The State-Variable Approach to Continuous Estimation
by
Donald Lee Snyder

B.S5., University of Southern California
(1961)

S.M., Massachusetts Institute of Technology
(1963)

Submitted in Partial Fulfillment of the
Requirements for the Degree of

Doctor of Philiosophy
at the

Massachusetts Institute of Techrclogy
February, 1966

Signature of Author__ . -
Department of Electrical Engineering, Febnflary 7, 1966

Certified by —
Thesis Supervisor

Accepted by - — - ———
Chairman, Departmental Committee on Graduate Students



The State-Variable Approach to Continuous Estimation

by
Donald Lee Snyder

Submitted to the Department of Electrical Engineering on February 7,
1966 in partial fulfillment of the requirements for the degree of Doctor
of Philosophy.

Abstract

A new approach is presented for the continuous, nonlinear filtering
problem. The approach is based on the state-variable representation
for random processes and makes use of the Markcvian nature of the
associated state vector. An equation is derived for the probability
density of the instantaneous value of the desired process given the past
values of the observed process in which it is imbedded. Equations for
the estimate of the desired process are obtained by employing the fact
that the minimum-mean-square-error estimate is the conditional mean.

The nonlinear filtering problem has applications in several
disciplines among which are the theories of optimal control, radar,
sonar, seismic estimation, and communication. Only applications to
communication theory are presented in the thesis. These cover a
variety of commonly occurring, linear and nonlinear, analog modulation
schemes and continuous channels. The approach can be used to treat the
estimation of Markovian messages observed, after a nonlinear modulator,
in a channel introducing Markovian disturbances; Gaussian messages
and channel disturbances are a special case. Demodulator structures
are specified which are physically realizable and whose output is a
close approximation to the minimum-mean-square-error estimate
of the message and, if desired, the channel disturbances. Particular
emphasis is given to phase and frequency modulation. The channels
considered include Rayleigh channels and fixed channels with memory.

An analysis of quasi-optimum phase and frequency demodulators is
presented. An exact analysis of a quasi-optimum PM demodulator for
a first-order Gaussian message process is given; an equation is derived
for the stationary probability density of the estimation error. The above
threshold performance of quasi-optimum FM demodulators for the
Butterworth class of Gaussian-message spectra is given. Simulation
results are presented for an FM demodulator and a first-order
Gaussian-message spectrum.

Thesis Supervisor: Harry L. Van Trees
Title: Associate Professor of Electrical Engineering
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Notation

\_r(t) Lower -case,underscored letters denote column vectors.
Vi(t) The i-th component of the vector v(t)

d . . d )

—v(t) A vector whose i-th component is .d.t_v.'gt)

dt ~ !

M(t) Capital letters denote matrices.

M'! (1) Transpose of M(t)

MLty Inverse of M(t)

f[t:‘i(t)] A column vector whose components are nonlinear,

no-memory, time-varying transformations of the vector v(t)

D(f(t:v)] The Jacobian matrix associated with f[t:v(t)] -- the
(i-row, j-column)-element of the matrix is S_Jj[tzz(?té)ﬂ
2
i .
i‘i(t) Circumflex denotes the exact minimum-mean-square
error éstimate
v*(t) Asterisk denotes the approximate minimum -mean-square
estimate
Vi 4 Denotes the set of waveforms {v(n: ty =T =t}
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I. Introduction

1.1 Description of the Problem

In this study, we shall present an approach to the problem of
continuously estimating the components of a vector random process,
%(t), based upon the past values of a noisy observed vector, r(t), in
which it is imbedded. For reasons which will become apparent, we
call our approach the 'state-variable' approach.

The components of x(t) and r(t) are assumed to be continuous
processes which may or may not be stationary. r(t) is continuously

observed over the interval (tO,t), where t_. is the initial observation

0
time and t is the final observation time for which the estimate is
desired.

We shall consider estimates of X(t) which are optimum in the sense
that the mean-square error in estimating each component of E(t) is
minimum.

The problem to be examined is commonly referred to as the

filtering problem. It arises in several disciplines, among which are

the theories of optimal control, radar, sonar, seismic estimation, atid

communication. The state-variable approach is applicable to all thésé

disciplines. However, we shall apply it only in the analog commun
theory context. The applications given provide an interpretation of the

approach as well as illustrate its broad scope.

1.2 Description of the Approach Developed

We shall assume that E(t) is a continuous vector Markov process;

The conditional probability density of E(ti) = X given the values of :

at the preceding, ordered times, t,

> Sese> . £ .
i-1 4 ty» then satisfies:

i-2
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PO Iy g%y o e x) = p(x; 1% ) (L1

Thus, X, 1s independent of Xi-2* ¥j-3» """ » Xy when X,

1 1is known.
Our reason for considering continuous vector Markov processes is
that they can be used to characterize the response of a wide class of
linear and nonlinear systems to excitation functions which are white
Gaussian processes. Markov processes arise very naturally as a

characterization when systems are represented by equations of state.

These equations are of the form: *

Lxt) = tlxty] + g (1.2)

dt —
where the components of x(t) are a set of system state variables and
the components of E[t:E(t)] are suitably restricted, nonlinear
transformations of x(t). By the definition of state, the value of E(ti')”
is determined by the value of E(ti—l)’ for ti>ti—1’ and the values of

£(t) in the interval (t.

-1 ti); it does not depend on values of x(t)

for t<ti_ If the components of &(t) are processes with 1ndependent

1
increments, then the behavior of E(t) in the interval (ti-l’ ‘rl) is
independent of its behavior outside the interval. It follows, intuitiifVé'IS?),

that the probability density of the state vector, x(t}, satisfies Eq. L1

and, therefore, that x(t) is a vector Markov process. It will be ¢6n

if ft;-] is suitably restricted ad if _E_(t) has components which are

white Gaussian processes.

A conditional probability density functional for E(t) » given the p:

values of r(t), is derived. Use is then made of the fact that the

* An interpretation of the state equation is provided in Ch. 5 by several

examples.

R T S
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least-squares estimate of E(t) is the conditional mean. The exact
least-squares estimate, unfortunately, cannot be realized practically
except under very special conditions.* Nevertheless, the equatiotis
specifying the exact estimate lead naturally to the consideration of an
approximate estimate . The approximate estimate closely matches the
exact estimate when the disturbances processes introduce small
perturbations in the observed processes. Furthermore, the equatiotis
for the approximate estimate can be readily implemented in the form
of a physically realizable processor.

We shall refer to the approximate least-squares estimate as the

'""quasi-eptimmum'" estimate.

1.3 The Relationship of the Approach Developed to Alterhate App

The state-variable apnroach to continuous estimation provides a
logical addition to existing approaches and, moreover, expands the
scope of the problems which can be treated.

That a logical addition is provided can be seen by examining

Fig. 1.1 where where we have classified existing approaches accot
to whether or not they are structured and according to the manner i
which the random processes are represented. The principle struct
approaches are those of Wiener1 and Kalman and Bucy.2 For these
the estimate of f(t) is restricted to being a linear transfcrmation o

r(t). The principle nonstructured approach is that originating with

Lehan and Parks> and extended by Youlav4 and Van Trees™

* The exact estimate is ''physically' realizable since it depends ony

on the past of r(t).

o N s 0 O R o A A e S

NG OS]
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Wiener [1] Lehan and Parks [3]
Youla [4]

Van Trees [5-8]

 SPECTRAL
| REPRESENTAT ION

Kalman and Bucy [2]

STATE
| REPRESENTAT ICN

Figure 1.1 Approaches to Continuous Estimation
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no restriction is made on the form of the transformation of r(t).* With
regard to the manner of representing the random processes, we note

that both Wiener and Lehan and Parks use a spectral or, equivalently, a

correlation-function representation while, on the other hand, a state

representation is used by Kalman and Bucy. A logical addition to these

existing approaches is provided by the technique to be presented because

it is nonstructured and uses a state representation for the random processes.
The scope of the estimation problems which can be treated is ’

expanded by the state-variable approach. The components of x(t)

are no longer restricted to being sample functions from Gaussian

processes as they are with the MAP approach. The broader class of

continuous Markov processes, of which Gaussian processes are a special

case, can now be treated.

1.4 Previous Related Studies

The equation for the conditional probability density of x{t) which is
developed in Ch. ITI vas first derived correctly by Kushner'9 whose
derivation is closely followed here. A more recent derivation has beén

given by Bucy.10 Incorrect versions of the eguation appear in the

literature'' 1% and some of these have been noted and discussed by

Kushner,g’15 Wonham,16 and Mortensen.17 We shall indicate in Sec. 3.2.1

how the incorrect equation can arise by neglecting a significant term
in our derivation.

Discrete counterparts to the estimation model presented in Ch. 11,

or to special cases of it, have been studied by Wohham,lé’18 We‘av’e‘-'r"f",slgﬁ
and Cox.zo"22

* A maximum a posteriori probability criterion is used with this approach.
For this reason, we shall refer to it as the "MAP" approach.
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Special cases of the general continuous estimation model of Ch. II
have been examined in the past. Snyder 23 studied the estimation of
one-dimensional Gaussian processes contained as modulation in a signal
observed in white Gaussian noise. Bucym studied the estimation of
one-dimensional Markov processes, but he did not consider the application
or implementation of his results. Several related, not widely-known
studies have been made in the USSR.24-32 However, the Russian studies
are oft‘e'n based upon an incorrect equation for the conditional probability

density functional and some caution must be exercised in the use of the

stated results.

1.5 Organization of the Thesis

Chapters 2,3, and 4 are devoted to the mathematical development of
the state-variable approach to continuous estimation. " The Estimation
Model is defined in Chapter 2. An equation for the conditional probability
density for x(t), given the observations accumulated up to time t, is
derived in Chapter 3. The equations for the optimum and quasi-optimum
estimaté of f(t) are derived in Chapter 4,

The first part of Chapter 5 contains the definition of the Communication
Model and a discussion relating this model to the Estimation Model. The
remainder of the chapter contains a variety of examples which serve to
illustrate the broad scope of the approach.

Chapter 6 contains the results of an analysis of the quasi-optimum

PM and FM demodulators derived in the eicamples of Chapter 5.
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II. The Estimation Model

The Estimation Model is shown in Fig. 2.1. Quantities appearing
in the model will now be defined. The interpretation of the model is
deferred to Ch. IV where we shall define a related Communication
Model which will be studied in detai‘l.

Let x(t) be an m-dimensional vector Markov process described by

the stochastic differential equation:
d x(t) = flt:x(t)Jat + d x(t) (2.1

where f_[t: x(t)] is an m-dimensional vector whose components are
mMmomoryless, nonlinear transformations of x(t) ahd x(t) is an
m-dimensional vector whose components are Wiener processes. Let

the covariance matrix associated vith E(t) be:
E(x(t) x'(uw)] = X min(t,u) 2.2

wvhere X is a symmetric, non-negative defini?:e, m x m matrix. The
elements of X, denoted by Xij’ may be time-varying.

Eq. 2.1 defines a continuous vector Markov process provided thé
components of f_[t: -] are suitably restricted. The restrictions are

discussed by Doob,33 Khazen;34 a heuristic discussion is given by

Wishner.35 The principle restriction, which insures the continuity 6f
%(t), is that each component of f_[t: -] must satisfy the Lipschitz
condition.* We shall hereafter assume that E[t: -] meets all the
necessary requirements so that E(t) is a continuous vector Markov

process.

Observe that more than one vector process can be represented by

fi[t: -] satisfies the Lipschitz condition. The vertical bars are d

[x1l = max(x), xp, o , x).
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simply adjoining the individual vectors to form x(t). Observe also
that x(t) can have deterministic components in which case the
corresponding elements of X are zero.

In later sections, we shall be interested in estimatiné scalar
Gaussian processes which are stationary and have rational spectra.
These processes can be represented in the form of Eq. 2.1 by letting
i[t: ’i(t)] =F x(t), where F is a time-invariant, m x m matrix. X must
also be time invariant. By carefully choosing such a state representation,
one component of x(t) can be made to correspond directly to th‘e scalar
process. Moreover, when several scalar processes are represent'éﬂf*ﬁy
adjoining their individual state vectors, each will correspond directly to
one of the components of x(t). A particularly convenient statc represeén-
tation for scalar Gaussian processes is presented in Appendix Al. We
- shall use this representation exclusively in the applications to follow.

In a fairly straightforward way, it can be demonstrated that the

amplitude probability density, p(x; t), associated with the Markov process,

x(t), satisfies the Fokker-Planck equation:

S pixi 1) = -Z——Ef (t:0p(x )] 4 liz i t)  (2.3)

t ‘ Az ,J-' J ax XJ

with appropriate boundary conditions. The derivation of Eq. 2.3 is ;
33 35

for example, by Doob,”~ Wishner, Bharucha-Reid,36 and Stratono
We shall novu: define the noisy observed process. Let y(t) be a
p-dimensional vector random process describéd by the stochastic
differential equation:
d y(t) = gft:i(t)] dt +°d mt) ,‘ (2.4

where glt:x(t)] is a p-dimensional vector whose components are



-19-

memoryless, nonlinear transformations of x(t) and 7(t) is a
p-dimensional vector whose components are Wiener processes. Siﬁp“’ly
for the convenience of notation, we shall assume that X(t) and nt) are
statistically independent. Let the covariance matrix associated with
B(t) be given by:

E(nt) 7" (u)] = N min(t,u) (2.5)

where N is a symmetric, positive-definite, p x p matrix. It is assumed
that N-1 exists; this requires that none of the components of li(t) be
zero. The elements of N may be time varying.

Some of the statistics of dy = y(t+dt) - y(t) will be required in
later sections. We shall cite them here for convenience. The first
property to be noted is that when x(t) is known, dy has a normal

distribution:
1 R | 26
p(dy|x;t) ~ exp - — | dy - gl[t:x]dt | N7 dy. - g[t:x]dt (2.6)
-7 2dt - — 7 -0
Observe secondly, that to terms of order dt:
Eldy dy'] = Nadt (2.7)

as can be demonstrated by using Eqn's. 2.4 and 2.5. Furthermore, all
higher -order moments of dy dy' are of order greater than dt. This
implies that dy dy'/dt is essentially determiniétic and equal to N for
dt vanishingly small. Thus, to terms of order dt:

| dy dy' = Eldydy'] = Ndt  (dt infinitesimal) (2.8)
‘A more rigorous discussion justifying Eq. ‘2..8 is given by Kushne:r.9 An

excellent discussion is also given by Gray and Caughey.45

Eqn's. 2.1 and 2.4 jointly define a continuous, (m+p)-dimensional,

A NI




vector Markov process whose components are the combined components
of x(t) and y(t).
Formally dividing Eqn's. 2.1 and 2.4 by dt results in the more

familiar looking expressions:

d

d—f(t) = i[t:x(t)] + &(t) (2.9)
t - 2
and
:—z(t) = r(t) = glt:x(t)] + n(t) (2.10)
t )

where §(t) = dx(t)/dt and n(t) = dmt)/dt are m-and p-dimensional
vectors whose components are white Gaussian processes. The
associated covariance matrices are X6(t-u) and Né(t-u), respectively.
We shall assume that the actually observed process, r(t)= dz(‘t)/ dt,
is available from an initial observation time, tO’ until the present time,
t. The entire observed waveform, {E(T)’ to £ 7 <t], will be denoted by

r, .. Similarly, the entire waveform, {y(7): tg 5T = t}, will be denoted

The Estimation Model as shown in Fig. 2.1 is now defined. At this
point, we turn our attention to obtaining a sufficiently detailed descriffi’on
of the model so that the filtering problem can be studied. It is knownB"B
that the minimum-mean-square -error estimate* of E(t)' given if?_t +

is specified by the conditional mean:

Rt = \xp(xtlr, ) dx (2.11)
x PRI L, ¢ X
m- fold

The statistical description we require is, therefore, the conditional
probability density functional, p(x; t lrt ¢)» for which an equation is
=

derived in the next chapter.

* The least-squares estimate of x is a vector whose i-th component is

the least-squares estimate of x;.
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III. Derivation of an Equation for the Conditional

Probability Density Functional, p(x; t IJ:'t B
0’

3.1 Summary of Results

In this chapter, we shall derive the following differential equation

for p(x; tlzto ¢ = p(x; th't ¢
’ -

e
p(x; t+dt |y ) -p(xstlyy )= =2 —rp .4 ;
X Tt o t+dt Tt ot Z ox, [f;(t: x)p(x; t |Xt0,t)] dt +
1 m m
2 ZJZ Pt ottt | 34

plxi tly, ) Lglt:n) - Bglt: 07 N Ldy(t) - Eglt: x) at]

where E indicates expectation with respect to p(x; tth ,t)' The left
side along with the first two terms of the right side of Eq(? 3.1are
recognized as the Fokker -Planck equation associated with x(t), as
given by Eq. 2.3. The last term on the right represents the modification
to the Fokker-Planck equation resulting from the observation of E(t)
When g‘[t:zc_(t')] , and hence r(t), does not depend on x(t), then the last

term is zero and the equation reduces the the original Fokker-Planck

equation as expected.

3.2 Derivation

0
We shall follow Kushner's " derivation of Eq. 3.1. Two steps are
taken: (i) changes in p(x; t lyt t) resulting from an incremental
o -0’
observation, dy(t) = y(t+dt) - y(t), with x(t) fixed are accounted for in

step one; (ii) changes resulting from incremental changes in x(t) are
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e

then accounted for in step two.

3.2.1 Derivation: Step One

Consider the effect on p(x; 'clzt t) of an increméntal change, dy(t),

0
in the observation vector. Clearly:

plx; t ll’.to,t+dt’ plx; t IZto,t’ dy)

p(dy |x; t, Zto’t) p(x; t lzto.t)

pldyly, .)
YT ot

p(dy Ix; t, XtO't) p(x; t iXto,t)
= (3.2)

SPHZ x; t, gy 0 PS¢ tho,t)-» dx

It is seen upon examining Eqn's. 2.4 and 2.6 that the probability
density of dy is determined when X is known and that the density is

normal. Eq. 3.2 then becomes:
PLX 1Yy | teat) =

plx; t Iyt ¢) exp- —-l—fdy- g(t:x)dt]'N'l[dy- glt: x)dt ]
- Ty 2dt ~ T - == (3.3)

Sp(x; t Iy,c 1:) exp-z—-l—[dy- g(t:x)dt]'N-l[dy- g(t: x)dt] dx
-0 d - - = - T T -

After cancelli.ng terms common to the numerator and denominator and

defining the scalar, z(dy, dt) , we obtain:
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p(x; t thO,t+dt)

Z(dz, dt) = p(fi t |y-toit)
' 1 g1 . 1 41 Sl N (3.4)
exp{dy'N "g(t:x)-3 g (t:x)N g;(t:ﬁ).dt}

Sp(fﬁ t lzto,t) exp {dy" N'lg(t: x)- 3 g' (t:E)N'lg(t: x)dt} dx

An expression for p(x; t lyt t+gt) in terms of p(x; t Iyt ;) can be obtained
- - 0: - - .0’

from Eq. 3.4 by expanding z(dy, dt) in a multidimensional Taylor series
and keeping terms up to the order of dt. Observe from Eq. 2.7 that
terms up to the second order in dy must be retained since they are of
order dt in the mean. The expansion of z(dy, dt) with terms up to the

order dt is:

.
2(dy, dt) = 2(0,0) 4 dt —°__ z(dy, dt)l + P dy, 2 a(dy, 8] +
B 3(dt) 0.0 3y, 0.0
2 .
%zidyidyj 8. z(dy, dt)li
e ®y;°7; 0,0
= z(0,0) + dt z(dy, dt)) + dy'Dlz(dy, dt)], o, +
qdt) 0,0 '

1 dy' D[D[z(dz, dt) )]0 o.dz

where D[z(dy, dt)] is a column vector or first derivatives and

D[D[z'(dz, dt).]] is a matrix of second derivatives, both with respect
to the components of dy. The individual terms required for the
evaluation of Eq. 3.5 can be obtained by manipulation 6f Ea. 3.4. The

fesults we obtain are:
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z(0,0) = 1

z(dy, dt)l = -} g (t:0Nglt:x) + § Eg'(t: N lg(t: x)
0,0

3 (at)

Dla(dy, d)]y o = Nlgit:x) - N7lEgt: x)

D[D[z(dz, dt)]] = EN'lg(t:x)][N‘lg(t:x)]' -
0,0 - - - - '

2[Ng(t: 0 N IEgt: )] +
ZLN'IEg(t: x) ][N'lEg(t:E)]' -

E[N'lg(t:§) ][N'l_g_(tzf)]'

where E indicates expectation with respect to p(x; t lyt t)' A typical
=,

term resulting from the substitution of D[D[z(dz, dt)]] into Eq. 3.5 is:
14 lN'l o ol 'd = 14y -1 t- 't N-l
z dy glt:x)| N "g(t:x) [dy = 3 dy'N “g(t:x)g'(t:x)N 'dy
= L 1(¢. -1 L
= 7z g'(t:x)N "dy dy' N “g(t: x)
where we have used the fact that dz‘ N'lg(t: X) is a scalar. Since we
are retaining only terms up to the order of dt and since dt is

infinitesimal, dy dy' may be replaced by Ndt, as indicated by Eq. 2.8.

Thus, the typical term becomes 3% g' (t:i)N'lg(t:E)dt. This procedure

can be repeated for other terms associated with D[D[z(dy, dt)]] .
- 0,0

The result of substituting the individual terms into Eq. 3.5 is:

z(dz, dt) = 1 + dz' N-lg(tzzc_) - dz' N-,'[E_g_(tzzc_)] -

g' (t:E)N'l[Eg(t:_y_c_)]dt + [Eg(t:f)]' N'I[Eg_(tzfi]dt
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Hence:

z(dy, dt) = 1 + [dy- Eg(t:x)dt]’ N'll'._g'_(t:g- Eg(t:x)] (3.6)
where E indicates expectation with respect to p(x; t Iyt ¢)-

ol
By using the definition of z(dy, dt) from Eq. 3.4, we conclude that

the effect of an incremental observation, dy, is, to terms of order dt,

an incremental change in p(x; t lyt ;) given by:
=

pix; tthO,Hdt) - p(X; tIZto,t’ =

plx; tly, o) Lelt:x)- Eg(t:x)]' N"'[dy- Eg(t:x)at] (3.7)

As an aside, it is of interest to investigate the effect of overlocking
the second order terms of dy in the expansion of z(dy, dt) given in

Eq. 3.5. The erroneous expansion:

z(dy, dt) = 2(0,0) + dt

z(dy, dt) + dz'D[z(dz, dt)]o 0

qdt)
0,0
leads eventually to:
p(E: t lzt t+dt) - P(§, t lzt t) =
0’ 0’
.~1rd
-2 p(x; tly, t)[[gt—y - g(t:x)]'N [Ey - glt:x)] -
0’ - T - -~

E[E—y - g(t:x)]'N'l[d—y - g(t:X)]] dt
dad— - - dadt— — =

as can be easily verified. When this expression is used in Part Two
of the derivation, rather than Eq. 3.7, an incorrect equation for
p(x; t| A ¢) results, This incorrect equation has appeared frequently

in the literature,11-14’24'28-32
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3.2.2 Derivation: Step Two
; For convenience, let the right side of Eq. 3.7 be abbreviated by

dg(t: x). Then:
p(g;tlzto,ﬁdt) = p(_}g;tlzto,t.dz) = p(x;t llto,t) + dq(t:x) (3.8) .

The effect on the conditional probability density of an incremental
change in x(t) will now be examined. The derivation closely parallels
that usually given for the Fokker-Planck equation, Eq. 2.3,

Observe initially that:

p(x; t+dt I11;0,1:+dt) € S px; t+at |W; t, Yt ot dy) p(u; t IZtO,t+dt) du

= Sp(g; t+dt lg; t) p(u; t Izto’ﬂdt) du (3.9)

where p(x; t+dt IE ; 1) is the transition probability associated with the
Markov process, E(t); X and u are the realizations of the process at
times t+dt and t, respectively. Use has been made of the fact that when
x(t)= u is known, no information about x(t+dt)= x is provided by either
Xto,t or dy. Zto,t » which depends only on the past of x(t) before time
t, provides no information because of the Markovian nature of x(t).

dy = glt:x(t)] + Mt) provides no additional information because of the
assumed independence of ﬁ(t) and 7\t).

Let h(x) be an arbitrary function possessing a multidimensional

Taylor expansion:

m
ho) = h@) + -y S
in} X

i

and satisfying Eq. 3.14. Since x;-u, = dx; = f,[t:uldt + dx; , we have:
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E[xi- ui] = fi(t:E) dt
and (3.11)

E[xi- ui][xj- uj] = Xij dt

where E indicates expectation with respect to p(x; t+dt l‘i; t). All
higher order moments of (xi- ui) are of order greater than dt. They
can, therefore, be neglected.

We now multiply both sides of Eq. 3.9 by h(x) and integrate. The

result is:

S h(x) p(x; t+dt |zt0,t+dt) dx = gx h(x)p(x; t+dt |u; t) p(u; t lzto,t+dt;)'dgd§

(3.12)
Substituting the expansion for h(x) into the right side of Eq. 3.12,
integrating with respect to x, using Eq. 3.11, and keeping terms to the

order of dt, results in:

ah(x)

gh(x) p(x; t+dtly,c trar) 9% = X[h(u) + Zf(t dt +

0’ iz .
(3.13)

5 T

dwy }\

t] p(u; t IZto,t+dt) du

u

We obtain the final result by integrating the last two terms on the right

by parts. Provided h(x) satisfies the limiting conditions (suppressing
arguments):

+ ‘o 400

fphl = Xypax

0 (3.14)

- J e

for i,j=1,2, >, m

the result we obtain, after changing integration variables from u to x, is:
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gh(g) p(x; t+dt |Zto.t+dt) dx = X h(gg)[p(g: t lzto’ﬂdt)

., 9

; B—xi[fi(tzf) p(x; t IX’CO.Hdt) Jat + (3.15)
%ZZXU 3 p(x; t IZt .t+dt) dt] dx
L=t rl xi X. 0

Finally, we use the arbitrariness of h(f) and the expression for

p(x; t l'yt t+dt) of Eq. 3.8 to conclude:
= i,

p(x; tdt Izto,ﬂdt) 'P(E?tlzto,t) = dq(t:x) -

| ™

d
2 55 Ut plx; ¢ ly, e+ (3.16)

2= i

1 7%,

izy i Bx x]

P(E; t l‘zto't) dt

where only terms to the order of dt have been retained. Eq. 3.1 follows

easily by substituting the definition of dq(t: x) into Eq. 3.16.
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IV. Derivation of an Equation for the Approximate

Least-Squares Estimate of x(t)

In this chapter, we shall derive the equations for the estimate of
x(t). The interpretation of the equations is deferred to the following

chapter.

4.1 Summary of Results

Two equations specify the approximate miniimum-mean-square-error
estimate, x*(t), The first equation is:

d_f*(t) = flt:xx(t)] + V*(t)D[_g_(t:ic_*)]N-l{E(t)-g[tzgg*(t)]} (4.1)

dt

D[g(t:ﬁ*)] is an m x m Jacebian matrix whose (i-row, j-column)-element

is _P._*_gj[’tzzc_*(t)]. V*(t) is a non-negative definite, symmetric, m x m

x,
error-covariance matrix which is specified by the second equation:

dvxt)y = D' LE(t:x})IVHE) + VHODE(t:x0] + X(t) +

< (4.2)

V*(t) D[D[g(t:z:_*)]N_l{E(t) - g(t: x*) }] V*(t)

where D[] is the Jacobian matrix associated with the vector enclosed
within its square brackets.

We shall refer to Eq. 4.1 as the "'processor equation' and to Eq. 4.2
as the 'variance equation.'"" Observe that in general the proc‘eTS‘s*,i)fj‘r‘:v"’éi’-fid
variance equations are coupled and that both depend on the observatiors.

The initial conditions associated with the two equations are

determined as follows. If f“o) is known, then f*(to) = §(t0) and
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'V'*(-to) = 0. On the other hand, if only the initial distribution, p‘(zg_:; t), is
known, then:
x*tg) = {xplx; tg) dx
and

VHt) = j[_:g- x¥(t0) Ix- x%(t0) ' plx; tg) dx

Some special cases of Eqn's. 4.1 and 4.2 are of interest so we

shall list them here.

4.1.1 Special Case: f and g linear transformatiohs of x(t)

When x(t) and y(t) are defined by:

dx(t)

F(t)f(t) dt + d‘)_((t)
and

G(t)x(t) dt + dn(t)

dy(t)

both x(t) and y(t) are vector Gaussian processes. The exact and
approximate estimates are equal under these circumstances and

Eqn's. 4.1 and 4.2 become:

(;i—t—g(t) = F(t) El_(t) + V()G (t)N-l{E(it)- G(t) g(t)}

and

SV = FOVE) + VIOF (1) + X(t) - V(G (N Ge)vie (4.4)

Eqn's. 4.3 and 4.4 are entirely equivalent to the results on Kalm
and Bucy.2 As noted by them, the variance equation for this case
a matrix Riccati equation whose properties have been studied ext

The following properties hold under suitable conditions:

(P1) An analytic solution exists. (see Ref. 2)

(P2) The solution is unique and determined by the specificati




-31-

of an initial, non-negative definite matrix, V(»to).
(P3) A unique steady-state solution exists and V{t) converges to

this solution for any initial, non-negative matrix, V(-‘toz).

The conditions under which P1, P2, and P3 hold are given by Kalman
and Bucy.2 A sufficient condition for P3 is that the components of
x(t) and y(t) /be stationary.

We observe that the variance equation in this instance does not
depend on either the observed processes or the estimate of x(t).
Consequently, V(t) can be determined Before obs;rvations are taken.
Solving Eq. 4.4 for V(t) involves solving 1m(m+l) nonlinear differential
equations. A salient feature of the Kalman-Bucy approach is that
the equations can be solved numerically by computer thereby completely
determining the structure of the processor whose output is the estimate.

When steady-state conditions exist, dV(t)/dt = 0 and Eq. 4.4 becomes

im(m+l) quadratic algebraic equations whose solution is non-negative
definite. The algebraic equations can be solved numerically but for
even moderate values of m a large number of decisions are required

to determine the non-negative definite solution. An alternate techn

is to allow the numerical solution to the differential equations to app

the unique steady-state value guaranteed by P3,

4.1.2 Special Case: f a linear transformation of x(t)

When x(t) and y(t) are defined by:

d_:g(t) = F(t) E(t) dt + dz(t)
and

dy(t) = glt:x(t))dt + dmt)

x(t) is a vector Gaussian process. Most of the applications prese
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in Ch. 5 fall within this case. Egn's. 4.1 and 4.2 become:

d xxt) = F(t) xX(t) + VHODIg(t:x*) INTHr(t)- glt: x¥(t)]} (4.5)
dt — - == - LA

and

d yxt) = F)VHL) + VHOF@R) + X(t) +

dt

V*(t)D[D[ g(t:f*)]N-I[E(t)- glt:x*) }}V*(t) (4.6)

4.2 Derivations

4.2.1 Derivation of the Processor Equation

An equation for the exact minimum-mean-square-error estimate,
%(t), can be obtained in a straightforward way from the equation for
p(x; t lyt ¢) derived in Ch, III by using the fact that x(t) is the condi-

=, 2

tional mean; that is:

x(t) = S xp(x; tly, ) dx
0!
Multiplying both sides of Eq. 3.1 by x and integrating results in:

Z(t+dt)- X(t) =dx(t) = Ef(t:x)dt + E[[E- Zc‘_(t)}g'(tzg)]N‘ltdz-Eg(;

where integration by parts has been used and the following boundary
conditions have been assumed to exist (supressing arguments):

+® tw + 0 +n

- x. P

1
ox,
~a0 1

= 0 (4.8)

= fp| = xfp

- -»

for i=l, 2, -, m
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The expectations in Eq. 4.7 are with respect to p(x;t lyt t).
_ R £
We now assume that the following Taylor expansions for f[t: x(t)]

and glt:x(t)] exist:

f(t:x) = f(t:x) + ‘Z‘_(x-x)_ £(t:x) +

ax 5
w ™ aZ
Y2705 R m K —— £tz 4o
iz ,‘ axiaxJ g
(4.9)
glt:x) = g(t:g) + i(xi- ﬁi) 2 g(t: x) +
= dx. |2
i x
m o a,Z
%ZZ(XI- x )(x.~ x.) glt:x)}  + -o-eo
izvg= axi X i

The second term in each expansion may-be written as D' [f_(t:z?_)](i::- g)
and D! [_g(t:g)] (x- g), respectively.

The equation for the exact estimate can be obtained by substituting
these expansions into Eq. 4.7. The resulting expression can neither be
solved nor readily implemented because of the general existence of an
infinite number of terms in thecexpansions of Eq. 4.9. It is natural,
therefore, to consider the truncation of the expansions on the assurmiption
that the components of the error vector, x(t) - i(t), are small. This
assumption can be expected to be valid when the disturbance processes
introducev only small perturbations in the observed processes.

Let x*(t) be the approximate minimum-mean-square-error estimate
of x(t) which is specified by the substitution of the expansions for

f{t:x(t)] and glt:x(t)] into Ea. 4.7 and the retention of the most
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significant terms. Whenev'er f_[t:i(t)] and g[t:i(t)] are linear
functions of X(t), no approximation is involited and the exact and

approximate estimates are identical. The equation we obtain for E*’(t) is:
dxX(t) = flt:xx(t)ldt + VHODIgit:x*)IN "y - glt: x4t Jat]  (4.10)

where V*(t) is a symmetric, non-negative definite, m x m error
covariance matrix defined by V*(t) = E(x- E*(t)]l:f' E*(f)]' . The
processor equation is obtained by the formal division of Eq. 4.10 by dt.
| We note that the terms of Eq. 4.9 having the most significant
effect on the processor equation are the first two of each expansion.
Consequently, the approximation is, in effect, a line#rization about the
estimate. This implies that to within the approximation, p(x; t Iy,t t‘)

o
is normal with mean X*(t).

4.2,2 Derivation of the Variance Equation

We now turn to the derivation of an equation for V*(t), An equation
fqr vl’{kz(t), the (k,£)-element of V*(t), is'first obtained by the following
procedure: (i) multiply the equation for p(x; t lzto,t) by
[xk- ik(t)][xz- ig(t)]; (ii) integrate to obtain an equation for the
(k,2)-element of the exact error-covariance matrix; (iii) use the expansions

for f[t:x(t)] and glt: x(t)] and keep only the most significant terms.
Proceeding with steps i and ii, we use:
(3= % 030xy- 20)] = [x - £ (t+dt) x,- %, (t+dt)] + dx, (t)d%,(t) -
N | . ) (4.11)
D3 - 1 (trdt) ddxy(t) = [xp- % y(t4dt) 1A%, ()

to obtain:
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dv, ,4(t) + dﬁk(t)diz(t) =
Eq £(t: - X ' - x £ (t: d
{_( Hx- x(1)) + [x-x()) £ (¢ g)}kz t + X, ,(t)dt + |
L (4.12)
E{x,- ;ik(t)'}{xr x, () }glt: x)- Eglt: x) ]’ N'l[dz- Eg(t:x) dt]

where integration by parts has been used to obtain the first three terms

on the right. We now substitute the expansions for f[t:x(t)] and

g[t:E(t)] given in Eq. 4.9 into Eq. 4.12 and keep only the most significant
terms. We also use the fact that to within the approximation, p(x; t lzt. ,t)
is normal with mean x*(t); consequently, odd moments of the com- °

ponents of the error vector, x- x*(t), are zero and even moments

factor into products of second moments. The equation we obtain for

Vl’-'{‘z(t) is:

dv,(t) + dxitidxp(t) =

{D'[g(t:_:g*)lv*(t) + V) DIf(t:x*)] + X(t) }kzdt + 4.13)

m " aZ -1
ZZvﬁ.(t)vfg.(t) g' [t:x*(t)J|N""{dy - glt:x*(t)] dt}
L K17 21 yxxdxx — T = ==

A }BI 1 J

The second term on the left, dxﬁdxj = [(dx*)(dx*)" ]kﬁ’ remains t6

be examined. Using Eq. 4.10 and keeping terms to the order of dt, we

have:

(dx#)(dx®) = V*Dlglt:x*) N dydy' N7'D! [glt:x*) ]V (4.14)

Since we are retaining only those terms of order dt and since dt is
infinitesimal, dy dy' may be replaced by Ndt, as indicated by Eq. 2.8,

Hence, to terms of order dt:
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(dx*)(dx*)' = V*(t)D[g(t: 5*)]N']D'[§(t: x*) ] V(t) dt

Substituting this result into Eq. 4.13, we have:

dviry(t) = {D'IE(t: x¥) VD) + VHODIE(t:x] + X(t) +

VD g(t: x*) IN" D g(t:xn1vxn} dt +

(4.15a)
m - 2
‘VZZvﬁi(t)v}f.(t) ° g' [t:x*(t)]]N‘l{dy- glt: x*(t) Jdt}
s Vo dxxaxx— - T~
L=l i 1 i J
= {D'[f(t:x*) ] VH1) + VHUDIEt:xM] +
' (4.16b)

V*(t)D[D[g(t:E*)JN'l{E(t)- glt:x*) ]]V*(t) }kldt

That Eqn's. 4.15a and 4.15b are equal may be demonstrated by expanding
the matrix expressions. The variance equation, Eq. 4.2, follows by the

formal division of Eq. 4.15b by dt.
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V. Applications to Communication Theory

Several applications of the state-variable approach to continuous
estimation will be given in the following sections. These applications
serve the purpose of providing an interpretation of the Estimation
Model of Ch. 2 as well as the processor and variance equations of Ch, 4.
Moreover, the broad écope of the problems which can be treated in a
uniform manner is illustrated.

We shall begin by defining a general Communication Model which
is directly related to the Estimation Model. Special cases will then be 7
investigated in detail. These may be divided into three categories: (i)
x(t) and r(t) are Gaussian processes; (ii) x(t) is a Gaussian process and
r(t) is not; (ﬁi) neither Zc_(t) nor E(t) are Gaussian processes. In the
communication theory context, i inclﬁdes Gaussian message-- linear
modulation schemes, ii includes Gaussian message-- Gaussian channel
disturbance-- nonlinear modulation schemes, and iii includes Markovian
message-- Markovian channel disturbance-- nonlinear modulation
schemes., Categories i and ii can be treated by the alternate , MAP
apprbach to continuous estimation. Category iii contains cases which
cannot be treated by any altérnate approach.

9 have used the MAP approach

Van Trees7'8 and Thomas and Wong3
to study communication models which are equivalent to special cases of
our model. We shall indicate the relationship between their demodulators
and ours. Recall that the MAP approach leads to an integral equation
for the estimate and that the equation corresponds toza physically |
unrealizable demodulator. An approximation to the unreaiizable demeod-

ulator is made for the purpose cf implementation. The approximation

holds closely when the disturbance processes introduce only small
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perturbations in the observed processes and consists of a cascade of
a nonlinear, physically-realizable demodulator and a linear,
physically-unrealizable filter. The nonlinear, physically-realizable

portion of the cascade approximation is identical to our demodulator.

5.1 The Communication Model

The Communication Model is shown in Fig. 5.1.
Let a{t) bean n-dimensional state vector representing the output
of an analog message source. a(t) is a continuous vector Markov

process defined by the stochastic differential equation:
da(t) = ga[t:g(t)] dt + dglt) (5.1)

where o(t) is an n-dimensional vector whose components are Wiener

processes. Let the covariance matrix associated with a(t) be given by:
Ela(t) o'(w)] = A min(t,u) (5.2)

where A is a non-negative definite, n x n matrix which may be
time-varying. More than one message can be represented by simply
~ adjoining their individual state vectors in the formation of a(t). Of
course, Gaussian messages with rational spectra arera special case
of Eq. 5.1 with f_[t:a(t)]=TF_ a(t).

a(t) is transformed by a modulator into c signals, represented by
the vector s [t:ll_(t)], appropriate for transmission over the channel.
The modulator consists of linear filtering followed by a memoryless,
nonlinear modulator. The linear filtering may be time-varying and is

described by the state equation:
du(t) = Fu(t) u(t) dt + L_(t) a(t) dt (5.3)

where u(t) is an £-dimensional vector.
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A second linear-filtering operation follows the modulator. It is

described by the state equation:

dz(t) = F,(t) z(t) dt + L_(t) s[t:u(t)]dt (5.4)

where z(t) is a q-dimensional vector. We shall allow this filtering
to be associated with either the modulator or the channel depending
upon the particulaf application.

The modulator, including possible linear filtering at its output,
contains as special cases: linear-modulation schemes, such as AM,
AM—DSB/SC, AM-SSB, etc.; nonlinear-modulation schemes, such as
PM, FM, preemphasized FM, etc.; deversity-modulation schemes,
such as frequency-diversity PM and FM; and multilevel-modulation
schemes, such as PMn/- PM and FMn/ FM.

The channel inputs are transformed into p signals which are
represented by the vector, g[t:f(t)]. Each component of g[t:f(t)]
is observed in additive white Gaussian noise. The observed process

can be described by the stochastic differential equation:
dy(t) = glt:x(t)]dt + dmt) (5.5)

where Mt) is a p-dimensional vector whose components are Wiener

processes, Let the covariance matrix associated with 7t) be given by:

E(n(t) 7' (u)] = N min(t,u) (5.6)

where N is a symmetric, positive-definite, p x p matrix which may be
time varying. We assume N'1 exists; this requires that none of the
components of 7t) be zero. The actually observed process is

r(t) = dy(t)/dt. Note that we have defined y(t) for the Gommunication
Model in exactly the same way as y(t) for the Estimation Model of Ch. 2

(compare Eqn's. 2.4 and 5.5.)
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Disturbance processes, such as additive and multiplicative processes, .
are introduced in the randomly time-varying portion of the channel. These
processes can be Markovian in general and are described by the

stochastic differential equation:
db(t) = f_b[tzg(t)]dt + dB(t) (5.7)

where b(t) and B(t) are k-dimensional vectors. The components of
B(t) are Wiener processes and the associated covariance matrix is.
given by:

E[B(t) B'(u)] = B min(t,u) (5.8)

where B is a symmetric, non-negative definite, k x k matrix which may
be time varying. Of course, as a special case, the disturbance processes
can be Gaussian processes with rational spectra.

The channel, including possible linear filtering at its input, contains
as special cases: simple additive channels; Gaussian multiplicative
channels, such as Rayleigh channels,‘ Rician channels, etc.; fixed channels
with memory; multilink channels; and other commonly occurring
channels. The Markovian disturbance processes which we include in the
model cannot be treated with any alternate approach.

Collecting all the equations describing the Communication Model,

we have: .
da(t) = f_lt:a(t)]dt + daft) (5.1)
du(t) = F (thu(t) dt + E_(t)a(t}dt (5.3)
dz(t) = F (t)z(t) dt + Ls(t)gl:tzg(t)]dt (5.4)
db(t) = f,[:b(t)]dt + dB(t) (5.7)
and
dy(t) = glt:x(t)]Jdt + dn(t) (5.5)
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The relationship between the Communication Model and the Estimation
Model is completed when we define the vector E('t) which is obtained by

adjoining a(t), u(t), z(t), and b(t). Let:

[a(t)] [ £ [t:ah] ]

u(t) F (t) u(t) + L_(t)alt)
x(t) ——— fltex(t)]) = | - O T _ ___Z____
- 2(t) - - F_(t)z(t) + L (t) sTtru®]
bit) g lebm)
L L - -
and (5.9)

Fg(t)‘

0
Xt = |-
0

B(t)

b -

Then:
dx(t) = flt:x(t)]dt + dx(t) (5.10)

Equation 5.10 describes x(t) for the Communication Model and is
identical to Eq. 2.1 describing x(t) for the Estimation Model. The order
in which i(t)’ u(t), g_(t), and E(t) are placed in forming 3:_(1:) is arbitrary.
With the definition of the Communication Model now completed, we
turn our attention to the consideration of applications. The procedure
we shall follow for each of the applications presented in the following
sections is: (i) specily the particular communication model for the
application; (ii) identify x(t), flt:x(t)], &(t) = ax(t)/dt, X(t),
r(t) = dy(t)/dt, glt:x(t)], m(t) = dnt)/dt, and Ni(t); (iii) use the proc-
essor and variance equations of Ch, 4 to determine the structure of the
demodulator. The state representation indicated in App. Al will be used

for all applications involving Gaussisn processes.
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5.2 Appiications when x(t) and r(t) are Gaussian

For Examples 5.2.1 through 5.2.3, x(t) and r(t) are describéd by:

d

a_x(t) = F(t) x(t) + &) (5.11)
X X s
and
d oty = r(t) = G(t) x(t) + n(t) (5.12)
Pt r x n

Eqn's. 4.3 and 4.4 are the processor and variance equations.

Example 5.2,1 Single Message, No Modulation, Additive White
Noise Channel

Consider the communication model shown in Fig, 5.2a. a(t) is a
nonstationary Gaussian message and n(t) is a white Gaussian process
whose correlation function is Nl(t) §(t-u). a(t) and n(t) are uncorrelated.
The equations describing the model are:

d

Lxt) = F(t) x(t) + &) (5.13)
dt — - -

and
Ty =T = xm +onm (5.14)

where x(t) is an m-dimensional vector with xl(t) = a(t). F(t) and

£(t) are given by:

- 10 () E(t) |
S () 001 N, (1) E(t)
Fity = |~V 0 0 ;_E_(t) = [N3(t) g(t).

-y (t) 0 O 0 &m(t)ﬁ(t)_
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n(t)

- r(t)

(v)

Figure 5.2 (a) Nonstationary Gaussian Message in an Additive White
Noise Channel (b) Optimum Filter for Estimating the Message
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We assume that E[ §(t) €' (u)] = X(t) 8§(t-u) is known. From Eq. 5.14,
we observe that G(t) = [1 0 0 --- 0].

The processor and variance equations, Eqn's, 4.3 and 4.4, become:

vy t)
R n Vi5(t) R
d b= Fo & + 2 | ¥ | ) - 10} (5.15)
dt — = Ny(t) |’
L;'lm(t)_
and
d vty = Ft) Vit) + V(E) Fr(t) + X(t) -
dt (5.16)
VAW vptvip) e vytvy ()
MPARMI V212 o Vv, ()
R
Nl(t) .
l1r1m(’c)v11(t) . vzlm(t)

By comparing Eqn's. 5.13 and 5.15, we obtain the optimum processor
shown in Fig. 5.2b. We observe that the processor depends only on the
first column of V(t).

Components of V(t) can be determined numerically or can be generated
as the output of shsystem specified by Eq. 5.16. The components of V(t)
are of interest for two reasons: first, they complete the structure of the
processor; and second, they describe the estimation performance of the
processor. Except for some simple cases considered below, we shall
not give solutions to the variance equation. Rather, we shall be interested
only in obtaining the general structure of the optimum processor.

A special case arises when a(t) is a stationary process and to = -® 80
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that steady-state conditions exist. In this instance, a(t) has a rational
spectrum and the communication model has the alternate form shown
in Fig. 5.3a. Correspondingly, the optimum filter has the alternate
form of Fig. 5.3b. Let Gopt(s) denote the filter appearing in the for -

ward path. Several interesting properties of Gopt(s) are evident by

inspection. These are:

(1) The poles of Gopt(s) coincide with those of the message shaping
filter.

(2) The order of the numerator of Gopt(s) is exactly one less than the

denominator since v.,, the mean-square estimation error, is nonzero.

1

(3) The zeros of Gopt(s) depend only on the first row, or column, of

the error- covariance matrix, V.

(4) The coefficients of the numerator polynomial are error covariances

associated with state variables.

. + ) . . ,
(5) v = N1 lim sGopt(s) = N1 gopt(o } , where gopt(t) is the impulse

S-—OQ

response corresponding to GOpt(S)‘

We have dbtained properties 1, 2, and 5 directly from the solution to the
Wiener -Hopf equation.41 (5) gives an expression for the mean-square
error in terms of the optimum loop filter. An alternate expression, not

requiring a determination of Gopt(s), is:

S (wz)
vy = Ny | log[1+ _a__] dw (5.17)
N, 21

-

where Sa(wz) watts/cps is the power density spectrum of a(t). We

shall see later that this expression is useful in the evaluation of
quasi-optimum phase demodulators. The expression was originally
derived by Yovits and Jackson.42 We have given a simplified derivation
which begins with the solution to the Wiener -Hopf equation."}0 Alternate
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I |
i -1
{ A8 # c0° ) |
f E(t) — = 1 ) ‘ a(t) r(t)
: ’ + 9’1' 4 ®c° 3 ?n :
| | l
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Analog Message Source
(2)
m=1 m=2
V148 + '12' + see 4 vln___ _ ,apﬁ(ft)
T ‘l"lsm_1+ e v ¥

(v)

Figure 5.3 (a) Stationary Gaussian Message in Additive White
Noise Channel (b) Optimum Filter for Estimating the Message
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derivations are given by Viterbi and Cahn43 and Viterbi.44

5.2.1.1 Special Case of a One-Dimensional Message: No Modulation

As a simple example, consider the one-dimensional communication

model of Fig. 5.4a. For this case, the spectrum of a(t) is 2Pk and
<,uz+k2
F = -k, X = 2Pk. The processor and variance equations are:
d - A 1 -
Zx(t) = - kx(t) + —v,, {r@t) - x(t)] (5.18)
d 1 1 11 1
t N1
and
1 2
0 = -2kvy,, + 2Pk - =~ v (5.19)
1l N 11
1
The solution to the variance equation is:
- 2P
Vs ——— (5.20)
1+ Y1+A

where A= 2P /kNl is the signal-to-noise ratio in the message
bandwidth.* The optimum filter is shown in Fig. 5.4b. A closed-loop
version of the filter is shown in Fig. 5.4c; this latter realization

would arise most naturally with the Wiener approach.

Example 5.2.2 Single Messsage, Integrator, White Noise Channel

Consider the communication model shown in Fig. 5.5a. a(t) is a
stationary Gaussian message which is integrated in a modulator before

transmission through the channel. n(i) is a white Gaussian process of

* The message bandwidth is defined to be the width of a rectangular
spectrum of height S (0) and same total area as S (w ).
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Figure 5.4 (a) One-Dimensionzl Gaussiaa Message Observed in
White Gaussian Foise (b,c) Two Realizations for the Optimum
Filter
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of spectral height N0 watts/ cps. a(t) and n(t) are uncorrelated.
The integration occurring in the modulator is a particular example
of linear filtering which might arise. It will occur again when we

consider frequency modulation.

The state vector associated with the analog me ssage source

satisfies:
dg(t) = Fag(t)dt + d_cc_(t) (5.21)
where
al(t) -vl 1 o0
a,(t) ¥, 0 1
. a3(t) -¢3 o 0 1
i(t) = : Faz ) (5.22)
. . 1
L.an(t)- --Wn 0 0 O_J
and
- -
x dt)
A, &)
é_a(t) _ 7\35(1:)
dt —
M)

We assume that E{a(t) a'(u)]= A min(t,u) is known. Note that
a(t) = al(t).

The equation describing the modulator is:

du(t) = a(t)dt = al(t) dt (5.23)
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Figure 5.5 (a) Stationary Gaussian Message with an Integrator and
an Additive White Noise Channel (b) The Optimum Filter
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Define x(t) by:

Xt) = [---
a(t)

[
x, (1)

x,(t)

(5.24)

ML)
Then x(t) satisfies:

where

- —
0 7

o1
-
o
o

0 -\bl 1 O klﬁ(t)

0 -y, 0 1 X &(1) [0 :O]
F= 2 &) =72 i X ==~
. - . 0 1A

0 -lifn 0 O 0 )\nE(t)

Note that (%) = xo(’c) and a(t) = xl(t).
The received signal is described by:
r(t) = u{t) + n(t) = x4(t) + n(t) (5.26)
Thus, G{t)=[1 0 0 - Ol

Under steady-state conditions, the processor and variance

equations, Eqn's. 4.3 and 4.4, become:

R v s
Z_ ity = FH + 5 02 | {r(t)- x4t} (5.2
t Yo |




and [ 2 "}
Yoo  VooYol VooYon
2
YorYoo Vo1 V01Von
0=FV + VF' + X- 2| . (5.28)
NO L]

Y 2

Von"00 Von"01 Von |

The processor equation leads to the realization shown in
Fig. 5.5b. Once again, we observe that the optimum filter depends
only on the first row, or column, of V,

Expressions can be given for v,. and Vi the error variances

00
associated with estimating the message, a(t), and the integrated
message, u(t). The expressions are convenient because they do
not require a determination of the optimum filter or a solution of
the variance equation for their evaluation. We shall see later that

they are useful in the evaluation of the performance of optimum FM

demodulators. The expressions, which are derived in Appendix A2,

are:
Voo T N0 £(0) (5.29)
and
Ng .3 -
vy, = — T7(0) + F(0) (5.30)
11 3

where f(0) and F(0) are related to Sa(wz), the spectrum of
a(t), by:

2
Sa(w) dw

WZNO 211

(5.3}

f0) = Xlog [1+

-~ 00
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and w 2
S_(w")
F(0) = ngNO log [1 + 2 @ (5.32)
2 21
e WN,

5.2.2.1 Special Case of a One-Dimensional Message: Integral Modulation

As a simple example, consider the one-dimensional message

used in the communication model of Fig. 5.6a. For this case, the

2Pk

spectrum of a(t) is watts/cps. We lave:

wz +k2_

X t) 0 1 0 o0
x(t) = ; F= ;i X =
- x,(t) 0 - 0 2Pk

The optimum filter is shown in Fig. 5.6b. After some straightforward
manipulation, the variance equation leads to three equations for the

components of V:

d

2
Rt = 2v - —V = 0
gt 00 01 No 00
.d_v = v., - kv -1 VsV = 0 (5.33)
01 11 01 00 "01 A
dt N0
d—-v = -2kv,, + 2kP - 1— v2 = 0
11 11 01
dt NO

An equation for Vg 1s obtained by eliminating Vo1 and i from the

second equation:

4 3 2

\'4 v v
RUP [_OOJ o2 [_OOJ ; [00]
4k2 2kN 2kN ZkNO




“B55.

' n(t)
|52.Eu(t) k r(t)
x, (%) 1 sfx (¢)
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Lo e | En(t)n(u) = NOS( t=u)
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e £(1) = B(1)

(v)

Figure 5.6 (a) One-Dimensional Message with Integral
Modulation and & White Noise Channel (b) The Optimum
Filter
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This equation becomes:

‘ v 2 v 2
j A [_99] + [ 00 ] (5.34)
41{2 ZkNo ZkN0
{ ; where A= ZP/kN0 is the signal-to-noise ratio in the message
| bandwidth. Solving for Voo Ve obtain:
| 1
. ZNOAZ
1  Voo = (5.35)
i V 2 1
1+ {14+ A2
k
| v, and v;; are then easily found to be:
i v ZNOA
| 0L = =2 (5.36)
| {1+v1+ EAE}
] k
1 ZNbAZ |

‘N P - (5.37)

2 1
{1+V1+ —AZF k
k

We have assumed that a(t) is stationary and that to = -® 80
1 that steady-state conditions exist. If t0 is finite, then the only
modification to the optimum filter is that Vo0 and Vo1 are time-varying

gains rather than constants. We shall see in Ch. 6 that the approach
to steady state is rapid compared to the message correlation time.
For this reason, the steady-state assumption is usually valid in

practice.
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Example 5.2.3 Single Message, AM-DSB/SC, Additive White
Noise Channel

Consider the communication model of Fig. 5.7. a(t) is a
stationary Gaussian message and n(t) is a white Gaussian noise of
spectral height N, watts/cps. a(t) and n(t) are uncorrelated. a(t)
amplitude modulates a sinusoidal carrier whose frequency is large . |
compared to significant frequencies of a(t). This is a typical example
in which the signal component of r(t) has a bandpass spectrum which
is essentially disjoint from that of a(t). The results obtained are
similar to those obtained for other linear modulation procedures.

The state vector associated with the message source satisfies:

Lxt)y = Fxt) + &t , where a(t) = xt) (5.38)

dt

F and §(t) are given by:

-

B i

-wl 1 0 0 Y )\lg(t)

-, 0 1 o ng(t)
F=l|-y3 0 0 1 A1) = ;81

:wm 0 4] vt 0— ~Xm£(t)-j

We assume that E[£(t) §'(u)] = X §t-u) is known.
The received signal is described by:
a(t)ﬁ sin wot + n(t)
xl(t)‘[isin wot + nlt) (5.39)

r(t)

so that G(t)= [1 0 O --- o]Tz“sinwot.
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First, we shall examine the variance equation, which is:

vfl(t) VOV () s vty ()

2
, [TVt Vi) MEALASEAL I

dV(t) = FV + VF' +X- — . sin'wot

dt Ny

a J

From this equation, it is found that the (i,j)-element of V{(t) satisfies:

—v..{t) = - wivlj(t) - ‘hjvlj + Vi+1,j(t) + Vj+1,i(t) + Xij -

(5.41)

1
1? vli(t)vlj(t) {1- cos Zwot }

1

vij(t) can be realized as the output of the system diagrammed in

Fig. 5.8. Inspection of the figure indicates that the components of

V{(t) are slowly varying and that the double-frequency signals associ-
ated with cos Zwot have no effect because they will not propagate
through the low-pass filter. Consequently, the variance equation

can be rewritten as Eq. 5.16, the variance equation associated with

the no-modulation case of Example 5.2.1. It follows that V(t) and,
therefore, the estimation performance, are the same for both examples.

We now examine the processor equation under the assumption

that t0= -= so that steady-state conditions exist. The processor
equation is: I
1
d - _ - 1 (V12 ) - ) .
—x(t) = Fx(t) + — ' sin wot {r(t)- xl(t)ﬁsm Wt} (5.42)
dt— - N. |~
i!.
Vim
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The optimum filter is shown in Fig. 5.9a. The signal at the output of
the upper multiplier is r(t)V2 sin wt - il(t) + il(t)cos 2w t. We
observe that il(t) is slole varying so that the double -frequency term
will not propagate through the low-pass filter. This implies that the

processor equation can be rewritten as:

r"11

v
d A ~ 1 12 A ‘
—x(t) = Fx(t) + =|. {r(t)ﬁsmwot-xl(t)} (5.43)
dt N | -

¥ 1m]|

The modified demodulator is shown in Fig. 5.9b.

5.3 Applications when x(t) is Gaussian and r(t) is not

For examples 5.3.1 through 5.3.5, x(t) and r(t) are described

by:
4 xt) = Foxt) + &b (5.44)
dt — = =

and
%—_x(t) = r(t) = glt:x(t)] + n(t) (5.45)
t

In general, we shall assume that F and X are constant matrices so
that x(t) is stationary. In this way, the rational polynomial real-
ization of Appendix Al can be used. The nonstationary case can be
treated by the simple modification of employing the alternate
realization of Appendix Al. Eqn's. 4.5 and 4.6 are the processor

and variance equations.
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Figure 5.9 (a,b) Two Realization for the Optimum
AM=DSB/SC Demodulator
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Example 5.3.1 Single Message, PM, Additive White Noise Channel

Consider the communication model shown in Fig. 5.10. a(t) is
a stationary Gaussian message and n(t) is a white Gaussian process
of spéctral height N, watts/cps. &(t) phase modulates a sinusoidal
carrier whose nominal frequency is large compared to significant
frequencies of a(t). We shall assume that the variance of a(t) is
unity so that B can be interpreted as the modulation index.

The results obtained in this example are typical of those obtained
for other memoryless, nonlinear modulation schemes in which signals
in r(t) associated with the message vary rapidly. A close resemblance
exists between the results obtained here and those obtained in the
linear modulation cases of Ex's. 5.2.1 and 5.2.3,

The equations describing the communication model are:

d xt) = Fxit) + &),  alt)= xb) (5.46)
at = =

and
dy(t) = r(t) = Csinlugt+ Ba(t)] + nlt) (5.47)
dt

x(t) is an m-dimensional vector and F and §(t) are the same as
defined for Eq. 5.38. We assume that E[§(t) _£_'(u)]= X8(t-u) is known.

We observe that glt:x(t)]= C sin[ wot + Bxl(t], a scalar. Hence:

e

Dlgit:x)] = |7 |BCcos lwyt + Bxy(t)] (5.48)

After some manipulation, the processor and variance equations,

R ]
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Eqn's. 4.5 and 4.6, become:

V(1)
w0
a 1
—x*(t) = FxX(t) + —| ., BCcos[ubt+ Bxi"(t)] {r(t)-Csin[w0t+ Bx’f(’t)]}
at N, |
' (5.49)
i)
and
4 Uxt) = FVHE) + VHOF'+ X —
at
VHOVAD  vE(vE VAVE (1) i (5.50)
1 VHOVED v (v vE(VE (1) 2
N—l B C[r(t)sin[ubt+ Bxi"’f('t)] +
Y]fm(t)v*ﬁ(t) me(t)vfm(t_)j Ccos[2w0t+28xi"(t)]]

We shall examine the variance equation first. From Eq. 5.50, the

(i,j)-element of V*(t) satisfies:

d . _ i
Evi“j(t) = - ‘,biVi"j(t) lij’l“i(t) + vi"_‘_l,j(t) + vj]'k+1,i(t) + Xij
L gCup(ivi(n £ sinlugt+ Bx)] + (5.51)
N, J
Ccosl2wt +2Bx¥(t)]}

v;‘j(t) can be realized as the output of the system diagrammed in
Fig. 5.11. Let us now conjecture that the components of V*(t) are

slowly varying. We shall find that to a close approximation this is,
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in fact, true. Then the double-frequency terms associated with
cos[2w0t+ Zﬂx’l"(t)] will not propagate through the low-pass filtering,
Consequently, cos[2w0t+ ZBx’l“(t)] has negligible effect and can be
dropped. The input to the multiplier is then r(t) sin[w0t+ Bxj(t)]. It
is through this term that the variance equation is coupled to both

r(t) and x*(t). This coupling is a great disadvantage practically
because V*(t) and, therefore, the structure of the demodulator,
cannot be determined prior to making observations. For this reason,
it is worthwhile to examine r(t) si.n[wot + Bx’l"(t)] critically so as to
obtain any possible simplification. We shall find that a significant
simplification is possible.

Observe that the coupling term may be rewritten as:

r(t) sin[m0t+ Bx’l"(t)] n(t) sin[w0t+ Bxi“(t)] +

C sin[ubt + Bxl(t)] sin[wot + Bxf(t)]

n(t) sin[w0t+ Bx’l"(t)] +
1Ccos B[xl(t)- x’l"(t)] - (5.52)

7 Ccos[2ujt+ Bx(t) + Bxf(t) ]
Again, the double-frequency term can be disregarded. The second
term on the right can be expanded as:
1 1 10 g2 2
1Ccos B[xl(t)— xi"(t)] = {C - ICB [xl(t)- xf(t)] + eeeen (5.53)

Within the approximation for which the demodulator is optimum, all
terms of the expansion except the first can be neglected -- the others

lead to terms of the order of the sixth moment of the error at the
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output of the multiplier, Thus, to a good approximation for small

error, we have:

r(t) sin(yt+ Bxit)) ~ $C {1+ 2 n(t) sin[w t+ Bxp(t)]] (5.54)
C

n(t) is a white process, by which we mean that it has a flat spectrum
at least over the frequency range where it has effect. In reality, n(t)
has a finite variance given by :lec where WC is the channel or
receiver input bandwidth. By increasing the channel signal-to-noise
ratio, CZ/ ZNIWc , it is possible to make the probability of excursions
of 2n(t)/C outside a range around its mean, zero, as small as desired.
since the magnitude of sin(.) is bounded by unity, this implies:

11+ én(t)sin[wot + Bxfn]) ~ 3C
almost always when the sinal-to-noise ratio is sufficiently large. We

conclude that for large channel signal-to-noise ratio:
r(t)sin[wot + Bxi“(t)] ~ 3C (5.55)

The approximations have effected an uncoupling of the variance equation

from r(t) and x*(t) thereby making a practical simplification of

importance. The variance equation becomes:

- -
* * * * cee vk %

VRV VRV o v vEL(©)

vE(t)WWE(t) vE(t)vE(t)  vE(t)vE (1)
9 yat) = Fve + vAFn X- g2 | 18I e 128" Im

dt
ZN1

vam(t)vﬁ(t) “ee v’l"m(t)vfm(t)_

(5.56)

This equation is nearly identical to the variance equation associated
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with the no-modulation case of Ex. 5.2.1 (see Eq. 5.16.) Only the

noise level must be modified. V*(t) can be determined prior to making
any observations, just as in the no-modulation case. It follows from
Eq. 5.17 that the mean-square estimation error, vﬁ » is given by:

L]

2.2 i
1 1og[1+ BC g (w?) ] 92 (5.57)
2c2 2N, a 21

We observe that a useful measure for evaluating the performance of

2N

k =
I

the processor is Bzvi"l » the mean-square error in estimating the total
phase, Ba(t) = Bxl(t).

In the steady-state, the processor equation » E£q. 5.49, leads to
the quasi-optimum PM demodulator of Fig. 5.12a. It is seen that the
subtractive sinuscidal signal results only in double-frequency terms
at the output of the multiplier. Since these will not propagate through
the filter, the subtractive branch can be discarded. The simplified
demodulator, a phase-locked loop, is shown in Fig. 5.12b. Several
interesting properties of the loop filter can be deduced by inspection.
These are similar to the properties observed in the linear modulation
case of Example 5.2.1. The optimum PM demodulator bears a distinct

resemblance to the linear, no-modulation processor of Fig. 5.3b,

5.3.1.1 SpecialCase of a One-Dimensional -Message: PM

As a simple example, consider the one-dimensional message

in the communication model of Fig. 5.13a. For this case, the spectrum

of a(t) is 2k watts/cps so that a(t) has a variance of unity.
2 .2
w +k

Eqn's. 5.46 and 5.47 become:

Z_t (1) = -kx(t) + T2K &t) (5.58)
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m=1
B/x vis ot o+ v{m PR
1 xp(t) = a*(¥)

l.m m=1_ ...
s+?’13 v +(’Jm

Cc cos[wot+ﬂxi(t)]

Phase .
: Modulator
o sin[wot+ﬁx{(t)] -
(a)
po/x v e e v -
r(t) 4% 1 11 Im | x{(ﬂ- a*(t)
4 Sm+ ?lsm-l_'_ ces & Ym
cos[m0t+Bx{(tﬂ
; Phase L —
: 2 Modulato:
(v)

Figure 5.12 (a,b) Two Bealizations for a Quasi-Optimum
PM Demodulator :
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. Phase
Modulator

Ceinlm t+pa( 8]

wi
—~~
ot
~

Analog Message Source

(a)

3('5/1‘1'1 | v* x*(t) = a*(t)
) — >
cos[mot+Bx{(t)]
Piale
Modulator
(v)

Figure 5.13 (2) PM with a One-Dimensional Meseage
(b) Quasi-Optimum Demodulator for a One-Dimensional
Message
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and

—y(t) = r(t) = Csin[w0t+ Bxl(t)] + n(t) (5.59)

The processor and variance equations, Eqn's. 5.49 and 5.56, become:

d BC

—xHt) = -kx}i) + — vp(t) r(t)cos[w0t+Bxi'=(t)] (5.60)
dt N

and 1
d g?c? .2
—VE(t) = - 2kvk(t) + 2k - v (1) (5.61)
dt 2N,

where double-frequency terms have been neglected.

The steady-state solution to the variance equation ia:

2
v’ﬁ = (5.62)

1+ V1+ 824

where A= CZ/ kN1 is the signal-to-noise ratio in the message

bandwidth. The optimum demodulator is shown in Fig. 5.13b. In
Ch. 6, we shall analyze the performance of this demodulator. An
explicit ez;pression for the probability density of the steady-state
estimation error, B[xl(t)- x’l"(t)l is derived. The expression is valid

in all regions of operation including threshold and below.

Example 5.3.2 Single Message, FM, Additive White Noise Channel

Consider the communication model shown in Fig. 5.14a. a(t) is
a stationary Gaussian message and n(t) is a White Gaussian process
of spectral height N0 watts/cps. a(t), which is uncorrelated with
n(t), frequency modulates a sinusoidal carrier whose nominal freq-
uency is large compared to significant frequencies of a(t). We shall

assume that the variance of a(t) is unity. df is then the standard
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deviation of the frequency from W,

The results obtained for this example are typical of those
obtained for other nonlinear modulation schemes with memory.
They bear a close resemblance to the results of the linear, integral

modulation case of Ex. 5.2.2.

The state vector associated with the analog message source

satisfies:
di(t) = Fa i(t) dt + dg(t) (5.63)
where:
- 7 - N
al(t) -‘1!1 1 © 0
az(t) -\l;z 0 1 0
E(t) = 33(t) B Fa = "113 0 0 1 H
fn(t)j __"L’n 0 0—
\,d1)
N, dt)
L) = [ryé0)
dt
Xt]

We assume that E[a{t) a(u)] = A min(t,u) is known. Note that
a(t) = al(t). u(t) is defined by:

du(t) = af(t) dt (5.64)

Define E(t) by:
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[x0(1)]
u(t) x,(t)
x{t) = = (5.65)
- a(t) ’
an(t)_ |
Then x(t) satisfies:
d 4ty = Fx(t) + (1) (5.66)
dt — - -

where F, é(t), and X are the same as defined for Eq. 5.25 of the
linear, integral-modulation case. Note that u(t) = xo(t) and af(t) = xl(t).
The received signal is described by:

+
C sin[wot + dfga( T)dT] + n(t)
S
Csin[wot + dfxo(t)] + n(t) (5.67)

r(t)

so that glt:x(t)] = Csin[wot + dfxo(t)] and

Dlg(t:x)] = d; C cos[wot + dfxo(t)] (5.68)

LO—I

After some manipulation, the variance and processor equations,

Eqn's. 4.5 and 4.6, become:
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Vo]
M
d 1
—x*(t) = Fx*t) + = . dchos[uJ t+dex (t)]{r(t) Csin[w t+d (t)]}
dt N0
(5.69)
vEalt)
and
d ys(t) = FVHt) + VHOF' + X -
dt
VE0MVE(t) VEQUIVEL) " vho(tvE, () oo
VEOVED vEBYE®  vEtvE® |
dfC [r(t)sin[w t+d x*(t)] +
VEvE Vg [ CoosLit 2apg )

We observe that Eq. 5,70 is equivalent to Eq. 5.50, the variance equa-
tion for the PM case. Therefore, the arguments leading to the
simplified variance equation, Eq. 5.56, carry over and Eq. 5.70 becomes:

d vat) = FVHt) + VHOF' + X -

dt

v*o(t)v*o(t) va‘o(t)va‘l(t) v*o(t)v (t)

ol VB BvE(t)  vE(vE(t) v (tva (L)

(5.71)

V* nvgolt) - onttVEnlt)

With a change in noise level, Eq. 5.71 is identical to the variance

equation for the linear, integral-modulation case, Eq. 5.28, By using
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Eqn's. 5.29 and 5.30, we see that the steady-state meanésquare errors

in estimating xo(t;), the integrated message, and xl(t), the message, are

given by:
ZN0 .
vgo = —— f(0) {5.72)
2.2 '
dfC
and
ZNO 3
vi"l = f7(0) + F(0) (5.73)
2.2
3dfC_
where
by 2.2 2
d;C~ S_(w")
£(0) = Xlog[1+ f 2 ]
J ZN0 w 21
and
= 2.2 2
2N d,C” S_(w")
F(0) = ———szlog1+ f a ]d_‘”
d?CZ ZNO wZ 211

-0

A useful measure for evaluating the performance of the FM demod-
ulator is dfzva‘0 » the mean-square error in estimating the total phase,
dfxo(t). Eqn's. 5.72 and 5.73 are important because with them, the
performance can be studied without determining the structure of the
demodulator. The equations have been evaluated numerically for the
Butterworth class of message spectra. The results are presented in
Ch. 6.

In the steady state, the processor equation, Eq. 5.69, leads to
the quasi-optimum FM demodulator of Fig. 5.14b. Double-frequency
terms have been omitted. The FM demodulator bears a distinct

resemblance to the linear, integral-modulation processor of Fig. 5.5b.
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5.3.2.1 Special Case of a One-Dimensional Message: FM

As a simple example, consider the one-dimensional message

in the communication model of Fig. 5.15a. For this case, the spectrum
2k

of a(t) is watts/ cps so that a(t) has a variance of unity.
2 2
w +k

Eqn's. 5.66 and 5.77 become:

d xt)y = Fx(ty + £(t) (5.74)
dt - - :
and
r(t) = Csin[w0t+dfxo(t)] + n(t) (5.75)
where

xo(t) 0 1
x(t) = ; F = ; X
- xl(t) 0 -k

b o

The processor and variance equations, Eqn's. 5.69 and 5.70, become:

d 1 [Voolt)
—x*(t) = Fx*(t) + — dC r(t) cos[wot + dfxg(t)] (8.76)
dt — - N, |v*,(t)
0 L 01
and
d

—VHt) = FVAt) + VHOF' + X -
at (5.77)
v* V* V* V*
1 {70000 00701 42+~ r(t) sin{w.t + d, x*(t)]
001" 00 ol o1

where double-frequency terms have been neglected. The simplified

variance equation, Eq. 5.71, becomes:
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d vxt) = FVHt) + VHYF' + X -

dt (5.78)
2

£

2N

2
- %k b3 S
deC™ VBovbho VEovi

o ["0100 VO1o1

The quasi-optimum FM demodulator for the one-dimensional
message is shown in Fig. 5.15b. In Ch. 6, we shall present the results
of a computer simulation of this demodulator. For the simulation,
v"(‘)o(t) and v*él(t) were generated by both Eqn's. 5.77 and 5.%8. The
results of the simulation indicate that the variance equations are
equivalent and that the approach to steady state is rapid compared to
the message correlation time. The steady-state values for the
components of V* can be obtained from Eqn's. 5.35-5.37 by sub-
stituting ZNO/dt%C2 for Ny. Let A= Cz/kNo, the signal-to-noise
ratio in the message bandwidth, and let B= df / k, the modulation

index. After some manipulation, we obtain:

-2
dgvgo = 464 (5.79)
1
1+ V1+ 2pA2
4B
x = (5.80)
£ V01 92
{1+ V1+ zeAz]
vl o= (5.81)

2
1- B8 4
{11- V1 + zaAf}
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Example 5.3.3 Single Message,FM, ¢ Diversity Channels

The diversity communication system of Fig. 5.16 consists of
a single, stationary Gaussian message transmitted by c
frequency-modulated'signals, each differing only in amplitude, over
c links. Each link has additive observation noise. The model can
also be interpreted as representing a fixed, known, multipath
channel with different gains associated with each path. Other
diversity modulation schemes, such as frequency-diversity FM,
are treated in a fashion parallel to this exarriple.

We shall use the repfesentation for FM of Ex. 5.3.2 so that
x(t) is given by Eq. 5.66.

Let the additive disturbances be independent and white Gaussian.

N is then of the form:

Ny
0
N,
N = (5.82)
0
N
L c
The received signal is:
[~
c, |
Cz
r(t) = |C3] sinlugt + doxo(] + n(t) (5.83)
-CC_

D(g(t:x)] is given by:
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c, C, C; - C
0 0 0

D[_g(t:f)] = |. dfcos[w0t+dfx0(t)] (5.84)
o o o 0

After some manipulation, the processor equation, Eq. 4.5, becomes:

voo(t]
L 1(1:)
. Volthf ey . ~
d xH(t) = FxM(t) ¢ | {ZN—ri(t)} d; cos[ut +d,x4(t)] (5.85)
dt - ‘wq i
Lvon(t.li

when double-frequency terms are neglected.
The variance equation reduces to a linear equivalent variance
equation just as in the PM and FM examples considered previously.
The quasi-optimum, diversity FM demodulator, in the
steady state,is shown in Fig. 5.17. It consists of a maximal-ratio

combiner followed by a scalar FM demodulator.

Example 5.3.4 Single Message, FM, Simple Multiplicative Channel

For the communication model shown in Fig. 5.18, the received

signal is:
¢
r(t) = Cb(t) sin[ubt + dfga('r) d7] + n(t) (5.86)
t

. 0
a(t), the message, b(t), the multiplicative disturbance, and n(t) are

uncorrelated, stationary, Gaussian processes. The nonstationary case
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can be treated in a similar manner.

The simple multiplicative channel does not occur naturally in
practice, but the procedure used here is identical to that use for
Rayleigh channels, Rician channels, and other channels composed of
combinations 6f simple multiplicative channels.

The algebraic manipulations for this example are lengthy so
we shall present only the broader aspects of the derivation.

The (m+lt+k)-dimensional vector, X(t), obtained by adjoining
the (m+l)-dimens:onal state vector associated with a(t) and u(t)

with the k-dimensional vector associated with b(t), satisfies:

d %ty = Fxit) + E(t) (5.87)
dt — - -
where
(xo(t) 7 To 7]
X, & (1)
aty] | x_ (1) A & (t)
x(t) =[Z-|=| ™ ;o &) = m
- E(t) xm+l(t) )‘m+1£m+1(t)
)‘n.1+2£m+1(t)
Xm+k(Y) | Mmtk Sm+1()|

where u(t) = xo(t). a(t) = xl(t) » and b(t) = xm+1(t). F is defined by:
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0 1 0 0 ol
|
0 -y 1 0 |
|
0 -y, O 1
2 : 0
X
0 -y_0 0 F_!'o
F =]— — = — — — ._.I_.________ = _a_:__
|-¢lm+1 1 0 O 0 :Fb
| “Vps2 0 1 0
| _
0 | ¥me3 001
|
: ]
- |-wm+k0 e

n(t) is a white Gaussian disturbance of spectral height N0 watts/ cps.

We shall assume that:

] Xa : 0
ELE(t) £(w)] = X&(t-u) = [-—1——]6(t-u)
o I'X
is known.

From Eq. 5.86 and Fig. 5.18, it is seen that:

glt:x(t)] = C x_ (1) sinlojt + dex(1)]

so that:
- -
X n4h) dfcos[wot +d; xo(t)] —— (row 0)
0
0
D[g(t:x)] = C sin[wot+ dpx,(t) —— (row m+))
’ 0
(5.88)
e 0 —
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Let V*(t) be given by:

Since a(t) and b(t) are uncorrelated, V;b(to) = Vga(to) = 0. Further,
by a straightforward, but tedious, manipulation of the variance equation,
Eq. 4.6, it can be demonstrated that V;b(t) = V}’;';a(t)' = 0 for all time

given the zero initial condition. Moreover, it can be shown that:

d = -
a—V;a(t) = FaV;a(t) + V;a(t) F; + Xa
| (5.89)
VEoIVEO) VEGIVED  vE(VEL® ]
clalp, |YEOVE VEOVEM  vatvEL®
ZN0
LV’" (t)vx 0(t) v* (t)v (t)d
and
Z—ng(t) = Fb V*b(t) + Vv b(1:) F + Xb -
t

(5.90)
— =
matrix of the same form
as for Eq. 5.89 but with

C elements:

(t)v* (t) for

m+1 iY77 'm+l,j

i,j= m+l, m+2,-**, m+k

b -t

where double-frequency terms have been omitted and where an argument
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parallel to that used for eliminating coupling terms in the PM case

of Ex. 5.3.1 has been used. Pb is the power in the multiplicative

disturbance, b(t).

d
dt

|

In the steady-state, the processor equation becomes:

Fx*(t) +

- wy
vgo de xr";Hl(t) cos[wot + df xa‘(t)]

v* d,x*
m

&1 de +1(t)cos[w0t+ dfxg(t)]

vk
Om

k
Vm+1,m+1

dfx’r*n+1(t) cos[wot + dfxa(t)]
sin[ wyt+ dg xa(t)]
sin[wgt + d, x¥(t) ]

E
Vm+1,m+2

vk

sin[ Wt + de xa‘(t) ]

| m+]l,m+k

-l

{r(t) -Cx;m(t)sin[ Wt + dfxg(t)] }

(5.91)

Eq. 5.91 leads to the following two equations for a*(t) and b*(t):

d ax) =

dt

and

[
(Voo
%
c Vo1
= F _a*(t) + —
a= N
0
sk
| V0m|

deb¥(t) r(t) r:os[wot+ dfu*(t)]

(where a*

(5.92)

= u¥* = x*
0 u xo)



d pxt) =

F. b*(t) +
at — b -

— -

*
Vm+l,m+l

sk
C Vm+1,m+2

2

%
Lvrn+1,m+kj
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C

{r(t) sin[w0t+ dfu*(t)] - Z b*(t)} (5.93)

(where b* = b’l")

where double-frequency terms have been neglected. These equation

bear a close resemblance to the processor equations for the FM and

AM-DSB/SC cases of Ex's

. 5.2.3 and 5.3.2. The realization of the

quasi-optimum demodulator is shown in Fig. 5.19. It has an

intuitively appealing interpretation. The structure of the upper

branch corresponds to the quasi-optimum FM demodulator when

b(t) is known and the lower branch corresponds to the optimum

AM-DSB/SC demodulator when u(t) is known. Since u(t) and b(t)

are not known, the demodulator substitutes their best estimates.

Example 5.3.5 Single Message, FM, Rayleigh Channel

A communicati'on model for a frequency-modulation scheme and

a Rayleigh Channel is shown in Fig. 5.20. The transmitted signal is:

s(t:a(t)]

= C sin[wot +d; u(t) ]

The received signal is:

t

C sin[wgt+ dea(T)d'r]

t

(5.94)

r(t) = by(t)C sin[w0t+ dfu(t)] + b,(t)C cos[w0t+ dfu(t)] + n(t)

(5.95)
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where bl(t), bZ(t)’ a(t), and n(t) are uncorrelated Gaussian processes.
bl(t) and bz(t) have identical power density spectra and n(t) is white
with a spectral height N, watts/ cps. |

Let pdt) and ©(t) be defined by:

p%(t) = bi(t) + ba(t) (5.96)
and

8(t) = arctan(b,(t) /‘bl(t)] 0s @8 <2l (5.97)

Then p(t) is Fayleigh distributed and 6(t) is uniformly distributed

between 0 and 2Il. The received signal can now be expressed as:

t
r(t) = p(t) C sin[wot+dea(T)dT + 8(t)] + n(t) (5.98)

*

We shall not present the detailed manipulations required to
determine the processor and variance equations since they are
tedious but straightforward. The derivations closely parallel those
for the simple multiplicative channel.

The (m+1+2k)-dimensional vector, x(t), satisfies:

d xt) = F x(t) + &(t) (5.99)
dt — - =
where
}O(t) ] 0 7
x,() A Ey()
x_(t) A & (t)
() = [™ oEwm o= | ™7
- X m+1(t) Mm+18m+1(t)
x{n+1«:+1 xm+1£m+k+&t)
Lxm+2k_ :‘m+k €m+k+(lt)J
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Note that u(t) = xo(t). a(t) = xl(t), bl(t) = xm+1(t). and bz(t) = xm+_k+1(t).

The matrix, F, is defined by:

F 10 'o
a! !
———' ——————
F= |o :Fbio
TN
|
0 | 0 IF,|

where Fa and Fb are the same as for Eq. 5.87 of the simple

multiplicative channel case.

From Eq. 5.95 and Fig. 5.20, we see that g[t: x(t)] satisfies:

glt:x(t)] = x (€ sin[w0t+ dfxo(t)] +

(5.100)
X k1B € cos[wot +d; xo(t)]
Thus:
Dlg(t:x)] =
% (t)decosfLw t+ d.x.(t)] - x (t)d.sin[w.t+ d x(t)? (row 0)
m+1 f 0 f70 m+k+1 f 0 £f70
0
C sin[w0t+ dg xo(t)] (row m+l)
0
cos[wot +dg xo(t)] (row fri+l+k)
0
0

b s i A
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It can be demonstrated that V*(t) has the form:

| -
Ei;a(t) { 0 :o

0 | th O
I DL

I }
[0 0 VM)

V*(t)

where the equation for Vga(t) is identical to Eq. 5.89 and the
equation for Vi, (t) is identical to Eq. 5.90.

The steady-state processor equation, Eq. 4.5, leads to the
realization shown in Fig. 5.21 when only significant terms are
retained. The two lower branches correspond to the optimum
AM-DSB/SC demodulators for estimating bl(t) and bz(t) when
u(t) is known. The upper branch corresponds to the quasi-optimum
FM demodulator for estimating a(t) when bl(t) and bz(t) are known.,
Since these signals are not known, their best estimates are used.

Let p*(t) and 6*(t) be defined by:
[oH)1% = (b))% + [byn))? (5.101)
and

6%(t) = arctan[b}(t)/b}t)] , o0=ex <21 (5.102)

Then the upper branch of the quasi-optimum demodulator has the
alternate form shewn in Fig. 5.22. This realization bears a
resemblance to the demodulator for the simple multiplicative

channel.

Example 5.3.6 S'ingle Message, PM, Random Phase Channel

The purpose of this example is to indicate that nonmultiplicative

sy
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channel disturbances fall within the scope of the approach and the
procedure for treating a specific instance of such a disturbance.

The communication model of Fig. 5.23 represents the trans-
mission of a phase-modulated signal over a channel which introduces
a random phase disturbance. The model can be interpreted as
representing a phase-modulation system with an unstable oscillator.
®(t) has the spectrum 1/ Tw? watts/cps which is identical to that
used by Edson46 and Develet47 to characterfzedoscillator instabilities,
go(t). £1(t), and nft) are white Gaussian processes; .‘;O(t) and n(t)
have spectral heights of unity and N, watts/ cps, respectively. T is

the time required for an accumulation of one radian (rms) of phase

drift.
Let x(t) be an (m+l)-dimensional vector defined by:
g.f-ic_(t) = Fx(t) + £(t) (5.103)
where _
- -
- -1 T2
x,(t) T 2t
pt) X.(t) N, 8(t)
x(t) =|[----] = ! ;o &(t) = 15
i a(t) . _ .
xrn+1(t)J Lxm 1(t).l -------

and F is defined by:
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Note that o(t) = xo(t) and a(t) = xl(t).

The received signal is given by:

r(t) = C sin[wot + Ba(t) + o(t)] + n(t) (5.104)
86 that
glt:x(t)] = Csinlugt + Bxy(t) + x,(t)] (5.105)
Then
(1]
B
Dlg(t:x)] = f’ C cos[ut + Bxy(t) + x,(t)] (5.106)
_0—4

As in the case of the pure, phase-modulation example, Ex. 5.3.1, the
variance equation, Eq. 4.6, becomes uncoupled from r(t) and 5*(‘t)
when only significant terms are retained. From the processor

equation, Eq. 4.5, we obtain:

e N N
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d_yxt) = ng(t) +

dt
Vit + vttt

C r(t)cos[ubt + Bx‘{(t) + xa(t)J (5.107)

Z |+~

_va'm(t)+ svikm(t)J

where double-frequency terms have been neglected. It is observed
that the equation depends only on two columns of the error-covariance
‘matrix, V¥(t). The quasi-optimum demodulator under steady-state

conditions is shown in Fig. 5.24,

5.4 Applications when Neither *(t) nor r(t) are Gaussian

For Examples 5.4.1 and 5.4.2, x(t) and r(t) are described by:

g—i(t) = flt:x(t)] + E(b) (5.108)
£
and

c%_z(t) = r(t) = glt:x(t)] + n(t) (5.109)

Equations 4.1 and 4.2 are the variance and processor equations.

Example 5.4.1 Single Message, FM, Fixed Channel with Memory

The purpose of this example is to indicate how fixed channels
with memory are treated. The same procedure is also followed for
modulation schemes with linear filtering after a nonlinear trans-

formation.
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The communication model of Fig. 5.25 represents the trans-
mission of a frequency-modulated signal over a channel having a
bandpass transmission characteristic which is known and fixed. The
frequency response of the channel is normalized to unity at the
nominal frequency of the transmitted signal, w.. Let the channel

0
filter be described by the state equation:

x_ ()] |-2e 1][x__ (B 1
d [fm+1' | _ m+l + 2a.C sinfw t + d.x,(t)]  (5.110)
dt |x o of|x (t) 0 ? eo

m+2(t) 0 L m¥2

where z(t) = X +1(t) is the response of the filter to the channel
input, C sin[ wot + dg xo.(t)]. A time-variant channel response can
be treated by simply modifying the filter state equation.

As in the pure FM example, Ex. 5.3.2, a(t) and u(t) are described

by:
Xo(t) x,(t) 0
c = F + . (5.111)
dt ‘
%, (0 Xnlt) Mo 8|

where F is the same as defined for 8. 5.25 of the linear,
integral-modulation case,

The (m+3) dimensional vector, x(t), obtained by adjoining the
2-dimensional channel state vector with the (m+l)-dimensional message
and modulator state vector, satisfies:

t
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where:

x(t) =

xo(t)

x,(t)

x_m(t)

xm+l(t)

_xm+2(t‘
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g(t)

—%s

Note that u(t) = xo.(t), a(t) = xl(t). and sa(t) = X +1(t.). The vector,

flt: x(t)] is given by:

fl:x(t)]

2aC sin[wot +d; xo(t)]

it is observed that f[t:x(t)] is compbsed of a linear and a nonlinear

transformation of x(t). Let F P denote the matrix associated with the

linear transformation. Then:

0 o
0 0

1 0
00
2aC dfcos[ wot + df xo(t)]
0-
(5.113)

The (1,m+2)-element is the only nonzero element in the second matrix

on the right side.
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The received signal is;

r(t) = z(t) + n(t) = xm+1(t) + n(t) (5.114)

where n(t) is a white Gaussian process of spectral height N0 watts/ cps.

We see that glt:x(t)] = X +1(t) and, therefore, that:

F'oj

Dlglgx)] = |- (5.115)

—

The variance equation is coupled to the estimate of x(t) and
there is no apparent way to simplify the equation. Since it is quite
long, but easily derived, we shall not include it here.

The processor equation, Eq. 4.1, becomes:

- -

Ve, m+1it)

Vik,m+1(t)

xxt) = flt:x(t)]  +

1 N
- {r(t) - x*  (t)] (5.116)
at N, m+l

v;1+2,rn+l(t)

When the definition for f[t:x(t)] Eq. 5.116 becomes:
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[0 7
0
d .
—x¥t) = F,x*t)+ | |2aCsin[w,t + d x¥t)] +
s LX ) ot *+ deX§
1
L 0]
(5.117)
va,mﬂ(t) ]
1 Vf.mﬂ“’
- . {r(t) - x® ot}
No .
| Vim+2,m+1(t).
The following two equations are implied by Eq. 5.117:
g ] faw V8 mnlt)
— = F| . + — . {r(t)- x> (1)} (5.118)
at ) N m¥
0 .
*mit)] Fmt) |V in,m+1(t)
and
x* (1) [~2a 17 [x* () 1
dmet o m+l + Hzac sinfwt+ d; x¥(t)] +
dt xﬁﬁz(t) -wy 0 J_;;ﬁz(t 0
(5.119)

1 [’;ﬁl.m-l-l(t

)
. J {r(t)- xx . (t)]

] }
No [Via+2z,m+t

Eqn's. 5.118 and 5.119 lead to the quasi-optimum demodulator shown
in Fig. 5.26.
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Example 5.4.2 Markovian Message, No Modulation, Additive White

Noise Channel

In this final example, we shall consider the simple model of
Fig. 5.27a which cannot be treated by the alternate MAP approach
to continuous estimation. Attention is restricted to the consideration
of a one-dimensional Markovian message, x{t), observed without

modulation in white Gaussian noise. The equation describing x(t) is:

g_t_x(t) = f{x(t)] + &) (%.120)

where §t) is a white Gaussian process of spectral height X watts/ cps.
If f{x(t)] = - k x(t), then x(t) is Gaussian and the model reduces to

the one-dimensional case of Example 5.2.1. Otherwise, x(t) is
non-Gaussian and has a stationary amplitude probability density

given by:
x
plx) = C exp{ 2 Sf(u)du} (5.121)
X

where C is a normalization constant and f(x) is assumed to be
negative for large positive values of x and positive for large negative
values of x. Eq. 5.121 can be derived by use of the Fokker -Planck
equation, Eq. 2.3. This has beexaccomplished by Andronov, Pontryagin,

and Witi:48 and Barrett.49

The observed signal is:
r{t) = x(t) + n(t) (5.122)
whepe n(t) is a white Gaussian process of spectral height NO watts /Cps

Thus, glt:x(t)] = x(t) and D[g(t:x)] = 1.

The variance and processor equations, Eqn's. 4.1 and 4.2, become:
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,'_ —————————————— | n(4)
| &(g) - e 1) ,'?(t), i .d},_‘-r(t)
| f(x) _ |
| £() | |
l - !
b e 1
Analog Message Scurce
(Markovian)
(a)
. .
) —P—®- { O
1 Y
x 0
4 frof

— vE(t)

4 ))

Tigure 5.27 (a) Model for a One-Dimensionmal Markov
Process Observed in White Noise (b) Quasi-Optimum
Estimmtor
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4 wwt) = flxxt)] + L vx {r(t) - x*(t)) (5.123)
dt N, |

and _
d_umt) = 2vet) L fxHt)] + X - & vad(t) (5.124)
a * X ax* N, X

The system for simultaneously generating the quasi-optimum estimate,

x*(t), and the error variance, v;(t). is shown in Fig. 5.27b.
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5.5 Critique of the State-Variable Approach

The usefulness of the state-variable approach to continuous
estimation has been illustrated by several examples, most of which
can also be treated by the MAP approach as well. We note here
several advantages and disadvantages of the state-variable approach
compared to the MAP approach,

Some advantages are:

(1) Insight into the structure of the quasi-optimum demodulator
is provided.

(2)  An important advantage of Kalman-Bucy filtering over Wiener
filtering is its amenability to numerical solutions. Similarly, in those
instances where the variance equation has a linear equivalent (e.g., PM,
FM), this is an advantage of the state-variable approach over the

MAP approach.

(3) Realizable demodulators result directly.

(4) A class of non-Gaussian message and channel disturbances

can be treated. In the communication theory context, it is not yet

clear what usefulness this has. However, applications in control theory
can be given. These arise when it is desired to estimate the state
variables of a nonlinear, dynamic system based on noisy observations
of the state variables,.

Some disadvantages are;

(1) It is necessary that random processes and linear filtering be

representable by equations of state. Thus, Gaussian processes with
nonrational spectra’cannot be treated. A particular linear operation
which arised, for example, in array problems and cannot be treated

~ directly is that of pure delay.

(2) In many instances, the algebraic manipulations are tedious,
particularly when working with the variance equation.

(3) Some useful results can be more readily obtained from the
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solution to the Wiener -Hopf equation (e.g., Eqn's, 5.17, 5.29, and 5.30).

(4) The unrealizable filtering problem cannot be treated easily.

The state-variable and MAP approaches complement each other
in the sense that from different criteria of optimality and different
mathematical techniques, identical estimators are obtained.



V1. Analysis of the Performance of Quasi-Optimum

PM and FM Demodulators

In this chapter, we shall examine the performance of the
quasi-optimum PM and FM demodulators derived in the examples of
the preceding chapter. The PM case will be presented first. An exact
analysis of a quasi-optimum phase estimator for a one-dimensional
Gaussian message process is given; the probability density of the
estimation error is derived. In the FM case, we first consider the
performance for a class of message spectra -- the Butterworth class.
A comparison is made between actual performance and information
theoretical bounds on the performance. Curves indicating the per-
formance under threshold and bandwidth limitations are given. We
then present the results of a computer simulation of a quasi-optimum
FM demodulator for estimating a one-dimensional Gaussian message.

The procedure for analyzing quasi-optimum PM and FM demod-

’ 45 We
assume a familiarity with these procedures, particularly those discussed

ulators has been given by Van Trees>’® and Viterbi and Cahn.

by Van Trees. These authors consider two types of quasi-optimum
PM and FM demodulators. The first corresponds to zero-delay
estimation of the message; our demodulators fall inio this category.
The second corresponds to infinite-delay estimation. The modification
we require for the infinite-delay case is that of post-cascading our
demodulators with unrealizable, linear filters. These filters can be
realized approximately by using delays.

6.1 Analysis of Quasi-Optimum PM Demodulators

The quasi-optimum PM demodulator is shown in Fig. 5.12b. It has
the base-band equivalent shown in Fig. 6.1. This equivalent has been
56,50 and Vi'cerbi.5 1 n'(t) is uncorrelated with
a(t) and is a white Gaussian process of spectral height ZNI/ C2 watts/ cps.

derived by Van Trees

The estimation error, e = a(t)- a*(t), has been minimized by the choice
of the loop filter. The minimum-mean-square estimation error, Ga , is
given by Eq. 5.57 provided the conditions under which the demodulator was
derived are satisfied. These conditions require i-hat the channel
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signal-to-noise ratio, Cz/ 2N,W, , be large; W, is the channel, or
receiver-input, bandwidth. So long as this condition holds, the total
phase error, ¢, is small and, consequently, sin® ~ ¢. As the channel
signal-to-noise ratio decreases, the mean-square-error increases.
Finally, threshold occurs at which point siny cannot be approximated
by ® and Eq. 5.57 no lbnger describes the performance. Thus, afp is
given by:
o
2N, 2n2 2 < o2
ol = 1 log [1 + PC ¢ (wz,]d_-“-_’ provided o’ <9‘2,.
P 2 2N, * “an e
c” 2 1
(6.1) -

°c2:r is the critical value of c:rczp where threshold occurs; it is roughly

0.5 z'ad.2

Eq. 6.1 has been used by Viterbi and Cahn45 to analyze the
performance of quasi-optimum, zero-delay PM demodulators operating
above threshold. The Butterworth class of message spectra was uged.

We shall concentrate on the analysis of the PM demodulator for a
first-otder Butterworth message spectrum. This case was examined
in Ex. 5.3.1,1. The demodulator is shown in Fig, 5.13b and its
base-band equivalent in Fig. 6.2. §(t) and n'(t) are white Gaussian
processes of spectral heights 1 and le/ c? watts/ cps, respectively.

2k

The spectrum of a(t) is watts/cps. a(t) has a normalized

u.)‘2+'k2
variance of unity.
The performance above threshold can be studied by evaluating
Eq. 6.1 or by using Eq. 5.62. The result is:

5> a2
2 . Zﬁ for o> < o

® RV P cr
1+V1+BA 2
A=C/kN1

(6.2)

Eq. 6.2 does not provide an accurate description of the performance
in the vicinity of threshold and below. This region of operation has been
studied by means of aomputer simulation by Zaorski. 1 we shall present
an exact analysis of the performance. The analysis is valid in all regions
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of operation including threshold and below,

The exact analysis is possible because @(t) is a one-dimensional
Markov process for which the associated Fokker-Planck equation can
be solved. Use of the Fokker-Planck equation in the study of phase
>4 'in the USSR. His work

Tikhonov examined cases where

demodulators originated with Tikhonov -’
has been discussed by Viterbi.s1
there was no modulation (i.e., B= 0) and where the loop was not
optimum, Our analysis extends their results to include modulation
and optimum loops.

Referring to Fig. 6.2, we observe that the differential equation
describing a*{t) is:

d sclvx
Caxt) + ka*(t) = 2~ Y11 [sinp+ n'(t)] (6.3)
dt 2N
1
where
v o= 2 2. A= CP N
+y 1+ 1+ B°A

In terms of the total phase error, ®(t), we have a*(t) = a(t) - 1 o(t).
B

Substituting this expression into Eq. 6.3 and using:

daity + ka(t)y = Y2k &) (6.4)
dt

we obtain:

d Bcov =
—Qt) = — kot) — sin@(t) + \(t) (6.5)
dt ZN1 .
where
' 2.2
BC v
At = B2 &) — L oan
2N : T,
. . . . . 4B7kY
is a white Gaussian process having a spectral height watts/ cps

1+vy
where Y = u 1+ BZA . As described by Eq. 6.5, ®(t) is seen to be a
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one-dimensional Markov process. Consequently, p(®), the steady-state
probability density of the total phase error, satisfies the Fokker-Planck
equation, Eq. 2.3:

2 2 . .2
KB Agingpo) + 22EY & pig) = 0 (6.6)
1+ Y 14y do?

:—cp[kcp +

with the boundary conditions, p(+®) = 0, and the normalization require-
»

ment, S p(®) do = 1. Integrating and using the boundary conditions,
L -]

we obta-in:
p(®¥) = C exp {—1—+—1coz + D coscp} (6.7)
| ag%y &y

The constant, C, can be determined by using the normalization require-

ment and the expansion:

exp {-ZIEY—cos cp} = il\’( %) cos v | (6.8)

Vz-eo

where Iv(-) is a Bessel function of order v. The final result is:

exp{- Y 2 4 A coso

2 2
. ply) = L Y (6.9)

\ ' 2
ny A By 2
ze\,_ EI(——)exp{-—- v
+y SV 2 1+ Y }

Some plots of p(¥) fpr ® =0 and different values of § and A= Cz/ kN,

are given in Fig. 6.3. The following observations can be made:

(1) p(o)is not periodic. Consequently, measurement of ® modulo 2101

is not meaningful.

(2) The central lobe of p(®) is always larger than the side lobes.
This implies that the error has a tendency to return to zero

when cycles are skipped,
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282y
1+ Y

p(®) has only a central lobe for small index (B small) PM. This

(3) p(v) has a Gaussian envelope with variance Therefore,

implies that no cycle skipping or threshold behavior will'be
exhibited for small index PM.

(4) For large signal-to-noise ratio, the central lobe of p(®) is

Gaussian with variance ZBZ/(1+ Y) = v’l"1 Bz.

6.2 Analysis of Quasi-Optimum FM Demodulators

The quasi-optimum FM demodulator is shown in Fig. 5.14b. It has
the base-band equivalent shown in Fig. 6.4. The equivalent is derived
in a fashion parallel to that used in the PM case, &t) and n' () are
uncorrelated white Gaussian processes. The spectral height of n'(t) is
ZNO/ c? watts/ cps.

Two errors are of interest: (i) e, = a(t)- a*(t), the error in the
estimation of the message; (ii) ®(t) = dge (1) = df[u(t)- u*(t) ], the error
in estimating the total phase. The mean-square values of ea(t) and o(t)
are given by Eqn's 5.73 and 5.72, respectively, provided the conditions
under which the demodulator was derived are satisfied. These require
that the channel signal-to-noise ratio be large. As in the phase-modulation
case, threshold occurs when the signal-to-noise ratio decreases and
the mean-square value of ®(t), °'c2p' reaches some critical value, Ucz*r‘ A
which is roughly 1/ 4 rad.2 (this value is based on experimental results
presented in Sec. 6.2.2.1.) Egn's. 5.72 and 5.73 no longer describe the
performance below threshold. Rewriting the equations, we have:

o2 = .EEO_ £(0) provided o2 s g° ~1/4 rad. (6.10)
® 2 ® cr
C
and
2N ,
o'2 = 9 f3(0) + F(0) provided o'z‘crzrml/tl rad.z(é.ll)
a 2.2 ® cor
3dfC

where

- e R SRR AT
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- 2.2 2
d: C S_(w)
£(0) = glog[1+ f a dw
) 2N, o2 21
and
- 2 2 2
2N d,C~ S_(w")
F(0) = X 0 log| 1+ f a dw
dZCZ ZN0 wz 211

-8

Eq. 6.11 is the mean-square estimation-error for the zero-delay,
quasi-optimum FM demodulator we have derived. An equation for the
mean-square error of the corresponding infinite-delay demodulator
has been given by Van Trees.5'6 It is:

2N
o g (¥ 9 W
0'2 : a 2.2
& d¢0 duw . 2 . 2 2
inf, = — provided ¢, So_ _ ~1/4 rad.
2N 21 v
del. 2 0 2
- S (W) + w ;
a dz 2 : (6.12)
fC

6.2.1 Performance of Quasi-Optimum FM Demodulators for a Class

of Message Spectra

We have evaluated Eqn's. 6.10 and 6.11 numerically for the
Butterworth class of message spectra. For this class:

2 1/ W, 4
S (W) = —r—— watts/ cps (6.13)
(=) +1
k
where
W = k cps. (6~11)

2n sin (1/ 2n)

is the equivalent rectangular bandwidth of the message. Eqn's. 6.10 and




6.11 now become:

n
. 2
o—f’pﬂ: .1. M X log[1+ AR ]dx (rczpnscrzrxl/4 I“'ad.2
, A {1/ 2n) xz( x2n+ 1) ' :
(6.15)
and |
3
[ -]
2 = 1 sin( /2n) 1 X ABz
a,n_ - log[l + _]dx +
2 (1I/2n) 2
AP 3D Z(xX0 + 1)
(6.16)
3 2
_1_______sin( I/ 2n) j xz log[l + hB ]dx
pg? (Vo) x2(x2 4 1)
2 _ 2 2
o'cp,nitrcrm 1/4 rad.

where x=w/k, A= CZ/ ZNOWn ,» and B= df/k . A is the signal-to-noise

ratio in the message bandwidth (equivalent rectangular) and B is the
modulation index. Eq. 6.15 can be evaluated for n=1 and n= =, The
results are:

-1
crfp L= __iB_A_i_l_ ( from Eq. 5.79) (6.17)
1+ v 1+ 2872
1 -
0% o= ~[ log(1+ 287 + 28ATtanl 1] (Ret. 43) (6.18)
o " 3

1
2

BA

qWe have plotted 1/ ¢ forn=1, 2, 5, and ® in Fig's. 6.5a- 6.8a.

2
%n
A threshold constraint of one-forth is indicated. The curves accurately
# describe the performance when 1/ Gﬁi n 1s above the constraint level.

’

Wk have plotted l/crz o forn=1,2,5 and ® in Fig's. 6.5b- 6.8b.

’

R R R R A
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Figure 6.5a Inverse Mean-Square Error in Estimation of Phase for
a Quagi-Optimum FM Demodulator (First-Order Butterworth Message

Spectrun)
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N= SV (SNR in Message Bandwidth)
01 0 :

Figure 6.5b A Comparison of Inverse Mean-Square Error in Estimation
of Frequency for Zero- and Infinite-Delay, Quasi-Optimum FM
Demodulators and the Information Theoretical Bound on the Inverse
Mean~-Square Error Using Any Modem. The above threshold performance
for fixed B and zero delay is alsoc indicated. (First-Order
Butterworth Message Spectrum)
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Figure 6.6a Inverse Mean-Square Error in Estimation of Phase for
a Quasi-Optimum FM Demoduletor (Second-Crder Butterworth Message
Spectrun)
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Figure 6.6t A Comparison of Inverse Mean-Square Error in Estimation
of Frequency for Zero- and Infinite-Delay, Quasi-Optimum FM
Demodulators and the Information Theoretical Bound on the Inverse
Mean-Square Error Using Any Modem. The above threshold performance
for fixed B and zero delay is also indicated. (Second-Order
Butterworth Message Spectrum)
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Figure 6.7a Inverse Mean-Square Error in Estimetion of Phase for

a Quasi-Optimum FM Demodulator (Fifth-Order Butterworth Message
Spectrum)
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Figure 6.7b A Comparison of Inverse Mean-Square Error in Estimation
of Frequency for Zero- and Infinite-Delay, Quasi-Optimum FM
Demodulators and the Information Theoretical Bound on the Inverse
Mean-Square Error Using Any Modem. The above threshold performance
for fixed B and zero delay is also indicated. (Fifth-Order
Butterworth Message Spectrum)
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Figure 6.8a Inverse Mean-Square Error in Eséimation of Phase for
a Quesi-Optimum FM Demodulator (Infinite-Order Butterworth Message
Spectrum)
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Figure 6.8b A Comparison of Inverse Mean-Square Error in Estimation
of Frequency for Zero- and Infinite-Delay, Quasi-Optimum FM
Demcdulators and the Information Theoretical Bound on the Inverse
Mean Square-Error Using Any Modem. The above threshold performance
for fixed B and zero delay is also indicated. (Infinite-Crder
Butterworth Message Spectrum)
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(The appropriate curve is the one appearing on the extreme right in
each figure; the other curves will be explained below.) 1/ Uazt n’ for

fixed B, is shown only for values of A corresponding to above threshold
performance. The critical value of A for each B is determined from the
1/ Uczp n curves; these values are connected to form the threshold

constraint line labeled 'zero-delay." The followirg cbservations can
be made:

(i) From the 1/ az n curves, the slope of the fixed B lines increases

from about 0.25 for n=1 to about 0.77 for n= «, The slope of the fixed
B lines determines the rate at which increasing A will improve the per-
formance when operating under a fixed bandwidth constraint.

(ii) From the 1/ 0': n curves, the slope of the threshold constraint line

increases from about 1 for n=1 to about 12 for n=«, The slope of
the threshold constraint line determines the rate at which increasing A

will improve the performance when no bandwidth constraint exists.

(iv) For any given value of B and A, the performance improves as n

increases.

For the Butterworth class of message spectra, the equation for

the mean-s8quare error in the infinite-delay case, Eq. 6.12, becomes:

00
. 2
0,2 - sin(1l/ 2n) X dx (6.19)
. (1/ 2n) Lo+ o2 AB2
inf. 0
el.
2 _ 2 2
Tomn - Cor ~ 1/ 4 rad.

where x, A, and B are as defined previously. Eqn. 6.19 can be evaluated
for n=1and n= ®, The results are:

a,l = =1 o2 SO'Zr ~1/4 rad.g

1 ®,1 c
ll;i vl + 2BAZ (6'20)
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and
1 i
o’i = 1- BAZ%tan 1—1—_1— °'c2p’w‘°' r ~1/4 rad.2
2
inf. BA (6.21)
el. '

We have plotted 1/ cr: n for n=l, 2, 5, and * for the infinite -delay

case in Fig's. 6.5b- 6.8b, For clarity, only the threshold performance
line, labeled "infinite-delay," is shown. The amount of threshold
improvement which can be attained by adding delay is evident; it ranges
from 6dB. for n=1 to 2.5 dB. for n = =,

Gobl»‘ick55 hes presented information-theoretical bounds on the
performance attainable with ény modem used for communicating Gaussian
messages whose spectra are of the Buttervorth class. Van Trees 56 has
discussed the use of these bounds for evaluating the performance of
angle-modu3ation schemes, We have included the bounds in Fig's. 6.5b-
6.8b. It is seen that the actual performance of a zero-delay,
quasi-optimum FM demodulator ranges from about 13 dB., for n = 1,
to about 9 dB., for n = =, away from the theoretical bound. These values
are based on the particular threshold constraint level of 1/ 4 rad.2 which
we have choosen to match experimental results mentioned in Sec. 6.2.2.1.
The values increase as the constraint level is made smaller.

6.2.2 Performance of a Quasi-Optimum FM Demodulator for a

First-Order Butterworth Message Spectrum: Simulation Results

In this section, we shall present the results of a computer simulation
of the FM demodulator derived in Ex. 5.3.2.1 and shown in Fig. 5.15b.
The baseband equivalent for the demodulator is shown in Fig. 6.9. &(t)
and n'(t) are uncorrelated white Gaussian processes with spectral heights
of unity and 2N, / c? watts/ cps, respectively. As mentioned in the
discussion of the example, the two time-varying gains, vgo(t) and V'&l“(t)’
were generated in two ways. The first way was by simulating Eqn. 5.77,
the coupled variance equation. The equation is shown in block diagram
form in Fig. 6.10a; the baseband equivélent is shown in Fig. 6.10b. n''(t)
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Figure 6.10WProcessor for Generating Solution to the
Coupled Variance Equation (b) Its Baseband Equivalent
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is a white Gaussian process which is uncorrelated with £(t) and n'(t);
it has a spectral height of ZN0 / C2 watts/cps. The baseband equivalent
of the variance equation is coupled to that of the demodulator by (t), the
error in estimating the total phase, dfu(t). The second way of generating
the two time-varying gains was by simulating Eqn. 5.78, the uncoupled
variance equation. The solution to the equation can be produced by
setting z(t), of Fig. 6.00b, equal to unity, in which case the generation of
the gains is uncoupled from the demodulator.

Three cases are of interest:
(i) The first is that of studying the performance of the quasi-optimum
FM demodulator when the uncoupled variance equation is used and
steady-state conditions exist.

* (i) The second is that of studying the performance when the uncoupled
variance equation is used and transient conditions exist. In this instanece,
the variance equation can be simulated either simultaneously with the
demodulator or in advance.

(iii) The third is that of studying the performance when the coupled
variance equation is used and transient conditions exist. The variance
equation must be simulated simultaneously with the demodulator.

6.2.2.1 Performance with the Uncoupled Variance Equation: Steady-State

In this case, the gains, vgo(t) and V31(t)’ of Fig. 6.9 are constants
which are given by Eqn's. 5.79 and 5.80,

It can be demonstrated that the error in estimating the message,
ea(t) = a(t) - a*(t), and the error in estimating the total phase,

W(t) = df[u(t)- u*(t)], form a two-dimensional Markov process. For this
purpose, we derive the differential equations describing the two errors.
Following the procedure used to derive Eq. 6.5, we obtain:

d C D
o= —kegt) - 1 gingty + R g - D0 0y ]

dt ZNO 2 No

2 2

v d C
g__cp(t) = dfea(t) - _ﬂﬂ_gf_ sin @(t) - [-if—— n' (t)]
t ZN0
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The bracketed expression in each equation is a white Gaussian process.
The two-dimensional vector with e a(t) and o(t) as its components
satisfies an equation of the form of Eq. 2.1 and is, therefore, a
two-dimensional Markov process. Unfortunately, the corresponding
Fokker -Planck equation for the joint probability density, p(éa. ®),
appears to be analytically intractable.

Zaorski52 has simulated the demodulator for the steady-state case
and we have reproduced his results in Fig's. 6.11a and 6.11b. We have
also superimposed the theoretically derived performance curves of
Fig's. 6.5a and 6.5b on his results. The theoretical curves match
the actual performance curves very well above threshold.

6.2.2.2 Performance with the Uncoupled Variance Equation: Transient
Case

We have simultaneously simulated the demodulator and the uncoupled
variance equation in the. transient case. We assumed that at the initial
observation time, to = 0, the message was known to be zero, a(0) 6 0.

The appropriate initial condition for the variance equation is then

V*(0) = 0. The transient solution for two components of the uncoupled
variance equation, va'o(t) and vi"l(t), are shown in Fig's, 6.12-6,15*% ag
the smooth curves. It is seen that the steady-state solution is reached
in about one-{orth the message correlation time. This accounts for the
fact that the long-term (~150 message correlation times) performance
we observed was identical to that.observed by Zaorski.

6.2.2,3 Performance with the Coupled Variance Equation: Transient
Case

We have also simultaneously simulated the demodulator and the
coupled variance equation in the transient case. The same initial
conditions were used. The transient solution for va'o(t) and Vﬁ(t)
is shown as the rapidly varying curves in Fig's. 6.12-6.15. The

* The small discontinuities in the curves are due to truncation errors,




-137-

0’1 0

Figure 6.1la Solid Lines: Experimental Performance of a Quasi-
Optimum FM Demoduletor in Steady-State (from Zaorski’?)
Dashed Lines: Theoretical Performance (from Fig. 6.5a)
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Figure 6.11b Solid Lines: Experimental Performence of a Quasi-
Optimum FM Demodulator in Steady-State (from 2aorski®®)
Dashed Lines: Theoretical Performnce (from Fig. 6.5b)
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Figure 6.12 v(;o(t) for B = 10 and /\ = 1000
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Figure 6.13 v{l(t) for B = 10 and A= 1000
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solutions are seen to vary rapidly around the solutions for the
corresponding uncoupled variance equation case. They reach a stationary
behavior in about one-forth a message correlation time. In Table 6.1, we
have indicated the observed performance for a limited number of values
of B and A, Zaorski's results are also listed. It is observed that the
performance is nearly the same for both cases, even when the
demodulator operates below threshold. We can account for this by
observing that the rapid fluctuations in the gains, vgo(t) and vgl(t),

will not propagate through the low-pass filters of the demodulator

(see Fig. 6.9). Consequently, the gains can be replaced by their
short-term time averages. The result is the same as generating

the gains with the uncoupled variance equation.
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Uncoupled

B A= o2 /Nok sli‘:nrﬁ:ltli:: Varig,x?:leﬂ;‘:mt ion | Variance Equa.tion ,
(Mes, Corr. Times) 1/5"3.1 l/d’i'l l/c"i.l 1/6{'1

10 1000 170 20.4 6'7... 2.0 6.8

10 100 183 2.9 3.5 2.8 3.8

10 Lo Lé 0.9 2.8

50 1000 9 8.2 13.5 7.8 | 13.8

Table 6.1
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Appendix Al.

State Representation for Gaussian Processes

Any stationary, scalar Gaussian process, x(t), with a rational
spectrum approaching zero for high frequencies can be represented
by the differential equation:

dm dm—l
— x(t) + ‘”1 x(t) + o+ x(t) =
dt™ at™1 -
(Al.1)
dm-l dm-Z
M—— ) N, —— g Ay, (1)
gt -l gt™m -2 .
where \111, e, ﬁ:m and )‘1’ e, )‘m are constants and £(t) is a white

»

Gaussian process. As is well-known, x(t) can be realized by the passage
of §(t) through the filter shown in Fig. Al.la. Alternate realizations can
be obtained by representing x(t) by one of several possible equations of
state. A particular state-representation we shall use, of which a
detailed account is given by Zadeh and Desoer,57 is:

d

gxl(t) = X+ x) + a
d
gt_xz(t) = x4+ oxa(h) + O\, )
d -
a.t.x3(t) = -gxt) 4+ ox () o+ X3 &(t)
(AL.2)
d% () = -¢ (1) + x_ (1) + L Et)
EF m-1 m-1"1 m m-1
.d__x (t) = - ¢ x(t) + A &(t)
a ™ m™1 m
where:

x(t) = xl(t)
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Figure Al.1 Two Realizations for any Gaussian
Procees with a Bational Spectrum Approaching
2ero for High Frequencles
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Eq. Al.2 leads to the alternate realization shown in Fig. Al.lb. We
shall represent the equation in matrix notation as:

d xty = Fxit) + &t (A1.3)
dt - -
where
- ‘l’l 1 0 0 - -,\lg(tﬂ
-V, O 1 0 - ng(t)
F= |- ¢3 o 0 1 . é(t) = x3£(t) (Al.4)

. 1

- Wm 0 - 0_ L\mg(t)

Observe that F contains all the denominator coefficients associated
with the rational polynomial realization and, correspondingly, é(t) contains
all the numerator coefficients. Because of this feature, the rational
polynomial representation can be obtained by inspection from the state
representation, and vice-versa. Also observe that the scalar process,
x(t), corresponds directly to one of the components of f(t)'

Any nonstationary scalar Gaussian process which can be represented
by Eq. Al.l with time-varying coefficients, wl(t), ooy wm(t) and xl(t),
xz(t), eee, )‘m(t)’ can equally well be represented by Eq. Al.2 with the
corresponding coefficients now varying. The filter of Fig. Al.lb with

varying gains can be used to realize x(t).
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Appendix A2,

Optimum Linear Filtering of an Integrated Signal in White Noise

In this appendix, we shall derive Eqn's. 5.29 and 5.30.

Let an analog message, a(t), be passed through an ideal integrator to
produce a signal, u(t), which is observed in additive white noise, n(t). Let
the observed signal, r(t), defined by:

‘ +
r(t) = u(t) + n(t) = Xam d7 + n(t)

be available over the interval (-=, t). The spectra associated with a(t),
u(t), and n(t) are rational and will bé denoted by Sa(wz), Su( wz) = Sa(wz)/ wz,
and N, watts/ cps, respectively.

Beginning with the solution to the Wiener -Hopf equation, we shall
demonstrate:

(i) The optimum linear filter for estimating a(t) without delay is given by:

Hope(W) = joffg 1= —322 0 (a2
%a(w )+ NO]

(ii) The minimum-mean-square error, Vaa’ in estimating a(t) without

delay is:
Ny .3
Vaa = T £°(0) + F(0) (A2.2)
where 2
S_(w")
£(0) = \log [1+ _a_]ﬂ (A2.3)
sz 21
and
0 2
S_(w”)
F(0) = ]szo log[1+ a ]ﬂ’ (A2.4)
2 211
-w w'N

0

We also note that as a consequence of the results of Yovits and Jat:zkson42
or Snyder,40 the minimum-mean-square error in estimating u(t) without
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delay is given by N, f(0). This is just a simple application of Eq. 5.17.

Eq. A2.1 is an expression for the closed-loop version of the
Op’cimurﬁ filter shown in Fig. 5.5b.

The expression for Vaa is significant because it involves only the
kpown igput spectra and does not require a determination of Hopt(w) for
its evaluation. An identical expression has been given by Becker,
Chang, and Law’con58 whose derivation is considerably more involved
than that presented here. For the following derivations, we closely
parallel Snyder‘.40

A2.1 Derivation of the Expression for HOpt(w)

From the solution to the Wiener -Hopf equation, we have:

. 2
1 jws (w7)
H (w) = - -
opt S () + N]+ |—S-(w2 s N:l_

u ) 0 Lu ) Q +

jw N
= jw - 1 0 (A2.5)
, 2 + 2 -
[Su(w )+ NO] [Su(w )+ NO] +
where the superscripts '+'" and ''-" indicate spectral factorization

and the subscript '+'" indicates taking the realizable part of a partial
fraction expansion. The bracketed expression in Eq. A2.5 with the
subscript '"+'" is a rational function whose numerator is of degree
exactly one greater than its denominator. This expression has the

form jwk, + k. + [unrealizable terms] when expanded in a

1 0
partial fraction. We obtain k, = YN provided lim S (wz) = 0.
1 0 e U
Consequently:

ijI\TO +k,

Eeh g

 We'shall prove below that kg = N, £°(0) and that lHopt( ) /jwl =1 at

(A2.6)

HOpt( wy = jUJ

W= 0 sothat k, is positive. Eq. A2.1 then follows from Eq. A2.6 by
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using the fact that Su(wz) = Sa(wz) / W,

A2.2 Derivation of the Expression for Vaa

The minimum-mean-square error is given by:

2. dw Zduu
g'l Ju) S(w)_n + 5(11 N, }Jw Hopi() >z

-

From Eq. A2.1, we have:

1 > wZNO + k?;)
’1 - _Ho 1:(w) = (A2.8)
jw OP 3 {wz) + PN
a 0
Let
"""" 1 Lol o )
T opt(w) - ,EHopt(w) €
JU)
where |—Hopt(w) | is an even function of w and Y w) is an odd function
of w. Then:
1 ' 2 1 1
1- —H__(v)]°= (w)‘ - 2{— H__(® ] cos p(w)
l jw opt I ]UJ opt jw opt
Using Eq. A2.8, we easily obtain:
1 | | 2 k(z) - Sa(wz) 1
= H__ (0 |°= to2 = H(w) [coso(y)  (A2.9)
jo P jw

2 2
Sa(¥7) + w'N,

Substituting Eqn's. A2,8 and A2.9 into A2,7, we obtain:
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{kg + 22 N.O-I“%H' t(@ Icos tp(w)}
j

21
R ‘ . _ :
- g{kg + ZuuZNO 1 t(w)i . ' (A2.10)
4 ' jw 211 :
) ~20
We now make the following observations:
(i) Il_ t(LU‘) I =1. To prove this assume that 1 H (UJ)I >1 over
. opt
Jw jw
somie range of frequencies and examine Eq. A2.7. Replacing ,_H (w)

opt
by 1 at these frequencies reduces the mean-square error resultmg ina

contradiction since Vaa is already minimum.

(ii) Hopt(w) wkg/ijNo for large w for otherwise, from Eq.AZ2.10, .

Voa diverges. That Hopt(w) behaves as 1/jw for wlarge can also be
deduced from Fig. 5.5b.

(iii) (Zw N 1 {1 0“t((.v)} duu = 0 for n=2, 3,4, . A simple
_-t n jUJ

application of contour integration shows that the integral is zero for
n= 2,3, since the integrand is right-half plane analytic and behaves

as 1/ W2 for w large.

=» n
(iv) g _1 {L H (w)} ﬂ = 0 for n=1, 2,3, ", The proof is identical
Soden L, TTopt 21Tl ) ‘

to that of (iii).

Using these observations and the logarithmic expansion:

-10g(1—x)=x+-x2+ 1—x3+'-- for |x|<1
3

3
2

Eq. A2.10 becomes:
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2 dw
{kov - 20PN log<1 - __I—Iopt( ))}

w0
v =
aa K jw

2 2)dw
k., - w? Ny log |1 - (w) -
{ 0 gi JUU Op‘t \ fzﬂ

2
W' N, +k
£ Hkg - wZNO log 0 0 }ﬂ (A2.11)
-% S (wz) + wZN 21
a 0
Also, {iv) leads to:
d 2
_ dw
0 = Slog |1 '—HO o |~
F w N + k P
= ) 0 dw (52.12)
21

w S(w)+wN

E?Q‘ln' s. A2.11and A2.12 can be obtained from the colored-noise
results of Yovits and Jackson. 42 In this form, however, Vaa is difficult
to evaluate since k0 must first be determined from the integral equation,
Eq. A2.,12. We shall now perform some manipulations which lead to the
convenient expression for Vaa given above,

Let:

3 WEN .+ \ .
£ = —j log 0 dw (A2.13)
L R e

0

We seek \ such that f(\= kg) - 0. Differentiating Eq. A2.13:

%0

d_f()\)=—-g_1 —d_U) = —___1_._
o o PN+ 2 N X

Integrating and introducing the appropriate boundary condition, we

theh obtain:
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fn) = —VZ + 1(0) (A2.14)
No

where f£(0) is defined by Eq. A2.3, Setting ) = kg we then obtain

2 2
kg = N, £50)

(A2.15)
Following the same procedure, let:
oe
2
WN_ + 2
F(\) =j{h - WN, log*f dw
2 2 20l
- Sa((.!)‘) + W NO
Then F(\ = kg) = Vaa Differentiating and integrating ag before, we
obtain: '
)\3/ 2
F(») = 2 + F(0)

(A2,16)
Ny

where F(0) is defined by Eq. A2.4, Letting \ =

kg and using Eq.
A2.15, we then obtain from Eq, A2,16:

N

_ 0 .3
Ve, = 3,\f (0) + F(0) (A2.17)

which is the desired result,
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