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ABSTRACT

The Inverse Problem of Scattering Theory (designated
hereafter by IPST) consists of deriving information about the scat-
terer from the knowledge of the scattered data. This problem has
been extensively developed for the radial Schrodinger equation,
chiefly in view of nuclear physics.

The theory of the IPST provides an exceedingly power -
ful '"'theoretical tool" which can be successfully applied to some
problems of interest in the electromagnetic synthesis of inhomoge-
neous media, viz., synthesis of non-uniform transmission lines,
dielectric filter design for optical applications, ionospheric diagno-
sis, to name but a few,

We strongly believe that the IPST unfolds a promising
and entirely new approach to electromagnetic problems which, up
to the present time, have mostly been treated using more or less
trial and error numerical procedures. Still its potentiality for
Electrical Engineering seems to have remained unexplored, a
part from a few isolated investigations.

We would like to consider this thesis as an introduction
to a systematic exploitation of the IPST's results in view of electro-
magnetic synthesis problems. Accorxdingly, we have tried to give
a complete review of what has been done on the IPST both in its one-
dimensional and radial formulations. We have limited our conside-
ration to one-channel, non-relativistic scattering of S-waves by
local, real, velocity-independent potentials without bound states,
planning to undertake these generalizations in further research.

The interesting scatterers for practical applications
are obviously those which occupy a finite region of space. Con-
sequently, our focal point of interest was the problem of finding
conditions on the chosen scattered data in order that the corres-
ponding scatterer be indeed finite. Although this problem was
solved for the radial case (where one is concerned with only one
"cutoff''), its solution for the one-dimensional case (where two
""cutoffs'' are required) was unknown up to the present time.

We have been able to give a complete solution of such
a problem, viz., the problem of synthesizing a finite range one-
dimensional potential producing a prescribed phase-delay as a
function of frequency. Conditions ensuring that a functio- of fre-
quency is the phase-delay produced by some finite range one-dimen-
sional potential were also found.

Thesis Supervisor: William P, Allis
Title: Professor of Physics
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«.." Thinking that it was time to bring down the
Monarch from his raptures to the level of common
sense, I determined to endeavour to open up to
him some glimpses of the truth, that is to say of
the nature of things in Flatland. So I began thus:
" How does your Royal Highness distinguish the
shapes and positions of his subjects ? I for my
part noticed by the sense of sight, before I entered
your Kingdom, that some of your people are Lines
and others Points, and that some of the lines are
larger - ' You speak of an impossibility " ,
interrupted the King; " you must nave seen a
vision; for to detect the difference between a Line
and a Point by the sense of sight is, as every one
knows, in the nature of things, impossible; but it
can be detected by the sense of hearing, and by
the same means my shape can be exactly ascertai-
ned. Behold me - I am a Line, the longest in
Lineland, over six inches of Space - "

. " Of length" , I ventured to sugges:. ' Fool'" ,
'said he, ' Space is Length, Interrupt me again,
and I have done " ...

(excerpt from " Flatland "', by E, Abbot)
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CHAPTER 1

INTRODUCTION

1.1 General Bacliground

The theory of potential scattering has evolved during the
(n”

last two decades to a highly sophisticated level

The vast majority of its results concern the well-known

"radial equation' :

Y | kY - L) Y - VY = O (1)
Jdz K2
s k <o9 (1a)

which is called for in the quantum-mechanical description of certain

three-dimensional physical systems.

On the other hand, the so-called "one-dimensional equation'":

£V kY- V)Y =0 (2)
dz
~00 < X < 00 (22)

has received relatively little consideration, the reason being probably
that one seldom meets '"one - dimensional potentials V(x)" in quantum
scattering theory. We shall see, however, that this equation assumes

an important role in connection with electromagnetic problems.

¢

" The superscripted parentheses will here and henceforward indicate
the number of a specific reference contained in the Bibliography.
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It is somewhat surprising that Electrical Engineering has
not yet taken substantial advantage from such a rich field which has
been instrumental to quantum scattering theorists for more than
twenty years. Let us examine briefly where could it extract ite
greatest dividends and speculate on why such a possibility has not

been generally acknowledged.

A large class of electromagnetic problems can be reduced to the one-

s
ENS

dimensional steady-state wave equation:

_‘%2_ + k2UR)E =0 (3)

A typical set of ''scattering'' boundary conditions is expressed by

the asymptotic forms:

E - ei/”'-(- R(k)e’ikz Z—> - 00 (3a)

E o~ Tk ek X—+00  (3b)

We shall describe in the next section the distinction between

ndirect" and 'inverse!" problems. For the moment let us simply indi-

cate that in the direct problem the scatterer U(x) is given, and one
seeks to determine R(k) and T(k).

For such a problem it seems that there is not much to gain
from the results of potential scattering theory. After all, direct problems

for the wave equation were under the keen scrutiny of J. C, Maxwell and his

A time factor e"m',t is assumed throughout this thesis.




successors before Schrodinger came into the world - and it was not

until 1947 that the first really relevant investigation @ on potential
scattering was published.

The question then arises - is there anything to be gained
from the 'inverse'" problem formulation ?

The situation here is entirely different and the answer is
an emphatic yes. Till the present time, except for a few isolated
investigations to be discussed subsequently, the electromagnetic
synthesis of inhompgeneous media [ as for example to construct
a U(x) which would produce a prescribed R(k) ]| has been treated
using numerical methods of trial and error, with little or no attention
given to the analytic properties of the quantities involved.

(3)

We would like to quote here from a very recent article

by prominent authorities in optical research:

IR

" Depending on the way in which the rates are varied, different

.

refractive index profiles n =n(x) as a function of the coordinate X
along the normal of the film surface are obtained. As in the case of
multiple homogeneous films, the problem is to find a function n(x)

which gives a desired reflectance R= R(A,6) as a function of wave-

length A and angle of incidence 6 . Unfortunately, thene exisis

no genenal solution of this problLem and one has to use more

on Less trial and eanor methods in the desdign process " vt

Italics are ours.




On the other hand, the inverse problem for the '"quantum
scattering equations (1) and (2) has been sol\;ed more than a decade
ago. We shall see, and this shall be ind=ed the focal point of our
thesis, that its results bring invaluable assistance to certain electro-
magnetic §ynthesis problems.

As a matter of fact, the general solution of the problem

af.
W

stated in Reference (3) does exist (in its '"diagnosis" formulation )

(4)
and was pointed out by I. Kay as far back as 1955, although in a

quite succint description (as an application of the inverse one -dimen-
sional problem rather than as a central subject).
His solution rests chiefly upon two important results:
(i) the existence of an algorithm for solving the inverse problem
for equation (2). This is the main subject of his paper.
(ii) the existence of a change of variables which transforms equation
(3) into an equation of type (2). Such is the well known Liouville's
(5)
transformation
Notice that (ii) is an indispensable step in order to use (i).
It is so because the algorithm derived in (i) requires velocity-indepen-
dent (independent of k) potentials and, comparing equations (2) and
(3) , one sees that the coefficient of the wave-function is respectively

k2 - V(x) and kz. U(x) . An important exception to this is

e

See next section



the case of a cold collisionless plasma, for which U(x) depends on k in
such a way that kZ.U(x, k) has the desired form of equation (2),
without any transformation.

These results show that an entirely new approach to electro-
magnetic synthesis has been disclosed by the advent of a successfull
solution to the inverse problem of scattering theory.

It is therefore legitimate to ask why are there so few
papers on electromagnetic synthesis using such an approach. We
can only speculate on the various reasons for this fact.

It seems to us that the complexity of the algorithm is not
in cause, since it only involves a quadrature followed by the solution
6f a linear Fredholm integral equation which lends itself naturally to
the usual approximation techniques. Furthermore, it constitutes
indeed a powerful '"'theoretical tool'" through which one is able to
obtain realizability conditions which clarify the physics of the problem.

We rather believe that the main reasons for such an
"ostracism!' are twofold:

(i) Electrical Engineers are generally unaware of the existence of
a solution to the quantum scattering inverse problem for ti..e one-
dimensional Schrodinger equation, although the mapping of this
equation into the wave equation by means of the Liouville trans-
formation is widely used (in connection with the various appro-
ximation technfques for solving the wave equation).

(ii) Physicists are interested primarily in the radial equation for
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quar*um scattering applications - this fact has hindered the development

of the one-dimensional inverse problem as compared to the radial inverse

problem,

1.2 Direct and Inverse Problems

In order to develop further the 'vocabulary" with which we
shall describe our objective in this work, let us determine in dgtail what
is meant by direc£ and inverse problems, and how these problems may
be interpreted according to their formulation.

Roughly speaking, the problems characterized by equations

(1) and (2) can be classified in two broad classes:

1.2.1 Direct Problems

This is the familiar class of problems where the potential
V is given and, by solving the corresponding equation, all the desired
information about the physical system is obtained.

We shall assume throughout this thesis that the potentials are
such that the system does not have any bound states - this assumption
does not represent a very serious restriction, and most of our results
can be modified to account for possible discrete points in the spectrum,

These problems have been extensively studied (references

2
6 to M4 in the Bibliography) and consequently we turn now to our real

.concern : the inverse problem.
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l.2.2 Inverse Problems

This class is less widely known, and is much more recent,
The potential is unknown and one seeks to reconstruct it from the know-
ledge of the scattered data. By ''scattered data'' we mean quantities
which c'én be measured ''far away" from the scatterer, plus whatever
additional data as might turn out to be necessary in order to determine
the potential (as for example binding energies and related normaliza-
tion constants, if the potential supports bound states).
It is important to understand that the inversé problem may
be interpreted in two different ways:
i) "diagnosis" problem - the scattered data is given and one seeks
for an algorithm determining the corresponding potential,
ii) "synthesis'' problem - one wishes to construct a potential which
would produce a prescribed set of scattered data but, in addition,
seeks for ''realizability conditions" , viz., which classes of poten-

tials correspond to which classes of scattered data.

Let us emphasize the distinction between these two formula-
tions by giving examples drawn from electromagnetic sitvations:

i) to determine the ionization density of the ionosphere from the time
delay of a pulse radio wave which has been transmitted from the
earth and reflected back by the ionosphere. This is a 'diagnosis"
problem - one does not have to worry about the realizability of

the measured time delay.




ii) to construct a piece of inhomogeneous dielectric such that, when
N an electromagnetic wave is reflected from it, the reflection coef-
ficient has a prescribed variation with frequency. This isa
""synthesis" problem - one has to be sure that the prescribe'd
variation of the reflection coefficient with frequency is indeed
realizable with a physical piece of dielectric, Among other

requirements, the piece should not have infinite length !

1
\ 1.3 Objective of this Thesis

1. 3.1 General Purpose - Finite Range Potentials
We would like to consider this thesis as an introduction
to the application of the quantum inverse scattering problem to electro-

magnetic synthesis problems.

This being so, much of our work has been bestowed to the

study of thé quantum inverse scattering problem in itself, since it
belongs to a highly specialized branch of physics involving rather
complex analytical techniques.

This thesis can be mentally divided in two parts:

i) the description of both the historical development and the main

results of the theory of the inverse scattering problem, in order

to have a solid fouridation upon which the applications and further

e

results shall rest. A few original results, in connection with the

one-dimensional inverse problem, shall be included in this account.




ii) the complete solution (realizability conditions and algorithm) of
of a specific electromagnetic synthesis problem which, to the
best of our knowledge, has remained unsclved up to the present

time,

The interesting scatterers for practical applications are
obviously those which occupy a finite region of space. Throughout
this work we shall therefore be concerned with the synthesis of
FINITE RANGE one-dimensional potentials, i.e.,, potentials which
are identically zero outside a finite interval (also called : of compact
support).

A twofold task is implied in such an objective : once a
physically interesting set is chosen as scattered data, we must be
able
i) to find an algorithm through which the potential can be found

ii)  to give sufficient conditions ensuring that the corresponding

ats
o

potential has indeed a finite range,

To our knowledge, no solution for one-dimensional inverse
scattering problems has been found whicfx satisfies (ii). We have been
able (chapter V) to find such a complete solution for a one-dimensional
inverse problem where the total wave-function phase-delay is chosen as

scattered data.

Besides the conditions ensuring that the set is indeed a set of scattered data.




1.3.2 Brief Description of Contents

In Chapter II we have tried to give a detailed account on
what has been done on the Inverse Problem up to the present time,
including formulations which in a strict sense cannot be considered
to correspond to ''scattering' problems, being rather of the type
""natural modes'". We felt that it would be of some interest to des-
cribe in more detail certain important papers which were apparentl&r
forgotten in the existing literature on the problem, as for example,
the "inverse geophysical problem' treated by R, E, Langer in 1933,
In general, emphasis was given to works directly relevant to our

objectives in this thesis,

Chapter III deals with the Inverse Problem both in its
Radial and One-Dimensional formulations. In the former case, we
merely summarize the important results which shall be used in con-
nection with our main present interest, viz., chapter V. For the
one-dimensional problem, most results derived are new and hopefully
shall contribute to further development of different formulations of the

problem (different sets of scattered data as input).

In Chapter IV we list some examples to show how certain
electromagnetic problems can be reduced to Sturm-Liouville equations
which are ready to be processed according to the theory of the Inverse

Quantum Scattering Problem. This list is by no means exhaustive, and




it might be interesting indeed to proceed to a systematic investigation
in order to examine problems of interest which can be reduced to Inver-
se Sturm-Liouville problems; of course we need not be restricted to
electromagnetic problems - Acoustics, Hydrodynamics, Heat Con-

duction, Elasticity, etc..., might benefit as well.

Chapter V contains the major practical results in this
work, by means of which a solution to an unsolved problem in electro-
magnetic synthesis is derived. Essentially, we obtain a complete
solution (algorithm and sufficient conditions) for a one-dimensio-
nal problem involving a FINITE RANGE potential (dielectric slab),
where the input data consists of the total wave-function (electric field)
phase-delay as a function of energy (frequency). Sections 5.3 and
5.4 examine the possibility of solving similar problems for different

input data.

In Chapter VI we have listed what we believe to be the most
promising directions for further development of this work. We also
state our feeling that the subject remains vastly unexplored and that
this thesis can serve only as an introduction to its applications, although

we were fortunate enough to obtain the results of chapter V.

Finally, an Appendix gives an example of the method derived

in chapter V.




CHAPTER 1II
N— HISTORICAL DEVELOPMENT OF THE INVERSE PROBLEM
2.1 Introduction
(63)
In 1894, Lord Rayleigh considers the problem

of determining the partial tones of a stretched string of variable
density P.‘*AP where AP(x) is relatively small. The appro-

ximate formula is given:

2

B= i (1)

where Tn is the period of the nth component vibration, l is

the string's length, & its tension and

A IR Sk

By expanding AP from 0 to l/z in the Fourier series

AP . 2 NI & 2NL + ...
4 - A°+A,w2E+ A,,cos_7_

Lord Rayleigh obtains the following expression for O<n

O(h' = Ao "..'—.Am

2
where
¢
fo=2 [= AF dx
(7] o .
; 4 N
] =4 P cas 20nZ
A»_Z_L Ae’_cos ;




Lord Rayleigh detects an essential feature in these results -
N we quote:
..." This equation, as it stands, gives the changes in period in

! terms of the changes of density supposed to be known, And 4%

shows conversely that a variation of density may always

be found which will give prescribed arbitrany displace-

. M
ments to akl peniods .  This is a point of some interest."...

As far as we know this is the first solution, although
approximate, to an inverse problem for the wave equation. We
. notice however that this is not an inverse ''scattering" problem,

since here the continuous spectrum of the wave operator is empty.

Y The input data consists of a sequence of numbers; accordingly, we

Italics are ours. As an example, Lord Rayleigh solves the

problem of prescribing o, =0 for ns | , viz., the pitch of

unaltered. The corresponding density variation is easily derived:
;i: An=0 [n#l) AI= —2d,

Hence:

af _ . 2u(, co5 ZIZ

k

~/

shall designate such problems by the generic term ''discrete inverse

roblems'", as opposed to inverse ''scattering'* problems where, even
P ) P

| the fundamental tone is displaced by ¢ , all other tones remainig

1177 ]
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though the spectrum may have a discrete part, there is always a
continuous part which correspond to the 'scattering' solutions.
For the sake of completeness we shall first give a brief account
on the ""discrete inverse problem", which initiated the development

of the whole theory.

2.2 The Discrete Inverse Problem

The vast majority of investigations deal with eigenvalue
(64, 65, 66)
problems for the well-known Sturm-Liouville operator.
(Notice that the string problem undertaken by Lord Rayleigh is an

exception to this statement, although it can be reduced to a Sturm-

Liouville problem, as shall be seen).

The first rigourous result in this field seems to have

(67)
been given by V. A, Ambartsumyan in 1929. Considering the

eigenvalue problem:

Le - 4 VR
dz*

and V(x) is a real continuous function for x € [0, ], he proved the
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following theorem

"1 Ag=h® then V(x) = 0 .n

. (68)
Next comes an important paper by G, Borg , publi-

shed in 1946, Roughly, his results can be sketched as follows;

consider the two boundary-value problems for the same operator L:

LY=2¢ (2=23..) Vi0)-h¥0) =0 (1)
i R W)+ HW(m) =0

LW Cpepop,.) | VO -hY0) =0 (x)

Borg shows that the sequences {3,.,} and &lun} determine V(x), h,

h1 , and H uniquely. He also shows that in general (Ambartsumyan's
result is an obvious exception) one spectrum is not sufficient to deter -
mine V{(x); he attempts to reconstruct V(x) from the knowledge of
two spectra, obtaining a partial answer [conditions ensuring that there
exists a V(x) corresponding to prescribed An‘s and lu,:s are not
derived].

Apparently unaware of Lord Rayleigh's re sults on the variable density
stretched string, Borg tackles the general problem using the full ma-
chinery developed for the inverse Sturm-Liouville problem. In order

to do so, he transforms the wave equation:

L:,’-zg-f— + k2PR)2E) =0

ote
EA

We have here a simple example of a set of 'scattered data' which

determines the potential uniquely.




where:

k= te [0,4] Z(0)=2(XL) = O

w
'
into the Sturm-Liouville equation:

P 22 -

(5)

by means of the so-called Liouville transformation

t
z= g [ yfPce) d
bo= & [ ﬂ/ﬁm JE = L)

yt) = | Pre) " 2(t)

This transformation constitutes the ''bridge' through which all the

results derived for the inverse quantum scattering problem shall be

applied to electromagnetic inverse problems. To our knowledge, it
(3)

has been given for the first time in 1837 as an approximate

method for solving the wave equation which has evolved into what

is called today the WKBJ approximation.

16,
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A decisive advance in the whole theory was obtained by
(69)
V.A. Marchenko in 1950 , who showed that V(x) is determined
uniquely by the so-called spectral function.
Let us say a few words about the spectral function of a

regular Sturm-Liouville problem. Define (Pﬁog) to be the solution

of the equation:

LCP 'A(P = 0 Zé [01"]

which satisfies the initial conditions:

Po,2) =1
PI0A) = h

B T Y
and let %:’\n} be the spectrum. Define the normalization constants

"
oy, = fo D, ) dx

the spectral function is then determined by:

P(A) = 23 _I_

An< A *n,

For example, the simple problem V(x)=Z 0, h = 0, has the spectral

b= 243

as it can be easily seen from the definition.

function:

A fundamental property of P(A) is that for any function

flx) € LZ[O,TT] there exists a function E( ) implicitly defined by:




+o0

¢
din [ [Eo)-f reweand]dem) =0
t>m

and the Parseval equation:

[Temdt = [ Eide)

oY)

holds.
Marchenko shows that P[A) completely determines V(x)

and the number h.

(70)
At almost the same time, M, G, Krein obtains a com-

plete, although somewhat indirect, solution of the ''two spectra"

inverse problem attempted by Borg.

(71)
In 1951 appears the fundamental paper of I, M, Gel-

fand and B. M. Levitan [actually a series of two papers]. An algo-
rithm for determining V(x) from P(A) is given, as well as necessary
and sufficient conditions for a function of A to be the spectral function
of some Sturm-Liouville operator. Let us briefly describe their algo-
rithm:

a) Define 0'(3) by the relations:

)
2 /2 220
P(A) = WV—,

1
L () A<0O

18.




b) obtain f(x, y) through:

flxy) =[;~ws{5’z .cosVA'y. deia)

c) solve the linear Fredholm (x is a parameter) integral equation:
z
Key) = ~Hy) - [ #§.2)Ka2)dz y<z

d) obtain V(x) and h from K(x,y) using:

V[Z) = 252 K[z/Z)
h = K@©,0)

e) CP[I,)) has the integral representation:
Pad) = wsili'z + [ Koug)wsI3y d
1A) = s)z.+ol<9uy)w52#g

It shall be seen in the next section that Gelfand-Levitan's
results originated the whole theory of the inverse quantum scattering
problem, although earlier attempts existed which made use of itera-

tion schemes formally derived.

We shall end here our discussion on discrete inverse
problems by saying that they have generally evolved through gene-
ralizations of the earlier problems, as for example, to various cases
of singular Sturm-Liouville operators. More recent literature rele-
vant to some of these investigations is listed in the Bibliography from

(72) to (76) [ (72) and (74) contain extensive list of respectively 78




2.3 The Radial Inverse Scattering Problem

(77)
In 1947, C, Froberg , under a suggestion from

W. Pauli, examines the problem of determining the potential from
the phase-shifts, His results, as we shall see, triggered a rapid
succession of papers on this subject - Heisenberg had suggested
that the S-matrix contains enough physical information to overtake
the fundamental réle played by the Hamiltonian (or the equations
of motion) in atomic problems, conjecturing that the binding
energies could be obtained from the analytic continuation of the
S-matrix into the complex energy plane - this question was one
of lively interest among physicists and, since the S-matrix is
closely connected with the phase-shifts, it was of some impor -
tance to determine if the potential could be reccnstructed know -
ing the phase.

But before going any further, let us proceed chrono-
logically and describe first a continuous inverse problem treated

(78) <

by R. E. Langer in 1933 .  This isolated work seems to have

passed unnoticed to most workers in the field - as a matter of fact

the only mention we know of Langer's research is given in Borg's
(68)
paper .

The mathematical problem treated by Langer originates

(79)
from a geophysical problem formulated by L. B, Slichter .

The problem is to:determine the conductivity of the earth in a cer-



tain region as a function of depth. The experimental procedure
consists essentially on measuring the surface electrical potential
distribution created by the supply of a direct electric current
through a small electrode to the surface of the earth. The issue
is; can one find the conductivity knowing the surface potential
distribution ?

Under certain idealizations, Maxwell's equations for

this time-independent pi‘oblem

—

7.7 =0 J=rE E=-V§

can easily be reduced to the partial differential equation :

2 J 2P dr o8 _
r[z){_)_‘;éz,g f’a{’ 7z«'-}+ S O .

where x is the depth, P the horizontal distance from the electrode,

@ (x, P ). the electrical potential and §~(x) the conductivity.

Separating variables :

@[Z; P) [F) “,\[z)

Langer obtains the two ordinary differential equations:

U+ & U+ AT =0

(ruy) - 2ru, =0



U;\(P) satisfies a Bessel equation, and must remain finite and

vanish at infinity as ( 4 )"l , therefore:

Ux(P) = T [AF]

u )(x) satisfies a Sturm-Liouville equation, and must be of expo-
nential form, since (" (x) is positive. Denote by ul(x, A) a
solution which is positive and monotonically decreasing with x.
Since 23‘1. must vanish everywhere at the surface,
9%
except at the electrode [P = a], the actually distribution is
given by:

f U&A) 7 (AP)sinda oA
Zrmo'(o) o ){0.2)

¢ (Px) =

where c is the current and a the radius of the electrode. The

surface potentials are:

P(ro) =

f 203)sm3e J,(3P)d)
277‘.4'[0) AR

where: uo,2)
2 = - -t
£ “:[042)

Now this is a Fourier-Bessel integral transform which can be inverted

into:

o0
GS/ﬂ)a.. = 20 Jo 2P) P
ﬂ{/ﬂ{ “2ra¥r@) ‘f; (RO) % (27



It follows that the surface data determine §2(A) uniquely.
Langer shows that the knowledge of J2(A) for A€ (0,00)
determines the conductivity 0 (x). Let us very briefly sketch

his solution. Defining

“ixa)

vix,A) = = —

Wi(,2)

he shows that v(x, A ) and fX(A) have the asymptotic repre-

sentations for large A

V) |+ D )
nel A

o
A v | + 25 %n

n=1 A

Proving that

%) _ _2v(&)
o(x) ~

he thus reduces the problem to the determination of vl(x) from the
n
W,'S . Deriving recurrence relations for ;,';,,,Vl in terms of the
z=0

w,,‘s , vl(x) is then obtained through its MacLaurin expansion.

It might be interesting to examine if we can apply the
Gelfand-Levitan formalism to this problem and, in case we can,

to compare its results with Langer!'s.




Let us return now to the '"mainstream' of investigations on the
inverse quantum scattering problem. As we mentioned at the
beginning of this section, it was on a suggestion of W. Pauli
that C. Froberg considered the problem of determining the
the potential from the phase-shift. Froberg's results were
(77, 80, 81)

published in a series of three papers

In the first paper, Froberg starts from the radial

equation (1) and, defining the asymptotic phase S(k) as usual

Y o s/'/z(é/c—.errZ-fS‘) K~ +00

(82)
he bases his method upon the equation, obtained by L. Hulthen

bsinSk) = - ™ W)Wl

where u; is the V = 0 solution:

Approximating ‘-I/ by the first term u; of its Picard's expansion

ksindk) < —fom(é Wik)dr

and differentiating with respect to k, he obtains the integral equation

for V(r):

L(k) = _g_E{kmS(k)} £ -2 L @Z%xl///z)a/z, (4)




for which he gives, without proof, the solution:

o = B [ “hpakdk [ kb ) C1-t0) g kbt 5
wk! Yo o

where;

F(2) = (-nl]/'_fzz ' J &)
2

for s-waves, he obtains thus the simple result:

T

o .
vir) 2 -4 %) sin. 2kre dk.
(x) S hk) sin 2Kk
(80)
His next paper supplies proofs for these results.
(83)

For the solution of the integral equation (4) he refers to N.Zeilon

and shows that the integral equation of the first kind for W:
o0
f(x) = f W (xt).h(t) dt
o

has the solution:

Wi(x) = e—

A .L“»%) v F } F Jf
SR L7 h&) v Fdv

and from this expression he proceeds to get Eq.(5), adding in proof

* that (5) can be simplified as to give:

v 2 2L [ G k)ulhey )ik

Tk Yo

. the method is then applied to the s- and p-waves of the Yukawa

potential:

25,



26.

finding that his first approximation yields the exact result for both
cases S and P. Finally, a Note is given based upon R, Jost's
suggestions, which simplifies the derivation of (5) and dispenses

with Zeilon's formula.

In the meantime, while Froberg was preparing his third
paper he had several discussions with E, Hylleraas * ., Thereupon
Hylleraas undertook investigations on the same subject, publishing

(84)
an article in which he criticizes Froberg's results on grounds
of the lack of convergence proofs as well as of a clearer formulation
of the method for higher approximations. He proceeds to give a dif-

ferent treatment to the problem, starting with validity conditions for

the Fourier transformations:

00
F(r) = #T—L G(k) sin 2kr dk

G(k) = fo” F(r) sin 2kr dr

in the whole region 0§r<oa , 0% k<0 . He points out that
one has to be careful to examine the convergence of each integral
separately in order to eliminate the risk of having S-functions

arising from improper product integrals, viz. :

* When both were at Princeton (as stated by Froberg in his third
(81)
paper » P.2)
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_ N
I .f_’r. ‘[ sinlkte sindkiidk = Sli-n) - Slhetn?)
Vo

N—» 0O
!
}
|
He proceeds to prove the validity of the pair of integral transforms:

boin (- 5y) = = [ (v-U) Yook

" ,
V-U '—'%f sm(é}-fu)zk(lt)o/é (6)

0

where U is an auxiliary potential defining the solutions of the corres-

ponding radial equation having the aymptotic forms:

Y, o sin (ke - Lol + &)
Yy v ws (be-4rl+ Sy )

and:

Nl = Yy Yy
Zle) = YWy + YWy

S‘U' , SV' are the phase-shifts corresponding respectively to
U(r) and V(r). Based upon Eq. (6), he constructs an iteration
scheme in the fol}owing way:

a) Start fr'o;'n a good guess U(r) and, by solving the radial equation,

obtain LPIU ’ LFZU and SU

b) Replace the unkown functions SU,V and %V in Eq.(6) by




i 28.

\ /4 "PIU and %U » obtaining thus an approximate value of
| Ne— the difference, say Vl- U, and consequently a first approximation
Vl(r) to the potential V(r).

(i c) Put U = V1 and repeat the same process,
!

| Applying this scheme to an inverse square potential ,
| Hylleraas is led to the conclusion that if a U(r) can be found such
that for all k the difference
[§,- 8§ |
_g is smaller than some given number, his method is convergent.
1 He ends with the statement: ...'" Thus it has been proved that
% a perturbing central field of force can be uniquely determined from

the observed scattering phase-shift, ', ..

(81)
A few months later, Froberg's third paper is

published, in which he simplifies the first approximation and in-
. dicates how the higher order approximations are obtained . The

simplification is the one already mentioned in the '"add in proof"

of his second paper, and higher approximations are examined in

a substantial way only for S-waves, although a rather complicated

formula for the second approximation is given for all 1, Froberg

uses known potentials as first approximation (for S-waves only)

l and proceeds to examine the corresponding second approximation

wa's, Gaussian and Well). Hylleraas' proof of convergence is cri-

l using both his and Hylleraas method (the potentials used are Yuka-
{
l
|




29.

ticized on grounds that improper integrals arise from the constant
difference of phase-shifts produced by the inverse square potentials
used in his proof. The paper ends with a procedure for obtaining
the phase-shifts from the differential cross-section. In an Appen-
dix, formulae in connection with Hadamard's 'partie finie'' of a

divergent integral are given for several cases,

From this examination of Froberg's and Hylleraas'
results, we feel that both investigations are somewhat inconclu-
sive, inasmuch as they depend on iteration schemes whose conver-
gence is not rigourously examined. Furthermore, the problem of
giving conditions on a function of k in order that it be the phase-
shift corresponding to some potential V(r) is left untouched.

(85)
Four months later, V., Bargmann gives an example

of two potentials having the same phase-shift, and points out an error

in Hylleraas' argument. Bargmann shows that the potentials:

_ /2 A
v - 62
(1+e?)?
2 ,-22n
Vz(r) = -HA €

(1 +3e-3%)*

yield the same Jost function and, consequently, the same phase-shift

(86)

(for S-waves only). He mentions, according to Moller , that

infihitely many different Hamiltonians can be found which yield the

same phase-shifts, However, he remarks that we cannot be sure to




find among them one which corresponds to an ordinary central field

o
of force, Commenting on Hylleraas' results, he first modifies Eq. (6)
by interchanging differentiation with respect to r and integration with

respect k, obtaining

4

o0
V.U =_Z/7?5__£ sin [ 8- &y 1.2, 00) dk

By doing so he eliminates the appearance of the divergent integrals
objected to by Froberg. Nevertheless, the incorrectness in Hylle-
raas argument does not lie here but rather in his assuming two
equations (used in his proof of validity of equation 6) to be equi-
valent - Bargmann shows that in fact, they are independent since
one corresponds to a completeness relation, while the other repre-
sents an orthogonality relation ; moreover, the former does not
seem to hold when either V or U support bo_und states, because

it is well-known that in this case the "improper eigenfunctions"
alone do not form a complete system. Bargmann ends his com-
ments by conjecturing that Eq. (6) may be generally valid if the
potentials V and U do not support bound states. An '"add in
proof'" is given, in which Bargmann mentions that potentials ha-
ving ‘same phase-shifts (S-waves) but different discrete energy
levels, as well as a non-vanishing potential which causes no S-

scattering, can be constructed,
,b

%




(87)
A few months later, a second paper by Bargmann

is published, in which he develops in a more systematic way

the construction of (S-wave) phase-equivalent potentials,

He also gives N, Levinson's results (communicated to him prior
to publication):

"' two potentials decreasing sufficiently fast at infinity are iden-

(88)
ticel if they have i) same phase-shifts for all 1 ii) same

phase-shift for 1=0 and neither supports bound states (89 ",
Bargmann points out, according to Kramers, Ma and

Jost, that the S-matrix may have ''redundant" zeros, i.e., zeros

which do not correspond to bound states, and therefore in general

the phase-shifts do not determine the energy of bound states.

However, he proves that if

-

J;wnlv{n)!dm < o0 (7)

two potentials having the same Jost function are phase-equivalent
and have same bound states, which are given by the zeros of the
Jost function on the negative * imaginary axis. In addition, he !
proves that a zero-energy bound state cannot occur if (7) holds.

He also states, according to a remark by Levinson that if f(k)

is differentiable (including the origin) and

3 s
‘ The Jost solution is defined using f(r,k) — e ikr when r — oo



fom we Vi) lde < eo

it can be shown that the number m of bound states is finite and

-m1T F(0) # 0O

4

7{0) = 3
-{m-l-_é-)'lT £0)=0

\

(assuming 9(k) to be normalized by P@)=0 )

A systematic construction of phase-equivalent poten-

tials (S-waves) is then undertaken, by defining:

Xk) = oI (i k)

where P (r,k) is the regular solution of Eq. (1) which vanishes at

the origin. X(r, k) obviously satisfies the equation:

O

)]

2" - 2ik X' - V)X

assuming Al's such that lim X(r,k) = X (00,k) # 0,

the Jost function is obtained in terms of %

f(k) = X(On(’-)
2 (@0, k)

once %(r, k) is known, V(r) is immediately obtained :

vie) = X'-2ik X!
x

Bargmann comprehensively treats the two cases:




a) Xir, k)l = 2k - i a(r)

b) A(r, k) = 4k® + 2i a(r) k -+ b(r)

where the undetermined coefficients a(r) and b(r) are obtained
through differential equations using the fact that V(r) is independent

of k. These choices for X (r, k) produce the potentials:

or A HrP + (P- cosh [(PreIn-26] ~ (Prr) cosh (P-5) i }

1. Vl(r) =

{rsiak(Pme) - Fsiak('m-é)}z

for which the Jost function is:

(k) = 2k+i(P40)
! 2k -i(P-0)
fI(k) is independent of '0' , therefore Vl(r) forms a continuous fa-

mily of phase-equivalent potentials, all having a bound state of ener-

gy

By = - -;,’-(mr)z

Pr S APr + (P-0Yosh (P1o)K —(PeeYeosh [(P-0)+26] }

2. Vz(r) =

3 esink (Pe+6) — Psink (n-9) 3*

(Prr )z. e-[P+a')/c

V,(r) = -~ 2L -(P40) 12
3 o [
[ | + £ e ]




Py 3 APr 4 (-6 wosh (Prode + (Pia)cosh [(Prr)r -26] }
§ reosh (Pr-9) + Peosh (e +9) }

V4(r) =

all of which have the same .Jost function:

f.(k) = 2k+c[?-a‘)
. 2k - i (P4r)

VZ’ V3 and vV, are phase-equivalent, having one boud state

with energy
= -1 (pr)?
E = I/'(P r)

Bargmann remarks that V1 y V. V. and V, are all phase-

27 73 4
equivalent, since: .
GO frck) o9
RCR) ~ falk)

Pusink P - 2 (cashbe -1) — &
(svh/LP/c ~ P 4 c‘)z

3. Vq(r) = zpz.

for which the Jost function is

flk) = 2k+¢f
2k-iP

fHI(k) is independent of & , hence V. forms a continuous family of

phase-equivalent potentials all having one bound state with energy

- -1p*
By = - P




6(k-«) [ (r-2)°-27% ] (Y>x20)
[(t-a)%4 7% ]*

4, Ve (r) =

for which the Jost function is

3 [1-ick]
(Y3-«3) k?

fy(k) = | +

Bargmann remarks that for =0, f(k) = 1, and therefore we
have here a continuous (inY¥) family of zero-phase equivalent
potentials, having a zero-energy bound state. In addition, if >0
by a suitable choice of « and Y » Vg can be made phase-equi-
valent to an Eckart potential which has no bound state (although
V6 supports a bound state).

Bargmann points out that these anomalies are related
to the slow decrease [ V6 V‘—% nL— o0 ] of the potentials
considered, and ends with the remarks;

i) if f(r, k) is entire in the complex k-plane, the results of the

S-matrix theory hold. He proves that f(r, k) is entire if

_f:o e | vy | die < o0

for all > 0. [Bargmann was apparently unaware of Stone's

results (18) which can be easily shown to be equivalent to his].

ii) Levinson's result (already mentioned) can be put under the form

if o0

V,r) + :’iig‘l >0 wa  f KkIVGOldk <00 Gui2)




bl N

then

@
?zl[k) = 9;)[,6) for alll implies V (r) = V,(r).

Almost at the same time, an important work by

(89)
N. Levinson comes out, in which he proves the uniquencss of
the potential for a given S-wave phase-shift, under certain condi-

tions. His results are supported by rigorous mathematical

proofs. We shall limit ourselves to sketch his main points:

I. If V(r) is piecewise continuous, non-negative, and rV(r)€ L'I(O, ®),
i) y(k) determines V(r) uniquely

ii) A(k) and 7(1{) are continuous functions of k, where
() = Ak e 2K

is the Jost function .

iii) 9(k) determines A(k) uniquely and conversely

II. If V(r) is measurable and real and
,,E'lt/l/(lt)la/ft + LWM‘Z/V(E)IJM < o0
i) V(r) is uniquely determined by y(k) if there are no
eigenvalues.
ii)‘: the result on p(O) already mentioned by Bargmann holds,

and consequently, if Q(W) "9[0) <TT

there are no bound states

iif) 9(1() determines A(k) uniquely and conversely in this case.




37,

the Parseval equation holds:

Jk / L P k)ute)d /

L. If u(r) € L,(0,00)

2 - ..__
f lunl? die [ [A(/e T

v, If rvV(r) € Ll(o, o), (-P(r, k) is an entire function of

p=0+L¢ which for all p satisfies:

141
Krn e

l cﬂlt,f)l a3 ™ //;I)('

and as- ‘f)l"' Q

CP(M//J) = smlom + 0(8:;:"‘)

The following bound is derived for {(r,p) :

V.
ipr “ " Ivpld (£20)
| #dup) - e?* | L vl >0
VI. If V(r) is non-negative, {(p) is analytic for ¢> 0 and conti-

nuous for &=0. For ¢&=0, f(p) vanishes only for p

on the imaginary axis. If k = ié‘n ( é‘n > 0) is such

a zero of f(p), then (P(r, i bn) is a proper eigenfunction
: of Eq. (1) satisfying:

‘-P[IC,L'(},L) = C,L,‘ID(M, itn,) — O H—> O

¢, # O




>

38.

fkor large lf'

Fp) = 1 +o00) /

uniformly for 0 < argp £ Tr . .‘l
We notice that, besides Bargmann, also Levinson seems to have
(18)

been unaware of Stone's results which are somewhat over -

laped here.

VI. For &2>0:

"
|
™
S
| 3
N
S
b
‘%
\—r
=

log f(p)
i kz_Pz
and 3
y(k) = lim Im log f(p) =
40

Levinson ends by adding in proof (March, 1949) a generalization of
his method for higher angular momenta, as already mentioned in

Bargmann's paper.

(90)
Approximately at the same time, G, Borg obtains

similar results, basing his investigation on the Weyl-Titchmarsh
function m(k). Since only the formalism differs, we shall not pursue

a detailed description of his method.

69
In 1950, V. (A, Marchenko( ) shows that the spectral




function determines V(r) uniquely (see Sec. 2.2).

The issue was then ; what must be prescribed, in addi-
tion to the phase-shift, in order to determine the spectral function ?
Levinson and Borg had already proved that, if there is no discrete
spectrum, V(r) is uniquely determined by the phase-shift. The
lack of uniqueness was therefore related to the existence of bound

(87)
states. On the other hand, Bargmann had given examples
where same phase-shift and same bound states where produced

by different potentials.

{(71)
In 1951, the fundamental papers of Gelfand and Levitan

provided an effective way of reconstructing V(r) from the spectral
function (see Sec. 2.2) - no application to scattering theory was
mentioned.
(91)
In 1952, Marchenko shows that the phase-shift
determines only the continuous part of the spectral function ; he
shows that the additional data required when there is a discrete

spectrum is formed by the eigenvalues plus related normalization

constants,

(92)
At approximately the same time, R, Tost and W. Kohn,

unaware of the recent Russian developments, and based upon
Bargmann's and Levinson's results, describe two methods of
constructing V(r) from p(k) (S-waves) in the form of series,

They point out that Levinson's first result can also be used by

39.




choosing a phase-shift corresponding to an 1 so high as to exclude

bound states, thereby determinig V(r) uniquely. A convergence
proof for the first method is given, and it is shown that the con-
vergence conditions are not very restrictive.

Comments are offered on the limited usefulness of these
procedures to the analysis of two-nucleon systems.

The series solution is rather involved. Furthermore,
if there are bound states, the method yields only one potential out
of the correspoﬁaing family., Their results are applied to Eckart
and exponential potentials - convergence is found to be quite rapid
in both cases.

The second series method is based upon the equation:
m .
~klRgle) = [, sinkic (k) k)

They conclude by surveying possible generalizations of
the method to 1 >0, tensor forces, Coulomb fields and relativistic
scattering.

In an Appendix, a generalization of Levinson's theorem
is given, according to which if there are m bound states, in order
to determine the potential uniquely one must give m additional
positive parameters Ci , related to the normalization of the
proper eigenfunctions. We remark that this result was already

| (91)
implicit in Marchenko's analysis .

An add in proof mentions their recent acquaintance




af”

(71)

with Gelfand-Levitan's results . Also, the discovery of a

complete set ( in Ci ) of phase equivalent potentials having the
(93)

same binding energies is reported. - they refer to B, Holmberg

who independently finds some of their results.

(93)

B. Holmberg in July 1952 examines the nonunique -
ness of the potential when there are bound states. He seems to be
unaware of Levinson's results, as well as of the recent developments
made by Marchenko, Borg and Gelfand-Levitan, and bases his analy-
sis upon Froberg's and specially Hylleraas' results. Using Hylleraas'
functions Zk(r) he gives an explicit formula for the difference
between two phase-equivalent potentials having one bound state with
same binding energy, if one special potential and its corresponding

continuous eigenfunction is known.,

Immediately after, comes out a beautiful paper by R, Jost
(94)
and W, Kohn , where an explicit method for the construction of
an entire class of potentials having (for a fixed 1) same phase-shift
and energy spectrum, is given. The analysis carries over to potentials
with purely discrete spectra. Although the authors are aware of the
Gelfand-Levitan formalism, they do not use it in this investigation.

They start by assuming an infinitesimal change SV(r) of the poten-

tial and giving the corresponding changes of the phase-shift and bin-

ding energies:




$E, = [ §V00) [Buak) ] dh

fooA“V[ft) [btuk) T° dhe

S'y[é) = —;!__

- k 0

where <Pm(r, k)  is the proper eigenfunc.:tmn corresponding to E ,
n

and <P(r, k) is the regular solution normalized to

sin [ 1 + 1) () ]
at infinity.
Cons‘equently, if SV(r) can be chosen to be orthogonal to the
square of all eigenfunctions, the En's and p(k) will remain unal-
tered. The authors proceed by proving that the functions :
P, (k)P (k)
have :'this property, and by judiciously integrating the increments

SV(r) they obtain the family of potentials

V(A,r) = V(x)+%ﬁ(x)£'0c)+}ai [f,'(x)Jl'

where:

SIS g Y




¥,

f(r) = i(r, -ié‘ )

E, = - é’,z is the binding energy and

1

f(r, k) —e exp[-ikr] when r ~—» 0O

They use the fact thal this family is complete to implement
their series construction of V(r) - all potentials can now bec obtainced
by conveniently varying P

A proof is given' that if the discrete spectrum and the phasc-
shift are given for two angular momenta, the potential is uniquely
determined.

A potential equivalent to the deuteron square well is shown,
The same method is similar.ly applied to potentials with purely discrete

spectra. Potentials equivalent to respectively the one-dimensional

box and the harmonic oscillator are shown as examples.

It is only in 1953 that, almost simultaneously and indepen-
dently, N, Levinson and Jost-Kohn take advantage of the Gelfand-Levi-
(9%)
tan formalism. We shall first discuss Jost-Kohn's paper )
which was received slightly before Levinson's (respectively Septem-
ber and October 1952),
(71)

Gelfand-Levitan's work was brought to the attention

of Jost-Kohn by Lars Ggrding. They immediately adapted it to the



which incorporates the phase-shift, the binding encrgics and m
additional parameters, where m is the number of bound statces.
(71)
Unaware of the second paper by Gelfand-Levitan )
the authors first adapt their results to the boundary condition
(o, k) = 0, not included in Gelfand-Levitan's first results.
. 2 .
They assume rV(r) and r V(r) to be absolutely inte-
grable and proceed to define the spectral furction P(E) [E= kz']

in terms of familiar "quantum scattering quantities, by the recla-

tions:

iy Plw) =0

( m
P C,,,;'(E—En,) E<O
n=1

ii) iJ_.P =
dE ﬁ , VE E

\’
Qo

iii) / _ iy Fl0.i4)

G = :
YL [wE) ] de Flic)

iv) £(-i8) = ijigp[k) }ég-zt



We have already discussed some properties of the spectral function,

as well as the Gelfand-Levitan algorithm (see Sec, 2.2), thereclore

we shall only briefly sketch the two applications given by Jost and

Kohn:

a) The dependence on the m parameters Cn for a family of phase-
equivalent potentials having same binding energies is found to

be:

2
V(r) = V(r) - 2 gl.’z_z.log Det || M, (r) I

where Vl(r) is the particular potential corresponding to 'Cln and
o k
Mij(r) = - S:/ - (C; —C;i )jo ('%' ﬂ')(ﬁj[l')a/ﬁ‘
C'Plj [{') = CP[ (xlé:j)
b) The independence of the binding energies from the phase-shift

is examined and, as an example, the authors explicitly construct

all potentials corresponding to the phase shift y(k) given by

éco?‘péé) = -oc+ _é/toéz

x>0
X,>O
| 2ty < |

~/




46,

and a bound state located at an arbitrary negative energy .

They find:

{9nE) ¥
[+ Cf Sact e

= -2 2
Vi) = ¥ (k) z

(87)
where Vl(r) is one of Bargmann's potentials,

As we mentioned before, N, Levinson independently
(96)
applied the Gelfand-Levitan formalism to the inverse scat-

tering problem, arriving at some of the conclusions of Jost-Kohn

and giving the approximate formula for the variation of V(r) with

Pea

SUi) -4 [;m/z)m/z)af [sem ]

We hope to have given a rather detailed description of the
earlier investigations on the inverse scattering problem, which indeed
laid the foundations for its future development., From this point up to
1959, the literature on the subject is covered in a comprehensive

(97)

survey article by L, D, Faddeyev which appeared in Russia in

1959 and was published in English in 1963,




Consequently, from now on only papers bearing a direct relevance to
our objectives shall be focused upon and we shall describe them ac-
cordingly in the corresponding sections where they belong.  For the
remaining literature, we refer to the following sources, besides
Faddeyev's review :

(7)

In chapter I, section G of their book , Wu and Ohmura
give 20 references on the inverse scattering problem, and describe in
an Appendix the generalized formulations of I, Kay and H. E, Moses,

(8)

Another important review article by R, Newton came
out in 1960, in which proofs of the main results in both direct and in-
verse radial problems can be found.

(1)
De Alfaro and Regge , in chapter 12 of their book,

derive the main results relevant to the radial inverse problem.

A rigorous, pure-mathematical treatment of the radial

(98)
inverse problem is given by Agranovich and Marchenko in a
book which was translated into English in 1963,
(14)
In Dunford and Scwartz's treatise , part II, p. 1622,

we find a discussion on the inverse problem presented in a pure-ma-
thematical form.

(99)

Finally, a very recent article by P, Swan and W, A, Pearce

came out in April 1966 in which a critical review is made, a new appro-

ximation method is derived, and an extensive bibliography is given,
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Not included in neither of these sources are the following
works:
(100) (101)
A. A, Kostarev, in 1964 and 1965 discusses
a perturbation theory of the inverse problem for a certain class of S-
matrices, the convergence of the series obtained being proved for

this class. He bases his method upon Marchenko's formulation

for the radial inverse problem.,

(102, 103) (104)
G. Burdet and M, Giffon, in 1964 and 1965

discuss the inverse problem for fixed energy and varying angular

momentum. Defining a spectral function for this problem, they prove
-1 _

that r .f(1,k,r) form a complete system in the complex 1-plane,

where f is the Jost solution, defined by (1, k, r) — exp[-ikr] .

Further papers which have only an indirect relevance to

our problem and are not mentioned in this literature are L. D.

(105)
Faddeyev's and M, M, Lavrent'ev's

(106, 107).
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2.4 The One-Dimensional Inverse Problem

As we mentioned earlier, the bulk of the results on the
inverse scattering problem concern the radial equation. To our know-
ledge, only four authors have focused their attention on the one-dimen-
sional case on a theoretical basis,

The first investigation seems to have been made by A, Sh.

(119)
Bloch which reconstructs the potential from the spectral matrix
function.
(108,109,110, 111)

H. E, Moses and I, Kay ' have comprehen-
sively treated in a series of papers, the inverse problem in a morc¢
general formulation which not only clarified many of the ideas invol-
ved in the Gelfand-I.evitan solution, but also allowed for degeneracies
thus containing the one-dimensional case as a special application.

(112,113,114, 11%,116,117)

In several other publications

they have developed their theory for the one-dimensional problem and

pointed out its applications to some electromagnetic problems. We

shall describe later their main results in this direction.

(118)
In 1958, Faddeyev gives a realizability condition for

potentials such that :

+00
S LI+ kT vl de < oo

-0

{ in terms of the reflection coefficients "from both sides" [wave from

~o0 and wave from + 00 1.

i
|
|
i
i




However, his condition seems to be unpractical, since it involves

both reflection coefficients - one of which is unknown ., One

should like to have a condition on the quantity chosen as datum of
the problem, as for example on a reflection coefficient alone
(from either side, but ju:t one). This point will appear in all its
importance if it is understoo& that both the algorithm for determi-
ning the potential and the 'realizability condition" must apply to

the same set of quantities chosen as scattered data.

2.5 Applications to Electromagnetic Problems

We have already mentioned that this constitutes a vastly
unexplored subject - we only know of two authors which have focused
their attention in such problems:

(120, 121)

C.B. Sharpe, in a series of two papers is con-
cerned with the synthesis of non-uniform lines having a rational input
admittance. Necessary and sufficient conditions are given for a ratio-
nal function to be realizable as the input admittance of an infinite line.
He gives a closed-form expression of the characteristic impedance
Zo[x] of a line in this class as a functional of its input admittance.
Uniqueness of the solution is also examined.

However, he fails to ''terminate the line'" , viz,, to give
conditions in order that Zo[x] be a constant for x greater than some
Xy - As a matter of fact, his choice of rational input admittances

automatically excludes this possibility, as indeed he proves in his

H0



hIL,

(121)
second paper
— (122)
G. L. Brown, in a recent (1965) Ph, D, thesis ,
studies the class of non-uniform transmission lines which are non-
uniform in a finite interval, say 0 € r s D,
Starting fr;')m the usual transmission lines equations:
[
Cle) Z_Viut) + 2 Iht) = O
‘ it LA
L) 2. Tt) + 2. Vit) = O
it Lé
and assuming C(r) = CO and L{r) = LO for r > D,
he studies the initial boundary value problem for I and V when I{0, t) 0
T ——

and the initial state [ I(r,0) ; V(r,0) ] is required to be in the Hilbert

1
' space defined by the energy integral:
o z 2 '
(7 1) | T000)|* + Gl [viwo)| ™ § i
Defining the reflection coefficient R(@) as usual, he is concerned
in the first and second parts of the thesis with the direct problem,
both in its steady-state and transient formulation. The last part fo-
"
cuses on the inverse problem of determining IL(r) and C(r), given
{
the reflection coefficient R(& ) and the function:

j(x) = L ¢ [ctolin)] Z fo

1
:,
4
i
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The procedure is analogous to the Gelfand-Levitan
method for the radial inverse scattering problem,
However, also he fails to '"terminate the line" . We
quote:
.." Unsolved is the problem of finding conditions on R(cw) to ensure
that it corresponds to a set [C, L] from a given class. '
He puts forward a very valuable suggestion (p. 15):
.. 1 A different approach to the inverse problem of quantum scattering
theory due to Agranovich and Marchenko leads to simpler sufficient

conditions for the solvability of the inverse problem. It is probable

that a similar approach can be developed for the transmission line

problem ...

As a matter of fact, it is indeed such an approach that

we shall use in our main proBlf’:m (chapter V).
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CHAPTER III

THE INVERSE PROBLEM

3.1 Radial Case

We shall give in this section the main results in which
we shall be interested concerning the radial problem, restricting

ourselves to the zero-angular momentum case.

3.1.1 The Jost function and its Analytic Properties

We shall make the following assumptions on the potential

V(r) :
Vir) = 0 for r > R (8)
V(r) real and piecewise continuous (8a)

These conditions cover all cases in which we shall presently focus our
attention.

There exists a solution f(r, k) of equation (1) defined by
the boundary condition :

fr,k) = ¥ for r = R (9)

It can be easily shown that {(r, k) satisfies the Volterra linear integral

equation:

#[/f;k) = ebél& - [6 .S'I'ﬂék[l-ﬂ‘) Vﬁa),@ﬁak)q/,‘, (10)




For real values of k, it follows from (1) and (8a) :

(r, k) = 1 (r k) (11)

Since we shall extend the definition of {(r, k) to complex

values of k (hereafter designated by p = 0"+l:3‘ ), Schwartz's

reflection principle shows that in any region of analyticity connected

with the real axis, we must have:

(r, -p") = [ (r,p) (11a)

Equation (10) can be solved by iteration, and the series

of iterations converges uniformly for any finite p. Consequently,

f(r, p) is an entire function of p.

The function :

flp) = (0, p)

(2)

is the Jost function for the potential V(r).

Two very important results to our objective concerning

(28)
potentials satisfying (8) were proved respectively by T, Regge

(123)
and A, G. Ramm

Regge, in 1958, proves that f(p) is an entire function of

order one and type 2R. He gives the following properties of f(p) :

i) lim f(p) = 1

on the real axis and upper half plane
Irl-ooo

(12)
(89)

(this result can.be found in Levinson's paper in a more

complete form )

ii) f(p) has an infinite number of zeros, but only a finite number of
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them lies on the imaginary axis. (13)

Assuming that V(r) can be developed near rm R in

an asymptotic series whose principal term is

C[R-x]
he proceeds to show that all iterated but the first Born approxima-
tion give a negligible contribution for large lpl in the lower

half-plane, and gives the principal term in the asymptotic series

for f£(p)
ke
flpy N Cc_€__ (14)
kafl
inducing from (14) that: f(p) is of order one and type 2R. (15)

and that on any ray in the lower half-plane there is at most a
finite number of zeros of f(p). He also gives the Hadamard's

expansion of f(p) :

. @
ap) = 0y R (- -,% ) (17)

as|
(124)

In a later paper , Regge simplifies Gelfand-Levi-
tan's procedure by examining the physical aspect of the problem,
We quote:

-..'"" The extreme tail of the potential has usually no bearing on
physically measurable quantities. If we truncate a Gaussian poten -

tial, by letting it vanish identically, farther than several times its

range, we shall cause a little change in the phase-shifts but drastic




changes in the position of the large zeros of the Tost function, The

small zeros will remain almost unaffected. ', ,

He proceeds to examine the Gelfand-Levitan algorithm,
making the approximation that f(k) is a polynomial, based on the
remarks quoted above. f(k) has then a finite number of zeros kn ;
he considers the solutions (P(r, kn) such that ;

P,k) = o

Plo.x) = 1
hand shows that they form a complete set in the interval [0, 2R], by
means of the inverse Paley-Wiener's theorem. He uses this fact to

prove‘that the set:

sinkp e
C&(r, k) = _ﬂlf:_

is also complete in [0, 2R]. The mathematical machinery thus

developed is then used to simplify Gelfand-Levitan's algorithm,

A.G, Ramm, in 1965, proves that a necessary and suffi-

cient condition for the potential to be of finite range is that f(p) is

an entire function with an order of growth not higher than the first,

such that f(p) - 1 is square-integrable,

Combining Ramm's and Regge's results, we can state:

56,
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A sufficient condition for V(r)z0 for r > R is that {(p) be an
entire function of order one and type 2R, such that ({(p) - 1 is
square integrable.
This result shall find application in section 5, 3,
To end this discussion on the Jost function, let us now

show the connection between f(k) and the scattering phase-shift
and amplitude. Consider the solution of equation (1) defined by
the initial values :

P(o,k) = 0 (18)

!
P, k) = 1
(96)

It can be shown that for large r :

Pluk) “_ﬁ__) sin [ kre-nk) ] (19)

ol(k) is the asymptotic amplitude and 9(1&) the phase-shift.

It can be easily shown that :

nik)
(k) = «[k)ew (20)

Quantities of interest in the scattering problem are also:

_ -2 k) £( -k
S(k) = e ! 9( - 4f:(?)‘l—‘ (21)

designated by ''scattering function" and the "weight function"
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3.1.2 The Radial Inverse Problem Algorithms

There are three main approaches to the radial inverse
problem, which are closely related:
i) Gelfand and Levitan
ii) Agranovich and Marchenko
iii) Krein

Historically, the Gelfand-Levitan algorithm was the first
real break-through in the radial inverse problem., However, we
shall focus our attention in Agranovich-Marchenko's approach,
which we find more suitable to our purpose,

Agranovich and Marchenko start with the scattering

(97)

function S(k) and prove the following theorem

" Any function S(k) with the properties :

) |stk)| = S(eo) = s(0) = 1

i1) S(-k) = s’k = s!(k
+00

iii) S(k)y = 1 +f F(t) exp[ -ikt] dt where F(t) is
-0

absolutely integrable in [-e0, +00].

+ 00
iv) { arg S(k)} = -4imT (m 2 0)
-0

(23)

(24)

(25)

(26)




is the scattering function corresponding to a potential V(r)

having m bound states and a continuous spectrum along [0, o .
V(r) may be a generalized function such as the derivative of a local-
ly summable function. A necessary and sufficient condition for
rV(r) to be absolutely integrable in [0, ¢0] is that tF'(t) be

absolutely integrable in the same interval. "

In this thesis we shall assume m = 0, restricting
ourselves to potentials which do not support bound states, unless
explicitly stated.

The following inequalities are derived:

| Pl + v | < C { S ”Jvmom'}z

I F'[th)"‘-;‘-vm)l < C{_é:lF'ﬁt')la’m}z

and the integral representation for f(r, k) is obtained:

. 0 .
ibre iknt
Fluk) = e + f Alr,w)e™" de!
Mt
(123)
where A(r,r') is square integrable in r' .
From the linear Fredholm integral equation (the so-called

Marchenko's equation):

(27)

(28)

(29)



(/]
Al i) = Flk+xr) + f/; At P) F(P+i) dP K< k! (30)

" A(r,r') is obtained, and the potential is simply:
V(r) = -2 iA(r,r) (31)
dk
It is also proved that f(k) can be reconstructed from

S(k). Normalizing the phase-shift to be zero at the origin and at

infinity (no bound states) :

K = L1 K
y() zOgS()

the Wiener-Levi theorem shows that

(é) —f V) sinktdt (32)

where Y(t) is absolutely integrable in [0,00]. {(k) is then

obtained through:

(k) = exp \E, mz’(é)eiétdf (33)

Before examining Gelfand-Levitan's and Krein's formalisms

let us state the following result:

" A necessary and sufficient condition for V(r) = 0

for r > R is that:

F(t) = 0 for t>2R (34)




which follows immediately from the inequalities (27) and (28).

. ii) Gelfand and Levitan
Starting with the weight function W(k), satisfying
1. W(k) > 0 W(-k) = W(k)
400

2. wky = 1 + H(t)exp[ikt] dt where H(t) is absolu-
¢

tely integrable in [-¢0, + 0 ]

they construct the funtion :

0
$ (r, Y =_fa_r_f sinkr sinkr' [W(k) - 1] dk (3%)
o

’ and solving the linear Fredholm integral equation [Gelfand-Levitan's

equation] :

] 4
] K(r,r') = -Jl(r,r") -f K(r, P). 2P, ") d4f r'< r (36)
O

; they obtain the potential:

é V(r) = 24d K(r, r) (37)
dric

f(k) can be reconstructed from W(k) in the same way

as from S(k).




iii) Krein's approach
from the Gelfand-Levitan analysis it is clear that

206,r) = H-nt) - Hesn)

where:

Ht) = L £ ? [wee)-1 ] coskl-dk.

Looking for solutions of the Gelfand-Levitan equation under the

; form:
| Kouw) = [y (e-rw) - [ Ciine)
one obtains for ’;,k (t) the equation (Krein's equation) :

Gult) + HEE) + [ BGIHG-Bs =0 -

which of course is equivalent to the Gelfand-Levitan equation.

3.2 One-Dimensional Case

We would like first to give some results concerning
the solutions of Equation (2), where, unless otherwise stated,
V(x) is assumed to be real, bounded, piecewise continuous and

absolutely integrable in [ - 00, + 00 ].

2
3.2.1 Spectrum of the Operator L = - .j__.. ~+ V(x)
22

For the classes of potentials assumed here, L has a

spectral representation with a spectrum composed of a discrete

and a continuous part. The eigenfunctions corresponding to values
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of k in the discrete spectrum are usually called 'proper eigen-
functions'" , whereas the "improper eigenfunctions' correspond
to values of k in. the continuum, The proper eigenfunctions are
those solutions of equation (2) which are square-integrable in
the real line. These solutions must vanish exponentially at

infinity, From their asymptotic forms:

Wby~ A e 4 B,

ibz

-ikz
e

iz

+ B_e’ X —» -0

z—» + 00 (39)

“V[’l/k) v Ae

(40)
it follows that k must be complex [complex values of k shall
be alternatively designated hereafter by p = 6 +t& ] with

b% 0. On the other hand, the eigenvalues are p2 , and

these must be real since L is Hermitian - therefore @ = 0
and the discrete spectrum is composed of points p = id on

the imaginary axis, for which the eigenvalues of L are negative

numbers,
We recall our previous assumption that the potentials
considered in this thesis do not support bound states - there

exists no negative number E such that the equation Lu = Eu
has a square-integrable solution.
It might be of some interest to mention here a proper-

"ty of the spectrum of L which is particular to the one-dimensional




(125)
range , i.e., for x € [ =00, +00 ], and does not hold

in more than one dimensional. Suppose V(x) £ 0 everywhere

except for an interval (a,b) in which it assumes only non-positi-
ve values ; then, for any (a,b) and whatever non-positive values
V(x) assumes in (a,b), L has at least one discrete eigenvalue -
"there is a bound state for any attractive potential, no matter how

(9

weak" . It can also be proved that of all pctentials V(x) with

|
3
i
i
i
if
i
{
H

the same value of

J_;:ooV/z)o’z

the S-function potential :

+o0
Kax) = Xﬁ-k).fao Vidu!

has the lowest energy (in units TH =2m = 1)
t00 Z
E¢ = - (f.oo V(z)a’x)
If in addition to V(x) € Ll we assume that
ZV(ix) € L' and also that k = 0 is not in the discrete spectrum,

(126)

then it can be shown that L has only a finite number of eigenvalues

3.2.2 The Scattering Matrix

In the asymptotic forms (39) and (40) the coefficients

A, and Bg are independent of x but may depend on k.

We have assumed throughout this thesis a time factor
exp[-i@wt] where W=kv and v is the velocity of the wave

front in the medium of propagation - the potential only causes

dispersion, leaving unaltered the value of v.




The asymptotic forms (39) and (40) are linear combinations of
factors which can be physically interpreted as simple progressive
waves moving to +# orto - o0 in the region where V(x)
vanishes, A 'left (to —¢0 ) moving wave' is then proportional
to exp[-ikx] and a 'right (to +¢0 ) moving wave' is proportio-
nal to exp[ikx].

It is of interest to consider as an ''outgoing wave' a
wave moving away from the scattering potential - it can be either
a left moving wave at —@0 or a right moving wave at +e9 |,
Accordingly, an '"incoming wave'' can be defined as a right moving
wave at —¢9 or as a left moving wave at +o0o |

The set of incoming waves can be considered as a two-
dimensional vector space .Q‘: in which each vector A‘; is a
cé‘lumn where the upper component is the complex amplitude of the

H

right moving wave and the lower component is the complex amplitude

- of the left movingnwave. In a similar way, the set of all outgoing

waves form a vector space .:Qo of vectors Ao .

It is easy to show that there is a linear relation between
Ao and A,; . One way to do so is to use the properties of
(126)
the Wronskian of two solutions of Eq. (2). Let us briefly

recall the definition of the Wronskian, which we shall use on seve-

ral occasions:

?2% - %1%

2x

:‘W'{ Qab) ; CPza.Io}

(41)




R T TR R T I T ST PRI NE R Tt W R N R ARSI T TR R T gs S T T PO

here, the important property of W is that if (ﬁ and <g are solu-

tions of Eq.(2), then:

7 . = (42)
Z W39 %}t = o

Using the asymptotic forms of an arbitrary pair of solu-
tions of Eq. (2), we write:
W(=00) = W(+o00)

and we find that there exists a two by two matrix S, such that:
A, = SA; (43)

S is called the scattering matrix. It transforms each vector in the
vector space of incoming waves into the corresponding vector in the
vector space of outgoing waves,

It is important to realize that S is independent of the
particular solutions used to equate the values of the Wronskian at
infinity - it is the same for all solutions of Eq. (2), depending
uniquely upon V(x).

Let us then find the elements of S by considering two

N
particular solutions X (x,k) and J(x, k) defined by their

asymptotic forms;:




R P ———r—— O T - T AP TR R . T o = W e e g

ikz -k

e + 6[k) g “x Z -+ - 00
Z k) .

’ "‘ { i‘(k)@"éz' Z—> + 00
A k) - @(k)e‘ikz X ~+ - 00
Al gkt 4 fyeke  aeim

These solutions are physically described as sketched below:
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Zluk)
okt
— F —— Hpeit
blkreE -—
vix)
> x
Z(uk)
ok
@(/E)e‘&’" o
» blk)e**
Viz)




b(k)
t(k)
B(k)

k)

matrix;:

reflection coefficient '"'from the left"

This interpretation suggests the nomenclature;

transmission coefficient '"from the left",

reflection coefficient ''from the right'",

transmission coefficient ''from the right',

Using these solutions in the definition of the scattering

it follows from these relations that :

)

0)

S

%)

(k)
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Since V(x) is real, and Eq.(2) involves only kz , it follows that,
for real values of k, if u(x, k) is a solution, u(x, -k) is also a
solution, and we must have:
u(x, -k) = u*( x, k) (45)

we deduce from this property that:
S(-k) = S'(k) (46)

Using again the Wronskian of two solutions of Eq.(2), now
chosen as u(x, k) and u(x, -k) , it can be easily shown that, for

real values of k;

reciprocity law '{:(k) = Z\Cé) (47)
energy conservation law /- lb(k)lz = l" ,Z\[k)ll = H:[A)Iz (48)

phase law bCR) E(R) + Z\(k) ttk) =0 (49)

which express that , for real values of k, S is a unitary matrix.
We shall be interested in the analytic continuation of
the quantities involved in our problem from real values of k to the
complex plane p = (+(C . Schwartz's reflection principle
shows, in conjonction with (45), that in any region connected with

the real axis (region of analyticity, of course) :

b-p ) = b(p) (£0)
B-pT) = Bip (51)
t-p*) = t¥(p) (52)
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N
3,2.3 Analytic Properties of S - Solutions Cp and CP

If the discrete spectrum of L is empty and V(x)
decreases sufficiently fast at infinity (in any case, our interest
lies on finite range potentials, so we shall not precise this point

(110)
further), it can be proved that the elements of S are regular

in the upper half-plane Imp>0 and are continuous down to the

i real axis. In this region they have the asymptotic restrictions, for

| targe |l
bp) = O ] (53)
By = of 77 (-4)
) = 1 4 ol gy ] (55)
(18)
A theorem due to M. H, Stone considerably

clarifies these statements. It is curious to remark that his impor-
tant analysis, although published 40 years ago, seems to have pas-
sed unnoticed in this field. Stone shows that if V(x) is absolutely
integrable, then Eq.(2) has two linearly independent solutions
AN
C-P(x, p) and (P(x, p) which, as functions of p, are analytic

in the upper lLalf-plane Imp >0 and continuous in Imp =0,

except possibly at p= 0, having the asymptotic forms:
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Plap) = e-if”‘ | + map) | "(a())
P [ 1+ mp ]

Peap) = T [1+ Blap ] (57

where the m's are uniformly bounded , — 00 < x < 400 ,
Imp 2 0, for large values of ,p'
In addition, he proves that if there is a positive number

H such that:

od
f e.‘ZHI%’ V&) dx < oo (5.8)

I
A
then <P(x, p) and <P(x, p) are regular in the half-plane
Imp > -H , except possibly for p = 0.

This theorem is proved using the following integral equa-
A

tions for (‘P and (P

Plak) = e"‘é‘z' + \[‘:ﬂ%?i)_ V) Pratk) ! (59)
Gak) = o - [ siker Ver bk 0



For finite range potentials such as we are considering, condition

(58) is satisfied for any positive number H . Consequently, we
A

infer from Stone's theorem that (P and C)O are regular functions

of p in the entire p-plane, except possibly for p = 0.

Let us complete our knowledge of the asymptotic beha-
A
viour of CP and (‘P ; we already know that :

Pl p) g P* Z— -0
&@lf’) n elfz L—+ +0

%(x, k) and X, (x, -k) constitutes a fundamental set for Eq.(2).

A
Consequently, CP (x, k) can be expressed as:

Pak) = By Xuk) + L) 200-4)
when x —» +OO , we have:

e = Pl)th)e** 4 Lh)e ik

it follows that :

7 .k = %&lk)
Puk) tk)

(61)

(62)

(63)

(64)




and, from the asymptotic form of %(x, k) for x =+ - 00 :

ekt | 41) etk
k)

A —~—» - 00 (65)

Pluk) o

Similarly:
A
Pluk) = Xk) (66)
tlk)
hence:

Plak) n eibx : (:)&) i Z—> + 00 (67)

From Stone's theorem and the asymptotic form (67) it

follows that for any potential which decreases faster than any expo-

nential at infinity :

-—’-— and 6[1 ) are regular fiiactions of p in the

entire complex p-plane, excep! possibly at the origin.

The following results shall be useful latcr:

(118)
i) it can be proved that if Ib(O)

=1, then

N
b(0)= b(0) = -1 , and obviously t(0)= 0.

A
ii) the Wronskian of CP and P s easily obtained:

A H3




(126)

if xV(x) is absolutely integrable, Friedrichs proves that
N
CP and CP are continuous in k at the point k = 0, and there-

fore W is continuous at k=0, where it assumes the value
A A
w{ % ; % 1, CPO and C’; being defined by the integral

equations:

N

Pa) = | -L’o(x-z')v&')cga')dz'

x
Ga) = | + [ Gz)VEIBGEH
iii) Friedrichs also proves that all the poles of t (p) are contained

in a circle centered at the origin, with radius 12M, where:

400
M = |V(x)| . dx
0
We shall postpone further consideration on the analytic

properties of the elements of the scattering matrix till we dispose

of the results of the inverse problem,

(69)

(70)

(71)
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3.2.4 A General Integral Representation for the Solutions of Eq.(2)

In this section our endeavour is to obtain an integral
representation for the solutions of Eq. (2). Such a representation
shall be of paramount importance in the solution of the inverse pro-
blem, since it is through its kernel that the potential is obtained.

It is of some interest to conserve as much generality
as possible and compatible with simplicity, in order to be able to
take advantage of it in further applications,

Consistently with these remarks, let us make the

Ansatz:

b&)
Pak) = Yak) + A&y)‘#@,é)qéq (72)

a)

where:
Ly [¢] = 4P 1 kP -V 9 =0 7
zl

and q/(x, k) is left arbitrary for the moment. a(x) and b(x) are
such that a(x) < b(x) for all x.

Applying the operator L}Y to boih sides of Eq. (72)

: bla)
Ly [#&R)] = Ly [Y¥ah] + 4 [“nwdy

+ [bveo] [ @ Ay

at) (74)

at)

[
\

E
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Straightforward computation gives:

6
j",f: a(:%[z,])%,k)dy = YA, [ab@I¥[bt),k] - a'GiN, [x.at0] ¥ [atak ]
+ b'@)A [2,8@) ] ¥ [b),k] + [A'(z)J‘A; [2,660]19 b6,k ] + 8GN bV [bGIk]

+ [B@IAS@]IV'[ba),k] - a't)A [nat ]V [ato,k] - @), [z,a&)JW[@,/g] 3

- [0@]°N (rat ]V [at k] - [0 A [nag)] V' [ato k] + j;jf”/\u (ag) ¥k dly

where:

Ay (1y) = %A(xy)

@ [at,k] = {gy—q’@b} o
y=al,

Substituting this expression into (74), it follows:

L [960)] = LY (9G] 4. dy G LY (AT

+ {Z,&'[z)/\z,[z,lﬁ) ] + UE)A Ludto] + Lol Ay [xb)] b b, k]
+ [Fa]*Alzb@] ¢ [beok]

T { 2@ A, (natn] + a"G) Alza@] + o.'&)/y [x,a60] } Y [at0),k ]

- [a'(x)JZA [z.a60] V' [aG), k ]
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Now let us focus our attention upon the term:

[ w "{ﬂ (//(l/,k)Z; [Aay)] (75)

an)

Assume that we can find an operator My such that A (x,vy)

satisfies the partial differential equation:

Ly [Aap] = M] (Aay] (76)

and let us make the further Ansatz that:

My = L Freow "

where Va(y) is an auxiliary potentiél left arbitrary for the

moment, A (x,y) satisfies the equation:
| w2 va) -y | N 78
ol o [() 2!y J (78)

From Lagrange's identity, it follows that:

(79)

WL [N ] - Aag) i L¥Gh] = g PLAY]




where P[/\, (P] is the usual bilinear concomittant. On the

other hand, Ly\a' is obviously self-adjoint, therefore:

Vg (3 +4A-g | - Mag)] W kY-uv'}

= WM AR - _92 ¥ _wu
E T 7:/51/\‘{9 w%y-}

Hence the kilinear concomittant is computed:

)

We are ready now to compute the term (75) :
b) btx) b)
L 4oL hag] = [ G vglMI0ap] = L, iy L]

e % ba)
L ?J_U_p[mcmy = Ly e Logh] + § PLAOI T \
Let us select (P(x, k) such that : LVa [ q/(y, k) 1=0 (80)

Yy

Then, using the following expression for the bilinear concomittant:

F[A.Q/J}“" - N A TVIOR] - ALk T4,k ]

- /1!/ [x,06) ]V [at,k] + Alnat)] V' [a)k ]
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we obtain;

Lz [(Yak)] = L, [Yak)] + 5[4'(1)1‘-:} A b@) ' [sGk ]
- § [w@l1 ¥ A [uatw] ¥'[a@ik ] |
+ $ 2y [ b] + )N Dnbtod + (L@ 1 ) Ay [ubd] § @bk ]
- § 2060 Ay [1at] 4 A Tato] + (Waal41 )y [ra] § Plao,k ]
and finally, since
Ly [Yak)] = [ha)-Ve) ] Wak)
LY [9ak)] = O

we obtain dur condition, which must hold for all x and k :

[ V@) -VE) 1VGk) + b6l 1} ALu i) ] Y [bak ]
- Sl@)*-1 } Aluaw] V'[atik ]
+ { N [ab@)] + '@, [ 6] + ( [b]*+ :) Ay 2 l&)]} V0bGk ]
- { a'a) A [a] + 3a'e A, [2,00)] + ( [a@]+ l) Ay [mﬁ))} & [ayk]

= O

(81)




N
3.2.5 Kernels K(x,y) and K(x,y)

Let us particularize the results in the preceding section
N

in order to obtain our previously defined solutions CP and C-P

i) Kernel K(x,y) . Obtained in the special case where:

Y
W) =0

Yhk)= &
a@l) = - o0
b) = z

we shall define K(x,y) = 0 in the patched region (y > x).
identity (81) is satisfied by requiring:

25_‘0 Aaz) = V)

A(a,-0) =0
Ay[zi“o) = Q

The theory of partial differential equations shows that

there exists a solution to the characteristic problem:

Nk _ 2K - v K (82)
Pz A 7y2

2%}6&,1) = V@) (83)

K(zl "40) O
@(zl"w) = 0

(84)




Ky("' -») =0 (8%)

This kernel K(x, y) produces the previously defined

solution <P(x, k) :

Pak) = e'Zéz+ fz/((z&u)e'l@agﬁ (86)

-

A
ii) Kernel K(x,y). Obtained in the special case where:

W)= 0 K
Vak)= ek .,
aix) = z
bR) = +00

i ' A\
} similarly, defining K(x,y) to be zero in the patched region (y <x),
N

the characteristic problem giving K(x,y) is:

A A
NK _ 2K - vk (87)
5 AL ‘)yu
d A
22—2-: K@azr) = - V@) (88)

Ig[z, w) =0




N
K,(z,»0) = O (90)

A
and K(x,y) defines then the solution:

Puk) = e &Wé\(zy)ez@og{, (91)

A
3.2.6 Completeness Relations for ®P ana <P

(110) ==
It can be shown that Eq. (2) has the solutions;

A0 4 fk] 22
f 8—/// z|

‘//7_- k) = eih "y /;-’Z'_t_ V(l')‘/é(lt/:)a’t' (92)

lk] o0

these solutions have the well-known completeness relations (we are

always assuming an empty discrete spectrum) :

[ Gk~ 28

0
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Comparing the respective integral equations, we infer the following

relations:
Y Gk) = LR Pak) (o)
k> O .
(/,/L[Iué) = tk)Pa k) (95)
| W Gk) = tR)PG4) (96)
| k<O
Y, @k) = Lk )P, k) (97)

and the hermiticity law:

C/{_l__(z.-é) = L/’;&.é) (98)

Using the completeness relation (93) for, say (&(x, k) :

[:S,V;”(mﬁ)%(zc/:)o% +f "% k)Y ik = omSG1)

from (97) and (95), it follows :

nSan) = [o ULIDPaAIER PGk + 4 ULl

A
and expressing (f(x, k) in terms of (lo(x, k) and ?(x, -k) , we

obtain the completeness relation fp'r CP (x, k) :




84,

$00 400
mar) = [ Pak)PE -kl + [ b0k ik e (99)

N
proceeding in a similar way, we obtain for <P(x, k) :

+00 A f-oo/\ A A
arsaz) = S, Cak)Pa-k)ok + S, SR)PaR PRI (100)
3.2.7 The Inverse One-Dimensional Algorithm

| ‘ In what follows, we shall borrow heavily from

(118)
Faddeyev . Let us first recall the relations between the

A
solutions (f and CP : ‘

tBIRk) = Pla-4)+ LB P k) (1o1)

b Pab) = Pa,-k)+bk)Pak) (102)

and their integral representations:

Yak) = e""é" +\/;: K&'ﬁe-é@"(ﬂ
A _ ‘ o0 A .
Pak) = ¢** + fz K&y)e‘@a{ﬂ
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(127)
B, Levin proves that if V(x) satisfies:

\Z':ao(/*/zl)/VﬁJlalx < o0 (103)

then:

_a'oé.[oozo{g //c(av.f,)/‘Z SNy a < oo (104)

‘[a’:\wdz‘é’w‘{y ///C\&fy)/z s 6;{\ 2)-00 (10%)

Our aim is to take the Fourier transformiation of equations (101)

and (102) and to express the new equations thus obtained in terms
N N

of K, K and the Fourier transforms of b, b andt. Consequently,

let us introduce the Fourier transforms:

Rt) = 7’”— _o:méfé)e’i‘éé/é (106)

éﬂ) = —Z’T_ff é)eﬂJA (107)

r’[é) --f [f(é) IJ@ "éé- (108)



86.

(127) A
It can be proved that R(t), R(t) and r'(t) are quadratically

integrable functions of t over the entire axis and, since we are assu-

ming no bound states,

Mityz 0 for t<O (109)
[ t(p) is regular on the upper half plane, and there (55) holds ].
From the convolution theorem for Fourier transforms,
it follows from these considerations that equations (101) and (102)

are equivalent to the equations:

o0
M/((z,a)/%y)‘/z + Klauy)+ /’{z-y) = /: 0: /?(z,z)é\{yfz)a’a # /?(zy) + 'é\[z{y) (110)

—00

+00

f:o/?[i. $)'G-3)d2 + »é\(z,y) +y2) = L o K@)RG2)d3 + Keay) + RGg) U110

Now, from (109) we obtain Gelfand-Levitan-Kay-Moses' equations:

it
i
i
'5_
%
!

f z

Ktug) + Raty) +[:° RYyr)K)de =0  y<x (112)
Keg)+ R +f) Rpa)kGarde =0 y4>= (13)
: It is also proved (118) that R(t) andll;(t) can be diffe-

rentiated once and, from (103) :




Lo(w)1R@ld < G 45

Lo(H#0) [R@IE < ¢, 4 c oo

We shall prove in the next section that necessary and

sufficient conditions for V(x) £ 0 for x< 0 and x >S are:
R(t) =0 for t=<0
N\
R(t) = 0 for t > 2§
(118)
Combining this result with Faddeyev's , it

follows that , in order that the symmetric unitary matrix S(k)

be the S-matrix of the operator:

dt
L = -‘-ET-I-V[’-)

such that V(x) has the finite range (o, bY ], it is necessary and
N
sufficient that b(k), b(k) and t(k) be such that:
i) for all real k: (except possibly k = 0)
N
|bk)] <1 and lb(k)\<1
N A

if Ib(O)‘-l, or lb(O)l =1, then b(0)=b(0)= -1

ii)  (53), (54) and (55) hold

iii) S is regular in the upper half-plane

(114)

(115)

(116)

(117)

(118)

(119)
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iv) band D are such that (116) and (117) hold.

The potential V(x) is then determined uniquely. One
] can use either equation ( 112) or (113), depending on the given

scattered data, together with the conditions

: V(ix) £ 2 %l-iK(X. x) (120)

! 5

* vix) = -2 d_K(x, x) (121)
%

3.2.8 Conditions for finite range potentials using the algorithm

1. A necessary and sufficient condition for K(x,y) = 0 for

} x <0 isthat R(x) 2 0 for x< 0. Similarly, a neces-

sary and sufficient condition for K(x,y) 2 0 for x> S' is

that R(x) =0 for x> 29

Necessity: Eq.(112) shows that R(x 4 y) = 0. Since y<x < 0
x4y <2x < 0, therefore R(x)=0 for x<0.
Sufficiency: when x< 0 and y < x, x4y < 0. Eq.(112)

becomes

z
Kéy) +J L ’yr2) K@z)dzs = O

since z £ x, y < x, itfollowsthat y4+z< 0,

hence the only remaining term is K(x,y) = 0

y the procedure is the same for K(x,y). v

P g T b e h e e et e e e e s T e . I
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N .
K(x,y) = 0 for x<0 and K(x,y)=0 for x>8 are obviously
sufficient conditions for V(x) to have a finite range [0, 5 ]. Let
us show that they are also necessary.

Since for x<0 V(x)= 0, Eq.(86) becomes:
z ik |
-t
,f kKay)e 501 = (122)
_o Kuy) iy = O

similarly, for x>$ , Eq.(91) becomes:
foo /?@ )3.‘@0/ = O 123
2 Yy y = (123)

Equations (112) and (113) can be written under the form:

o

i

Keug) + £lry) 4 [ K)o f; " G g
Rag)+ R+l [0 Rliase ) e kg3l = O

and interchanging the order of integration, it follows:

Ktug) +Révy)+3'FJ'_: wééé)c'i%é[ : K&;e)e"‘é';a/é =0 (24

I/C\(Z:f) + é\&fy) +-2—’ﬁ-[pomz\&)€‘@a’é ‘4'00/?(2;3)8&20/3 =0 (125

using (122) and (123), we obtain:




90.

K@Ly) = -Raty) 2<O (126)

I/C\fll:y) £ —Q&ty) 2>4 (127)

Therefore, making x=y:

Kaz) = -Ri2x) = —_ZITr_f;N‘&)e‘Z&xJé 2<O (128)

Ran)= -RlEx) = -1 f’wZ‘&)ee"‘é"dL z>§ (129
. 2mV_p

Since V(x) £ 0 in this range of values of x, we must have, according

to (120) and (121) :

]
o

R'(2x) x<0

A
R'(2x) = 0 x> 2§

Hence R(x) and ﬁ(x) must be equal to constants in this range.

A
Now, since b(k) and b(k) are absolutely integrable, the Riemann-

Lebesgue theorem show that these constants must be equal to zero,
which proves our assertion that K(x,y)= 0 for x< 0 and
| N

K(x,y) 2 0 for x>S‘ are not only sufficient, but also

necessary conditions for V(x) to have the finite range [0, S 1.




We have proved the theorem:
A necessary and sufficient condition for V(x)= 0 outside the

finite interval [0, 9 1 is that

f_;'oé&)e'dz'a/é = QO <O (130)

[;’o?&)e"é”c/é =0 x>28 (131)

the first relation ensuring cut-off for x < 0, the second for x >S‘ .

Using the phase-law (49) we can bring conditica (131)

to the form:

i "—Co Méﬁ%gé)_ e'z‘é"a’é =0 z>25 (132)

However, we are unable to impose a cutoff ""on the right'" by the

sole use of the reflection coefficient on the left explicitly.

2. A necessary and "heuristically sufficient" (this shall be
explained later) condition for V(x) to have the finite range

[o, S‘ ] is that:

f“aké_(él e-.‘éza/é,

(133)
), "t x¢ [05]

]
Q




92
Assume V(x)= 0 for x ¢ [o, S ]. From (6%) and (67)
it follows that:
-tk A '
C‘P@cé) = e Z&é)(k)e‘é” <O (134)
A 6‘.‘%1" 5&)6-2éz |
Plak) = £0h) z > § (139)

Using the integral representations (86) and (91):

by Qe ke, (* il
€4 € = @ “ s
) = ¢**+ [ Kayle S dy

e'iéz.;?&(f)e-.‘él = 8“1*4‘0//{\[zy)3‘%09

Let us first focus our attention on x < 0, using K(x, y) :
-ikz , ) c'éz.
L kixg)e ‘q# [ - - Je+ e

from the phase law and Eq. (124) it follows that:

- -ikaayy e e ik
o Kaghsgp ([T % o [ e o)

or.

40 Y 2 ¢é[
0 = Kay)+ S gze fz%/é foo L(%L P

Make x =y and differentiate with respect to x:

- ) -t -;ooéééé_)_e“&'éza/é
@ 3;/(&1) v‘/; )

o ¥



Since V(x)2 0 for x< 0, using (120) we are left with;

\[_';wk-ﬁ-_%—))- Q"‘ézo% =0 <O

and the necessity is proved for cutoff 'on the left'. Let us

undertake the same procedure for the other side x >$ , using

A
K(x,y); using (91) we get:

L mwe‘@{y ( 1] P if(ge"é"

from (125) it follows that:
0 = Rag)+ 4Tk + 1 [tk [ ¢ e

27 V-0

or.

 ‘ =- té&*) (é(l)
l ) = Kﬁﬂ)*zrr[,,o i%e Yk + L _%je 40y

< g

and différentiating with respect to x:

o/ K[z,z)-f___‘[:’ok%eﬁzdé

lr making x=y

0

V(x) 20 for x> S. , it follows from (121) :

L6 08 gdk <0 2225

and since

now using the phase law this expression is brought to the form

I ki% e =0 x>0
“o0




and the necessity is proved for a cutoff "on the right,
We see that the great advantage of formulating our

conditions through b/t is that we are able to express the

condition for cutoff on both sides using b/t alone. Such

was not possible with the reflection coefficients - the rcason .
for this possibility comes from the unitarity of the S-matrix
which, through the phase law enables tc cxpress b/t in terms

A
of its analogue on the right b/t.

We have been led to the conclusion that the function
. il -2
C(x) = gé_f U_@e ok, (136)
T - k)
plays an important role in the formulation of our finite range

potentials problem :

A necessary condition for V(x) to have finite range [0, S ]

is that the function C(x) have same f[inite range. .

It is important to realize that this is an exceedingly strong condition,
what suggests that it might be a sufficient condition as well. Let us
make this possibility at least heuristically plausible through the fol-

lowing considerations:
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We shall prove in the next section that

k%@ = 'é— [a:oae"éz‘l/&')%/’\ﬁté)cfx' (137)

S~

hence, using the definition of C(x) :

Clx) = ——r'?f,: " [;?"‘“' Vi) P b)dle

N
Substituting (f(x‘, k) by its integral representation (91) :

400 . O 9kt . A y
Ct) = L LM § L€ e+ Lo v S e B |

and interchanging the order of integration:

z
cx = V@) + ZJ_:O Ve ki, b2 dr! (138) _

" Proceeding analogously for cP(x, k) with (86)

I
c = V) + 2 VEIKG 22addy (139)
1
A
Assuming that C(x) and K(x,y) are given functions,
(127)
Eq. (138) is a Volterra equation for V(x). It is well-known
A .

that if the kernel K(x,y) is bounded, such equations have no eigen-

values and their solution is unique. Let us make the Ansatz that

o

.

A
K is indeed bounded. Therefore, if C(x) =0 in a certain inter-

val (a, b), the equation has the trivial solution V(x)= 0 in this




interval - from the uniqueness theorem we infer that this is the
only possible solution in (a, b), and the sufficiency of condition
(133) is made somewhat plausible, We arc well aware of the
"hand-waving" character of this argument, specially because

we did not ascertain whether condition (133) ensures a bounded
kernel. As an example of what happens if the kernel is unbounded
consider:

et

K[zy S T oshx

in this case, equation:
Y
0 = V&) + 24’ K (%', 8z-21) Véa)dx!

is satisfied not only for V=0, but also by:

V) = - —%2

cosh?x
(this is one of the ''reflectionless'' potentials derived by I, Kay
(115)
and H, E, Moses - it follows from the conditions of uni-
queness of the inverse problem that all these non ~-trivial potentials
necessarily support bound states).

Let us end by referring to chapter V, where a more

convincent argument for the sufficiency of (133) is given.




A
3.2.9 Scattering Matrix in terms of (‘f and (f)

In this section we shall obtain expressions for b,

A - A
b, t and b/t in terms of the functions ¥ and ¢

From the integral equation (59), which can be expres-

sed under the form:

Gak) = e8| - e L ahe |+ e [l

and the asymptotic expression (65), we infer:

/I _ _ too ikt ,
5 / ZZTE[‘,Q e V) laik)dr

i

) £73 fo:we R Y ) Pk

from these expressions, we obtain :

+ 00
z;k I -‘éz (Z') ‘Pﬁ,é)o/z' (140)
L e vk

be) =

|
| = 5 e vy ko

tlk) =

(141)




N

Proceeding similarly with (P , Wwe obtain successively:

74

bluk) = €431~ gp e virhine} + ep (b v b

C(I%z.k) o e 4 (k) ot
k)

| J - — 1 Feo '&"U ! 2 / ¢
| o5 ° | - 5% [ﬂ e ® v Pak)dx

l comparing this last expression with (141) it follows:

o . A o9 .
‘[o: eﬂtéz'V@')g%tfé)c/Z‘ = [; Q‘éz'l/ﬁ’)cfﬁié)alz' (142)
and:
- _\1
40 . ;
T

using the phase law and comparing this expression with the analogcus

obtained with

.[: Z’Mz'l/&')(?&,’-é)dz' =J ;oz’ié"'V&')fP[zcé)&/ (144)
also;

too "
w . e v P )

- o L e va Baibd
o

o) =

(145)

“/




These relations should be helpful in further study of the analytic
properties of the scattering matrix. First we necd to know more

A
about the solutions (‘P and <P

A
2.3.10 Analytic Properties of <70 and ?

In this section we shall take advantage of a method
(89)
used by N, Levinson (in connection with the radial equa-

N
tion) in order to study the properties of the solutions ‘-{’ and @

as analytic functions of the complex variable p .
B Bhas In order to study the properties of (P from its
integral equation (59) it is convenient to define the sequence
%(Pn,} through the relations: -

‘:’,’Jx./) P ‘&zﬁ@/’;""’) V) %, (z:/»)a/z' (146)

Cﬁ,&:/?) =0 | (147)

we shall assume 0 < x ¥ J\ , since V(x) has this finite range.

hence:

%6‘1/) = e-zft+‘£zg_nf_’[,l’_zf_)_ Vﬁ')‘ﬁ"(z:/)alz: (148)




oo. K

We have:

|‘P(bf) %ﬁ'f)’ [eP*| = (149)
and :
[ Gap)-%tp| < foz lﬁtffﬁ'ﬂl WVanl 194, | da!

x .
s [ |58 | el et s (1%0)
o P

It can be easily shown that:

< |v]e (151)

therefore:

5'"1/7[1-1') \ < (%-Z') elél (x-z)

i 1
since X s X

1. Let us assume Im p20. In this case:

&)

smf[z-z') < (ew)e

Hence:

Y A
| Glup)-Renp )| < f; | ¥ Garet @y = &% [ cnolven)




Since V(x) is piecewise continuous in [0, § ], we assume:

Vix)| § M
therefore:
b r* " ¢z,
G-9|s Me fo (xx)oe = Me _2&'_
* -2 ol
%-(Pz < ‘fo(’l-’z‘)e x- M-x_..l ebZ'MJz' = ﬂfeé%f z‘l(z_z')le
2! 2! o '
= _'_4_'.' edx' %q = Mzeéz_zi
2! 7.3 : !
similarly:

on-2
R (V') %%

T &= —
M (n-2)! (en-2)!

| %%

Notice that for all finite x [a fortiori for 0 € x € bY ], the term:

2n-2

(‘VW Z.) - O when n —» ©O
(2n-2)!

therefore {%} converges to a function which is analytic on
the upper half-plane and continuous down to the real axis. It is
obvious from the construction of {‘ﬂ.} that this function is (P . s

I.et us make an estimate on

(P['lnf)l , by considering:




s €3, TR G
41 2!

when n —e 00 the right hand side of this inequality represents

the infinite series expansion of cosh -"M'.x , consequently:

¢z osxs§

2. Let us examine now the lower half-plane behaviour ( Im p < 0).

In this case, we shall use:

: -da-x
smp(x-2') | < (z-21) € (-

I?

hence:

| lap)-%6p) | < L vl e e

1]

) % -
< Mot [Canet@h = Mo gtV



=N

N —

Now, we have:

jo-xfe'zéﬁolﬁ = 'Z/'%Z'{ [ —[I+2éx)e"2é"}

-20% - -
1§ 1-2ze -e“z} s -z g ¥*
3 28
hence, we get a bound for the first difference
- M -l
- < —_—
[4-%| s ~H e

and therefore:

nx ~éa-) /. “éa)
%-%| = M awe @M )xe T

U%-%| < Mf(zz')e““)( )z'3 e e

Z
»fo (75-1’)1'3 de! = %3

am—

5!

i
\
l

in general:

2n-3
(ﬁ_(&-‘\ < __-V""‘l e-éz. (_I[—Ix)
28 (2n-3)!

I
1
X
W
ml
S
]
]
D



Since the right hand side term tends to zero when n-»00 , we
infer that i (Pn} tends to an analytic function which, by
construction of the sequence satisfies the integral_cquation and
therefore is (P . We obtain the following estimate for

ICPI using the same method of summation of the bounding series:

|q>z,/;) < - e'n [/+s’m/v.1/ﬁ'x (155)
28

b

gsxs

ImID=r}<O

) IR Of course we can proceed in the same manner to obtain analogous
A
results for CP . However, since our objective in this analysis

is the study of the analytical propertics of the scattering matrix, - .

the relations (142) and (144) dispense with this procedure.

' N
3.2.11 Integral Representations for K and K

In this section we shall merely use the Gelfand -Levitan
A

equations together with the integral representations of CP and %

in order to obtain the immediate result:

_ te iy ),
K[my)- -“_2!77—‘):0 bk) P k)e ®Y b (156)




and:

Clay) = ~A S Bk) Pakre®a
Y =TI, !

These results should be helpful in connection with the sufficiency
of condition (133), using the bounds derived for the solutions
n

4
\P and SD together with the represcntation of the scat-

tering matrix in terms of these solutions.

(157)




CHAPTER 1V

APPLICATION TO ELECTROMAGNETIC PROBLFMS

We shall list here some examples of ¢lectromagne-
tic problems which can be mapped into the inverse scattering
problem. This list is by no mcans exhaustive and we give it
here with the hope that it will suggest some idcas for a more
systematic search of possible mappings.

In what follows we shall borrow hcavily from

(117)
H. E. Moses

4.1 Cold Collisionless Plasmas

Let us consider the reflection and transmission ol a
plane pulse of electromagnetic radiation, propagating along a
direction z, by an isotropic plasma which is not necessarily
homogeneous in the direction z.. Let us consider lincar pola-
rization of the electric field E(z,t) in the direction x, and

focus our attention on steady-state solutions:
Ele.t) = Freye ™"

The differential equation satisfied by the transverse component

E(z, &) is:

JE 4 é;nz(z,w)g = O

a2t

(158)
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For a cold collisionless plasma, we have:

Wew) = | — A Nf.;)

where N(z) is the electron density, Substituting this in (158):

JZE iz—j{”el Z =O

It is easily seen that, by defining a scattering potential (velocity-

" independent) : '
2 .
Vz) = 4met N@)
mc*
we have exactly a one-dimensional Schrodinger problem - all onc

has to do is to transcribe its results to this case,

4.2 Scattering by a dielectric slab

We shall consider here dielectric media characterized
by the electrical properties : dielectric "constant" 6 = 6&)
magnetic permeability /,L =/uo and zero conductivity.
Two cases are of interest: the angle of incidence is variable and
the frequency fixed, or the frequency varies at normal incidence.
The later case is identical with the transmission line prol.)lem
:which shall be sketched in the next section ; accordingly:,\ye

v

shall focus our attention on the former case.

Let us assume g[z) 2/ for x <0 and x >S
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Consider a plane electromagnetic wave of [requency
W, impinging on the slab, the angle of incidence being ¢ and
the plane of incidence is the plane xy.

,‘ From Maxwell's equations :
;i —

v.e&) E =0

| —

V.H =0

VXE’
inl_’

igpoH
-lw, &) E

we obtain, by eliminating H:

V’E + ,uawfé’(z)E' +V [ _38175 ] = O




AI—e,
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Let Ez be the component of the elctric field normal to the

plane of incidence ; Ez satisfies the equation:
2
VE, + ks i) E; = O

where:

ko = Lo
c

nie) = €@ /&

the boundary conditions on E_are:

iko (rcosec+ ysin ) LR e—iéo (K cos -y sin)

D EE = € 2O
e, (R oS 4 (Ysine
+—— E-Z = ! ’ é y )
B is the reflection and T the transmission coefficients. .

Separate variables by defining u(x) :
(Ro SThot
& = ua)e oy

u(x) satisfies the equation;

. ; _
1 Co//;‘t + {k,’wsaz—k, [I-n‘(z)]}u. O

Define:

p= k, cose

V) = k? [1-n2c0] = @ [6,- £’(z)]
| &c*




Notice that for usual materials, fa) > & thus V(x) < 0.
It is well-known that in the one-dimensional case all potentials
which are non-positive support bound states - this property
must be kept in mind in this application,

In order that E satisfy the prescribed boundary

conditions it is necessary and sufficient that we impose on u(x)

the boundary conditions:
ua) = ef*+ Ref* x<O

ur) = Tef* x>5

and we see that our electromagnetic problem has been reduced

to a Schrddinger one-dimensional inverse scattering problem,
Notice that , since o € [0, ], p € [-k,,ko ] s this
shall be no problem however because b(p) is an analytic function
and giving its values in a continuous part éf the region of analytici-

ty will determine its analytic continuation in [-00,+00].

4,3 Transmission Lines

The transmission lines equations for a line with distri-

buted impedances L(z) and C(z) such that L(z) ELO and

C(z) O<g<?¥
C(z) = :
Co 2<O 5>5

110,




are:

AW~ ol T
22

2L _ jwCRV

22

assuming steady-state solutions of frequency /
Eliminating the current I from (160) and (161), we

obtain the wave equation for V:

oV WL, a2V =0
gz T

Define :

We wish to impose the boundary conditions:

z) = 2} Bek) e"éé Z2<O

V&) = T(k)e*: z>5

In order to reduce (162) to a Sturm-Liouville form we use the

(68)
Liouville transformation already used by G, Borg , defining

here:

(160)

(161)

(162)

(163)

(164),
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9(37 = [ Cca) ]'z;—

dx _ [c(z) ]‘%
E

u,yV

It is readily shown that u(x, k) satisfies:

_c%i:. + ki - 7[%)6(. = QO (165)

where;

glx) = 7’— {7;-:22 e

the q(x) thus obtained is indeed independent of frequency.

The new variable x is defined by:

when z varies from O to S\ , x varies from 0 to A , where:
b) L
A= f l'C’(E)] Z g
o G

notice also that q(x) = 0 for x< 0 and x> A




A ncecessary and sufficient condition for V to satisfy the boundary

conditions (163) and (164) is that u satisfies:

uly, k) = ei,éx,_l_ B(é)e"‘éa’— x< O

wk) T&)eu[ﬂme"‘é" 2> A

h

Thus the transmission line problem has been reduced to an equiva-
(117)
lent Schrodinger problem. It is possible to include the more

general transmission line problem where C(z) has different

values for x < 0 and X > A

(167)

(168)
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CHAPTER V

THE PHASE-DELAY SYNTHESIS PROBLEM

In this chapter we shall give a complete solution to the

problem of synthesizing a FINITE RANGE potential producing a

prescribed phase-delay between stcady-state waves 'at the right!
and 'at the left" of the potential.

We shall proceed by setting up an associated radial
problem, and showing that our data is simply related to the scat-
tering function of the associated problem. Agranovich-Marchenko's
theory shall then be used in order to solve the inverse radial pro-

blem to which our phase-delay synthesis has been reduced.

5.1 Statement of the Problem

Consider a finite range potential V(x) such that
Vix)® 0 for x< 0 and x 2 5‘ . We shall assume

V(x) to be real and piecewise continuous.

Define the real functions .Ha[’fi), @[h‘) by:

Xeuk) = AGk)et OCR

(169)

where X(x, k) . was previously defined.




From (45) it follows that .ﬂ« is even and @ is odd,

as functions of k, for real values of k.

Our problem can be stated in two parts:

1. Given

AGE) = ©G.k) - OGk) (170)

(designated hereafter by 'phase-delay lunction'), to find
the corresponding scattering potential having finite range
S ( S is also given).
2. To give necessary and sufficient conditions on a function
of k in order that it be the phase-delay function of some

finite range [0, S ] one-dimensional potential. -

5.2 The Associated Radial Problem

Let us consider the radial equation:

Y, kY-wo¥ =0
dit

in which, for r20, V(r) is the same function previously defined
for x in the range —-oQ , + ©O
Let f(r, k) be the solution of this equation defined by

the boundary condition:

k) = ew‘ k=& (171)




from the value of the Wronskian:

W [Fauk); flu-k)] = 2k

it follows that f(r, k) and f{(r, -k) form a fundamental set of
solutions of equation (1) for k 3 0.
;L/(r, k) is obviously a solution of Eq.(1) for r 2 0.

Consequently it can be expressed in terms of f(r, k) and f(r, -k):

Hlik) = AR Ek) + 4, () F k)

recalling that for r = S‘ :

(k) = Hk) b
it follows immediately from (171) that:
A k) = k)
Az(é) =0

hence:

v
Q

Xl k) = 1R k) K

In this manner we have connected the radial and one-
dimensional problems. Notice that (172) holds irrespective of

the behaviour of V(x) for x < 0, viz.,

k)
tek)

for r = 0 is independent of the values of V(r) for r < 0.

(172)




Of course this was to be expected, as scen by integrating Fq. (1)
"hbackwards" , i.e., from r = f io Lh(_; left.

On the other hand, the conditions imposcd on V(x)
ensure that X and [ are continuous functions of the posi-
tion, with continuous derivatives with respect to the position,
Expressing their continuity at the origin:

LR FOk) = X(Ok) = |+ b(k)

m

LWL 0 k)

n

Z'0k) = ik[1-b)]

[using the expression for Z’[z,é) when x € 0 )

These equations -are the foundation of our argument -
through them we have been able to connect the scattered data
b and t of the one-dimensional problem to the Jost function of
the radial problem. [Eq. ( 174) is less important for our present
discussion, since it involves ['(o, k) which does not seem to be
simply related to f(o, k). ].

In terms of the one-dimensional wave function x(x, k)

the Jost function becomes:

_ Xok) _ ,ikS
FlOk) = b e
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hence, using the previously defined functions A and 7

y(k) = OOk)-QGE) +£5 = kS-AGE) (177)

the scattering function of the associated radial problem can he

expressed in terms of our one-dimensional data:

% [DGk)-kS ]
S(é) = € (178)

5.3 Solution of the Problem

According to 5.1 we shall take up successively each

of the two parts into which our problem was divided.

5.3.1 The Algorithm

Based upon Agranovich-Marchenko's results, which
were described in chapters II and III, we can set-up a step-by-
step procedure to obtain V(x), once A[ 5\ » k] and S are

given:
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i) Compute:

1A geA.
F[tl) = -Elﬁ'-\f [ez (4 b‘)_ | ] etu"a/A (179)

Y

ii) Solve the Fredholm linear integral equation (x is a paramecter):

‘A[zoy = Ffz-l-y) 4‘1;00""-@*3)4[1,3)0’2 Yyzz=0 (180)

iii) Obtain the potential through:

_2d AGz) 220 (181)
V&) = %

O x<0 (182)

5.3.2 Necessary and Sufficient Conditions for the Synthesis
Using again Agranovich -Marchenko's results stated

in Sec. 2.1 we obtain:

In order that a function A(k) be the phase-delay

function corresponding to a finite range potential V(x) £ 0




A)

for x ¢ [o, S‘ ], it is necessary and sufficient that:

i)  A(k) be real
ii) A©O)=0  and Ak) o 8 k- oo

i) Ak = =A@

iv w[AR)-k§] ,
e -+ LR e g

where F(t) is absolutely integrable

v) F'(t)= 0 for t>23

These conditions ensure that a radial potential V[K)
exists which vanishes identically for r > f . Defining the

one dimensional potential as:

o x2<O

V@) =
va) 220

we see from 5.1 and 5.2 that Vl(x) is the solution to our
problem, viz., it is a finite range [0, $ ] one -dimensional
potential whose phase-delay function is indeed A (k).

It is interesting to observe that condition (ii) above
ensures that the radial potential V(r) does not support bound

states, according to Levinson's theorem, and is uniquely deter-

mined from the scattering function alone. However, it does not




r

ensure that V(x) do not support bound states (we have alrea-
dy stressed this fundamental difference between one-dimensio-
nal and radial problems) - this is made transparent by consi-
dering a radial square well having a very shallow depth, such
that it does not support any bound state ; our one~dimensional
potential shall have at least one bound statc, irrespective ol the

well's depth.

5.4 Relative Amplitude

For some applications, it is of interest to prescribe

the relative amplitude:

d(sé) = /Z(O./C)
R k)

instead of the phase-delay function A( $ K.
We would like to point out here that these formulations

are equivalent. It was shown in Sec. 3.1 that the Tost function

_ Xlok) HitS
P = 2ab

must be an entire function of p (finite range potential). Conse-
quently, one cannot prescribe arbitrarily both the relative ampli-
tude and the phase-delay - if either one is chosen, the other is
automatically determined.

Adapting the procedure given in Sec. 3.1 to this

problem, we obtain :
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AGE) = kS +f°w7(£).w)r£é‘o’l-

4
w(5ik) = exp [ ¥t)coshtt

o

Notice that we can alternatively proceed directly, by means of
the Gelfand-Levitan algorithm, since the weight function W(k)

is simply related to the relative amplitude o< (§, %)

/

wik) = —

5.5. Ratio reflected/transmitted wave

Another problem of some interest is the synthesis
of V(x) when b/t is given.
We have already seen in chapter IV that when V(x)

has a finite range, b/t is a regular function of p in the entire

plane (except possibly at the origin). Additional insight into

the analytic properties of b/t is given by Eq. (173).
The analytic properties of the scattering matrix

allow us to use a Wiener-Hopf technique in order to determine

b and t separately from the knowledge of b/t on the real axis.
Once b is obtained, we can determine V(x) by means

of the Gelfand-Levitan-Kay-Moses' algorithm for the one -dimen -




sional inverse problem.
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