the a words
of lehgth n with the important property that any linear
combination of words in the code yields another word in the

code, A code is nondegenerate if all its words"are
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H different; we consider only such codes.
. —) _—:
Saying that the distance between two words f, and f_ is
d is equivalent to saying that the weight of their

—Y

- .
f, -f_ will have zeroes in

o

difference, w(?,J?;), is d, since
places in which and only in which the two words do not
differ. In a linear code, moreover,—?.-F; must be another
code word-?b, so that if there are two code words separated

by distance d there is a code word of weight d, and vice

L versa. Excluding the all-zero, zero-weight word, which must
" . - . - 'A ’ - .
appear in every linear code since 0-f, + 0-f is a wvalid

~

linear combination of code words, the minimum distance of a
linear code is then the minimum weight of any of its words.

We shall be interested in the properties of sets of j
different places, or sets of size j, which will be defined
with reference to a given code. |If the J places are such
that there is no code word but the all-zero word with zeroes
in all. j places, we say that these J places form a
pon-nuyll] set of size j for that code; otherwise they form a
null set.

If there is a set of k places such that there 1is one
and only one code word corresponding to each of the possible

qK assignments of elements from GF(q) to those k places,

then we call it an jinformation seg-of size k; thus any code
with an information set of size k has exactly ab code words.
‘The remaining n-k places form a check_set. An information
set must be a non-null set for otherwise théfe would be two

or more words corresponding to the assignment of all zeroes
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to the information set.

We now show that all linear codes have an information
set, by showing the equivalence of the two statements: 1),
there is an information set of size k for the code; 2) the
smallest non-null set has size k. For an information set of
Sizerk implies qk code words; to any set of size k-1 or
less there are no more than qk" different assignments, and
.thus there must be at least two distinct code words which
are the same in those places; but then their difference,
though not the all-zero word, is zero inr those places, so
that any set of size k-1 or less is a null set. Conversely,
if the smallest non-null set has size Kk, then its every
subset of k-1 places is a null set; therefore there is a
code word'? which is zero in all but the pth place, but is

-—

nonzero in the pth place; if f has 2 in the pth place, then
ﬁ4~? is a code word with a one in the pth place, and zeroes
in the remaining information places. The k words with this
property are called generators: clearly, their g% 1linear
combinations yield gX code viords distinct in the specified k
places. (This is the property that makes 1inear codes easy
to generate.) But there can be no more than qk words in the
code, otherwise all sets of size k would be null sets, by
the arguments above. Thus the smallest non-null set must be
an information set. Since every linear code has a smallest
non-null set, every linear code has an information set and,

for some k, qk code words. In fact, every non-null set of

size K is an information set, since to each of the qk code

C MR M e 1 Cwr e 6§ Sm— R e TRV
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words must correspond a different assignment of elements to
those k places. We say such a code has k information
symbols, n-k check symbols, and dimensionless rate k/n, and
call it an (n,k) code on GF(q).

If the minimum distance of a code 1is d, then the
minimum weight of any non-zero code word 1is d, and the
largest null set has size n-d. Therefore the smallest
non=-null set must have size n-d+1 or less, so that the
number of information symbols is n=d+l or 1less, and the
number of check symbols d-1 or greater. Clearly we desire
tﬁat for a given minimum distance k be as large as possible;
a code which has length n, minimum distance d, and exactly
the maximum number of information symbols, n=d+1, will be
called a pmaximum godgf—

We now show that a code is maximum if and only if every
set of size n-d+1 is an information set. For then no set of

size n=d+1l is a null set, thus no code word has weight d-=1

- or less, and thus the minimum weight must be greater than or

equal to d; but it cannot exceed d, since then there would
have to be n-d or fewer information symbols, so the minimum
weight is d. Conversely, if the code is maximum, then the
minimum weight of a code word is d, so that no set of size
n=-d+1l can be a null set, but then all are information sets.
For example, let us investigate the code which consists

of all words T which satisfy the equation oo+ o+ oo v £

-—

= éf-f; = 0. It is a 1linear code, since |if 7i and f_
l.-,‘ I

satisfy this equation,'?; = (ﬁf\+Y?, ) also satisfies the
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equation., Let us assign elements from GF(q) arbitrarily to
all places but the pth. |In order for there to be one and
only one code word with these elements in these places, f

P
must be the unique solution to

G fkem0, e fo-- Z (0
Clearly this specifies a unique F?' which solves the
equation. Since p is arbitrary, every set of n-1 places is
thus an information set, so that this code is a maximum code

with length n, n-1 information symbols, and minimum distance

2.

321 The Weight Distribution of Maximum Codes

In general, the number of code words of given weight in
a linear code is difficult or impossible to determine; for
many codes even d, the minimum weight, is not accurately
known, Surprisingly, determination of the weight
distributio#n of a maximum code presents no problems.

Suppose a maximum code of length n and minimum distance
d, with‘symbols from GF(g); in such a code there are n=-d+1
information symbols, and, as we Have seen, every set of
n-d+1 places mﬁst be an information set, which can be used
to generate the complete set of code words.

Aside from the all-zero “zero-weight word, there are no
code words of weight less than d. To find the number of
code words of weight d, we reason as follows. Take an
arbitrary set of d places, and consider the set of all code
words'which'haVe all zeroes in the remaining n-d places.

One of these words will be the all-zero word; the rest must
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have welight d, since no code word has weight 1less than d.
Consider the information set consisting of the n-d excluded
places plus any place among the d chosen; by assigning
zeroes to the n-d excluded places and arbitrary elements to
the last place we can generate the entire set of code words
which have zeroes in all n-d excluded places. There are
thus q such code words, of which a=1 have weight d. Since
this argument obtains for an arbitrary set of d places, the
total number of code words of weight d is (ix(q-l).
Similarly, let us define by MO ra the number of code
words offweight~d+a~which are non-zero only in an . arbitrary
sét of d+a places. Taking as an information set the n=-d-a
excluded places plus any a+l places of the d+a chosen, we
can generate a total of q%*! code words with all zeroes in
the n~d-a excluded places. Not all of these will have
weight d+a, since for every subset of size d+i,>0:si = a-1,
there will be My, ; code words of weight d+i, all of which

will have all zeroes in the n-d-a excluded places.

Subtracting also the all-zero word, we obtain

a-t
Mia = o2 v - 2 () M

From this recursion relation, there follows explicitly
' % ¢ d.ﬁ-c-.—\ a-t
Mlra = 4=y 2 -1 (5 5

Finally, since there are Mg Words of weight d+a in an

arbitrary set of d+a places, we obtain for NQs., the total

number of code words of weight d+a,
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We note that the summation in the expression for
Mdxra is the first a+l terms of the binomial expansion
of (q-l)&ka-‘q‘(&”l so that as q—c0, M, > . Also, we
may upperbound Mg, by observing that when we generate the
q®*' code words which have all zeroes in an arbitrary n-d-a
places, only those which have no zeroes in the remaining a+l

information places have a chance of having weight d+a, so

that
ﬁkaAdL = (c\-\vauyf

d-Solomon Codes
We can now introduce Reed-Solomon codes, whose
properties follow directly from those of van der Monde

matrices.

V der Monde Matrices
An (n+1l)x(n+l) van der Monde matrix has the general

form:

| an & --- al

where the a; are members of some field. The determinant of
this matriﬁ, D, also a member of the field, is a polynomial
in the a; in which no a; appears to a power greater than n.
Further, since the detefminant is zero if any two rows are

the same, this polynomial must contain as factors a;-ai, all
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i j, so that
N/ .
D= Dig (ar-a).

3 .
But now the polynomlalzg,(a;-a&) contains each a;to the nth
\

power, so that D' can only be a constant. Since the

coefficient of 1.a,.aX.-- aX in this polynomial must be one,
D'=1, and D = g%(a;-aé). |

Now suppose all the a_ are distinct. Then ai-ay #0, i
# j,vsince the a; are members of a field. For the same
reason, a product of nonzero terms cannot be zero, and
therefore the determinant D is not zero if and only if the a;

are distinct.

Similarly,

NP
&’ as ---aé“**“\
\"“"-o a\w\-ﬁ'\'\ - - a.‘wl.g'\'\i\
. ! . = T_Fq‘;‘hﬂ(a.;-ap-)
N a B L L)‘
1 Ao g A=t Yo 1 )
al a c -t A

thus the determinant of such a matrix, when my, # 0, is not

zero if and only if the a_; are distinct and nonzero.

d-Solomon Codes

pan)

A Reed-So]omonécode on GF(g) consists of all words f df

length n £q-1 for which the d-1 equations
;éifsczi”* = OJ WMo = M = o +d-2

are satisfied, where m, and d are arbitrary integers and &
is a primitive element of GF(q).
Clearly an RS code is a linear code, since if f, and ?;

—_— -
are code words satisfying the equations, @f,+]f:f\ satisfies



i
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the equations. We shall now show that any n-d+1 places of
an RS code can be taken to be an information set, and
therefore that an RS code is a maximum code with minimum

distance d.

We define the locator Z; of the ith place as ot ;  then

w
we have 2 f;(Z:)M =0, mg=msm,+d-2. We note that since

ey
is primitive and n=qg-1, the locators are distinct nonzero
elements of GF(q). Let us arbitrarily assign elements of
GF(q) to n-d+1 places; the claim is that no matter what the
places, tﬁere is a unique code word with those elements in
thoybse places, and therefore any n-d+l places form an
information set S. To prove this, we show that it is
possible to solve uniguely for the symbols in the
complementary check set 5, given the symbols in the
information set. Let the locators of the check set S be Yj,
l=j=d-1, and the corresponding symbols be ds’. If there

are a set of dJ which with the given information symbols

form a code word)':then

d-\ - e
}:‘Z‘ &8(\{‘\ = - ‘%FL (Zc), W £ A< Word -2 .
Defining S, = -‘ésf‘-(Z; > + these d-1 equations can be
written —
ho Marl | erdon) 4 Suce
Y‘ ’\Il o { *’& & S
ym Wet| \j:‘“ el NS wt |
1 -

~
\ A
\ [N

) ' - o+l - . S -]
|V YT A e

-1

ot e, o e
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The coefficient matrix is 6f the van der Monde-like
type we examined above, and has nonzero determinant since
each of the locators is nonzero and distinct. Therefore
there is a unique solution for the dj for any assignment to
the information places, so that an arbitrary set of n=-d+1
p]a;es can be taken as an information set. It follows that
Reed-Solomon codes are maximum and have minimum distance d,
The complete distribution of their weights has already been
determined,

As examples, RS codes on GF(4) have length 3 (or less).
Thenéode of all words satisfying the single equation ﬂ +fL+f3
= 0 (mg=0) has minimum distance 2. Taking the last symbo1
as the check symbol, we have fy = f, +f, (where we omit minus
signs since we are in a field of characteristic two), so

that the code words are

6oo to | o O =X Qe ™
O \Vv o o< \ox> o= | e
O e | e > oce O ot o¢ |
Oscrot™ R N x> 0O
The code of all words satisfying fy+fy+fy = 0 and f, +f_
+fyx™ = 0 (m,=0) has minimum distance 3; letting f, = &f
and f3 = u‘f‘, we get the code words
={eTe (A L o > |

The code of all words satisfying fi +ft+f > = 0 and f,

*fct +fy¢* = 0 (m,=1) also has minimum distance 3; its code

words are

000 (v o e X 2o tpe ™

bs



Chapter 3. BCH Codes PAGE 63

3.33 Shortened RS Codes

A Reed-Solomon code can have Tength no longer than q-l,
for that is the total number of nonzero distinct elemeﬁts
from GF(q) which can be used as locators. (If Me=0, we can
also let 0 be a locator, with the conventibn d°=1, to get a
code of length q.) If we desire a code of length n=<g-1, we
can clearly use any subset of the nonzero elements of GF(q)
as locators,

Frequently, in concatenating codes, we meet the
condition that q is very large, while n needs to be only
moderately large. Under these conditibns- it is usually
possible to find a subfield GF(q') of GF(q) such that n<gq',
A considerable practical simplification then occurs when we
choose the locators from the subfield GF(q'). Recall that
vif q'b=q, we can represent a particular symbol f: by a
sequence of b elements from GF(q'), (far s for seee § fon ).
The conditions %iﬁisz = 0, mg=sm=mgd=-2, then become the
conditions FfZ =0, my=msmg*d-2, 1 2 = b, because
when we add two f; or mu]tiply them by Z:~, we can do so
term-by-term in GF(q'). In effect, we are interlacing b
independent Reed-Solomon codes of length n = q'-1, The
practical advantage is that rather than having to decode an
RS code defined on GF(aq), we need merely to decode RS codes
defined on the huch smaller field GF(q') b times. The
performance of the codes cannot be decreased by this
particular choice of locators, and may be improved if only a

- few constituent elements from GF(g') tend to be in éerr
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when there is an error in the complete symbol from GF(q).

As an example, if we choose mgy=1 and use locators from
GF(L4) to get an RS code on GF(1l6) of 1ength 3 and minimum
distance 3, using the representation of GF(1l6) in terms of

7 GF(4) of Section 1, we get the 16 code words

o oo Oooc O oY ele) Soo W] Ly LUy \ )

©oo/, (l \ \) ) (o(atu)(a(’-u‘u‘), (Oob), (lH\,(o(u.eL (‘x‘a‘u\
555 o), (o), (5270, (T [

’ ocn:) (4 lu (ogaux' ‘x‘d ("°’° J Tt

or in effect two independent RS codes on GF(4).

| 3.4 BCH Codes

We give now a general method for finding a code with
symbols from GF(q) of length n and minimum distance at least
de If n€qg=-1, of course, an RS <code will be the best
F choice, since it is maximum. But often n is larger than q;
fbr instance, if we want a binary code, q=2, and the longest
RS code has length one. Bcﬁkgcodes are a satisfactory
solution to this problem when n is not extravagantly large,
and tﬁe only genéral solution known,

Let us find an integer a such that ¢ > n. Then there’
is an RS code on GF(g#®) With léngth n and minimum distance
d. Since GF(q) is a subfield of GF(gq®), there will be a
certain subset of the code words in this code with all
symbols in GF(g). The minimum distance between’ any two
words in this subset must be at least as great as the
minimum distance of the code, so that this subset <can be

taken'as a code on GF(qg) with length n and minimum distance
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at least d. Any such subset is a BCH code.
We shall call GF(q) the symbol field and GF(g®* ) the
Jocator field of the code.
For example, from the three RS codes on GF(4) given
earlier as examples, we can derive the three binary codes:.
a) 000 b) 000 c) 000
011 111
101
110
Since the sum of any two elements from GF(q) is another
element in GF(qg), the sum of any two words in the subset of
code words with symbols from GF(q) is another word with
symbols from GF(q), so that the subset forms a linear code,

There must therefore be qk

words in the code, where k has
yet to be determined., How useful the code is depends on how
large k is; example b) shows that k can even be zero, and
examples b) and c) show that k depends 1in general on the
choice of m,. We now show how to find the number of
information symbols in a BCH code.

Since all code words are code words in the original RS
code, all must satisfy the equations

(2= 0, Wo = WA = Wt dom 2

Let the characteristic of the locator field GF(g% ) be p;
then q“=pm“, q=p", and thus raising to the gth power is a

linear operation, (p+5)ﬂ = P1+Yq. Raising each side of

‘these equations to the qth power, we obhtain

0=,(?F;Z;u)q _ ?Fiﬁ7iuq= ? Fl.z;""_“?) WMo S w.su..ﬂ.c*-z,
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where we have used f;q =f;, since f, is an element of GF(q).

Repeating this operation, we obtain

?ﬁ'zcw"=0, O=j=ant, (1)
where the process terminates at j=a-1 since Z:-* is an element
of GF(¢*), and therefore (Z,"“')"‘L =2z, . Not all these
equations are different, since if mq)' =m'q", mod € -1 for some
m'ﬁm‘, and j'#j, then Zf“"J = Zm'lq/, for all i. Let us denote
by r the number of equations which are distinct=- that s,
the number of distinct integers modulo gq®=1 in the set

My, GMg, G*Mg,eas, a2 'm

o

m_+1, alma+1),..., q“"“'(rmo+1)

m +d-2, almg+d=2),..., a* (m +d-2)

Clearly r< a(d-1). We label the dis‘tinct members of this
set m,, 1l=f = r,

We now show that r is the number of check symbols in
theb code. LetF‘; be any an element of GF(g¥*) with r distinct
consecutive powersﬁe(ébﬂ...,/”h'.—' The <claim is that the
places whose locators are these r consecutive powers of/5
may be taken as a check set, and the remaining n=-r as an
information set. Let the symbols in the information set S
be chosen arbitrarily. A code word is uniquely determined

by these information symbols if there is a wunique solution

. mg . . .
to the r equations Zf‘; (z,) ", ls,Qé r, which in matrix form

"5 "LMI P(b-”)‘“' oplber—) Fb S

are
4,@1’“‘&& (M‘)M-.____ﬁ(‘vw-c) Mo [N S,

o : T (»)

.

Y ot 0

-

e ———— } *©CF " O R Y ¢ e m RN e o ooy + € - - PR
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where we have defined s, E;égf;zf“ . The coefficient matrix
is van der Monde-like (for a different reason than before),
and since the /5'“1 are all nonzero and distinct, the
equations have a solution as claimed.

We must show that the f,,; which solve Egqns. 2 are
elements of the symbol field GF(a). Suppose we raise Eqns.

2 to the qth power; we get a superficially new set of

equations of the form
W (
_ éf.‘?(Zz)q £ =0, 3),

But for ieS, f; € GF(q), so féq = f, . Furthermore, Eqns. 3

are exactly the r distinct Eqns. 2, since Eqns. 2 are the

9 o

. . . . 1
distinct equations in Eqns. 1. Thus i, » Fog o sees BLIPE

solve Eagns. 2 for the same information symbols fe, i€ S, as

did fy, foois eaes F which were shown to be the wunique

w1
solution to Eqns. 2., Therefore f;t; = fL+; ; but the
elements of GF(q%) which satisfy 151=/5 are precisely the
elements of GF(qft so that the f,,. are elements of GF(q).

Thus the code has an information set of n-r . symbols,
and therefore there are q*" code words.

We remark that any set of r places whose 1locators can
be represented as r consecutive powers of some field element
are thus a check set, and the remaining h-r an ihformation
set, In general every information set cannot be so
specified, but this gives us a lower bound to their number.

For example, to find the number of check symbols in a

binary code of length 15 (d*=16) and minimum distance 7,

with m, chosen as 1, we write the set
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1, 2, 4, 8

3, 6, 12, 9 (24=9 mod 15)

5, 10 (20=5 mod 15)
where we have excluded all duplicates. There are thus 10
check symbols, This is the (15, 5) binary Bose-Chaudhuri_7

code.

3.41 Asvmptotic Properties of BCH Codes

We recall that for large n the Gilbert bound guarantees

the existence of a code with minimum distance n and
. . { fu (4- .

dimensionless rate k/n = 1 -ﬁ¥§)-8 :;13). With a BCH code
. | tuq \wq

we are guaranteed of needing no more than a(d-1) = an§ check

symbols to get a minimum distance of at least d = nd , but

since q* must be greater than n, a must be greater than
In n/1n q, so that for any fixed nonzero § , an§ exceeds
n for very large n. Thus, at least to the accuracy of this
bound, BCH codes are useless for very large n. It is well
to point out, however, that cases are known in which the
minimum distance of the BCH code is considerably larger than
that of the RS code from which it was derived, and that it
is sdspected that their asymptotic performance is not nearly
as bad as this result would indicate. However, nothing

bearing on this question has been proved,
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Chapter L. Decoding BCH Codes

In this chapter we present a decoding algorithm for BCH
codes, Much of it is based on the error-correcting
algofithm of Gorenstein and Zier]er; we have extended the
algorithm to do deletions-and-errors and hence generalized
minimum distance decoding (cf. Chapter 2), In addition we
have appreciably simplified the final, erasure-correcting
step =

Since we intend to use a Reed-Solomon code as the outer
code in all our concatenation schemes, and since
minimization of decoder complexity 1is our purpose, in
Section 6 we consider in some detail the implementation of
this algorithm in a special- or general-purpose computer.

Variations on this algorithm of 1lesser interest are

reported in Appendix A.

k.1 Introduction

In Chapter 3 we observed that a BCH code is a subset of
words from an RS code on GF(q) whose symbols are all members
of some subfield of GF(q). Therefore we may use the same
algorithm which decodes a certain RS code to decode all BCH
codes derived from that code, with the proviso that i{if the

algorithm comes up with a code word of the RS code which is
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not a code word in the BCH code being used, a decoding
failure is defected. |
Let us then consider the transmission of some code word
f = (f, foreee, f,) from a BCH code whose words satisfy
?‘_'F‘-ZE‘M-:O) -wz,;s wes -2

where the Z;, the locators, are nonzero distinct elements of
GF(d). For examples, we will use the RS code on GF(16) with
n=15, m,=1, and d=9, and we will represent GF(16) as
follows:

0 0000 o¢® 0001 o7 1101 " 0111

1 1000 o* 1100 %1010 o'*1111

< 0100 o¥ 0110 270101 '*1011

o™ 0010 o¢® 0011 ' 1110 M 1001
We shall let Z; =oc'°.=oc"5""‘.'

We suppose that in the received word ?=(rl,rt, caeslL),

s symbols have been classed as unreliable, or erased. Let
the locators of these symbols be Yy, l=k s, and if the kth
deletion is in the ith place, let d¢= re=f; be the value of
the deletion, possibly zero. Also, of the symbols classed
as reliable, let t actually be incorrect. Let the locators
of these errors be Xj, lej=t, and if the jth error is in
the ith place, let its value ej = r;-f¢, where now ey = 0.

We define the parity checks, or syndromes, S by

1.8

then i VA C - we
Seem TRA 4 T AN

® Fen” A
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The decoding problem is to find the eé, XJ, and dy from the
Swmand Y. The following algori thm solves this problem

whenever 2t+s < d.

We shall find it convenient in what fo]]ows to define

the column vectors

j(«,mf (SQ)SQ_,,.-., SL)T Wo=a<sbsmard -1

: = A\, .a- e

XJ (a, ) ()(d ) Xaa ; oy OL)T} @""‘J

VA = a /G- b\t

>i(a,b)- (YL ) JE ,'")yQ.),
Evidently £

—_— —_ S —
) = Z - ,
SCG)L) y=t e" XJ“»L) + I:?, CQ“)/kCa.L) '
Finally, let us consider the polynomial o (Z) defined by

o(z) = (2-2))(z-2.) - (z-2.)
where the ;[ are members of a field. Clearlyes(Z) = 0 if

and only if Z equals one of the Zg. Expandings(Z), we get

Tl = 25— (2420 22 )25 s s () (207,20,
The coefficient of (-1)*€ 2% in this expansion 1is defined

as the L-f o elementary symmetric function i) of
Z,, Z,,4e4, Z,; note that o5, is always one. We define & as
the row vector

(6;’ ;6-.‘)"' ) ("l)Lbl);

then the dot product

2oy = (2,
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4,2 Modified Cvelic Parity Checks

The S, are not the only parity checks that could be
formed; in fact, any linear combination of the S.. s also a
valid parity check. We look for a set of d-s-1 independent
parity check equations which, unlike the S., do not depend
on the erased symbols, yet which retain the general
properties of the S..

Let_Z’:'_ be the vector of the symmetric functions Gax of
the erasure locators Y. We define the modified cyclic

parity checks Tl by

)

/l,_QE '2“: . S(M_.,+9.+-S)y1(_°+ﬂ) .

Since we must have m & m_+1 and mgo+1+s =m_+d-2, the range of

1 is 0=1=2£d-s-2. 1In the case of no erasures, Tsz = Sy

Now, since

€ -
—é X."“Q"’ﬂx' " Z-& ymff% C2'>

5(-"‘44 Qs mrl)

‘ d d (s,0) Lo 5,07,
we have Wil X 2 ﬂ M,q —
Z e 6 +
Ty =77, SCM.a-ﬂ s, woed) - ke © ) y o )/Hs ')

T Qw RS

| (3)
- }:l Elxd )
where we have defined Ed::" eJX‘-""-aj(Xi) and used (Yy) = 0,
since Yy is one of the erasure locators upon which —5“: is

defined. That the modified cyclic parity checks <can be.
expressed as the simple function of the error locators given
by Eqn. 3 lets us solve for the error locators in the same

way as if there were no erasures and the minimum distance
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were d-s.

he,3 Determining the Number of Errors

If d=s is odd, the maximum number of errors that can be
corrected is ty = (d-s-1)/2, while if d-s is even, up to t
= (d-s-2)/2 errors are correctable, and t,*1l are detectable.

~We now show that the actual number of errors t is the
rank of a certain t,xt, matrix M, whose components are
modified cyclic parity checks, as long as t=t,. In order
to do this we use the theorem of algebra that the rank of a
matrix isbt if and only if there is at least one txt
submatrix with nonzero determinant, and all (t+1)x(t+1)
submatriceé have zero determinant. We also use the fact
that the determinant of a matrix which 1is the product of

square matrices is the product of the determinants ‘of the

square matrices.

1
THEOREM (after Gorenstein and Zierler): if tet, , then M

has rank t, where

-
e T T

M= Thas Towd - Taon

-

>
Ly

:113‘\ Toer o

Since 2t -2 <d-s-2, all the Tk in this matrix are available.

Broof: First consider the txt submatrix Mg formed by the
~ first t rows and columns of M. Using Ean. 3, we can write Mt

as the product of three txt matrices as follows:
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o
T T, T Tot-1, -1 22t
Ly - } - - I, ¢
’rl» A I R A ) E.X, Dﬁ O_\ K
- T E-a (] (o Uaa o b .
20 s T | (XN X 0 BN e
— i ! S : :
T b T /
-t. "y -
Wt ey | [ 0 BN B
as may be checked by direct multiplication.
The center matrix is diagonal, and therefore has
Uo-1t . o oy Moy .
determinant T/E Xa ; since EJ = eaxigﬁ(xa), and X‘ £ Yy,

ej # 0, this determinant is nonzero. The first and third
matrices’are van der Monde, with determinant ?I (X, - X} ),
wHich is nonzero since the error locators are dlttlnct. The
determinant le] is then the product of three nonzero
factors, and is therefore itself nonzero. Thus the rank of
M is t or greater.
Now consider any of the (t+l1)x(t+l) submatrices of M,

which will have the general form

T, ) ek 0 o - ookt
T“'*‘-"Z-w- “Tawk] (XA x&0 [0 B o0 xs’-x&t--- X,b¢
H;-_4-41.’_"— < T X e '“(— A D 0 ---E0 XL' X
L o afb, ’a++L¢ A X,X OIOO"‘OOJ[O 0 "‘O
as may again be checked by direct multiplication with the
use of Egqn. 3. Each of the three factor matrices has an
all-zero row and hence zero determinant; therefore all
(t+1)x(t+l) submatrices of M have zero determinants. Thus

but then it is t.

the rank of M can be no greater than t;
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balt locating the Errors

We now consider the vector'EZ of elementary symmetric
functions & of the Xd' and its associated polynomial

(XB X(& ),

where
I - t £-| T
X(E,o)"(x,x ).,.,1).
If we could find the components of'zg, we could determine
the error locators by finding the t distinct roots of 5 (X).
If we define
ca,L) (’ ia_,,.”‘i’;,)') OS-Lsa,sol—s—z,

then from Eqn., 3

— £ -
Teay) = J"i' £ Xj ca,»)

and we have
é 2 ,
T(l«f-f ”»- X )() O fﬂz‘-nQ—s-(‘—z,
We know that the flrst component of ¢+ Ses, e€quals one, so
that this gives us a set of 2t,-t equations in t unknowns.
Since t=2t, by assumption, we can take the t equations

specified by 2t -Zt..l 2t,=-t-1, which in matrix form are

_\ —

Tt | [T T | - e,
= [T s s T, T Theten | 6e,
T ) ; : : :

R LT SR (-Nteeq

or, defining

64' = <‘6en 5{1,3 ey (")f 6-26’\) y
'__rfzﬁvq,z+,-k) '='Eig l{f (4)
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Since 0= 2t -2t and 2t,-1=<d=-s-2, all the Tf needed to form
these equations are available.

We have already shown that M+ has rank t, so that these
equations are soluble for Z? and hence7% . Then since 2 (Z;)
is zero if and only if Z; is an error locator, calculation
of Z,(Z;) for each i will reveal in turn the positions of

all t errors,

4.4]1 Remarks

The two steps of finding the rank of M and then solving
a set of t equations in t unknowns may be combined into one,
For consider the equations

_\_T,—tha-l,{:b\ ':?e-ﬁM (%)
where
EC AN G (—t)ta;e) 0,..,0)

An efficient way of solving Eqns. 5 is by a Gauss-Jordan’
reduction to upper triangular form. Since the rank of M is
t, this will leave t nontrivial equations, the 1last t, -t
equatidns being simply 0=0. But now Mé is the upper left
hand corner of M, so that the upper left hand corner of the
reduced M will be the reduced M¢. We can therefore at this
point set the last t,-t components of'ZZ'to zero, and get a
set of eduatiOns equivalent to Eaqns. 4, which can be solved
~for a?. Thus we need only on reduction, not two; since
Gauss~-Jordan reductions tend to be tedious, thls may be a
significant saving.

This procedure works whenever t:sf,-- that is, whenever

the received word lies within distance t, of some code word,

e e L. e e e e e—————
- e e [ - - P Py e —————— AT
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not counting places in which there are erasures, It will
generally be possible to receive words greater than distance
ty, from any code word % and upon such words the above
procedure must fail,. This failure, corresponding to a
detectable error Twill turn up either in the failure of
Egns. 5 to be reducible to the form described in the
prededihg paragraph, or in oe(X) having an insufficient
number of nonzero roots.

Finally, if d=s is even, the preceding algorithm will
locate all errors when t=t, = (d=-s-2)/2. In addition, if t
= t,+1, an uncorrectable error can be detected by bthe
nonvanlshlng of the determinant of the txt matrix with Ths.o
5 in the upper left, T, in the lower right. Such an error
would be detected anyway at some later stage in the

correction process, however.

4,42 Example

Consider the (15, 7), distance 9 RS code introduced
earlief. Suppose there occur errors of value «% in the
first position and d,in the fourth position, and erasures of
value 1 in the second position and o' in the third position.
(e,—oc“X =t he =, K=" d, =) Vo= oz"i =) ‘/ =o<"’)
In thls case the parity checks S will turn out to be

= a4 = ' - A _ S » _
S,-oc" 5,_—-01 )53— oc§’ 54-0Z' Ss._“q‘ 563“\5’ 57_0(1, ﬂ SB"‘“('.

With these eight parity checks and two erasure
locators, the decoder must find the number and position of
the errors. First it forms

(580, 54, 54,
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(Since we are working in a field of characteristic two,
where addition and subtraction are identical, we omit minus
signs.)

Tdp =)

a1 = Y+Y, =M a2 (ov)+ (i) = (o1o0) = o

Ty, = \/‘\/L = o'S ' o'

Next it forms the six modified cyclic parity checks T

¢ o

Eqn. 2:
To = DOa+ ‘—&\S; 25420, = T h o P 4o ' = oS 4o S
= (ouo) + (\oor) + (Do) = Lidio) = ¥

V= Sq..v."" 5—&\53 + G-dw.g-)_ =oc®
’E, =O)‘T3=,°<3> —\—q. =°<|a)'—‘3_=°(3

Egns. 5 now take the form
D<3'=¢><'33'é,+oc5ere,_
X'z x3 e, + x8o,,
3= M'a;z_ + Ns@;

Reducing these equations to wupper triangular form, the

decoder gets

5 =

s _
&= Ccr+ Cpy

O = o

From the vanishing of the third equation, it 1learns that
only two errors actually occurred., Therefore it sets og; to
zero and solves for &, and Ge,, obtaining

52\ =x' Se, = x'°,

Finally, it evaluates the polynomial

J
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for X equal to each of the nonzero elements of GF(16);
Se(X) = 0 when X = x'* and X =x" , so that these are the

two error locators.

b.5 Solving for the Values of the Erased Symbols

Once the errors have been located, they can be treated
as erasures, We are then interested in the problem of
determining the values of s+t erased symbols, given that
there are no errors in the remaining symbols. To simplify
notation, we consider the problem of finding the dk given
the Y., iél<é’s, and t=0,

Since the parity check equations are linear in the
erasure values, we could solve s of them for the dye There
is another approach, however, which is more efficient,

As an aid to understanding-the derivation of the. next
equation, imagine the following. To find &k°, suppose we
continued to treat the remaining s-1 erasures as erasures,
but made a stab at guessing dk,- This would give us a word
with 5-1 erasures and either one or (on the chance of a
correct guess) zero errors; The rank of the matrix M, would
therefore be either zero or one; but My would be simply a
single modified cyclic parity check, formed from the
elementary symmetric functions of the s-1 remaining erasure
locators. Its vanishing would therefore tell us when we had
guessed dko correctly,

To derive an explicit formula, let E?i' be the vector
of éTementary symmetric functions of ‘the s-1 erasure
locators, excluding Y . Since t=0, we have from Egn. 2

. s Mo+d —s_|
SLM—L,W@U&-S-—I) = E‘&“ e . 7’:'(5“‘)0")

- -
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and therefore Wo+d-s-1

e Wy +d- 5-1
ko_Q-—s—l = ,5964 ’ SCM*&:-L, word -s-1) = &za Vk“ koCd ('Vk")\ v kz,‘éky" N L\/k.)
A. M rd-s-)

Vs pooe (Vi)
since koé&(Y)“) =0, k # k,. Thus

Ak _ %7;-5-/

OO U +d~5-)
Ve, 523 (Ye,)
This gives us our explicit formula for d, , valid for any s:

Cﬂ.g = Sm*d')' _ hd&'sm“'d‘3 * ksS&LS werd -4 T ° (é)
°T yf Werd-r Word -3 B
e T ke 2t T b oesay YiomHd
Evidently we can find all erasure values in this way;

each requires the calculation of the symmetric functions of
a different set of s=1 locators. Alternately, after_finding
d¢, we could modify all parity checks to account for this
information
— — —
{5(/’“@4-&-1',%) = S(“‘*"'&"Hﬂn\ - &1\}“(“‘3*‘1'1)%\1)

and solve for dz in terms of these new parity checks and the
remaining s-2 erasure locators, and so forth.

A similar argument leads to the formula for error

values
_-— D
baéé- Vs >, d-3 -t-0
€ Tt (v )
+RX-5-0C ~| | . .
y},, jo ‘e (Xj‘o) éa O‘;a)
in terms of the modified cyclic parity checks. We could

therefore find all error values by this formula, modify the
parity checks Sw.. , accordingly, and then solve for the

_erasure values by Eagn. 6.

T — 1 - E 37 - Bt ¢ mEm——— e e v e ————
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L = X 1 c

As a continuation of our previous example, let the
decoder solve for e4q. The elementary symmetric functions of
XZ' Yi, and Y, are

%3 = XIYI\/:.""-", 6, < y»yn"' )(l-y;,"’ X).\]/; ‘D‘-? 6 = Yy"‘Yl "y':« =t
Therefore
¢, = oid" Xot!® v a3 3y 0ch e o<
) =

4
= — =X
0(7 +K6-D‘9#045‘Nq f-ol‘-oc“’ o 1>

e, can be found similarly; or the decoder can

calculate
! 5 / 7 /
—- 4 one !> =
Since /' -
- _ /
Sy W=t & =Y+ =ox,

- X por. o 3 "

X3 f ptioe® + 0dl®b ~ oc 19 :

Third, S7_ . <u_
§ =ox* 3, =0,

J

So J’lc‘ x= = 1

and finally, with X;”=o("" C{ = o3
‘ . )

4,6 Implementation

We now consider how a BCH decoder might be realized as
a special purpose computer, We shall assume the
availability of an arithmetic unit able to realize, in
approximate order of complexity, the following functions of
finite field elements: addition (X=X,+X,), squaring (X=X:—),
multiplication by ", mzz ms m,+d-2 (X = x™X, ), inversion
(X=Xfrj, and multiplication (X = X ,X,). Further, because of

the bistability of common computer elements, we shall assume
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p=2; sé that subtraction is equivalent to addition and
squaring is linear. We will let the locators Z; = Acw'; ;
Finally, we shall assume that all elements of the symbol
field are converted to their representations in the locator
field GF(q) = GF(ZM), and that all operations are carried
out in the larger field.

Petersoﬁ*and Bartee and Schneideg-have considered the
implementation of such an arithmetic unit; they have shown
that multiplication and inversion, the two most difficult
operations, can be accomplished serially in a number of
e]ementary operations proportional to M. Further, all
registers will be M bits long. Thus the hardware complexity
is proportional to some small power of the logarithm of q,
which exceeds the block length.

We attempt to estimate the approximate complexity of
the algorithms described above by estimating the number of
multiplications required by each and the number of memory
registers,

ﬁuring the computation, the received sequence of
symbols must be stored in some buffer,‘awaiting correction.
Once the S, and Y, have been determined, no further access
to this sequence is required, until the sequence is read out
and corrected,

The calculation of the parity checks

Su € rlam) = i O vy Vi

is accomplished by the iteration

Sue = e ay Yo, vydoed v v,
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which involves n-1 multiplications by o d-1 such parity
checks must be formed, requiring d-1 memory registers.

—_—

Sa can be calculated at the same time. We note that

Fae =kl + Yo Sy 1 )
dﬁ can be calculated by this recursion relation as each new

Y is determined. Adding a new Y, requires s'

<
multiplications when s' are already determined, so that the
total number of multiplications, given s erasures, is

3oV 4 322 4 = (L) < dr/a,
s memory registers are required (Sg =1).

The modified cyclic parity checks Tﬁ are then
calculated by Eqns. 1. Each requires s multiplications, and
there are d-s-1 of them, so that their calculation requires
s(d=s=-1) <d*/4 multiplications and d-s-1 memory registers.

| Eans. 5 are then set up in t_ (ty +1) < d >/4 memory
registers. In the worst case, t=t,, the reduction to upper

triangular form of these equations will require t,

inversipns and

3
bolborl) + (do- 1)t +o- + |2 =z'(u§‘+)4 ({'gj">< (&’;")

mu]tiblications. As d becomes large, this step turns out to
be the most Tengthy, requiring as it does ~d> /24
multiplications,
. —
Determination of &, from these reduced equations
\

involves, in the worst case, a further ﬁ:) < d7/8
multlpllcatlons, and t, memory registers,

As - Chien has shown, finding the roots of o (X) s

facilitated by use of the special multipliers by <™ in the
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arithmetic unit, If

éi- e (- < o

3.&0

,; .
H & . = Mg x k'" .
then 1 is a root of e(X). Let dé(fj) o d 53(£i). Now

, /
r=s 6;C(-— )y = 0‘-M+b*2°<& CC'!"))
which will be zero whenu-|=o<~\-' Is a root of &5, (X). All

error locators can therefore be found with n multiplications
by x"; and stored in t memory registers.

Finally, we have only the problem of solving for s+t
erasures. We use Eqn. 6, which requires the elementary
symmetrlc Functlons of all erasure locators but one. Since

kSa = yko (A(lm) 'z,"a(k“)),
we can begin with kec-d.(s-l) = Yf."‘l; and find all £k Car from
the Sy with $=1 multiplications and an inversion. Then the
calculation of Egn. 6 requires 2(s+t=-1) multiplications and
an inversion. Doing this s+t times, to find alj erasure
values, therefore requires 3(s+t) (s+t-1) multiplications and
s+t inversions, Or we can alter s+t-1 parity checks after
finding:the value of the first erasure, and repeat with s' =
s+t~1, and so forth; assuming all YE: readily available,
this alternative requires only 2(s+t)(s+t=1) multiplications

and s+t inversions,

4,61 Summary

In summary, there are for any kind of decoding two
steps in which the number of computations is proportional to
N I f we restrict ourselves to correcting de]etlons only,

then there is no step in which the number of computations is

e = - -
"R R — R T ™ T -
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! 2
proportional to more than d . Otherwise, reduction of the

matrix M requires a number of computations which may be as
large as d3. If we are doing general minimum distance
decoding, then we may have to repeat the computation d/2
times, which 1leads to a total number of computations
proportional to d4. As for memory, we alsoc have two kinds:
a buffer with length proportional to n, and a number of live
registers proportional to d*. In sum, if d =%n, the total
complexity of the decoder is proportional to nb, where b is
some number on the order of 3. All this suggests that if we
are willing to use such a special-purpose computer as our
decoder, or a specially programmed general purpose machine,
that we can do quite powerful decoding without the demands
on this computer becoming unreasonable,

Bartee and Schneidef7 built such a computer for a
(127,92) 5S=-error-correcting binary BCH code, using the
Petersonzalgorithm. More recently, Zier]e: has studied the
implementation = of his algorithm for the (255,225)
15-error-correcting Reed-Solomon code on GF(256), both in a
special-purpose and in a specially programmed small general
purpose computer, with results that verify the feasibility

of such decoders.

4,62 Modified Deletions-and-Errors Decoding

If a code has minimum distance d, up to s, = d-1
deletions may be corrected, or up to t,2(d-=1)/2 errors, We
'saw above that while the number of computations in the

decoder was proportional to the cube of t, , it s
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brdbértional only to the sduare of s, . It may then be
practical to make the probability of symbol error so much
lower than that of symbol deletion that the probability of
decoding error is negligibly affected when the decoder 1is

set to correct only up to t, < t, errors. Such a tactic we

call modified deletions-and-errors decoding, and we use it

wherever we can in the computational program of Chapter 6.
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Chapter 5. Efficiency and Complexity

In this chapter we collect our major theoretical
results on concatenated codes. We find that by
concatenatjng we can achieve exponential decrease of
probability of error with overall block length, with only an
a]gébraic increase in decoding complexity, for all rates
below capacity; that on an ideal superchannel with a great
many inputs, Reed-Solomon codes can match the performance
specified by the coding theorem; and that with two stages
of concatenation we can get a nonzero error exponent at all
rates below capacity, though this exponent will be less than

the unconcatenated exponent.

5.1 Asvmptotic Complexity and Performance

We have previously pointed out that the main difficulty
with the coding theorem is the complexity of the decoding
schemes required to achieve the performance which it
predicts.

The coding theorem establishes precise bounds on the
probability of error for block codes in terms of the 1length
N of the code and its rate R. Informative as this theorem
is, it is not precisely what an engineer would prefer,

namely, the relationship between rate, probability of error,
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éﬁd édmplexity. Now cdmplexity is a vague term, subsuming
such incommensurable quantities as cost, reliability, and
delay, and often depending on details of implementation. We
should therefore not expect to be able to discover more than
rough relationships in this area. In this section we
investigate such relationships in the 1imit of very complex
schemes and very low probabilities of error.

We will be interested in schenes which have at least
two adjustable parameters, the rate R and some
characteristic length L, which in the case of block codes
will be proportional to the block length. We shall assume
that the complexity of a scheme depends primarily on L. As
L becomes large, a single term will always dominate the
complexity. In the case in which the complexity is
proportional to some algebraic function of L, or in which
different parts of the complexity are proportional to
algebraic functions of L, that part of the complexity which
is prqportional to the largest power of L, say L“, will be
the dominant contributor to the complexity when L is targe,
and we shall say the complexity 1is algebraic in L, or
proportional to [®*., In the case in which some part of the
complexity is proportional to the exponential of an
algebraic function of L, this part becomes predominant when
L is large (since & = l+x+x¥/2!+.,.> x%, x—200), and we say
the complexity is exponential in L.

Similarly, the prdbability of error might be either

algebraic or exponential in L, though "normally it is
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exponentially small. Sihce what we are really interested in
is the relationship between probability of error and
complexity for a given rate, we can eliminate L from these
two relationshlips in this way: if complexity is algebraic
in L while Pr(e) is exponential in L, Pr(e) s exponential
in complexity, while if both complexity and Pr(e) are
exponential in L, Pr(e) is only algebraic in complexity.

For example, the coding theorem uses maximum likelihood
decoding of block codes of Jlength N to achieve error

probability Pr(e) = e VER)

PR

. Maximum likelihood decoding

involves e comparisons, so that the complexity s also

exponential in N. Therefore, Pr(e) is only algebraic in the

complexity; 1in fact, if we let G be proportional to the
R (G ) Ele)
complexity, G = e®®, (In G)/R = N, Pr(e)=e =
ELR)
G & . As we have previously noted, this retatively weak

dependence of Pr(e) on the complexity is what has retarded
practical application of the coding theorem.

Sequentia] decoding of convolutional codes has
attracted interest because it can be shown that for rates
less than a critical rate Rcomp<C, the average number of
computations is bounded, while the probability of error
approaches zero. The critical liability of this approach is
that the number of computations needed to decode a given
symbol is a random variable, and that therefore a buffer of
length L must be provided to store incoming signals while
the océasional long computation proceeds. Recent worﬁ‘ has

shown that thé probability of overflow of this buffer, for a
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given speed of computétidn, is proportional to‘L—N, where «
is not large. In the absence of a feedback channel, buffer
overflow is equivalent to system failure; thus the
probability of such failure is only algebraically dependent
upon the length of the buffer and hence on complexity.

Threshold decoding is another simple scheme for
decoding short convolutional codes, but it has no asymptotic
performance at all. As we have seen, BCH codes are subject
to the same asymptotic deficiency. The only purely
algebraic code discovered so far that achieves arbitrarily
low probability of error at a finite rate is Elias' scheme
of iterating codes% but this rate is low.

Ziva has shown that by a three~stage concatenated code
over a memoryless channel, a probability of error bounded by

Pvle) =z K—Ld
can be achieved, where L is the total block 1length, while
the number of computations required is proportional to Lbé.
His result holds for all rates less than the capacity of the
original channel, though as R—>C, c«<—>00,

In what follows we show that by concatenating an
arbitrarily large number of stages of RS codes with suitably
chosen pafameters on a memoryless channel, the overall
probability of error can be bounded by

U-0)
Pele) = @o\' 5
where L Is proportional to the total block length and VAN Y

as small as desired, but positive. At the same time, if the

éomp]exity of the decoder for an RS code of 1length n is
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proportional to nb , say, the complexity of the entire

decoder is proportional to Lb. From the discussion of the
previous chapter, we know that b is approximately 3. This

result will obtain for all rates less than capacity.

We will need a few lemmas to start. First we observe
that since a Reed-Solomon code of length n and dimensionless
rate (1-2P) can correct up to d? errors, on a superchannel
with probability of error p,

Ple) = (,:(‘r,} o = o-l-plyp - WCEY) (1)
where we have used a union bound and

( V\(\P) - ev\.’?d(ﬁ)‘

This is a very weak bound, but enough to show that the
probability of error could be made to decrease exponentially
with n for any P such that -plog p -Tﬁ(P) > 0 if it were
possible to construct an arbitrarily long Reed-Solomon code,
In fact, however, if there are g inputs to the superchannel;
g a prime power, n<qg-1. We will ignore the prime power
requirement and the 'minus one' in what follows as trivial.

It is easily verified that for /551/2,

—ﬁ’uﬂ = "(I’F),u(l‘/@).

Therefore

—281np = BE = -plug, o= =)

Now we can show that when
ﬁ(ﬁ“‘) = ?ia(lﬁ) | (3)
For by Eqn. 2
()= 2p" 1 pr = 20 o)
(S OENE /u/b)“~
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but

Lax = X * LJ1\L- )4:2-624§3795'
which proves Egn. 3. We note that when ﬁ.f:l/e", az L4, this
condition is always satisfied, (In fact, by changing the
base of the logarithm, we can prove a similar lemma for any
'Acl, a>1.)

Finally, when x>y >0, and a>1,
(- q)* =9 U-(2)) > 2= (- 2)> x2 (1- LY 2 oo 1= 4

We are now ready to construct our many-stage
concatenated code. Suppose by some block coding scheme or
otherwise'we have achieved a superchannel with N f{inputs and
outputs and a probability of error

Pvle) < po =€~ F : E>| (s)
We now apply to this superchannel an RS code of

dimensionless rate (1'2/3) and length H,,, achieving a

probability of error, from Eqn. 1, of

Assume /SE -ﬁ(ﬁ)> 0, and define a to satisfy

Mlpe-w(p)]=£ = E=;

~ thus )
lw M, lw [pe - Y]
a= T + s 1)

We assume that

/5 = })/ex

L and

)

450_5 Dy (1-2) (¥)

R -
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and will prove the theorem only for these conditions.
This first concatenation creates a new superchannel

MtthﬂPU)

inputs and outputs and Pr(e)=exp -Eq. Apply
a second RS code to this new superchannel of length Ny =
Nf’ and dimensionless rate (1-2}“). (That a code of this
length exists is guaranteed by the condition of Eqn. 8 that

a 5N1(1-2p).) For this code
Ple) = e SIfE S e (9)

But now

E,= NI E-dp)] = MLprE>- H(pa)]
N [pee=- #*(s)]
b* Lpe - (eI

:,-a.

=19

v

v

where we have used the inequalities of Eqns. 3 and 4.
Thus by this second concatenation we achieve a code

which, in terms of transmissions over the original

a+i

1 , dimensionless rate

superchannel, has length NyN, = N
(1-2p)(1-2p%), and Pr(e)= exp -E*%

Obviously if A=1/el then B%21/€, and if a =N,(1-28),
then a=N,(1-2p"). Therefore if we continue with any number
of concatenations in this way, Eqn. 8 remains satisfied, and
relations like Ean. 10 obtain between any twé successive
" exponents., After n such concatenations, we have a code of
dimensionless rate (1-2#)(1-2,0“') (1-2/30"”), length L =

"

N Qa._:‘»l , and Pr(e) <exp -E%* . Now for az2, <,
(-2pX1-2p%) - (1-2pa) = (1-2B)(1-2p*) o (1-2p 2! )
= l—2@—1ﬁ‘+_4 3_584,...
Z 1-2p -4 — SRR - Ibphe-

()
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A]SO' :
=T w Ny = 1w L) a,“=1+(a_-|) w b QIR WA
lV\“-’
so that

_ga” (- ket (a-1) \=~€ (-4)
Prle) = ¢ = o-€ € ety o p L 0 _ gL

)

by substitution for a, where A is defined by

| U
A= _— l“'[p" E j
Since pE -’ﬁ(ﬁ) is assumed positive, but /Bél, A is positive.

We now construct a concatenated code of rate R'= C(1l-¢)
for a memoryless channel with error exponent E(R). - Choose R
®-¢ \- 38
- = C(1- . W
TOh5-0 so that l_qu (l-¢) e
know there is some block code of length N and rate R such

= (1-§)C >R' and ‘6=

that Pr(e)< exp =NE(R). Now we can apply the concatenation
scheme already described with Ny = exp NR, E = NE(R), as

long as

MR L e IpnECe) - W]

P

ln VECR) - OECey . = e”® ("7-{5) .

4=

It is obvious that there is an N large enough so that this
is true., Using this N, we achieve a scheme with rate

greater than or equal to %}%;R =2 C(l-€) and with probability

|-4) (i-a)
Prle) « g ~PEe) L = po-

A-: _ l'&[ﬁ" M—S

DER)
NR

Clearly, as long as E(R) >0, A can be made as small as

desired by letting N be sufficiently 1large. . However, it

G3)
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remains positive, so that the error exponent E defined by

E= liw - -‘\:—\oc‘ Py ()

L ~>oe
appears to go to zero, if this bound is tight.

That E must be zero when an arbitrarily large number of
minimum distance codes are concatenated can be shown by the
following simple lower bound. Suppose a code of length N
can correct up to NS errors; since the minimum distance
cannot exceed N, B 1/2, Then on a channel with symbol

probability of error p, a decoding error will certainly be

made.if the first Np symbols are in error, so that

Prie) = (’”#

Concatenating a large number of such codes, we obtain
'?./Le) = Po(”'”"")((a'/‘f")

Now N,MN_--- = L, the total block_length, so that

== (35 -1 ley PleY s (—lsy p) I (B8 )=0,
since & =<1/2, Since E cannot be less than zero,? it must
actual]y‘be zero, In other words, by concatenating an
infinite number of RS codes, we can approach as close to a
nonzero error exponent as we like, for any rate 1less than
capacity, but we can never actually get one.

As‘was shown in Chapter 3, decoding up to t errors with
an RS code requires a number of computations proportional to
t3. We require only that the complexity of a decoder which
can correct wup to Np errors be algebraic in N, or

proportional to N , though in fact it appears . that b ~ 3,

After going to n stages of concatenation according to the
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w-|
above scheme, the outermost decoder must correct (N1p)a

L
errors, the next outermost (Mﬁ&fk , and so forth. But in

each complete block, the outermost decoder need only compute

. o~
once, while the next outermost decoder must compute N,

n-t a.,;-‘l—

times, the next outermost N1 N, times, and so forth.

Hence the total number of computations is proportional to

G [CU/A)Q_--:][, Na'w‘[(ﬁ),, n—-tj Uu "ean- [(U1/5)a.
,U, ban-! . A) ariy ban-+ . /Ua,““"'f-a.““"',a- ban-s

Since ba2b+a, a zz, b= 2, the flrst term in thls series 1is
dominant. Finally, since Nf’n-’< L,
Gzl

Thus the number of computations can increase only as a
small power of L. The complexity of the hardware required
to implement these computations 1is also increasing, but
generally only in proportion to a power of log L.

This result is not to be taken as a guide to design;
in practice one finds it unnecessary to concatenate a large
number of codes, as two stages generally suffice. However,
it does indicate that concatenation is a powerful tool for
.getting exponentially small probabilities of error without

an exponentially large decoder.

The di Theorem for ldeal Superchannels

We recall that an ideal superchannel is the gqg=-input,
g-output memoryless channel which is symmetric from the
input and the output and has equiprobable errors. If its

total probability of error is p, its transition probability
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matrix 1is
(\-p) y L:}

o - (1)
L&,

In this section we ca]culate the unexpurgated part of
the coding theorem bound for this channel, in the limit as q
becomes very large. The result will tell us how well we can
hope to do with any code when we assume we are dealing with
an ideal superchannel. Then in the following section we
will find that over an interesting range Reed-Solomon codes
are capable of achieving this standard. Finally, in Section
5.4 we will.use these results to compute performance bounds
for concatenated codes.

Specialized to a symmetric discrete memoryless channel,
the coding theorem asserts that there exists a code of
length n and rate R which with maximum 1ikelihood decoding
will yvield a probability of error bounded by

Pe)z e-MERD

where

E(r) = C><§M=\ ng:(?) _S?Rig (2)
and
Bolp) = — I z z = prts ] (3)
~Substituting Egn. 1 into Egqn. 3, we obtain for the ideal
superchannel
Eolo)= - % q-¢ [((v—p)-‘\T‘i’ + CQ—\)T% 'PT‘*\_?——.S\NE
To facilitate handling Egqn. 4 when q becomes large, we

substitute f’=§7ln a and the dimensionless rate r = R/1n q;°




Chapter 5. Efficiency and Complexity PAGE 99

then. _
Pr(e) = @&
» . vAaax ; S
E(.V§‘ 0€€,5\“~‘\ {E:I(er)_?\r‘g ( )

l
! lIA.q “" ‘\4
B ) e o8 [ty s o) Ry PR T A
We consider first the case in which p is fixed, while g
becomes very large. For .g’?O, Ef,(f’) becomes
Eolfg’) = -lw e~-%' [ i-p) + pe®)
'~ la LO-p) + pes’’]

In the maximization of E(r), ?’can now be as large as-
desired, so that the curved, unexpurgated part of the coding
theorem bound is the entire bound; by setting the
derivative of E(r) to zero, we obtain

2
r= p Ec(-?')
3% "
(-p) +p€2" (1) 4 pot’

— —

or

e'_ l=p 1-v
€t = v r
Thus . -
EGY= (Lo 2120 =R

\'s \ 2

= —v lu (—p) "“(L-—f) I p =), Cé)

This bound will be recognized as equal to the Chernoff bound

to the probability of getting greater than n(l-r) errors in

n transmissions, when the probability of error on any
transmission is p. It suggests that a maximum likelihood

decoder for a good code corrects all patterns of n(l-r) .or
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fewer errors.

On the other hand, a code capable of correcting all
patterns of n(l-r) or fewer errors must have minimum
distance 2n(1l-r), thus at least 2n(l-r) check symbols, and
dimensionless rate r' = 1-2(1-r) < r. No code of
dimensionless rate r can correct all patterns of n(l-r) or
fewér errors, What must happen is that a good code corrects
the great majority of error pétterns beyond 1ts minimum
distance, out to n(l-r) errors.

We shall show in the next section that on an ideal
superchannel with q very large, Reed-Solomon codes do just
about this, and come arbitrarily close to matching the
berformance of the coding theorem.

One way of approximating an fdea] superchannel 1is to

use a-b]ock code and decoder of length N and rate R over a

raw channel with error exponent E(R); then with e MR inputs
werhave Pr(e)~5be"MT‘{ We are thus interested in thé case
in which
MNE
G9=° ()
and e~*~& |

Substituting Eqns. 7 into Egqns. 5, and using q/=f>ln q =?NR,

. we obtain

| _ _ “e (?)
B = goer L Ests) % 5
| pE -\

| \ _pe
Eulgd = = e—'eNe[("e‘”‘BTq +(e”"“-17"g'fe i+
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When N becomes large, one or the other of the two terms
within the brackets in this 1last equation dominates, and

Eo(?) becomes
\ | ?N"Q) ?N'f_i: NE |
Eo(§3=f{ PE, RE = oNR

or

Eolgd= Namin {ga,e% | q)

The maximization of E(r) in Eqn. 8 is achieved by setting

? = E/R if E/R=1, and P = 1 otherwise. Thus

NECi1-+) E< e

—

ECn) = M (l-v) Eze

or

EW)= NU-7) aria {E),q (/o)

In the next section we shall only be interested in the case
E<R, which corresponds to the curved portion of the bound,

for Which we have

le) = @~ MNE ) Yy

5.3 Performance of RS Codes on_the ldeal Superchannel

In this section we shall show that on an ideal
superchannel (which suits RS codes perfectly), RS codes are
capable of ma-ﬁching arbitrarily cl-osély the _coding theorem
bounds (Eqns. 2.6 and 2.11) of the previous sectionA, as long
as q is sufficiently large. From these resuits we infer

that RS covdes are as good as any whenever we are content to
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treat the superchannel as ideal.

5,31 Maximum Likelihood Decoding
We shall first investigate the performance of RS codes
on a superchannel with large q and fixed p, for which we
have shown (Eqn. 2.,6) that there exists a code with
Prle)e e l-C-Nw p - v L Cop) =YD

Stated precisely, what we prove is:

THEOREM: For any r>1/2, any o such that 1/4>% > 0, and any
p such tHat 1/4>p>0, there ekists a number Q such that for
all ideal superchannels with probability of error p and g=Q
inputs, use of a Reed-Solomon code of 1length n = g-1 and
dimensionless rate r with maximum likelihood decoding will
result in a probability of error bounded by
)= ‘52_'“[‘ (=) e -v \\-4.(.\—-\03 -b) -%_3
Proof: Let P; be the probability that a decoding error 'is
made, given i symbol errors. Then
A .
. A N OAL— L
Pl = 2 P (%) ot -pY
The idea of the proof is to find a bound for P which is
less than one for i=%, and then to split this series into
two parts, ,
Pile)e 2P () pi(i Y v 2 (%) pl (1™ ¢)
v = (=0 Ll F r t‘nfv-l b P 4 )
in which, because P; falls off rapidly with decreasing i,
the dominating term in the first series is the last, while

that in the second series Is the first.
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We first bound P, for i= d-1. Consider a single code
word of weight w. By changing any k of its nonzero elements
to zeroes, any m of its nonzero elements to any of the other
(gq-2) honzero field elements, and any 1 of its zero elements
to any of the (g-1) nonzero field elements, we create a word
of weight i = w+l=-k, and at distance j = k+1+m from the code
word, The total number of words that can be so formed is

) ("77) (a-2Y" (g-1) 4
where the notation /L )lndlcates the trinomial coefficient
w
Ll (w-ua-k)!

which is the total number of ways a set containing w

elements can be separated into subsets of k, m, and (w=m=k)
e]ehents. The total number N of words of weight i and

distance j from some code word is then upperbounded by

WG s Z 0 lINT) e @ o

":“i k‘:,)“"-
(e rl e

)-: k"’ﬂ—m

(2.)

where Nu‘is‘the total number of code words of weight w. The
reason that this is an upper bound is that some words of
weight i may be distance j from two or more code words.

We showed in Chapter 3 that for a Reed-Solomon code,
w-d-+ |
Nw e (:}) [7‘/)

Substituting this expression into Eqn. 2, and letting k =

'-l-m, w = j+j-m=-21, we obtain 4
(.-P ’M—ZI n-«¢ "J 4-”..4.2‘0 ¢-r)*m— - -o—(
d IM’O?O ()"E-m M)( )[”*} “-MA- 12) [4‘2) [q'/)

2 Z ) IA-(. (q-—l) (ﬁ-—vl )ti—)-wu_.—l-&-v‘ | (3 )
mzofzo 0 QN (_d ,'Q,M)S(,_'-l_ me-c\—d-rm.+l)! '

—
-—
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A more precise specification of the ranges of m and 1 is not
necessary for our purposes.

The ratio of the (1+1)st to the 1th term in this

series, for a given m,
(4= (od-w) (- D-inn)
(1+I)L4-5—}+vu-+£+l)

is upperbounded by
(d-0%Ca-0 e e (1-v)>
Ae)lw-2@-0) ~ (ela s = [eDlzo)

where we have used r>1/2, j<1i £d=-1 = n(l1-r), 120, m= 0,

and n€q-1. Defining

(=T
Ci= =
we have v Cig —va—d 1
U wt (q-2 (g-1) Q'Q

= 2 . >

¢ wmZo vl Cx-M\!(C—M)!(M—G—im\.‘ Feo ,@!

B %!(qu)“cq—»)“*'"'“‘""“' (4)
mzo L () - | G e v |

Similarly, the ratio of the (m+l)st to the mth term in

the series of Egn. &, »
. (‘i—l)(;aw\-)(t"w\-).
(G-1) (me) (-l Frav] )

is upperbounded by

(d")" _ 'M.C\
(W\H')[w—l(i-i)] ()
that e ' wA
i ee o) el cwc\)‘
LJ J, (-l, (V\.—L—-) )! m=p wA

,;.ie'(h(vu-(') (uﬁ)(ﬁ“l):r.‘—ﬂ‘—' _ ({)
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Since the total number of i-weight words
" .
(; )(4~i)ﬂ

the probability that a randomly chosen word of weight i will

is

be distance j from some code word is bounded by

C\(asr) (V"“"') (q__,) !IH—'ﬁ)

and the total probability P_

e

that a word of weight i will be

distance j< i from some code word is bounded by

’\P. < QQ.(mkl) Z- (V\-—c‘.)‘. (_q-l)ﬂ"‘"&
¢

.
—-—

a/ét d“ [n-—[-—d)‘

or, substituting j' = i-j,

. WYL |
< _eC\Cw-\-ﬂ = (-0 Cq"‘\L i P — (Q)
‘ a'zo ()01 (20 W) |
The ratio of the (j'+1l)st to the j'th

term 1in the
series of Eqn. 6,

(V=)

R B

(q-1)(w-2c5"+1)

is upperbounded by

d- 0G-v)

[‘i")[:?.(l—:)__] - (’i—-l)(z./,g)

G- (g

. pailas) C i’
Pl = € ¢! (w-20)1 j’?o *
I'f . CI-/)
q—’?— 2 2= (’7)
so that C_€ 1/2,

PL < ecl(wrl) (“;_"-) (ﬁ__l)H‘(—-J

N\
N
A
n
s
1
~
o~
S
L
~
(\
-
)}
<
by
v
=

(g)
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Substituting Eqn.‘S in Egn 1, we obtain
-é .~ ] [ 28
¢, Giavn) W—t Hi-d /A . M- C
Rle)s 2 €% = (%) (5-0 () ot (I1-p) ;“é ('3)/‘(/—,, -
. . = /

=g S, + Sz. (q)
We let
d-1-¢
€= o O,
so that t = n(l-r-€). The second series of Eqn. 9 is just
t errors occur, which s

the probability that more than

Chernoff=-bounded by
e""I’U—V-e} ha p —Cvee ) Iu(l—-p)—-qj(r-l-e)‘ (Fv_¢g) >p (o)
write the

(If €<%, 1-r-€>1/4>p.) Setting i' = t-i, we
first series of Egn. 9 as
‘, . . . .
. ) (a- wied=v? -7 anm-ty,7
S, = Ze(‘_,(w)‘z- (.ﬂ‘ N 1% ¢ (l—f) + ()
(o (6O Gh- e} (=26 420)]
The ratio of the (i'+1)st to the i'th term in the
series of Egn, 11,
(t-p Y E=1)™
pla- D lw-2t + 20+ 1) (w-2e42:707)
is upperbounded by
0,2 \;P -0~ (-
Pl Cucad-n]> PCa-1) (213> 7
so that .
( EPla& & ‘M--E
3 < iec\(m-\p\) ’VL'V("‘—“ E Cl’r’) ¢’
! ‘t!f!(u—Zk)! 352 C;
I f
|- (r-n">
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so that C3s 1/2,

L (g-1) £+ 1-d -
5(5 46(’4(-«1-!) e (C‘ D P‘e (l-—PSv\ £ (I3)
414 (u-2e)] E—
Substituting P& from Eqn. 8 into Eagqn. 13, we obtain
S = 2P (%) pt(-prt (14)

substituting which into Eqn. 9, with the use of

(it)f e"‘fu(é)
)
we have finally

Rie) e (1';{_ +|§e""[— (I-v-¢) \V\p - (e Wa(i-p) f‘ﬁ(n-e;) Os)

Choose

d
c- % 06)
)l«("p)—}blf
since p<1l/4, Ecg, and Egn. 10 is valid. Since

U(rvre) = ), vz '/,

’P/(ds (294:.;. \) e'V\I- (=) PV lw (l-—-p)’ ’H(w)] (' - )

Finally, for this choice of €, from Eqn. 8,

Pp= Lol (F) (gyEr-d

= QM[CI"‘ e lw (5= + EC\+\M7——J

where we have used d=1-t = ne and
w-E
(%5 = ¥ F) e

Thus P, =1 if
\
e lqg-0z 21 w1y

C|'\'|.L~'\-

-

N -\ (13
Z \b\. (.\“‘P S- p LZC\‘—\Q—\K‘)-_B )- )

C e m——— .
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where we have used n=z 1 and have substituted for € by ¢E&agn.

16, Defining C, = 2C,+1-1n 2, Eqn. 18 can be rewritten
Ca/
|- by
a-1 = |2} (1)

When this is satisfied,

Rile) = «=_-)€—v\.c- G-v il P~ v \m(\-p}—-ﬁ(v)— S—S (2/0)

as was to be proven. Egn. 20 holds if Eqns. 7, 12, and 19
are simultaneously satisfied, which is to say if a-13> Q,

where

Qs war {242, 2 2 4o [ %] @0

QED

From this result we can derive a corollary which
. . j LY 4 .
applies to the case in which g = e”ﬂ, P = e , for which we

found the coding theorem bound, when E<R (Eqn. 2.11)

p( y < e—wUE(\-")
v e =

COROLLARY: for E<R, r>1/2, and any 8’70, there exists an

Ng such that for all NNy, use of a Reed-Solomon code of

dimensionless rate r and length n = g-1 with max imum

likelihood decoding on an ideal superchannel with

Y 4 e

probability of error p = e and q = e inputs will vyield

an overall probabhi 1ity of error bounded by

R/le_) <= 36'““ Leti-+) -‘S’)

Proof: The proof follows immediately from the previous
o/ . . L.
theorem if we let <8= NS -'ﬁ(r), which will be positive for

ALy | (22}
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For then, since -r 1n(1l-p)=z 0,
4
\Ov(e_\ e 3 e_-v\.(\.—v\ NE +uw NS (2_33

which was to be proven. Egn. 23 holds if Eqn. 22 holds and

if, substituting in Egn. 21,

1-eME (1) l— ]psl T
e-re (7,.,_-.6;: o-veE 0’4)

The first condition of Egn. 24 is satisfied if

. 1—v
erP* z wax {2;| , 2

Nz & L Zf’f:{:l ; | (25)
the second, if
TRy Coy Ge)
where we have used 1 - & ™« 1. Ean. 26 can be rewritten
s e 2EER
- € (27)

where we assume R> E,

The third condition of Egn. 24 is satisfied if

_ Ca
MR 2 VKL m] (2%)
which can be rewritten
Uz ECs/r xR 4a)
I _

Eqns. 22, 25, 27, and 29 will be simultaneously satisfiéd if

M2ZN,, where

- 4l > ] ({-,) | “__,) IZC‘L\-)Q’H(I).
A)Db ) I T b} R_ ) 2 2_’_' ) Y- "U\. Q—" ‘)», Q_S, 650

This result then provides for communication theory

something previously - lacking: a limited variety of
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combinations of very long codes and channels which
approximate the performance promised by the coding theorem.

For our present interest, this result tells us that
once we have decided to concatenate and to treat errors in
the superchannel as equiprobable, a Reed-Solomon code is
entirely satisfactory as an outer code. If we fail to meet
codihg theorem standardé of performance, it is because we
choose to use minimum distanée rathér than maximum
likelihood decoding.

5,32 Minimum Distance Decoding

If we use minimum distance decoding, decoding éfrors
occur when there are d/2 = n(1-r)/2 or more symbol errors,
so by the Chernoff bound

'?«(_e,)ee;“i"(\:{ﬁ\wp - Ll*—;—l’\\u(\—p\--ﬂ(\%\_/B (v
One wayvof interpreting this is that we need twice as much
redundancy for minimum distance decoding ‘as for maximum
likel ihood decoding. Or, for a nparticular dimensionless
rate r, we suffer a Tloss of a factor K in the error
exponent, where K goes to 2 when p is very small, and is
greater than 2 otherwise. Indeed, when q = e”l, p = e~ % p

and E<R, the loss in the exponent is exactly a factor of

two, for Eqn. 30 becomes

—uNEW-v)/
Rile)e @ wVEN /-

5.4 Efficiency of Two-Stage Concatenation

By the coding theorem, we know that for any memoryless

channel there is a code of length N' and rate R' such that
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Pr(e) < e‘”*x‘? where E(R') is the error exponent of the
channel. In this section we shall show that over this same
channel there exists an inner code of length N and rate R
and an outer code of length n and dimensionless rate r, with
nN = N' and rR = R', which when concatenated yield
Prie) e ®%M) o define the efficiency A1(Rv'):—:

EC(Ri)/E(R'); then, to the accuracy of the 'bouhd, the
reciprocal of the efficiency indicates how much greater the

overall length of the concatenated code must be than that of

a single code to achieve the same performance, and thereby

meaéureé-the sacrffice involved in going to concatenation.
For the moment we consider only the unexpurgated part
of the coding theorem bound, both for the raw channel and
for the superchannel, and we assume that the inner decoder
forwards no reliability information with its choice. Then
there exists a code of length N and rate R for the raw
channel such that the superchannel will have M€ inputs, eP®

outputs, and a transition probability matrix p;; for which
Rele) = @-NR < kift Pye = o -NELR) ()
Applying the unexpurgated part of the coding theorem
bound to this superchannel, we can assert the existence of a
code of length n and dimensionless rate r (thus rate.
r In(e®®) = rNR) which satisfies

™) e e EW RO

where

- CeN ANAODNRK | ..
v, pr\ = O:;’- \ { E-?(Tg) \Di‘) - Lo M‘QFZX N
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and
- . _ A \rg
E?LP)P‘V\: -\\,\.?[i‘;p; \O'r\-ﬁ_'?j) .
% We cannot proceed with the computation since we know no
more about the matrix p;; than is implied by Ean. 1. We

shall show now, however, that of all transition probability
matrices satisfying Eqn. 1, none has smaller E(r, pj:) than

the matrix P;; defined by

\_e-pﬁ(&) L\C-?
/ﬁj;:{ e-PRe) 7 ¢

’ which is the transition probability matrix of the ideal
superchannel with e”z inputs and Pr(e) = é”“ﬂ). in this

sense the ideal superchannel is quite the opposite of ideal.
(In a sense, for a fixed overall probability of symbol
error, the ideal superchannel is the minimax strategy of
nature, while the assumption of an ideal superchannel is the
corresponding minimax strategy for the engineer.)

First we need the following temma, which proves the
convexity of E€(P, ) over the convex space of all transition

probability matrices.

LEMMA: If Py and qj. are two probability matrices of the
same dimensionality, 'f'ov o=zA<| )

AELE, i)+ UNVECF, ) = Bp (B, Agpi » LR D,

Proof: the left~hand side of the inequality is T
AECP, i) + (W E(F g ) = A e 13 R gz 1702 Gy I Z/3A0 77T

o M 1-2
= -lu[)z (?/@f;;ﬁ%)“"j [&Z(?V;q,‘; )]
=~ lu L, 4
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while the right is

Ee (%, Qp,iv tM)gji) = - ln ?[? 4 (‘AF}_G*F(Fn)qi;)r\’:?](."?E )
But
I ARA PriT TS 4 O-02 [ Pigpre] 'S

? IZ‘_ P: (’,\mﬂ‘-)—&gj"‘? + EE. Pe Ca-adg,:0) ,-5?':)‘*‘3
[ZL P (2 g0 + (1-2)gje Yhe W ? |

where the first inequality is that between the arithmetic
and - geometric meansfr and the second 1is Minkowski's
inequality{ valid since 0 < 1/l+¢ = 1. But if L=R,
-Iln L=Z-1n R, so the lemma is proved.

From this 1lemma one can deduce by induction that

- —
Eg(P, pé;)ﬁZ’EF(P, 5?;), where the oyerbar indicates an
average over any ensemble of transition probability

matrices. The desired theorem follows:

. —NRF = o - MELCR)
THEOREM: If e c }#L P, E ’

then E(r, pJ;)Z E(r, pb ), where

/ﬁ" = \—-Q‘“t('d atl ¢
Le — 3
e—MtCﬁ-)

~ <,
Pge = v cFE) -
ekt — 1 d
’——-i 7 -3
Proof: Let eP® be the particular assignment P in which P

PR . . . .
= eA) , all i, which because of its symmetry is clearly the

optimum assignment for the ideal superchannel. Then
ECv pi )= Y Ef(Ps pr) —pv VR
> £ (e »4 ﬂ’b)_?v'\)@,C)d?sI.
Suppose we'permute the inputs and outputs so that the

one-to=-one correspondence between them is maintained,

thereby getting a new matrix p N for which evidently
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eV 3 = ;
Ee(e’ , Py) o= E?(e‘”‘, pg;). Averaging over the ensemble
of all (e?®)! such permutations, and noting that
'f‘,_-[,=\_\<) ail L
-)o_"l-::_epfl-\)";éa’

we have

B (7%, p11) = B (8% ) = Eg (@R, g)

)

> —_
Obviously Ef(e“”‘, ﬁ};)f.Ef(e“"‘, P, ) since Ks e ~NEW)
that finally

—_ = ~
.. = SO A\ = -
EC p)= Zogsy Bl Bl - v PR = Eln i)

In Section 2 we computed the error exponent for this
case, and found'(Eqn. 2.,10)

?Ae}é-e’wu’z*(’s 2)

where
E*(v,R) = (1-v) ww{\Q,rEc-eﬂ (2)
To get the tightest bound for a fixed overall rate  R'
we maximize E*(r,R) subject to the constraint rR = R', Let
us define Rg to be fhe R satisfying Rg = E(Rg); clearly we

never want R<Rg, so that E.(R') can be expressed

E.(r)e JAAS EU-) @)
ez

The computational results of the next chapter suggest that
~the r and R which maximize this expression are good
approximations to the vrates that are best used in the
concatenation of BCH codes.

Geometrically, we can visualize how E-.(R') 1is related

to E(R) in the following way, 1illustrated in Figure 1.
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Consider Eqn. 2 in terms of R' for a fixed R:

Ex(v) = (1- %’ ) i § R, rzte)ﬁ
This is a linear function of R' which equals zero at R' = R
and equals min-{R, E(Rf& at R' = 0. In Figure 1 we have
‘sketched this function for R = Ry, Ry, and Ry greater than
RE; for Reg, and for Ry less than Rg . E« (R') may be
visualized as the upper envelope of all these functions.

As R' goes to zero,f the maximization of Eaqn. 3 s

achieved by R = Rg, r->0, so that
) ?c(D\ = E(Q:\)= QE.
Since the E(R) curve lies between the two straight 1lines L,

= E(0) and L, = E(0) - R, we have
E(o)z E(Rg)z Blo)—Re

or

E(o) = ELQ)z =+ E()

The efficiency ©(0) = E(0)/E(0) is therefore between one
half and one at R' = 0.

As R' goes to the capacity C,-Ec_(R') remains greater
than zero for all R'< C, but the efficiency approaches zero.
For let E(R) = K(C-R)L near capacity, which 1is the normal
case (and is not essential to the argument). Let R'=C(1l-€),
€>0; the maximum of Egn. 3 occurs at R = Cfl-Ze/S), where
E.(R) = Le3>KC*/27>0. Hence ~(R') = L& /27, so that the
efflciency goes to zero as R' goes to C. However, the
efficiency is proportional to (1-R'/C), which indicates that

the dropoff 1is not precipitous. Most important, the
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. FIGURE 2
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makes the coding theorem so provocative, exponential
decrease in Pr(e) at all rates below capacity, is preserved.

We know from the previous section that over that part
of the curved segment of Ec(R') for which r>1/2, which will
normally (when E(Rg) is on the straight-line segment of
E(R)) be the entire curved segment, Reed-Solomon <codes are
capab]é of achieving the error exponeht Ec(R'")Y if we wuse
maximum 1ikel ihood decéding. If we use minimum distance

decoding, then we can achieve only

Pvie) = e~ nPNEle)

. where

= 3 VAV W - U S _
Eanle)= Mgy El(e)(\-v) />

Over the curved segment of Ec(R), therefore, Eu(R') is
one half of E-.(R'"); below this segment E..(R') will be
greater then Ec(R')/2, and in fact for R' = 0

which will normally equal Ec (0). Thus minimum distance

decoding costs us a further factor of one half or better in
efficiency, but, given the 1large sacrifice in efficiency

already made in going to concatenated codes, this further

sacrifice seems small enough price to pay for the great

simplicity of minimum distance decoding.

In Figure 2 we plot the concatenated eprnent Ec (R"Y),
the minimum distance exponent E,(R'), and the original error
exponent. E(R') of a binary symmetric channel with crossover

probability .01. The effyciency ranges from 1/2 to about
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.02 at nine tenths of capacity, which indicates that
concatenated codes mustIEe from 2 to 50 times lonhger than
unconcatenated. We shall find in the next section that
these efficiencies are roughly those obtained in the
concatenation of BCH codes.

It is clear that in going to a great number of stages,
the error expohent approaches zero everywhere, as we would
expect from the first section of this chapter.

We have not considered the expurgated part of the
coding theorem bound for two reasons: first, because we are
usually not interested in concatenafing unless we want to
signal at high rates, where complex schemes are required;
second, because a lemma for the expurgated bound similar to
our earlier lermma is lacking, so that we are not sure the
ideal superchannel is the worst of all possible channels for
this range. Assuming such a lemma, we then find nothing
essentially new in this range; in particular, M(0) remains
equal to 1/2,

Finally, let us suppose that the inner decoder has the
option of making deletions. Since all deletions are
equivalent, we lump them into a single output, so that now

o MR outputs. lLet

vVE

~the superchannel has e inputs and 1 + e

the error probability for the superchannel be € and the
deletion probability é*» ; assuming the ideal superchannel
with deletions again the worst, we have

Pile) = o~ WELD

- e 1 — R . e e e e —— - .o L
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where
Z=(v) = vvax Ee‘.ﬁ\ - _? N
Q.
= co(e-P) _oNWRv
e
and ; é% ’eﬂgjdfg u;}
F, (e77% ) = —lwge""[e'“‘(l-e-“&e—ﬂby"‘?+—e““‘(€‘”f/)' e '8 J +e-
=¢

. —
As N-—>ps , Ef(e'“*)-4>min (E, D, 9R). But by adding
deletion capability we can only increase the probability of
getting either a deletion or an errot)ﬂso that

éz_nJECQJ = o-NE 4 o -~P

and thus min (D, E) ZE(R), so that
ia (D) €,0R) = e (E(R),PR)

Thus a deletion capability cannot improve the
concatenation exponent E-(R'), though it can of course bring
up the minimum distance exponent Ew{R') closer to Ee (RY),
and thereby lessen the necessary block length by a factor

less than two.
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Chapter 6. Computational Program
The theoretical results obtained above are suggestive;
however, what we really want to know is how best to design a
communications system to meet a specified standard of
performance, The difficulty of establishing meaningful
measures of bqpmpiexity forces wus to the computational

program described in this chapter,

6,1 Coding for Discrete Memoryless Channels

We first Iinvestigate the problem of coding for a
memoryless channel for which the modulation and demodulation
have already been specified, so that what we see 1is a
channel with q inputs, q outputs, and probability of error
Pa if we are given a desired overall rate R' and overall
probability of decoding error Pr(e), we set ourselves the
task of constructing a list of different coding schemes with
rate R' andvprobability of decoding error upperbounded by
Pr(e).

The types of coding schemes we contemplate are the
following. We could use a single BCH code on GF(gq) with

errors=only minimum distance decoding. Or, we could

concatenate an RS outer code an any convenient field with an

inner BCH code. In the latter case, the RS decoder could be

—— - e o B se—————————————————— 1 - & < =1 e s = e . oo £ e a et v S
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set for errors-only vor modified deletions-and-errors
decoding (cf. Chap. 2 and Sect. 4.62); we do not consider
generalized minimum distance decoding because of the
difficulty of getting the appropriate probability bounds.
| f the outer decoder is set for errors-only decod ng, the
inner decoder is set to correct as many errors as it can,
and any uncorrected word is treated by the outer decoder as
an error. |If the outer decoder can correct deletions,
however, the inner decoder is set to correct only up to t,
errors, where t4 may be less than the maximum correctable
number t,, and uncorrected words are treated by the outer
decoder as deletions,

Formulas for computing the various probabilities
involved are derived and discussed 1in Appendix B. In
general we are successful in finding formulas that are both
valid upper bounds and good approximations to the exact
probablilities required., The only exception is the formula
for computing the probability of undetected error 1in the
inner decoder, when the inner decoder has the option of
deletions, where the lack of good bounds on the distribution
of weights in BCH codes causes us to settle for a wvalid
upper bound, but not a good approximation.

Within this class of possible schemes, we restrict our
attention to a set of 'good" codes. Tables 1-6 are
representative of such lists. Tables 1-4 concern a binary
symmetric channel with p = .01; the specifications

considered are Pr(e) = 107 for Tables 1-3, Pr(e) = 10°°
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for Table 4, R' = .5 for Table 1, .7 for Tables 2 and 4, and

]

.8 for Table 3. (For this channel C = .92 bits and Reswp

.74.,) Table 5 concerns a binary symmetric channel with p

.1 (so that C = .53 and R uyp= . 32); the specifications
are R' = .15 and Pr(e) = 10°°. Table 6 concerns a 32-ary
‘channel with p = .01 (so that C = 4.86 and Rcguye = L.11);
the specifications are R' = 4 and Pr(e) = 107\,

Since the value of a particular scheme depends strongly
upon details of implementation and the requirements of a
parficular,system, we cannot say that a particular entry on
any'of these lists is 'best.' If minimum overall block
length is the overriding criterion, then a single stage of
coding is the best solution. However, we see that wusing
only a single stage to achieve certain specifications may
require the correction of a great number of errors, so that
> a]most certainly at some point the number of decoding
computations becomes prohibitive. Then the savings in
number of computations which concatenation affords may be
quite striking.

Among the concatenated codes with errors-only decoding
in the outer decoder, the 'best' code is not too difficult
to identify approximately, since the codes which correct the
fewest errors overall tend also to be those with
comparatively short block lengths. Tables 7 and 8 display

-2
and

such 'best' codes for a range of rates and Pr(e) = 10
10“6, on a BSC with p = .01; the best single-stage codes

are also shown for comparison.
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Motes to Tables 1-6

N(n) length of inner (outer) code
K(k) number of information digits
D(d) minimum distance (d=1 is the number of deletions corrected)

overall block length
t: e-o = errors-only, d& = deletions=-and-errors
decoding in the outer decoder.

T(t) = maximum number of errors corrected
n

comme

Table 1 -
Codes of rate .5 which achieve Pr(e) = 10 on a binary
symmetric channel with crossover probability p = ,01.

( NK ) D T (n,k) d t Nn comment
(414 ,207) 51 25 -—- L1y one stage
( 15,11 ) 3 1 (76,52) 25 12 1140 e-0

( 31,21 ) 5 2 (69,51) 19 9 2139 €-0

( 63,36 ) 11 5 (48,42) 7 3 3024 'best' e-o
( 63,39 ) 9 4 (52,42) 11 5 3276 e-o

( 63,45 ) 7 3 (54,38) 17 8 3402 e=-0
(127,71 ) 19 9 (38,34) 5 2 4826 e-o
(127,78 ) 15 7 (33,27) 7 3 4191 e-o
(127,85 ) 13 6 (32,24) 9 L4 4064 e-o
(127,92 ) 11 5 (46,32) 15 7 5842 e=0
(127,99 ) 9 &4 (62,40) 23 11 7874 e=0

( 31,20 ) 6 2 (45,35) 11 5 136L d&e

(¢ 31,21 ) 5 1 (77,57) 21 4 2387 d&e

( 63,36 ) 11 &4 (40,35) 6 2 2520 d&e

( 63,36 ) 11 3 (72,63) 10 1 4536 d&e

( 63,38 ) 10 &4 (41,34) 8 3 2583 da&e

( 63,38 ) 10 3 (47,39) 9 2 4536 d&e

( 63,39 ) 9 3 (42,34) 9 4 2646 d&e




Chapter 6. Computational Program PAGE 126

Table 2 g
Codes of rate .7 which achieve Pr(e) = 10 on a binary
symmetric channel with crossover probability p = .01.

% ( N,K ) b T ( n,k ) d t ni comnent

(2740,1918) 143 71 --- 2740 one stage
( 127,99 ) 9 4 (530,476) 55 27 67310 e-o
( 255,207 ) 13 6 (465,401) 65 32 118575 e-o
( 255,199 ) 15 7 (292,262) 31 15 74460 e-0 .
( 255,191 ) 17 8 (306,286) 21 10 78030 e-o
( 255,187 ) 19 9 (308,294) 15 7 78540 'best' e-o
( 127,98 ) 10 & (324 ,294) 31 12 L1143 d&e
(127,92 ) 11 4 (1277,1234)43 5 162179 d&e
( 127,91 ) 12 5 (1084,1059)25 10 137668 dée
( 255,199 ) 15 ©6 (214,192) 23 & 54570 dé&e
( 255,198 ) 16 &6 (234,211) 24 3 59670 d&e

- ( 255,198 ) 16 7 (214,193) 22 9 54570 d&e
( 255,191 ) .17 7 (214,200) 15 3 54570 dée -
( 255,190 ) 18 7 (232,218) 15 3 59160 d&e
( 255,190 ) 18 8 (232,218) 15 7 59160 d&e
( 255,187 ) 19 38 (198,189) 10 3 50490 d&e
( 255,186 ) 20 8 (224,215) 10 2 57120 d&e

Table 3
Codes of rate .8 which achieve Pr(e) = 107'> on a binary
symmetric channel with crossover probability p = .01,

( N,K ) DT ( n,k ) d t ni comment
no single stage code

(2047 ,1695) 67 33 (1949,1883) 67 33 3989603 e=0
(2047,1684) 69 34 (1670,1624) 47 23 3418490 'best' e-o
(2047 ,1673) 71 35 (1702,1666) 37 18 3483994 e=0
(2047 ,1662) 73 36 (2044 ,2014) 31 15 41840638 e=o

(2047,1695) 67 31 (1477,1427) 51 3023419 d&e
(2047,1695) 67 32 ( 866,856 ) 31 1813642 dée
(2047,1684) 69 32 (1234,1200) 35 2525998 die

1561861 d&e
16457388 d&e

(2047 ,1684) 69 33 ( 763,742 ) 22
(2047 ,1673) 71 34 ( 804,787 ) 18

TUITUT W O N
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: Table 4 6
Codes of rate .7 which achieve Pr(e)= 10 on a binary
symmetric channel with crossover probability p = .01.

( N,K )Y D T ( nk ) d ¢t niN comment
(784 ,549) 49 24 - 784 Oone stage
(127,99 ) 9 &4 (236,212) 25 12 29972 e=0
(127,93 ) 11 5 (475,459) 17 8 60325 e-0
(255,207) 13 © (204,176) 29 14 52020 e=-0
(255,199) 15 7 (136,122) 15 7 34680 e-o
(255,191) 17 8 (123,115) 9 4 31365 "hest' e=-o
(255,187) 19 9 (132,126) 7 3 33660 e=0
(127,98 ) 10 &4 (564 ,545) 20 2 71628 d&e
(127,92 ) 11 4 (140,127) 14 5 17780 dde
(127,91 ) 12 5 (477 ,466) 12 4L 60579 d&e
(255,206) 14 6 (128,111) 18 8 32640 d&e
(255,199) 15 © ( 98,88 ) 11 2 24990 d&e
(255,198) 16 ©6 (102,92 ) 11 1 26010 dae
(255,198) 16 7 ( 92,83 ) 10 &4 23460 dé&e
(255,191) 17 7 ( 92,86 ) 7 1 23460 d&e
(255,190) 18 7 (100,94 ) 7 1 25500 d&e
(255,190) 18 8 (100,94 ) 7 3 25500 dée
(255,187) 19 8 ( 88,84 ) 5 1 22440 d&e
(255,186) 20 8 (100,96 ) 5 1 25500 dé&e
Table 5

Codes of rate .15 which achieve Pr(e)=107° on a binary
symmetric channel with crossover probability p = .1.

¢ N,K) D T ( n,k) d t nN  comment
(511,76) 171 85 -—- 511 one stage
( 31,11) 11 5 ( 59,25) 35 17 1829 e-o

(. 31,6 ) 15 7 ( 54,42) 13 6 1674 e-0

( 63,18) 21 10 ( 51,27) 25 12 3213 e-o

( 63,16) 23 11 ( 35,21) 15 7 2205 e-0

( 31,11) 11 & ( 40,17) 24 5 1280 dé&e

( 31,10) 12 &4 ( 43,20) 24 & 1333 daée

( 31,10) 12 5 ( uw7,22) 26 10 1457 d&e

( 31,6 ) 15 5 (116,90) 27 2 3596 d&ae

_( 31,6 ) 15 ,6 ( 45,35) 11 3 1395 d&e
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Table 6 o
Codes of rate 4 which achieve Pr(e)= 10 on a 32-input
symmetric channel with probability of error p = .01.

( N,K ) D T ( n,k ) d t ni comment
(540,432) 57 28 -—- 540 one stage
( 31,27 ) 5 2 (393,361) 33 16 12183 e-o0 (both codes RS)
( 31,25 ) 7 3 (3250,3224)27 13 100750 e-o

. (148,125) 13 6 (341,323) 19 9 50468 e=-0
(148,121) 15 7 (652,638) 15 7 96496 e=-o0
(223,196) 15 7 (245,223) 23 11 54635 e-o
(223,192) 17 38 (198,184) 15 7 LL154 e-o
(223,188) 19 9 (196,186) 11 5. 43708 e=o
(298,267) 17 8 (243,217) 27 13 72414 e~-o
(298,263) 19 9 - (172,156) 17 8 51256 e=0
(298,259) 21 10 (151,139) 13 6 44 998 e-o
(298,255) 23 11 (123,115) 9 &4 36654 e=o0
(298 ,251) 25 12 (120,114) 7 3 35760 e-o
( 31,26 ) 6 2 (434 ,414) 21 7 13454 dée
(148,125) 13 5 (266,252) 15 2 39368 d&e
(148,123) 14 6 (375,361) 15 & 55500 d&e
(148,121) 15 © (466,456) 11 2 68968 d&e
(223,196) 15 6 (168,153) 16 2 37464 d&e
(223,192) 17 7 (128,119) 10 2 28544 d&e
(298,263) 19 8 (107,97 ) 11 2 31886 d&e
(298,259) 21 9 ( 89,82 ) 8 2 26522 d&e
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6,11 Discussion

From these tab]es we may draw a number of conclusions,
which we now discuss.

From Tables 1-6 we can evaluate the effects of wusing
deletions-and-errors rather than errors-only decoding in the
0uter.dec§der. These are

1) negligible effect on the inner code;

2) reduction of the Tength of the outer code and hence the
overall block length by a factor less than two;

3) appreciable savings in the number of computations
required in the outer decoder,

From comparison of Tables 2 aqd 4 and of 7 and 8 we
find that the effects of squaring the required probability
of erroy "at moderately high rates, are

1) negligible effect on the inner code;
2) increase of the length of the outer code and hence the
overall block length by a factor greater than two.

We‘conclude that, at the moderately high rates where
concatenation is most useful, the complexity of the inner
code is affected only by the rate required, for a given
channel.

These conclusions may be understood in the light of the
following considerations. Observe the columns in Tables 7
and 8 which tabulate the probability of decoding error for
the inner decoder, which is the probability of error in the
‘superchannel seen by the outer decoder. This probability

remains within a narrow range, approximately 1077 -107% ,
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largely independent of the rate or overall probability of
error required., It seems thaf the only function of the
“inner code is to bring the probablility of error to this
level, at a rate slightly above the overall rate required.

Thus the only relevant question for the design of the
inner coder is: how 1ohg a block 1length is required to
bring the probability of decoding error down to 107> or so,
at a rate somewhat in excess of the desired rate? If the
outer decoder can handle deletions, then we substitute the
probability of decoding failure for that of decoding error
in this question, but without much affecting the answer,
since getting sufficient minimum distance at the desired
rate is the crux of the problem.

Once the inner code has achieved this moderate
probability of error, the function of the outer code 1is to
drive the overall probability of error down to the desired
value, at a dimensionless rate near one.

The arguments of Section 5.4 (Efficiency of
Concatenated Codes) are a wuseful guide to understanding
these results. Recall that when the probability of error in
the superchannel was small, the overall probability of error

was bounded by an expression of the the form

- Pvle) = e""miue'3

Once we have made the superchannel probability of error
'small' (apparently *‘10‘%), we then achieve the desired
"overall probability of error by increasing n. To square the

Pr(e), we would expect to have to double n. Actually n
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increases by more than a factor of two, which is due to our
keeping the inner and outer decoders of comparable
complexity.

That the length of the outer code decreases by somewhat
less than a factor of two when deletions-and-errors decoding
is permitted is entirely in accord with the results of
Section 5.4. Basically, the reason is that to correct a
certain number of deletions requires one half the number of
check digits in the outer code as to correct the same number
of errors, so that for a fixed rate and equal probabilities
of déletion or error, the de]eéion corrector will be about
half as long.,.

Finally, we observe that, surprisingly, the ratios of
the overall length of a concatenated code of a given rate to
that of a single-stage code of the same rate are given
qualitatively by the efficiencies computed in Section 5.4--
surprisingly, since the bounds of that section were derived
by random coding arguments whereas here we consider BCH
codés, and since those bounds are probably not tight. The
dimensionless rate of the outer code also agrees
approximately with that specified by Section 5.4 as optimum
for a given overall rate,

In summary, the considerations of Section 5.4 seem to
be adequate for qualitative understanding of the performance

of concatenated codes on discrete memoryless channels.
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6.2 Coding for a Gaussian Channel

In this section we take up the problem of coding for a
white additive Gaussian noise channel with no bandwidth
restrictions, as an example of a situation in which we have
some freedom in choosing how to modulate the channel,

One feasible and near-optimum modulation scheme is to
send one of M = 22° biorthogona] waveforms every T seconds
over the chanhel. (Two waveforms are orthogonal if their
cross~correlation is zero; a set of waveforms s
biorthogohal if it consists of M/2 orthogonal waveforms and
their negatives.) If every waveform has energy S, and the
Gaussian noise has two-sided spectral density Nef2, then we
say the power signal-to-noise ratio is S/ig T. Since the
information in anvy transmission is Rybits, the information
rate is Ro/T bits per second; finally, we have that the

dimensionless quantity signal=-to-noise ratio per information

bit is S/(NoRo).

S/(N° Ro ) is commonly taken as the criterion of
efficiehcy for signalling over unlimited bandwidth white
Gaussian noise channels. Coding theorem arguments1 show
that for reliable communication it must exceed 1In 2 ~ .7.
Our objective will be to achieve a given overall probability
of error for fixed S/(NoRo ), with minimum complexity of
instrumentation.

The general optimal method1 of demodulating and
detecting such waveforms is to éet up a bank of M/2 matched

“filters. For example, the signals might be orthogonal




Chapter 6. Computational Program PAGE 134

sinusoids, and the filters narrow-band-pass filters. In
some sense, the complexity of the receiver 1is therefore
proportional to the number of matched filters that are
required-- that is, to M. The bandwidth occupied is also
proportional to M,

Another method of generating a set of biorthogonal
wavefofms, especially interesting for its relevance to the
question of the distinction between modulation and coding,
is to break the T-second interval into (2T/M)-second
subintervals, in each of which either the positive or the
negative of a single basic waveform is transmitted. If we
make the correspondences (positive<®l) and (negative=>0), we
can let the M sequences be the code words of the (M/2, Ry )
binary code which results from adding an overall parity
check to an (M/2-1, R.) BCH code; it can then be shown that
the M waveforms so generated are biorthogonal. |If they are
detected by matched filters, then we would say we were
dealing with an M-ary modulation scheme. On the other hand,
this (M/2, R,) code can be shown to have minimum distance
M/4, and is thus suitable for a decoding scheme in which a

hard decision on the polarity of each (2T/M)-second pulse is

- followed by a minimum distance decoder. 1In this latter case

we would say we were dealing with binary modulation with
coding, rather than M-ary modulation as before, though the
transmitted signals were _identical. The same sequences
could be decoded (or detected) by many methods intermediate

between these extremes, so finely graded that to distinguish
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where modulation.ends and coding begins can only be an
academic exercise.

We use maximum 1ikelihood decoding for the biorthogonal
waveforms; the corresponding decision rule for a matched
filter detector is to choose the waveform corresponding to
the matchea filter whose output at the appropriate sample
time is the greatest in magnitude, with the sign of that
output. Approximations to the probability of incorrect
decision with this rule are discussed in Appendix B, In
sohe cases, we permit the detector not to make a decision--
that is, to signal a deletion=-- when there is no matched
fi]fer output whiqh has magnitude greater by a threshold D
or more than all other outputs; Appendix B also discusses
the probabilities of deletion and of incorrect decision in
this case.

We consider the following possibilities of
concatenating coding with M-ary modulation to achieve a
specified probability of error and signal-to-noise ratio per
information bit, First, we consider modulation alone, with
R, chosen large enough so the specifications are satisfied.
Next, we consider a single stage of coding, with a number of
values of Re and with both errors-only or
deletions-and-errors decoding. (If r is the dimensionless
rate of the code, the signal-to-noise ratio per information
bit is now S/(NoRgr).) Finally, we consider two stages of

coding, or really three-stage concatenation.
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Tables 1-3 are representative of the 1lists obtained.

Table 1 gives the -results for'S/(NoRbr) = 5, Pr(e) = 107"

’

2, Pr(e) = 107" ; and Table 3 for

Table 2 for S/ (NgR,r)

S/ (NgRer) = 2, Pr(e) 107> . Again one cannot pick

unamb iguously the 'best' scheme. However, the schemes in
which M is large enough so that a single Reed=-Solomon code
‘of length less than M can meet the required specifications
would seem to be very much the simplest, unless some
considerations other than those we have heretofo &€
contemplated were significant.

To organize our information about these codes, we
choose to ask the question: :for a fixed M and specified
Pr(e), which RS code of 1length M-1 requires the minimum
signal-to-noise ratio per information bit? Tables 4-=7
answer this question for R, = 9 (after which the computer
overflowed), and for Pr(e) = 1073, 107°, 1077, and 107" .
Except in Table 7, we have considered only errors-only
decoding, since Table 7 shows that, even for Pr(e) = 107",
allowihg deletions-and-errors decoding improves things very
little, to the accuracy of our bounds, and does not affect
the character of the results. The 5/(NgRg ) needed  to
achleve the required probability of error without coding,

for Ry = 20, is also indicated.
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Motes for Tables 1-3
N, K, D, T, n, k, d, t are defined as in Section 1
M = number of biorthogonal signals transmitted
kKRo total bits of information in a block
d/b dimensions required (nNM/(2kKRg)) per information bit

: Table 1
Modulation and coding which achieve Pr{e)= 107'* with a signal
to noise ratio per information bit of 5, on a Gaussian channel.

M ( N,K ) D T ( n,k ) dt kKR, d/b comment

16384 === -——- : 14 571.4 no coding
64 ( 21,15 ) 7 3 -——- 90 7.47 e-0
64 ( 20,12 ) 9 4 -——- 72 8.89 e-o0
32 ( 26,18 ) 9 4 -—— 90 4,62 e-o
32 ( 26,16 ) 11 5 - 80 5.20 e=-o
16 (155,136) 11 5 —— 544 2.28 e-o
16 ( 90,67 ) 13 &6 -——- 268 2.69 e=0
16 - ( 85,58 ) 15 7 -—— 232 2.93 e=o0
16 ( 80,50 ) 17 8 ——— 200 3.20 e-o
16 ( 75,43 ) 19 9 -——- 172 3.49 e-o
8 (236,184) 21 10 -—- 552 1.71 e-o
8 (201,138) 25 12 ——— 4ig 1.94 e-o0
8 (197,124) 29 14 ——- 372 2.12 e-o
2 (511,358) 37 18 -——- 3538 1.43 e-0
2 -(481,310) 41 20 -——- 310 1.55 e=0
2 (461,254) 51 25 - 254 1.81 e-o
64 ( 43,37 ) 7 1 --- 222 6.20 da&e -
64 (41,33 ) g9 1 --- 198  6.63  dae
bh ( 26,22 ) 5 2 - 132 6.30 d&e
ob ( 19,13 ) 7 2 -——— 78 7.79 d&e
oL (22,14 ) 9 2 —-—— 8h 8.38 dé&e
64 (18,12 ) 7 3 - 72 8§.00 dae
32 ( 29,23) 7 2 —-—— 115 4,03 d&e
32 ( 30,22 ) 9 2 -——— ‘ 110 4.36 d&e
32 ( 25,19 ) 7 3 -—- 95 4,21 d&e
32 (22,14 ) 9 3 —-——— 70 5.03 d&e
16 (127,108) 11 3 - 432 2.35 d&e
16 (117,94 ) 13 3 - 376 2.h49 d&e
16 ( 81,62 ) 11 &4 —-- 248 2.61 dé&e
16 ( 79,56 ) 13 4 - 224 2.82 dé&e
16 ( 73,50 ) 13 6 —-—- 200 2.92 d&e
16 ( 15,11 ) 5 2 (25,21) 5 2 924 3.25 e-o
( 43,36 ) 5 2 (77,69) 9 4 7452 1.78 e=0
( 48,37 ) 7 3 (48,432) 7 3 L2 1.98 e-0
( 63,49 ) 9 4 (31,27) 5 2 3969 1.97 e-0
( 63,45 ) 7 3 (92,80) 13 6 3600 1.61 e-o
(63,39 ) 9 & (92,82) 11 5 3198 1.81 e-o
( 63,36 ) 11 5 (63,55) 9 4 13980 2.00 e=0
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Modulation and
to noise ratio

M

512
512
512
256

- 128

128
128
128
1238

NOTE ¢

Modulation and
to nolise ratio

16384

256
2506
128
128
bl

NOTE

( N,K )

(211,167)
(261,209)
(311,271)
(255,195)

(127,97 )
(127,99 )

(127,101)
(127,108)
(127,104)

The special

( 37,27 )
( 45,37 )
( 48,34 )
( 50,38 )
(895,719)

Again deletions are no

D

L5
L3
41
61

31
29

27
24
24

11

9
15
13
91

T

22
21
20
30

15

14

13
11
10

RS bound on weights of Section 3.31 has been
used to compute probabilities for the last three codes.,
general bound of Appendix B,

Uvioi~d U

N

Computational Program

Table 2
coding which achieve Pr(e)= 107" with a signal
per information bit of 2, on a Gaussian channel.

( n,k )

(127,119)
(127,117)

(127,124)
(127,122)
(127,120)

Table 3 s
coding which achieve Pr(e)= 107" with a signal
per information bit of 2, on a Gaussian channel.

d

[ NI = o -

help.

t

0
0
0

comment

€=0
e=-o
e~-0
e=0

e~o
e=0

d&e
d&e
dae

no coding

e=o0
e=0
e-o0
e-o
e=o

PAGE 138

With the
it appears that deletions are no help.
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Notes for Tables 4-=7

Ro = log,_ M

no code = minimum signal to noise ratlo per information bit
achievable without coding

RS code = minimum signal to noise ratio per information bit

achievable with an RS code of length iM-1

t = number of errors the RS code must correct

RS code (d&e) = minimum signal to noise ratio per information bit
achievable by an RS code correcting t errors and 2t deletions

Tables 4-56
Minimum S/ (NoRer) achlevable on a Gaussian channel, for
Pr(e) = 10°*, 10~%, and 10-

Pr(e) = 10~3 Pr(e) = 10-% Prie) = 10°

R no code RS code t no code RS code t no code RS code t
1 4,78 11.30 17.98

2 5.42 11.96 o 13.66

3 bL.26 4,23 1 8.68 7.34 1 13.16 10.42 1
b 3.57 3.11 3 6,92 4,59 3 10.238 6.01 3
5 3.12 2,41 5 5.83 . 3.19 5 8.52 3.88 6
) 2.81 2.02 9 5.009 2.44 10 7.34 2.80 11
7 2.59 1.77 18 4,56 2.01 19 6.49 2.21 19
3 2.41 1.61 33 L4.16 1.76 3 5,85 1.88 35
9 2,23 1.50 62 3.85 1.60 64 5.35 1.67 65
10 2,16 3.60 4,95

11« 2,18 3.40 4,63

12 2,11 3.23 4,35

14+« 2,00 2,96 3.93

16 1.92 2.76 3.61.

18« 1,85 2.60 3,36

20 1.80 2.438 3.16

*for these values of R, a weaker probability bound was used
(see Appendix B)
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LWoeo~NoOTUVM &S wWwN = =

=
()
*

12%
1g=*
16%*
18=
20 =

Computational Program

Table 7-= Pr(e) = 107'*

no code RS code t

24,74
25.42
17.67
13,67
11.23
9.60
8,43
7.55
6.86
6.31
5.86
5.49
4.90
L.ub
h.11
3.84

13.53
7.45
b, 5L
3.13
2,40
1.98
1.73

1
3
6
11
20

36
67

Pe RS code (d&e)

.0000002 13.60
.0001 6.86
.002 4.25
.009 3.02
.02 2.38
.036

.05

PAGE 140
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6,21 Disgﬁssion

Lét us first turn our attention to Table 1, which has
the richest selection of diverse schenes, while being
entirely representative of all the 1lists we generated.
Certain similarities to the lists for discrete memoryless
channels are immediately evident. For instance, the use of
deletions allows some shortening and simplification of the
outer decoder, though not as much as before. Also, for
fixed M, going to two stages of coding rather than one
lessens the computational demands on the decoders, at the
price of much increased block length.

However, it seems clear that it is more efficient to
let M become large enough so that two stages of coding are
unnecessary, and in fact large enough that a single RS code
can be used. As M falls below this size, the complexity of
the codes needed would seem to increase much more rapidly
than that of the modulation decreases, while for larger ™
the reverse is true, The explanation is that a certain M is
required to drive the probability of detection error dan to
the point where coding techniques become powerful, for
S/ {NoRo) somewhat less than the final signal-to-noise ratio
per information bit, However, once this moderate
probability has been achieved, it would seem to be wasteful
to use modﬁlation techniques to drive it much Tower by
inéreasing M. Tables 2 and 3 illustrate this point by
showing that this criticél M is not nmuch affected by an

enormous change in required Pr(e).
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Since the RS codes are the most efficient of the BCH
class with respect to the number of check digits required to
achieve a certain minimum distance and hence
error-correction capability, another important effect of
increasing M is to make the symbol field GF(M) large enough
that RS codes of the necessary block lengths can be
realiéed. Once M 1is large enough to do this, further
increases result in no further increase of efficiency in
this respect.

Tables L=-7 are presented as much for reference as for a
soufce of further insight. It is interestiﬁé to note that
for a given M, the same RS <code 1is approximately optimum
over a wide ranée of required Pr(e). No satisfactory
explanation for thlis constancy has been obtained; 1lest the
reader conjecture that there might be some universal
optimality to these codes, however, it might be mentioned
that the same tables for a different type of probability
distribution than the Gaussian show markedly different codes
as optimum. Table 7 includes the superchannel probabi]itiés
of error seen by the outer coder; they are somewhat higher
than the comparable probabilities For the discrete
memoryless channel, 10 -10° , but remain in the same

approximate range.

6,3 Summary

A  rost interesting conclusion emerges from these

'calcu]ations.. A distinct division of function between the-

outer code and the inner stages-- of modulation, or inner
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coding, or perhaps both-- is quite apparent. The task of
the inner stages is, while somewhat exceeding the specified
rate or S/(No Ry ), to turn the raw channel into a
superchannel with moderate (10> -10"%) probability of error %
and enough inputs so that an RS code may be wused as the
outer code. The function of the outer code is then to drive
the overall probability of error as low as desired, at a
dimensionless rate close enough to one to not hurt the
overall rate or S/ (NgRg) badly.

" For future work, two separate problems of design are
suggested., The first is the most efficient realiztion of RS
encoders and decoders, with which we were concerned in
Chapter 4. The second, which has been less explored, is the
problem of efficient realization of a moderate probability
of error for given specifications. Communication theory has
previously focussed largely on the problem of achieving

negligibly small probabilities of error, but the existence

of RS codes solves this problem whenever the problem of

‘achieving a probability of error less than 10'3, say, can be

solved. This latter problem is probably better considered
from the point of view of modulation theory or signal design
than coding theory, whenever the former techniques can be"

applied to the channel at hand.

6.4 Reference

‘1. Golomb, S.W., et al, Digital Comnunications, Prentice-

Hall, Englewood Cliffs, MNJ, 196L4.
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Appendix A, Varlations on the BCH Decoding Algorithm

A.l An Alternate Determination of Error Values

The point of view which 1led us to the erasure
correction procedure of Section 4.5 leads us also to another
method of determining the values of the errors. Suppose the
number of errors t has been discovered; then thé%txt matrix
M has rank t and therefore nonzero determinant. Let the
decoder now determine the locator X;, of any error. If we
wetre to guess the corresbonding error value ej° and modify
the Tﬂ accordingly, the guessed word would have either still
t or (on the chance of a correct guess) t-1 errors; thus
the txt‘matrix ML formed from the new 1; would have zero
determinant if and only if the guess were correct. In
general one would expect this arguﬁent to vield a polynomial
in €}o of degree t as the equation of condition, but because
of the special form of My this equation is only of first
degree, and‘an explicit formula for e}a can be obtained.

In symbols, let
—_—

—

=D

p—
] . .
SCMﬁﬂm4pMcn0 (to 15 ) MAg ) —'bey*ﬁLw&hahﬁuMQPK\'
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—_ = —

Then To'= & S/
= . . o , , .
= Te- e T (4)) =T - E,,X,h

/Fl:h,-(:l' " X}

Let us expand this determinant into

Tt @«Xﬁ"‘ e T - BN
Zt determinants,
using the fact that the determinant of the matrix which has
the vector (a +‘E) as a row is the sum of the determinants
of the two matrices which have @ and b in that row,
- respectively. We classify the resulting determinants by the

number of rows which have Ej. as a factor.

There is one determinant with no row containing E}, ,

which is simply [Me
There are t determinants with one row having Eie as a

factor. For example, the first is

M‘n - .y, 23 et
~Eie %y B Xt - ER K
Tty Totm-4 = Tont-o
2o E- Maetr o 0 Tk

There are (f) determinants with two rows having E}o -as

a factor. The first is

2% - | -~
“Ep X - RS Tk 08 (A
7#&5"4 2t
SEHRTT SE Y g ¥IE
| Tk -a Toe-s 7 2t t-3

>
.

”r"b-'(.n—'t-l _r‘ "t - .l T‘Z'&b—zh
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But in this determinant the first row is simply X&o times
the second, so that the determinant is zero. Further, in
all such determinants with two or more rows having EJ“ as a
factqr, these rows will be some power of X}o times each
other, so that all such determinants are zero. |

The t determinants with one row having EJ as a factor
are all linear in Ej» » and contain explicitly powers of X},

between 2t o~2t and 2to=2; their sum is then

B E X 26-2t (xt_}?\

where P(Xj1> ) is a polynomial of degree 2t—é, whose
coefficients are functions of the original Th.

Finally we recall that
) . v Mo :
E%v = 4%h“xﬁ° Ja(ﬂ(&°>
and that the equation of condition is

O= 1Ml = el = €057 p(x;.)
' ‘ My | ( 1)

Cp = XV

Kfo e (%) P()

Mgl can easily be obtained as a byproduct of the

reduction of M . The only term in the denominator of Ean, 1

that is not readily calculable is P(X},). In general, if

Ak Ts the determinant of the matrix remaining after the 1ith

row and kth column are struck from Mg, then

'P(X}?) = EE:(—mX};fi 4 = A

(+k=Af




Appendix A. Variations PAGE 147

A simplification occurs when we are in a field of
characteristic two. For note that because of the diagonal
symmetry of My, A, = Ay;. Any sum £+éQAil“ will consist
entirely of pairs A; +Ay; = 0, unless 1 is even, when the
entire sum equals A%i' where j = 1/2. Then

2 (-
?(XM- 2 Xp ) Aji
Evaluation of the coefficients of P(X) in a field of

characteristic two therefore involves calculating t

(t=-1)x(t-1) determinants.

A Exampl
Let the decoder have solved Eqns. 5 of Chapter 4 as

before, obtaining as a byproduct |H£] =xb. Trivially,
A;,,':’t;:pd% »A'u:‘T;_:O
The first error locator it will discover is X7 = Aﬂ4. Then,

from Egn., 1,

IML/ D("

X|3 (.X:- +65) XI"—EJL\(Aux:_ +A11\ ) <! L("u;-fal-o{".—r‘o(“ '3

Similarly, when it discovers X, = &',

€

o ® _
e)_ = = X,
0‘3(0‘74'&(.0‘”*0‘ 10)0413

Then it can solve for d1 and dltas before.

rks
The procedure just described for determining error
values is clearly applicable in principle to the
determination of erasure vélues. In the latter case,

= —_—
‘however, &, must be replaced by LS4 » the vector of




Appendix A, Variations PAGE 143

elementary symmetric functions of the s-1 erasures other
than the one being considered, and the original modified"
cyclic parity checks Tl by the modified cyclic parity checks
defined on the other s-1 erasure locators. This means that
the determinants appearing in Egqn. 2, as well as IME], must
be recomputed to solve for each erasure, in contrast to the
solution for the error values; this promises to be tedious
and to militate against this method in practice. We mention
this possibility only because it does allow calculation of
the correct value of an erasure given only the number ’oF'
errdrs and the positions of the other erasures, wit%out
knowledge of the 1location or value of the errors, a
capability which might be useful in some application.

The erasure=-correction scheme with no errors of Section
4.5 can be seen to be a special <case of this algorithm.

3 Imple tatio

After we have located the errors, we have the option of
solving  for the error values directly by Egn. 1, or
indirectly, by treating the efrors as erasures and using
Egqn. L,.6.

| f we choose the former method, we need the t

(t-1)x(t-1) determinants AJ} of Egn. 2. In general this
requires '£4

Ly (2t L

4{(3)43

multiplications, which is rapidly too many as t becomes
large., There is a method of calculating a]l»Adé at once

which seems feasible for moderate values of t. We assume a
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field of characteristic two,

Let Ba”alwua; be the determinant of the Jjxj matrix
which remains when all the rows and columns but the a 1 th,
asth,e.., a}th are struck from M,. In this notation

M = o= , .

IMe | )51.,7_,.,.)(: aM—A A“ B’!’-;-w)":J"";"-)ﬁ
The reader may verify by expanding B in terms of the minors
of its last row and cancelling those terms which because of

symmet ry appear twice that

—_ +
Ba,,ﬁ,)m,aj = '7’&"'2“‘! Oa”%}_aj-_' +—Tze.-2a;...[Ba,,q,,...,.&_, +T7-:°'2aé1—z ‘b&n%,-w“}-;,&;q pe
The use of this recursion relation allows calculation of all
Ajp with Ny multiplications (not counting squares), where,
for shal]ﬁt, Mg is: Ng = 0 (see Section A.11), Ng= 3, Ng =
15, N; = 38, Ng= 86, Ny = 172, N3 = 333, and Nq = 616.
Once the A}} are obtained, the denominator of Eqgqn. 1
can be expressed as a single polynomial E(X) by st
multiplications; E(X)'has terms in X”t My +2t, =2t=msamg+2t+s,
or a total of 2t+s+1 terms. The value of E(X) can therefore
be obtained for X = 1, Pq,lé”“,... in turn by the Chia4
method of solving for the roots of &g(X), and in fact these
two calculations may be done simultaneously. Whenever
/)W"“ is a root of &5(X), E(lé""‘) will appear as the current
value of E(X). Since IMel will have been obtained as a
'byproduét of solving for e (X), an inversion and a
multiplication will give the error value corresponding to XJ,
=/9“4 . Another n(s+2t) multiplications by /f*are involved

here, and s+2t memory registers,
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In order to compare the alternate methods of finding
error values, we simply compare the number of
multiplications needed in each case, leaving aside all
analysis of any other equipment or operations needed to
realize either algorithm. We recall that the values of s
erasures can be determined‘ with approximately 2s(s-1)
muftiblications. For the first method, we need
abproxfmate]y Ny multiplications to find the error values,
and 2s(s-1) to find the erasures; for the second,
2(s+t)(s+t-1) to find both the erasures and the errors.
Using the values of N¢g given earlier, we find that the
former method requires fewer multiplications when t < 7,
which suggests that it ought to be considered whenever the

minimum distance of the code is 15 or less.

A.2 An Alternate Determination of Error locatjons

Continued development of the point of view above gives
us an alternate method of locating the errors. If  we
tentatiQe]y consider a received symbol as an erasure, in a
receivedeord with t errofs, then the resulting word has t
errors if the trial symbol was correct, and t-1 errors if
the trial symbol was in error. The vanishing of the txt
determinant M" formed from the 'w' defined now by s+1
erasure locators then indicétes the error locations. The
reader may verify that if on is the locator of the trial

symbol,
-

g

a

;7:14-1_ >(d'\'.”].'a )
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and

M: /FL-L»‘) - xé'o’rlk"} 'T_%- - Xd °1;h

0
i

| f we expand )Ml\ by columns,

determinants will have one column

—

D.-l_"(u\-\ U-t), ST

=
| chn O£ r;‘e‘czhﬂ, Y-,

by the expansion of D& into three
earlier in the proof that the rank
D} = Sete-py D

so that

XD = b{; Se(x'\

Further, it is clear that
\Yt I%-‘—T;'Eb‘”l. -t
X5 T Tk 7

)

DX =

‘ Tl T -2 ...

T . s
To4-1 'Xd*:rze.,—; b XADT?/& -3

:l-’ st = XyoTug-t g Tz&-t-; " KTt

- ‘——' —
_Dn‘ \szl.-.-n y2ha-t) —ri,‘p,ky-z)zlr'—‘ﬁ-l)),..

—l_]_.g‘— E

X Tourt 'uv—t N Ty

many of

equal to

another., The only ones that will not will be

—_—

matrices,

of M is ¢,

"and this method is entirely equivalent to the

JLID TS

.
A

T

the
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-Xég

)—TEZI.--f 2,26 - utts, Y:TCu-. £) j2h2F H)}_

and so forth., Thus if X&Q is a root of the polynomial
_ , 4 '

\ : = . ' N - N é

EICRERE A W

\M%\ is zero and X}u is an error locator. It can be checked

former

e = X T4

-4 77 ’Zk't-l’XéoTz

-£-2

S Toh-2be - Y’uTLh-ze

resulting

times

y V(b€ 224 1y ‘

—_—
(u«eﬂ,u.-un.) ’xj-—rr-_zh-ﬁ--l,lh—lt) \

as was done
that
one.

, -~
yj-o Tfu-..- £-1, zh-u—)/
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The condition of the vanishing of this matrix determinant is
the generalization to the non-binary case of the 'direct
method' of Chien1 It appears to offer no advantages in
practice, for to get the coefficients of D(X) one must find
the determinants of t+l txt matrics, whereas the
coefficients of the equivalent & (X) can be obtained as a

byproduct of the determination of t.

A3 _Reference

1. Chien, R,T., "Cyclic Decoding Procedures for Bose-
Chaudhuri-Hocquenghem Codes," 1EEE Trans. Info. Thy. 1T-10,
357 (1964). R
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Appendix B. Formulas for Computation
In this appendix we derive and discuss the formulas

used for the computations of Chapter 5.

B T Quter D éd
Let us consider first the probability of the outer
decoder decoding incorrectly, or failing to decode. Wé
shall Iet~q5 be the probability that any symbol is in error
and pgy be the probability that it is erased. |
If the outer decoder does errors-only decoding, Pt = 0.
Let the maximum correctable number of errors be tg ;' then
the probability bf decoding error is the probability of tg+l
or more symbol errors:
Pol) = = () gt (e py ()
4 bt £) Pe Pe
I f the outer decoder does deletions-and=-errors
decoding, the minimum distance is d, and the maximum number
of errors‘corrected is t,, then the probability of decoding
~error is the probability that the number of errors t and the

number of deletions s satisfy 2t+s2d or tz t +1:

Prle) = g (S{:\P-e P (- fe- Pcl\k -s-k

2&%>d°¢t>ﬁ+\

. T2 (s7e)pt ps® (bpe-ps)™ +_ s (D ptra)™" o

tzo S=d-21¢ €€ 01




Appendix B. Formulas for Computation PAGE 154

Egqn. 2 is also valid for modified deletions-and-errors
decoding, when t, is the reduced maximum correctable number
of errors.

For fixed t, we can lower bound an expression of the

form
2 o w) & s n—s—€ 3
{éf-' (s,t) fe" ps” (t-pe-pa) (3)
by e
2t u—s-&
(s5) pet s (lmpe-pd) (&)
S= €&
To upperbound Eqn. 3, we write it as
t.

2 B0 a7 v T () pEpE Uopepa

Since the ratio of the (s+l)st to the sth term in the latter

series is

(n-s-6) pd _ (n-£-E,) pa

(s (- peya) ~ £, (1= pe-pa) =%
Egqn. 5 can be upperbounded by P
< .5-€ - /
= IR pu )% (5 nt e (Lpepd) JE&
£~ | -t £ty -
= 2 (e ) pas Ul pe- MY a (e, Jpet pdt (1-pe-pal (¢)
S=¢€,

By choosing tz_large enough, the lower and upper bounds of
Eans. 4 and 6 may be made as close as desired. In the
program of Chapter 5, we let t, be large enough so that the
bounds were.within one per cent of each other. Both Egns. 1

and 2 can then be upperbounded and approximated by Egn. 6.




[
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T Ilnner Decoder

If the outer decoder is set to do errors-only decoding,
the inner decoder corrects as many errors as it can (t ).
Whenever the actual number of errors exceeds t , the inner
decoder will either fail to decode or decode in error, but
either of these events constitute a symbol error to the
outer decoder. |If the probability of symbol error for the
inner decoder is p,, then ,

“

o = 2., D) pt (pT )
Egn. 1 can be upperbounded and approximated by Eqn. 1.6 of
the previous‘section.

If the outer decoder is set for deletions-and-errors
decoding, the inner decoder is set to correct whenever there
are apparently t1 or fewer errors, where t1e-t,; otherwise
it signals a deletion. |If there are more than t, actual
errors, the decoder will either delete or decode

incorrectly, so that
: Wy Lk w-t
) ; = 2 - - N
Pet P4 4ok, (21" C-p) y

ordinarily tq is set so that pe<< P4 » SO that P4 is

upperbounded and approximated by

(%8
Pif_é,?’”(%)}?jlkﬁ)n f (2)
which in turn is upperbounded and approximated by Eqgqn. 1.6.
Estimating Pe turns out to be a knottier problem. Of
course, if the minimum distance of the inner code is d, no

error can occur unless the number of symbol errors 1is at
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least d-t , so that

. = ¢ -
Pe = é=§~e, (&) fo (ps)” -

This is a valid upper bound but a very weak estimate of Pe »
since in general many fewer than the total of C?) t-error
patterns will cause errors; most will cause deletions. A
tighter bound for p, depends, however, on knowledge of the
distribution of weights in the inner code, which 1is in
general difficult to calculate.

We can get a weak bound on the number N, of code words
of weight w in any code on GF(q) of 1length n and minimum
distance d as follows. Let ty, be the greatest integer such
that 2t; < d. The total number of code words of weight w=t,
distance t, from a code word of weight w is Gﬁl since to get
such a word we may change any to of the w nonzerc symbols in

the word to zeroes. The total number of words of weight w-tg

‘distance tg from all code words of weight w is then

QL\ MudJ

and all of these are distinct, since no word can be distance
ty from two different code words. But this number cannot

exceed the total number of words of weight w=t,:

(_Wl_/_\.bb\ (q _ D' W bn

Therefore &
\ l _ ‘)MJ— [~
N. - ’VLV’. {:3' (-q t C'S)
W Wl (a-w-6)!

Mow a decoding error will occur, when the inner code is

linear, when the error pattern is distance ty or less from
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some code word, The total number of words distance k from

some code word of weight wis

2, (7t ()

f*} + A=k
since all code words can be obtained by changing any ‘Q of
the n-w zeroes to any of the4(Q'1) nonzero elements, any |
of the w nonzero elements to any of the other (g-2) nonzero
elements, and any j of the remaining nonzero elements to
zeroes, where i+j+1 = k. The weight of the resulting word
for a partlcular i,j,17 will be w+l=j, so that the
probablluty of getting a word distance k from a particular

code word of weight w is

- W </ P wr,Q—;, m-w = ¢
L-)%:q ( L ) (‘t 1) {L))}Cq_z) (q—:rv (!f,oﬂ Q d
t‘{-d:' +1=Ic

Summing over all words of all weights wzd and all k £ t,,

and substituting jJ = k-i-120,

n ot k',q 1 i _ W"th -7 ) w2+ -L "W ZQ.-ti-lc
p=22C Z oy ("{”")"’[* L (32 p." (lp) .
wed ked iz Lo ﬂ (Vl W—ﬂ)’ f (é— —ﬁ)l (W—— _2),

Interchanging sums, substituting the upper bound of Egn. 3
for Nw, and writing the ranges of w,k,i and 1 more

suggestively, we have

- kA6 20 +e-le M- e
0 Z = wl £ () (g=1) (q-2) pw i '[/’Fb) g
k€€, v2o0 fzo w=2d ﬂ [ (a-w-0)I1 (_l (k_l_")"(_w-L_lQ))‘(_M,_w i’to\!

We now show that the dominant term in this expression s

that specified by k=t1, i=0, 1=0, and w=d, and in fact that
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the whole series is bounded by

W (a- Dt p -6 (l-p godet

Ve = CCLC3C4 el (e (v\ FwRY (4)
where 1

O F a5 RS

= = (\-rh\?——\ et

Gyz T——-Ja—g,s a; T{LPv a__~ e,

Cyc |__\a‘ ) Q4 £ TEPQI CT‘-Tdf'._p

and it is assumed that the constants a,_ are less than one.
This result follows from repeated bounding of the series by

the first term times a series of the form

L = \
Méfc. - \"M

For example, the ratio of the (w+l)st to the wth term is

P-o m - «.,Q V\,—w‘-’&b

‘\""fo oo N—-kJer-)—l = A

since w2d, k <t,, 1= 0.
The ratio of the (1+1)st term to the 1th term is
( Po )‘- \ u_w—ﬂ E_,Q—-c'
Yo = —_—
of the (i+l)st to the ith:

Pe q-2 \-Q2-¢ ‘
- = < ay’
Po 41 C+ )

and of the (k=1)st to the kth:

P- 1 k-fg.:
V=P G-1 w-kl v

a, -
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The bound on Pe of Edn. 4L is a valid upper bound, but
not a good approximation since Eqn. 3 is a weak bound for
Nys A tighter bound would follow from better knowledge of Nw\
J in Table 5.2.2 we use the actual values of N. for RS

codes, which markedly affects the character of our results.

Be3 Modulatign on 3 Gaussian Channel

Ro biorthogonal

We contemplate sending one of M = 2
signals over an infinite bandwidth additive white Gaussian
noise channel, A well-known mode{lfor such a transmission
is this. The M signals are represented by the ™
(M/2)-dimensional ve;tors X(o Lgi€eM/2 0r -1 = 0 Z -M/2,
which are the vectors with zeroes in all places but
the lilth, and in that place have tL according to whether i
= a2li] . (These vectors correspond to what would be observed
at the outputs of the bank of M/2 matched filters if the
waveforms they represent, uncorrupted by noise, were the
input.)

The actual, noisy outputs of the bank of matched
filters are represented by the (M/2)-dimensional vector v =
(Yir You ooss Vi) o If we assume a nolise energy per
dimension of N, then .

i

. \ (Yy-x53)
TNC%\MQ=(;;5hM € p '}g; a9

2N

Interpreting
Ww/a
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as the Euclidean distance between the vectors Vv and 3?; s ve
see that the maximum likelihood decision rule is to choose
that input closest in Euclidean distance to the received
signal.

The case M=4 is illustrated in Figure 1, where we have

drawn in the lines marking the boundaries of the decision

regions.l There is perfect symmetry between the four inputs.
If one of them, say (L,0), is selected, the probability of
error is the probability that the received signal will Tlie
outside the decision region that contains (L,0). If we let
Eq bé the event that the received signal falls on the other
side of the line AB from (L,0), and E; that it falls on the
other side of CD, then it can readily be shown by a 45°
coordinate rotation that E, and E, are independent, and that

each has probability

P = \rﬁ\‘” -C;a S J‘”")
oo 2

" = .[L/J:_J e 5\‘7)
The probability that neither occurs is (l-p?', so that the
probability that at least one occurs, which 1is the
probabhility of error, is

oAt Eee

When M > 4, the symmetry between the inputs still
obtains, so let us suppose the transmissionrof
= (L,0,..., 0)

Let E), =jJ<WM/2, be deffned as the event in which the

H . V . o -
received signal is closer to one of the three vectors x _,.,
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ii, iih, than to_;,. Then the event © of an error is the

union of these events
w5

g = U 3
¥
But the probability of any one of these events is q. Thus,

by the union bound,
Mg

.{)o=1’v(t\f}§ AlE) = (£-1)q (3)

When the signal-to-noise ratio fL/N is large, the bound
of Egns. 1,2, and 3 becomes quite tight. To ca]cu]ateEE, we
buse an approximation of Hastinggf Viterb-i.'> has calculated
the éxact value of p, for 3£R,=10; we have fitted curves
to his data in the low signal-to-noise range, and wused the
above bodnd elsewhere, so that over the whole range po is

given correctly to within one per cent. When R 11, the

o Z
union bound is used for all signal-to-noise ratios.

Finally, we have the problem of bounding the deletion
and error probabilities, when the detector deletes wheneveaer
the magnitude of the output of some matched filter is not at
least D greater than that of any other. Figure 2
illustrates the decision and deletion regions, again for
M=4, 1t is clear that the probability of not decoding
.correctly is computed exactly as before, with L replaced by
L=-D; this probability overbounds and approximates the
deletion probability. The probability of error is
overbounded, not tightly, by the probability of falling
outside the shaded 1ine DEF, which probability is computed

as before with L replaced by L+D,
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When M L4, the union bound arguments presented above
are still valid, again with L replaced by L-D for deletion
probability and by L+D for error probability.

The case in which M = 2 is trivial,
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