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Abstract

Phase noise is an important factor in the design, analysis and performance of the future op-
tical communication networks. We analyze the performance limitations imposed by phase
noise on optical communications, for both transmitter-receiver pairs and networks. We
consider various modulation schemes, in particular amplitude, frequency and phase mod-
ulation. For each modulation scheme, a number of reception strategies at intermediate-
frequency (IF) are analyzed, and their error performances are compared. Optimum receiver
structures are also obtained and seen to he very complex.

We also consider a class of communication strategies in which a reference signal is
transmitted to alleviate the effects of phase noise. We show that systems in which power
is equally divided between information-carrying and reference signals are limited to the
performance of conventional single-carrier systems with orthogonal modulation. On the
other hand, optimal allocation of power between the information and reference signals
results in significant performance improvement. This is due to the fact that the reference
signal occupies a smaller bandwidth, and hence it can be tightly filtered at the receiver.

We then take a signal space approach to detecting phase noisy sinusoidals in additive
white Gaussian noise. By obtaining the Karhunen-Loeve expansion of the signal with phase
noise, we demonstrate that the number of relevant signal directions increases from a few
to infinity with the introduction of phase noise. Consequently the complexity of optimum
detection with phase noise is very high.

Lastly, we consider the effect of phase noise in Frequency Division Multiple Access
networks. We show that phase noise induced spectral broadening decreases the efficiency in
which the available frequency band can be allocated to users in such a network. We specify

this degradation for both single detector and balanced detector reception strategies.
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Chapter 1

Introduction

Coherent optical communication technology offers great promise in realizing high data rate,
long-distance communication networks. The advance of low loss single mode optical fibers
with bandwidth in the order of 10 THz (10! Hz) and compact and economical semiconduc-
tor lasers has made it possible to communicate at data rates that are orders of magnitude
larger than that of electronic systems. This possibility has motivated a large amount of
research in the emerging field of fiber-optic communications. In the twenty years that fol-
lowed the introduction of the laser and the silica fiber, several research directions have
achieved ground breaking progress. These research efforts may be broadly categorized into
three groups. The first one is the development of devices to be employed in a commu-
nication system, such as semiconductor lasers, optical filters and amplifiers, glass fibers,
photodetectors, etc. The second major research concentration is in the design and analysis
of communication systems. Finally, there have been experimental efforts to demonstrate
the feasibility and to improve the performance of these systems.

These three categories of research have had considerable interaction among, and influ-
ence on, each other. For example, the lack of spectral purity of the semiconductor lasers has
led system researchers to design systems that will be robust against this nonideal effect, and
experimental research has tested the designed systems. Similarly, the need for amplification
of lightwaves for improving the system performance has motivated the device researchers
to concentrate their efforts on optical amplifiers. The rapid progress of fiber-optic commu-
nications from a mere concept in early 1970s to practical systems in early 1990s owes much
to this interaction.

The focus of this thesis falls in the second category above. This work will concentrate on
an inherent nonideal phenomenon, phase noise in semiconductor lasers. We will investigate

methods to remedy the effects of phase noise, and find the limitations that phase noise

13
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Light
Source
Modulator Opticgl Receiver
Fiber
Information
Source

Figure 1-1: Basic block diagram of a fiber-optic communication system

imposes on communication systems.

This work is intended to be a comprehensive treatment of phase noise in coherent optical
systems. A considerable amount of research has been performed on phase noise as the list
of references would suggest. However, there does not exist a study of phase noise that treats
the phase noise problem comprehensively, that investigates the different modulation formats
with a consistent model and a uniform set of assumptions. The problem of optimum detec-
tion of phase noisy signals has not been adequately addressed. The network implications of
phase noise has also received little attention. It is our goal to provide a study of this rather
broad problem. In attempting to achieve this goal, we take the viewpoint of a commu-
nication theorist who tries to predict the performance of various communication schemes.
Communication theory has addressed many problems which are similar in nature to the ones
encountered in optical communications. Nonetheless, tools developed through many years
in communication theory are not fully utilized by the optical communications community.
This work is an attempt to narrow the existing gap in the specific problem of phase noise.
It is hoped that the results we ohtain will be helpful to both the optical communications
community by providing theoretical performance limits that must be aimed in practice, and
to the communication theory community by pointing out that many open problems remain
in optical communication that can be attacked via communication-theoretic methods.

Before going into the details of the problems in the next chapters, we briefly describe

the techniques used in optical communications below.
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1.1 Fiber-optic Communication Systems

The basic features of a fiber-optic communication system are outlined in Figure 1-1. The
light source in the figure is typically a laser or a light emitting diode (LED). The information
source produces what we would like to send to the receiving end. While the information can
be analog, e.g. voice, video, text, etc., or digital, e.g. data from a computer, the framework
that we are interested in is that of digital communications. Therefore it is assumed that the
information source produces digital, most often binary, data. If the underlying information
is analog, it has been converted into digital form via sampling and quantization. The
modulator is a means of impressing the digital data onto the lightwave output of the laser
(or LED). It does not have to he a distinct device, and in fact it is possible to modulate
the laser output directly by using the data in the driving circuitry of the laser.

After the digital information is impressed onto the optical field, the resulting lightwave
is transmitted via the optical fiber which connects the source of the information to the
desired destination. The receiver converts the received lightwave back to electrical data.
The way the receiver operates depends on the modulation format, as well as optical detection
strategy. In general, one of the two optical detection techniques is used: direct detection
or coherent detection. In direct detection, the front end of the receiver is a photodetector
which outputs an electrical signal proportional to the intensity of the received lightwave.

In particular if the received optical field is
rope(t) = A(£)e")
then the average current output of the photodetector will be
i(t) = K|A(t)?

where K is a constant that will be elaborated on later. The current 7(t) will be processed
electronically to recover the data. Note that the frequency and phase information of the
lightwave is lost during the photodetection process. Therefore the information about the
data must be embedded into the intensity of the transmitted lightwave. This is called
intensity modulation (IM). The simplest and most commonly used form of IM is on-off-
keying.

In coherent detection the incoming optical field is combined with a local oscillator field
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before photodetection. If the incoming field is

min(t) = A(t) exp(j (27 vot + 6(1)))

and the local oscillator field is

rLo(t) = Apo(t) exp(j(2mvit + 0ro(t)))

then the average output of the photodetector will he

it)= K [JA®P+|Aro()?] +
2K Re[A(t)A3o(t) exp(i(27(vo — 1)t + 6(t) — Br0(t)))]

which has a baseband component as well as an intermediate frequency (IF) component at
frequency frr = vo — v1. The frequency and phase information is then preserved, up to a
translation.

There are several characteristic differences hetween coherent detection and direct detec-

tion. Some important ones are the following:

1. Coherent detection allows electronic processing of the received signal at IF, while this

is not possible at direct detection.

2. Frequency and phase modulation is possible with coherent detection, while intensity
modulation is the only option with direct detection. (Frequency and phase modulation
can he used with direct detection when measures are taken to convert the modulation
to intensity modulation prior to photodetection. Some examples of this are wide-
deviation frequency shift keying with optical filters at the receiver, and differential

phase shift keying with optical delay and combining elements.)

3. Coherent detection results in better sensitivity (defined as the required signal power
to achieve a given bit error rate) than direct detection. This is due to the effective
amplification of the signal power by the mixing of the local oscillator signal. With
the advance of optical amplifiers, direct detection systems will also iimprove in their

sensitivity.

4. Since the optical spectrum can be shifted to different IF frequency values, frequency
division multiplexing of different users can he more easily accomplished in coherent

detection.
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5. While direct detection is essentially a power measurement, which can he easily imn-
plemented using the current state-of-the-art, coherent detection is more involved, and

thus requires certain practical obstacles to he overcome.

The last item above involves the matching of the polarization of the received and local
fields among other coherence problems, and is the primary reason why almost all fiber-optic
communication systems implemented to date employ direct detection. However, due to the
advantages mentioned ahove, coherent detection has received much attention. Feasibility
experiments are heing performed in research laboratories worldwide. While a large number
of technological problems have to be resolved hefore coherent systems can be regarded as
a practical alternative, the progress in the field is certainly encouraging. It remains to be
seen as to which of the two techniques will be widely used in the communication systems
of the future. It will not be far-fetched to imagine the two to coexist, just as AM and FM

do in today’s radio systems.

1.2 Phase Noise

Phase noise is a phenomenon associated with spontaneous emissions that occur during the
operation of a laser. The photon emission in a laser is primarily of two kinds. The first is
stimulated emission in which an electron in a high energy level interacts with an incoming
photon to release some of its energy and emit a photon. The result is an amplification of
light. This is the intended mode of laser operation. (In fact, the name “laser” originates
from Light Amplification via Stimulated Emission of Radiation). However, there are also
spontaneous emissions in which an electron in a higher energy level emits a photon in a
random fashion. The difference between the two types of emissions is that stimulated e-
mission results in a light with the same frequency and phase as the incoming light while
spontaneous emission results in a random phase. Each spontaneously emitted photon con-
tributes a random incremental change in the overall phase of the laser output field. Thus
the phase of the laser output executes a random walk from its nominal value. As the rate
of the spontaneous emission events increases, the phase can be modeled as a Brownian
motion process [1]. This randomness in the phase is commonly referred to as phase noise.
While phase noise is common to all lasers, and more generally to most oscillators [2], it
is especially strong in semiconductor lasers. It was observed in 1981 that the phase noise
in semiconductor lasers is 30-50 times greater than the theoretical prediction of the time

[3]. It was later shown in [1] that this is due to a change in the real refractive index of the
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laser cavity which follows a spontaneous emission. This implies that the phase noise in a
semiconductor laser will be stronger by a factor of (1 + a?) compared with a gas laser where
a~4.6—-6.2.

The output field of a semiconductor laser can then be represented as
s(t) = Acos(2mvot 4+ 0(t) + &) (1.1)

where 6(t) is the phase noise and ¢ is a constant phase. The phase noise 6(t) is satisfactorily
modeled as a Brownian motion process which can be expressed as an integral of a white

Gaussian frequency noise, that is

o(t) = 2r /Ot () dr . (1.2)

The strength of the phase noise will depend on the (two-sided) spectral height N; of the
white Gaussian process p(t). It can be easily seen that the phase process 6(t) is a zero-mean

. Gaussian process with variance
Var[8(t)] = (27)2Nst . (1.3)

This equation reveals an important property of the phase noise: the phase noise statistically
grows with time. As time progresses the phase noise becomes gradually more degrading.

In fact since the density of 8(t) is determined by its variance, it is a simple matter to show

that
Pr(l6(t)] > A] = 2Q (?A—m)

where Q(-) is the complementary distribution function of a Gaussian random variable with
sero-mean and unit variance. Thus we see that as t — oo, 6(t) gets large with probability
1. At the steady state, the modulo 2r equivalent of 6(t) becomes a uniform phase over
(-7, 7.

We now investigate the spectral properties of the phase noisy laser output of Equa-
tion (1.1). Note that since #(0) = 0 by definition the constant phase ¢ corresponds to the
initial phase. When ¢ is nonrandom, the process s(t) is nonstationary. In order to be able to
discuss the spectral distribution we need to make the process stationary without changing
the power in its spectral components. The standard method to accomplish this is to intro-
duce a randomness in the time origin, i.e. to make ¢ uniform over (—=, 7). (An uncertainty

in the measurement of time origin will clearly not change the spectral characteristics of a
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Figure 1-2: Power spectral density of a phase noisy sinusoid.

signal.) Then, the autocorrelation function of s(t) is obtained as (4]

2
R,(7) = %cos(Zruo‘r)e'z"zN‘lrl (1.4)

and the power spectral density is obtained via Fourier transform as

AN, 1 N 1
4 (f-w)?2+(7N1)?  (f+wv)?+ (mNy)?

S.(f) = (1.5)

The power spectral density is shown in Figure 1-2. This density is called Lorentzian. The
3-dB bandwidth of the signal is easily seen to be equal to 2rN;. (When there is no phase
noise, the spectrum consists of two impulses as expected.) This bandwidth is commonly
taken as a measure of the spectral broadening induced by phase noise. Thus the linewidth
of a laser is defined as

B2 orN; . (1.6)

The linewidth has the advantage of heing directly observable from the spectrum of the
signall. A typical semiconductor laser has a linewidth in the range 5-100 MHz. There are
ongoing efforts to reduce the linewidth of semiconductor lasers. Since phase noise is a major
impairment on fiber-optic communication systems, success in these efforts will improve the

performance of such systems to a considerable extent. There have heen reports of lasers

PPhis does not imply that observing the speetrom of a lightwave is an easy task in practice. Flaborate
technigues, ealled self-hamodyning. are nsed for this purpose[5].
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with linewidth as low as 1 kHz in the literature [6], but such a low linewidth is accomplished
at the expense of compactness and cost. It seems likely that practical lasers that will be
used in future communications systems will have linewidths of at least 1 MHz [4, 7, 8].
Therefore it is essential that communication systems be designed taking phase noise into
account, and that fundamental limitations due to phase noise be understood.

Phase noise has two important effects on optical networks. The first is spectral broad-
ening, which causes every user in a Frequency Division Multiplexed (FDM) network to
occupy a larger portion of the frequency band and consequently requires wider interchannel
spacing. The result is an inefficient use of the available fiber bandwidth relative to ideal co-
herent detection. This is especially dominant at low data rates where channels occupy small
handwidth, and the overhead due to linewidth hecomes a significant part of the bandwidth
needed by an individual user. The second effect of phase noise is the incomplete knowledge
and time-varying nature of the phase, which makes the correct retrieval of the transmitted
data more difficult at the receiver. This causes a degradation of the bit error rate of the
transmitter /receiver pairs.

A note on the phase noise model that will be used in this work is in order. While the
Lorentzian spectrum matches the experimental ohservations quite well [9, 10], the Brownian
motion model is still a simplified model. A more accurate description would incorporate a
low frequency component of 1/ f characteristics in the frequency noise spectrum in addition
to the white noise that we assume. However, this low frequency component is significant
only up to 1 MHz and is dominated by the white noise component beyond that range. It has
been demonstrated that the low frequency components can be tracked and compensated [11].
Therefore the 1/ f noise will be neglected in our model to avoid unnecessarily complicating
the analyses that will be performed. Another idealization of the assumed model is that the
relaxation oscillations that follow the spontaneous emissions are ignored. Strictly speaking,
the variance of the phase noise process 6(t) contains not only the linear time component in
Equation (1.2) but also a damped sinusoid of the form e~ coswt [12]. This effect is usually
neglected in phase noise models since the rate of decay (more than 1 GHz) is typically much
faster than the bit rate.

Since phase noise does not affect the amplitude directly, it may seem at first glance that
amplitude (intensity) modulation systems will be immune to the adverse effects of phase
noise. However there is another noise phenomena which has to be taken into consideration.

This is the shot noise which is inherent to the photodetection process as we explain below.
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1.3 Photodetection and Shot Noise

A photodetector is a power detector that produces an output current in response to the input
optical field. There are various types of photodetectors, e.g. vacuum tubes, semiconductor
photodiodes, avalanche photodiodes, all of which obey the same principle but differ in
details. We concentrate on semiconductor (nonavalanche) photodiodes, because of their
smaller size, lower cost and lower power supply requirements. Such a photodiode would
ideally emit one electron per incoming photon. However in practical photodiodes the average
number of emitted electrons per photon is 7, where 7 is between 0 and 1 and it is called
the quantum efficiency of the diode.

When the incoming lightwave has instantaneous power P(t) and frequency vo, the elec-
tron emissions obey an inhomogeneous Poisson process with rate A(t) = nP(t)/hve, where

h is the Planck constant. Therefore the output current is a Poisson impulse train? given by
i(t) :qZ(ﬁ(t— %) (1.7)
k

where {7} are the arrival times of the Poisson process and q is the electron charge [13]. It
is known that i(t) has mean gnP(t)/hvo and covariance function K(t,s) = ¢2\(t)6(t — 3).
Thus i(t) can be written as a sum of a deterministic current and a zero mean noise process
with this covariance function. When coherent detection with a large local oscillator power
is used the noise process becomes Gaussian and white [4, 13]. The photodetection process
may then be modeled as an addition of a white Gaussian noise to the instantaneous power
of the sum of received field and local oscillator field.

There are two other noise processes that are associated with photodetection. They are
dark current and thermal noise. As the name implies, dark current is due to random electron
emissions in the absence of an optical input. These emissions also obey a Poisson law but
with a fixed rate. Thermal noise is due to the electrical circuitry of the photodetector. Dark
current and thermal noise powers are independent of the local oscillator power while shot
noise power is proportional to this power. Therefore in the regime of large local oscillator
power, dark current and thermal noise may be neglected. This is often called the shot-noise-
limited (or quantum limited) regime. We will always assume that the receivers operate in

this regime. An interesting property of the quantum limited regime is that the signal-to-

2[[ere we have assumed that the clectron emissions are instantancously ohservable at the current output,
i.e. that the photodetector has infinite bandwidth. The conclusions in this section remain valid with a finite
detector bandwidth with minor modifications.
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noise ratio of the photodetector output is independent of the local oscillator power and is
equal to the average number of received signal photons per unit time [4, 14]. This allows us
to neglect the local oscillator and treat the problem as a standard additive white Gaussian

noise problem that is so common to communication systems.

1.4 Phase Noisy Detection Problem

Having identified the relevant noise processes and the photodetection model, we can now
formulate the problem of detecting information signals. The IF signal at the photodetector
output is the sum of phase noisy modulated signal and shot noise. This signal can be

written as

r(t) = s(t,0(t), {an}) + n(t) (1.8)

where n(t) is a white Gaussian noise with two sided spectral density Ny/2, {a,} is the
sequence of information symbols, and s5(-) is the modulated signal at IF frequency f, which

is the difference of the optical frequencies of the received and local oscillator signals:

S (£.6(t), {an}) = Re[m (¢, {an}) exp (j (27 fut + 6(1)))] (1.9)

and m(-) is the baseband modulation. For example, with binary on-off keying (0OK)
m(t,{a,}) = Za,,,p(t ~nT) a,=0,1
with binary phase-shift keying (PSK)

m(t,{a,}) = Z(l — 2an)p(t — nT) a, =0,1

n

and with binary frequency shift keying (FSK)

m(t, {a,}) = [an e=2met L (1~ q,) e’jzwfdt] p(t —nT) an=0,1

n

where
1 for0<t<T

0 otherwise

p(t) = {

and T is the bit duration.

The receiver is to obtain an estimate of the data sequence with the performance measure
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being the probability of error defined as
P, = Pr(a, # an) .

We will look at different modulation formats and different receiver structures, and evaluate
their error probability performances. We will mostly concentrate on binary modulation
formats and in particular on FSK, differential PSK and OOK. These modulation formats
are both analytically and practically simpler and well-understood. It seems unlikely, at least
in the infancy stage of coherent optical cominunications, that more complicated modulation
schemes will be implemented.

We will also look at different IF receiver structures, optimal receiver structures and more
practical suboptimal receivers, for different modulation formats. The performance of any
of these receivers will depend on two key parameters: the IF signal-to-noise ratio &, and
the ratio of the combined linewidth of transmitter and local oscillator lasers to the bit rate,
B/R, where 3 = fBr + Bro- The latter quantity is proportional to the variance of phase

wander within a bit period, since
Var[0(t) — 6(t — T)] = 27B3T = Y .

We will refer to v as the phase noise strength. For small 7 the effect of phase noise during
a bit interval is small and vice versa.

In the next three chapters we consider frequency, phase and amplitude modulation
formats in detail. We obtain optimal detection strategies and suboptimal receivers derived
form them. We also perform accurate analyses for the performance of these modulation
formats.

A method to alleviate the effect of phase noise is to have the transmitter send two copies
of the same carrier, one modulated and one unmodulated. The receiver can then use the
unmodulated signal to obtain a phase reference for the modulated signal. We show that
systems in which the available power is equally divided between the information signal and
the reference signal are limited to the performance of conventional single carrier systems
with orthogonal modulation. Optimal allocation of power between these signals as well as
an optimal assignment of the filter bandwidths according to the signal-to-noise ratio and
the phase noise strength result in significant performance improvement. This transmitted
reference scheme shows promise as a practical alternative to the conventional single carrier

systems. We will describe and analyze this scheme in Chapter 5.
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The detection problem may be viewed as finding the pro jections of the received signal
on relevant signal directions and processing these pro jections according to a certain decision
rule. This signal space approach is particularly helpful in the problem of known signal in
additive white Gaussian noise; the optimum matched-filter receiver can be obtained with
relatively little effort with this approach [15]. This is due to the fact that white Gaussian
noise has independent projections in orthogonal signal directions; all but finitely many
signal detections become irrelevant to the detector. Similarly in the problem of detecting
a sinusoidal signal with an unknown but constant phase, the well-known envelope detector
can be easily obtained by recognizing that in-phase and quadrature sinusoids are the only
relevant signal directions.

The same principle may be applied to the detection of the phase noisy sinusoid in additive
white Gaussian noise. The signal directions may be obtained by employing the Karhunen-
Loeve analysis. We pursue this approach in Chapter 6 and find the eigenfunctions. There we
will find that introduction of phase noise increases the number of relevant signal directions
from a few to infinity. This is an indicator of the difficulty of optimally detecting phase

noisy signals.

1.5 Network Implications of Phase Noise

The advantage of fiber-optic communications is best utilized in a multi-user network en-
vironment where different communication sessions are taking place simultaneously. Band-
width has traditionally been a scarce resource in networking. With the advance of optical
networking, the available bandwidth increases by several orders of magnitude. Therefore,
optical fibers promise a revolution in the high speed networks of the future. The design
of optical networks involves a myriad of issues ranging from multiple access mechanisms
to network topology to routing and flow control. It is beyond the scope of this thesis to
address these issues. We will briefly consider the efficiency of bandwidth utilization for a
particular multiaccess scheme in the presence of phase noise.

Apart from deteriorating the end to end error performance of a communication system,
phase noise also affects channel allocation in a Frequency Division Multiplexed (FDM) opti-
cal network. This is due to spectral broadening as we have previously explained. Users must
be allocated wider frequency bands due to spectral broadening. We will obtain the exact
band occupancies of different modulation formats. We will also investigate the crosstalk in
a multichannel environment that occurs due to photodetection. As a result we will obtain

rules governing the channel allocation in a FDM network. We consider both receivers with
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single photodetectors and receivers that use a pair of photodetectors in a balanced con-

figuration [16, 17]. We observe that balanced receivers improve the efficiency of spectrum

allocation considerably.






Chapter 2

Envelope Detection of Orthogonal Signals

In this chapter we consider the effect of phase noise on the error performance of communica-
tion systems. In the presence of phase noise, the incomplete knowledge and the time-varying
nature of the phase makes the correct retrieval of the transmitted data bits more difficult for
the receiver. This causes a degradation of the bit error rate of the point-to-point commu-
nication links. It is our goal to quantify this degradation for different modulation formats
and receiver forms. This problem has received much attention in the recent years. Various
performance analyses for different modulation formats and receiver structures exist in the
literature [4, 8, 18, 19, 20, 21]. However, since researchers use different sets of assumptions
and approximations in their work, it is difficult to reconcile their results and to agree on the
quantitative effect of phase noise on coherent systems. The difficulty seems to arise from
the fact that the Brownian motion model of the phase noise, which is well-tested and agreed
upon, results in a random process that is hoth nonlinear and nonstationary. Thus, as one
moves through different stages of a nontrivial receiver, the exact statistical characterization
of the randomness due to phase noise becomes increasingly difficult. One needs to invoke
a sequence of assumptions and approximations to overcome these difficulties. Naturally,
the confidence that the real systems will operate within a reasonable margin of the pre-
dictions of the analyses depends on the number and the nature of these assumptions and
approximations.

It is reasonable to expect that the modulation formats which suffer the least from phase
noise will be those with asymmetric constellations in signal space, e.g. on-off-keying (O0K)
and frequency-shift-keying (FSK). These two modulation formats were considered recently
by Foschini and his colleagues in [8]. They formulated and treated the problem with a
minimal number of approximations. Their work provides a rigorous framework upon which

the researchers in the field may agree and improve. As a result, a considerable number

27
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Received N\ Photo IF Signal

Optical I _’_ Detector T or(t)
Signal
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Local

Oscillator

Figure 2-1: The optical heterodyne receiver.

of papers have resulted from their model in a relatively short time [21, 22, 18]. The work
reported in this chapter also conforms to the receiver model of [8]. We consider orthogonal
modulation formats here, e.g. FSK and orthogonal polarization modulation. We describe
the receiver models and the problem in the next section. We obtain closed-form expressions
for the probability of error conditional on the squared envelope of a normalized phase noisy
signal, for different receiver forms. We provide an approximation that is close to the actual
envelope and whose moments are readily available. We compute the probability density
function of this approximate envelope from its moments using a method bhased on Legendre
polynomials. We then use this density function to remove the conditioning on the error
probability and, thus, to obtain the error performance of the systems under consideration.
We also provide a lower bound to the error probability of the double-filter receiver which
is very close to the actual error probability. Therefore this lower bound, which is very easy
to compute, can be used to estimate the performance.

Finally, we extend the analysis to the case of N-ary FSK where we provide very tight

upper and lower bounds to the bit error prohability.

2.1 Problem Description

The received optical signal is first processed by an optical heterodyne receiver shown in
Figure 2-1 for FSK signals. Polarization modulation would require a polarization beam

splitter and a pair of photodetectors. Optical heterodyning transforms the signal from
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optical frequency to intermediate frequency. The IF signal output r(t) is to be further
processed by the IF receiver. This IF processing is the main focus of this chapter.

The IF receiver structure that we consider in this chapter is shown in Figure 2-2 where
the incoming signal is corrupted by phase noise and additive noise. The front end of
this receiver is the standard quadrature receiver that performs envelope detection of FSK
signals. The correlators and integrators perform a bandpass filtering to limit the noise power
corrupting the signal. Since the integrators integrate their inputs over a duration T’ the
effective bandwidth of the filter is 1/T". For a uniformly distributed phase uncertainty which
is constant over the bit duration the optimum value of T’ is the bit duration T'. However,
when the signal is corrupted by phase noise, the spectrum of the signal is broadened.
Therefore a wider filter bandwidth, equivalently smaller integration times, may he necessary.
For analytical convenience, we only consider the case where the ratio T/T' is a positive
integer M as in [8].

The outputs of the in-phase and quadrature branch integrators in Figure 2-2 are squared
and then added to perform the envelope detection. The remaining processing depends on
the value of M. For M = 1, the adder outputs are sampled at the end of the bit duration
and the two values are compared to reach a decision about the transmitted data bit. We
call the receiver with M = 1 a single sample receiver since only one sample is taken during
a bit duration. For M > 2, the adder outputs are sampled every T’ seconds resulting in M
samples per bit. The way these samples are processed depends on the complexity that one
desires. One simple strategy is to discard all but the last one of these samples and to use
the last sample as in the single sample receiver. A more efficient way is to average these M
samples and compare the two averages. This averaging is not the optimal processing of the
samples. However, since it can be performed by a lowpass filter it is a practical reception
strategy to implement.

We classify the reception strategies above into three categories. The first is the single
sample receiver, the second one is the multisample receiver with single filtering and the
third one is the multisample receiver with double filtering. These receiver structures were
first suggested by Kazovsky et. al. in [23] for ASK multiport homodyne receivers L In
the framework of [23], the single sample receiver is the conventional matched-filter receiver,
the single-filter receiver is the conventional receiver with a widened filter, and the double

filter receiver is the wide-hand filter-rectifier-narrowband filter (WIRNA) structure. It was

LA homodyne receiver uses the same frequency for the local oscillator as the received signal so that the
photodetector ontpul is at bascband.
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also noticed in [23] that if the M samples of the double filter receiver are viewed as coming
from M distinct channels (or from a fast frequency-hopped spread spectrum system), then
the receiver is functionally equivalent to the noncoherent receiver for multichannel signaling
treated in [24]. Some of our results, in particular the conditional error probability given by
Equation (2.19), may be obtained by using the results of (24]. Howev;r, we will proceed

independently in order to derive additional properties.

2.1.1 Single Sample Receiver

We first consider the single sample receiver. This receiver is the optimal receiver when
the phase of the received signal has uniform distribution and is time-invariant. The error
probability for this case has a simple closed-form (1/2 e—E»/2No) [25]. We will see that a
similar (but more complicated) result can be obtained in the phase noisy case.

We assume that the received IF signal is the FSK signal corrupted by additive noise
and phase noise:

r(t) = Acos(2nfit + 6(t)) + n(t) i=0,1 (2.1)

where fo and f; are the frequencies for “0” and “1” respectively. The phase noise 8(t) is a

Brownian motion process described by

6(t) = 27 /Ot u(r)dr (2.2)

with p(7) being a zero-mean white Gaussian process with two-sided spectral density 3/2m.
Then 6(t) is a zero-mean (Gaussian process with zero-mean and variance 2x3t; 3 is the
combined linewidth of the source and local oscillator lasers. The additive noise n(t) in (2.1)
is a white Gaussian process with two-sided spectral density No/2. We assume that the
difference between f; and f is much larger than the filter bandwidth 1/T', so that when
a “0” is transmitted, the integrator outputs of the lower branch integrators in Figure 2-
2a contain no signal component, and vice versa. With this assumption, when a “0” is

transmitted the sampler outputs at time t = T can be written as

. AT o P
Yo = 3 /(; e dt + neg + jns0
1= |na+inal’ (2.3)

where n.; and n,; are statistically independent and identically distributed (i.i.d.) Gaussian
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random variables with zero-mean and variance 2 = NoT /4. Due to symmetry, the error
probabhility is given by
Pe = Pr (1’0 S 1/1) . (24)

We will now condition the error probability on the amplitude of the phase noise integral in ‘
(2.3). We define

y 2 %_/OT ei®(0) g (2.5)
Then the conditional density of Yy can be easily found as?
psnlY) = gopetn V20 (1Y) (26)
while Y7 has an exponential density given by
p(n) = 1wt (2.7)

202

Therefore the conditional error probability comes as a result of the classical problem of

incoherent detection of orthogonal signals as [25]
- 1 -Y2?/202
P.(Y) = 5€ . (2.8)

Let’s now express Y in a different form. From (2.5), we have

AT

)/'
2

1
/ e10(Tu) 4y
0

Since @(Tw) has variance 2x3Tu, ¥ can be written in terms of standard Brownian motion
¥(t) (i.e. that with variance t) as

_AT
)

Y

/1 i) dt\
0
where v = 27B3T. Now if we define the random variable X (v) as

1 2
X(y)2 \/0 eI V() dt‘ (2.9)

2ror notational convenience we indirectly address the random variable that a density function refers Lo
with its argument, i.c.. ply) stands for py (y) in the more standard notation.
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(2.8) can be written in terms of X as
1 .
P.(X)= 56—51(7)/2 (2.10)
where ¢ = A2T /2N, is the signal-to-noise ratio. Therefore P, is given by

P, = Ex [%e—f’“’)“] . (2.11)

In the case with no phase noise (y = 0), this reduces to 1/2e=¢/? as it should.

An immediate implication of (2.11) is that there does not exist a bit-error-rate-floor,
i.e. a nonzero error probability that exists even when £ tends to oo, for the single sample
receiver, provided that the probability density function of X (v) does not contain a delta
function at the origin 3.

To determine P, from (2.11) we have to obtain either the probability density function
or the moment generating function of X. Therefore the random variable X plays a key role
in the performance analysis of the single sample receiver. In the next section, we will show

that this is also true for the multisample receivers that we consider.

2.1.2 Multisample Receivers

In the previous section, we mentioned that the receiver may use a shorter integration time
T' than the full bit duration T. The advantage of this scheme is that the phase is not
allowed to wander too much so that the amount of collected signal energy may not drop
below undesirable levels. Equivalently, the bandwidth of the IF filter is increased to pass
more of the signal power. If only the last of the M samples, the one at t = T, is used, then
the received signal is effectively processed only during the interval (T —T',T), hence there
is a drop in the received signal-to-noise ratio by a factor of 1/M. However, since the phase
is allowed to change in an interval of length T", the effective value of vy also drops by a factor
of 1/M. (This can be observed by repeating the calculations of the previous section when
T is replaced by T'.) Therefore the probability of error for the multisample receiver with
single filter is given by

P~ b [Le-extm] 212

31 one takes the finite frequency separation fi — fo into acconnt. then there is an inhercnl error floor in
FSIC 11 19]. This has been neglected in onr model in (2.3).
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An inspection of (2.12) shows that when the signal-to-noise ratio and/or the phase noise
strength is small, the optimal value of M will be small. However, for large signal-to-noise
ratios and large phase noise values, it may be worthwhile to sacrifice from the signal energy
while alleviating the effect of phase noise.

The single-filter receiver uses only one of the M available samples. Thus the single-filter
receiver is, in fact, a single sample receiver with widened front end filter bandwidth. The
efficiency of this receiver would be improved if all the M samples were used in the decision
process. A simple processing of these samples is averaging, which may be accomplished hy
low-pass-filtering the sum of the outputs of the square-law devices [8]. The result is the
multisample double-filter receiver that we analyze below. Note that this receiver is not the
(still unknown) receiver which minimizes the probability of error. It is closely related to
the optimal receiver for the case where the phase noise process 6(t) is piecewise constant
and takes M independent uniformly distributed values during a bit interval. In this case,
the optimal receiver averages the square root of the samples when the signal-to-noise ratio
is high.

In the case of a “0” being transmitted, the lowpass filter outputs will be

M

Yo = D lz(k) + neo(k) + jngo(k)? (2.13)
k=1
M

Y.]_ = Z |'Ilcl(k‘-) + jn,l(k)|2 (214)
k=1

where z(k) is given by

A kT .
x(k) = ——/ 7%t gt
2 J(k-1)T"

and all the additive noise samples are i.i.d. zero-mean Gaussian with variance
a’ = NoT'/4 .

It can be seen that since 6(t) has independent increments, the variables |z(k)| are statistical-
ly independent. Furthermore, since 6(t) has stationary increments, |z(k)| will be identically
distributed?. Then each of the terms in (2.13) and (2.14) obey the distributions in (2.6)
and (2.7) respectively. (Y in (2.6) is replaced by |z(k)|.) In particular, since each term in

#This also implics (hat the envelopes preserve their statistical properties from one bit to another. So we
can consider the fiest bt in the performance analysis without loss of generality.




36 CHAPTER 2. ENVELOPE DETECTION OF ORTHOGONAL SIGNALS

(2.14) has i.i.d. exponential distribution, ¥ has a Gamma distribution with parameters M
and 1/2a2. It is convenient to normalize Yo and Y; via
S §

‘/,‘:2(!'2 1=0,1.

Then V; has the density function

M 1

p(v1) = m el v >0. (2.15)

Due to symmetry, the probability of error is given by
P, =Pr(Vo < Vy).

Now using the density of V; and conditioning the error probability on Vp, we obtain

/ Z lf’ e~ p(vo) dvo (2.16)

where p(vo) is the density function of V. This density appears to be difficult to obtain in
closed-form. Therefore, we will first condition (2.16) on the phase noisy envelopes. Given
{e(k) : 1 < k < M}, Vo is the sum of squares of 2M independent Gaussian random
variables, the density of which is given hy [25]

To

p(vol{z(k)}) = (‘)(M_wz e 0o My (ViTe) v 20 (217)

r

where Ins_1(-) is the modified Bessel function of order M — 1 and 7 is defined as
_ L \f
= 5a 2

Note that the conditional density of V, depends on {z(k)} only through the sum of their
squared amplitudes. This enables us to proceed further and to express the error probability

conditioned on r as

Pe("‘) = PI‘(VQSV]'T)




CHAPTER 2. ENVELOPE DETECTION OF ORTHOGONAL SIGNALS - 37

M-1

I N (M-1)/2
= Z L emzk (2 e T+ Iy (\/41'.7:) de . (2.18)
= k! Jo T

It is shown in Appendix 2.A that P.(r) can he expressed as

/2 M-1 nM-1
/2 (r/2) (k + M- 1) 1 (2.19)

€
Pe(r) = oM Z_% n! Z k—n 2k

k=n

Now we relate 7 to the envelope of the standard Brownian motion using the techniques

of the previous section. From the definition of » and z(k) we have

kT /M ,
/ et dt
(k—1)T/M

A2 /T 2 M

where 1(t) is the standard Brownian motion. Defining

A2 M 2

2
8o k=1

2

[ v
k-1

k ' 2
JYk('y) = '/I; X €Jﬁ¢(t)dt

and using the definitions of the additive noise variance a’ and the signal-to-noise ratio

(SNR) £, we obtain
M

r=to 3 Xel /). (2:20)

Therefore r is the SNR weighted by the sample average of the M normalized phase noisy
envelope squares, it can be viewed as a phase noisy signal-to-noise ratio. As M — oo, the
sample average tends to the mean of X} with probability 1, by the law of large numbers.
Also, the mean of Xi(y/M) tends to 1 as M — oo. Therefore r tends to £, which is the
maximum value it can assume since X; < 1 by the Schwartz inequality.

The conditional error probability given by (2.19) is shown in Figure 2-3 as a function
of 7. As expected P.(r) decreases as r gets larger while M is fixed. However, for a fixed
value of r, P.(r) increases with M. Thus, there is a tradeoff between the collected energy
of the phase noisy signal and the additive noise energy corrupting the signal as M changes.
There must exist an optimum value of M which balances the two conflicting noise effects.

This behavior is also observed in [8].
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Figure 2-3: Error probability of the double-filter receiver conditioned on the phase-noisy
signal to noise ratio.
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We can readily obtain a lower bound to the error probability without calculating the
density of X (7). We show in Appendix 2.B that P.(r) as given by (2.19) is a convex U
function of r for any value of M. The unconditional error probability is the expected value
of P.(r); thus replacing 7 by its mean results in a lower bound by Jensen’s inequality [26].
Using (2.20), one has

P, > P.(E[X(7/M)) . (2.21)

The expected value of X () will be found in the next section. Figure 2-4 shows the lower
bound in (2.21) with the use of (2.34) of the next section. At each value of SNR ¢ and the
phase noise strength v, the lower bound has been minimized with respect to M.

The overall error probability P. is obtained from P.(r) by removing the conditioning

over r. If p,(r) denotes the probability density function of r, then we have

P.= [ P(r)palr) dr. (2.22)

Since r is a weighted average of i.i.d. random variables X} as given by (2.20), the density
of r is given in terms of the density of X by an M-fold convolution. Then, we see that the
density of the phase noisy squared-envelope is again the only information we need to obtain
the error probability. The convolutions must be performed anew for each M since the indi-
vidual densities to be convolved correspond to the envelope with phase noise strength /M.
Therefore the computation hecomes very costly with many convolutions to be performed.
We describe an alternative method which eliminates the need for convolutions. From (2.19),

the error probability can be written as

P. = E, [Mz_:l an (%)ne-’/z] (2.23)

where the coefficients a, are defined as

M-1
1 k+M-1\1
" = i 2 ( k-n )EF | (2:24)
Using the sample average expression for r given in (2.20) one gets

M-1 ¢ n M n ¢ M
P.=) a, (W) E[(ZXk(‘Y/M)) exp (—mkzlxk(‘//M))] -

n=0 k=1




CHAPTER 2. ENVELOPE DETECTION OF ORTHOGONAL SIGNALS | 41

Finally expanding the expression above in a multinomial sum and using the independence

of the X we obtain

M-1 £\ ' . o
Pe = "2_20 an (m) . ‘ij mga(k,) (2.25)
- k1 +l’+‘kzc[4—=n -
where E
a(k) = E [Xk(‘Y/M)exp (— 2MX(7/M))] : (2.26)

The need for convolutions is eliminated by this expansion. All that is necessary about
the envelope is a set of tilted moments a(k). This reduces the computations considerably.
Further computational savings can be obtained by observing that the inner summation
in (2.25) contains many identical terms: any permutation of an M-tuple (ky,ks,...,knr)
results in the same term. Therefore the summation may be limited to ordered tuples with
ky > ky > --- > kpr with the introduction of a scaling factor that counts the number of
permutations. This scaling factor depends on how distinct the entries of the tuple are. If all
the entries in a tuple k are distinct, then % has M! permutations. If an entry k; is repeated
r(k;) times in k, then every distinct permutation has r(k;)! copies. Then, the scaling factor
with ordered indices is
N(k) = M
[Ti (k)

where the product is taken over i for which k; are distinct.

2.2 An Approximation to the Phase Noisy Envelope

In the previous sections, we have seen that the squared-envelope of a phase noisy sinusoid
plays a critical role in the performance analysis of the incoherent IF reception of heterodyne
FSK system. This squared-envelope is the random variable X defined in (2.9) which we

repeat here for convenience:
2

1,
X = / ENCOP? (2.27)
0

where we have removed the explicit argument v for notational simplicity. Due to its im-
portance in the performance analysis, the determination of the probability density of X, or
equivalently its moment generating function, has received considerable attention. Foschini
and his coworkers provided the first comprehensive treatment of this problem in (8] and [27].

We summarize their approach helow, since it is directly related to our subsequent analysis.
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Foschini et. al. expand the complex exponential into its power series and retain the first

order v terms. The resulting approximation, Xz, is linear in y and is given by

XLzl—y[/O1¢2dt_(/Ol¢dt>2] . (2.28)

(We use the subscript L to emphasize the linear nature of this approximation.) The linear
approximation X is in fact a lower bound to the phase noisy envelope X. This can be
seen easily by rewriting (2.27) as a double integral, using the fact that X is real, and finally
using cosz > 1 — x?/2.

When +(t) is expanded in Fourier cosine series on (0, 1) one obtains [27]
X =1-72"Dz (2.29)

where z is an infinite dimensional vector of independent, identically distributed Gaussian
random variables with zero-mean and unit variance, and D is an infinite dimensional diag-
onal matrix with dj; = 1/(ir)?. Thus, z7 Dz is a compact notation for "2, z2/(im )2 The
basis used in obtaining (2.29) is not arbitrary. In fact, the basis cos(rnz),z € (0,1),n =
0,1,...is a remarkable one. It is not the solution to the Karhunen-Loeve equation for (t).
However, one can expand the derivative of 1(t), which is white and Gaussian, in the sine
basis and integrate to get a complete expansion in the cosine basis augmented by the con-
stant function. Since this augmentation does not destroy orthogonality (cosine’s integrate
to zero), one can use Parseval’s theorem to obtain (2.29). Humblet recently discovered that
if a new random process is defined from ¥(t) as y(t) = ¥(t) — fol ¥(7) dr, this cosine basis
is the solution to the Karhunen-Loeve equation for the new process [28, 29].

The moment generating function of X, is then found as [27]

-3 -1/2 /5 2
é Xy = ¢e° 1 —27—5-) — e? —271_ _1|'_
My, (s)=E (e ) € kl;[l ( + P e smh V33 Re(s) > % (2.30)

and is inverse Laplace-transformed to obtain the density function of X in semi-closed form.
Equation (2.30) can be used in conjunction with (2.11) to obtain the error probability

for the single sample receiver with the linear approximation. The result is obtained as

P, = {%e-m (VET/ sin VED)/? gy < v (2.31)

00 £y > n?
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where the first case follows via sinh(jz) = jsin(z), while the second case follows from
the derivation of (2.30) in [27]. Tt is seen that this approximation fails to give sensible
results at high SNR. values. This is due to the fact that although X can take values only
between 0 and 1, X can become negative. In fact, the density of X has a nonzero tail
for negative arguments, which becomes increasingly dominant as v increases. According to
(2.31), this negative tail of the density function px, (=) decays exponentially, as exp(m2z/2y)
for ¢ < 0, so that when £ > 72/ the integral of e‘f"‘/szL(z) diverges. This problem is
not observed in the numerical results of [8] due to the truncation of the negative tail of the
probability density function. The linear approximation gives a loose upper bound to the
error probability without the truncation, and it is not clear how tight the results become
with the truncation.

We seek a better approximation to the random variable X by forcing the range of the
approximate random variable, say X, to match the range of X, namely (0,1). Therefore

we require a good approximation to satisfy
1. O < X(v) < 1 for all ¥ > 0 and all Brownian sample paths v(t),
2. X() and X () match to the first order in v for all ¥(t).

The range constraint above suggests that X(7) can be written as

X(v) = exp [-G(y7¥)]

where G is a functional whose domain is the set of functions defined on [0, 1] which vanish

at 0, and whose range is [0, ). We force G to satisfy
1. G(f) > 0 for all f(t), with equality if and only if f(¢t) =0
2. G(f) = G(—f) for all f(t),

where the second property is due to the fact that the two sample paths (t) and —¢/(t)
result in the same value of X (7). For X(v) and X(7) to be identical to the first order
in v, X(0) = X(0) and X'(0) = X'(0) must be satisfied. where ‘prime’ denotes the first
derivative with respect to y. We state one functional G(f) that satisfies these requirements

in the following lemma.

2 _
Lemma 2.1 IfG(f) = fol f2dt — (fol fdt) , then X(v) and X(v) are identical to the first

order in 7.
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Proof. Since X(0) = 1, G(0) = 0 is needed for X(0) = X(0). On the other hand, it is
straightforward, but somewhat lengthy, to show that

X'(0) = (/01 ¢dt)2 _/01 W2 dt .

For a GG that satisfies G(0) = 0,

_0G(,/79)

X'(O) = (97 I’Y=0 .

It is easily seen that the functional given in the statement of the lemma satisfies both of

the requirements. O

Note that the functional of the Lemma 2.1 satisfies the positivity and evenness conditions

as well. Therefore the random variable Xg defined as
A T
Xg(7) = exp(~yz" Dz) (2.32)

with z and D as defined previously, promises to be a good approximation to X. We use
the subscript E to denote the exponential nature of this approximation.

To summarize, we have ohtained an approximation that retains the desirable feature of
that of Foschini et. al. while having the additional feature that it takes values that are in
the same range as the original random variable. However, the exponential approximation
does not provide a lower bound to the phase noisy envelope. Therefore our performance
results will not be upper bounds to the exact performance.

A nice property of the random variable X g is that its noments are easily obtained from
(2.30) as

11>

E(XE)
Vo

= Vs e (2.33)

for all real t > —7w2/2y. For t < —72/27, the t’th moment of X is infinite.

An indication of how well the two approximations model X is the behavior of the first

1(t)

two moments as y varies. The moments of X are already found in (2.33). We now evaluate

the first two moments of X. Rewriting (2.27) as a double integral and taking the expectation
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we obtain

)= [ [ B {explivT (b0 - b(s))) deds.

Now we use the fact that /3 (¢(t) — ¥(s)) is Gaussian with zero-mean and variance 7 |t — 3|

and get
E(X) = ./(;1 /01 exp (—v |t — 3| /2) dtds
= % [1 - % (1- e_’/z)] . (2.34)

The calculation of E (X2) follows along the same lines: we first express X? as a four-
fold integral, take the expectation and express the integrand as a Gaussian characteristic

function while observing the dependencies of the random variables. We finally obtain

1 7 2
E(XZ):_(E[Q_g.*_g_'_( O+§9_2)e—7/2+

— A 2.35
7? Y 297 \3y 992 ‘ (2.35)

1842

The first two moments of X as given by Equations (2.34) and (2.35) are in agreement with
previous calculations of the mean and the variance in (23] and [14].
Finally we calculate the first two moments of Xz (without truncation). The first moment

is obtained as
E(Xy) = 1-+E(s"Dz)

= 1
= 1—72
7'1:].(1’1’7")2

2

= 1-3 (2.36)
and the second moment is obtained as
E(X1?) = 1-2vE(s7Dz) ++°E (2" D2)?)
ad ® oo ,2 42
- Y R L e
= 1- % + 72; (ni)4 + 42 PP (n:,-)z (mlW)2
SEEAE (237)
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where we have used E(z%) = 3 and 22, n=% = 74/90 [30]. The first two moments of X,
Xg and X, as given by Equations (2.33)-(2.37) are shown in Figure 2-5 as functions of y. It
can be seen from the figure that the moments of X agree with those of the actual random
variable X only for very small ¥ while the moments of Xg are very close to the actual
moments for all v. Therefore we expect the exponential approximation to be an accurate

one.

2.3 Density of Xp

The moments of Xg as given by (2.33) provides complete information about its statistical
behavior. In principle, one could compute the moment generating function of Xg from the

moments {u(n)} as

F(S) é E (e—sXE) — i (—T;)"-u(n)
n=0 )

and find the density function as the inverse-Laplace transform. However, since the series
ahove is slowly converging, especially for large s, this is not a computationally attractive
approach. Instead, we use an indirect approach which is based on orthogonal polynomials
for finding the density. We first prove the following about the value of the density function
at the origin.

Lemma 2.2 Let q(z) denote the probability density function of Xg. Then q(0) has the

_jo ify < w22
7(0) = {Oo iy > 22, (2.38)

following property:

Proof. We prove the first part of the lemma by using Chernoff bound [31]. We have
1
q(0) = hr%;Pr(O < Xg<e€).
From the definition of X g the probability ahove is

Pr(0< Xg <e€)=Pr (zTDz > —llne) .
v
We now bound the right hand side by using the Chernoff bound on zT Dz via (2.33) to

obtain

V2s

Pr(0< Xp<e)<el"| ————
(0<Xp )< (sin(\/ﬂ)

1/2
) for 0<s<nm?/2.
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Figure 2-5: Comparison of means and second moments of the actual envelope and its linear
and exponential approximations.
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Dividing both sides hy € and taking the limit we obtain

q(0) < lim e*/7-1

e—0

o 1/2 ,
(m) for 0 <s<w%/2.

The limit above is 0 if s/y > 1, which is possible for some s in the allowed range if y < 72/2.
Since g(z) > 0, q(0) = 0.
For the second part of the proof, we use the fact that each of the random variables in

the series of zT Dz are nonnegative to obtain the following lower bound.
r . T 1 1, 1

Pr(0< Xg<e)=Pr|z'Dz>—-—1Ine] > Pr —2z1>——lne .
Y T Y

The righbt.most probability is 2Q(/—n21In€/y) where Q(z) is the complementary distribution

function for the unit normal random variable. Proceeding as hefore we obtain

[ r2
q(0) > limgQ ( —W—lne) .
e—0 € ‘y
1

Finally we use Q(z) ~ mze‘zz/z as ¢ — oo [15] to obtain

27 61|'2/2'y—l
0) >4/ — lim ——— .
9(0) > 4/ 3 lim ——— —

The limit above is infinite if ¥ > 72/2, this completes the proof. O

The lemma above indicates that the density of Xg changes its form as 7y exceeds a
critical value, 72/2. The left tail of the density, i.e. g(z) for small z, strongly affects the
probability of error, since P, is the integral of the product of ¢(z) (or convolution of ¢(z)
with itself) and some rapidly decaying function such as e=¢=/2, Therefore the hehavior
of g(z) for = < 1 is of special interest for accurate calculation of error probability. The

following lemma indicates that this behavior is polynomial.

w2
Lemma 2.3 ¢(z) = O (.1'57_1) for = small, where f(z) = O (g(z)) is equivalent to

lim,_0 f(z)/g(z) = c for a positive finite c.
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Proof. From (2.33) we have

1 (v23/sinh(vD)? t>0
| wta@rde = 3 (B sin(yBHTD) T 050> xtj2y

00 t< —mw2/2y.

Since [{ =8 dz converges for 3 < 1 and diverges for 3 > 1 for any § > 0, we must have
Jo
n2 1
z” 7 q(z) = c(z)=
T

for some function c(z) with finite and positive c(0), where we have assumed that g(z) is

continuous at ¢ = 0. Then the claim is proved. O

This lemma is in agreement with the previous lemma in predicting the value of ¢(0).

Moreover, it suggests that for accurate calculation of ¢(z) for small z it is better to calculate

2
the tilted density q(:r:)/:cﬂ_l. Before we describe a method to perform this calculation, we
exploit a useful property of Xg(7) that will enable us to compute the density function for
a single value of v, say v = 1, and to obtain all other density functions from this computed

one. From the definition of Xg(7) we have
JYE(‘Y)I/‘Y — 27Dz
Then for any positive y; and 72, the associated Xg’s satisfy
Xe(m)/" = Xp(r2)'/™
which specifies a one-to-one mapping from Xg(v1) to Xg(v2) via
gla) =27/

Then the densities of the two random variables are related via [32]

zr) = q‘Yl (g—l(m))
P (%) = 19 Tg=1(2)
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where we introduced a subscript to the density function to emphasize its dependence on 7.

Upon manipulation, we obtain

Iy, (2) = az*~1q,, (z%) (2.39)

where o = v, /7;.

The calculation of ¢(z) for a given v, as will be seen shortly, is a computationally
intensive effort. Therefore the simple relation (2.39) introduces a big saving in the required
numerical work.

The moments of a random variable are the projections of its density function on a se-
quence of polynomials. Therefore, the density can be reconstructed from these moments via
a complete orthonormal polynomial basis. The even (or odd) indexed Legendre polynomials
constitute such a basis on the interval (0,1) [33]. Any piecewise continuous function f(z)
on (0,1) that has left and right derivatives at every point in the interval can he expressed

as
oo .

f(z)= > (2n+1)F,P.() (2.40)

n=0
n even

where P,(z) is the n’th Legendfe polynomial and F,, is given by

1
F, = / f(2)Pa(z) dz . (2.41)
Jo
Specializing to the case of
T
() = 1)
T
where we have defined ,
rel
2y
we obtain
-Fn =F [XEth(JYE)] . (242)

To obtain the coefficients F,, in terms of the moments, we first expand P,(z) in its Taylor

series as [33]

P.(z)= Y auzt (2.43)

k even
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where the coeflicients a,, are given by

Ank = 517_1(—1)(n—k)/2((n _"k)/z) (" : k) : (2.44)

Now we can compute the expectation in (2.42) in terms of the moments given by (2.33) as

n

Fo= Y anu(k - h) (2.45)

k=0
k even

and, consequently, the density function as

q(z) = 2" Z (2n+ 1)P,(x) Z ankpt(k — h). (2.46)
n=0 k=0
n even kcvan

The convergence of the series in (2.46) is quite fast. Note that the moments always remain
finite since k — h > —72/2y for all k > 0. It is also worth mentioning that although the
formula above remains valid for any value of h, in particular for A = 0 which corresponds to
the direct computation of g(z) without tilting, the value that we use is the most appropriate
one because it captures the polynomial behavior of ¢(z) in the small = region.

The results of the computation is shown in Figure 2-6 for various 7 values. As expected
the density is more concentrated around unity for small y. As v increases, the density
gets flat until y = 72/2, and becomes peaked at z = 0 thereafter. The density function
is observed to have a sharp decay around its z = 1 tail. In Appendix 2.C, we show that
the nature of this decay is exponential in y/(1 — z), provided that g(z) is hounded and
non-oscillatory.

The density function of Xg can also be calculated with another method. The distri-
bution function of the random variahle zT Dz is given in [8], from which the distribution
function of Xg can be directly computed, the density function is then obtained by differ-
entiation. It was observed that this method yields results which are in perfect agreement
with Figure 2-6.

In the next section, we will use the density we have obtained to evaluate the performance

of the receivers under consideration.
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0.0

Figure 2-6: Probability density function ¢(z) for various vy values.
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Figure 2-7: Error probability of single sample receiver as a function of signal to noise ratio.

2.4 Results and Discussion

The error probability for the single sample receiver is given by (2.11) as

1 1
P, = 5/0 e ¢%/%q (z) dz .

We have computed the error probability using this integral. The result of this computation
is shown in Figure 2-7. It is seen from this figure that the error probability is ahove 10~ for
v > 2 and ¢ < 22 dB. The single sample receiver cannot combat the phase noise effectively
for large v, and the bit error rate severely degrades with increasing phase noise strength.

The error probability calculation is more involved for the multisample receivers. For the
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single-filter receiver, the error probability is given by (2.12) which can be written as

1 1
Po=3 /0 exp(—Ez/2M)q, /p(x) dz . (2.47)

Using (2.39) with y; = y and 7, = /M, we can rewrite (2.47) as

1
P, = %f exp(—€z/2M)MzM~1q (M) dz
0

which with the change of variable y = ™ yields

Lt M
P. =3 exp(—€y™ '™ /2M)q,(y) dy . (2.48)
J0O

We want to find the value of M that minimizes (2.48). Since no closed form for g(-) is
available, this optimization involves evaluating this equation for M = 1,2,3,... until the
optimum is reached®. Equation (2.48) has the desired form since the density function has
the same parameter v for all M.

The result of the computation of the bit error rate via (2.48) is shown in Figure 2-8.
The plotted bit error rate values have been optimized over M. The optimal value of M
increases with SNR and the phase noise strength. This is because as the SNR. increases the
receiver prefers to use a smaller portion of signal energy to reduce the effect of the phase
noise with the same factor.

Finally we focus on the performance of the double filter multisampling receiver. In
Section 2.1.2, we showed that the bit error rate for this receiver can he computed by first
finding the M-fold convolution of the density function of X(7/M) and then removing the
conditioning on r in Equation (2.19). However, the density function, ¢,/a(z), changes
with M, thus this method is computationally prohibitive. Therefore, we use the alterna-
tive approach which resulted in Equations (2.25) and (2.26). One can further reduce the

complexity by expressing a(k) in terms of ¢,(z) as follows:

1
a(h) = [ a*exp(~ge/2M)g, m(x) dz

- "M exp(— ey ™ 120 g, (y) dy - (2.49)

51n Fact. we conld search for optimal non-integer M lor the single-filter receiver. This does not seem to
he necessary since the observed fransitions with integer values were smooth.
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Figure 2-8: Error probability of multisample single-filter receiver as a function of signal to
noise ratio. Optimal values of M are also shown.
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Figure 2-9: Error probability of multisample double-filter receiver as a function of signal to

noise ratio.

where we have used the same transformation used in obtaining (2.48).

Equation (2.25) in conjunction with (2.49) provides a method for the error probability
computation. In performing the numerical computation the symmetry between the terms in
the inner summation was exploited as outlined in Section 2.1.2. The resulting computation
is a very efficient one in comparison with the direct convolutions. The results are shown in
Figure 2-9. The hit error rates are again optimized with respect to M as in the single filter
case. A comparison of the performance curves for the single sample receiver and multisample
receiver with and without double filtering reveals that the increased receiver complexity by
oversampling the signal and additional lowpass filtering may improve the error performance
to a significant extent when the signal-to-noise ratio is high and the phase noise is strong.
This can be seen from Figure 2-10 which shows the performance of the three receivers for
7 =1 and y = 4. For low SNR values (up to 12 dB for ¥y = 1 and 9 dB for v = 4), the
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Figure 2-11: Error probability of multisample double-filter receiver together with its lower
bound for v = 1 and y = 4. Optimal values of M are also shown.

best receiver is the simplest one, i.e. the optimal value for the multisampling receivers is
M = 1. Only when the SNR is further increased, an increase in the receiver complexity is
warranted. At a bit error rate of 10-% with 4 = 1, the double filter receiver has ahout 3.5
dB gain over multisample single-filter receiver and about 6 dB gain over the single sample
receiver.

The error probability for the double filter receiver is very close to the lower bound
obtained in Section 2.1.2, as illustrated by Figure 2-11 for ¥ = 1 and y = 4. Therefore the

simple lower hound expression
2
P, ~ P, (gg [1 - TM(I - e—‘//ZM)D (2.50)

in conjunction with (2.19) provides a simple and reliable approximation to the probability
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of error. With the use of this closed-form result, the performance of a system with a given
SNR and phase noise strength can be found by a straightforward optimization over M. It
should be noted that the value of M that optimizes (2.50) is, in general, lower than the
exact optimal value. This is due to the fact that the variation of  from its mean is neglected
in the Jensen’s bound that results in (2.50).

Since the phase noisy SNR 7 in (2.20) is the average of M i.i.d. random variables, a
Gaussian approximation for large SNR and phase noise strength is also plausible. In fact,
approximating the density of » with a Gaussian density on the interval (0, {) yields an error
probability which is very close to that shown in Figure 2-9. However, a closed-form result
that is obtained by extending the range to the real line yields a poor estimate due to the
large negative tail of P.(r).

The performance of the double-filter receiver as predicted by Figure 2-9 and approxi-
mated by Equation (2.50) is very close to that predicted by Foschini and his coworkers in
[8]. This is hecause the truncated density tail of the linear approximation to the phase-noisy
envelope is extremely low for a phase noise strength of 4/M, when M is around the optimal
value. This is in contrast with the single-filter case where the agreement of our results with
(8] is not as strong due to smaller values for the optimal value of M.

The signal-to-noise ratio needed to remain below a certain predetermined bit error rate
increases with the introduction of phase noise. The amount of increase in the SNR is referred
to as phase noise penalty. In Figure 2-12 the penalties for the three receivers are shown as a
function of v for a bit error rate of 10-°. While the difference in the penalties for the single
sample receiver and the multisample double-filter receiver is less than 1 dB for ¥ < 0.5, the
latter receiver outperforms the former at higher phase noise strengths. This is in support of
increased receiver complexity that is tailored towards combating the phase noise especially
when v > 1.

Advancing optical technology promises fiber-optic networks with data rates in excess of
100 Mbps per user and semiconductor lasers with linewidths of 5 MHz or less. With these
parameters, the phase noise strength v is in the range of 0.6 for which the penalty is ahout
1 dB with the double filter receiver and 2 dB with the single sample receiver. This means
not only that the phase noise will not be a very significant impairment on the bit error rate,

but also that simple IF receivers will be sufficient for most future applications.
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Figure 2-12: SNR penalty due to phase noise at a bit error rate of 10-9.




CHAPTER 2. ENVELOPE DETECTION OF ORTHOGONAL SIGNALS 61

2.5 Extension to N-FSK

The results of the previous sections about binary FSK can be extended to FSK with NV
hypotheses (N-FSK) without much difficulty. The receiver structure is the same as Figure 2-
2 with the number of branches increased from 2 to N. We present an analysis to the
performance of N-FSK below. It must be emphasized that we hold the transmission rate of
data bits and the energy per data bit constant while making comparisons among different
N-ary FSK schemes, as in [34].

Let the possible hypotheses be 0,1,..., N — 1. Let the normalized filter outputs be V;,
i=0,1,...,N — 1, and assume a “0” is transmitted. Then V; will be independent random

variables with the density functions found in Section 2.1 as

o\ (M-1)/2
p(volr) = (—;) e~wotr), o (\/4rvo) vg > 0 (2.51)
vM-1 ) .
p(‘(_)i) = (A—{__T)ie t v; _>_ 0 1 = ]., 2,...,N — 1 . (2-52)

Let Py(r) denote the probability of a symbol error conditioned on the phase-noisy SNR r.

Since a symbol error will occur when any of the V; for i # 0 is greater than V,, we have

Pn(7)

1 — Pr(Vy > max{Vy,...,VN_1}{7)
1 /[Pr(V1 < )]V 1 p(vo|r) duo

where we have used the fact that V; for z > 1 are i.i.d. conditioned on r. Then with the use
of (2.52), we obtain

M-1 & N-1
Py(r)=1- / [1 - ﬁe'""] p(vo|r) dve
k=0

which does not seem to be easily brought to a closed-form similar to (2.19). Instead of
computing Py(r) numerically we will find upper and lower bounds in closed-form. We first
use 1 — (L—y)¥-1 < (N - 1)y for 0 <y < 1, to obtain

M-1 vk
Pu(r) < (V=1) [ 3 Fre " plualr) dvo = (N = 1)Po(r) (2:53)
Y k=0

where P,(r) is the conditional error probability for binary FSK given by (2.19). The upper
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bound in (2.53) is exactly the union bound. To obtain a lower bound to Py(r) we use

1-(1-—y)V 1> (N -1)y - <N2—1)y2

and we get
N -1
Pr(r) > (N ~ )Py(r) - ( ; )gM(T)
where the function gas(r) is defined as

M-1 L 2

am(r) = / ( Ee—vo) p(vo|r) dvg .

1
b k!

To obtain gar(r) in closed-form we first use

M-1 Uk 2 M-1M-1 vn+m.
-0 _—vg _ —2vo 0
k! = Y X

k=0 n=0 m=0

2(M-1) 1 min(!,M-1) I
—2v l
TR ()]

=0 k=0
and we get
2AM-1)
aar(r) = / e Y S Biobp(volr) dvo (2.54)
=0
where we have defined
A min({,M—1) I
DY . (2.55)
k=0 k

We proceed exactly as in Appendix 2.A to evaluate the integral in (2.54) to obtain the

result as

e—Zr/S 2(M-1) r n Z(M_l) [ _
gm(r) = =57 > ({3) 3 (1+M 1)@ (2.56)

_ 1
o ! = l—n 3

which is quite similar to (2.19).
We finally have the bounds to the conditional error probability as

(N = 1)Py(r) - (Nz— 1) gm(r) < Pn(r) < (N —1)Py(r) (2.57)
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in conjunction with Equations (2.19) and (2.56). Note that the two bounds are equal for
N = 2. The bounds are tight for small N and large 7. For N < 16 and r > 14 dB, the two
bounds are within an order of magnitude for any M.
The symbol error probability Py is obtained as the expected value of Py(r) optimized
over M, i.e.
Py = mNiIn E.[Pn(7)] .

Since only bounds to Py(r) are available in closed-form, we will perform the optimization
for the upper hound and use the optimal value of M, say M*, in the lower bound. The

result is

(N -1)P; - (N; 1) E.[gm-(r)] < Pv < (N - 1)P; (2.58)

where P is the binary FSK error probability found in the previous section. The bit error

probability P, is related to the symbol error probability as [25]

N/2
P, = P
b N -1 N
which results in N N(N - 2) N
] —2-Pz - —T—Er lgm-(r)] < Py < ?PZ : (2.59)

The upper bound to the actual bit error rate reveals that for N-FSK at a bit SNR value of
¢ and a phase noise of vy is at most N/2 times the bit error rate of binary FSK at an SNR
of £log, N and a phase noise strength of v log, N. The expectation in the lower bound can
be computed without any convolutions, using the same method described in the previous
section. Figure 2-13 shows the upper and lower bounds to P, for N = 4,8,16 as well as the
binary bit error rate for v = 1. It is seen that the bounds are very close, and that the bit
error rate improves with increasing V. At a bit error rate of 10~° the improvement over
binary FSK is 2.5 dB with V = 4, 4 dB with N = 8, and 4.8 dB with N = 16. Since the
cost of the receiver and the bandwidth occupation are proportional to N, 4-FSK may be a

desirable alternative to binary FSK for this value of phase-noise strength.
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Appendix

2.A Derivation of Conditional Error Probability for Double—

Filter Receiver

In this appendix, we derive (2.19) which gives the error probability of the multisample
double-filter receiver condition on phase-noisy signal-to-noise ratio r.
From (2.18) we have

Mg [— —Vo | ] (2.60)

where the expectation is taken with respect to the conditional probability density function
given by (2.17). This can be performed hy directly evaluating the density integral. It is
simpler, however, to use a transform domain technique. The moment generating function

of Vp is given as [25]

(s, r) 2E (e"VO [ r) = (1+—13)M—exp (—1':'3) . (2.61)

From (2.60) and (2.61) we have

M- ak
P.(r)= Z [3 k;LM(s,r)l . (2.62)
k=0 . =1
To simplify the notation in the following discussion, we introduce the following definition:

k 4
/"3{) - aqleM(s’r) |s=1 .

The following lemma provides the intermediate result that will be used to obtain P,(r).

(k)

Lemma 2.4 The derivatives py, are given by
kL k i
(k) (=1)%k! /2 M+ k—-1\(r/2)
mw =g 2\ i) (2.63)

fork=0,1,...,M — 1.

Proof. We will use induction on k. For & = 0, the claim is easily seen to be true with the
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use of (2.61). Next we observe that

0
é—guM(S,T) = —Mppry1(s,7m) — rpenr42(s, )
which implies
k k k
;Lg‘l‘{'l) = _M;LSW)_H - 7'/‘51/1)4-2 .

We now assume that the claim is true for k. Then by the last identity, we obtain

k N
(k+1) _ (—l)k+1k! —r/2 M+ k r M+ k+1 (1‘/2)t
fm = SarvRet © > |M Mii) Talarriv il

1=0

We now split the series above into two, change the index in the second series, and ohtain

W) _ (LR [2": M(M + k) (r/2)' | 'fi(M kot 1) (r/2)

OM¥k+1 e M+ ! = M4+ 7!

We now isolate the ¢ = 0 term in the first summmation and 7 = k + 1 term in the second
summation, combine the remaining terms, and perform some straightforward manipulations

to ohtain

L A Y7 AR Myi-1) 4

(k+1)_(—1)k+1(k+1)!e_r/2’§( M+ k )(r/z)i
i:b

as claimed. This concludes the proof. O

The lemma in conjunction with (2.62) results in

e-r/2 Ml g K (M +k— 1) (r/2)

= —F v PR
Pe(r) oM ;:7__3 zkz:-ZO M+i-—-1 i!

which upon interchange of summations yields

e—r/2 M1 (r/2)" M-t (M + k- 1) 1

Pe(r) = 2M Z n! Z k—n 2k

n=0 k=n

which is the equation given in (2.19).
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2.B Convexity of Conditional Error Probability

In this appendix we prove that the error probability conditioned on phase-noisy SNR, P.(r),

is a convex function of 6. From (2.19), we have

e-r/2 M1 cn(M —1) (P\7
P = 2 7 (5) (2.64)
where -
~(k+M-1\1

Since the convexity of a function is not affected by multiplication by a positive constant

and a scaling of its argument, it suffices to show the convexity of the function
h(r) = e "t(r)

where t(r) is the polynomial of degree M — 1 with coefficients cn(M — 1)/n!. The second
derivative of h(r) is

W'(r) = e " [t(r) — 2t'(r) + t"(r)]
where “prime”s denote derivatives. Thus, P.(r) is convex if and only if the polynomial
p(r) = t(r) = 2t'(r) + t"(r) (2.66)

of degree M — 1 is nonnegative for all 7 > 0. The latter will be satisfied if all the derivatives
of p(r) at 7 = 0 are nonnegative, by Taylor’s theorem. The n’th derivative of p(r) at r = 0

is given as

pM0) = tM(0) — 2t 1(0) + " +2)(0)
Cn(M — 1) — 2Cn+1(M — 1) + Cn+2(M — 1)

Let N = M — 1 and dn(N) = ca(N) — ¢ (N) for n = 0,1,..., N. Then we have

p™M(0) = dn(N) — dnsa(N) - (2.67)

§1°or a shorter proof of this convexity result see the appendix of [35]. This version of the prool is given
here beeanse it uses interesting combinatorial identities,
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Thus, we need to show that the coefficients d,,(IV ) are nonincreasing in n for every N. To

do this, we need an intermediate result given in the following lemma.

Lemma 2.5 The binomial coefficients satisfy

Z 2"(] i k) g (" N 1) (2.68)

k=0
for J =0,1,2,...and j =0,1,...,J.

Proof. We will use induction on J. For J = 0, the claim is obviously true. For J =1, the
claim is easily verified for both j = 0 and j = 1. Now let’s assume that the claim is true
for J and for all j < J. We will show that this implies that the claim is also true for J + 1
and for all j < J 4 1. Let a;(J) denote the left hand side of (2.68). For 0 < j < J, we have

Jj+1
J+i-k\ (T+1
n(/+1) = 22 (J+1—k> (j+1)

k=1

= 2a;(J)+ (J+ !

which is the desired result. (The second equality above follows by a change in the index
of summation, the third one follows by induction hypothesis, the fourth one is a simple
rearrangement of terms and the last one follows by the well-known property of the Pascal
triangle.) Finally ag(J + 1) = 1 trivially satisfies (2.68). Thus the claim is true for all
j < J + 1. This completes the proof by induction. [

A corollary to Lemma B.1 provides a closed-form to d,(IV).

Corollary 2.1 The difference coefficients d,(N) satisfy

1 (2
dAN):5ﬁ<§f;) n=0,1,...,N. (2.69)
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Proof. From (2.65) we have
N
2NC,,_(N) — ZzN k(k'i’N)
- —-n— l

=0

where we have used a change of index [ = N — k. Now we use Lemma B.1 with J = 2N

N-n
1 IN +1
en(N) = WZ( )
k:

and j = N — n to get

which results in
dn(N) = Cn(N) _Cn+1(N)
1 2N +1
T 9N\ N_-n
as claimed. O

As a result of this corollary, we see that for a fixed N, dn(N) are decreasing with n for
0 < n < N. This means that the polynomial p(r) is nonnegative for 7 > 0, and consequently
that the conditional error probability Pe(r) is convex for any M, as explained before.

An implication of the convexity of P (r) is that the conditional error probability can
not be improved by time-sharing between two phase- n01sy SNRs 7, and rj, since P.(Ary +
(1 = XN)ry) < APe(r1) + 4 (1= X)Pe(rz) forall 0 <A < 1.

2.C Tail Behavior of ¢(z)

In this appendix we concentrate on the decay properties of the density function g(z) around

its z = 1 tail. We prove that this decay is exponential as described in the following property.

Property 2.1 The density function q(z) has an exponential decay around * = 1, charac-
terized as
lim (1 — z)Ing(z) = —7/8. (2.70)

r—1-

To prove this property we need two lemmas. We first define a transformation which is

closely related to Mellin transform [36].
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Definition: The moment transform of a function f(z) defined on (0, 1) is given by

F(t) = /01 2t f(z) da (2.71)

where t > 0.

It can be ohserved that for any bounded, continuous function the moment transform
exists, and that it vanishes as t — co. The behavior of a function in its ¢ = 1 tail is related
to the asymptotic hehavior of its moment transform. The following lemma formalizes this

notion.

Lemma 2.8 Let f and g be two bounded, non-oscillatory functions on (0, 1) whose moment
transforms satisfy F(t) < G(t) for all t > to. Then there exists € > 0 such that f(z) < g(z)
forallz >1—¢€.

Proof. Let h = g — f. h is bhounded with moment transform H = G — F. Since h is
non-oscillatory, there is a neighborhood of 1 in which h does not change sign, say (1-4,1)
for some § > 0. Let

= max{|h(z)|: = €(0,1)}
/ h(z) dx .

1-6

B

Suppose h(z) < 0 on (1 — é,1). Then the following inequalities hold,

1-5 1-6 (1 — §)t+1

/ zth(z)dr < f ztlh(z)| de < A———
Jo 0 t+1

1
/ zth(z)de < (1-6)'B,

1-6

which implies
A(1 - §) ]
t) < (1-8)|———= . T
H(t) <(1 6)[ 1 + B (2.72)

However, since A > 0 and B < 0, t can be made large enough to make the right hand side of
(2.72) negative. This is a contradiction, since H(t) > 0 for all ¢ > to. The proof is complete
with the choice of an € with 0 < e < §. O

The following lemma establishes a relation between the moment transform of a function

and the Laplace transform of its ¢ = 1 tail.
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Lemma 2.7 Let f be a bounded function on (0,1) and let f. be defined as

f(l—2) 0<z<e

0 otherwise

fle) = {

for 0 < € < 1. If Q.(t) is the Laplace transform of fc(z) and F(t) is the moment transform
of f(z), then Q(t) ~ F(t) for large t and small €.

Proof. Q.(t)is defined as

Qe(t) = '/(;5 f(l—z)e " dz .

With small € we use et ~ (1 — z)t for 0 < z < ¢, to obtain

1

Qu(t) ~ /0 fl-2)(1-a)de= [ fle)atde.

1—¢

Since ! becomes smaller in the interval (0,1 — €) with increasing t, the rightmost integral
will be arbitrarily close to F(t) for large t. Therefore, the quantity |Q.(t) — F(t)| can be
made arbitrarily close to 0 for sufficiently small € and large t. O

With these two lemmas at hand we now proceed with the proof of the property stated
at the beginning of this appendix.
Proof. Lemma C.2 states that the tail of the density function ¢(z) around £ = 1 can be
found as the inverse Laplace transform of its moment transform for large arguments. The

moment transform, p(t), of g(z) is given by (2.33) and can be written as

1/2
wn(t) = ———2 7t e~VI/2
1—evVht

For large ¢, the first factor is hounded hetween 1 and v/t. Thus, for large t we have

e VI < () < Vie VD2, (2.73)

Then from the two lemmas we proved, the function ¢(1 — z) for small z will be bounded
by the two functions whose Laplace transforms yield the bounds in (2.73). With the use of
Formula 29.3.82 of [30] we obtain

T /8y < 1_ < i (l_ ) —v/8y
8‘rry3€ sal-y < 8rys \4y L)e
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for small y, which upon snbstitution of = for 1 — y becomes

— ~7/8(1-z) |7 Y ) ov/8(-e _
87!'(1 _ 1,)36 8(1 _<_ Q(:l') < 87|'(1 — :T.‘.)3 <4(1 — :l:) ]_> e Y 8(1—z) (2.‘4)

for = close to 1. We observe that the dominant tail behavior of g(x) is exponential in

(—7/8(1 - )). Eqnivalently, by taking logarithms of all sides in (2.74), we obtain

lim (1 — z)Ing(z) = -

z—1-

% (2.75)

where we have used lim;_.o zInz = 0. This completes the proof. O




Chapter 3

Detection of Phase Modulated Signals

In Chapter 2 we have analyzed the performance of FSK modulation in the presence of
phase noise. We have seen that phase noise can introduce significant penalty to the energy
required to achieve a certain error rate. It is well known that for Additive White Gaussian
Noise (AWGN) channels Phase Shift Keying (PSK) provides the most energy efficient binary
modulation [37], since the signal points are maximally distant (antipodal) from each other
on the signal space. In particular, PSK is 3 dB better than FSK with orthogonal signals in
terms of energy utilization. In fiber-optic communication systems, the peak power output of
a semiconductor laser is usually limited to a few miliwatts. Therefore, efficient use of energy
is of primary importance in these systems. Phase modulation systems are of interest for
this reason. However, the additional problem of phase noise may make phase modulation
difficult since hoth the information and the noise is on the phase. In this chapter we attempt

to quantify the performance of phase modulation in the presence of phase noise.

3.1 Differential Encoding and Simple Receivers

Let’s first consider PSK modulation with no phase tracking. That is, the receiver looks
only at a particular hit interval to decide about the corresponding bit and does not use any
information about the past observations of the incoming signal. The phase noise process
has a variance that increases linearly with time. Therefore in the steady state, the noise
becomes a much stronger component of the total phase than the signal component, which
is either 0 or = independent of the signal power. Thus, the probability of error would
deteriorate with time, reaching a steady-state value of 1/2.

From the foregoing discussion, it is clear that the phase of the received signal should

be tracked so that the uncertainty in the phase is not allowed to reach undesired levels.
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This means that the receiver should have memory and should use the past observations to
decide about the present. This can be accomplished with decision-directed phase-locked-
loops [4], for example. Another alternative is to have a differential reception strategy in
which the receiver subtracts the phase of the previous bit interval from that of the current
bit interval in the decision process. This would, ideally, yield the difference hetween the
current information phase and the previous one. The danger is that of error propagation,
since an error in the decision will cause all the following decisions to be erroneous, until
phase noise causes another error to correct the situation. This can be modeled as a Markov
chain with two states, a “good” state and a “bad” state, with a small transition probability
between them. Since all the decisions in the “bad” state are in error, the steady-state error
probability is again 1/2.

The problem of error propagation can be easily eliminated by conveying the information
not in the actual value of the phase but in its change from the previous value. This is
Differential Phase Shift Keying (DPSK), which incorporates history in the modulation.

The signal component of the received IF waveform is
s(t) = Acos(2m fot + 0(t) + bym) (n—1)T <t <nT (3.1)

where f, is the IF carrier frequency, b, is the n’th differentially encoded bit (0 or 1), and
6(t) and T are the phase noise and the bit duration as before. The energy per bit is, then,
E, = A2T/2. The n’th information bit a, is given as

a, = bn@ bn+1 y

where @ denotes exclusive-OR operation.

We neglect the additive noise n(t) that corrupts the signal for the moment and we first
consider a naive reception strategy. The receiver observes the phase of the signal at time
t, subtracts from it the phase at time t — T, and averages the phase difference over a bit

duration. We call this phase averaging. The average phase difference is

B 1 nT

A —
¢ T Jin-1)T

(6(t) — 6(t — T))dt + apm (3.2)

where by the sign = we mean modulo 27 equivalence. The first term in the right hand side

of (3.2) is a Gaussian random variable with zero mean. Its variance, a, can be found as
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&

follows. The random process Af(t) = 6(t) — 6(t — T) can be written as

A6(t) = 27 /:_T,L(T)df

where p(7) is a white Gaussian process with spectral density 3/2x as hefore. Then the

autocorrelation function of Af(t) can be written as
R(t,s) 2 E[AG(1)A0(s)] = (27) / / —6(u — v)dudv

which after some manipulations yields

R(t,s) = {27r/3 —|t—s]) |t-s|<T (3.3)
0 otherwise.
Then we obtain
a = ) dtds
T2 /n I)T/n nT
= T (3.4)

with the use of y = 273T.

A by-product of the calculation above is the observation that the differential phase noise
process Af(t) is stationary while the original phase noise process (t) is nonstationary. This
is the reason why differential PSK works better against phase noise than PSK.

The decision variable A is the modulo 27 equivalent of a Gaussian random variable,
which has a mean of 0 or 7 and a variance of a. Therefore, for equally likely data bits 0

and 1, the optimal processing of A@ is the test

34| (35)

=R A\VARH
o X

where A is assumed to lie in (-, .

We will frequently confront random variables that are derived from a Gaussian random
variable (Grv) by the modulo 27 operation. For convenience, we will use the following
definition.

Definition : A circularly Gaussian random variable (cGrv) y is defined from a Grv z
asyZz,and y € (—m,m]. Ifxis N(a,b), we say that y is CN(a,b).
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With this definition, A¢ is (' N(a,m,a). The probability of error for the phase averaging

receiver is

P, = Pr <|CN(0,a)| > %) (3.6)
which can be computed as the area under the Gaussian density N (0, a) between the abscissa
¢t =2km+ § and ¢ = 2k + 37" for k=...,-1,0,1,.... Therefore, we have

P. =23 (-1)*Q ((kr + 7/2)/Va) (3.7)
k=0

where Q(z) is the complementary distribution function of N(0,1). Since the series in (3.7)

has absolutely decreasing terms, it can he hounded as

m 2
A < 2 - < —m /8& ) .
P_Q(zﬁ)_e (3.8)
The upper bound in (3.8) will be tight for small a since Q(z) is an exponentially decreasing

function. However, we would like to compute P, in a hetter precision than the bound. The

following proposition gives us the desired form.

Proposition 3.1 For a random variable y which is CN(0,a) the following holds

N1 2.& (1) )
P Ty _ -4 2 —a(2n+1)?/2 3.
r(ly‘<2) 2+7r§=%2n+1€ (3.9)

Proof. Consider the periodic function f(#) with period 27 one period of which is defined

as
1 —m/2<8< /2
f(9)_{0 r/2< |8 <.

This function has the Fourier series

n

2 & (-1)
f(@) ==+ — cos((2n+1)8) .
@ =3+ 72 gupgeos(ent 10)

N =

The probability that we are interested in can be written as

pr(lvi<3) = [ £(O)Ne(0,a)i0

where Ng(0,a) is the Gaussian density function with mean 0, variance a and argument 6.
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-1

-1

Equivalently,

n

Pr (|y| < g) - % n % 3 ;;?IE[COS((%I-%- 1)8) : N(0,a)]

n=0

where E [g : p] denotes the expected value of the function g of a random variable with the

distribution p. From the characteristic function of a Grv, we obtain

Ty _ 1 2 & (_l)n —a(2n+1)%/2
P‘<""<§) =5+ it

n=0
which is the desired result. O

With this result, and with the use of (3.6) and (3.4) we have

P, =

ERRY)

3 é;i)r; (1 - ementn)?/2) (3.10)
n=0

which has two advantages over (3.7). First, it involves standard exponential functions
instead of Q functions; second and more importantly, it has better convergence properties
due to the extra factor 1/(2n + 1).

The performance of the phase averaging in the absence of additive noise is shown in
Figure 3-1. Note that the error probability is very high for all but very small v. For an
error probability of 10~% 4 must be less than 0.1. This is an indication that DPSK is more
vulnerable to phase noise than FSK. The receiver which performs phase averaging cannot do
better in the presence of additive noise; therefore it is said to have an error floor predicted
by the figure.

If we continue to neglect the presence of additive noise, we can do better than phase
averaging. In particular, instead of smoothing out the change of phase by averaging over
time, the receiver could look only at the bit transition times, the time instants at which
the information component of the phase could possibly exhibit a discrete jump. Since the
Brownian motion sample paths are continuous with probability 1, the phase noise compo-
nent cannot have jumps. Thus, one could perform the detection with zero error probability,
in the absence of additive noise, by just checking the continuity of the phase at the bit tran-
sition times. The problem with this strategy is that a receiver that can detect instantaneous
phase changes must have infinite bandwidth, hence it is totally vulnerable to additive white
noise.

From the foregoing discussion, we can expect that the optimal reception strategy will
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Figure 3-1: Error performance of phase averaging in the ahsence of additive noise.
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depend on the relative strengths of the additive noise and the phase noise. The additive
noise favors averaging, or equivalently lowpass filtering, operations for its effects to be
smoothed, while the phase noise favors instantaneous decisions for its continuity to be
exploited. Clearly, the optimum strategy will be a tradeoff between the two extremes. This
was observed in a similar context in Chapter 2 for the noncoherent detection of FSK, where
the optimum number of samples per bit M was determined via a tradeoff hetween the two
noise phenomena; the phase noise favored large M (large bandwidth), while the additive
noise favored small M (small bandwidth).

In the rest of this chapter, we will obtain the optimal receiver for DPSK. Our goal
is not to obtain a practical receiver to implement, since the optimal receiver is likely to
be a complex receiver due to the complexity of the problem. Rather, the goal is to have
a conceptual understanding of the optimal receiver and its performance. The optimal
receiver may also suggest simpler suboptimal receiver structures which are superior to the

ones implemented in practice.

3.2 Optimal Receiver Formulation

The signal received by the IF receiver that follows the heterodyne detection is given as
r(t) = s(t) + n(t) (3.11)

where s(t) is the phase noisy signal given by (3.1) and n(t) is a white Gaussian process with
spectral density No/2. The receiver first translates the signal to baseband by decomposing
it into in-phase and quadrature components. This is accomplished by the front-end receiver
shown in Figure 3-2. The lowpass filters serve the purpose of blocking the 2f. components
of the mixer outputs as well as limiting the additive noise power. Note that the signal
s(t) is not strictly band-limited, due to hoth modulation and phase-noise induced spectral
broadening. However, the signal bandwidth is on the order of R + 3 where R is the data
rate, and the signal will pass the filter unaltered (simply shifted in frequency) provided that
the filter bandwidth W satisfies

R+B<W < 2f.. (3.12)

" —a=w Bam - - [ —
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2 cos(27 f.t)
t=kT/M
LPF (W) 2< > Tei
r(t) ——
———1  LPF (W) s
t=kT/M
2 sin(2r f.t)

Figure 3-2: The front end of the optimal DPSK receiver. This converts the received signal
into a set of vector samples, which will be further processed.
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In that case, the filter outputs r.(t) and r,(t) are the real and imaginary components of the

complex signal
z(t) = Aexp (j (8(t) + bam)) + np(t) (n—1)T <t <nT (3.13)

where

np(t) =2 (n(t)e‘jz"fct) * h(t)

and h(t) is the impulse response of the filter. It can be easily shown that if the condition in
(3.12) is satisfied, the real and imaginary parts of the bandlimited noise ny(t) are statistically
independent. Thus, the filter outputs are two waveforms whose signal components are
quadratures and whose noise components are statistically independent.

The next operation performed by the receiver is the sampling of the two waveforms with
a sampling period of T' = T/M for some integer M yet to be determined. The result is 2M
samples per bit to be used by the rest of the receiver in the decision process.

One may, rightfully, question the compatibility of the front-end operations we have
performed with optimal receiver structure. An optimal receiver can not have an arbitrary
front end which processes the received signal. However, if the transformation from the
received signal to the samples is reversible, then the optimal processing of the samples will
result in the globally optimal receiver, since the sample processor can obtain the continuous
signal back if necessary. The sampler must be sampling at a rate of at least the Nyquist
rate so that the band-limited filter outputs can be recovered from the samples. This implies

that the number of samples per bit must satisfy
M >2WT. (3.14)

We also require that the original signal be retrievable from the filter outputs. Since the
white noise n(t) has infinite spectral content it is not possible to retrieve n(t) from its
band-limited versions. However, the high-frequency component of the noise that is lost
contains no information about the information bit and therefore is irrelevant. The real
concern is whether the signal component s(t) can be obtained from rc(t) and ro(t). It is

easy to show that this can be done by another quadrature operation, that is
ro(t) cos 27 fot — 7,(t) sin 27 fot = A cos(2n fet + 6(t) + bn7) + n'(t)

where n'(t) is a bandpass process which depends solely on n(t). Hence, we have recovered
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the relevant part of the original signal from the samples, which justifies that optimality has
not heen jeopardized by the front-end processing.

By going from the received signal to samples, we have converted the optimum detection
problem from a continuous problem to a discrete problem, a problem in which the observa-
tion consists of 2M real numbers per bit duration. The bit decisions must be based on two

consecutive bit intervals, so for the n’th data bit the observed samples are

(1>

&

re (n — )T 44T

2 L (n-1DT+iT") i=1,2,...,2M. (3.15)

Sq

The explicit expression for ¢; is

Acos(0; + bym) + ne i =1,...,M
¢i = { st ™) ) , (3.16)

Acos(0; + bppim) + e t=M+1,...,2M

where 6; and n.; are the sampled values of 6(t) and n.(t) respectively, at time ¢t = (n—
1)T +:T'. The quadrature samples s; are given by a very similar expression to (3.16) where
cos is replaced by sin and n.; is replaced by n,;.

For mathematical convenience, we would like to have the samples n.; and n,; to be
statistically independent. Note that their cross independence is already true, since the
processes n(t) and n,(t) are independent. The condition for independence of n.; and n. ;

for i # j (and similarly for the quadrature samples) is given in the following proposition.

Proposition 3.2 Suppose the random process a(t) is obtained from a Gaussian white notse
process by ideal bandlimiting to W Hz. Then the samples a(iA) of a(t) are statistically
independent if 2WA = 1.

Proof. Immediate with the observation that autocorrelation function of a(t) is R.(7) =

Ksinc(2W ) for some constant K, where sinc(z) = sin(rz)/7z. O

The proposition asserts that for the desired statistical independence the condition in
(3.14) must be satisfied with equality, which results in sampling exactly at the Nyquist
rate. In the following development we assume that this is the case.

If we regard c; and s; as the real and imaginary parts of a complex number R, then we
can use the useful geometric tool of phasor diagram, shown in Figure 3-3. In this phasor
diagram, R; is represented as a sum of three vectors. The first vector corresponds to the

phase noisy sinusoid; it has a magnitude of A and a phase of 6; + b, . The other two vectors
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Figure 3-3: The phasor diagram of the sample vectors.

correspond to the additive noise components: a real vector n.; and an imaginary vector

ny,i- In this diagram, the tip of R, corresponds to the received signal at the sampling time;

ideally it would be either the point (A4, 0) or the point (- A, 0) depending on b,. The phase

noise rotates the vector from this ideal point and the additive noise perturbs the tip so that

it is no longer on the sphere of radius A. The way in which the (unperturbed) tip rotates

obeys a Markov process since the phase noise process has independent increments. In fact,

the angle of rotation can he written as

bi=¢+> Ar 1<i<M
k=1

(3.17)

where ¢ is the initial state of the phase (¢ = 6((n — 1)T) + b,7) and A is the incremental
phase noise accumulation hetween the k — 1'st and k’th samples (A = 6((n — 1)T + kT') —
O((n—1)T + (k—1)T")). It is easily seen that {A;} are independent, identically distributed

zero-mean Grv’s with variance

2 4

v/ M . (3.18)

For samples indexed M + 1 < i < 2M, the phase change of a,7 at t = nT must also be
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taken into account. This can be done by letting Apry1 have a mean of a,m instead of 0.

Then, the detection problem is to determine whether there is a deterministic phase
shift between the M’th and M + 1’st unperturbed vectors, using the observation vectors
R,,...,Rop. Intuitively, it may seem that only the vectors Ry amd Rps1 will be used in
this decision. However, due to the perturbation hy additive noise, the angles of the vectors
R,;, f; is not a Markov process, although the unperturbed angle ; is. Therefore, all 2M
vectors will be involved in the decision.

The common variance of the additive noise samples is found as

N,
ol = 2N W = —T‘IM ) (3.19)

While the phase noise increments {Ax} decrease in variance as M increases, the additive
noise samples increase in variance linearly in M. This is because as M increases the lowpass
filter has a wider passhand, and thus passes a larger portion of the white noise spectrum,
while the phase is sampled faster and thus the incremental phase changes decrease in their
strength. An interesting relation hetween the two variances is that their product satisfies
the relation

a’o? = Noy/T = 273No (3.20)

which is independent not only of the number of samples M, but also of the bit rate 1/7.

Let’s now elaborate on the initial phase ¢. Suppose we could get a good estimate on
the state of the phase noise at time t = (n — 1)T using the observations of the previous bit
interval. If the encoded bit b,, is correctly decided, then ¢ can be estimated within a small
error. Then the coordinate frame of the phasor diagram can be rotated by this estimate
$ so that the observations lie in a coordinate frame with no initial phase. However if a
detection error in deciding b, is made, then the error in the estimate of ¢ will be in the
neighborhood of . Then a receiver which uses the absolute angles 3; in this coordinate
frame, instead of the relative angles 8; — 3; 1 (i > 2), may be in error for the next decision.
This is the same phenomenon as the error propagation in nondifferential PSK, since the
receiver is trying to detect b, instead of b, ® bny1-

To get rid of the problem above, we force our receiver to be rotationally insensitive in
the sense that if the phasor diagram is rotated by a fixed amount the receiver’s decision
will not change. This can be accomplished in two ways. One is by letting ¢ = 0 and
having the receiver process only the relative angles 3; — 8;_1 for ¢ > 2. This corresponds to

differential phase processing with perfect phase tracking. An equivalent way results from
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the observation that if 3; was uniformly distributed over (—n, ) the receiver would do the

same processing, i.e. it would disregard (3, and only use 3; — 1. 31 can be expressed as
Br=0¢+ A1+ 6

where the angle §; that depends only on the additive noise on the first vector. Hence if ¢
is uniformly distributed over (—m,7), the desired rotational insensitivity will be achieved.
This corresponds to a receiver which makes no effort to track and compensate the state of
the phase at bit transition times.

Now that we have completely specified the operating strategy of the receiver and the
statistical distribution of the random variables involved in the phasor diagram, we can
obtain the optimal decision rule. We first write the joint probability density function of
the 2M vectors conditioned on ¢, {A;} and a, in rectangular coordinates. This conditional
density is a product of 4M Gaussian densities corresponding to additive noise samples.
Then we convert this density to polar coordinates to obtain the joint conditional density of
{(R;, $;)}, and remove the conditioning on {A;} and on ¢. Finally we form the Maximum
Likelihood Test (MLT) using the densities for a, = 0 and a,, = 1. We give only the result
of this calculation here, the details may be found in Appendix 3.A. The resulting MLT is

0
Lo 2 L (3.21)
1

where

LOZf(ARl/oz,--'aARZM/027 ﬁZ"ﬁl )"'aﬂM_,Bla---nBZM_ﬂl)
Ll - f(ARl/az’- . -sARZAI/U}, ,62 - 161 9. '7,BM - ﬁla » (322)
T+ Bmi1 By T+ Bom — 1) (3.23)

The function f(-) in (3.22) is given by

M 2M
f(21y . oy TaMy Qs ooy QM) = Z e Z Ty 4o gleg g (21) (H Ik‘.(:vi)> a(E) cos (Z ki_a,-)
1=2 1=2

ko k2n

(3.24)

. ot IM (2M 2
a(k) = exp [—7 (Z kl) ] (3.25)

where
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and I (-) is the modified Bessel function of order k. The summations in (3.24) all run from
—o00 to o0.

Because of the complexity of the function f, the optimal decision rule given by Equa-
tions (3.21)-(3.25), is not a practical rule to implement. More importantly, its performance
cannot he evaluated to enahle a comparison with other receiver structures. Therefore we
consider special cases, where the decision rule reduces to simpler forms, in the following

sections.

3.3 Optimal Receiver in Weak Additive Noise

The general formulation of the optimal receiver has resulted in a decision rule which is
optimal for all signal and noise parameters. The complexity of this rule motivates us to
investigate the special cases. One such case is that of weak additive noise. The variance
of the additive noise samples satisfies 02 = NoM/T. When this variance is much less than
the squared signal amplitude, i.e., 02 < A?, we say that the additive noise is weak. The
weak additive noise regime is, then, valid only for M values that are much less than the
signal-to-noise ratio £. This may be the case in practice where ¢ is, usually, larger than 10.

From the general decision rule of the previous section, with the use of Iy(z) =~ Io(z) for

large z, we can approximate the function f as

f(e1,. .., 2anry 2, - ,apr) (H Io(x;) ) Z ) cos (Z k; a) (3.26)
ke

kant

for z; > 1. The amplitude and phase dependence of this approximation are separated.
Since Lo and L; have the same amplitude arguments in f, the decision rule for the weak
additive noise will only process the phases 3;. We now define the phase dependence of f as

a new function g,
9(027 ,QZM) Z Z COS (Z kia; ) (327)
kant
and show that this further simplifies as given in the following lemma.
Lemma 3.1 The function g(-), defined in (3.27) satisfies

glaz,...,an) = H (27rzp -y + 2n‘rr)) (3.28)

1=2
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where a; = 0 and p(-) is the Gaussian density function N(0, a?).

The proof of this lemma is given in Appendix 3.B since it is not central to our discussion.
With the use of the lemma and Equations (3.21) and (3.22) the optimal test hecomes

0
> p(Basr — Bar +2nm) 2 > p(Bm4r — Bu + (2n+ 1)) (3.29)
7 1 n
which reduces to .
T
Bms1 = Bl 2 5 (3.30)
0

due to the symmetry of Gaussian density function. This is a test that simply looks at the
angle between the vectors just before and just after the bit transition time, and checks
whether this angle is closer to 0 or 7. We will refer to this decision rule as angle difference
rule.

We now analyze the performance of the angle difference rule in (3.30). Similar analyses
can be found in [38, 39, 42]. The probability of error can be written as

P, = (B, By +110) dBrr dBm 41 - (3.31)

‘/|‘ﬂM+1—ﬂM|>7"/2

Thus, we need the joint density of the angles 3ar and Bar41 under the hypothesis a, = 0.
The = and y components of the ith sample under this hypothesis are

Ri,:c

A cos(z Aj+ @+ bam) + e
i=1

R;,

i
Asin(z Aj+ ¢+ bam) + 1,
Jj=1
We are ultimately interested in the statistics of the difference Sar41 — Bum, thus we can
manipulate the random variables that are common to both Bar and Bpr41 without affecting
that statistics. We have

Bm On + oM

Bmyr = O+ Ampr +dun

where §; depends only on the additive noise on the ith sample. Therefore we can set Opr = 0
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and let Apry; = A. Then we have in Cartesian coordinates

1 1
p(RM,ma Ryt y, R1W+1,n:7RM+1,y|A) = W exp [—535 ((RM,: - A)z + Rﬁ/{,y

+ (Rpmsre— AcosA)’ + (Rprqry — AsinA)z)]

Now we make a transformation to polar coordinates and obtain

RyR
P(Ra, Buts Bag s Barsa|8) = S5 st exp(=(Rhy + Rign +247)/20%)

A
exp [; (RM cOSs ,BM + RM+ICOS(;BM+1 - A))]

Finally we remove the conditioning on A by first using the Bessel series:
exp(z cosu) Z I.(z) cos(ku)
k=—o0

and then use the characteristic function of a Grv to obtain

p(Ru, Bm, Rarg1, Bu41) = exp (—(R)zw + R3s,1 +24% - 24Ry COSﬁM)/ZUZ)

Ry R o
malg—)tl Z I ( ARM+1/0 Je ~kiat/2 cos(kBnm+1)

Since we only need the distribution of the angles we now integrate out the amplitudes:

_A2/02

e ZZAkAze /2 cos(kBarar) cos(iBy)  (3.32)

(B, Br+1) =

where we have defined the coefficients Ay as

1 o0
;/0 Re /207, (A—f) dR

e

> . 2A2qy
_ /0 e Ik( ° ) du (3.33)

Having obtained the density function for the angles, we can obtain the probability of error

ne

Ay
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from (3.31). We have

where we have defined ('} as

Cr = cos(kBnr+1) cos(IBnr) dBnr dBpr 1 -

‘/l./3M+l ~Bum|>m/2

It is easily found that

2r? ifk=1=0,
Cu =9 —(-=1)"2r/(2n+1) if |k| =|l| = 2n + 1,
0 otherwise.

This results in

1—A=a=2 2—A’2°°(_1)n 2 —(2n+1)2a2/2
P. = e /AO—;e /“§2n+1,42n+1e< Va?/z

From Equation (24.94) of [40] and (6.614.1) of [41] one gets

2 2
AO _ eA /20

A27I' A? /402 AZ A2
Aspp1 = \/@6 / [In (m + I 107

which results in

1 £ e—¢/M n" [ ( £ ) ( 3 )]2 —(2n41)2y/2M
Fe=35- 2 Z2n+1 In\zaz) Y \zag)) @ (3.34)

which is the final result.

Equation (3.34) is obtained in [42] (with M = 1) for the performance of the “delay
and correlate” receiver in which the receiver correlates the received signal with the signal
corresponding to the previous bit interval and checks the sign of the result. This is equivalent
to our model with M = 1: the receiver effectively samples once a bit and takes the inner
product of the sampled vectors. For a general M, the receiver delays the signal by T/M
and takes the inner product of the current and delayed samples.

The performance of the angle difference rule is shown in Figure 3-4. The bit error

rates shown are optimized with respect to M. It is seen that angle difference receiver is
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Figure 3-4: Error performance of angle difference rule.




CHAPTER 3. DETECTION OF PHASE MODULATED SIGNALS 91

very sensitive to phase noise. For ¥ > 0.01, there is a rapid deterioration in the system
performance. In the case with no phase noise, v = 0, the optimal value of M is always 1.
As v increases the optimal value also increases. However, the effect of phase noise cannot
be compensated by looking at a smaller time interval; the increasing additive noise power
dominates and the performance deteriorates dramatically.
It may be of interest to consider the asymptotic performance of this receiver for very
high SNR values. Using the property
lim Ip(z)e ®v27z =1

I — 00

one obtains from (3.34) that as £ — oo,

l\JIr—l
>-|IN

i ——y(2n+1)2/2M
= 2n + 1

which is similar to the expression we obtained for the phase averaging in the absence of
additive noise. For M = 1, the error floor is the same as that of phase averaging except
an increase in 7 by a factor of 1.5. This is due to the fact that there is no averaging, or
post-filtering, in this receiver. Recalling the high floor of the phase averaging receiver we
conclude that the standard delay and correlate receiver, i. e. the angle difference rule with
M set at 1, has very poor phase noise tolerance. However the angle difference rule optimizes
over M. In the absence of additive noise, the optimal value of M is infinite, the receiver
just detects the polarity change (or lack of it) at the bit transition times and achieves zero

error probability as

'n.

P.(M — o) 1. 2 i
2 o 2n + 1

This tells us that if the receiver bandwidth is optimized with respect to the noise parameters,

there will not exist a bit error rate floor. Thus, the error floor is not inherent to the phase

modulation but to the receiver structure. However with nonzero noise levels the performance

of this DPSK receiver is rather poor in comparison with FSK receivers we have previously

considered.

There are two reasons for the poor sensitivity to phase noise. One is inherent in the
DPSK modulation. The information is conveyed in the phase which is directly corrupted
by the phase noise. Therefore one should not expect the tolerance of a DPSK receiver to
phase noise to match that of a FSK or OOK receiver. The second reason is that the angle

difference receiver was designed under the premise that the additive noise is weak. The
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resulting decision rule used only one of the M available samples, thus reducing the effective
SNR by a factor of M. In this sense, this receiver is similar to the single-filter receiver for
the envelope detection of FSK. Both of these receivers operate with the principle that a
reduction of SNR may he worthwhile if the phase noise strength is reduced by the same
factor. The improvement introduced by both receivers is marginal. In the next section we

will design receivers that use all the available samples as in the double-filter FSK receiver.

3.4 Optimal Receiver in Weak Phase Noise

In this section, we investigate the optimal receiver structure when the phase noise is weak.
This case is realistic, since the variance of the incremental phase noise is y/M, which is
small for small 7y and/or large M. First we concentrate on the case with no phase noise.
The optimal decision rule with y = 0 is, from (3.21)-(3.25),

1

Lo 2 Ly (3.35)
0
M M
Lo = Yo cos(DkiB) [] In(AR:/o?)
k1+"'+k2M:0 1=1 1.:1
M °M
L, = > cos(Y_ kiBi + kirnr(Bizar — 7)) 11 7x.(AR; /o).
k1+"-+k2M:0 =1 i=1

While this decision rule still looks formidable, the following lemma simplifies it significantly:

Lemma 3.2 Lo given in (3.35) can be written as

Lo = Io(\/E,)

where
g M
Ey = = S RiR;jcos(Bi — ;) .

1,j=1

Proof. We first use .
IL,(z) = / e”**¥ cos nu du

o =T
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with n = kg + - -+ + kpr, to rewrite Lo as

—-m

93

M M 1
Lo= Y, COS(ZZ ki(Bi — B1)) (I:[z Iki(bi)> o / €81 €03 cos((ky + - - - + kapr)u) du

ko eeckan

where we have defined b; = AR;/o?. We now interchange the sum and the integral, expand

the product of two cosines, and observe the symmetry with respect to u to obtain

1 M
Lo = 27/ st S L (bg) Ty (banr) cos(3 kilB; — Br + w)) du
T ka-kam i=2

Next we note that the inner summation can be simplified as

M M
S Iy (b2) - Tryp(bang) cos(D_ kizs) = I 3 I (b:) cos(kiz;)
I =2 1=2 ky
2M
= Hexp(b,- cos z;)
1=2

2M
= exp (Z b; cos xi)

1=2

where we have used

Z I(z)sinky =0

k=—o0
and -
Z I.(z) cosky = exp(z cosy) .

k=—oc0
Now we have
1 r M
Lo = o i exp [; b; cos(B; — B1 + u)] du

We now let a; = 3; — 31 and manipulate the exponent above as follows

2M 2M 2M

Z b;cos(a; + u) = cosu Z b;cosa; —sinu }: b; sin «;

1=2 1=2 1=2

1/2

M 2
+ (Z b; sin ai) cos(u — v)
i=2

2

(B

(3.36)

(3.3

)
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where v is an angle which is independent of u. Letting

M 2 M 2
FEo = (Z b; cos oz,-) -+ (Z b; sin ai)
1=2 1=2

and inserting (3.37) into (3.36) we get

Lo = Io(VEo) -

We finally bring Eo to the form stated in the lemma.

2M
Ey = Z b;b; cos o cos aj + bibjsina; sina;
1,j=1
2M
= E bibj COS(Ol,j — Ol_,')
1,j=1

which concludes the proof since a; — a; = 3; —
Since Io(x) is an increasing function, the lemma simplifies the decision rule to

0
Ey 2 E4
1
where E, is appropriately defined with the = phase shifts for the second half of the angles.

It can be easily seen that in terms of the samples one has

M M
Z+ Z —ZZ Z R;R;cos(f; — B3;) -
1,j=1 1, j=M+1 =1 j=M+1
Thus the test finally simplifies to
M 2M 0
ST > RiRjcos(Bi—B;) 2 0. (3.38)
i=1j=M+1 1

An alternate way to state the same decision rule is the following:

O T
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The receiver finds the average of the sample vectors corresponding to the current and
previous bit intervals, and compares their inner product to zero. This is similar to the angle
difference rule except that the average vectors are used instead of the Mth and M + 1st
vectors.

We will now provide a crude performance analysis for the receiver given by (3.39).
Let’s first find the conditional error probability when the phase noise angles 6; are known.
In this case, the in-phase and quadrature components of the averaged sample vectors are
independent Gaussian random variables with known means and identical variance o2 /M. If
these components are viewed as the real and imaginary components of a complex variable,
then the inner product reduces to the real part of the product of two Gaussian complex

random variables. We define A, Ay, ¢; and ¢, as follows:

M
. A .
Al = _Zeaﬂa
M =1
. A M
Ajel®? = i Z et (3.40)
i=M+1

Thus, A, and ¢, are the amplitude and the phase of the phase-noisy signal vector for
the first bit duration, respectively. Similarly, 4, and ¢, are the corresponding entities for
the second bit duration. With these definitions the conditional error probability can bhe

expressed as

Pe(A17¢1,A2a¢2) =Pr (Re [(Alej#’l + nl)(Azejqb: + n’;)] < OlAl’ ¢13A27 ¢2)

where n; and n, are i.i.d. complex Grv’s with zero mean and component variance o2/M,
they correspond to the additive noise averages. The probability above is a standard one in
communication theory, it can he obtained as a special case of a more general probability

treated in Appendix 4 of [25] as

P(Ar, b1, Az $2) = Q(a,8) — 3 To(ab) exp(~(a +7)/2) (3.41)

where a and b are given by

a = [ﬂ (Af + A — 24,4, cos(¢ — ¢2))]1/2

402
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b= [_]‘i (A2 + 43 + 241 4, cos(n - ¢2))]1/2

402
and Q(-,-) is the Marcum’s @ function defined as

Q(a,b) 2 / e~(@®+=")/2[ (az)z dz .
Jb

Note that for given phase noisy signal vectors the conditional performance of the system is
independent of M since ¢?/M is a constant. The phase noise has two negative effects on the
performance. First, it causes ¢ — #, to be nonzero, and secondly it causes 4, and A, to be
less than the original amplitude A. The amplitude effect is of the same nature as the effect
of phase noise on FSK, which is small when v is small and SNR is large. The important
deterioration in DPSK stems from the effect of phase noise on ¢; — ¢;. Therefore, we will
neglect the amplitude degradation and concentrate on the phase degradation. That is, we
shall assume that A; = A; = A. Furthermore, for small v, one can expand the complex

exponential in (3.40) to the first order, and obtain

" 1 ¥
jbr — j—
At = 4 [1+,Mzok]
k=1
and the extension to the second set of samples is obvious. We see that the amplitude
degradation is of second order in phase noise, while the phase deterioration is of first order.

We also see that the phase of the average signal vector can be approximated by the average

of the individual signal phases. This approximation results in

M
¢z — b1 % > (Oksm — k) (3.42)
k=1

which is similar to phase averaging. It can be shown that the variance of the phase difference

with this approximation is

Var(¢z — ¢1)

M-1 (12
2 -2
[M t2, ]Kﬁ
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which decreases with M. Therefore the optimum value of M is co. In this case we have

T
b= [ 00— 0(t =T dt. (3.43)

We have designed a receiver whose sensitivity to additive noise does not depend on M. Thus
for efficient phase noise tracking we find that M should tend to co. The resulting receiver
effectively perforins phase averaging in the presence of additive noise. Another observation
is that the improvement by optimization over M is not very large, since increasing M from
1 to oo reduces the phase noise variance only from y to 2y/3.

The conditional error probability was found in (3.41). With the approximation A; =

A, = A, the parameters a and b become

o = \/2sin%(g, — 1)
b = \/2£cosz(¢z—¢1).

Assuming that the SNR is high and using the equations (A.20) and (A.21) of [43] Appendix
A, one obtains

P.(a,b) ~ Q(b - a) ~ %exp(—(b —a)/2). (3.44)

The unconditional error probability can be obtained by taking the expectation of the con-

ditional error probability over the Gaussian random variable A¢ = ¢ — ¢ resulting in
]. _6 . N
P, ~ 3¢ E [exp(&]sinAg])] . (3.45)

This error probability can be computed numerically, the result is shown in Figure 3-5. It
is seen that this receiver is also vulnerable to phase noise. The error probability increases
dramatically as the phase noise strength gets beyond 0.1. This is due to two reasons. One
is that the receiver was designed to operate in the weak phase noise regime. The other
and perhaps more important reason is again the inherent intolerance of phase modulation

formats to phase noise.
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Figure 3-5: Error performance of inner product decision rule.
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Appendix

3.A Derivation of the Maximum Likelihood Decision Rule

In this appendix, we derive the general Maximum Likelihood decision rule for DPSK to
obtain Equations 3.21-3.25. Let ¢; and s; denote the z and y components of the observed
vector R,;. Then the joint conditional probability density function of the 2\ vectors in

rectangular coordinates can he written as

11>

pOT(o) p(Rla .. '9R2M | {ei}van = 0)

2M

= H(27r0'2)_1 exp [— ((Ci — Acos8;)? + (s; — Asin6;) ) [20 ]
- M

= (2ro?) Mexp (—%5 (c; — Acos®;)? + (s; — Asin Oi)z) .

=1
Now we will express this density in polar coordinates. This involves the substitution ¢; =
R; cos 3;, s; = R;sinj; as well as the introduction of the Jacobian factor [ R;. Then we
get

e—A?/257 M _RY/207 i
Pop(0) = (W) ('I-IIR e ) exp (; ;Ri cos(B; — 9,-)) . (3.46)
Now we want to remove the conditioning on {6;}. Note that the dependence of the condi-
tional density on phase noise is only through the last exponential term. First let’s recall
from Equation 3.17 that 6; = 6,_; + A;, where A; are i.i.d. normal with zero mean and
variance a2. Since A,pr enters only fapr, it is convenient to start the unconditioning with

index 2M and proceed recursively. We obtain

AR
Eam Ep,y exp ( 2l

a

cos(Bzm — 02M))

Il

> AR
Y Ik (—g;ﬂ) cos(kapr(Banr — Oanr—1))e*3m>*/2

where we have first used the Bessel series [41, 40]

exp(z cost) Z I.(z) cos kt

k=—o0
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and then used E cos kA = e=****/2 E sinkA = 0 for A = N(0, a?). For removing the con-
ditioning on A,pr_; we need to consider both the indices 2M —1 and 2M in the exponential
of (3.46). We now have

A ARopr_ AR
Eapmo1 = Eayp_1,050 €XP (-%—1 cos(Bam—1 — Oapmr—1) + M

ARap 1 ARapm\ iz o2
Y S Do, (—0—> Ty (T)e /2

kane—1 Fa2ns

Epyp_, 0s(kans_1(B2m—1 — O2m—2 — Danr—1)) cos(kanr(Bans — O2m -2 — Aanr—1)) -

cos(Bam — 02M)>

The latter expectation can be found as follows.
Ea cos(k(z — A))cos(l(y — A)) = 1e—(k“)z"‘z/z cos(kz + ly) + le_(k'm‘"z/z cos(kz — [
2 2 y

Since Ix(z) = I_x(), the two terms above will have the same effect on the result, and we

have

ARapr— AR
Eam-1 = Z ZIkzM_l (%) Tiey s (J—§M> (k3 pp+(kap—1+kang)?)a? /2
cos(kapr_1(Bamr—1 — Oamr—2) + kap(Bam — Oan—2)) -

By now, the recursive pattern has become clear. Removing the conditioning on each
A; introduces a new Bessel series with an additional exponential term. Thus after the

expectation on A; is removed we have

i

Ey

. exp( ZRcos ))
Z Z(ka( ))b(k)cosZk

kZM =1

where b(lg) is the collection of exponential terms given as

2
b(k) exp [—% (k‘%M + (kan + kZM—l)z + -4 (kemr + -+ k1)2>]

0

@

>4

e}

|
N‘QN
ﬁ [¥]
- X
(&)
INgE

ka
SN——
-9
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Finally we need to remove the conditioning on the initial phase ¢. Since ¢ is uniformly

distributed on (—m, 7), we have

cosz k=0

E4 cos(:c—qu):{O k0.

Thus only the terms with k; + --- 4+ kapr = 0 will not vanish in E;. This results in a

reduction of number of summmations by one. We choose to eliminate the summation over
k1. Then

Eo 2 EuE:
AR,? 2M AR,‘ o 2M
= 3 N Doty (7) (H Iy, (7)) a(k)cos Y ki(B; - B1)
ks kans i=2 i=2

where we have used I_(z) = Ix(z) again, and we have slightly modified b(l;) to get a(k) as
given by (3.25). Ep can be written in terms of the function f(-) defined in (3.24) as

AR AR
Bo= (A8, AT - 1) 2o

The unconditional density under a, = 0 is now given by
—A2/202\ M oM
€
Po = (W) (H Rie-R?/R'z) Lo . (3'47)
=1 .

The amplitudes {R;} are seen to be statistically independent while the phases are corre-
lated through the function f. The density under a, = 1 may be obtained from py by the
substitution 3; — B3; + wfori = M + 1,...,2M. Thus

e—A2/202 M oM R 2

Pl = <—27r_0-2_ (H R{e_ i/za ) Ll (3-48)
1=1

where

N AR AR
L, = f(a—;»---,U—;M,ﬁz—ﬂl,---,ﬂM—ﬁl,ﬂ’-FﬁMﬂ—/31,---,7f+ﬁ2M—/31> .
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Therefore the Maximum Likelihood decision rule is obtained from (3.47) and (3.48) as

0
Lo 2 In
1

as claimed in Equation 3.21.

3.B Proof of Lemma 3.1

In this appendix we will prove Lemma 3.1 which states that the function given by Equa-
tion (3.27) as

| N
g(a'b' --,OLN) = Z : Za(’;) cos (Z kiai)
1=2

k2 ken
where
a? N N 2
a(k) = exp - E (Z kl)
1=2 l=1,
satisfies
g(a27 ,CYN) = H (27I’ Zp(a; a;_1 + 27‘!.1())
1=2 n
with )
— z?/2a2
T ——e
P) = e
and a; = 0.

To prove this result, we first rewrite a(k) as

. N o (N 2
a(k) = Hexp [——2— (Z kl) ]
1=2 =1

= ﬁ By, [exp (—jA,- i ’“l)]

1=2 =1

= Efay exp [—J’ é A; (i ’“l)]

=1

through the use of characteristic function of the Gaussian random variable A;. Thus the
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function ¢(-) can be written as

g(az,...,an)

=1

Re E g---gexp []é (kia,-_ - A,-ik,)]

= ReE Y explika(az — A2)] D exp[jks(as — (A2 + A3))]
k3

k2

Zexp[jkN(aN - (A +"'AN))] .

kn
Now we use the property
Zejkz - 2#26(1! + 27k)
k k
to obhtain
g(an.ran) = (20N ReE S 8(az — Az + 2mks) 3 8(as — (Ag + Ag) + 2mky)

kz kJ
oo Y b(lan — (Az+ -+ AN) + 27kN)
kN

Let E; be the expectation above after the conditioning on A; is removed. Then

En = 25(02 — Ay 4 27ky) .- Z flan_1— (A2 +---An_1)+ 27kN_1)
k2

kn—1

S plan — (B2 + -+ Ay_1) + 27ky) .

Applying the sifting property of the impulse to the last two terms and then taking the

expectation over Ay _; one obtains

EN—l = 26(02 —A2+27I’k2)--- Z 6((1]\(_2—(A2+---AN_2)+21I"€N_2)

kn—2

k2
Z ZP(QN—1 —(Az+ -+ An_2) +2mky_1)p(any —an_1 + 2r(ky — kn_1)) -

kn_1 kn

By the time we remove all the conditionings through the use of sifting property we will have

Ey=) > - 3 plaz +2mka)p(os — g + 27 (kg — kz))---plany —an_1+27(ky —kn_1)) -
o ks kn
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Now we let ny = ko, na = ka — ka,..., npr = kny — kny_1 to get

N N
Ey = [[ Yo plei — iy +27my) = I plai — @iy + 27n)

=2 ng 1=2 n

with the convention ; = 0. Since g = (27)V~1E;, we have just proved the result

N
glaz,...,an) = H (ZWZp(ai — ;1 + 21rn)) .0
1=2 n



Chapter 4

Detection of Amplitude Modulated Signals

In the previous two chapters, we studied frequency and phase modulation in the presence
of phase noise. In this chapter we will investigate the detection of amplitude modulated
signals. Amplitude modulation is a promising signaling format in the presence of phase
noise since the coupling between the phase and the amplitude is likely to be weaker than
the phase/phase and the phase/frequency coupling that limited the performance of phase
and frequency modulation respectively. We consider binary On-Off-Keying (OOK) where
the transmitted signal is a phase noisy sinusoid for a data bit of “1”, and no signal is

transmitted for a data bit of “0”. Thus the received IF signal is
r(t) = arAcos(2m f.t + 0(t)) + n(t) (k- 1)T <t <kT (4.1)

where a; = 0 or 1 and the rest of the parameters are as defined previously.

We start by considering optimum detection of OOK signals. This leads naturally to the
envelope detection where several of the results from Chapter 2 can be used. We show that,
with envelope detection, OOK has a higher probability of error at a given peak signal-to-
noise ratio than FSK. However the penalty imposed by phase noise is less for OOK. Thus
amplitude modulation is seen to exhibit more robustness against phase noise than frequency

and phase modulation.

4.1 Optimal Receiver Formulation

The formulation of the optimal reception of OOK signals has many features in common with
that of DPSK signals. The front end of the receiver has the same quadrature-filter-sample

structure that we considered for phase modulation. The only difference is that the sample

105
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processor processes only M samples that belong to the current bit interval. The in-phase

components of the samples are given by
ci=anAcosb; +n.; i=1,...,.M (4.2)

and for the quadrature components s;, cos is replaced by sin and n.; is replaced by n,;.

The phase samples 8; obey, as before, the relation

bi=¢+Y Ak 1<i<M (4.3)
k=1

where ¢ is the initial phase and Ay are the phase noise increments which are i.i.d. N(0,a?)
with a2 = /M. The additive noise samples are i.i.d. N(0,0?%) with ¢? = NoM/T.

The role of the initial phase ¢ in the amplitude modulated system is not as important as
the phase modulated counterpart. We will consider two scenarios in the following discussion.
First, we will assume that the initial phase is perfectly tracked, i.e, ¢ = 0. Later, we
will assume that no phase tracking is performed, and hence ¢ is uniformly distributed on
(—m,x]. We will obtain the optimal decision rules for both of these cases and evaluate their
performances.

4.1.1 Known Initial Phase

In the case where the initial phase is perfectly known, one can include this phase in the
correlators and assume ¢ = 0. The probahility density functions corresponding to the sam-
ples under the two hypotheses can then be found. The density for a, = 0 is particularly
simple since there is no phase noisy signal in this case. The amplitudes are i.i.d. Rayleigh
distributed and the phases are i.i.d. uniform, and the amplitudes and the phases are mutu-
ally independent. For a,, = 1, the density can be found in the same way as in the previous

chapter, first by conditioning on the phase noise. The resulting likelihood ratio test is

1
L2 A M2 (4.4)
0

where

I %:Z (ﬁf,ﬁ (i_ff)) exp [_a—;lé (ék,)z] cos (ikiﬂi) .

li'n,[ =1
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The decision rule is again complicated. We will specialize to the case of weak phase noise
which is usually the case of interest, especially for large M. We approximate the decision

variable as a first order perturbation around a? = 0 as
L(a?) ~ L(0) + a*L'(0) (4.5)

where the derivative is with respect to a?. After some algebra that we give in Appendix 4.A,

the decision rule reduces to

1%3 g 4+ 1A 1 % in(i, j)R: sin iR, sin B; — L~ quz coﬂ;A(46)
— i cos 3; — min(z, j)R;sinB;R;sinf; — - = icosf3; 2 — (4.
M & 2Ny M? 2=, 2 M7 & <2

The interesting observation here is that the first term in the decision variable corresponds
to that with no phase noise, and the other two terms act as correction terms which vanish
as vy tends to 0. The quadrature components are correlated in the second term in a way
in which the newer samples carry more weight. The same is true for the weighted sum of
in-phase components in the third term.

As M — oo, the decision rule hecomes

YTA 1

1 T T T ¥ 1 T 1 A
T/o rc(t)dt+mﬁ/; /0 mm(t,r)r,(t)r,(r)dtdr—Eﬁfo trc(t)dt§5

(4.7)

The performance analysis of this decision rule, even in the limit of large M, seems to he
difficult. A suboptimal version of this receiver with only the first term in (4.6) or (4.7) may

be possible to analyze. The first term may be written as

1M e AM 1M
H;Ricosﬂi: i ;cos%—%H;nc,i. (4.8)

The error probability with a “0” sent is independent of the phase noise, and is easily found

as

P(0)=Q (Ver2) (49)

with £ = A%2T/2Ny. The error probability with a “1” sent must be first conditioned on the



108 CHAPTER 4. DETECTION OF AMPLITUDE MODULATED SIGNALS

phase noise process. This yields

1 4 1
P.(110(t)) = Q | V2¢ HZCOS% -3 . (4.10)

To obtain the unconditional error probability we need to remove the conditioning on 6(t).
A reasonably tight approximation may be obtained by interchanging the expectation and
the Q function, although this is not a lower bound as in the FSK case since the Q function

is not convex for negative arguments. We then obtain

(4.11)

P (1)~ Q (\/ﬁ(

e—V/2M _ o—(M+1)y/2M
M(1 — e—/2M) T2

In the limit as M — oo the error probability becomes

f;:%Q(VEE)+%Q(¢i{%u-eﬂﬂ)_%b . (4.12)

This error probability is shown in Figure 4-1. It is seen that OOK has a better tolerance
to phase noise than DPSK.

4.1.2 Unknown Initial Phase

When the receiver does not attempt to estimate the phase in the decision process, the initial
phase may be modeled as a random variable which is uniformly distributed over (-, «].
In this section, we will find the optimum receiver under this condition and evaluate its
performance.

The maximum likelihood decision rule may be obtained in a way similar to the DPSK

case to be

1
L2 eAM/2? (4.13)

where the decision variable L is now given by

M o M M 2
L= Z“‘Zlkﬁ---kM(ARl/Uz) (H Ik,'(ARi/O'Z)) exp [—7 Z (Z Iq) ]
=2 i=2 \[=1

k2 ke

M
cos (Z ki(B; — 51))
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Figure 4-1: Error probability for the coherent OOK receiver.




110 CHAPTER 4. DETECTION OF AMPLITUDE MODULATED SIGNALS

which is again too complicated to implement or to analyze. Using the first order pertur-
bation that we used for the case of known initial phase and applying techniques which are
very similar to the ones in Appendix 4.A, we obtain the decision rule for the case of weak

phase noise as

1
1| A
i >
5 Ry + - RM}+2MZCj : (4.14)

where C is given by
A 1 M 3 i M g — 1 M - —

C = Z?ﬁ:z min(7 ,])( 5 — —3) [Z Ri®Rm] [ZRj®Rn] ——ZiRi' 1
g 9 m=1 n=1 gi.=2
- = Z i — j|R; - R;

1_) 2
with
g = ':R_:l-}-..R_l‘\d}
= - A .
R;®Rm = RiRn Sln(ﬁi — ﬂm) .

We see that, once again, the decision variable is that of the optimal receiver perturbed by

some complicated correction term. In the limit of large M, the decision rule becomes

Vet 432 9K % % (4.15)
;
where
K = ;( ¢+)iT / / min(t, 7) [ery(t) — $ro(t)] [ers(r) — Sre(r)] dt dr
e [ O O e (7) = )] e
and

ol
Il

1 T
T/ T'C(t) dt
0
1 T
5 = f/ ro(t) dt .
0

The first term in (4.15) corresponds to the standard envelope detector. The perturbation
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term contains nonintuitive correlations hetween the in-phase and quadrature components
that we will not elaborate on. Instead we will concentrate on the envelope detector struc-

tures in the remainder of this chapter.

4.2 Envelope Detection of OOK Signals

In this section, we will be consider the envelope detection of OOK modulated signals. We
have seen in the previous section that for very small phase noise strength, the standard
envelope detector is close to the optimal receiver in the absence of an initial phase estimate.
The improvement obtained by modifying the envelope detector for FSK motivates us to
explore the performance of a similar scheme for OOK. The IF receiver structure is shown in
Figure 4-2. The receiver is similar to that of FSK, except that only one of the two branches
of the FSK receiver is retained and the decision variable is compared to a threshold /. The
front end consists of a quadrature demodulator, and a set of integrators of duration T'. The
outputs of the integrators are squared and added, and then sampled.

We again consider three receiver forms. The first is a single sample receiver which
samples once a bit, i. e. 7' = T. This is the conventional envelope detector. The second
receiver has T' = T/M for some integer M, but still samples once at the end of the
bit duration to obtain the decision variable Y. We call this a single filter receiver (with
optimized bandwidth). The third receiver also has T' = T/M, but the decision variable is
the sum of M samples, ¥ = M . Yi. This will be called a double filter receiver since the
addition of M samples corresponds to a lowpass filtering operation. The value of M is to
be determined for the latter two receivers to minimize the error probability.

Now we proceed to find the probability of error for these receiver structures. The method
employed is similar to that of Chapter 2 in that we first condition the error probability on
the phase noise process, then we remove this conditioning either by numerical integration
or via analytical bounds.

We first consider the single sample receiver. The decision variable can be written as

2

T .
Y = ——an/ O dt 4 n, + jn, (4.16)
0

where n, and n, are independent identically distributed Gaussian random variables with

zero mean and variance 02 = NoT'/4. When a,, = 0, the decision variable has an exponential
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t = kT’

Data

Out

Figure 4-2: IF receiver for envelope detection of OOK signals. For single filter receiver the
adder is absent, and Y = Y.
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distribution given by

1 s
P(y) = 53¢ w2ty > 0.

For a,, = 1, both additive noise and phase noise are present. We first condition the density

on the phase noisy signal component

2

T
4 / LI gt
0

JX" =
: 2.

to obtain

L e—(y+X')/202I0 < V -‘Ez y)

JY, = —=
Pyl X") 557 p

which is a well known noncentral Chi-square distribution with two degrees of freedom.
Let P.(0) be the probability of error when a,, = 0, and let P.(1|.X') be the conditional

probability of error given a,, =1 and X'. Then we have

P.(0) = Pr[¥ > hla, = 0]
>~ 1 2 2
— - -y/2c dy = —h/20
Jn 202€ y=¢

and

P.(1]1X") = Pr[Y < hla, =1,X]
= " Le—(yh\”)/zﬂz[o ( 4 X”y) dy

JO 20’2
X' h
1-@ (\/?’\/?)

where Q(-,-) is the Marcum’s @) function defined as

Il

Q(a,b) = / e_(°2+’2)/2I0(a:c).r. dz .
/b

It is convenient to define a normalize threshold /i as
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and to rewrite X' as follows

2
X':’é /Tef"“)dt _ AT
5/,

1 2
/ i v/AU() dt‘
0

where (t) is the standard Brownian motion and 7y is the phase noise strength. Now with

the previous definition of X () as

2

1
X(v)= /0 eIV gy

we have
YI

20 952

where £ = A?T /2N, is the signal to noise ratio. Then the error probabilities become

=£X(7)

P.(0) e P
PIXG) = 1-Q(y26X(), VaR)

and the unconditional error probability is given by

Pe:%»—"+ [ [ <\/2_£\— \/_h)” (4.17)

which reduces to the well known OOK error probability for v = 0.

The approximate probability density function, ¢, (), of X(7) was obtained in Chapter 2.
Therefore the error probability in (4.17) can be evaluated numerically. The results are shown
in Figure 4-3 for different 7 values. The threshold h has been optimized at each point to
minimize the error probability. It is seen that the performance of the single sample receiver
deteriorates rapidly with the introduction of phase noise.

Next we consider the single filter receiver. The analysis for this case is very similar to
that of the single sample receiver, since the decision variable consists of a single sample as
well. The additive noise variances increase by a factor of M, while the effective phase noise
strength decreases by the same factor. This is due to the reduction of the integration period
by M. As a result, the error probability of the single filter receiver is given hy

P = %e—f’ + % [1 _E [Q (\ﬁm \/2_/1)]] (4.18)
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Figure 4-3: Error probability for the single sample receiver.
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The value of M that minimizes P, must be found as well as the normalized threshold #.
The former optimization poses a computational problem since the evaluation of the density
function g(x) for many values of v/M is computationally prohibitive. However due to the
exponential approximation for X () introduced in Chapter 2, this problem can be avoided
as follows. We have

Ta(z) = ay(zM) MM

which results in

ELF (XM = [ 1(/M)g,(2) de

for any function f(-) defined on (0,1). Thus

P = %e—" + % [1 - _/OIQ (y/Zle/M/M, \/2_h) qy(z)dm] (4.19)

which requires only one density function, instead of possibly many. The resulting compu-
tation is very easy. Its results are shown in Figure 4-4. Again we see that the performance
degradation due to phase noise is severe. The single filter receiver introduces an improve-
ment over the single sample receiver at no additional hardware complexity. All that is
needed is an estimate of the signal to noise ratio and the phase noise strength, and an a
priori computation of the optimum bandwidth expansion factor M.

Finally we consider the performance of the double filter receiver. In this case, the
decision variable is a sum of M statistically independent random variables, {Y} }, under both
hypotheses. The additive noise components are Gaussian with variance a? = NoT/4M. Tt
is convenient to normalize hoth the decision variable and the threshold as V — Y/2a2,
h = h/2a?®. Then for a, = 0, V is the sum of squares of 2 Gaussian random variables,

thus it has a Gamma density given as

M-
p('U) - (M _ 1)'6

—v

Similar to our previous development, for a, = 1, we first condition on the phase noise

process, and obtain

v) (M-1)/2

Pl {en) = ( =+ Iy (Vi)

where the dependence on the phase noise process is exhibited in the parameter r. This
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Figure 4-4: Error probability for the single filter receiver.
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parameter is defined as
L M
2
r= 22 Z lz(k)
k=1

where
A [kT/M )
z(k) = = e Odt k=1,..., M.
2 Jik-n)T/M

With a manipulation identical to the one employed for FSK, we obtain

¢ M
r= 23 Xely/M) (4.20)
k=1

where JX;(-) are independent ohservations of the random variable X (-). The parameter r is
the phase noisy signal to noise ratio that we encountered hefore. It is always less than the
actual SNR ¢, and approaches ¢ with probability 1 as M — oo.

It is interesting to see that the dependence of error probability on phase noise is through

a single random variable r. The error probability for a,, = 0 is easily seen to he

while the error probability for a,, = 1 conditioned on r is obtained as

P.(1|r)

o 74\ (M-1)/2
1—/’_1 (—) e_(”+’)IM_1(\/4rv)dr

T

1- Qllf(\/—z77 \/ﬁ)

It

where Qpr(-,-) is the generalized Marcum’s Q function [44] of order M defined as

Qpr(a,b) 2 /bm aﬁ;:e—(zumz)/zIM_l(az) e
Note that there is no symmetry between P.(0) and P,(1) in OOK, unlike FSK. For a given
7, Pe(1|r) increases with M, as well as P.(0). On the other hand, for a given M, P.(1|r)
decreases with r. However, r is a function of M as well, and it increases with probability
1 with M. Therefore there is a tradeoff in choosing M, between the additive and phase
noise processes. The optimal values of M will be lower than those of FSK, since P.(0) is

uniformly increasing in M.
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The unconditional probability of error is given as

1 M-1 flk

P.= > e+ % [t E[Qwm (vor, V2R)]] (4.21)

which is to be optimized over M and h. Since r is a sum of M independent identically
distributed random variahles, the expectation involves M-fold self-convolution of the density
¢y/m(z). Thus we have, once again, the problem of many density computations as well as
many convolutions. For the single filter receiver, this problem could be solved by a change
of variable; for double filter FSK, the form of the conditional error probability allowed us
eliminate the problem as well. However, this does not seem possible in this case, due to the
fact that generalized Marcum’s @ function does not have a compact explicit representation
(for example, a finite series). Therefore, we will use three different techniques to obtain
a reliable estimate of the error probability. First, we use Jensen’s inequality to obtain a
lower bound. We have found this inequality to provide a rather tight estimate of the error
probability for FSK. Here we postulate that the quantity P.(1|r) is a convex U function
of r for a given threshold h, so that an interchange of the expectation operator with the

function @Qps will result in the following lower bound:

1 M-17k
2

Mehil [1 Om (,/zgwa \/ﬁ)] (4.22)

where X (-) denotes the mean of X(-). From Chapter 2 we have

X(v) = i [1 ~ 3(1 - 6'7/2)] . (4.23)
7 7

Equation (4.22) in conjunction with (4.23) describe a lower bound that we will use in the
following discussion. Note that the lower bound corresponds to an optimistic scenario where
the random variable 7 does not deviate from its mean.

The second technique to be employed in estimating (4.21) is the Chernoff bound which
states that

Pr(V < h) < eFE(e*Y)

for all s > 0, which provides an upperbound to P.(1) in terms of the moment generating

function of the decision variable under a,, = 1. This moment generating function will be
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found in two stages. We first note that

M

D I CUNIP RN S St
k=1 202 k=1

where z(k) are as previously defined, and #i.(k), 7i,(k) are i.i.d. Gaussian with variance

1/2. Therefore V) are also independent with the conditional moment generating function

(25] 2
E [e_’v" | l‘(k')] = 1i—se)(p (_—s|z(f)—||_ ‘iZa ) .

Then the conditional moment generating function of V' depends only on r, and is given by

r 1 sr
E ’—sl - - _ .
[ 17] (1+s)MexP( 1+s>

Since 7 is a sum of M i.i.d. random variables, the conditioning on r is removed to yield

£l = e [2 o (o)

and finally the Chernoff hound is given by

z

k

—
=>4

%(—1%)7‘7 [‘I’v/M (ﬁi—s))]M (4.24)

where we denote the moment generating function of X(v) by ®,(s) = E(e~*X(")). Lastly

P, < e—ﬁ+

g
I

B[ =
ol

x
Il
=]

we relate ®./p(+) to g,(:) as

1
Boymls) = [ exp(-sa'/ Mg, (z) da (4.25)

which eliminates the need for computation of many density functions. An additional opti-
mization needs to he performed over nonnegative s to obtain the tightest upper bound.
The Jensen bound and the Chernoff bound are shown in Figure 4-5 for various v values.
Note that the bounds are very close for all values of v and £. Therefore, the computationally
simpler lower bound may be used reliably.
A third approach in estimating the performance of the double filter receiver is Gaussian
approximation. Since the normalized decision variable V' is the sum of Af independent

identically distributed random variables under hoth hypotheses, it is tempting to use a




CHAPTER 4. DETECTION OF AMPLITUDE MODULATED SIGNALS 121

10° T T B B T T T T Lo T —T
107
)
et
)
[}
r .
o 107
[a ¥
[ ¥
[o]
|
Ty
=3
107°
107" 1 ] 1 ] | L 1 ] ] \ 'k“. N
10 15 20

Signal to Noise Ratio (dB)

Figure 4-5: Comparison of Jensen and Chernoff bounds for the double filter receiver.
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Caussian approximation for V. For a,, = 0, both the mean and the variance of V are easily
obtained to be M. For a, = 1, the conditional mean of V is M + r, while its conditional

variance is M + 2r. Therefore we have with the Gaussian approximation

P.(0) ~ Q("JMV)

M+r—h
P(1lr) =~ Q(\/_A;_T_Z—:> .

'

Due to the difficulty of removing the conditioning exactly, we will further approximate P.(1)
by

P.(1)~Q (W)

M +2E(r)

Under these approximations the error probability becomes

1 (h-—M 1 [M+EX(y/M)-h
P.~-Q (——) + = 4.26
22\ ) 2 ( VM + 25X(~//M)) )

which is to be optimized over M and h. This is the error probability of a system in which
the decision variables are Gaussian with nonidentical variances. The optimal setting of the
threshold is complicated. A conventional threshold setting is one that equalizes the two

error probabilities. This results in an error probability of

P ~Q ( 5X(7/M>_ ) (4.27)
VM + \/M + 2X(v/M)
where the underlying threshold setting is
he =M+ ‘/MEX("/A_“ : (4.28)
VI + /M + 26X (v/M)

It is known that this nonoptimal threshold setting gives results that are very close to the op-
timal threshold setting for the Gaussian approximation [45]. The error probability predicted
by the Gaussian approximation is compared with the previously obtained lower bound in
Figure 4-6. For each 7 value the Gaussian curve is the upper curve. It is seen that the two

results are in good agreement uniformly over the set of v and £ values. Therefore we con-
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Figure 4-6: Comparison of Gaussian approximation and the lower hound for the double
filter receiver.

clude that the lower bound given in Equation (4.22) satisfactorily predicts the performance
of the double filter receiver.

The closeness of the error probability prediction of the Gaussian approximation to the
exact performance was shown in [45] in the absence of phase noise. It was also noticed that
the Gaussian threshold estimate is much lower than the actual optimal threshold. This
is demonstrated in Figure 4-7. In the figure, the two error probabilities P,(0) and P.(1)
are shown as functions of the normalized threshold for hoth the exact and the Gaussian
results. It is seen that while the error probabilities at the respective optimal thresholds
are very close, the optimal thresholds are very different. If the threshold is set according
to the Gaussian approximation, the resulting performance would be far worse than what is
predicted. This rather surprising result is true even when the value of M is large [45]. The

presence of phase noise does not help correct this discrepancy as demonstrated in Figure 4-
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Figure 4-7: Error probabilities as functions of normalized threshold in the absence of phase
noise.

8. Here we show the optimum threshold as a function of signal-to-noise ratio (SNR) for

various values of y. It is seen that the threshold predictions remain very different.

4.3 Comparison of OOK and FSK with Envelope Detection

A set of error probability curves of double filter envelope detection of OOK for a larger
collection of ¥ values is given in Figure 4-9 for improved visual clarity. It is seen from
the figure that at a bit error rate of 10~°, the SNR penalty due to phase noise is 0.25 dB
for y = 1, 0.38 dB for y = 2, 0.62 dB for y = 4, 0.75 dB for v = 6, and 1.13 dB for
7 = 16. The robustness of OOK to phase noise surpasses that of FSK in terms of required
excess signal energy to maintain a certain error probability level. This is seen clearly in

Figure 4-10 which shows the penalty in SNR as a function of phase noise strength for hoth
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OOK and FSK at an error probability of 10-°. The improved robustness does not mean
improved error performance, however. Since semiconductor lasers are limited in the peak
power they can generate, as opposed to being average power limited, envelope detection of
OOK will always have an inferior error probability with respect to envelope detection of
orthogonal signals. This is demonstrated in Figure 4-11 for ¥y = 0 and ¥ = 1. The reason
behind this conclusion can be seen as follows. In orthogonal signaling, envelope detection
is performed for two frequencies, resulting in two decision variables. If one of the decision
variables is neglected, and the other is compared to a fixed threshold for the decision,
then the resulting performance will be identical to that of OOK. However, this clearly is a
suboptimal processing of the available decision variables; symmetry dictates a comparison
of the two decision variables for deciding on the most likely hypothesis. Nonetheless, OOK
is still a modulation format of interest; the choice between OOK and FSK must he based
on factors such as the amount of desired simplicity for the transmitters and the receivers,
the achievability of orthogonality (i. e. wide frequency separation) in FSK, the severity of

frequency dispersion during propagation along the fiber, etc.
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Figure 4-9: Estimated performance of the double filter receiver.
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Figure 4-10: Comparison of SNR penalties for double-filter OOK and FSK due to phase

noise.
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Appendix

4.A Derivation of Equation (4.6)

In this appendix, we give the details in obtaining Equation (4.6). We start by writing the
decision variable L in the decision rule of Equation (4.4) as

M . WM oMo M
H Iy, (‘if’)) exp [—5 Z (Z k;) ] cos (Z k,t/3i) (4.29)
=1 \l=: i=1

=1

L(u):Z---Z(
ky

knr

where u = «?. For small u, we can use the approximation
L(u) ~ L(0) + «L'(0) .

First, we find L(0). For « = 0 the exponential term in (4.29) vanishes. The cosine term
can be written as a sum of 2M terms: each term, apart from its sign, is a product of M
sinusoidals which have arguments k;3;. All but one of these 2™ terms have at least one sine
in the product. Since sink;J; is an odd function of kj, the sum 3, I,(AR;/0?) sin k;3;

will vanish. Thus only the term with all cosine products contributes to L(0) with the result

L(0) = ﬁsz,.(‘i}f")coskiﬂi

i=1 k;
M .
= Hexp (A71§_, coslc,ﬂ,:)
i=1
A M
= exp (U—ZZR,: cosk,-ﬂi) . (4.30)
=1

Note that (4.30) in conjunction with (4.4) gives the well known optimal receiver in the
absence of phase noise.
Next, we find L'(0). It is easily observed that

1'(0) = _% i\:kz (1:[1 I (i_’f)) cos (; k,-ﬂ,-) g(R)
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where we have defined g(k) as

It can be easily shown (e. g. by induction or hy a counting argument) that g(l?) can also he

written as
M

g(k) = Z min(m, n)kmkn

m,n=1

which results in

v = <} 8 i ST ([ (52)) e (00

m,n=1 ky
2

d
= = L(0
5 mXﬂ:lmm m, n)aﬂmaﬂn (0)
where we have used the fact

9? M
aﬁ'ma/jn (g k' /3 ) = —kmkn CcOos (Z kiﬁi)

1=1

as well as the definition of L{0). Now using (4.30) one gets by differentiation

M 2 M
L'(0) = % (mgzlmin(m,n)i_%':_}z” sin B, sin 3,, — Z m cosﬂm) L(0)
so that
M 2
L(u) =~ L(0) l: ( zﬂ; n(m, n)A—I%& sin 3,, sin 3, — Z m cos,@m)]
ud? M ) . ) ud
~ L(0)exp [F mmzzl min(m, n)R., sin B, R, sin G, — 357 ,,,Z=:1 mR,, cos B

where we also used 1 + ¢ ~ €® for small z. Finally using Equations (4.4) and (4.30) in
conjunction with the last equation, and substituting v = v/M, 0* = NoM/T one gets
Equation (4.6).






Chapter 5

Transmitted Reference Systems

In the last three chapters we considered the performance of conventional modulation schemes
in the presence of phase noise. In this chapter, we consider an alternative communication
scheme which has been designed specifically for its robustness against phase noise. The
approach we take is different from the previous chapters in the sense that we try to optimize
the signaling mechanism as well as the receiver structure to achieve good performance.

The phase noise problem may bhe viewed as a lack of reference signal at the receiver
which is identical to the transmitted signal except for modulation. Suppose we had a local
oscillator which could produce a signal with the same phase noise as the received signal.
Then the photodetector output would not be affected by phase noise at all; the identical
phase processes would cancel out to yield a pure sinusoidal with embedded modulation. This
simple ohservation suggests that systems designed to provide a reference to the receiver may
help alleviate the performance degradation due to phase noise.

Let’s first consider the transmission of the local oscillator signal directly from the trans-
mitter in addition to the information carrying signal. A method in which this could be done
is to use a heam splitter to separate the output of the transmitter laser into two branch-
es, then to modulate one branch with data to generate the information signal and to use
the other branch as the intended reference for the receiver. For conceptual simplicity let’s
suppose that two separate fibers can be used to transmit these two signals. If we further
neglect the nonideal effects of propagation along the fiber on the signals, the receiver will
be provided with an ideal reference signal in the sense mentioned above. The problem with
this scheme is that this reference signal is not strong enough to be used as a local oscillator
(LO) signal. The advantage of phase noise elimination will be overshadowed by the effects
of thermal noise and dark current noise. The penalty of not operating in the shot noise

limited regime is likely to be greater than the phase noise penalty which is at worst a few
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dB’s.

The idea of direct transmission of the LO signal may he feasible with the use of optical
amplifiers. Optical amplifiers solve the power problem for the local signal, however they
also introduce additive noise [45]. Therefore with the introduction of the amplifier both
the information and reference signals contain noise in the optical domain. We will not
consider this problem in this chapter, it remains to be seen whether this approach results
in a performance improvement.

We consider a different scheme here. We do not attempt to provide a local oscillator
signal to the receiver. The reference transmission will be used to help the receiver undo
the adverse affects of phase noise after the photodetection. Before going into system details,
let’s first elaborate on how two signals can be transmitted simultaneously. The two-fiher
channel in the example above is not practical. The fibers will inevitably have different
dispersion characteristics so that the received signals will no longer have phase coherence.
Therefore a common fiber must be used for both signals. Simultaneous transmission of two
signals on a common channel requires that a certain orthogonality be provided so that the
signals don’t interfere with each other. This is essential for the receiver to be able to extract
the two signals from their sum. Two main methods have been suggested to achieve this
orthogonality (46, 47, 48]. The first employs two different optical carrier frequencies v; and
vy for the information and the reference signals respectively. The two signals will occupy
nonoverlapping frequency bands provided that the difference between r; and v, is much
larger than the data rate and the linewidth. The receiver can separate the two signals by
the use of coherent detection and appropriate IF filtering. Note that this is analogous to
frequency division multiplexing in the multiuser context. A second method exploits two
orthogonal polarizations. The transmitter laser produces a lightwave that contains both
z and y polarization components. These two polarization components are separated by a
polarization beam splitter, one of them is modulated with the data while the other one is
used as the reference signal. The receiver can separate the two signals by using another
polarization beam splitter.

In principle, both the frequency and polarization reference systems are the same when
viewed at the IF domain. There are two copies of the phase noisy IF carrier, one modulated
and the other unmodulated. These two copies can then be correlated to cancel the common
phase noise term. Thus, at the first glance, perfect phase noise cancellation seems possible
with this approach. However this is not true due to the additive noise introduced in the

photodetection process as we will see in the next section.
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5.1 Description of Transmitted Reference Systems

The transmitted reference systems considered here aim for the cancellation of phase noise
by simultaneously sending a reference along with the information carrying signal. First we
describe the reference transmission at a different frequency than the information signal.
This method, which we call the frequency reference, was suggested independently by Chan
et. al. in [46, 47] and Betti et. al. in [48]. In this method, the phase noisy output of the
transmitter laser is split into two by a heam splitter. One of the two outputs is modulated
via Phase Shift Keying (PSK) while the other one is shifted to another optical frequency, e.g.
via an acousto-optic modulator. The two signals are combined by a coupler and transmitted
along the fiber. The receiver adds a local oscillator field to the received optical field, and
uses a photodetector to convert the received signal into IF domain. The resulting IF signal

can be written as
r(t) = Ay cos(2m frt + 6(t) + mm(t)) + Az cos(27 fot + 6(t)) + n(t) (5.1)

where 6(t) is the combined phase noise of the transmitter and local oscillator lasers, m(t) is
the 0 — 1 data waveform, n(t) is a white Gaussian noise process which models the photode-
tector shot noise, and f;, f are the IF carrier frequencies for the information and reference
signals respectively.

Assuming that f; and f, are sufficiently apart, the two signal components can be sepa-

rated by two IF filters, to result in

ri(t) = Ajcos(2rfit 4 6(t) + mm(t)) + n(t)
ro(t) = Ajcos(27fat 4+ (1)) + na(t) (5.2)

where n(t) and ny(t) are independent white Gaussian noise processes with spectral height
No/2.

Note that r;(¢) and r3(t) in (5.2) have a common phase noise process. If we neglect
the additive noise, the product r(t)r2(t) contains a term at frequency f, — f; which is free
of phase noise, and a term at frequency f; + f; with doubled phase noise. Therefore in
the absence of phase noise we could eliminate the phase noise entirely by filtering out the
high frequency component, regardless of the strength of the original phase noise. While this
observation is promising, it merely points out that there is no error floor in this transmitted

reference scheme. An important question that needs to be answered is the robustness of



136 CHAPTER 5. TRANSMITTED REFERENCE SYSTEMS

this phase noise cancellation to the additive noise. Filtering operations in the presence of
phase noise must be analyzed with caution since the spectral broadening due to phase noise
requires wider filters. Matched filters, which are optimal in the absence of phase noise, start
deforming the desired signal with the introduction of phase noise. Wider filters introduce
more additive noise at the output as well as more signal power. Therefore the tradeoff
between the phase noise and additive noise must be accurately analyzed in the transmitted
reference systems, as it is done for the conventional single carrier systems. The need for
such an analysis was noted in [47, 48, 49].

A variety of polarization reference schemes also exist in the literature. The first one
is the polarization PSK [50], which is equivalent to the frequency scheme in [47] except
that the reference is at a polarization orthogonal to that of the PSK modulated signal
instead of a different frequency. The implementation of this system is described in (51],
and the principle of phase noise cancellation is demonstrated for extremely low linewidth
(1 kHz) NdYAG lasers. The same scheme is also suggested in [47]. A scheme suggested in
(48] incorporates hybrid frequency and polarization reference, in which the information and
reference signals are transmitted in two orthogonal polarizations as well as two different
frequencies. As a result this scheme is more robust against polarization crosstalk which
may occur during propagation. Betti et. al. suggest two more polarization based reference
transmission schemes in (48] which differ from [50] and [47] not in the signaling mechanism,
but in the polarization compensation at the receiver.

An advantage of polarization reference schemes over frequency reference schemes is the
ease of adjusting the power ratio of the two signals by controlling the angle of polarization
of the transmitter laser. Frequency reference schemes can adjust the power ratio only via
the coupling coefficient of the heam splitter. However this advantage may be halanced
by polarization dispersion that accompanies propagation along the fiber. As a result of
polarization dispersion the polarization vectors at the fiber output are not aligned with
those at the input. Therefore the receiver must employ polarization diversity which results
in a power penalty. The frequency reference schemes are prone to ferquency dispersion,
but this seems to be of a lesser severity. The carrier wavelengths can be chosen near the
zero-dispersion wavelength of the fiber (1300 nm), then a large separation in terms of IF
frequency will correspond to a very small difference in the channel characteristics seen hy
the information and reference signals. '

The concept of reference transmission is similar to DPSK where the carrier corresponding
to the previous bit interval serves as a reference for the carrier of the current bit. Since

phase noise is time-varying, the delay between the reference and the signal in DPSK is
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detrimental as we have seen in Chapter 3. The transmitted reference schemes described
here have the advantage of the signals being synchronous. In fact we will show in this
chapter that through power and receiver optimization transmitted reference approaches the
phase noise free performance of DPSK.

A common principle that connects all the transmitted reference schemes described above
is that they all obey the key equation (5.2), neglecting the polarization crosstalk for the po-
larization based schemes. At the receiver two signals with the same phase noise is available.
Various schemes differ in the values of A;, A;, fi and f;, but the underlying structure is
the same!. This enables us to provide a unified analysis of transmitted reference systems.
We first outline the approaches to the analysis of these systems that exist in the literature

to gain more insight to the problem.

5.2 Previous Performance Analyses

The need to analyze the performance of transmitted reference systems is first noted in [49],
where it is correctly asserted that an accurate treatment of filtering operations and the
additive noise/phase noise tradeoff is essential but difficult. The first attempt towards such
an analysis may be found in (47, 53, 48]. It is first ohserved that two different frequencies
are necessary only to enable the receiver extract r1(t) and ry(t) in (5.2) from the combined
signal. Therefore once the two signals are separated, there is no need for distinct frequencies.
The two signals can be brought to the same frequency, f. = (f1 + f2)/2, by multiplying both
with cos(m(fz — f1)t). Therefore f; = f; = f. may be assumed without loss of generality.
Two different IF receiver structures are considered. These are wideband single and double

filter structures which we consider separately below.

5.2.1 Wideband Single Filter Receivers

Single filter receivers? with wide filter passhands are analyzed in both [47] and [48]. In such
a system the information and reference signals are first filtered around the center frequency
to limit the additive noise power, the bandpass filter outputs are mixed and sampled at
the end of the bit period, the sampled value is compared to 0 to yield the decision. [47]

assumes that the filters are identical; they have a bandwidth B that is large enough to pass

LA direet detection frequeney reference scheme deseribed in [32]. where a pair of FSK tones is sent. does
not it into onr formulation and will not he considered here.

213y a single filter strneture we don’t mean that there is a single filter in the receiver but a single liltering
stage, oo that there is no post-mixing filter.



138 CHAPTER 5. TRANSMITTED REFERENCE SYSTEMS

the signals undistorted. Then the standard results of [54] about the probability that the
real part of the inner product of two complex Gaussian random variables is negative are

invoked to obtain the error probability as

Po= 311~ Q(a, )+ Q(6,0) (53)
where a and b are given as
1
a = W(Al + A3)
b= A - Al

and Q(-,-) is the Marcum’s @ function. The parameters a and b are the sum and difference
of the means normalized by the standard deviations.

In the absence of phase noise, the filters are matched to the sinusoidals, so B = 1/T.
Letting & = A?T/2No for i = 1,2, we get

1

a = —\/5(\/514-\/{2)
1

b = —ﬁ}\/a—\/fz\.

For a fixed total transmitted energy, we have £, + £, = £ fixed, which is equivalent to

a? + b? = ¢. Using the following property given in [15]

P = 21~ Q(a,8)+Qba)

= %e—(a2+62)/2 [[O(ab) +2 Z (3—) In(ab)]
n=1

we get

P> %e—E/ZIO(ab) > %e"f/z (5.4)

with both of the inequalities satisfied with equality if and only if & = 0. Thus the power
distribution which minimizes the error probability is given by £; = &; = £/2, i.e. the power
must be equally divided between the reference and the information signals. The resulting

error probability, 1/2¢7¢/2, is that of hinary orthogonal signals. The reason for this can be
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seen as follows. Let the filter outputs be y;(t) and yz(t). Since

(1) = ¢ [(0(0) + 120 - (1 (8) - 3a(0))]

and since filtering is a linear operation, an equivalent receiver forms r1(t) +r3(t) and r5(t) —
r1(t), and then performs standard envelope detection. On the other hand, with equal
energy in 71(t) and r3(t), the sum and difference signals are orthogonal with independent
noise components. Therefore the performance is the same as that of envelope detection of
binary orthogonal signals. The resulting 3 dB degradation from DPSK even in the absence
of phase noise is due to the selection of identical filters as we will show later.

In the presence of phase noise, the only change required to get the error probability
is to increase BT from 1 to a value that is large enough to ensure that the phase noisy
sinusoids pass the filters undistorted. Then £; and {; are now normalized by BT in the
expressions for a and b. If we go through the power optimization, we see that the optimal

power distribution is still such that & = £, = £/2, and the error probability is given by

P, = Le=¢/2BT (5.5)
2
Note that the effective signal-to-noise ratio (SNR) is reduced by a factor of BT which is
large by assumption .

The same single filter receiver structure is also considered in [48] with the following
fundamental observation. The reference signal is unmodulated and therefore occupies a
smaller bandwidth than the information signal. Thus the reference signal r(t) can he
filtered with a filter of narrower passhand reducing the additive noise power at the output.
This can be viewed from the time domain as well. Since the bit duration has no relation to
the reference signal, one can cross the bit boundaries to estimate the reference without any
concern of intersymbol interference-like phenomena. This breaks the symmetry hetween
the two signals, and allows an asymmetric power distribution. In fact, in the extreme case
of no phase noise, the reference conveys no information, hence it should not be sent at all.

Let the filter bandwidths for the reference and information signals he W and B respec-
tively. The processing of the filter outputs remains the same as hefore. Assuming that the
signals pass the filters undistorted, the performance will still be given by (5.3) with the

difference that the arguments are now given as

. 2\/11To(j13‘+jzw)
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1 | A A
2VNo VB VW

It is difficult to find the optimal power distribution exactly. If it is assumed that the SNR
is high in both channels to obtain the approximation

b =

. (5.6)

P, ~Q(a-b)

where (Q is the Gaussian error function, then the optimizing power ratio should maximize
the minimum of & /W and £,/B, subject to the constraint {; + £, = . The solution is

easily found as :
3 B -
_‘fl = ETw (5.7)

In the special case of identical filters this ratio becomes 1/2 as expected. In the case with no
phase noise, W = 0, we get the result that all the power should be sent at the information
signal. With increasing linewidth more power is transferred to the reference, and in the
large phase noise limit one gets the equal power distribution.

The resulting error probability when the power ratio is optimized is given in terms of
the error function approximation in [48]. However, one can obtain a simpler result directly
from (5.3) by observing that b = 0 at the optimal power ratio; then the error probability
simplies to .

P = e ¢/(B+W)T (5.8)

A comparison of (5.8) with (5.5) shows that the power optimization has the potential of 3
dB improvement. The effective drop in the SNR with single filtering is a factor of T' times
the sum of the filter bandwidths. By making the reference filter narrower, one saves in the
SNR. This is particularly important when the phase noise strength, ¥ = 2737, is small
in which case W/B < 1. This is the reason why equal power distribution causes a 3 dB
penalty in the limit of vanishing phase noise strength.

The analyses we have outlined here all assume that the phase noisy signals pass through
the bandpass filters unaltered. Therefore the effect of phase noise on the performance is
hidden in the bandwidths of the wideband filters. It is not clear how large B and W must
be made as a function of phase noise strength for this assumption to be realistic. A heuristic
relation first introduced in [4] and used by [47] and [48] takes
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W = kB (5.9)

where 3 is the linewidth and k is a large constant. The motivation behind this is that the
unmodulated phase noisy carrier has a 3 dB bandwidth of 3, and the modulated phase-
noise-free carrier has a bandwidth of the order of the bit rate. The predicted performance
depends heavily on the assumed value for k. [47] uses filters with BT = 7.1 and lasers
with BT = 0.87 resulting in k ~ 7 in the experimental setup, while [48] uses k = 8 for its
computations.

With the heuristic bandwidth setting of (5.9) the power distribution used in (48] is

& 14 kAT
£ 1+ 2kBT

Note that, strictly speaking, this handwidth setting is true only for large k, so the power
distribution will be close to the even one for most phase noise strengths with this formalism.
Figure 5-1 compares the performance predicted by Equation (5.8) and the performance
prediction of the single filter receiver of Chapter 2 for a phase noise strength of BT = 1.
It is seen that even without a power optimization, the filter optimization improves the
performance considerably. This demonstrates that wideband filters are not required for

good performance.

5.2.2 Wideband Double Filter Receivers

A double filter structure is also considered in [47]. The receiver now uses an integrator that
integrates over the bit duration after the mixing. Assuming that the front end filters are
identical with bandwidth B, and that the signals pass these filters undistorted, the mixer
output will be

y1(t)y2(t) = %AIAZ cos(mm(t)) + —;—AlAz cos(4m f.t + 20(t) + mm(t)) + n(t)

where n(t) contains signal cross noise and noise cross noise terms. If B is much larger than
the signal bandwidth, the signal cross noise terms can be taken to be Gaussian with flat
spectral levels A?Ny/4 over |f| < B. The noise cross noise term will have a triangular
spectrum over |f| < B with peak NZB. This last term is neglected in [47] on the basis that
the signal-to-noise ratio is large. However, the validity of this also depends on the phase
noise strength: for large linewidths B must be made very large for the signal to remain

undistorted, and the noise cross noise term may be important. We don’t neglect this term
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Figure 5-1: A comparison of the performance predictions for single-filter structures with
BT = 1. The exact curve uses an even power distribution while the wideband filter curve
has optimized power distribution via the heuristic handwidth setting.
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here, but we assume that it is Gaussian and that its spectrum may be replaced by a flat
spectrum that results in the same power, i.e. with level NZB/2. After the integrator that
integrates y; (t)yz(t) over the bit duration, the resulting sample has an antipodal signal level

corrupted by a Gaussian random variable. The error probability is easily found as

_ 26163
Fe=@Q ( £+ BT)

where Q(-) is the complementary error function. We see that the optimal power distribution
still satisfies £; = €5 = £/2 with the result

_ | &2
Pe_Q( 1+BT/£)' (5.10)

The error probability given by [47] does not have the second term in the denominator,

and hence is valid only when BT /¢ < 1. Since the value of B that is needed to pass the

signal undistorted may be very large this may not always hold. However when it does hold,
(5.10) predicts a performance that is independent of the phase noise strength and is 3 dB
worse than phase noise free FSK. That is, the double filter transmitted reference system
with identical wideband filters has a uniform 3 dB phase noise penalty when the phase
noise strength is not very large. However, we have seen that double filter FSK does not
have this high of a penalty with the optimization of the filter bandwidth. This is shown
in Figure 5-2 where the error probability of the receiver with wideband filter predicted by
(5.10) is shown together with the error probability for the system with optimized filters from
Chapter 2. It is seen that by performing the optimization of the filter handwidth a better
performance may be obtained although some signal power is sacrificed. The wideband filter
assumption results in a weak phase noise dependence (with the correction), however the
resulting performance is not good.

The existing analyses outlined here have two deficiencies. First, they don’t adequately
address the tradeoff hetween phase noise and additive noise by assuming wideband front
end filters and, in the case of [47], identical filter bandwidths. The performance predictions
do not reflect the true limits of the transmitted reference systems; the fact that wideband
filters do not distort the signals is not critical for achieving good performance, furthermore
heuristic bandwidth setting involves a free parameter whose setting arbitrarily determines
the performance. This is best seen through the systems with even power allocation, these

systems have the same performance as the corresponding (single or double filter) FSK
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¥ =1 and y = 4, where hoth the widehand filter and the exact curves use an even power

distribution.
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system, while the outlined analysis predicts a phase noise independent, but poor, perfor-
mance. The second deficiency is the lack of an analysis for the most promising transmitted
reference system: the system with optimal power allocation hetween the information and
reference signals and with a double filter receiver with optimal filter bandwidths. While
[48] introduces the concept of adjusting the power distribution according to the strength
of phase noise, it applies this concept only to single filter receivers with wideband filters.
Consequently the resulting performance is not satisfactory, partly due to the inability of
a single filter structure to combat phase noise effectively, and partly due to the wideband
filter assumption which simplifies the analysis at the expense of degraded performance. In
the rest of this chapter we will attempt to provide an analysis for the system without these

deficiencies.

5.3 Transmitted Reference with Optimal Power Distribu-

tion and Optimal Receiver Bandwidths

In the previous section we have ohserved that allocating the available power optimally
between the two transmitted signals, as well as optimally adjusting the filter bandwidths
in a double filter receiver structure may achieve a superior performance for a transmitted
reference system. We will now provide an analysis to quantify this observation and to obtain
the settings of design parameters. We first restate the problem in order to make this section
self-contained.

We assume that the receiver has the ability to extract the information and reference
signals, and to bring them to a common frequency. Thus the inputs to the IF receiver are

the two signals given as

ri(t) = Ajcos(27fit + 6(t) + md) + ny(t)
T'z(t) = A2 COS(27Tf2t + 0(t)) + nz(t) (511)

where d = 0,1 is the current data bhit, ny(t), n,(t) are independent white Gaussian noise
processes with spectral density No/2. These signals are first filtered by bandpass filters
to limit the noise power. We model the bandpass filters as in-phase and quadrature de-
modulators followed by finite-time integrators. The integrators for the information signal
r1(t) have a time duration of Ty = T/M, while those for the reference signal r5(t) have
their time duration K times longer, i.e. T = KT /M. Thus, the information filter has a

bandwidth expansion factor of M relative to a matched filter, while the reference filter has
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a bandwidth reduction factor of K relative to the information filter, where K, M > 1 are
to be found optimally. This reflects our previous observation that the reference signal can
be more tightly filtered by virtue of being unmodulated. For analytical convenience we will
assume that M and K are both integers.

We will consider two forms of timing alignment hetween the filter outputs. First we
assume that both filters are causal: the integrator outputs at time t are the integrals
of the inputs from time t — T; to ¢ where i = 1,2 for the information and reference filters
respectively. We will also consider a centered filter structure in the Section 5.3.3 for potential
performance improvement; the structure of this filter will be described in that section.

Let z;(t) and zg(t) be the filter outputs of the in-phase and quadrature integrators of
the information filter, and let yr(t) and yg(t) be their reference filter counterparts. These

real signals can he written compactly with the following complex notation:
A t
+1
2 Jiery

A, f 6 ¢ 2
- e’ (T)d'r+/ ny(7)el?™ e dr
2 t—T, T,

. t )
.’BI(t) +j.’cq(t) el0(7) dT+/; . nl(T)eJZNfCT dr

yr(t) + jyo(t)

where we have assumed that f.T; > 1 so that the double frequency components do not
appear at the integrator output, the + correspond to the data bit d heing 0 or 1.

The remainder of the receiver structure is as follows. The in-phase and quadrature
components are pairwise mixed and added resulting in the signal z;(t)yr(t) + zg(¢t)yo(t).
This signal is then processed via a lowpass filter which we model as a discrete-time adder
after [8], as we did for the envelope detection of FSK and OOK signals in Chapters 2 and 4.
Finally the lowpass filter output is sampled at the end of the bit duration and the sample

is compared to 0 to yield the decision. The decision variable can be written as

M
Y =) Y
k=1

where

Yi = zr(kT)yr(kT1) + zq(kT1)yq(kTy) ,

and the error probability is given by

P.=Pr(Y <0|d=0).
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We will introduce some notation for a compact formulation in terms of matrices and vectors.

First we define the conditional means given the phase noise process as

A kT, .
ar(k) + jag(k) = 71 A ‘I)T 0 g
' - 1
KT,
bilk) + jbo(k) = % L
L1 —d42

and the independent discrete-time additive noise components as

kT .
wi(k) + jwo(k) = / na (t)es2mFet dy
J(k=1)T,

kT, ,
z1(k) + jzo(k) = / na(t)el2m et di |
S (k—1)Ty

These noise components are Gaussian random variables with zero mean and variance o2 2
NoT, /4. The noise components on the reference signals (z; and zg) are defined in this way
because of the overlapping integration windows (kT; — T2, kT ). With these definitions and
with the use of Ty = KT; we have

z7(kT}) ar(k) + wr(k)

K-1
yr(kTy) = be(k)+ S z(k=1) k=1,...,M
=0

and same expressions for the quadrature components. We also define the M dimensional

vectors Tp, TQ, ¥1, JQ, dr, dQ, I_;I, EQ, Wy and Wg in the generic form
fnd — T
ay = [OA(].), e ,GA(M)]

where o = z,y,a,b,w and A = I,Q, and superscript T denotes transpose. (a)(k) must
be understood as a(kT;) for « = z,y.) The corresponding vectors for z’s must be of
larger dimension because of the longer span in the reference integrators. Thus we define
the (M + K — 1) dimensional vectors

2y = [aa(=K 4+ 2),2a(=K 4 3), .., 22(0), ..., 2x(M)]T
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for A\ = I, Q. Finally we define the M x (M + K — 1) matrix A as

A,,-:{l fo<j—i<K-1

0 otherwise,

hence A is a Toeplitz matrix with K consecutive 1’s in each row the first one being at the
diagonal.
The decision variable ¥ can now he written in terms of the conditional mean vectors

and additive noise vectors as

Y = & i1+ g
Ty = d+ wa
7n = by+ AD

for \=1,0Q.

The approach that we took in the previous chapters for envelope detection of FSK and
OOK with the same filter model was to obtain the exact error probability conditioned on
phase noise, and then to remove the conditioning via an exponential approximation to the
phase noisy envelope and/or via Jensen bound. Here, the conditional error probability is
the probabhility that the inner product of two Gaussian vectors is negative. Finding this
probability even in the case where there is no dependence hetween the elements of the
Gaussian vectors is an involved task treated in Appendix 4B of [25]. However in this case
the vectors AZ\ (A = I, Q) have dependent entries unless K’ = 1. Even for the simple case
of M = 1, where all the vectors (except z’s) reduce to scalars, one gets a conditional error
probability of the same form as (5.3) with parameters a and b containing two dependent
phase noise variables. The complexity of conditional error probability even in this simple
case motivates us to use Chernoff bounding techniques. We will later optimize the bound

parameter to make the bound as tight as possible. The conditional Chernoff bound is
P.(0(t) < E(eV [8(t)) s>0.

Since the in-phase and quadrature components are independent given the phase noise pro-
cess, one can decouple ¥ as ¥ = Y1 + Yy where ¥Y; = #7y7 and Yo = fgﬁq, obtain the
moment generating function for Y7 and make proper substitutions for Y. The following

lemma gives the necessary result.

Lemma 5.1 Let © and § be independent Gaussian vectors with means @ and l—;, and covari-
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ance matrices A, = 021, A, = 0?B for some positive definite matriz B. Then the moment

QTA )

generating function of £1§ is given by

E (exp(—szﬁ)) = |I — s%0*B|"Y2exp (—sd’ b

where & = —sd + s202b and A = (B! — s20I)/o?

Proof. Since 7 has statistically independent elements, it is convenient to first condition
the expectation on . Then it is easily observed from the moment generating function of

Gaussian random variables that
E [exp(-s27) | 7] = exp (—sa i+ IIﬂlz)

Then the desired expectation is given by

(27rc72)‘M/2|B|_1/2 /exp (—.sa y+ ||37||2 b)TB Ny - l—;)) dy

which can be evaluated by completing the exponent to a quadratic to obtain the desired
result. O

Using this lemma with B = AAT yields the Chernoff bound as
2 44 4T -1 Ty o =Tp sto? o e
P.(6(t)) < I - s*0* AAT| " exp [-s(aT s + @0bo) + (1] +||bQ||)
+ —a?A l&@r+ = aQA" ]
where

ay = —saxy+siothy A=1,Q
1
A = 5 [(aaT) - st

The bound is finite for s20*Apmax(AAT) < 1, where Apax(-) denotes the maximum eigenvalue.
Note that since 4 has fullrow rank A AT is positive definite, hence the condition for finiteness
also guarantees nonsingularity of A.

We now express the bound in terms of fundamental parameters and random variables.
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Let’s define two normalized phase noise integrals as

kTy .
Xi(k) 2 i/ e78(1) gy (5.12)
Ty Jik—1)1y
A 1 kT . IK_1
X,(k) & —/ g = LS x (kg 5.13
0 & [ PRI (5.13)

where the second equality for X;(k) follows from T, = KT,. Using the definitions of the
conditional means, the first two terms in the exponent of the Chernoff bound can now be

expressed as

M
— s(@Tby +@hbg) = —2s0>V/K&ERe Y Xq(k)X3(k) (5.14)
k=1
sta? oo RIE 2 _4 d - 2
5= (16rl” +1[boll*) = s*0*K&r Y | X2 (k) (5.15)

k=1

where §; = A?T;/2N, for i = 1,2. We see that it is convenient to normalize the hound
parameter as © = so2. To get the third term of the hound exponent we use the definition

of d’s and obtain after some manipulations

M

1 70 3. Y. p. 1. e e - ey

ia}‘A ar+ iagA ldg :queZ pii [&X1(D)X1(J) - 2uvEK&EEX (D) X5(F)
5]

+ uKEX()X3()] (5.16)

where p;; is the (i, j)’th element of the matrix (I — u?AAT)~1AAT. When one invokes the
natural vector notation for X,(k) i = 1,2, and one combines the similar terms in (5.14)-
(5.16) one obtains the conditional Chernoff hound as

PE(X"l,ji:z) < |I — UZAATI-l exp [—th\/ I{EIEZtl + ‘ltzI({zl‘»z + uzflts] (517)

where

7
ty = RGX'ZH(I— uzAAT)_IXZ
ts = ReXH(I-—u?AAT)"1AATX,
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for 0 < u < Umax = /\;L{CZ(AAT) (superscript H denotes complex conjugate transpose).
In obtaining (5.17) we have used the matrix identity I + (I — B)™'B = (I — B)~! with
B = u?AAT.

Now we investigate some special cases of the Chernoff hound of (5.17) to gain more

insight about it and to estimate its quality.

5.3.1 Special Cases for the Chernoff Bound

The formulation of the Chernoff bound can he applied to a variety of specific problems.
Now we consider three of these problems.

1. Frequency Shift Keying:  Setting K = 1 results in a bound for the conditional
error probability of double filter FSK that we obtained exactly in Chapter 2. In this case

S S o
X; = X, = X, and we have

| X2
1-—-

Pe(j',K =1)<(1- uz)‘M exp [

(Uz(fl + &) - 2"\/@)]

u?

with & + & = £/M. One immediately sees that the optimal power distribution is even,
a fact we have observed in the wideband filter analyses of Section 5.2. This distribution
results in
P(X,K=1)<(1-u?)™M [—Li X 2] < . )

(X, K ) < (1—u’) " exp 1+uM”X“ 0<u<l (5.18)
Note that || X||? is now a sum of M independent identically distributed random variables,
and €| X||2/M is the phase noisy SNR r of Chapter 2. Thus in the notation of Chapter 2
we get

P(r) < (1—u’)Mexp (—

If we further specialize to the case of no phase noise, we have r = £, and the optimal value

r
< .
1+u) 0su<l

of M bhecomes 1 as expected. Thus for phase noise free FSK we obtain the bound

ué
P, < min (1 - «?)7! - ) 5.19
. < min (1) exp (15 (5.19)
which gives the same exponential nature e=¢/2 as the true error probability as u — 1.
However since the coefficient also grows with u the bound is not arbitrarily tight as can

be seen from Figure 5-3. Nonetheless it is still within 0.7 dB of the actual performance
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Figure 5-3: A comparison of the Chernoff hound with the actual performance for phase
noise free FSK.

for low error probabilities. In fact, a parametric optimization of (5.19) for £ > 1, u ~ 1
yields the bound as ¢e—¢/2/8. (Here we first find the value of £ for which u is optimal as
¢ = 2u(1+ u)/(1 — u), and we express the hound in terms of £ when u ~ 1.)

This example shows that Chernoff bound has the potential of retaining the essential
features of the actual performance, e.g. the optimal power distribution, the filter bandwidth
setting, and the rate of exponential decay of the error probability.

2. Single Filter Receiver:  Another interesting special case of the obtained Cher-
noff bound is the single filter receiver in the absence of phase noise. In order to be able to
treat the single filter case with an arbitrary integration time T, we set M to 1 in (5.17)
but retain the M in Ty = T/M. In this case we have AAT = K, X, = X, = 1, and the
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bound hecomes,

1
< _ -2 y—1
P, < (1 - Ku®) "exp [—1 T (

K6 + &) - 20/FEG) | -
Letting v = v Ku and optimizing the numerator of the exponent over v one gets for the

optimizing value

v* = VEIEZ
&+ &

with the resulting numerator being —£1£2/(& + €2). We can bound the denominator and

1
< =
-2

the coefficient using

ggl—(v*)zgl

o )

which we want to minimize over £, {3, K and M subject to the constraint

so that the bound hecomes

& ¢
StE T
Clearly the function £1£,/(&; + &2) is less than both £; and £, with equality achieved when
either one approaches co. Thus the optimal solution is obtained when {; — 00 and K — oo
such that £,/K — 0. In this case

P, < tet
3

which has the same exponential character as PSK. Note that since /K = A3T /2Ny tends
to 0, the optimal solution corresponds to sending no power in the reference signal but
getting a perfect local signal ({, — oo0). This is exactly the case for phase noise free PSK.
This example also confirms our expectation that the conclusions reached from the Chernoff
bound are likely to correspond to the actual system.

3. Double Filter DPSK: A final application of our hound is the case of double
filter DPSK. Here we have the current and previous bits instead of the data signal and
reference. Both signals have the same SNR and the filter processing is identical, i.e. K = 1.

The reference vector X5 has to he modified so as to include the time delay as

1 ’ch -T R
Lm:_/ 30 gy
Ty J(k-1)Ty-T
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The conditional Chernoff bound with these parameters is

2 1 3 . 2H ¢
P.(X1,X2) < (1—u?)Mexp [ ¢ (w(IZ0)7 + 1 K212 - 2uRex§’x1)]

1-w2M

for 0 < u < 1. If we further specialize to the case with no phase noise we obtain

2ué
i 2yl _
P, < 01512211(1 u”)”" exp ( 1 u) (5.20)
which is exactly 3 dB better than the Chernoff bound for FSK, thus retains all the desirable

relations to the actual performance.

5.3.2 Chernoff-Jensen Approximation

The conditional Chernoff hound we obtained in Equation (5.17) depends on quadratic terms
of phase noisy vectors X, and X,. Unless K = 1, these quadratics have dependent compo-
nents; therefore we must know the joint statistics of X, and X, to be able to remove the
conditioning on the phase noise process. In the light of our experience with the statistics
of | X1(k)|? alone in Chapter 2, this may be a very difficult task. Even in the single filter

case, one has the hound (with v = vV I{u)

1 - -
Pe(JYI, XZ, M = 1) E (]- - 1’2)_1 exp [1 ) (172£1|JY1|2 + l’2£2|.X2|2 — 2UV‘£1£2 R64X24Y1)]

which requires the joint statistics of the random variable pair |/& X1 £+ /&,X3|2. Therefore
the exact unconditioning of the bound seems infeasible. We have seen in Chapters 2 and
4 that, in the case of envelope detection of FSK and OOK signals, the interchange of the
conditional error probability function for the double filter receiver and the phase noise ex-
pectation results in very close approximations to the actual error probability. Encouraged
by the nature of this approximation we will apply this technique to get an estimate of the
transmitted reference system performance. We will refer to the overall approximation for
the error probability as a Chernoff-Jensen approzimation to reflect both the method by
which the conditional error probability is hounded and the method by which the condi-
tioning is removed. Note that this approximation will not provide an upper hound on the
performance since the conditional bound is not a concave function of (fl, X’z). However it is
expected that due to the optimization of the Chernoff bound and the averaging of the double
filter the excursion from the true performance will not be significant. This approximation

overemphasizes the additive noise by upper bounding its effect, and underemphasizes the
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phase noise by taking the phase noisy parameters at their means. Therefore, the values
of M that will be predicted by our analysis will be smaller than the exact opt<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>