.
Y

MODELS AND DATA STRUCTURES FOR DIGITAL LOGIC SIMULATION
by
DONALD LEIGH SMITH

B.S., University of Kansas City
1962

S.B., Massachusetts Institute of Technology
1962

SUBMITTED IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June, 1966

Signature of Author...... ...
Department of Electrical Engineering
May 20, 1966

Certified by...veiin it i mvorys e ooy i i v e et
Thesis Supervisor

Accepted by..... i I AP o e
Chairman, Departmental Committee
on Graduate Students

MODELS AND DATA STRUCTURES FOR DIGITAL LOGIC SIMULATION

by

DONALD LEIGH SMITH

Submitted to the Department of Electrical Engineering on
May 20, 1966 in partial fulfillment of the requirements for
the degree of Master of Science.

ABSTRACT

A digital logic simulation system is proposed for design
verification. Logic to be simulated is specified with a high-
level register transfer design language, and the simulation
system operates on-line on a large time-shared computer. The
problem of selecting adequate circuit and signal models for
this purpose is considered. Models are proposed with suffi-
cient timing detail to allow the simulation system to detect
timing errors which currently are found by manual checking or
prototype debugging.

A data structure for representing idealized circuit and
signal models and a matching simulation algorithm is discussed.
The data structure is a direct representation of a complete
subget of the design language and is organized so that it can
be incrementally modified to reflect design changes. The simu-
lation algorithm is very efficient because combinational levels
are re-evaluated only if their values are needed and may have
changed since last evaluated.

The data structure is expanded to represent detailed cir-
cuit and signal models. A method of intermixing idealized and
detailed models and efficiently simulating very large designs
is discussed. Extensions are proposed to the design language
so that it can be used to specify model parameters and serve
as the simulation command language. o

Thesis Supervisor: Jack B. Dennis
Title: Associate Professor of Electrical Engineering

ACKNOWLEDGMENTS

The author would like to express his gratitude to Professor
Jack B. Dennis, whose design language work directed the author's
attention to this subject area, and whose advice and suggestions
as thesis supervisor have been very helpful. He is also grate-
ful to Professor Eric G. Manning and Messrs. Fred L. Luconi,
Nathan R. Melborn and Ashok Malhotra, whose interest in this
work has been most encouraging. He would like to express his
appreciation to Norma L. Burns, who typed the manuscript, and
Irene H. Ziemba, who assisted with the figures. Special thanks
are expressed to The MITRE Corporation of Bedford, Massachusetts,

who generously financed this work.

SECTION

ABSTRACT
ACKNOWLEDGMENTS
TABLE OF CONTENTS

II

ITI

Iv

INTRODUCTION

TABLE OF CONTENTS

DESIGN LANGUAGE

Figure 2-1

Four Bit Counter

CIRCUIT AND SIGNAL MODELS

A Circuit Delay

B Level Circuits

Figure 3-1
Figure 3-2
Figure 3-3
Figure 3-4
Figure 3-5
Figure 3-6
Figure 3-7
Figure 3-8

3-9

Figure

Level Signal Values

Level Delay Line Model

AND Gate

Combinational Logic Block Model
AND and OR Gate Hazard Values
Qutput Hazard for 2-Input AND Gates
Example of AND Gate Model Behavior
AND or OR Gate Settling Times
Flip-Flop Model

C Register Transfers

D Control Events

Figure 3-10

DATA STRUCTURE

A Level Logic
Figure 4-1
Figure 4-2

Figure 4-3

Example of Signal Spread Fault

FOR IDEALIZED MODELS

Combinational Level String Data Elements
Delay and Flip-Flop Level String

Data Elements

Constant Level and Fixed Memory

Data Elements

PAGE

N

11

12

18

19

20
22
22
23
23
25
26
28
30
32

32

33

35

37

40
42

46

47

SECTION
IV B
c
D
E

\Y

VI

VII

Control Logic
Figure 4-4 Control Logic Data Elements
Figure 4-5 Transfer Effect Table

Time Queuing and Miscellaneous Lists
Figure 4-6 Time Queuing Data Structure

Simulation Algorithm

Discussion of Idealized Model Simulation
Figure 4-7 Unstable Circuit

DATA STRUCTURE FOR DETAILED MODELS

A

Level Logic

Figure 5-1 Detailed Flip-Flop Level String
Data Elements

Figure 5-2 Detailed Combinational Level String
Data Elements

Control Logic
Figure 5-3 Detailed Control Logic Data Elements

Time Queuing Data Structure
Figure 5-4 Time Queuing Data Structure

Intermixing Ideal and Detailed Models
Data Structure Partitioning

Summary of Data Structure Characteristics

SIMULATION COMMAND LANGUAGE

A Design Language Extensions
B Logic Testing Procedures
CONCLUSIONS

PAGE
48

49
50

53
57
58
60
60
61
62

65
66

67
68

70

71

75

76

77

88

90

1
i SECTION PAGE
| APPENDIX A INTERMIXED SIMULATION DATA STRUCTURE 94
|

z Figure A-1 Detailed Level String Elements 95
| Figure A-2 1Ideal Level String Elements 96
; Figure A-3 Level Output Specification Structure 97
1 Figure A-4 Constants, Memories and Stacks 98
Figure A-5 Control Logic Data Elements 99

Figure A-6 Activity Queuing Data Structure 100

Figure A-7 Temporary Storage Lists 101

APPENDIX B INTERMIXED DATA STRUCTURE SIMULATION ALGORITHM 102

1. Outline 108

2. Discussion of Simulator 123

APPENDIX C COMBINATIONAL LEVEL FORMULAS 125
APPENDIX D DESIGN LANGUAGE DESCRIPTION 130

1. Basic Structure 130

2. Level Logic 132

Figure D-1 Basic Level Delay Unit 134

3. Control Event and Transfer Statements 134

4. Integers 138

5. Delimiters 138

6. Iteration Statements 139

7. Conditional Statements 141

8. Define Feature 142

9. Summary 143

BIBLIOGRAPHY 144

I. INTRODUCTION

For more than ten years, engineers have been utilizing general
purpose digital computers to aid in the design of new digital systems.1
The most common form of this aid has been the use of computers to con-
vert descriptions of system logic into wiring lists and other documen-
tation for construction, debugging and maintenance.2 Included in this
conversion process are such things as logic minimization, wiring rule
checking, component placement and wire routing. Computers have been
used to a lesser extent to simulate designs to verify that the logic
yields correct results. The inputs to these systems are generally some
special form of Boolean equations specifying flip-flop input and combi-
national logic block output formulas. Listings of these logic equations
have served to supplement or even replace the more traditional logic
diagrams.

The large number of logic equations required to specify a digital
system makes it difficult for anyone unacquainted with the design to
deduce its behavior from listings of the equations. Likewise, it is
tedious and time-consuming to formulate designs in such detail. More
concise register transfer languages have been developed for design
documentation and formulation early in the design process.3 Experience

with design automation systems has led to the development of improved

1The first paper on computer design automation was given by S. R. Cray
and R. N. Kisch at the Western Joint Computer Conference in February,
1956 - Reference (1).

2See References (2), (3), (4), (5), (6), (7) and (8).

3The first of these register transfer languages was presented by
I. S. Reed in References (9) and (10).

register transfer languages for precisely describing digital systems.
These languages may describe machines at the register and decoder level,
rather than the flip-flop and gate level of the logic equation languages.
The great advantage of these new languages is that they describe hardware
at a level of detail convenient to logic designers. Such a language has
been under development at M.I.T. under the supervision of Professor

J. B. Dennis. This design language has been used as a descriptive
language for classroom exercises and to design a Microtape Controller

for use with a modified PDP-1 crmputer. It is intended that the design
language eventually serve as the input to a design automation and simu-
lation -,ystem.

In this thesis we will be concerned with the development of a
detailed simulation system for digital logic design verification. Models
for logic circuitry are selected, data structures for representing these
models are developed, and simulation algorithms are outlined. No simula-
tion program has been written because of coming computer system change-
overs at M.I.T., both at Project MAC and the Computation Center.5

Most logic simulation programs have been written to simulate a
single digital system, either for debugging software to be run on the
future system or for detecting logic errors. Of those simulation pro-
grams designed for logic checkout, the large majority have been written
for synchronous machines and, in all cases known to the author, idealized

circuit models have been used. Such models exclude consideration of such

4See References (11), (12), (13), (14) and (15).

5There are advantages to being forced to think about the program before
being able to start any coding.

things as circuit delay, pulse width, delay tolerances and fan-out delay
variations, and cannot be used to help locate the difficult to detect
race conditions and timing errors which are espeéially important in
asynchronous logic checkout. Relatively few simulation systems have
been developed which translate special descriptions of designs into pro-
grams which simulate them.

Simulation for logic checkout has been widely used in the defense
industry, where great emphasis is placed on short design lead time and
production runs are short. High competition in the commercial side of
the industry is also moving effort away from prototype debugging and
toward simulation to detect logic errors as early as possible. With the
introduction of third generation computer hardware the cost of construc-
ting a prototype and modifying the design before production is increasing
rapidly, again providing economic reasons for using simulation to verify
a design before tooling up for prototype construction.

It is intended that this thesi;ube the basis for a simulation system
which uses the Dennis Design Language as input and operates in a large
time-shared computer environment. In é&dition to checking the overall
operation of a design, this system would\ﬁgrform special simulations to
test for suspected race conditions and logig hazards. It is not proposed
that the system automatically check for all possible design errors, but
rather that the judgment of the designer be relied upon to select likely
probicm areas and simulations for testing them. The advantages of this
approach are that no additional restrictions need be placed on designs
and the simulation system is fully compatible with current design tech-

niques. Circuit and signal models are provided with sufficient timing

10.

detail for race and hazard detection. The internal data structure is
designed to facilitate on-line modification to the logic descriptions
as errors are detected. These modifications do not require a complete
reordering of the data structure; the data structure can be changed
incrementally. Simulation efficiency is improved by evaluating only
éhose combinational levels whose values are required and which may have
changed since last evaluated.

Section II introduces the design language by way of a brief example
and indicates the classifications of circuit and signal types in which a
design is described. 1In the next section we select models for represen-
ting the important characteristics of each circuit and signal type.
Section IV presents a data structure for representing ideal circuit and
signal models and outlines a simulation algorithm based on the structure.
The structure is modified to represent detailed models in Section V and
a method for intermixing ideal and detailed models in the same structure
is discussed. Section VI proposes modifications to the design language
so that circuit and signal timing parameters can be declared and the
language can be utilized as the simulation command language. Conclusions

are presented in Section VII.

11.

II. DESIGN LANGUAGE

In this section we will examine the design language description of
a small part of a digital system. The motivation for doing this is to
demonstrate the use of some of the features of the design 1anguage6 and
to show that three different classes of signals are represented in such
a design description. Separate models will be developed for each of
these classes of signals and will be included in simulation data struc-
tures to be presented later. This will simplify translation from the
design language into the data structure, but more importantly, the
organization is a natural way of looking at complicated digital networks.

The logic network selected for demonstrating the design language is
diagramed in Figure 2-1. The network is a four-bit counter with parity
and is realized in common pulse-level hardware. Arrowheads represent
pulse inputs and diamonds represent level inputs. Counter parity is
generated using carry pulses when it is stepped. Signals are named,
and the same names are used in the design language description.

In the following design language description, the counter is speci-
fied as a component interfacing with one other component called Main-

control:

6A complete syntax was written for the design language by G. J. Burnett
in Reference (16). A discussion of the language more consistent with
its present state of development is found in Reference (17), written
for M.I.T. course 6.535 by H. F. Ledgard. Examples of the use of the
language are found in a companion set of notes, Reference (18). Since
these references may not be available, a brief outline of the basic
design language 1s included in Appendix D.

12.

-~

I23Uno) 31g Inojg

1-7 dT4NOI4
[elr Lelt (11 Lo]I (v]1
_.l lllllllllllllllllllllllllllll |
_ _
D) N D D
aqolx3ls " _
ummmum _
123sEW | < ‘ ’ \#ﬂ _
dwod
uwummE“ MMHWM _
_ 4 2 S ¥4 D 4 0 S ¥4 2 S K “
_ 0 + 1 0 4 1 0 H 1 0 H 1 0 +H 1 |
_

_ ’ aedjoaa109 “
da3s —p 9 r’r,u g 9 ?3e9 _
_ [€]daas [z]de3s [1]de3s [0]d=3s \/ M0 STng _
_

| 23189 ANV oA
| - . |
_ 1013U0DUTER * _
_ y3TMm @odeJIajul _
_
| |
_ : _
_)\)\ - |
L — — - ‘|LAWI _—_——,——_—_ e _ __ e ANI.II —_ VvV .
| € JYEINAOD L Z J4IINN0D [143INN0D [0 JYIINNOD MOTII3A0 [+ 4AINNOD

10

11

12

13

14

15

16

17

18

19

20

13.

componernt FOURBITCOUNTER;

interface MAINCONTROL;

input pulse strobe, step, masterreset, mastercomp;

input level I[0:47;

output pulse overflow;

output level COUNTER[O0:4];

end interface MAINCONTROL;

register COUNTER{0:47]; * Bit 4 is parity bit;

strobe: I - COUNTER;

* Step control;

step:

step[3];

t COUNTER[4];

for i =1 through 3 do begin

step(1i]:

step[0]:

step{2]:

correctpar:

t COUNTER[1];

if COUNTER[1] then step[i-1]; end;
t COUNTER[O];

correctpar;

if — COUNTER[2] then correctpar;

delay {50 ns);

t COUNTER[4];

L4, x
21 * Master Reset and Complement; :
22 masterreset: 0 ~ COUNTER[O0:47; .
23 mastercomp: t COUNTER[0:3]; * Parity remains correct;
¥
24 * Overflow Detection;
25 MAXCOUNT = COUNTER[0:37] = 15; -

26 MAXCOUNT: over flow;

27 end component FOURBITCOUNTER;

The FOURBITCOUNTER component is delimited by lines 1 and 27.
(Line numbers are not part of the design language but are used here to
aid in the discussion.) Lines 2 - 7 declare the signal interface with
the component MAINCONTROL. If the counter interfaced with any other
components, the other signal interfaces would also be declared at this
point. Next come the register declarations, which in this case consists
only of the five flip-flop register COUNTER. Note that the syntax of
the design language has much of the flavor of ALGOL syntax. Rasic
Symbols are underlined when:they are more than one character long and '
semicolons are used tc terminate statements. Asterisks are used to pre-
cede comment statements, as in lines 8, 10, 21, 23 and 24, rather than
the ALGOL symbol comment. Identifiers made up of capital letters and
digits are used to name level signals, identifiers made up of small
letters and digits are used for pulses. When a pulse identifier appears
in a statement label, hardware is to be included in the component to
execute all statements down to the next label or delay statement when- -

ever that pulse occurs. Therefore the meaning of lines 11 and 12 is:

15.

whenever the pulse '"step" is generated, the machine will generate the
pulse "step[31" and complement flip-flop COUNTER[4]. These actions are
taken simultaneously, as opposed to the sequential execution of state-
ments in an ALGOL program. This should not be surprising since the
design language is used to specify computer hardware, which is generally
highly parallel, while ALGOL is used to specify computer programs, which
are at present sequentially executed.

Lines 13 through 15 constitqte an iteration statement which describes
the propagation of carrys when the cﬁunter is stepped. This feature of
the design language is provided to save the logic designer the necessity
of writing out descriptions for each duplication of the same hardware.
Level and pulse names are indexed so that each name is unique. Lines 16
and 17 describe the carry into the last stage of the counter, which is
slightly different from the others. Line 18 describes the gate on the
false side of COUNTER[2] which is used to complement the parity flip-flop.
Lines 19 and 20 indicate that the pulse 'correctpar' is delayed 50 ns and
used to complement the parity bit. The register reset and complement
logic is described in lines 22 and 23.

Line 25 defines the combinational level MAXCOUNT and line 26 indi-
cates that an "overflow" pulse is generated whenever MAXCOUNT changes
from a zero to a one. This implies the level differentiator shown in
Figure 2-1.

Note that the pulse "step[2]" occurs twice as a label: first, in
the expansion of line 14 for i = 2, and a second time in line 18. It

is perfectly correct for a pulse identifier to be used as a label any

Ty oEE ™

number of times.

the same pulse become active simultaneously whenever the pulse is

generated.

From this example it can be noted that three distinct classifica-

tions of signals are reprusented in the design language.

1.

Level Signals

This class consists of register, combinational logic and
level delay line output signals. The important character-
istic of a level signal is its logical value as a function
of time.

Events

These are the command signals of a digital system. They
may be generated by oscillators, other Events or level
transitions. The important characteristic of an Event is
its occurrence time. In the design language these signals
are called pulses because in many digital circuit families
they are realized as short duration pulses. This is not
always the case - in some systems transitions in regular
level signals are used as control events. If a value
transition is to be used to generate an Event (line 23 of
example) in short duration pulse logic, a differentiator
gsensitive to that transition must be used. This is not
required in all-level circuit families.

Transfers

This group of signals set, reset, complement and jam trans-

fer data into flip-flop registers. They are usually

The meaning of this is that all statements labeled by

16.

realized in hardware in the same way as Events. In all-
level circuit families, flip-flop inputs have diode-
capacitor networks which are only sensitive to 0tol
value transitions. Register transfers appear in the
design language functionally, as in line 9 of the example,

and are unnamed.

17.

18.

III. CIRCUIT AND SIGNAL MODELS

The keystone to a good computer simulation is an appropriate model
of the mechanism being simulated. The appropriateness of the model
depends on the questions to be answered by the simulation - too simple
a model leads to inaccurate results or no results at all while an
overly detailed model deteriorates simulation efficilency. In this
section we shall develop circuit and signal simulation models to be
used for logic design verification. Important weaknesses of these
models will be pointed out and reasons for not correcting them will be
given.

When we state that we are interested in simulation for design
verification we mean that we are interested in checking not only on
the overall behavior of the logic but also detecting such things as
potential logic hazards, race conditions, and the sampling of unsettled
levels. The logic designer checking his design should be able to formu-
late a simulation model to answer the following kind of questions:

a) Does the multiply instruction work properly for these

arguments?

b) Does reduction in the maximum complement rate of the

flip-flops affect performance?

c¢) What is the maximum asynchronous transfer rate of this

channel?

d) What effect does this addition have on the rest of the

logic?

19.

e) How often can I step this counter and check its parity
without risking the possibility of sampling a level
before it is settled?

Provisions must be made for simulation at the circuit block level
to answer questions of this type and provide the desired error detec-
tion capabilities. The logic designer should be able to formulate his
problem by specifying both the depth of simulation and the important
circuit and signal parameters for each part of the design. Therefore,
the models must be capable of expressing relationships between compo-
nents modeled at various depths in a compatible manner. Before
considering models for the three classes of signals discussed in
Section II and the circuit blocks which generate them, let us consider
the general problem of modeling circuit delay.

A. Circuit Delay

Logic designers use circuit delay calculations to determine at
what times levels are settled and ready to sample and in what time
intervals pulses occur. In many instances it is not necessary to make
delay calculations because enough time is allowed between each command
pulse for all levels to settle; the main reason for the predominance
of synchronous logic is that most delay problems are eliminated. Even
with synchronous logic there are occasions, such as carry propagation

and parity checking, where maximum delay times are needed. 1In rare

instances variables are sampled as input changes are being propagated;

in these cases minimum delay times are required.7

7See Reference (19) for discussion of manual techniques for evaluating
worst-case delay conditions.

20.

Circuit delays cannot be treated as constants. They vary from one
circuit to another of the same type and depend upon environmental
factors such as electrical loading and operating temperature. In the
signal models developed in this section, signal changes (either pulses
or level transitions) will have both a starting time and a spread
associated with them. The starting time will be the earliest possible
time at which the change could occur and the spread will be the maximum
interval of time in which the change could occur. The circuit block
models will include minimum delay and ambiguity times, where the ambi-
guity time is the difference between minimum and maximum delay times
through the circuit. Thus the starting time for a change in the output
of a circuit block is the starting time of the input change plus the
minimum delay of the block. Likewise, the spread of the output is the
sum of the spread of the input and the ambiguity time of the circuit
block.

B. Level Signals

As mentioned in Section II, level signals are the outputs of flip-
flops, combinational logic, and delay lines. These circuits are enough
unlike each other to deserve their own individual models. Before going
on to discuss those models, let us first develop a model for level
signals. From the above discussion we find that whenever the logical
value of a level signal changes there is an interval of time, called
the signal spread, when the value may be changing. Normally, it is
improper to attempt to sample a level during a spread interval, so it

1s not important what values the signal takes on during that time.

This is not true if the signal enters a circuit which 1s sensitive to
level transitions. Such a circuit is the differentiator, which gener-
ates an output pulse whenever its input level changes from O to 1. The
possibility that a level signal might change values several times before
settling is termed a hazard.8 A hazard occurring on differentiator
inputs might produce false outputs. Therefore, it is necessary to be
able to determine whether or not such levels have hazards during their
transition spreads. Multiple hazards (the possibility of more than one
double change in the value of a signal) are no worse than single hazards
so there is no need to keep a count of them. It will be shown during
the development of the combinational Logic Block that it is necessary
that old value, hazard value, and new value be given for each input in
order to calculate the hazard value (true if a hazard is present) of
the output. Thus the value of a level signal is a three bit quantity -
old value, hazard value, and new value. The simplest waveform for each
of the eight possible values is shown in Figure 3-1. If a level is
changing there is a time, called the settling time, when the change
will be completed.
Delay Lines

The model for a level delay line is shown in Figure 3-2. The
important characteristics are the minimum delay, T and the delay
ambiguity, Ty* If level I makes a change beginning at t with spread ts,

the level 0 will make the same change at t + T with spread tg + T,

8See Sections VIII and IX of Reference (20) by D. A. Huffman.

I T *

a)

b)

c)

d)

e)

£)

g)

h)

O~ O~ O P O O rFr O = O H O =

22.

d VALUES
|1l————- spr -—————lb‘ :
prea 0ld Hazard New
l l
| | 0 0 0
| |
0 0 1
J |
1
| | 0o 1 0
4
I |
| j 0 1 1
l ' 1 0 0
| |
| 1 10 1
| |
—h | 1 1 0
l |
I l 1 1 1
| I
starting time settling time

FIGURE 3-1

Level Signal Values

Delay

I _.—‘ Minimum ™ - O

Ambiguity T

A

FIGURE 3-2

Level Delay Line Model

R
6
' f

23.

Combinational Logic Block

Combinational logic blocks are the standard level logir circuits
whose outputs are some Bcolean function of their inputs. Examples
include level inverters, AND gates, OR gates, NAND gates, etc. Typical
of this type of circuit is the 2-input AND gate of Figure 3-3. The
truth table for this circuit is shown in Figure 3-3 (b). Such a truth
table can always be written for a member of this group and is the most

important characteristic of the block.

11 12 0
I1 0 0 0
\/ ———-=® O 0 1 0
1 0 0
12 1 1 1
(b)
FIGURE 3-3
AND Gate

The detailed model for a combinational logic block is shown in
Figure 3-4. It consists of a combinational block with zero minimum

delay followed by a delay line with zero delay ambiguity.

12 ——‘ f(Il,IZ---In) | 0' Delay 0

FIGURE 3-4

Combinational Logic Block Model

Note that the delay ambiguity is included in the left part of the model.
Thus, in the many cases where minimum delay is unimportant, the left
part can be used as the complete model. The function f(Il, 12 <. In)
is a mapping of the old, hazard and new values of the inputs into old,
hazard and new values of the output, 0'. The old value of 0' is a
Boolean function of the old values of the inputs, just as the new value
of 0' is the same Boolean function of the new values of the inputs. On
the other hand, the hazard value of 0' is a Boolean function of the old,
hazard and new values of the inputs.

Karnaugh maps9 for calculating the hazard value for the outputs of
2-input AND and OR gates are given in Figure 3-5. Again, leftmost bits
of the arguments are the old values, the middle bits are the hazard
values, and the rightmost are the new values. The method used to deter-
mine the entries in these graphs is illustrated in Figure 3-6. Two
sample sets of waveforms for the case where the inputs to the AND gate
of Figure 3-3 both change at the same time and the same spread are
given. The minimum delay time and delay ambiguity of the gate are
assumed to be zero.
goes to "l1"

Figure 3-6 (a) shows that if I, goes to "0" before I

2 2

then no transient pulse is generated. If the timing is reversed, as
in Figure 3-6 (b), a transient pulse is generated. Since the only

information given is that both signals.are chdﬁéing during the spread

interval, either case is possible. Therefore, the hazard value is '"1"

9See pages 131-142 of Reference (21) by S. H. Caldwell.

24.

000

010

011

001

101

111

110

100

000

010

011

001

101

111

110

100

I, AT,
000 010 011 001 101 111 110 100
ololoflo|lo]lo oo
ol 1 vl |11 |1
o111t |1]1
ol 1 l1lolo 1|1 |1
ol1]1lolo]1]1]o
ol 11111 |1 |1
of{ v]t |1 |11}
ol 1]1 f:?;d o1 |1 |1
(a)

Lvih
000 010 011 9001 101 111 110 100
ol 1]1lolofl1 |1]o
A U I T T O A A
11l |t o1 |1 |1
ol 1] 1lo o1 |1 |1
oloflolo]o]o|o]o
11|11]lo]1]1]1
p il lo] |1 |1
ol 1|1 |1flo] 1]|1]o

(b)

FIGURE 3-5

AND and OR Gate Hazard Values

N

(9,1

l¢— spread —y|

26.

|
I
101
I J |
I 000 001
1 ' | 0ld Value
101 | | / Hazard Value
New Value
L I\ 100 | ooo‘(//
I |
| I
0 000 . 000) 000
I L
' I
(a)
Ik-— spread ——>:
l I
| 001 \ 101
|
L 000 | A/Kf |
[|
101 {100 |
L | ‘_ | 000
I |
010
I I
0 000 I l 000
l i
| I
(b)
FIGURE 3-6

Qutput Hazard for 2-Input AND Gate

27.

as shown in the shaded square of Figure 3-5. An examination of either
part of Figure 3-6 indicates that the functions cannot be simplified
to eliminate the need for one of the input value bits. Thus the old,
hazard and new values of all inputs to a combinational logic block are
required to compute the output hazard value.

Let us now propose and discuss a method for determining the
settling time (and thus the spread) of the output level 0' of the
combinational logic block model of Figure 3-4. Whenever an input to
the combinational logic block changes, the output 0' is re-evaluated.

The delay ambiguity, is added to the settling time for the changing

Ty
input level. If this sum is larger than the present settling time for
level 0' then it replaces it. When time moves forward to the settling
time of 0' the new value replaces the old value and the hazard value
becomes zero. Thus, the unsettled level 0' becomes settled.

Figure 3-7 (a) shows the detailed model for a 2-input AND gate.
Figure 3-7 (b) illustrates 1its behavior for the set of given input
waveforms. Unsettled levels are indicated in this figure as being half
way between a settled "1" and a settled "0". The signal OUT is just
signal 0' delayed T, seconds. Signal 0' becomes unsettled whenever one

D

of the inputs becomes unsettled and remains so until TA seconds after

both inputs are settled. Note that level 0' takes on the unsettled
value 000. This occurs because the initial change in input I1 does not

change the output until input I, also changes. Thus the value of a

2

level may not be changing even though it is unsettled.

28,
Combinational Delay
Variable Line
-0 @ T, @ OUuT
(a)
Hazard Value
0l1d Value New Value
101
001 _ | L 100
I, 000 | I 000
I 101 :
001 I 100
I 000 | 000
2 | ' | |
| T 101 I T les
000 | 001 | 100 ale ATake
0' 000 [TZ 727 000
)
: &) £y
| | 101
je— Tp =31 000 001 | | 100
OUT 1 000 O 000
(b)
FIGURE 3-7

Example of AND Gate Model Behavior

P

29.

A weakness in this method of computing settling times is illus-

trated in Figure 3-7 (b). The value t, for the second settling time

2
for level 0' is incorrect; the correct value should be ti . This 1is
because level 0' should be settled Ta seconds after either of the
inputs has settled at "0". The simple approach of selecting the
maximum possible settling time would tend to cause correct situations
to be flagged as illegal during a simulation. At first this method
was considered acceptable because it does not require evaluation of a
combinational level's output value to calculate its settling time.
In Section V we will find that it is necessary to re-evaluate combi-
national levels whenever an input changes. Therefore a more accurate
method of calculating settling times can be used without great
additional cost.

Figure 3-8 indicates how to calculate output settling times for
2-input AND and OR gates. If the output value is changing, the
settling time of the change is calculated by adding the gate's ambi-

guity time, T to the settling time of one of the inputs, either t1

A’
or t,. The figure shows which input settling time to choose for each
input value pair - tl’ t2, the maximum of the two or the minimum of

the two. Zero entries indicate that no output changing is occurring

and a settling time should not be calculated.

000

010

011

001

101

111

110

100

000

010

011

001

101

111

110

100

I1 A 12

000 010 011 001 101 111 110 100
0 0 0 0 0 0 0 0

0 Min t2 t2 t2 t2 Min Min
0 tl Max Max t2 Max tl t1
0 tl Max Max t2 Max t1 t1
0 t1 tl tl 0 t1 t1 tl
0 tl Max Max t2 Max tl t1
0 Min t2 t2 t2 t2 Min Min
0 Min t2 t2 t2 t2 Min Min

(a)
I1 Vv 12

000 010 011 001 101 111 110 100
0 tl tl tl 0 tl tl tl
t2 Max t1 t1 0 t1 Max Max
t2 t2 Min Min 0 Min t2 t2
t2 t2 Min Min 0 Min t2 t2
0 0 0 0 0 0 0 0

t2 t2 Min Min 0 Min t2 t2
t2 Max t1 t1 0 t1 Max Max
t2 Max t1 t1 0 t1 Max Max

(b)
FIGURE 3-8

AND and OR Gate Settling Times

30.

ot

L

L RITRIET TR MRS R O TP 2 RN _. AR S YRR TR T

31.

Flip-Flops

Flip-flop output levels are modeled the same way as other level
signals. Old and New Values have the same meaning as before. A Hazard
Value of '"1" indicates the rapid recomplementation of the flip-flop
before the previous change has settled. Again minimum delay time and
delay ambiguity reflect the spread of possible transition delays when-
ever the flip-flop's output is changed. The spread of the output change
is calculated by adding the flip-flop's ambiguity time, Ty to the
spread of the transfer which caused the change.

There are special restrictions on flip-flop inputs which should be
included in the model. The first of these is that an attempt to simul-
taneously set and reset a flip-flop with different signals is improper
and should flag an error during simulation. In many logic families the
normal method for complementing a flip-flop is to use a single signal
to both set and reset it. When two separate signals are used the result
is ambiguous due to variances in arrival times and amplitudes. Similarly,
an attempt to simultaneously complement and either set, reset or comple-
ment a flip-flop with different signals is improper. The last special
restriction applies only to complement inputs. Attempts to strobe these
too soon after the flip-flop output has begun to change can lead to
incorrect output values. Therefore, the flip-flop model shown in Figure
3-9 includes a mechanism for detecting attempts to complement the output
value before Te seconds (minimum complement time) after the output begins
to change. TC is a constant like Ta and ™D provided to the simulator
by the logic designer. ’

32,

Set Inputs Flip-Flop
FFO' Delay FFOUT
Complement Inputs Te _——q ——
Reset Inputs Ta i)
FIGURE 3-9

Flip-Flop Model

Differentiators

These circuits produce output command events whenever their inputs
make "O" to "1" transitions. The spread of the output event is the
same as the spread of the input level change which generates it. 1If a
differentiator input ever has a hazard value of '1", a simulation error
flag is set.

C. Register Transfers

These signals are modeled somewhat differently than the level
signals we have been discussing. The important characteristic of this
type of signal is its behavior when activated rather than its value at
any instant of time. Therefore transfers are modeled in terms of their
effects on registers. The complete specification of a register transfer
includes:

1. The type of transfer, such as jam transfer, ones transfer,

zeros transfer, or complement transfer.

25_ The name of the destination register and a specification

of the bits affected.

33.

3. The names of the source level signals to be transferred

to the destination register. Source levels may be flip-

flop (register), combinational logic, or delay line outputs.

e e — -

4. The delay ambiguity time for the transfer. This figure is

used to represent the propagation difference between the

minimum and maximum transfer paths when timing might be an

TR AN R G T o,

important factor in a simulation. The spread of a register
transfer is calculated by adding the transfer ambiguity
time to the spread of the command event which activates

the transfer.

rintir yceny - AT TN e, 12 e g

5. If a transfer is ever attempted when one or more of the
gource levels is changing value, a simulation error is
flagged.

D. Control Events

Control events may cause register transfers to occur and, provided
that certain level signals have the proper values, may cause other
control events to become active immediately or at some later time. The
model for a ccntrol event includes:

1. A list of transfers which take place whenever the event

becomes active.

2. A list of level signals which act as conditions for the

events that may be triggered by this event. The value of
each of the condition levels is sampled when the event
becomes active. Associlated with each level is a list of

control event - delay time pairs. Those control events

associated with condition levels with correct values are
made active after the paired delay time has elapsed. A
sampled condition level whose value may be changing causes -
a simulation alarm to be flagged.
3. Control event minimum delay time.
4. Control event ambiguity time. When modeling timing very pre-
cisely this parameter is used to indicate maximum possible
differences in arrival times of this signal to the various .
points it fans out to. The spread of any given activation
of a control event is calculated by adding its ambiguity
time to the spread of thé control event or level transition

which activated it.

This completes the development of detailed simulation models for
signals and level circuit blocks. Before introducing gsimulation data
structures based on these models, let us point out a serious weakness
in the manner in which signal spreads are computed. The signal spread
concept was introduced to detect logic design faults, either those
involving level hazards feeding differentiators, or those caused by
Events sampling Levels which may, depending on circuit variations, have
more than one possible value. This second detection problem can be
stated as follows. Given that Event p samples Level L at any time t
within its spread of occurrence times, can Level L have more than one
possible value? Unfortunately, the models do not keep track of the
interdependence of signal spreads and can only determine whether or not
the spreads overlap. This leads to the detection of logic faults which

do not, in fact, exist. A simple example of this is illustrated in

35.

Figure 3-10. During a simulation run pulse p is found to have a spread
(tS) greater than the minimum delay time (TD) of the flip-flop. There-
fore, the spreads of pulse p and the transition of level L overlap, as
shown in Figure 3-10 (b), and a false error detection is made. A situ-
ation which can generate a large number of incorrect fault detections
is a signal feedback loop such as a delay line ring used as a time pulse
distributor. If non-zero delay ambiguity is assigned to any circuit or
gignal in the loop the amount of spread in the signal increases each

time it goes around the loop. Thus signals are generated with increasing

spreads and cause more and more incorrect error detections.

P ﬁ G‘ — out

(a)
L ts —
P ! pulse spread
| transition spread
| I
T 101
L l' D ! 001
000 L |
[|
e t * Ta -
()
FIGURE 3-10

Example of Signal Spread Fault

——

A timing model capable of avoiding these difficulties must retain
additional information so that the dependence of signal spreads on the
occurrence times of other signals can be calculated. One way of doing
this is to keep track of signal histories. When possible sampling
faults are detected the histories both the Event and Level are traced
back to their common sources, if any. Then the signal spreads are
recalculated forward from those points removing ambiguity common to
both. Pre-simulation analysis can be used to determine in advance
which parts of a signal's history should be retained and thus sharply
reduce the amount of storage required. Designs which require extremely
long signal histories could be rejected as not simulatable. An alter-
nate approach would be to carry signal histories through only a fixed
number of circuit blocks. This technique would nct be able to 2stablish
remote signal depepdencies, but the more common cases, such as the one
in Figure 3-10,.;gﬁ1d be detected. Such modeling would still require
longer running'tiﬁe and a greatly expanded data space and is not con-
sidered here. Instead, the responsibility for avoiding incorrect fault
detection is assigned to the designer using the simulator.

Logic designers generally are aware of the areas of their designs
which may contain timing errors. The most fruitful uses of detailed
timing simulations are in specially tailored tests of such problem areas
rather than exhaustive testing of complete designs. The fault detection
problem discussed above is not as severe in these special cases if
adequate means are provided for masking out obviously incorrect error
detections. It is clear that as simulation becomes less expensive and
more desirable, a more adequate method of establishing signal spread

interdependences must be provided.

36.

=cE

Y B e s SR

B AT N S AT

37.

IV. DATA STRUCTURE FOR IDEALIZED MODELS

Two categories of information can be provided by logic simulation
based on the models of Section III. The first is used to check the
overall behavior of the simulated design against design objectives and
includes the values of registers or other level signals at selected
times. The second category consists of information about possible logic
hazards and timirz errors; this alds the logic designer in tracking down
and correcting these more difficult to detect design errors. The simu-
lation data structure and matching simulation algorithm presented here
are based on idealized circuit models - fan-out, delay and transition
times are ignored ard level hazard detection is not included. Only
information in the first category can be provided by such a simulation.
The data structure will be expanded to deal with the complete circuit
and signal models in Section V.

This simulation system is designed to oe operated on-line by the
logic designer and communicates with him via a modified form of the
design language. In order of importance, the system design goals are:

a) Any design, synchronous or asynchronous, that can be described
in the design larguage should be simulatable.

b) Timing and parallel operation should be modeled as consist-
ently and accurately as possible. Simulations must be
repeatable.

¢) It should be possible to make incremental modificaticns to
a simulation as the designer makes changes to his design

language description.

38.

d) The simulation system should be densely packed to allow
large designs to be simulated with a minimum of memory
swapping.

e) The simulation system should be organized to run as fast
as possible.

f) The data structure should be organized to ease translation
back and forth between it and the design language.

g) The logical complexity of the system should be minimized

to reduce the effort needed to program and describe it.

A large number of digital simulations have been based on idealized
circuit models similar to the ones used in this section. In some of
these cases simulation systems have been provided to translate special
forms of a design's logic equations into a program which simulates it;10
often special simulation programs had to be written for each new design.
In each case, special code was included in the program to simulate each
logic equation or circuit block of the design. The simulation systems
developed here use a data structure, derived from the design language
description of the logic to be simulated, as the input to a fixed,
table-driven simulation procedure. There is a close correspondence
between the design language description and the data structure it repre-

sents. This is because the data structure is actually a direct

10See References (3), (13), (22) and (23) for examples. In all cases
known to the author special descriptions of the designs had to be
made for input to the simulation systems.

11Examp1es of such programs and techniques for increasing their effi-

ciency are found in References (24), (25), (26) and (27). An example
of macroscopic simulation of digital systems 1s found in Reference (28).

39.

representation of a subset of the design language. Thus it is fairly
easy to translate back and forth between them and make incremental
modifications to the data structure. This organization results in a
densely packed simulation structure. The price paid for this is slower
running speed, but the extra time is more than made up by re-evaluating
a combinational level value only when its value is needed and its inputs
may have changed since it was last evaluated.

The requirement for incremental changes to the data structure leads
to consideration of list structures. Large parts of the data structure
are formulated in this manner. It is often much more time-consuming to
recover information from list structures than equivalent fixed data
blocks. Fixed blocks are used to represent data whose size is not likely
to be incrementally altered and in those cases where list structures
would be unnecessarily wasteful of space or difficult to quickly access.
Lists are used to describe variable length information which the
designer may later wish to add to or delete from. This results in a
" mixture of interrelated lists and fixed blocks of many different lengths.

The total data structure can be divided into three separate inter-
connecting parts. The first two change size or shape only to reflect
changes in the logic design being simulated. The third part of the
structure is modified during a simulation run.

1) Level Logic

This structure describes the output values and interconnections
of the registers, combinational logic blocks, level delay lines
and differentiators. Special structures are also included to

simulate constants and memory interfaces.

40.

2) Control Logic
Control events, register transfers, and their interrelations
are described in this part of the data structure. A special
Transfer which terminates the simulation is included.

3) Time Queuing and Miscellaneous Lists
This part of the structure is used by the simulation program
to queue up future activities and keep track of temporary

information such as subroutine arguments and input-output data.

A. Level Logic

Information describing output level signals is included as part of
the data for each flip-flop, combinational logic block and level delay
line. This information consists of the value of the level,12 which may
be sampled by Events or be a source for a Transfer, and a list of all
circuit blocks with outputs dependent on the value or transitions of
this level. It is convenient for the simulation program to be able to
access this information no matter what the source of the output signal
might be. Therefore output signal information is stored in the same
format for flip-flops, combinational logic blocks and level delay lines.

Flip-flops are organized into n-length strings in the data structure,
where the value of n depends on the machine the simulation is run on.
Registers of length n or less are represented as adjacent bits on the
same string and larger registers are represented as adjacent bits on

two or more flip-flop strings. This allows straightforward register

12Only single bit values are used in this Ideal Model structure because
level hazard detection is not included.

41.

transfer specifications. To preserve uniformity in accessing output
signal information and to allow simplified specification of a group of
levels for Transfers, combinational logic blocks and level delay lines
are also organized in n-length strings. Levels which are sources for
the same multiple-line Transfers, or which are indexed bits of the same
level register in the design language description, are ordered together
within the same string. This presents an optimization problem because
the same level may be a source for several transfers.

Figure 4-1 illﬁstrates the data element representing a string of
combinational logic blocks. The conventions used in the figures illus-
trating data elements are as follows:

a) Small blocks containing information are called cells.

b) Cells outlined in solid lines are part of fixed block made

up of adjacent registers of memory.

c) Cells outlined in dotted lines are part of a list made up

of generally non-adjacent registers of memory threaded
together with pointer addresses.

d) Solid arrows between cells indicate that the source cell

contains a pointer to a destination element of the type
shown.

e) Dotted arrows are the same as solid ones except that the

source cell may contain the null pointer indicating a

void destination.

Although all cells are represented in the figures by the same size

blocks, this does not imply that all cells need be the same size in the

42.

Sjuswad B3eQ SBUTIIS [9AD] [BUOTIIRUTQUEO)

1-% d4091d

Ae1ag 3jo 3Junouwy

eInmIog YST]0d 9SIdA3Y

1aquay 31g

Suta13lg 19a97 Leisq

Y

uo1jeO1II03dg
Le12d

_
_
\ !
_
_
_

jusag anding Q +~ I

BTNWIO]

“1
Jaqunp 319 I
-_

"8ut13g oA
TEUOTIBUTqEOD ucmvnmmon_
xaqunN 319 |

“Sutias 1eaeT | /
JPuUOTIRUTqmO) 3Juspuada(,

jJuaag Indang 1 -~ 0

uoT3jeOTIIOadg
I03BI3U219331q

/
uo13edT3I0ads KETaq 7,
Ve

UoT3BOTITO2dS
a03eT3U233331Iq

uoT3EOTJIIOAdS
andang

eynuIo g

yaduag

BINIMIOJ

ya8ua]

awey 90UlI3I93Y

uotjedIyIoeds u I1dg

uoTledTITods 7 314

uo13edIIToeds T 314

s8ey a8uey)y 3nduy

anyep

8utals T9A9]
TeuoTIRUTqUWO)

43.

data structure. The amount of informz ion stored in a cell varies and
there may be circumstances where it is worthwhile having different size
cells. A case in point is a two-cell location specification of a
combinational level bit. The first cell contains the address of the
combinational Level String and the second cell contains the bit number.
It is possible to include all of this information in a single word for
many computers. Therefore cell is not necessarily synonymous with com-
puter word or address field.

The data element for a combinational Level String consists of an
n + 4 cell fixed block followed by a variable length list. The first
cell in the element contains the values last calculated for the n output
levels. Cell 2 contains an Input Tag bit for each of the output values.
A "1" indicates that one of the inputs to that combinational logic block
may have changed since the last time the output value was re-evaluated;
a '"0" indicates the output value is still valid. The next n cells con-
tain pointers to Output Specifications for each of the combinational
blocks. The next cell contains a reference name which is used by the
routine which translates back and forth between the data structure and
the design language.

The last cell in the element contains a pointer to a list specify-
ing formulas to be used to compute the output level values. The first
cell on this list contains the number of bits for which the first formula
is valid. The second cell has a pointer toc a formula for these bits.
Next follow pairs of lengths and formulas until the end of the list is
reached. If some of the bits on the combinational Level String are un-

used, the list ends before the sum of the lengths totals up to n.

b4 .

The formulas themselves are modified Reverse Polish representa-
tions of combinational formulas found in the design language description
itself.’> For example, the formula {A[0:4] A (— B[3:7] v c[0:4])]}
would be translated {A', a, B', b, ——,C', c, V, A}, where A', B', and
C' are pointers to the level strings representing A, B and C, and a,

b and ¢ are the bit numbers of A[0], B[3] and C[0] respectively. Each
symbol is contained in its own cell on the formula and operators must
be distinguishable from pointers to level strings. Figure 4-1 shows
that Formulas are represented in fixed blocks. This is done because it
is unlikely that a formula would be modified incrementally; more likely
it would be completely changed.

The structure for an Output Specification is a three-cell fixed
block and a variable length list. If the level feeds a differentiator,
the first cell on the block points to a two-cell Differentiator Speci-
fication. The first cell on this fixed table points to the Event, if
any, triggered by a "0" to "1" transition of the output level. The
second cell is for "1" to "O" transitions. If the output level feeds
a delay line the second cell of the Output Specification contains a
pointer to a Delay Specification. The first two cells of the Delay
Specification indicate the delay string and bit number of the delay
line and the third cell specifies the amount of delay. There is never
a need for a level to feed more than a single delay line because any

parallel network of ideal delays and combinational logic can be converted

13See Appendix C for a detailed discussion of Formulas.

45.

to an equivalent serial network. The third cell in the Output Specifi-
cation points to the list of all combinational logic blocks which use
the level output as an input. When an Input Change Tag is set for some
level during a simulation, these lists are used to propagate input
changes to all combinational logic blocks dependent upon that level.
The data elements for Delay Level and Flip-Flop Level Strings are
given in Figure 4-2. Note that values, output specification pointers
and reference names are arranged as they were for combinational Level
Strings. The values of delay lines and flip-flops are always kept up-
to-date and their input change tags (second cell) are always zero. Thus .
it is not necessary for the simulation routines which evaluate combina-
tional level values, test for transfer level values, or require output
specification information, to distinguish between the three types of

levels.

Level delay line inputs are specified at their source - only values,
output specifications and reference names are included in Delay Level
String data elements. Information about flip-flop inputs is included
in the Transfer data elements. However it is quite possible for one
Transfer to be resetting a flip-flop at the same instant another is -
setting or complementing it. This could be handled by the simulation
program by arbitrarily allowing one or the other to have precedence
depending on the order they are acted upon. Logic errors of this type
are congidered to be important enough, even at this level of simulation,
to include additional information in the data structure for their detec-
tion. Therefore separate cells are included in Flip-Flop Level String

elements to accumulate set, reset and complement input activations

during an instant of time.

46.

At the end of the instant, this information

is used to re-evaluate the flip-flop values and detect flip-flop input

timing errors.

Delay
Level String

Value

0

Bit 1 specification

Bit 2 specification

Bit n specification

Reference Name

Vectors
Pointing to

Output
Specifications

Input Tags

FIGURE 4-2

Flip-Flop
Level String

Value

Bit 1 specification

Bit 2 specification

Bit n specification

Reference Name

Set Tags

Reset Tags

Complement Tags

Delay and Flip-Flop Level String Data Elements

The level elements of Figure 4-3 have been included to model constant

levels (wires to power busses) and standard addressable memories. The

Memory Block may be used to ease the modeling of interfaces with non-

logic devices such as core memories, tape drives and drums. Input change

tags are included as part of each constant Level String for compatibility

with Combinational Level Strings, although the tags are always reset.

The memory model is so different than the other level sources that no

attempt was made to make it compatible with them. The first four cells

Constant
Level String

specify address length, location,14
name for use of the translation routine.

sent the simulated memory.

Value

Blocks with the same address must be used.

Address
Specification

FIGURE 4-3

maximum value, m, and a reference
The next m + 1 cells repre-
If it is necessary to simulate a memory

with word length greater than the memory cell size, two or more Memory

Memories act as the sources

or destinations of a special set of Transfer operations.

Memory

Address Length

Level String

High Order Bit Number

Maximum Address m

Reference Name

Word O

Word 1

Word m

Constant Level and Fixed Memory Data Elements

14This implies that the address field cannot be any longer than n,

the number of bits in:a level string.
it should not be necessary to simulate large memories.

This is reasonable because

48,

B. Control Logic

The data elements representing control logic are shown in Figuréf
4-L. The first two cells of an Event element point to Gate Lists whiégi
represent the control gates strobed by the Event. The gates in Gate
List 1 are conditioned by levels with value "1" and those on Gate List 0
by levels with value "O". The first two cells of each gate specifica-
tion list the level string and bit number of the conditioning level.
The third cell points to the list of Events triggered if the conditioning
level has the right value. Associated with each Event on an Event List
is a delay time before activation; pulse delay lines are built in here.
The third cell of an Event element contains a reference name used
by the routine which translates back and forth between the data structure
and the design language. The last cell points to the list of Transfers
which take place when the Event becomes active. Unlike the design language,
all Transfers are unconditional. Conditional Transfers are achieved by
introducing a new conditional Event which activates the Transfer. This
simplifies the data structure by eliminating the reed for equivalent of
a "Transfer Gate List" without reducing the generality of the structure.
The first cell of a Transfer element specifies its type. Figure 4-5
contains the truth tables for the set of transfers available with standard
set-reset-complement flip-flops. A complete set of eight is included to
transfer source lLevel strings to destination flip-flop strings. A second
set is used to transfer Memory Block contents to flip-flop strings, a
third if for level string to memory transfers and a fourth for memory to

memory transfers. These sets must be distinguishable because of the

format differences between Memory Blocks and level strings. Jam transfers

PP]

49

I3quny 319
13p1Q Y3iH

Axowsy] Io 3uTtiIls
13A97 uoT3RUTIS3(Q

Iaquny 319
I3pIQ Y31H

AIowsy 10 3UTIg
13A97T 321nog

y3idua]

Jo3®13dp

-

r~ =T 7\ T

I9ysueayg,

“amry Ketsq

« JuaAyg

2u1] Lefaq

JuaAg

ISTT Juaad paijen

e ad e e od

—

-

——f— =V— = — —

sjuswald B3BQ OI307 [0I3U0)

- TNOIA

31STT I9Fsuei]

ISTT IUSAT palen

I2quaN 314

ummwMum mwmmm
_3UTUOTIFPUOD

ISTT 3JuaAg pazen

Iaquny 31d
“Butais 1997
_BUTUOTITPUOY

IS 2389

JSTTT a9jsuea]

aueN 30U3I9J3Y

0 3ISTT 93B)

1 3Is¥1 2389

JUdAY

50.

Transfer Name Symbol Resultant B Value
Jam A 3B 0 0 1 1
One's Set A-B 0] 1 1 1

. 15
Zero's Reset A~B 0 0 0] 1
One's Complement AtB 0 1 1 0
Negative Jam — A =B 1 1 0] 0
Zero's Set —/A-B 1 1 0 1
. 15

One’'s Reset — A ~B 0 1 G 0
Zero's Complement — A'tB 1 0 0 1
0 1

Values Before Transfer
B 0 0 1

FIGURE 4-5

Transfer Effect Table

15

This is consistent with the present formulation of the design language.
I would prefer that the meaning of the symbol "~ be changed so that

a destination bit is reset if the corresponding source bit is a one
rather than a zero, as it is presently defined. This makes the place-
ment of the source gate on the true or false side of a flip-flop
consistent with set and complement transfers and eliminates the need
for an implied inverter when a combinational level is used as a reset
transfer source.

51.

are all that are absolutely necessary for memory reading and writing,

but the additional transfers are easily and inexpensively included and
may eliminate the need for a memory buffer register to be included on

a flip-flop string. A special transfer is included which causes termi-
nation of a simulation when it is activated. The number of contiguous
bits being transferred is contained in cell two of each Transfer element.
Cells three and four specify the source level string or memory and the
left-most bit number. Cells five and six do the same for the destination.

C. Time Queuing and Miscellaneous Lists

This part of the data structure satisfies needs for data fields
which vary during a simulation. This includes the queuing of future
simulation activity, handling recursive subroutine arguments and pro-
viding a means for storing input and output data which varies in length
during a simulation.

An important part of this structure is shown in Figure 4-6. The
Activity Queue, AQ, is a time-ordered list of future Events to be
activated and Delay values to be changed. When the simulation program
determines that an Event or Delay Level value change is to occur at
some time t, an entry is added to the Event List or Delay Value List
associated with t. If there is no previous entry on the AQ at time €,
one is inserted. The first cell on the AQ contains the present value
of simulated time and is called the Clock. The Clock 1is stepped by
deleting the first three cells of the AQ. The second cell points to
the Event List which is presently active; this is called the Immediate
Event List. Likewise, the third cell points to the Immediate Delay

Value List.

52.

rF=™= T T =

reToToT =

Isquny 319
Butaig 1aas7 dora-diid

Iaquny 319
Buta3g 13A971 dora-drig

I3s17 Sel dorg-dild

mwmﬁmz|ummn
8uTa3s 19A5T do1i-d11a
T 7 7 Zoquny 3Tg |

But13g 1oaa7 dorg-dild

1817 dord-dITd 9ATIOV

1
4

J
|

|
4

4
1
L

_

J
J

21In3onI31S B3R 3UuInany suWI]

~ T T T T T

==

9-% HINDIAL

anTep

IaqunyN 319
Sut13s 1oAsT ABISQ

anTep

IaqunN 319
Sutagg 1oa37 KBTSQ

3sTT 9anyeA AeTaQ

ISTT JueAg

3511 msﬂmw NMmmm
3

SIT JusAg

smty
“3s17 anTep Kelaqg

ISTT ueAg

Temrl

anand L3ITATIOV

-

eed ! el e Ve

53.

A number of temporary storage lists are kept by the simulation pro-
gram. Two of these, the Active Flip-Flip and Flip-Flop Tag Lists, are
included in Figure 4-6. They are used to keep track of the flip-flops
which are changing value at a given instant of time. Additional lists
are used to store recursive subroutine arguments. Data lists are used
by the simulator to accumulate output messages. A special Transfer
operation is provided to add messages to these lists.

D. Simulation Algorithm

A simulation begins by initializing flip-flop and delay line values,
setting all combinational level Input Change tags and setting up the
initial AQ. The Active Flip-Flop and Flip-Flop Tag lists are initially
empty. The simulation takes off from there and continues until the
Halt Transfer is executed or the AQ becomes empty. The algorithm pro-
ceeds as follows:

1. The Events on the Immediate Event List are activated one at

a time until it is emptied.

a) When an event is activated it is removed from the list.

b) All conditioning levels on the Event's Gate Lists are
tested and new Events are added to the AQ *“ the values
are correct.

¢) All transfers on the Event's Transfer List are activated
one at a time. Whenever one of a flip-flop's input tags
igs set for the first time, the flip-flop's level string
location and bit number are added to the Active Flip-Flop

List. If an attempt is made to set a complement tag when

it is already set, the flip-flop's Reference Name and
bit number are given to the translation routine so that
the user can be informed that a flip-flop input error
has been detected. If the special Terminate Transfer is
activated the Simulation Terminate Tag is set and the
Reference Name of the Event is stored. This causes the

simulation to stop at the end of that instant of time.

The new output values for the flip-flops listed on the Active

Flip-Flop List are computed. If more than one input tag is

set for a flip-flop, its value is unchanged. Otherwise the

Set Tag causes the output value to become one, the Reset Tag

causes the output value to become zero, and the Complement Tag

causes the output value to complement.

a)

b)

The Set, Reset, and Complement Tags are not cleared at this
time. If more than one input tag is sét for the same flip-
flop, the flip-flop's Reference Name and bit number are
given to the translation routine so that the user can be
informed that a flip-flop input error has been detected.

If the output value is unchanged, the flip-flop is removed
from the Active Flip-Flop List and added to the Flip-Flop
Tag List. This list is used to keep track of all flip-
flops whose input tags have been set in a simulated instant

of time.

54.

c) The flip-flop's Output Specification block is checked.

If the flip-flop output is the input to a "0" to "1"
differentiator and it has made this transition, the
differentiator's output Event is added to the Immediate
Event List. A similar test is made for the "1'" to "0"
differentiator, if any.

d) 1If the flip-flop output is the input to a level delay and
its value changed, an entry is made to an AQ Delay Value
List to cause the delay line output to make the same change
after the amount of delay listed on the Delay Specification.
Any previous entry for the level delay listed at the same
time is deleted. The previous entry was a record of tran-
sient behavior and is therefore replaced by an entry with
the newer value.

3. The value changes listed on the Immediate Delay Value List are
made one at a time.

a) If the new value is the same as the old, the delay line is
removed from the Immediate Delay Value List.

b) The delay line's Output Specification block is checked. 1If
the output is an input to a differentiator and its value
makes the proper change, the differentiator output Event
is added to the Immediate Event List.

c) If the delay output is an input to another delay and its
value changed, an entry is added to the proper Delay Value

list as in 2(d).

Input Change Tags are propagated to all combinational level
bits dependent upon flip-flops still listed on the Active
Flip-Flop List and delay lines still listed on the Immediate
Delay Value List. This is done by using the Dependent Combi-
national Level list which is part of each Output Specification.
a) If a combinational level's Input Change Tag is already
set, there is no need to propagate tags past that point.

b) If one of these dependent combinational level bits is an
input to a differentiator, its new value must be computed.
If the value makes the proper transition the differentiator
output Event is added to the Immediate Event List.

c) If one of the dependent combinational level bits is an
input to a delay, its new value must be computed. If the
value changes an entry is added to the proper Delay Value
List as in 2(d).

d) If the new value of a combinational level bit is calculated
for one of the above tests and the value is found not to
change, the Input Change Tags do not have to be set for
combinational levels dependent on it.

The remaining entries on the Active Flip-Flop List are added

to the Flip-Flop Tag List. The Immediate Delay Value and

Active Flip-Flop lists are cleared. If the Immediate Event

List is empty, then the simulator proceeds to step 6. Other-

wise, it returns to step l.

6. The Set and Reset Tags for all flip-flops on the Flip-Flop Tag
List are cleared and the Flip-Flop Tag List is cleared. If
the Simulation Terminate Tag is set, control is passed on to
the translation routine along with the Reference Names of the
termination Events. Otherwise the Clock is stepped. If the
AQ 1s empty, control is passed on to the translation routine,
else the simulator returns to step L.

E. Discussion of Idealized Model Simulation

The simulation program whose algorithm has been outlined above
operates under the control of another program which translates user
commands, formulated in the design language, into a data structure and
passes control to the simulation program.16 After the simulation program
terminates itself and returns control, the translator outputs results
to the user and either returns control to the simulator or waits for
new commands. The problems involved in writing such a translator are
difficult; indeed, the translator is likely to be larger than the more
complicated simulator of the next section. These problems are the same
as those faced in translating compiler level languages into object pro-
grams and have been under extensive investigation for some time. The
data structure is organized to ease these problems, otherwise they are
not considered here.

The behavior of the simulator at any given instant of time is to
simultaneously activate all register transfers and level delay line

output changes due to past activity. These level changes are then

16Note that the simulation program and translation program need not be
in core at the same time. This allows additional space for data
structure.

58.

instantly propagated through all the combinational logic. Any register
transfers triggered by these changes are then simultaneously activated,
etc. until the logic settles. Level hazards on differentiator inputs
may or may not cause the generation of extraneous control pulses.
Unstable circuits, such as the simple example of Figure 4-7, will cause
flip-flop input alarms to be generated. The circuit will not oscillate
because flip-flops are constrained to change values no more than once
in an instant of time. If some delay were inserted into each feedback

loop, the circuit would oscillate under simulation.

) | _.|7

start pulse

FIGURE 4-7

Unstable Circuit

Although it does not aid in detecting and isolating timing errors,
the simulator should be of great help in checking out the gross behavior
of a design. This is especially true early in the design cycle. The

timing behavior of the simulator is as good as one can get from discrete

T —

s i B Rl 4mﬁMWvFMWW'WMtWIE;}OW‘“ﬁ“-J?’i"hw_ vt

59.

time idealized models. Running speed, although not the highest

priority design goal, should be competitive with other simulation
programs of comparable depth and generality. An outstanding character-
istic of the simulator is that combinational levels are evaluated only
when their values are needed and only if they may have changed since
last evaluated. This feature becomes especially valuable for large
designs, because ordinary logic simulators spend a large amount of their
time evaluating combinational levels which could not have changed or
whose values are not required. Another important characteristic of the
simulator is the ease with which small changes can be made in the simu-

lated design.

60.

V. DATA STRUCTURE FOR DETAILED MODELS

We are now prepared to expand the data structure developed in the
1ast section to represent the complete circuit and signal models of
Section III. The modified structure will include circuit ambiguity time,
signal spread, flip-flop minimum complement times and old, new and hazard

signal values for logic hazard detectiOn.17 The effects of these changes
on the size of the data structure and the complexity and speed of the
simulator will be discussed. Further modifications will be made so that
both ideal and detailed models can be intermixed within the same data
structure. A method of partitioning the data structure for simulating
large systems will be {ntroduced. This data structure is designed for a
simulation system which is operated on-line by the logic designer and
communicates with him via a modified form of the design language, as was
the case fcr the idealized model data structure. Therefore the design
goals listed at the beginning of Section IV also apply here.

A. Level Logic

Most of the data structure expansion required to represent
detailed circuit and signal models occurs in the data elements repre-
senting level circuits. Illustrations of the data structures for detailed
flip-flop and combinational level strings are shown in Figures 5-1 and
5-2. The structure for detailed delay level strings is not illustrated

because it is the same as the combinational level structure wirhout

17111ustrations of the completed data astructure are given in Appendix A.
An outline of a simulation algorithm based on this structure is in
Appendix B.

61.

sjuaway B3B(Q JUTII§ T=24A97T doTJ-dITJd pa11e®l=(

1-¢ TANOI1I4A
I” ° 7 7 Tadqany 31g - T T 1
“wnmumm-Am?mquamcmwmmmwm_amo._
J 777 Tadaang dxg T F” " 7 irsoTsdnd B T 7T
Buiiis 15851 1EudTIeaTqusy] b 7 sargTser” T T T
e 6 & @ o ® @ @ = = @ = - - = wm ®m m m e @ = W = -
.’ _..« 1190 Wil OV 1 & S8 LA3IATIOV
ISTT T9A9T \ b~ " T sakrTserT T T T 1 s8e] Jjuomo]dwWo)
1euoI1leUTqWO) 3Juapuadaq \ R I I .J sg8e] jo9S9Y
\
gel 39S
\ ¥ 3ST1 A3TATIOV 8Bl \ s
A®T3Q 30 3unouy \ \ smeyN oouslojoy
ToqunN 314 \ \
uoTlEedTITOadg U 314
But13s 1941 KE1eQ \ SWIL FUSWSTAWO) WNETUTH) /|
N NE SW1y A3TnSIqUy / / -
Mo \[* 3571 Lavaraov e / UOTIEITITIAS 7 ITH
uotjedTJIdadg LeT3(Q N \ ST T5Re \\ yZ UoT3ed1JIo°ds [314
N 1euUOTIjEUTqUWO) 3Juapuadaq / \\ - ¥ s3el 9qoi13s
7
JusAd O - I h UOTIBITFII3dS AFT3d 7, ¥ S8e] uoljIsuei]
7
JjuaAg I ~ 0 — — — — UOT3IEITITIdS ¥(MIN-PIBZFH-PTI0) °MNTEA
103B13U8193F1q
uoT3jEOTII03ds uor3ed13yIdedg 3nding Sutaag 192497
I1031BTIUI3IIIC do13-d11d pParT®3I3q
P ..R&,wﬂ,vimw_,.i.n Y «mum‘r,hw-xn}%«._-ﬁiw..w; i = .“.‘,‘Wrn% PR A A SR A e

62.

Sjuswa]g BleQ SUTIIIS [9AD [BUOIIBUTqUOD PaJIBI=Q

¢-6 TENOI4A

BInmIoJ YST]O0d 9SIaAY

ﬁ
Suialg 13457 TBuUGTIRATqUOD]

T1squny 31g | BTNWIO

_ “13quny 314 1130 swil OV
mcmumm|Hm>mdcamumﬂmmmﬂm5mour’ - - adky ser” = ~ _
S | e e e e e e e e = = = T T T TeTmmzox - -~ T
! 113071l by Lot
ISTT aA9T \ - - - - saxrserT T T T ya8ua
TrUOTIIBUTqUWO) 3Ju3puada(q \ Lot " C T Cen@ssg T T T -1
\ \ S o1 = S
Le1aq jo 3Junouy // 1sTT £31AT30V Sel \ T TREETEEERET
19qUnN 31d \ uoT3IeOTJTIO3dS U I1g
3uTalg TandT AeIaQ \ v /|
\ x* swt] A3In3TqUy v / s
// \ 3571 G5aTo5v 3o L7 / UoTIBITITIOAdS 7 3I1d
uotT3ed13T2ads ABT3(Q N D ST ToRT \\ s uoTIBOTITOAAS T 3ITd
N Aqaoﬁmc..nn._ﬁoo juapuadaq \\\ e s3el 2qoi1ls
7
ey R N UoT3eoTjI0o°odg Le1ed \wn\\\ - AT ERTTE R
uoI3BOIJI03dS -
UsAT T - 0 < — — — — 103873U91933TA ¥(M3N-pIRZEH-PI0) SNTBA

uotrjes13yrIoads
I03BTIUDIDIITQ

uor3eoTyIoadsg 3ndang

Suta1yg 1aa9]
TPUOTIEBUTqWO) PATTEIB(Q

63.

formulas. Data cells which have been expanded or added to the idealized
structures of the last section are marked with asterisks. Note that
each level value cell has been expanded to include three output value
bits - old, hazard and new. It was shown in Section III that these
three values are sufficient and necessary to calculate the output hazard
values of dependent combinational levels. Detailed level string value
cells are therefore three times larger than those for idealized level
strings, provided the string length, n, is unchanged.

The second and third cells of detailed level string elements
each contain a new tag bit for each level represented on the string. A

level's Transition Tag is on during the time spread of each of its

value transitions. Whenever a Transfer is executed which changes the
value of a flip-flop, the flip-flop's Transition Tag is set. Cell five
of the flip-flop's Output Specification contains its ambiguity time, A
This is added to the signal spread of the transfer to determine the time
to reset the Transition Tag. When flip-flop value changes are propa-
gated through the dependent combinational logic, each combinational
level's transition spread is calculated as a function of its ambiguity
time and the transition spread of its inputs. Likewise the signal spread
for a level delay's value transition is calculated by adding its ambiguity
time to the spread of its input signal's transition. 1If a 1evé1's value
is sampled by an Event or if it serves as a Transfer source while its
Transition Tag is set, an alarm message is generated by the simulator

to inform the logic designer. Each level signal also has a Strobe Tag

which 1s set whenever it is sampled by an Event or Transfer. It remains

.*M“lw‘mwﬁvmwwwmﬂmm NSRRI Ryttt = - Do

D U NIy

AT

64.

gset until the spread of the sampling signal is completed. An alarm
message is generated if a level's output value changes while its Strobe
Tag 1s set.

mha last cell of a detailed flip-flop level string element
contains an Activity Tag for each flip-flop on the string. These are
used to detect flip-flop complement input rates which are too high.

The last cell of a flip-flop's Output Specification contains its minimum
complement time, e Whenever a flip-flop's Transition Tag is set, its
Activity Tag is also set. When the Transition Tag is reset, the Activity
Tag is reset after a delay of Tc time"units. Therefore the Activity Tag
is set during the interval when it is improper to activate any of the
flip-flop's complement inputs. An attempt toO do so would cause an alarm
message to be generated.

In addition to checking for minimum complement time violations,
further flip-flop input error detection is accomplished by using the
Set, Reset and Complement Tags. Rather than resetting these tags every
time the clock is stepped, as is done for the idealized case, they remain
on throughout the signal spreads of the set, reset and complement Trans-
fers. If more than one of these tags is on at the same time for the saine
flip-flop, or if a complement transfer attempts to complement a flip-flop
whose Complement Tag is already on, an alarm message is generated.

One of the important features of the idealized simulgtion.system
of Section IV is that a combinational level is re-evaluated when its
value is needed, and only if one of its inputs may have changed since
last evaluated. This is accomplished by setting Input Change Tags for

all combinational levels dependent upon a flip-flop or level delay whose

65.

value changes. Unfortunately this same technique cannot be applied to
detailed combinational levels. A characteristic of the detailed model

of a combinational circuit is that its output may still be changing for

a period of time, equal to its ambiguity time, after its inputs are all
settled. Furthermore, the output of a combinational circuit does not
always change when one of its inputs changes. Suppose a signal were to
sample the level during that period of time, and that this was the first
time the level had been sampled since one or more of its inputs had
changed values. If the simulation program were to attempt to re-evaluate
the level at this time, it would be unable to determine whether or not
the level might still be changing. The most satisfactory way of guarding
against this situation is to re-evaluate detailed combinational levels
whenever their input values change. Therefore Input Change Tags are no
longer required. Naturally, if a combinational level is re-evaluated

and found not to be changing, there is no need to re-evaluate the combi-
national levels dependent upon it. Since input level values and transi-
tion spreads are always known when output transition spreads are
calculated, the more accurate method of calculating them discussed in
Section III can be used.

B. Control Logic

The data elements representing control logic are shown in
Figure 5-3. Note that the only changes are the additions of ambiguity
time cells to Event and Transfer elements. When an Event or Transfer is
activated, its signal spread is calculated by adding its ambiguity time

to the signal spread of the triggering Event or level transition.

66.

Sjuswaly B3eQ OT307T 10IjU0) PRI1IBIS(Q

€-G M4NdI1IdA
IaqunN 314
13p10 Y3TH
AJowmsy I0 JUuTIag
19A97T uoT3IBUTIISA(
I5qunN 314
19p1Q Y3T1H
AJowad o JUTIIS
19A97 321nos§ L
yaguo] I9Isuei] 1
I03812dQ b--- - Iajsuelr 1
L o ommmmmmm=m= - - W
¥ Jur] A3TnITqUY N
N
N\
e e e e e - e e == - N\
Iaysuea] r IsT7 3UeAg pa3ItH I N
© T 7 "isquny 31§ | 1 // 3ST] 193jsueay
r~ ° “amry Leieq Tmmﬂmuw ToAaT wamcmﬁmﬂmcm04 awmey oouo193ay
R U7t S b= - 35317 38eaa poass” ~ 1 ¥ oWl A3Insiquy
b Tam Zefeg T 7 T T Tadqan 3 T - 0 3571 5399
- S Fgar3a5 Teae] SuTuoritpucy @ T 3577 5399
L oo e e e e e === - L o e e e e e a2 2o - - - T

ISTT JUdAF pPIiIed 3IS1T 91EH JuaAg

67.

Modifications to the data structure were considered for detecting Event
doublets.18 Doublets can cause trouble in logic because they may
behave as a single Event in one section of the logic, and as more than
one in some other section. If an Event doublet triggers a complement
Transfer, it is not clear which state the destination register will
settle in. This situation would be detected through use of the regis-
ter's Activity Tags as discussed above. Another place where doublets
might cause trouble is on logic interfaces. If the designer is concerned
about the possibility of doublets on a line, he can cause them to be
detected by using the signal to complement a dummy flip-flop with
appropriate minimum complement time.19 Therefore, it is not considered
worthwhile to include special provision in the data structure for Event
doublet detection.

C. Time Queuing Data Structure

The structure used to queue up simulation activity is illus-
trated in Figure 5-4. Asterisks are once again employed to mark data
cells which have been added to the Activity Queue discussed in Section IV.
Cells have been added to the Event and Delay Value Lists to carry signal
spread information. When the simulation program becomes aware that an
Event or level delay value change is to be activated, an entry is placed

on an Event or Delay Value list. This list is attached to an Activity

18Two or more occurrences of the same Event at close to the same time;

the signal spreads may even overlap.

19This is an example of a powerful simulation technique to be discussed

more fully in Section VI.

68.

3aIN3OoNilg BIBR(Q IUINSN) JWI]

#-C HNDIA
My™ = 7 "0d4I 8e1 ~ =~ ~ 1
Fe” T 7 ZequinTaie T 7 7
by = "8G133§ Tede -~ 1
b "7 TodkI 8ei ~ T~ 1
Fy” T 7 Zoquinaig” T T T
b oo e mm= = -
_ W x Suta3g 1aa9]
. e e e ae e = - .- ke e e e e e = m === - _.-----....---..._
MNe aw1r SuiT13ss 1 M 3STT 3199y - ,
e 1 U _. © T3s17 aniep Nmmmm-._ / 3sTT 1989y
k- " Isquny 37g” - 1 / F = = 7 3sT1ateag” ~ -1 \\
b -8i13ag Teae7 Keaq - 1 /20 BT S .7VA
Fe™ ~ Swiz sariazes - 1 / L T AR lysw1y uo13ajdmo) 30Inog?
e T W 4 b - -3517 snjej Zefag =~ 7 N e -
bF---szmmz=-=--4 / o - S N _. - q
Iaquny 3ITg .v\ - ISTT JUSAY ~ \ CLy g Humamaoo 32Inog
b = Suii3e 15a37 £B13q" - [-~ <~ ’_. - - - ----1
1135 13A37T KBT13Q smyl Judag
L. .. L.~ Loomm e e oY B TR

1sTT 3nyeA AeT3Q anand £3ITATIOY ISTT Iuaajg

69.

Queue time cell containing the starting time of the activation; i.e.,
the earliest possible time the Event or level delay value change could
begin. One cell of the entry contains the activation's settling time,
or the latest possible time before the Event or level delay value change
would be completed if the Event or level delay had zero ambiguity time.
Thus the actual completion time of an Event activation is the sum of

the Event's ambiguity time and the activation's source completion time.
Likewise, the time to reset the level delay's Transition Tag is calcu-
lated by adding its ambiguity time to the level transition's settling
time.

Reset lists have been added to the AQ structure to queue up the
resetting of Transition, Strobe, Set, Reset, Complement and Activity
Tags. During the execution of a simulation program, it is often neces-
sary to refer to the reset times of these various tags; in some cases
it may even be necessary to change some of the reset times. It would
be extremely inefficient to search through the entire AQ structure
every time such a reference or change must be made. Therefore Tag
Activity Lists have been added to each level's OQutput Specification.
(See Figures 5-1 and 5-2.) Every time an entry is added to an AQ Reset
List to reset some level's status tag, a matching entry is added to the
level's Tag Activity List. The first cell of the entry specifies the
'type of tag to be reset. The second cell points to the AQ time cell
containing the reset time. When the tag is reset, the Tag Activity List
entry is deleted. Therefore a search through a short Tag Activity List
is all that is required to fetch the reset time for a status tag. An
additional search through a single AQ Reset List is required to delete

a tag reset entry.

70.

D. Intermixing Ideal and Detailed Models

The memory space required for a detailed simuiation of a design
is estimated to be approximately 257 greater than that required for the
idealized modeling of Section IV. Running times should be substantially
greater, between 2 and 3 orders of magnitude. Most of this additional
time is taken in calculating the more complex values and settling times
for level signals and in the bookkeeping associated with the various tag
bits. As mentioned at the end of Section III, the most fruitful use of
detailed logic simulation is in specially tailored testing of known
problem areas. Only a limited area of the design need be represented
with detailed timing models; the rest could quite satisfactorily be done
with idealized models. By setting ambiguity times to zero, the idealized
models can be realized using the detailed data structure, but processing
time would not be reduced. Therefore the data structure should be modi-
fied so that both idealized and detailed Level Strings can be intermixed
in a single structure.

There 1s not enough time savings to warrant inclusion of ideal-
ized Events and Transfers in the intermixed structure. Instead, a special
value for ambiguity time, called 2, is included. If any Event or Transfer
has 3 ambiguity time, its signal spread is always zero no matter what the
spread of the signal triggering it. Jn this way idealized Events and

Transfers can be modeled in the intermixed data structure.

203 ambiguity time can be used by the designer to suppress false timing

alarms such as the one generated by the circuit of Figure 3-10.

71.

Z ambiguity time is also used to make Level String Outputs ideal.

Wwhen a detailed signal is an input to a circuit with idealized outputs,
the signal spread is ignored and the input is assumed to occur at the
earliest of possible times. Thus, if a level signal generated by a
detailed circuit model enters an idealized combinational level block,
any transition in the value of the input signal is assumed to occur at
the leading edge -f its spread. Likewise, when a detailed Transfer uses
an idealized fli.-flop as a destination, the spread of the Transfer is
always treated as if it were zero and the flip-flop changes value
immediately.

There are certain references to Level Strings in the data
structure where it is necessary to specify which type of model 1is used
to represent the levels. For example, if a level is specified as an
Event Conditioning Level within some Event's Gate List, it is necessary
to know whether or not to check the level's Transition Tag and set its
Strobe Tag. In the data structures discussed thus far a level signal is
referred to by specifying its Level String and bit number. In these
special cases an additional cell must be included specifying model type,
either idealized or detailed.

E. Data Structure Partitioning

The data structures required to represent large designs can
become very large; more than one central memory load may be needed.
Since it is very desirable to be able to simulate indefinitely large
designs, methods should be provided to partition data structures so that
not all of them need reside in central memory at the same time. If the

gimulations are to operate in a time-shared environment, such as Project

72.

MAC's new MULTICS system, they are likely to get better treatment from
the storage allocation routines if they restrict their data space
requirements over short periods of time. The design language aids
segmentation of the data structure because designs are described in
gections called compenents. Inter-component interfaces are gpecified
with all levels and pulses given. The designer is in the best position
to know which components interreact the closest with each other and he
could designate sets of components to be grouped together to form
gsections of data structure.

All data elements representing interface levels between these
data sections would be grouped together on data section 0, which would
reside in central memory permanently along with the simulation program.
It is suggested that the entire Activity Queue structure remain in
central memory all the time, otherwise partial queues would have to be
continually merged and any savings would be offset by bookkeeping costs.

All references to Level Strings, Events and Transfers within
the data structure must include a cell specifying the element's data
section. During a simulation all activity local to a section is executed
before moving on to the next sectiom. Ideal Combinational Levels
residing on section O are always re-evaluated when their Input Change
Tags are set. This is done to avoid referring to information or a

"non-permanent' section after moving on to another. To remove the

211n the case of a MULTICS type realization, the computer system's
normal storage allocation routine would automatically move things
in and out of core as they are used. In more conventional systems,
the simulation program would have to initiate these swaps.

73.

necessity of propagating level signal changes immediately from section

to section as they are discovered, Input Change Lists must be established
for each non-permanent section. These lists contain the names of all
combinational levels whose inputs are changing, and the settling times

of these inputs. Thus when a level signal change propagates through
section 0, the level on section 0 is re-evaluated and the combinational
level names on its Dependent Combinational Level List must be placed on
the appropriate Input Change Lists. When the program moves on to a new
section, the signal changes on its Input Change Level List are propagated
into the logic. Before the clock can be stepped, all Input Change Level
Lists must be empty.

Events may have gate conditioning levels and Transfers on more
than one non-permanent data section. When an Event crosses a section
interface in the design language description. a new Event is created in
the corresponding data structure and is unconditionally triggered by the
original Event with zero additional minimum delay and delay ambiguity
times. All of the original Event's activities in the destination section
are assigned to the new Event, which is part of the data structure on
the destination section.

Note that the way in which a design 1is partitioned intn data
sections and the order in which the sections are acted upon by the
simulator may vary simulation results. This is true because flip-flops
are constrained to make no more than one output change at one instant
of time. When more than one type of flip-flop input is simultaneously
active, either the first input which the simulator processes dominates,

or the flip-flop output is not allowed to change at all. Since the

74.

order in which the inputs are processed depends on the data structure
partitioning and the order in which the sections become active, the
output of a flip-flop with multiple active inputs may also be dependent
upon them.

This dependency can be eliminated by forcing the simulator to
execute all Events on the Immedjate Event List before propagating level
changes into differentiators. Then all the Events generated by the
first level change propagation would be executed before propagating
their effects through the logic, etc. Operating in this manner would
seriously reduce the amount of time the simulator could spend on one
section before having to move on to the next. This is a high price to
pay, so the output values of flip-flops with input errors (multiple
active inputs) are allowed to vary with the way a designer partitions
his design.

The simulation program can use the Immediate Event List,
Immediate Delay Value List, Immediate Reset List and the Input Change
Lists to anticipate section usage and ask the system memory allocation
routine to ready sections in advance of actual usage. The optimum
gsection size to use depends on the storage allocation algorithm used by
the tiﬁe-sharing system. If the section size is too small there would
not be enough activity within it at a simulated "instant" of time to
make the partitioning technique pay. If the section size is too large,
parts of it might be swapped out because of disuse. For a given design,
the smaller the non-permanent section size, the larger section zero

must be because more interface signals are required.

75.

F. Summary of Data Structure Characteristics

The data structure we have been discussing can be used as the
basis of a simulation system capable of being of great value in the
detection and isolation of common timing errors, as well as checking
gross behavior of a design. The timing behavior is very realistic and
the data structure is capable of both synchronous and asynchronous
logic. The data structure allows intermixing of idealized and detailed
circuit and signal timing models for optimizing simulation efficiency,
and the data sectioning system allows very large systems to be simulated.
Only the activity queuing structure, data section 0, two non-permanent
data sections and the simulation program need be in central memory at

any given time for efficient operation.

76.

VI. SIMULATION COMMAND LANGUAGE .

In this section we will propose some extensions to the design
language so that it can be used both as input to the simulatiown system
and as the simulation command language. These extensions can be divided
into the following categories:
1) Model Declaration Statements
These are to be used to declare timing information about cir-
cuits and signals and to specify storage arrays which are useful in
simulating logic interfacing with the design under test. Statements are
also included to declare the initial state of the design prior to a -
simulation, and to specify which components are to be grouped together
to form a simulation data section.
2) Editing Statements
These are used to make on-line modifications to the design
description file which the simulation system is currently working with.
Statements and components can be added or deleted and names can be changed.
3) Simulation Commands

These statements are used to control the simulation system. They

1T

are used to translate the design description into a simulation data struc-
ture, initialize the Activity Queue, start the simulation, and specify
conditions for termination.
4) Output Statements
These commands are used to generate output messages during a
simulation and to print out the values of level signals after the simu-

lation has terminated.

77.

We will now introduce the proposed design language extensions and
give some examples of their use. After this is completed, simulation

procedures and techniques will be discussed.

A. Design Language Extensions

The following declarations are introduced to specify the circuit

and signal parameters T o and Tc of Section III:

Ai
ambiguity Ty < list of levels, pulses and transfers > ;
min delay Tp » < level list > ;

min complement T < register list > ;

C]

Delay Ambiguity declarations can be made for any level, pulse
(event), or transfer. In the case that no ambiguity declaration is made
for an element, i* 18 represented by an ideal model during simulation.
If the designer wishes to have an element represented by a detailed
model with no additive ambiguity, he must declare it with Ta equal

zero. A Minimum Delay declaration can be made for any level signal.

Normally, level signals are represented by a bit on a Flip-Flop or
Combinational Level String. If D is declared for a level, a Delayed
Level String bit is attached to its output and the value of the level is
represented by the delay output. This is true for both ideal and

detailed models. Minimum Complement Time declarations can only be made

for registers and sub-registers. To is assumed to be zero 1f undeclared.

Examples:

min complement 40, A[0:31], B[4:10] ;

min delay 20, c[0:31], D = A[4] AB[7] ;

ambiguity 15, A, D, A~ C, oscl ;

78.

To properly test a design, it may be necessary to simulate inter-
faces with core memories, magnetic tape drives and other memory devices.
The following declarations are introduced to specify fixed and variable

size storage arrays:

memory < memory name > [< bit indices >, < number of words >

< address name > [< address indices >]];

stack < stack name > [< bit indices >,

< address name > [< address indices >]7;

Memory declaration322 are used to specify storage arrays with fixed
size and word addresses. A declaration includes the array's name, bit
indices (therefore word length), number of words, and the names of its
address levels. Valid Memory addresses extend from zero to number of
words minus one. Stack declarations are used to introduce variable
length storage arrays. Words may be added to and deleted from the top
of a stack during simulation. Addressing is done relative to the top of
the stack. Stack declarations include their names, bit indices (word
length), and the names of their address levels.

Memories and Stacks can be used as sources and destinations of
transfer statements. Memories are specified in transfer statements the
same way as registers are. The current valués of the address levels
determine which cell is used. Stack transfer specifications may contain

additional arguments called address indexes. The address indexes are

22Similar to memory declarations used by Y. Chu in Reference (17).

79.

added to the current values of the address levels to determine how far
the cell to be used is from the top of the stack. If an attempt is
made to access or modify a non-existent Stack or Memory Cell, an error
message 1s transmitted to the system user.

The following statement types are used to add and delete words

on the top of a stack:

push < stack name > < level expression and integer list >;

pop < stack name > < level expression or integer >;

Push statements cause the value of each level expression or integer
to be placed on the top of the stack, beginning with the first on the
list. If a level expression or integer is not the same length as the
Stack's word length, the left-most bits are either filled with zeros
or truncated. When pop statements are executed, the level expression or
integer is evaluated and that number of words are deleted from the top
of the stack.

The execution of Push and Pop statements generally changes the
addresses of information already on the stack. Theoretically, a Stack
may grow indefinitely during a simulation. In any given realization of
the simulation system, there would be an upper bound on stack growth.
Since the address levels and address indexes are specified in advance,
only a finite number of cells from the top can be addressed. An attempt
to Pop words from an empty stack will cause an error message to be

reported to the user.

80.

Examples:

memory CORE[0:31, 1024, MAR[6:15]],
INDEXREG[0:31, 64, IR[0:5]];

* read core into accumulator;

tp0: 0 ~ MAR;

tpl A RC: if IR[0:5] = O then CAR — MAR
else CAR + INDEXREG — MAR;

0 ~ AC;
tp4 A RC: CORE = AC;

In the above example, the subregister CAR is the address portion —
of the instruction register. Bits O through 5 of the instruction
register specify which of 64 index registers to use. Index register O
always contains zero. Note that more than one Memory or Stack can be
declared in a single statement.

In the following example, a Stack will be used to represent the
magnetic tape in a rough simulation of an incremental magnetic tape
drive. The tape drive can read or write forward or backspace by single
eight-bit characters. The tape drive is driven by a thirty-two bit
machine so all tape movements are in four character blocks. The register
TDA is used in the simulation to contain the location of the read-write
head relative to the last character written on the tape. When a new
character is written by the tape drive, its erase head may destroy
characters further down the tape, so no information beyond the last
character written can be read. In the simulation the first thing done

on a WRITE command is to delete this information.

81.

* rough simulation of incremental tape drive;

register TDA[0:15];
stack TAPE[0:7, TDA];

* backspace tape WCT words (WCT previously declared on interface);

BACKSPACE: TDA + 3 X WCT => TDA;
0 ~ BACKSPACE;

% read 4 tape characters into buffer register;

READ: 0 ~ BR;

TDA - 4 - TDA;

delay 100;

TAPE[0:7, 3] - BR[24:317;
TAPE[, 2] - BR[16:23];
TAPE[, 1] - BR[8:15];
TAPE - BR[0:7 1;
0 ~ READ;

* write buffer register onto tape;
WRITE: pop TAPE, TDA;
0 ~ TDA;
delay 100;
push TAPE, BR[24:31], BR[16:23],

BR[8:15], BR[0:7 1;
0 ~ WRITE;

The following statements are used to specify the initial state of
a design before simulation begins. If register or memory contents are
undeclared, their initial values are zero. Initial stacks are empty

if their contents are not specified.

initialize < reglster name > = < value >, ... ,

< reglster name > = < value > ;
initialize < memory name >, < address > : < value >, ...,

< value >, < address > : < value >, ... , < value > ;
initialize < stack name >, < value >, ... , <value >
initialize < delay name > = < value > , ... ,

< delay name > = < value > ;

82.

Level delays zre initialized over their entire lengths - no transi-
tions can be stored anywhere except at their input terminals. All
flip-flop and combinational level values are assumed to be settled.

The outputs of unitialized level delays take on the same values as
their inputs. Although separate statement types are given for registers,
delays, memories and stacks, there is no reason why these should not be

intermixed in the same initialize statement.23

Example:

{nitialize A = 7, CORE, 20 : 7654, 444312, 67334, B = 16,
INPUTLIST, 5, 4, 3, 2, 1, 0, C =41 ;

The following statement is used to dgglare which components are to
be grouped together to form a simulation data section.

section < component list > ;

1f a component is later declared to be a part of another section or
1s deleted, it is removed from its present section. All components not
declared in a section statement are assigned to section O and kept in
core permaneiitly during a simulation.

An important service to be provided by the command language is the
ability to make on-line modifications to a design being simulated. The

following editing statement types are suggested for this function.

231t 1{s not obvious which number base should be used for simulation
input and output. Because the hardware is simulated in such detail,
there are strong arguments for base eight numbers because engineers
find them coavenient during logic debugging.

delete component < component list > ;

delete < component name > ; < statement > ; ...

< gstatement > ; end delete ;

add < component name > ; < statement > ; ... ;

< statement > ; end add ;

rename < new name > / < old name > , ... , < new name > /

< old name > ;

The actions of these statements are fairly self-evident. Delete
component staééments are used to remove entire components. The second
and third statement types are used to delete and add statements within
some component description. A new component can be created by making
the first statement on an add list a component declaration. An example
of this is given below. Rename statements are used to change the names

of components, levels and pulses.

Examples:

delete component tapecontrol ;
delete commoncontrol ;
sum: A[0:2] - B[0:2] ;

c[0:3] = p[0:3] ;
end delete ;

add commoncontrol ;
sum: A[0:27 - Dp[0:2] ;

2]
c[0:3] - B[0:3]

84.
add inputoutputcontrol ;
component inputoutputcontrol ;
interface commoncontrol ;
end component inputoutputcontrol ;
end add ;
rename iocontrol/inputoutputcontrol, ccontrol/commoncontrol ;

We are now ready to introduce command statements which control the
translation of a design description into a simulation data structure,

and which initiate and terminate a simulation.

translate for simulation ;

end translate ;

start < pulse list > ;

stop ;

restart < pulse list > ;
singlestep < pulse list > ;

The Translate for Simulation command is used to cause the design

description file which the simulation system is working with to be trans-
lated into a simulation data structure file. Once this command is given,
all delete and add commands will automatically be executed on both the
design description and the simulation data structure files until the

End Translate command is given. After that, additions and deletions are

made only to the design language file.

85.

Use of a Start command causes the Activity Queue to be emptied and
all pulses on the command's argument list to be placed on the Immediate
Event List. All oscillator pulses are also placed on the Immediate Event
List and all Clock Event pulses (discussed below) are added to the
Activity Queue. Register and Memory values are set to zero and Stacks
emptied. All Initialize statements are executed in the order which they
appear in the design. All combinational levels and delay lines are
evaluated, and simulated time is set to zero. Simulation commences from
that point and continues until an error alarm is detected, the Activity
Queue becomes empty, or the Terminate Transfer is executed. A Stop state-
ment can be inserted in the design wherever a register transfer statement
is legal. The simulation terminates whenever it is executed.

When a Restart command is given, the pulses on its argument list are
added to the Immediate Event List and simulation commences. Singlestep
commands behave the same way except that the simulation terminates when-
ever it moves forward to a new time with a non-empty Immediate Event List.

The designer may use this command to single-step time when he 1is trouble-

shooting a design problem.

Examples:
start tp0, pulselin, carry? ;
tp3: if AC = 0 then stop ;

CLOCK = 97943: stop ;

The last example shows a Clock Event causing termination. The special

symbol CLOCK refers to a register containing the current value of simulated

86.

time and may only be used in statement labels of the above form. Clock
Event pulses are placed in the initial Activity Queue when Start
commands are given.

The next set of statements are used to generate output messages

during a simulation:

print < level and text list > ;
tprint < level and text list > ;

text < text name >, < string of output characters without ";" > ;

Print and tprint statements are inserted into a design just as stop
statements. Whenever one of them is executed, an output message is
generated for the user. Tprint includes the value of the simulated clock
along with the message. Messagas consist of the new values of level
signals and fixed character strings specified with Text declarations.

The following example illustrates how the output statements might be used

to trace the usage of blocks of hardware.

* Trace on fixed point multiply instruction

text ml, Multiply Arguments Are ;
text m2, Product Is ;
MULTIPLY: tprint ml, AC, BR ;

— MULTIPLY: tprint m2, CA ;

In this example, when the signal MULTIPLY comes on, the AC and BR
registers are multiplied together. The product ends up in the CA
register before MULTIPLY is turned off. With the trace included in the
simulated design, the following kind of messages are presented to the

user every time the multiply instruction is used:

]
L

T

f

Y AU

87.

47800 Multiply Arguments Are AC = 440 BR = 100.
47920 Product Is CA = 4400.

|
non

The following special forms of the Print command can be used to
output the contents of the Activity List. This is especlally valuable

when simulation terminates because of detection of an error alarm.

print AL ; * entire Activity List ;
print AEL ; * all Event Lists attached to Activity List ;

print ADVL ; * likewise for Delay Value Lists ;

print ARL ; * likewise for Reset Lists ;

The following statements are introduced to allow the user to specify
simulation alarm conditions which he is not interested in detecting. The
statements instruct the simulator not to stop on the specified alarms or

report them to the user.

suppress hazard alarm < list of differentiated levels > ;

suppress sampling alarm < list of level/sampling pulse pairs > ;

suppress undefined transfer < list of transfer/activating pulse pairs > ;

suppress register input alarm < register list > ;

Examples:
suppress hazard alarm SYNCL, AC = 256 ;

guppress sampling alarm Ac[4], tpl, BR[10], tp2 ;
suppress undefined transfer AC = BR, tp5 A (IR = 410) ;

suppress register input alarm IOR, PBR, MSK[4:10] ;

24The meaning of these alarm conditions is pointed out in Appendix B.
Note that illegal Memory and Stack address, empty Stack, and register
minimum complement time alarms are not suppressable because these are
considered modeling errors.

88.

B. Logic Testing Procedures

We are now prepared to discuss the general procedures which a logic
designer might use to test his design by simulation. The first thing he
would do is use the regular computer system software to create or retrieve
a design description file for the simulation system to work in. The
design in this file may contain more components than he wishes to simu-
late, so he removes them with Delete commands. Simplified models for the
deleted components which interfaced with the remaining design can be
created using Add commands. Design language models may also be introduced
for external devices which interface with the design, but were not
included in the original file. The designer may wish to change some of
the design's timing parameters with Add and Delete commands.

If the designer is interested in checking for the occurrence of
certain conditions during simulation, he may add special logic to the
design to detect them. The special logic can initiate output messages or
even terminate the simulation, if he wishes. This technique amounts to
including special debugging logic in the simulated design. Dummy differ-
entiators may be placed on interface level signals to detect level
hazards. Interface pulses may be used to complement dummy flip-flops
to detect pulse doublets closer together than the minimum complement
times of the dumgy flip-flops.

Additional Print and Tprint statements may be included to output
information during the simulation. Register and storage array initial
state declarations may be changed. Declarations are made stating which
components are to be grouped together to form simulation data sections.

When the designer is satisfied that the design language description is

89.

complete, he causes it to be translated into a simulation data structure
file by issuing a translate for simulation command. He then gives a start
command to initialize the Activity Queue and begin the simulation.

If the simulation terminates due to an error alarm, the designer will
investigate the design description and the state of the simulated design
to determine if the alarm is valid or the result of improper modeling of
delay parameters. Print commands can be given on-line to interrogate the
system about level values and the Activity List contents when simulation
terminated. If the designer decides that the design was improperly modeled,
he changes some of the delay time parameters and issues either a Start or
a Restart command. If he is unable to determine what the problem is, he
may insert more debugging logic into the design and/or single-step part
of the simulation. If he wishes, he can give register transfer commands
on-line when simulation is not active.

After he has isolated a problem, he may wish to simulate some alter-
nate solutions. The regular compﬁter system software can be used to
store copies of the present design description and simulation data
structure files away for future use while he tries the alternatives.

When he finds an alternate he likes, he may make changes to the original
design description file. When he is tired or wants to think about a

problem he can save his files to be retrieved when he returns.

90.

VII. CONCLUSIONS

The work reported in this thesis has been directed toward the
development of a logic simulation system for design verification. The
system would accept the Dennis Design Language as input and operate
on-line in a large time-shared computer environment. It would serve
as a design tool to interact with an intelligent designer during the
design process, rather than being an automatic process which exhaus-
tively checks out a design.

The idealized model simulation system discussed in Section IV has
advantages over other such systems found in the literature. Simulation
efficiency is greatly improved because combinational levels are re-
evaluated only when their values are required, and may have changed
since last evaluated. This advantage tends to increase with the size
of the design being simulated. Flip-flop input error detection helps
locate many of a system's solid design errors. Synchronous and asyn-
chronous designs can equally well be simulated. The internal data
structure of the simulator is a direct representation of a logically
sufficient, but not minimal, subset of the design language. Translation
from the complete design language into this subset and from there into
the data structure should not be too difficult. Likewise, the transla-
tion of output information into terms of the input description should
present no difficulties. It would not be unreasonable for early
versions of the simulation system to require designers to use the sub-
set of the design language directly represented in the data structure
to describe their designs. The data structure was formulated so that

incremental changes could be made to it rather than retranslating the

91.

entire structure when a small modification is made to the source
description. It is acknowledged that an incremental translator would
be complicated and that there are difficult problems that must be
golved in order to construct one.

Important factors considered by an engineer evaluating the per-
formance of a design are whether or not the interface behavior is as
specified and whether or not it is deterministic over the specified
range of operating conditions. The internal behavior of the design
need not be deterministic and logic designers may take advantage of
that fact to maximize the design goals.25 An example of this is the
case where the value of some flip-flop is not used by an instruction
and will be cleared before the next instruction. The designer may be
able to reduce the cost of implementing the instruction by using logic
which causes the value of that flip-flop to be non-deterministic.

If the internal behavior of a design is deterministic, obviously
its interface behavior must also be deterministic. Signal spread was
introduced to the data structure as an attempt to check whether or not
the behavior of each element of a design is deterministic. The spread
of a signal transition or event activation is the range of its occurrence

time probability density function. The detailed model simulation system

25Unfortunately there are cases where designers have violated wiring

rules or have taken advantage of special circuit characteristics,
which are not checked during circuit testing, to minimize cost or
maximize speed. Such practices are ill-advised because they tend
to reduce system reliability.

92.

uses signal spreads to detect the sampling of a changing level by a

pulse or ambiguous flip-flop outputs due to multiple simultaneous input
pulses. The circuit models are considered adequate for these purposes.
The weakness in the modeling results from considering each signal spread
to be independent, when the occurrence time density functions are
actually dependent. This results in flagging correct situations as logic
faults. It is felt that the system is still useful because these incor-
rect error detections can be eliminated by remodeling or error message
suppression.

Acceptable methods were introduced to the simulation data structure
and algorithm for detecting level hazards, intermixing idealized and
detailed models in the same structure and partitioning data structures
so that more complex machines could be simulated. Exfé;;ions were pro-
posed to the design language to furnish special information needed as
input to the simulation system and so that the language could also be
used as the on-line simulation command language.

There are a number of ways of extending or improving the work
reported here. The first of these would be the development of a more
satisfactory method of checking for non-deterministic logic behavior.

A more general approach to modeling signal spread, which takes account
of spread dependencies, is to make restrictions on either the number of
levels of signal interdependence (how many logic stages of past signal
history to be maintained by the model) or the class of designs to be

gsimulated. The latter restrictions would be used to eliminate the

requirement of indefinitely long signal histories for completely accurate

models of certain pathological networks.

93.

Further work to be done includes the translation of the data
structures and rough algorithm outlines discussed here into a computer
program to be implemented on Project MAC's new MULTICS system, when it
becomes available. This will require a routine for translating the
directly realized subset of the design language into the simulation
data structure. If the complete design language is to serve as input
to the simulation system, a pre-processor for translating it into the
accepted subset must be written. The non-trivial problems involved with
incremental translation of corrections must be solved if that feature is
to be included in the simulation system.

A topic of considerable interest is that of providing adequate
provisions for outputting information to the designer during a simula-
tion. The output commands introduced in Section VI are comparable with
simulation output techniques found in the literature. If these commands
were used to any great extent, the simulation system would become severely
output limited and the advantages of on-line operation would be lost.
This seems to be a fruitful application area for displays. For example,
a display might be used to simulate a computer control panel26 which
could be modified on-line. A by-product of this approach might be the

development of more functional computer operator and maintenance console

designs.

26This is similar to the printed simulation output discussed in
Reference (1).

94.

APPENDIX A - INTERMIXED SIMULATION DATA STRUCTURE

This appen&ix consists of a set of illustrations of the intermixed
data structure of Section V. The conventions used are the same as the
ones used for the Ideal data structure illustrations in Section IV.

Note that Ideal and Detalled Level String elements are the same size to
make it simple to change the model to be used for a given level circuit.
A level string can contain representatives of both models in any inter-
mixed order. There are a variety of ways of representing the circuit
and signal models in a data structure. The only claim made about the
structures shown here is that they seem reasonable for the design goals
of Section IV. The Tag Activity List in Figure A-3, the data portion

of the Stack in Figure A-4, and all of Figures A-6 and A-7 are shown as
list structures because their lengths are modified during a simulation.
The criterion for choosing whether or not to represent other structures -
with list structures or fixed blocks was the likelyhood of their lengths
being modified when a designer modifies his design. There is a trade-
off between the ease of incremental modification of the data structure
to represent design changes, and the access speed of information during
a simulation. If incremental modification of the data structure is not
done, all structures which remain of fixed size during a simulation
should be realized as fixed blocks.

Footnotes are used with the figures to clarify the meaning of some
of the cell contents and to point out interrelationships between figures.

Appendix B outlines a simulation algorithm based on this data structure.

95,

1-V ENOIA

Sjuswaly B3le(q JUTIIS [9AdT pajrel=d

*SBINWIOI JO UOTISSMISTP 10JF D xtpuaddy o3 193sy (2)
"€-Y 2an314 JOo Jusawalad uorleoTITUadg Inding o3 sadjurod (1)

s3el A3TATIOY

s3e], juswa]dmo)

sZe] 19s3y

- EETS

JWEN 20U2123I3Y

UoTIBITITIAdS U I1q

(D

UcII®ITITIAdS 7 IT4

UoTIBOTITIadS T 3I1d

s3e] 2qoalsg

sZB] UOTI3TSUBI]

|

0 0

ﬁassuom YSTT0d °SI9A9Y

eTnuIoj

(2)

QuWeN °¥0Uaa9aIay

UoTIBDITITOadS u 3I1q

UOTIEBDITITOACS ¢ 3I1d

U0T3EoT7109d8 1 316

s3e] 9qo0131g

83e] uOT}TSURL]

(MON-pPIBZ¥H-PI0Q) SNTEA

0 0

Suta3s 19497
doy3-dy1d patr®IaQ

MAN-PIBZBH-PI0) 3NTEA

Suta3s 19A9T]
Le1aq parreaaq

(D

J 7 7 7 promlog

‘/llllm.ﬂmuémo-IWIII

_ “y3sue

“y3susT

LaiJd

Jwey 9ouo19joy

UOTIBOTJIOoodg U IIY

2 . .

UoT3eo73109ds ¢ 474

UOTIBITITOAdS T I1€

sae] °9qo0I3S

S3ZB], UOTITSUBL]

0 0

(43N-pIEZBH-PI0) SNTEBA

Suta3s 1aAa]
TPUOTITUTqUO) PITTBISQ

[T ! o i oo .

96.

SJjudWald B3eQ BUTIIS [9AS] 1EOPI

¢-V $4No1a

*€-V 2In814 Jo jusway?d uorleoTITo2dg Indang o3 sasjurtogd ()
*P3TIIBD Jou SINTBA PABZBH pu® sanieA PI0 (1)

BINI0] USITOJ 9SI0A0YH |eg— S 7 7 T emmIog - T T 1
s8eL juswa]dwo) "| T T T Tyasuer T T T H__
SSE] 31950% BTNmIO - - 7 7 eynmloy | :
sgeL 398 P~ 77 Ty3swer ~ T T
B SWEN 95us19394 _ SWEN 9ousisjay T EFTERERET|
4 co..numow.m..nuoqm u 31g _ uoTlIeOTITOAdS u 3IIg _ uoT3leOTITOSdS u 3IIg
P .. ~~ . el ..
ANv.ﬂ.i: UoTIe073199dS 7 374 Qvl,.lrl UoT3ea13109dS ¢ 314 Qvl‘w ~J UoT3eaT3190ds ¢ 314
“~ [Uor3eor3vosds 1 I1d N JUotaToTsToeds 1 3t ~J UoTIEorFIoeds 1 atd
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 [s3ey osueyy jndur |
(A (et (p°"TEA
Suta3s 19497 Suta3g [oAne] Sutailg 19A9]
dotg-dI1d Te°PI fe1aq 1®opI TPUOTIIBUTqUO) TEIPI

. ey

97.

*sdoy3-dT13 pa1TEISP 103 ATuUO PIPNTAUT (/)
*s98ueyd Indano 9yl usaym [IA3T Juapuadap
103 po3indmod 3q 3ISnNm SNTBA MAU B JOoU 10 I3YIayM saTIToads (9) Ll
*P9TIIED 3q JISNW SINTEA PIBZEH Jou IO I3YIaym sar1ytoads (¢) r umnasz I1g
‘9-y 2an81J 3Jo 2nand) LITATIOY uo T30 awWi] 03 Idjutod (%) - - - Sdkp” T T T T
9NTBA PIeZEBH 10 AJTATIOV ‘Juswaytdmo) 3asay ‘319§ 92qoais ‘uorytsueal (¢€) - - - on .
‘sandjno 1eapT 103 Z onjeA TeBId9ds sLemiy () uoT1309§
*Z~-V pue -y s2In81j Jo Ssjuawa[a SuTil§ [9A9T woiJ ol pajutod (1) Wﬁauumuao>oq Hmﬁm SetTquog
F--- “zaquny 319
r-" " "%wiz” -~~~ 1 F---- 2z - - - - -
Foom = -oigs 5es - - va&a
°d4y 3eL 1 k- uor3ades
k- - e R,
L wqw W m o Wﬁmumm-Hm>mﬂuﬁmc0ﬂumcﬂasoo
F 231 3 i LT T
)¢ L ma
(TR € 5 R N w1y juswaydmo) WNWTIUIW
‘o . (L) ISTT oA
ISTT AICATIDV SEL ANVmEHH £31n31qUy / 1euUOTIRUTqWO) Juapuadaq
N /
A®T3Q JO Junomy h 1817 £3ITATIOV Sel
IaqunN 319 ISTT [3A9] uoT 3098
5 TeuoTjEUIqUe) Judpuada] TG5AT I0dI00 0 = 1
(s)
T0T3398 o uoT3IeOIII09dg LBT3Q T673555
UOT3BOTITOAAS 5 I
3uT13S ABT3Q 103BTIUD19II1q - — — — -9 juaAd IndIno 1 = 0
uoileoT3Ioads Le1aq uot3leor3yIoads andang uoT3eOTFIO2dSg
(M I03BTIUDIIITITA

£~V TNOId

3IN3IONIIS UOTIBOTITID3dS IndanQg [sA]

1
4
4
4
4
4
4

4
J

98.

S3(0B3§ pu® S9TIOoW3) - SIJUBISUOD

¥-V T4Nd1d

‘0 UOTII09S X0 Al0owWSK SB UOTIISS 3wos 3aq Isn (g)
‘ejep 3ndino 31035 03 pue S3dOEBJIIJUT TeBIO=2ds 93eTNnmTSs 03 pasn ()

-98urYyd I3A9U SINTBA IATSY3 ISNBIIq

suoT3ed13103ds IndinQ ou satnbaa Asyy ‘syspom TeIpI dae L3Yy3 Isnedaq
s8e] 2qoi13S o uctr3jTsuel] aarnbax jou op s8utilg 19A9T Juelsuo) 3Byl 230N (1)

- " 7 Twopion T T T W pIoM
|
_.----mmumz----." T PIoM
R P a o PIoR
JWMEN 9OU3IIFAY SWEN SOua193sY
W ' SS3IPPY WNWIXER W ©SS3IppV WNMIXER
IaqunyN 319 I9PI0 Y3TH I3qunN 314 I9PI0 Y3TH
adAy], 9dAg,
Amvcoﬂuowm mmV=0ﬂuomm
ZuTi3lg T9A9] SS2IpPpY 3uTI3lS [OAIT SS3IPPY 0 0
Y33uax] SS2appVy Y33udT ssaippy ERVET
vaxumum AmvmuoSwz Aavmaﬂuum 1°A3 juelsuc)

99.

sjuswald ®3l®Q OT307T JOIJU0D
G-V HaNOI1d

‘peaads aaey pInoys sfe] 3osay pue Juswmajdmo) ‘39§
UOTIBUTISIP J0U IO I9YIBYM S UTWIAS]3p - TEIPI I0 pafresaq ()

A¢vumnsdz 31d I9p1Q Y3ITH ‘8ura3ys-qns pajeuldTisap Jo 31q I3pIo Y31y Jo IaqunN (%)
3 ‘7 ST onT®BA STY3 ‘TE9pI ST I9Isueiy Ic Juaaq IT (¢€)
€ = -39s 8®l 9q0I3§ PUB paNd9Yd SBL UOTITSUBIL pue
AHV=0ﬂu S agueyy andul jou 10 IIYISYM SSUTWIIIIP - JBOPI 10 PaTIeIAd (27)
Mo®3IS 10 AJOWIR " IuTiIlS ‘0 UOT3IO3S I0 UOTIOAS 3ATIO® Juadsaad aq 3Isny (1)
dot3g-dr1d uotTiBUTISA(Q o - L
IoqunN 319 I9P30 UITH r A vaoauumw 1
A¢u F - - 1 - - - -4
) vumNH 13ysueal
Z - - - - - -
AHvaouuumm Aﬂvcoauumm 1
3}2EB3S 10 AIowaW - 3UuTiIS b-- dagysuedlj, --- -
1°A97 22In0§ R .aﬂ
Y33ua] 3STT I9Jsueig \
Io3eaadQ \
gy I KITnEIaEy I~ 7 3sT1 3weaz pazen” ~ 1\
BN S
19ysuei] Y7« A 1 \
b - - - - Gofases ~ - - - 1 /
M~ " “emikefeq =~ 7) Fatyiag feie Bufusritpusn’ \
b= - - " Gofases ~ = " " 1 b - - 3831 30eAm paasn” 1 ' I8T] JI9JSuei]
b - - " " "38eAg” -~ " "~ 1 - T 7 Tisquny mwm =i JWEN o9ouoi1939y
b o= " e Refeq © 7 7 b-- S A 1 (g) tL KITnITqEY
F - - - " Gojades -~ ~ 1 k- -AHV=0ﬁuumm - _ 0 3STI 2399
A Tme 13§ T9A9T wcﬂcmauﬂucooAnl| - 1 35T1 9389
L o oo et m e e mm e e = - L - - _ - _ _ _ _._ _ gl — — —

ISTT 3usAg poiey ISTT 2389 JuaAg

100.

3IN3oNnI3§ ®BIERJ 3UINANY AJTATIOY

9-V ddNOId

-sdo13-d113 1®9pPT 303F sS8e3 3andur °991y3l JI® IBOIO O3 =" 7 edfy 3e1 ~ ~ ~ 1
pasn st jnduy -3d{] 8eJ 3Indul 10 £3ITATIOY OnjeA pIEZEYH F - - mwwm a - -4
‘Jusmaidwo) ‘39say ‘39S ‘3qoia3xgs ‘uoriTsueiy 3q LeW (7) quAN 3T
*g-y 2an814 Jo 3517 £3TATIOV Sl wWoiy o3 pajurod aq KEW (1) b--- Tuorjoas | 1
b= “sii3ag Teavl 1
b oo o oakg geg - 7 T T
o= - -
IaqunN 31g
F--- Tuor3oes T 1
[~ " swiz siriaies - - 1 o 7 Tsaria§ fenet T
b---- aniepn | i _ -~ \\P S
- IaqunN 31d 1 r= - " 3si139s3y” ~ ~ v~ / ISTT 39Sy
oo cugrgesg T 7 7 b otaeyinfer Zeteq ~ 1 7
k- Sut13g 19A37 LB13Q i .\\€ T T T 3s17 jueay | 1 / I Swiz uorjaldmo) 3o1nog)
F-- Smigp 8G1733e§ - 1 sy b--- m.ﬁvma:. -7 .ﬂ/\ b--- “woriosg” T~ " 1
. e e e e m - - - - - - N\ - _— - - - - - - - -
F anTep i \\ F Sy 39s9% ._\\ \ k Jusag 1
k- IsqunN 319 1 / - uumHA anyep Kelaq 1 /./ F s mE«H “uo1397dwo) m.x..msm..w.ﬁ
b= " "ugy303s™ 7 7 T ..“\\\ P S mmmquumwmmu T ._I N b tugg3esgm T 7 7
- ~
b : - U VS
Sutalg” aw>wq %mHm - F QEHH ~ Juaag
Lol m e L. .- L. @™ .- Temy Ll

3sTT anyep Leia(q ananyd L3ITATIOV ISTT JuaAg

101.

~ T T T 7T T -

~T T T T -

“13qunN 31g

uoT13298
“8uti13§ doya-diTd TE9PI

“13quny 31

uoT399S
“gur13g doya-dIid 1eapI

3s17 8e] 3nduy Te9pPI

“a3qunN 319

uoT3998
“Surias dolg-di13 1e°pI

“13quny 314

UoI399§
“8uti3g dolg-di1d TeopI

3s17 do1d-dr1d 1®°PI

[e e . T]

- e e b L L Jd

S31STT 33B103§ AIriOodmaj

L-V TANOIA

*0 UOT3ID9S UO PuUNcy
STeuSTS 90BJI93UT I0J 3IB SIST] 9S3Y3] UO paIajua siajurod IV
*u01303s ®3ep JudurmIsd-uou Yoes 103 papraoad ST S3ISTT ISyl Jo JuQg (1)

I Swig uorlajdmod Iojsueir]
R A
b oo - - Gofases ~ - - 7
Fsiriag dofacdita peireasa’
Suiy uorieldmon iejsueiy’

TadqunN 319

G013593

rT-Tr T -
e < A

Suri13s dola-dI1d paTTe3ad

1s771 do1d-dr1d paITEIL(

FT T T T T

-7 T T -

(1)

" 7 Iaquny 214

“uo13oag
“8urilg ToART |
"~ zoqunN 319

“uo1308g

ISTT oA SATIOV

© 7 Iaquny 319
“8utiag 9AeT |
T T IaqunN 319
“8uTa3g oA

3s11 Indul uor3lo9g

R e I

e ke e e

102.

APPENDIX B - INTERMIXED DATA STRUCTURE SIMULATION ALGORITHM

In this appendix we shall discuss a simulation algorithm based on
the intermixed data structure discussed in Section V and illustrated in
Appendix A. This will be done in a format similar to that used in
Section IV to discuss the simulation algorithm based on idealized cir-
cuit and signal models.

The center of a simulation is the Activity Queue, which is a time-
ordered list of all future acfiviﬁ& for the simulator to undertake. The
structure of the AQ (Figure A-6) consists of a list of time cells con-
taining progressively larger values of time. Each time cell has a pointer
to an Event List, a Delay Value List and a Reset List. The Event List
contains the locations (addresses and section numbers) of the Events
which the simulator knows must be activated when simulated TIME reaches
the value contained in the time cell. An Event's time of activation is
the earliest possible time at which it could occur (starting time of
Section III). Listed with an Event's location on the Event List is a
source completion time. The Event's settling time, or the latest possi-
ble time at which it could occur, is found by adding its ambiguity time
(contained in the data block describing it) and its source completion
time.

The Delay Value List contains the locations (string addresses, bit
numbers and sections); of all level delays whose output values the simu-
lator knows will change when simulated TIME reaches the value contained
in the time cell. Accompanying each level delay's location is its new

value and a settling time. This settling time is added to the delay's

103.

ambiguity time to determine the settling time of the output change.
Likewise, the Reset List contains the location (string addresses, bit
numbers, sections and tag types) of all status tags which the simulator
knows must be reset when simulated TIME reaches the value contained in
the at;ached time cell.

When the simulator determines that an Event is to be activated, it
adds the Event's location and source completion time to the (possibly
empty) Event List attached to a time cell containing the Event's start-
ing time. If no such time cell exists, one is created and placed on the
AQ in the proper time position. Likewise when the simulator finds that
a level delay value should change, or a status tag should be reset,
entries are added to Delay Value and Reset Lists attached to the correct
AQ time cells. Once an Event is placed on an Event List it is not
removed until activated, but the source completion time portion of the
entry may be modified. Likewise Delay Value List entries are not deleted
until activated, but the new values and settling times may change. Reset
List entries may be deleted before activation time. During the execution
of a simulation the simulator may attempt to set a status tag and find it
already set. When this happens the simulator must fetch the tag's old
reset time and compare it with the newly computed one. If the new reset
time is chosen, the old Reset List entry is deleted and a new entry is
added to the Reset List attached to the AQ time cell containing the new
reset time.

Each status tag is part of the description of some level. When an
entry for that tag is added to or deleted from a Reset List, a matching

entry is also added to or deleted from the Tag Activity List attached to

104.

the level's Output description (Figure A-3). The matching entry consists
of a cell containing the status tag type (Transition, Strobe, Set, Reset,
Complement, Hazard or Activity) and a pointer to the AQ time cell which
the Reset List is attached to. The simulator uses the Tag Activity List
to fetch old tag reset times when comparisons are required, and to locate
old Reset List entries when they are to be deleted.

The simulator operates under the control of another program which
translates user commands, formulated in the extended design language of
Section VI, into the data structure. This program, which we will call
the translator, also translates outputs from the simulator into messages
for the user. A simulation begins with an initial state for all level
signals and an initial Activity Queue based on instructions from the
user. The top time cell on the AQ is called the CLOCK and contains an
initial value of zero. During the rest of this appendix the value of
the CLOCK, or top time cell, is referred to as simulation TIME. When
all of the entries attached to the top time cell have been activated the
cell is deleted, stepping the CLOCK. The simulation stops when the
simulator steps the CLOCK and finds the AQ empty or the Simulation Termi-
nation Tag set. This tag is set when the Terminate Transfer ig éxecuted
or when the simulator detects and informs the translator about a simula-
tion alarm. The Event List attached to the top time cell on the AQ is
called the Immediate Event List. It contains those Events which are
currently active. Likewise the Immediate Delay Value List and Immediate
Reset List contain value changes and tag resets which are currently

active.

R

105.

The simulation data structure is divided into a number of data
gections. At any given time, the simulator will be working with sec-
tion 0 and one of the other sections, called the '"non-permanent"
sections in Section V. The non-permanent section being worked at a
given time is called the Active Section and is selected by a round robin
process. When simulation begins an Active Section is selected. All
value changes in the Immediate Delay Value List for section 0 and the
Active Section are activated. All status tags on the Immediate Reset
Li;c for section 0 and the Active Section are reset. All Events on the
Immediate Event List for section O and the Active Section are activated.
The activation of an Event may cause new Events to be added to the Imme-
diate Event List. The process is continued until there are no more
Immediate Event List entries for section O and the Active Section.

At this point all level changes brought about by the Event activa-
tions and the level delay value changes are propagated through the logic.
This will cause more entries to be added to the AQ; in particular, more
Events may be added to the Immediate Event List. Any of these belonging
to section O and the Active Section are activated and their changes are
propagated through the logic. This is continued until no new Events are
added to the Immediate Event List for these sections. The propagation
of level changes through the logic will generally cause section interface
levels to change. Each non-permanent data section has a Section Input
List (Figure A-7). When an interface level changes, its location 1is
placed on the Section Input List of its destination non-active section.
When this section becomes active, the level changes on its Section Input

List are propagated through the logic.

106.

After all immediate activity for section O and the Active Section
has been completed, the next section on the round robin is made active.
All status tags on the Immediate Peset List are reset and immediate delay
vaiue changes are activated for the new Active Section. All Events on
the Immediate Event List for the Active Section are activated. The level
changes brought about by the changing flip-flop, delay, and interface
levels are propagated through the logic. Additional Events entering the
Immediate Event List for section 0 and the Active Section are activated,
etc. until no new ones are added.

This process 1s continued on around the sections until all immediate
activity has been completed; i.e., the immediate lists and all Section
Input Lists are empty. The simulator is then ready to step the CLOCK.
First it must make arrangements for the ideal flip-flop input tags which
were set during the last instant of time to be reset. This is done by
adding a number of entries to the Tag Reset List attached to the next
AQ time cell. The Simulation Termination Tag is then tested to see if
it has been set. If so, control is passed on to the translator. Other-
wise the CLOCK is stepped and the simulator begins over with the new set
of immediate activity lists.

During the processing of an instant of simulated time, the simu-
lator uses a number of lists to store temporary information (Figure A-7).
The Section Input Lists were mentioned above. An Ideal Flip-Flop List
is used to keep track of ideal flip-flops with active inputs. A Detailed
Flip-Flop List serves the same function for detailed flip-flops. An

Active Level List is used to remember level signal changes which have not

107.

yet been propagated through the logic. Finally, there is an Ideal Input
Tag List which is used to record ideal flip-flops whose input tags will

require resetting before stepping the CLOCK.

108.

1. OQutline

The following is a fairly detalled outline of the simulation algo-
rithm discussed above. The phrases ''the translator is informed that
alarm has occurred" and '"output information is passed on to the trans-
lator'" occur several times in the outline. These phrases do not imply
that the simulation is interrupted for these output messages, but rather
that they are added to an output buffer. The simulator may pass control
over to the translator to process these messages at regular intervals
and whenever the output message buffer becomes full.

Before a simulation begins, all delay line, flip-flop and detailed
combinational level values are initialized and the Input Change Tags for
all idealized combinational levels are set. The Activity Queue is
initialized and all other lists of temporary information are emptied.
The first section to become the Active Section is the lowest numbered

one other than zero.

I. The next section on the round robin becomes the Active Section.
A. All Immediate Reset List entries for section O and the Active
Scction are activated and deleted from the list.

1) This causes various Transition, Strobe, Set, Reset,
Complement and Activity Tags to be reset for detailed level
bits.

2) If the Tag Type entry (Figure A-6) is Input, all three
flip-flop input tags (Set, Reset and Complement) are reset.
Input Tag reset entries are only used to clear ideal flip-

flop input tags.

109.

3) A special Tag Type (Figure A-6) is reserved for detailed
flip-flop Transition Tags. When a detailed flip-flop's Transli-
tion Tag is reset, its New Value replaces its Old Value, its
Hazard Value 1is reset, and an entry is added to the AQ to cause
its Activity Tag to be reset. (See V - B (3) below.)
4) If a flip-flop Hazard Value bit is reset, the flip-flop's
location (level string, bit and section number) is added to the
Active Level List. The flip-flop's Output Specification is
checked to see if it feeds a level delay. If it does, an entry
is added to an AQ Delay Value List to cause the level delay
value to make the same change at TIME plus the amount of delay
listed in the Delay Specification (Figure A-3). The reset time
for the flip-flop's Transition Tag plus the amount of delay is
used as the source completion time on the new entry. (See V - B
(4) below for special case which causes a Hazard Value bit reset
entry to be added to the AQ. This is an optional feature.)

B. All level locations (strings, bit and section numbers) on the

Active Section's Section Input List are added to the Active Level

List, and the Section Input List is emptied. These levels are all

interface signals and therefore are on section O.

II. The value changes for section O and the Active Section listed on
the Immediate Delay Value List are executed.
A. The settling time for each change is calculated by adding the
deiay line's ambiguity time to the settling time included in the

Delay Value List entry (Figure A-6).

110.

1) The delay line's Transition Tag is set. An entry is added
to the AQ to cause it to be reset at the delay line's settling
time. If the Transition Tag is already set, its old resetting
time on the AQ is replaced with the new one.
2) If the delay line amtiguity time is &, the Transition Tag
is not set and the delay line settling time equals TIME, the
current value of CLOCK.
B. If the delay line's value or settling time has changed, its
location (delay string, bit and section number) is added to the
Active Level List.
1) The delay's Output Specification Block is checked to see if
it feeds a second level delay line. If so, an entry is added
to the Delay Value List attached to the AQ time cell containing
TIME plus the amount of delay listed on the Delay Specification
(Figure A-3). The added entry consists of the location of the
second delay line (strihg, bit and section), the current Hazard
and New Values of the input delay line and a settling time equal
to the sum of delay of the second delay line and the settling
time of the input delay line. If the second delay line is ideal,
the Hazard Value in this entry is zero no matter what the in ut
delay line's Hazard Value might be. If another entry is already
present on the same Delay Value List for the same level delay
bit, the old entry is deleted.
2) 1If the level delay's New Value has made a transition, its
Output Specification is checked to see if it feeds a differen-

tiator sensitive to this transition. If it does, the differ-

111.

entiator's output Event is added to the Immediate Event List.

The settling time of the level delay is taken as the Event's

source completion time (Figure A-6).

3) If the level delay's Hazard Value has changed to one and it

feeds a differentiator, the translator is informed that a Hazard

Alarm has occurred and is given the Reference Name and bit

number of the level delay. Any differentiator fed by the level

- delay and not activated in (2) above is also activated.

- C. Each value change entry is removed from the Immediate Delay
Value List as it 1s activated.

ITI. The section O and Active Section Events on the Immediate Event List

are activated one at a time and deleted from the list until no more remain.
A. An Event is removed from the list when it is activated. It's
completion time is computed by adding its ambiguity time to the
source completion time accompanying it on the Immediate Event List.
If the Event has & ambiguity time, TIME is taken as its completion
time.
B. All conditioning levels on the activated Event's Gate Lists are
tested (Figure A-5). All Event locations contained on Gated Event
Lists attached to conditioning levels with correct values (l's on
Gate List 1 and O's on Gate List 0) are added to the AQ. The acti-
vation time of each of these Events, or the value of the AQ time
cell to which the entries will be attached, is calculated by adding
TIME to the delay time accompanying the Event on the Gated Event

List. The source completion time of each of these Events is computed

112.

by adding the same delay time to the completion time of the pres-
ently activated Event.
1) when an ;ggg; level is tested, its Input Change Tag is
checked to see if it needs to be re-evaluated (this tag can
only be set for combinational levels). If so, it may be depend-
ent on other ideal combinational levels which may also need re-
evaluation. Therefore, the subroutine which evaluates ideal
combinational levels should be recursive.
2) When a detailed level is tested by an Event or Transfer with
non-zero signal spread (completion time not equal to TIME), the
level's Strobe Tag is set. A Reset List entry is added to the
AQ so that the tag will be reset at the sampling Event or Trans-
fer's completion time. Thus a detailed level's Strobe Tag is
set during the interval of time when it might be sampled.

If the Strobe Tag is already set when the level is tested,
the tag's previous reset time is compared with the completion
time of the sampling signal. If the previous reset time is
earlier, it is replaced by the ompletion time.

The 0ld Value is the one always used when testing detailed
levels.

3) If the Transition Tag of a detailed level being tested is

set, the translator is informed that an Event Sampling Error

has occurred and is given the Reference Name of the sampling

Event and the Reference Name and bit number of the level.

113.

C. The Transfers on the activated Event's Transfer List are executed.
The completion time for each is the sum of its ambigulty time and
the completion time of the activated Event. If a Transfer's ambi-
guity time 1is &, TIME is taken as its completion time.
1) 1Ideal Transfer sources may require re-evaluation as in B (1)
above.
2) Strobe Tags are set for detailed Transfer sources as in B (2)
above.
3) If the Transition Tag of a detailed Transfer Source is set,

the translator is informed that an Undefined Transfer alarm has

occurred and is given the Reference Name and bit number of the
level and the Reference Names of the Transfer and activated
Event.

4) 1If the transfer source is a memory, the memory's address
value is checked to make sure that it is no greater than m,
the maximum cell address. If the address is too large, the

translator is informed that an Illegal Memory Address alarm has

occurred and is given the Rerference Names of the memory, the
transfer, and the activated Event.

5) If the transfer source is a stack, a similar test is made
on its address value. If it is out of bounds, the translator

is informed that an Illegal Stack Address alarm has occurred

and is given the Reference Names of the stack, the transfer, and

the activated Event.
6) If the transfer destination is a memory or stack, the above

address tests are made and the transfer is executed.

114.

7) If the transfer destination is an idealized register,
flip-flop Set, Reset and Complement Tags are set for those
bits whose source values are correct. If an attempt is made
to set a Complement Tag when it, or one of the other two tags,

is already on, the translator is informed that a Register Input

Error has occurred and is given the Reference Name and bit
number of the flip-flop and the Reference Names of the Transfer
and activated Event. The same thing is done if an attempt is
made to set a Set or Reset Tag when one of the other two tags
are on. When a flip-flop's first input tag is set, its string
and bit number is added to the Ideal Flip-Flop List.

8) If the transfer destination is a detailed register, flip-
flop Set, Reset and Complement Tags are also set for those bits

whose source values are correct. A Register Input Error is

reported to the translator under the same conditions discussed
in (7) above. 1In addition, if an attempt is made to set a
flip-flop's Complement Tag while its Activity Tag is on, the

translator is informed that a Minimum Complement Time Error has

occurred and is given the Reference Name and bit number of the
flip-flop and the Reference Names of the Transfer and activated
Event. When a tag is set for the first time since last reset,
an entry is added to the AQ to cause it to be reset at the
transfer's completion time. Subsequent attempts to set the tag
result in a comparison of its old reset time and the completion
time of the transfer. If the old reset time is earlier, it is

replaced with the completion time.

115.

e

If a detailed flip-flop's three input tags are all off and

a transfer sets one of them, the flip-flop's location (string,
bit and section) and the completion time of the transfer are
added to the Detailed Flip-Flop List. If the first tag to be
turned on is the Set or Reset Tag, subsequent attempts to set
the same tag before setting one of the others will also add an
entry to the Detailed Flip-Flop List, provided that the comple-
tion time of the transfer is less than the reset time for the
tag. When a group of pulses are resetting a flip-flop, the
flip-flop must be reset by the minimum of the completion times
of the pulses. Therefore an entry is added to the Detailed
Flip-Flop List when a new input is activated with a completion ;
time which may be earlier than the previous active inputs of
the same type. Once an input error is detected, no more
entries are added to the Detailed Flip-Flop List. The detailed
flip-flop evaluation routine (discussed in V below) will not
change the output value or settling time of a flip-flop with
an input error because its new value is ambiguous.

9) If a Push or Pop Transfer is activated, the necessary cells
are added to or deleted from the specified stack and the maxi-
mum stack address is re-evaluated. If an attempt is made to
Pop words from an empty stack, the translator is informed that

an Empty Stack Pop error has occurred and is given the Reference

Names of the stack, the Pop Transfer, and the activated Event. 'S
10) If an Output Transfer is activated, the specified output

information is passed on to the translator.

116.

11) If the Terminate Transfer is activated, the Simulation

Terminate Tag is set and a Terminate Message is passed on to

the translator including the Reference Name of the activated
Event.
IV. New output values are computed for the flip-flops listed on fhe
Ideal Flip-Flop List.

A. The input tags are not reset. If more than one input tag is

set for the same flip-flop, its output value is unchanged. Other-

wise the Set Tag causes it to become 1, the Reset Tag O, and the

Complement Tag causes the value to complement.

B. If a flip-flop's output value changes, its location is added

to the Active Level List.
1) The flip-flop's Output Specification is checked to see if
it feeds a differentiator sensitive to this transition. If it
does, the differentiator's output Event is added to the Immedi-
ate Event List. TIME is taken as the accompanying source
completion time.
2) The Output Specification is also checked to see if the
flip-flop feeds a level delay. If it does, an entry is added
to an AQ Delay Value List to cause the level delay value to
make the same change at TIME plus the amount of delay listed in
the Delay Specification (Figure A-3). The accompanying settling
time is also the sum of TIME and the amount of delay listed in
the Delay Specification. If another entry for the same level
delay bit is already present on the same Delay Value List, the

old entry is deleted.

e

117.

V. New output values are computed for the flip-flops listed on the
Detailed Flip-Flop List.
A. 1If the Detailed Flip-Flop List contains more than one entry for
the same flip-flop, all but the entry with minimum completion time
is deleted.
B. The new output value for each flip-flop is calculated and its
entry is removed from the Detailed Flip-Flop List.
1) The O0ld Value bit is unchanged while the New Value bit is
calculated the same way as the new value of an ideal flip-flop
in IV - A above.
2) If the flip-flop's New Value bit changes, its Transition
Tag is set if previously off. An entry is added to the AQ to
reset the tag at the flip-flop's new settling time. This is
calculated by adding the input completion time listed on the
Detailed Flip-Flop List to the flip-flop's ambiguity time.
Thus the Transition Tag is on whenever the flip-flop's value
might be changing, and therefore ambiguous.
3) When a flip-flop's Transition Tag is first turned on, its
Activity Tag 1s also set. When the Transition Tag is reset, as
in I - A (3) above, an entry is added to the AQ to reset the

time units later, where T, is the minimum com-

Activity Tag T C

c
plement time of the flip-flop. Therefore the Activity Tag is
on whenever it is illegal to strobe the flip-flop's complement
input. If the activity Tag is already on when the Transition

Tag is turned on, the Activity Tag's reset entry (there must

be one) is deleted from the AG. This technique for resetting

C.

118.

the Activity Tag is used because it is not necessary tolchanée
Actlivity Tag reset entries every time the flip-flop's settling
time changes.

4) If the flip-flop's Transition Tag is already on when its
New Value bit changes, the Hazard Value bit is set. The flip-
flop's old settling time (the time when the Transition Tag is
reset) 18 compared with its new settling time. If the old
settling time is earlier, it is replaced by the new one and an
entry is added to the AQ to have the Hazard Value bit reset at
the old flip-flop settling time. (This feature is optional.)
5) If the flip-flop's Transition Tag is already on and the
New Value bit is unchanged, the new settling time is coﬁpared
with the old one. If the new settling time is earlier, it
replaces the old one. If the Hazard Value bit is on, the
Transition Tag reset time can be no earlier than the Hazard
Value bit reset time (see 6 above). If no reset time is listed
for the Hazard Value bit, the Transition Tag reset time is not
changed.

If a flip-flop's Hazard Value bit, New Value bit, or settling

time has changed, its location (string, bit and section) is added

to the Active Level List.

1) The flip-flop's Output Specification is checked to see if
it feeds a level delay. If it does, an entry is added to an AQ
Delay Value List to make the same change in the level delay
output at TIME plus the amount of delay. The entry consists of

the location of the delay (string, bit and section), the Hazard

116.

and New Value bits of the input flip-flop, and a settling time
equal to the amount of delay plus the settling time of the
inpnt flip-flop. If the delay line is ideal, the Hazard Value
bit in the entry is zero no matter what the flip-flop's Hazard
Value might be. If another entry for the same level delay is
already present on the same Delay Value List, it is deleted.

2) If the flip-flop's New Value bit has changed, its Output
Specification is checked to see if it feeds a differentiator
sensitive to this transition. If so, the differentiator's out-
put Event is added to the Immediate Event List. The seltling
time of the flip-flop is used as the Event's source completion
time.

3) 1If the flip-flop's Hazard Value has changed to one and it
feeds a differentiator, the translator is informed that a Hazard
Alarm has been detec:ed and is given the Reference Name and bit

number of the flip-flop.

At this point the Active Level List contains the locations of all

flip-flops, level delays, and section interface levels whose values or

settling times have changed and have not been propagated through the rest

of the level logic. These changes are now propagated through the use of

the Dependent Combinational Level Lists, which are parc of each Output

Specification.

If a dependent level is ideal, its Input Change Tag is set.
1) If the Input Change Tag is already set, there is no need to

propagate the change past that point. Whenever a new value is

B.

120.

computed for an ideal combinational level, its Input Change

Tag is reset.

2) 1If the level is an input to a differentiator, its new value
must be computed. If the value makes the transition which the
differentiator is sensitive to, the differentiator's output
Event is added to the Immediate Event List. TIME is used as

the Event's source completion time.

3) If the level is an inpu