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A characterization of modified mock theta functions

Victor G. Kac* and Minoru Wakimoto!

Abstract

We give a characterization of modified (in the sense of Zwegers) mock theta functions, parallel
to that of ordinary theta functions. Namely, modified mock theta functions are characterized
by their analyticity properties, elliptic transformation properties, and by being annihilated by
certain second order differential operators.

0 Introduction

The mock theta functions (also called Appell’s functions [Ap], [KW2]; or Lerch sums in [Z]) of
degree m are defined by the following series:

mn?+ns e27ri(mn(zl +2z2)+s21)

1— e27rizl qn

(0.1) SHm (7, 21, 29, 1) = 2T 3 (1)
nel

)

where m € Zsg,s € Z (resp. m € % + Z>0,8 € % + Z) in case of + (resp. —). These series
converge to meromorphic functions in the domain X = {(7, 21, 22,t) € C* | Im 7 > 0}.

These kind of functions first appeared in Appell’s study of elliptic functions of the third kind
in the 1890’s [Ap]. A number of identities for various specializations of these functions have
been discovered in the attempts to understand Ramanujan’s mock theta functions (hence the
name for the functions ®*™]). On the other hand, it has been understood that the numerators
of the normalized supercharacters of the lowest rank affine Lie superalgebras (of positive defect)
sla)1 and 0SP 35 can be expressed in terms of the functions oEMs] see [KW2]-[KW4]. (For the
higher rank affine Lie superalgebras one needs higher rank mock theta functions, see [KW1]—-
[KW5] and [GK], which are not considered in this paper.)

Consider in more detail the example of the simple Lie superalgebra g = sfy); over C with
the invariant bilinear form (a|b) = str ab. Choose its Cartan subalgebra b, consisting of super-
traceless diagonal matrices. The associated affine Lie superalgebra is the infinite-dimensional
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Lie superalgebra over C :
§=glt,t""]®CK o Cd,

with the following commutation relations (a,b € g,m,n € Z) :
[at™, bt"] = [a, Bt ™ + M —n(alb) K, [d,at™] = mat™, [K,g]=0.
Let /b\ = Cd + b + CK be the Cartan subalgebra of g with the following coordinates for h € H :
h =2mi(—7d + z1(Fa2 + Es3) — 29(E11 + E33) + tK), where 7,21, 29,t € C.

For each m > 0 the Lie superalgebra g has a unique irreducible module V,,, such that K = mIy,,
and there exists a non-zero vector vy, € V;, for which (g[t] + Cd)v,,, = 0. We showed in [KW2]
that the (normalized) supercharacter of V; is given by the following formula (h € b):

stry, el = 62”“77(7')31911 (1, 21)011(T, 22) (7, 21, 22),

where .
(7, 21, 22) = 911(7, 22) @ T123)(7, 21, 220 — 21).

The function (7, 21, 22) is the prototype for a mock theta function in the sense that specializing
the complex variables z; and zy to torsion points (i.e. elements of Q + Q7), one gets mock -
functions in the sense of Ramanujan, see [Z], [Zal.

An important discovery of Zwegers is the real analytic, but not meromorphic, function
R(7,u), 7,u € C, Im 7 > 0, such that the modified function

- 7
BT, 21, 22) = pu(T, 21, 22) + §R(T, 21 — 22)

is a modular invariant function with nice elliptic transformation properties ([Z], Theorem 1.11).
Furthermore, Zwegers introduces real analytic functions R, ((7, ), similar to R(7,u) (in fact,
R(T,u) = Ra1(7,u/2) — R, —1(7,u/2)), such that, adding to a rank 1 mock theta function of
degree m a suitable linear combination of rank 1 Jacobi forms ©,, ¢ as coefficients, he obtains a
modular invariant real analytic function [Z], Proposition 3.5 (see (2.I0]), [ZI1) for our version
of this construction). The latter functions are used in the study of Ramanujan’s mock theta
functions ([Z], Chapter 4).

In our paper [KW3], Section 5, we used the functions R, ¢ of Zwegers (see ([29) for our
version of these functions) in order to modify the (normalized) supercharacter of the sA€2|1—
module V,,,, where m is a positive integer. The normalized supercharacter is given in this case
by the following formula:

EA(T, 21,20, t) stry, e = @ Fm+1.0 (T,21,22,t) — @ Fim+1.0] (1, =22, —21,1),

where R4 is the affine superdenominator (see (Z21)) for its expression).
Following Zwegers’ ideas, we introduced in [KW3] the real analytic modified numerator

CE—HWH_LO] (T7 21,22, t) - ;}E—Hm—i_l’O] (T7 —z2, _Zl)a
where

~ 1
SFMILON( 2y 29 t) = @FMHLO (- 2y 2p 1) — §<I’:d[gl+l’0} (7,21, 22, 1),
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and (I):d[gnﬂﬂ} is a real analytic function (defined by (29)-(2II)) of the present paper), and

proved its modular and elliptic transformation properties. This establishes modular invariance
of the modified (normalized) supercharacter

<;I;+[m+1,01 (7,21, 20, 1) — PHm+1,0] (7, —22, —21, t)) /EA(T, 21, 22,t)

of Vi,.

In [KW4] and [KW35] we study, in a similar fashion, the supercharacters of more general
integrable sfy); (resp. oSp 3|2)—m0dules, which use the functions &+l (resp. <I>_[m78}).

In the earlier paper [KP| close connections of character theory of integrable modules over
affine Lie algebras g and the theory of theta functions have been displayed. The key role in
this theory was played by the fact that the translations subgroup (of finite index) of the Weyl
group of g consists of transformations ¢, € End b, given by formula (7)), where o runs over the
coroot lattice of the simple Lie algebra g. This has lead to a simple characterization of theta
functions (recalled in Definition [[2]).

In the present paper we propose a similar characterization of the modified mock theta
functions

rlms] (T,u,v,t) := =[] (1,0 —u,—v — u,t).

Note that, like in the theta function case, one can construct higher rank mock theta functions
(see Z3), 24)). Moreover, in [KW5] we construct an inductive modification of these functions
and use them to construct modular invariant families of modified normalized supercharacters
for affine Lie superalgebras g, where g is a basic simple Lie superalgebra, different from PSly -
However, we do not know of any characterization of these higher rank modified mock theta
functions, similar to that of theta functions.

The contents of this paper are as follows. In Section 1 we recall the axiomatic definition
of the spaces of degree m theta function Th (see Definitions and [[L4) and their modular
transformation properties, following and (in the case of +).We discuss in detail
the rank 1 theta functions (= Jacobi forms) ©;,, and, in particular, the four Jacobi forms
Yap, a,b=0 or 1.

In Section 2 we introduce degree m mock theta functions @f\? p of arbitrary rank (which are
theta functions if B = (), following [KW3-KW5]. Following and [KW3-KW5| we construct
the modification ®*™] of rank 1 mock theta functions @™, Furthermore, we introduce
axiomatically the spaces of functions FI™551 where m € %Z>0, 5,8 € %Z, and state our main
Theorems and Theorem 2.2 states that for m > 1 and for m = 1, (s, s’) ¢ Z?, the space
FlmissT is spanned (over C) by the modified mock theta functions @™l (resp. @=lmsl) if
s’ € Z (resp. € % + 7). Theorem 23] covers the remaining cases; in particular it states that
in these cases FI™*5 is the span of gt (resp. =[]} if &' € Z (resp. € % + 7Z) and a
holomorphic affine superdenominator.

In Section 3 we give proofs of the main theorems, based on Lemmas [3.TH3.3] and in Section
4 we prove these lemmas.

1 A brief theory of theta functions

Let h be an {-dimensional vector space over C, endowed with a non-degenerate symmetric
bilinear form (.|.). Let m be a positive real number and let L be a lattice (i.e. a free abelian



el.01

el.02

el.03

el.04

el.05

r1.01

el.06a

el.06

subgroup) in b, such that
(1.1) m(a|B) € Z for all o, € L.

This condition means that mL C L*, where L* = {\ € CL | (A\|L) C Z} is the dual lattice.
Let h = h® CK @ Cd be the £+ 2-dimensional vector space over C with the (non-degenerate)
symmetric bilinear form (.|.), extended from h by letting

(1.2) (h|CK +Cd) =0, (K|K)=0=(dd), (Kl|d) = 1.

We will identify b with h* and H with H* using this form. Given \ € H, we denote by \ its
orthogonal projection on . Let

(1.3) X ={heb| Re(K|h) > 0}.

For a function F on X we will say that it has degree m if

(1.4) F(h+aK)=¢emF(h) for all a € C.

We shall use the following coordinates on H :

(1.5) h=2mi(—71d+ z +tK) =: (1,2,t), where 7,t € C,z € b.

Then X = {(7, z,t)|Im 7 > 0}, and q := €2™7 = e~ K,

Remark 1.1. One has an obvious bijection between functions on Xo = {(7,2)|Im 7 > 0,z € b}
and functions of degree m on X :

F(7,2) v F(1,2,t) = 2™ F(7, 2),

the converse map being F(r,z,t) — F(r,2,0). Adding the factor 2™ simplifies the trans-
formation formulae. Given a function F(7,z,t) of degree m, we will let F(7,z) = F(r,z2,0)
throughout the paper.

For a € by define the shift p, of f)\ by

(1.6) pa(h) = h+ 2mio, heD.
Define the following representation of the additive group of the vector space b on the vector
space b :

2 o~
(1.7) ta(h) =h+ (K|h)a — <(a\h) + %(K!h)) K, «a€h, heh.
(We use throughout the shorthand |o|* for (a]a).) This action leaves the bilinear form (.|.) on
b invariant and fixes K, hence leaves the domain X invariant. Let D be the Laplace operator
on b, associated to the bilinear form (.|.), i.e. De® = |h|?e", h € b. In the coordinates (3]
we have:

1 (o0 &/7a)
(1.8) D=~ <2a§—;<a—%> )

where z1,..., 2, is an orthonormal basis of b.



Definition 1.2. Assume that L is a lattice of rank £ (i.e. CL =) and that the restriction of
the form (.|.) to L is positive definite. For m > 0, such that (I1]) holds, a theta function of
degree m 1s a holomorphic function F in the domain X of degree m, such that the following
properties hold:

(i) F(pa(h)) = F(h) for all « € L;
(i) F(to(h)) = F(h) for all « € L;
(iii) DF = 0.

Remark 1.3. Due to (L4) and (7)), property (ii) of a function F' of degree m is equivalent to
the property

(ii) F(pra(h)) = e~ mmlol*=m(alh) p(p) for all o € L.

Definition 1.4. A signed theta function is defined by the same axioms as in Definition [1.2,
except that (i) and (i) are replaced by their signed versions:

(i)— F(pa(h)) = (=1)™PF(h) for all a € L,
(i)~ F(to(h)) = (=)™ F(R) for all o € L.
(Then, (i)' is replaced by (ii)_ with the sign (—1)™°* inserted in the RHS.).
In order to construct theta functions and signed theta functions, let
Leven = {a € L| m|a|? € Zeyen}, Lodqd = {o € L| mlal? € Zoaa},

and let R
P ={Xeb"| (\K) =m, (AL) C Z},

N 1
P ={xe b’ (A\K)=m, (MLeven) C Z, (A|Loaa) C 3 +Z}.

Note that, for A € b, such that (A|K) = m, among the vectors {\—aK|a € C} there is a unique
2

isotropic one, for a = % Hence, in view of axioms (ii) (resp. (ii)—) and (iii), we construct, for

A € PF (vesp. A € P;) the theta function ©F (resp. signed theta function ©}) by

2
(1.9) OF = ¢ o K 37 (1)l ete ),

acl

The series (L9) converges to a holomorphic function in the domain X and obviously satisfies
the axioms (i), (ii), (resp. (i)_, (ii)_), and (iii). Note that

(1.10) OF, psar = (D)™ 0T forae €y e L.

In coordinates (LF) we have the usual formula, where \ € P

(111) @;\t(T, Z,t) — 2mimt Z(il)m|a\2q%l\a—i—%‘?e%rim(a-l-%\z).

acl



Recall the action of the group SLy(R) on the domain X in coordinates (LI):

a b _fat+b 2 c(z]2)
(1.12) (c d> (T’Z’t)_<c7'+d’c7'+d’t 2(ct +4d) )’

This action induces the right action of weight w & %Z of SLy(R) on functions in X :

. 2)(7, 2t) = (er +d)UF <<‘C‘ 2) (r, z,t))

(Actually, this is an action of the double cover of SLy(R) if w € 1 + Z.) The square root of a

w

(1.13) F

complex number a = re?, where r > 0, —m < 6 < =, is, as usual, chosen to be a? = rie7. As
usual, we will discuss the actlon of its subgroup SLy(Z), which is generated by the elements

0 -1 11
S—<1 0> and T—<0 1>.
Denote by Th' (resp. Th,, ) the space of holomorphic functions on X of degree m satisfying

properties (i), (ii) (resp. (i)_ , (ii)_ ), and (iii).

Theorem 1.5. Let L be a positive definite lattice of rank £ and let m be a positive real number
such that (I1) holds. Then

(a) The set of theta functions {© | A € Pt mod (mL + CK)} is a basis of the space Thy,.
(b) One has the following modular transformation formulas for A € P :
02

of | | me HlmLrt 3 e oo

S

P mod (mL-‘,—(CK)

(¢) Provided that m(a|a) € 2Z for all a € L, one has

0/2

hence the space Th} is SLs(Z)-invariant.
Proof. The key formula for the proof is

(1.14) (DF)| = (et +d)*D(F
A

See [KP] or [K2], Proposition 13.3, Lemma 13.2, and Theorem 13.5, for details. O

a b . 14
A), A= <c d) € SLy(R), if w= 3"

Theorem 1.6. Let L and m be as in Theorem [L3, and assume that L ;45 # 0. Then

6



(a) The set {©) | A € P, mod (mL + CK)} is a basis of the space Th,,.

(b) One has for X\ € P, the same modular transformation formulas for ©,,\ € P, , where
Pt is replaced by P,

hence the space Th,, is SLa(Z)-invariant.
Proof. Uses reduction to Theorem 1.5, see [KW4], Proposition A3. O

Remark 1.7. In view of (LIT]) one sometimes uses a slightly different notation G;m for (L9).

x1.08| FEzample 1.8. Let L = Z with the bilinear form (alb) = 2ab, so that L* = %Z. Then for a
positive integer m we have the following basis of Th,! (7,z,t € C,Im 7 > 0) :

OF (1, 2,t) = Mt Y~ et g rimlnt z)e = 0,1, 2m — 1.
nez

The modular transformation formulae are:
1

ot 1 z ¢ 22 —7\ 2 23_:1 _7rijj/6+ ( t)
1 T Ty Tyt T/ o = o € m i/ T,2,1),
J,m T T 27 2m = J5,m

]:

7r'12

@Im (T+1,2,t) = eW@Im(T, z,t).

Ezample 1.9. Let L and (.|.) be the same as in Example [[8 Then for m € 1 + Z>( we have
the following basis of Th,, :

o, (T, 2, t) — p2mimt Z(_l)nqm(n+21fn1)2647rim(n+21‘7+n1)z’ j=0,1,...,2m — 1.

+_7
R nez
The modular transformation formulae are (i = 0,1,...,2m — 1):
. 1 2m—1
1 =z 22 1T\ 2 mi (1) (j 4L
- 2 (X2 - U+3)0'+3) 9~
@j+%7m< T,T,t 27_> < m) e 2 2 @j,+%’m(7,z,t),
=0
— i 1y2
@j+%7m(7 +1,2,t) = ezmUt2) ®j+%7m(7,z,t).

Note that Thy is 1-dimensional, and is spanned by ©7 , (7,2,t) = —ie™ 911 (7, 22).
2 272
One has the following elliptic transformation formulas:

@;fm(T, z+a,t) = em‘ja@;fm(T, z,t) if am € Z,

(1.15)

T S S
@;-'fm <T,Z—|—E,t> =g ame ’”ZGjﬂrl’m(T,z,t).

r1.10| Remark 1.10. For each m € %Z>0, all the function @;-%m, j € %Z, span a finite dimen-
sional SLy(Z)-invariant space, whose modular and elliptic transformation properties follow
from [KW4], Proposition A3. Especially important are the four Jacobi forms

Yoo(T,2) = @3: (1,22,0), Yo1(7,2) = @;%(7, 22,0),

1
2

7910(7’,2’) = @1— (T, 22’,0), 7911(7’,2’) = Z@
2

1 11
2 272

(1,22,0),

which span an SLo(Z)-invariant subspace of functions, holomorphic in Xy (see [M], p 36, or
[KW3], Proposition A7 for the modular transformation formulas).



Remark 1.11. For an arbitrary w € %Z one should add the following term in the RHS of (L14):
2c(g —w)(er + d)_l(ili—f) .
A

2 Mock theta functions.

In this Section we keep notation and assumptions of Section 1, except for the assumption that
CL = b in Definition (resp. [L4]) of a theta (resp. signed theta) function.

Let B C b be a linearly independent set of vectors, such that the following two properties
hold:

(2.1) (B|B) =0 and h = CL ¢ CB.
Let
(2.2) PE,={rePE| (\B) =0}

For A € Pnf. p Wwe construct the degree m mock theta function @j\'_ p and signed mock theta
function ©) 5 as follows [KW3-5], cf. (L9):

+ _\MQ m|a\2 6)\
’ el [lpep(1 —e?)

This series converges to a meromorphic function in the domain X, and in the coordinates (LX)
it looks as follows:

q%|a+i|2€2mm(a+i|z)

m m

(2‘4) @;\FB(T, z, t) — e27rimt Z(il)m|a\2 - - .
= HﬁeB (1 N q—(a+a|5)e—27rz(ﬁ\z))

Note that for mock theta functions we have an analogue of (LI0]):

(2.5) @f+mv+aK;B = (:l:l)m|“’|2@)i\;B fora € C,y € L.

Moreover, these functions satisfy all axioms (i), (#7) (resp. (i)—, (it)—) and (4i7) for + (resp. —)
of Definition (resp. [L4)). However, not being holomorphic, they are not members of Th
(resp. Th,,)

Ezample 2.1. Let h be a 2-dimensional vector space with basis a1, ag and the symmetric bilinear
form (.|.), given by
|ai|2 = 07 i = 1727 (Oé1|O£2) =L

Let = a1 + aw, so that [0|> =2, let L = Z6 and B = {8 = a1}. Let m be a positive integer.
Then
Pl g ={N, s =md+sm ‘ se€eZ}+CK,

and in coordinates

(2.6) h =2mi(—7d — z1a0 — 2001 + tK) =: (7, 21, 22, 1)



we have:

61_:2 ;B - q)+[m78} (7—7 Z1, %22 t)v
where
mn2+ns ,2mi(mn(z1+22)+s21)
2mi q €
(27) q>+[m,8] (7—, 21,22, t) =€ mimt Z 1— e27ri21 qn

nez
Now, let m € 2 + Zsg. Then
Prp={Ans=md+sa | sei+7}+CK,

and in coordinates (2.6) we have

9;7} "B (I)_[m7s}(7—7 21, 22, t),
where
2 .
B ) qmn +nse27rz(mn(zl+zg)+szl)
(2.8) OISl (7, 2y, 29, 1) = 2™ Z(—l)n 1= iz gn

nel

Unlike the (signed) theta functions ©3, the (signed) mock theta functions O3 ; with B # (),
have neither good elliptic transformation properties analogous to (i) and (i) (resp. (i)_ and
(ii)—) of Definition (resp. [L4), nor good modular transformation properties, given by
Theorem [LH (resp. [LO]). It was S. Zwegers, who showed in Chapter 1 (resp. 3) of his beautiful
paper that, upon adding (in our notation) to =133 (resp. ®T[™0) a real analytic, but
not holomorphic, “modifier”, the modified function does satisfy beautiful elliptic and modular
transformation properties. His results were extended to all functions ®=™l described in
Example 271 in [KW3] and [KW4].

Moreover, we showed in [KW5] that, under some assumptions on L and B, the modified
mock theta function (:))i\ p» by making use of the function :Isi[m’s], satisfy nice elliptic and
modular transformation properties as well. We used this in [KW5] to show that the character
of “tame integrable” modules over affine Lie superalgebras have nice modular transformation
properties.

Let us recall the construction of the modified mock theta function ®*™! and their trans-

formation properties from [Z], [KW3], [KW4].

ForxzeR, t,zeC, Im 7 >0, mE%Z>0, andnE%Zlet

* I I
B(z) =2 / e du, and Y (T, 2) = (n oI Z) m 7
0

Im 7 m

For m € %Z>0, je %Z let
n—j min? .
(29)  Ri,(r2)= > (£1)% (sign(n — & —j +2m) — E(mn(r,2))) e~ 2m 7+,

nE%Z
n=j mod 2m




e2.12

e2.13

e2.14

e2.15

e2.16

e2.17

e2.18

and define the modifier

: 21— 2
(2.10) @:JZI’S](T, 21, 29,1) = 2™t Z Rfm (7’, %) @;m(T, 21 + 22).

JESHZ
s<j<s+2m

For m € %Z>0 and s € %Z define the modified mock theta function

£ 1 m,s
(2.11) Hrlmss] — tlms] _ 5(1):(1[(17 I
It is proved in [KW4], Corollary 1.6(a), that ®=[™ remains unchanged if we add to s an
integer.
As in [KW3-5], consider the following change of coordinates:

(2.12) n=v—u, 29=-v-—u, i.e.u:_zlJrzz, A
2 2
and let
(2.13) (,Di[m’s] (1, u,v,t) = PEim.s] (1,21, 22, 1), (;‘D“:I:[m,s} (7, u,v,t) = PElm.s] (. 21, 20, ).

The action (LI2), (LI3) of SL(2,R) for w = 1 on functions on X in the coordinates
(1,u,v,t) looks as follows:

ar+b wu v c(u? —1)2))

2.14 t) = d)~1 t—
( ) <,0|<ab>(7',u,v,) (er +d) (’D<c7'+d’c7'+d’c7'+d’ ct+d

cd
Here and further on we skip w from notation ([LI3]) if w = 1.
We will use two coordinate systems of the vector space Cr 4 Cu, viewed as a 4-dimensional
vector space over R :

(2.15) T, Ty v, D
and
(2.16) T=x+1iy, T=x —1y, a, b, where v =ar —b.
We have:
(2.17) 20 =747, 2iy=7-—7, 2iya=v-—10, 2iyb=7Tv—T0U.
Hence
0 0 0
(2.18) Vi= oo e = <2y

When writing %, %, %, % (resp. D;, Dz, %, %), we mean partial derivatives with respect to

coordinates ([2I0) (resp. ([2I6). As in [Z] and [KW4], coordinates (2.16]) play an important

role in what follows.

10



t2.2

t2.3

Introduce the following differential operators:
9 0 o\ [0\ 0 9\? 99 99
(2.19) D= 4§E+<8?}> —<%> , D= 28 D- +<(%> ., A=2a O3 T Budn

Note that, up to a constant factor, D is the Laplace operator, associated to the bilinear form

of Example Il We have formulas, similar to (LI4), for A € SLa(R) :
(2.20) F)|, = (ct+d)*D(F|,), (AF)|,= et +dPA(F|,)

Let m € %Z>0 and s,s € %Z. Let Flms5'l he the space of functions F on the domain X,
i.e. functions in 7,u,v,t € C*, such that Im 7 > 0, satisfying the following five conditions:

(F1) F(r,u,v,t) = ™™t F(7,u,v,0), i.e. F is a function of degree m;

(F2) %11(1,v —u)1(1,v + ) F(7,u,v,t) is a holomorphic function in u and real analytic in 7
and v; %—1;(7', u,v,t) is a real analytic function in all variables;

(F3) for all j,k € Z one has:

(i) F(r,u+jv+ ki) = ™0 F(r u,0,1),
(ii) F(r,u+ j7,v + k7, t) = e2mi(s' Grh)+2mkv—ju) m(k*=5%) F(7 4 v, t);

(F4) for all k € Z one has:

(i) F(r,u+ 2,0+ o45,t) = F(r,u,v,t),

(il) F(rou+ 22 0+ 57 1) = 2k F(7 0,0, t).
(F5) DF =0, DF =0, AF =0.

The main results of the paper are the following three theorems.

Theorem 2.2. Provided that m > %, and either s or s’ is not an integer if m = 1, one has

s - 1
Flmiss't — cgtlimsl (resp. = CE™#l) if ' € Z (resp. ' € = 5 + 7).
Theorem 2.3. (a) If m =1 and s,s' € Z, then
]_—[l;s,s’} _ (CQZ—HI’O] ® CEA,

where

3
~ , 9
e2.21| (2.21) RA(TjujfU’t) _ 2mit n(7)°V11(7, 2u)

Y11(7, v — w)di (1,0 +u)’

(b) If m =1, then
]:[%§87s/] - @@H%ﬁ] ® Cﬁi mod 22,0 ifs € Z,

and 1
Flzo9) = g2 @ CRE 1o az1 if 5’ € 52,
where
BB wit DA Vap(T,v)
(2.22) R, (T,u,v,t) = ™ R*(7,u,v,0) Gup(r)’ a,b=_0orl.
ab\T, U

11



t2.4

r2.5

r2.6

r2.7

r2.8

r2.9

Theorem 2.4. If F € Flmss'l then
F‘s e Fimis'sl - qnd F|T ¢ Flmisst+s'+m]

with respect to the action (Z13). Consequently FI™*='l is SLy(Z)-invariant, provided that
m=s=s modZ.

Remark 2.5. The function R4 is the superdenominator for the affine Lie superalgebra sAfg‘l,

and the functions Eﬁ, are the untwisted and twisted denominator and superdenominator for
0SD )2, see [KW4]. Since, by the product decompositions of the function ¥y (see e.g. [M] or
[KW4]), one has

H Q9ab(7_7 u) = 77(7—)31911(7_7 2“)7
a,b=0,1

the functions Eﬁ, satisfy condition (F2).

Remark 2.6. Property (F3) is equivalent to the following two properties:
F(pa(h)) = (=1)*°" F(h) and F(t4(h)) = (-1)*1*PF(h) for all a = niaq + nsas,

where ni,ny € Z and aq, ag are as in Example 2] cf. Remark [[3l Also, property (F4) is
equivalent to the following:

F(pa(h)) = F(h) and F(to(h)) = F(h) for all a= %al, n € 7.

Thus, the modified mock theta functions have more symmetries than the mock theta functions.
Remark 2.7. 1t follows from Theorems and that if f e FlmssT ig a real analytic func-
tion in 7,u,v, then f = 0. Indeed the functions Elms] (t,u,v,t) (resp. RA(r,u,v,t) and
RB (7,u,v,t)) have singularities at the points v —u € Z +7Z (resp. v+u € Z+7Z). It follows
that if o(7,u,v,t) is a function of degree m and f; € Flmis:s'l 5 — 1 2 are such that f; — ¢ are
real analytic functions, then f; = fo.

Remark 2.8. In Definition 3.2 of [Z], Zwegers introduces function f,(u;7) and in Definition 3.4
their modifications f,(u;7). One has:

e2mmtfv(u;7') = —<,0+[m’1} (1,u,v,t).
Furthermore, it follows from Remark 2.7] that
e2mmtﬁ,(u;7') = —<,Z+[m’1} (tyu,v,t) (= —gZHm’O] (1,u,0v,t)).
Remark 2.9. If we replace condition (F2) by a stronger condition

(F2) 911(7,v —u)F(7,u,v,t) is holomorphic in u and real analytic in 7 and v, and %—I; is a real
analytic function in all variables,

:I:[m,s}(

then the corresponding space of functions F'"555'1 is spanned by @ T,u,v,t), where +

(resp. —) corresponds to s’ € Z (resp. €  + Z).

12



Remark 2.10. The operator Dz = % —i—a% satisfies the following commutation relations (recall
that a = ¥=2):

T—

) a 0 B, a 0 0\? 2 9 0
[Dﬂa—f} = r—7ov [DT’E} = r—ro0 [Df’ <a_> ] =T 70000
2 2
e (2)] -2 (2) b 22] Lo (o 2y
o0v 7T —7 \ 0D ov 0v T—700 \Ov OV

From these formulas we obtain the following commutation relations on the space of functions
of degree m :

Rl

[D,D] _ 1671171@A’ A, D] = 87szA’ [A,D] _ _8mm

T—T T—T T—T

A

It follows that condition (F5) can be replaced by
(F5) DF =0, DF = 0.

While the proof of Theorems and is rather involved, and will be given in the next
sections, the proof of Theorem 24 is straightforward from the definition of the spaces Fl7:s:s1
and it is given here.

Proof of Theorem 2.4. By equation (ZI4]) we have for F' of degree m :
v

y t)
T

(2.24) F|S(T, u+jr, v+ kr,t) = e2m8(j+k)e4mm(kw_j“)qm(kz_jz)F‘S(T, u, v, t)

2.23 Pl (r,u,v,t) = —1ezﬂfim(v2_“2)F !
( ) ‘5(7 ) 7) 9
T

T

REES

Using this, condition (F3)(i) gives

Next, replacing j, k by —j, —k and (7,u,v) by (—%, 4,2) in (F3)(ii), we obtain:

(2.25) F|S(7', u+j,v+kt)= e2m8’(j+k)F‘s(T, u, v, t).

Formulas (Z24]) and (Z25) mean that if F satisfies conditions (F1) and (F3), then F| o satisfies
(F3) for Flms's]

Similarly one shows that if F satisfies conditions (F1) and (F4), then F| o satisfies condition
(F4). Also, by (L14) and [Z20), F| o satisfies condition (F5) if I does, proving the first part
of the theorem.

In order to prove the second part, it suffices to show that if F'(7,u,v,t) of degree m satisfies
condition (F3)(ii), then F(7 + 1,u,v,t) satisfies that condition with s’ replaced by s + s’ + m.
This is straightforward. 0

13



3 Proof of Theorems 2.2] and 2.3l

In order to prove Theorem and 23] consider the space GI™%5'] of functions G(1,u,v,t),
satisfying the following conditions:

(G1) G(r,u,v,t) = ™™ G(1,u,v,0);
(G2) G(7,u,v,0) is a holomorphic function in u and v, and real analytic in 7, Im 7 > 0;
(G3) for all j,k € Z one has

(i) G(r,u+jv+ ki t) = ™ UHRG(r, 0,0, 1),
(i) G(r,u+ jr,v + k1, t) = e2mi(s GHR+2mkv—ju)) 2mim(kF2T=3*T) (7 4y, v, t);

(G4) for all k € Z one has:

(i) G (T, u+ o0+ o=, ) = G(1,u,v,t),

2m>

s’ 2
(ii) G (7’ u+ 2m,v + Lz t) e2mik(v—u) eTI:L(T_T)G(T,u,U,t).

2m?

(G5) DG =0, (452 + (%)) G =0,

Next, we construct a linear map F — 0 from the space FI™55 to the Space glmss'l show
that © [m s lies in Fl™s5] where + (resp. —) corresponds to s’ € Z (resp. € 3 Ly 7), and that
the image of this function spans G [mis.5'l The last step of the proof is the study of the kernel
of this map.

Given a differentiable in v function F' = F(7,u,v,t) of degree m in the domain X (i.e.
T,u,v,t € C,Im 7 > 0), let

e3.1| (3.1) Op(T,u,v,t) = y_%e47rm“2yVF = —2iy§e4ﬂm“2yg—€,
where V is the operator, defined in ([2.I8]). We shall prove that

e3.2] (3.2) Ozim.a = —2¢/m OF™],
where

e3.3] (3.3) O (7, 0,0, 8) = 2T Z @ 7)0* Zim(752u).

j€s+7Z mod 2mZ
Theorems and follow easily from the following lemmas, where m € %Z>0, s,8 € %Z.
13.1| Lemma 3.1. For F € FImssT we have: O € glmis:s'l,
Lemma 3.2. (o) G551 = COTIM3 (resp. = CO~I™3)) if ' € 7 (resp. € 1+17),
(b) gEimsl e Flmiss'l where + (resp. —) corresponds to s' € Z (resp. s' € 3 + 7).
(¢) Formula (32) holds.

14



L3.3

Lemma 3.3. Let F € FI™ss'l pe such that 0p = 0.
(a) If m > 1, orm =1 and (s,s') ¢ Z?, then F = 0.
(b) If m=1 and s,s' € Z, then F € CR.

(¢) Ifm =3, then F € CRE, 10492, 29 mod 22-

Now we give proofs of Theorems and 23] using these three lemmas. Proofs of the latter
will be given in Section 4.

Proof of Theorem 2.2. Let F € F™s5'1 then 0p € G5 by Lemma Bl Hence by Lemma
(a),

1
0p = c 07 (resp. 7™ if ' € Z (vesp. € 3 +Z), where c1 € C.

Hence, by Lemma B.2] (b), (c),

9F+ zc\jimg’b’i[m,s] - 07

and therefore, by Lemma B.3)(a),

C+ ~+[m,s] _
Pt —0,
+ 37"

proving Theorem O
Proof of Theorem 2.3. Let F € FI™s51 Then, by [33) and Lemma 33 (b) and (c) we have:
(3.4)

Py =

2ym

- =4 . = . 1
(,D:t[m’s] S (CRA if m=1 and S,S, S Z (reSp. S (CR2B; mod 27, 2s’ mod 27 if m = 5)

It remains to check that the functions R4 (resp. ﬁﬁ) , given by (ZZI) (resp. ([Z22) lie in
FUI00 (resp. in Flz5T if ¢ = 25 mod 2Z,b = 25’ mod 97). Property (F2) is obvious for R4
and it follows from Remark 23] for RB. Properties (F3) and (F4) of these functions follow from
the elliptic transformation properties of ¥4, a,b = 0 or 1, n € Z, which can be easily derived

from [M], page 19:

n an(l—n)
(35) 19ab(7_7 z+ 5) = (_1)abn+ 2 19a,b+n mod 22(7_7 Z),
n b 2
(3.6) ap(Ty 2+ =7) = (—z)b"q 8 e """ Vgtn mod2z.,p(T, 2).

2

Finally, the functions R4 and Eﬁ being mock theta functions, due to the denominator
identities (cf. [KWT], |[G], |[GK]), lie in the kernel of D, and trivially they lie in the kernels of
D and A, hence satisfy (F5). O
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4 Proof of Lemmas B.1] —

First, we prove the following lemma, which gives one of the inclusions of Lemma B.2(a). Its
proof is along the same lines as the proof of Proposition 13.3 in [K2].

Lemma 4.1. Let m € %Z>0 and s € %Z, let 8 =0 (resp. = %), which corresponds to +
(resp. —) case below.

(a) If g(T,u,v,t) is a function, satisfying conditions (G1)-(G3), then

g(T,u,v,t) = e2mimt E Cnp (T)E ™
n,n’'€s+7 mod 2mZ

(et (—7.20)0F, (7, 2u)

for some real analytic functions ¢, n/(7) in 7, Im 7 > 0.

(b) If, in addition, g(T,u,v,t) satisfies condition (G5), then

mis’

_ 2mimt n+n') 0+ - o= +
g(T,’LL,’U,t) =e E Cnn/€ ™ ( )@n,m(_ 72v)@n’7m(7—7 2u)
n,n'€s+7Z mod 2mZ

for some ¢, ,,» € C.
(c) If g(T,u,v,t) satisfies all the conditons (G1)-(G5), then
g(ru,v,t) = ¢ 08 (7 w0, 1),
where ¢ € C and ™3] s given by (Z3). Consequently glmiss'l < coEimsl,

Proof. First we prove (a) in the case s’ = 0. Since, by (G2), g(7, u, v, ) is a holomorphic function
in u, and it satisfies (G1) and (G3) (i) for & = 0, we have its Fourier series decomposition in v :

(4.1) g(T,u,v,t) = *mmt Z Ap (7, v)e?mints)u,

nez

Hence we have:

(4.2) g(T,u+ jr,v,t) = e27rimtZAn(T7U)e27ri(n+s)uq(n+s)j7

nel
—drimju —mj> 2mimt —mj? 2mi(n—2mj+s)u
€ J q J g(T,u,v,t) =€ E An(T7v)q e ( i+s) )

nez
(43) e .
_ e27r2mt Z An+2mj (T, ,U)q—mj2e27rl(n+8)u‘
nez
Due to (G3)(iii) for k = 0, comparing the coefficients of >7("+5)* in the RHS of ([@2) and @3J),

we obtain: ‘ .
An(T,U)q("+S)J = Aptomj(T,0)g"™".

Hence we have:

_ (n+s)2

(4.4) B, = Byiomj, where B, = A,q~ im
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e4.06

e4.07

e4.08

Substituting this in (ZI]), we obtain:

(4.5) g(T,u,v,t) = ¥mimt Z By(1,0)0 ¢ (T, 2u).
pEZ mod 2mZ

Next, we compute the coefficients B, (7,v),p € Z. Since, by (G2), By(7,v) is holomorphic
in v, by (G3)(i) with j = 0, we have its decomposition in the following Fourier series:

(4.6) By(1,v) = Z a%p) (7_)627Ti(n+5)17‘
neL

Arguing as above and using (G3)(ii) for j = 0, we obtain
(4.7) P () = ey (1), where ) (7) = alf) (7)e B (74,

Substituting this in ([£.0]), we obtain:

(4.8) By(r,v)= Y P(r)eh,, . (~7,20),
p'€Z mod 2mZ

which completes the proof in this case. The proof in case s’ = % is similar.

In order to prove (b), we apply D to both sides of the formula in (a) to obtain, using (G5):

3 a n,mn — —
0 = 8rim e*mimt Z T AT) 87'( )Gi m (=T, 21))@1,7 (1,2u)

n,n'€s+7Z mod 2mZ
: d 9\
+ e2mimt Z Cmn/(T)@im(—T’, 20) <8mm— - ( > ) @i (T3 2u).
n,n’'€s+7 mod 2mZ

Since one has

(4.9) <8mm a% - ( aau>2> O (7, 2u) = 0,

acn,n’ (T)

or
Similarly, applying 4
In order to prove (c), i

we deduce that

m)Q we deduce that 80”87"_'(7) =0, proving (b).

ntroduce the following functions, for m € Z>0, j k€ Z

— 0.
didr T (

h;’%k(Tv u, U) = @;l?m(_? )Qi

) m(T, 2u).
These functions have the following elliptic transformation properties, which follow from (LI5]).

wi(j—k)
hfk (T,u+ P ,U+ —) —e m ph;-tk(T,u,’U), pEL;

2m’ 2m
(4.10) i
hfk (T7u+ #,v—k #) = e2m (T77) 20— “)h]i k1 (T u,v).

By (b) we have:

7\'7“5
g(T,u,v,t) = >t E Cp,—m/ € m (n— ")hi (T, u,v),
n,n'€s+7Z mod 2m7Z

17



L4.2

L4.3

ed. 11

where ¢, _,y € C. Using [I0), and condition (G4)(i), we obtain that ¢, _,» # 0 only if
n —n' € 2mZ, hence

_ 2mimt +
g(T,u,v,t) =€ § Cnhn,n(Tvuav)'
nes+7Z mod 2m7Z

Using ([AI0) and condition (G4) (ii), we deduce that all the ¢,’s are equal, proving (c). O
Lemma 4.2. The functions g+ (T, u,v,t) satisfy the elliptic transformation properties (F'3).
Proof. Tt follows from [KW5], Theorem 1.5(c). O
Lemma 4.3. DFE™sl(r u, v, t) = 0, where D is defined in (Z13).

Proof. Letting

1

Jonl7,0) = <E> et
Y

and using (ZI7]), we observe that

(4.11) <8mm§ + (;)2) fm(7,0) = 0.

We claim that
0 +[m,s
(4.12) D <%(pad[d }> =0,

where cp;cd[gl’s} (1,u,v,t) is obtained from CID;ECI[?’S} (1,21, 22,t) given by (2I0), by the change of

variables (Z12]).
Indeed, by Lemma 1.7(1) from and using (ZI8]), we obtain:

0

(4.13) %Rfm(n v) = 2i frn(7,0)07,, (=7, 20).
Hence 9
pr ;td[gn’s](T u, v, t) g2mimt Z fm(T,0) -7, )@f]m(T, 2u).
v JESHZL
s<j<s+2m

Applying D to both sides of this equation, we obtain

0 il 0 (0N (0N O iims
P <a@ Padd > <8mm 8T+<8v> ou) | ag Pedd =0

using (A9) and (@II)). Hence [@I2) is proved.

Next, DpElmsl = 0, since =™ is a mock theta function. Hence D@*lms] = Dgofd[gn 1 s
a real analytic function, since gpgtd[gl’s] . On the other hand,
d J 4 0 +
;D :I:[m s] avD(pad[? ] _ Daf ad[gl sl -0

18



L4.4

by ([@I2]). Hence, being real analytic, the function D@5l ig holomorphic in v.

Since D commutes with the transformations p, and t, (defined by (L.6) and (L)), it follows
from Lemma @2 that DZ+"s! satisfies (F3) as well. Hence, letting ¢ = D@Ems! for short, we
have, in particular:

O(ru,v+2,t) = (r,u,v,t) and (T, u,v — ST (1 w0, t).
Now, by (@F) and (@8), we have:

(4.15) = du(7,v),
, we have by @) and (EI5):
flo+2)=f(v), flv=27)=f(v),

and since v is holomorphic in v, f(v) is holomorphic in v as well. Thus f(v) is a bounded
holomorphic function in v € C, hence f(v) is constant in v. Since ¥11(7,0) = 0, we deduce that
f(v) =0, hence ¢ = 0, proving the lemma. O

(4.14) 27,t) =

7911(7’,?} +2) 1911(7',’[) — 27’) = €4m(v_7)1911(7',’l)).

Letting f(v) = ¢(7, u, v, t)d11 (7, v)2™

Lemma 4.4. Let f = f(7,u,v,t) be a real analytic function of degree m on the domain X.
Then

(a) The function 05 (defined by (31])) is holomorphic in v if and only if Af = 0.
2
(b) (Swimgs + (%)*) 0y = 0y
(c) If Af =0, then DOy = 6py (see (Z19) for the definition of D, D, and A).
Proof. Let, for simplicity of notation, g = %Hf. Then, by 31,

g = y%e47rma2ya_]j.
v

In order to perform the computations of partial derivatives, we will need the following formulas,
which are immediate by (ZI7):

(4.16)

wm %1 % 1 da_ia oy 1 00
‘ ov 2y’ oo 26y or 2 or 2 o T 0ov
Using the first of these formulas and ([£I6]), we obtain:
? — _ %e4wma2yAf’
v
proving (a).
Using (4.16]) and ({I7)), we obtain:
89 I 1 Arma® af 2 _4Amrma? 8f 1 4rma? 62]0 Arma?
(4.18) 5 = Y Ze y@v - 27szy2a Y= —y2 y8172 + y D:f,
dg L1 trma2y OF drma2y O 14 azf
4.1 g - mma’y YJ 2 ma?y Tma?y
(4.19) or = 1V ¢ g amimyBet T an R
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4rma’y 82 f

829 drma? af 1 9 47rma 8f
"g5 ~ (rm)y "o ov?

—= =—=2m™m 2e 2a
2 v EDl v

(4200

+ 8mmiy2 Sae

3
4rma?y Y J f
o3

Multiplying ([4I8)) by 8mim and adding to it ([£.20]), we obtain (b).
Similarly, we find

+ye

629 4rma? 8f 2 47rma af 4mma? 82f 1 Arma? 83f
w——%rmy Ze v e —(47m)%y e % —8mmy2ae y—ava@ +yze yaqﬂa@‘
If Af =0, we can replace in this formula % by 4Wima%, hence we have
829 4rma’® 8f 2 47rma af 1 4rma? a3f
(4.21) 02 = —2mmy 26 ya?} (4mm ) yaﬁ t+yze yav2a@a
provided that Af = 0. Multiplying [I9) by 8mim and adding to it (21, we obtain:
2 2
(4.22) <8mmaa §2> g= yze4”m“ y;} <87szaa 0 > 1
provided that Af = 0. Subtracting from (€22 the equation
829 L1 Arma? y 2 0 82
quz V€ 00 Ou? 1
we obtain
L arma? 9
Dg =yze Y 55 —=Df,
provided that Af = 0, proving (c). O

L4.5| Lemma 4.5. Let m € %Z>0, 5 € %Z, and let f = f(7,u,v,t) be a function of degree m on the
domain X, which is real analytic in v. Let j,k € Z. Then

(a) f(r,u+ j,v+ k,t) = ™UHE) f (7w, v, t) implies that
0r(T,u+ j,v + k,t) = 250K (1 0,0, ).

(b) f(r,u+jr,v+k7,t) = (i1)j+k€4mm(k”_j“)qm(kz_jz)f(T, u,v,t) implies that
Of(m,u+jr,v+ kr,t) = (il)j+ke4”im(k5_j“)e2m‘m(k2f_j27)Hf(T, u, v, ).

(¢) f(ru+ 2m,v+%,t) = f(7,u,v,t) implies that
0p (T,u+ oo, v+ o t) = 0p(7,u,0, ).

(d) f (T,U + 5—;1,11 + %,t) = e2mh(—u) f (7 4 v, t) implies that

O (1, u+ 5—;,’0 + %,t) = 62”1‘3(5_“)6“2% (7= T)Hf(T u, v, t).
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('u T
(4.23) 0(T,u,0,t) = —(20)2 (1 — 7)2e 2T T o of

L4.6

Proof. (a) is obvious. In order to perform calculations, it is convenient to rewrite the definition

BJ)) of b, using 2.17) and 218, as follows:

v
It is clear that it suffices to prove (b) for j = 0. By the assumption on f, we have, using (£.23)):

Of(T,u,v+ kT, t)

(0—1)2 s _
—Z +2k(v—v)+k (T_T)) Amimkv 27r7,mk2 af

. 27rim(
—(22) (7’—7’) (£1)ke 57

——(T,u,v,t)
_ (il)ke4mmk@e2mmk2f9f(7_7uw’t)’
proving (b). The proof of (¢) and (d) is similar. O
Lemma 4.6.

DR, (r,v) = 0.
Proof. First, we compute D;ijm(T, v), using that D7y = %

1

Ly~ 2 n—j min?%
D;Rfm(T,v) = —;y\/%e_‘l’rm“zy Z (£1) 2z (n — 2ma)e” 2m €277,

n=j mod 2mZ

Letting n = j + 2mk, k € Z, in this equation, we obtain:

1
n =Y 2 _srma? ks —omirm(k+=-)° 2mim(k+-L )25
DeByin(m0) = 5 @ my(,;;ﬂ) (j + 2mk)e2miTm(kt g ) 2mim(it 57 )20

_2maZ(il)ke—27ri7'm(k+2{n)2627rim(k+23n)2v>

keZ

1
= —M\/my—%e—‘”mazy (;U@i (—7,20) — 4mima @jfm(—r,%))

1 0
=— (y_2e_47””“ Y @i o (—T,20) — Arimay =z e 4mma y@;m(—f,%)) .

Admy/m 0v

Using that % = ﬁ, we deduce that

1 0 [ _1 _ 2 .
DrRjon(T0) =~ 5% (v 203, (~7,20))
Hence, using formula ([£I3)), we obtain
-1
+ +
DFRj,m(T’ U) = Smim. W m(T’ U),
proving the lemma. O
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L4.7

Lemma 4.7. Let m € %Z>0, s € %Z, and let a € Q be such that am € Z. Then
(a) R;%m(T,U + %) = eWijaR;lfm(T’U).

:l: 3 :l: ’
() o g v+ 21 = GE (7 w00,

Proof. (a) is Lemma 1.6 from [KW4]. (b) follows from the proof of Theorem 1.11(2) from
[KW4]. O

Proof of Lemma [3 4. Let F € FI™ss 1 Then property (F1) of F obviously implies property
(G1) of 0r. By Lemma [d4h, properties (F2) and the third one of (F5) imply property (G2)
of Or. By Lemma (5] properties (F3) and (F4) of F' imply properties (G3) and (G4) of 6.
Finally, by Lemma (4] (b), (c), the first two properties in (F5) of F' imply property (G5) of
Op. O

Proof of Lemma [3.2. By Lemma[Ic), in order to prove (a), it suffices to show that +["sl
(resp. 6711} is contained in G if ' € Z (resp. € -+ Z). This holds by claim (c). In
6<pﬂ:[m,s]

order to prove claim (c), note that, since = 0, we have:

+[m,s]
drma’y a('lpaudd

RE
| 9
= iyzel ™t N SR (7,0)0%, (. 2u).

kes+7
s<k<s+2m

.1
ch:t[m,s] - _2Zy26

Substituting (4.I3]) in this formula completes the proof.

It remains to prove claim (b). For this we use Lemma 2] Lemma (3] and it remains to
check (F4) and (F5).

It is straightforward to check that the function =™} satisfies property (F4)(i). It follows
by Lemma [7] that the function G5! satisfies this property too. Then, using S-invariance of
the function @+, given by Corollary 1.6 from [KW35|, property (F4)(ii) of @+ holds as
well.

The function @+ is annihilated by D, D and A by Lemmas F3) B, and Ed)(a) respec-
tively, which proves that it satisfies property (F5). O

Proof of Lemma [3.3(a). Let

(4.24) Hr,u,v) =91 (1,0 —w)d (1,0 +u),  Fi(r,u,v,t) =91, u,v)F(1,u,v,t).

Since VF' = 0, we have %F = 0, and hence %Fl = 0. Due to condition (F2) on F' we deduce
that the function Fi(7,u,v,t) is holomorphic in v. By conditions (F3) on F' we obtain

F(r,u,v+2,t) = F(r,u,v,t), F(r,u,v—27,t)= e8mm(T_”)F(T, u, v, t).
From this, and ([B.5]) and (B.6]) we obtain:

(4.25) Fi(r,u,0 +2) = Fi(r,u,0), Fi(r,u,v—27) = ™D By (74, 0).
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L4.8

Letting h(v) = 911 (7,v)?" 2 F (1, u,v,t), we deduce from (B3], ([3:8) and [@E25):
h(v+2) = h(v), h(v—27)=h(v).

Thus, the function h(v) is a bounded holomorphic function if m > 1, and h(0) = 0if m > 1
(since ¥11(7,0) = 0). This completes the proof in the case m > 1.

In the case m = 1 we obtain that Fi(7,u,v,t) is independent of v. Letting j =0 and k =1
in (F3)i (resp in (F3)ii), and using ([B.5]) and (B.6]), we obtain

(4.26) Fi(1,u,v 4 1,t) = 2™ F (1, u,v,t) and Fy (1, u,v + 7, ) = e27ris,F1(T, u, v, t).
Hence F} = 0 if either s or s’ is not an integer. O

In order to prove Lemma B3|(b) and (c), we need the following lemma. We omit its proof,
which is along the same lines as the proof of Proposition 13.3 in [K2|, and Lemma 1]

Lemma 4.8. Let m € %Z>0, j € %Z, and let « be a non-zero real number. Let f(7,z) be a
function, which is real analytic in 7, Im 7 > 0, and holomorphic in z € C. Suppose that

2 . 2 g
f <7', z+ 57-) = +q Me MM (1 o) and f <7', z+ a) = ¥ f (1, 2).

Then there exist real analytic functions ¢, (1), n € j+7Z, 0 <n < 2m, such that

f(r,2) = Z Cn(T)@im(T,OéZ).
nej+7
0<n<2m

O

Proof of Lemma [3.3(b). By ([@20), the function Fy = ¥11(7,v — u)d11(7,v + u)F(7,u,v,t)
is independent on v, and by the condition on F| it is independent on v. Hence the function
f(1,u) := e 2™ Fy(7,u,v,t) is a function, which is real analytic in 7, Im 7 > 0, and holomorphic

in u € C. This function satisfies all conditions of Lemma A8 with m = 1, j = %, a = 4, due to

2
conditions (F3) on F' and (31, (3:6]). Hence we have (cf. Example [C9):

flru) = c1 (1)O7 | (71,4u,0) = —ic% (7)911(T, 2u),

11

272

where ¢ 1 (7) is a real analytic function in 7,Im 7 > 0.
Thus, by [22I]) we have:

) gt (1) ~ )
F(r,u,v,t) = R (1, u,v,t
| P
_ c1(r)
Since F' is annihilated by D and D by (F5), we obtain that n%T)g, is annihilated by 6% and %
c1(7)
respectively. Hence 77%7)3 is a constant, completing the proof. O

In order to prove Lemma B.3|(c), we need the following lemma.
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Lemma 4.9. Let f(1,u,v,t) = ﬁﬁ(T,u,v,t)g(T, u), where g(T,u) is a real analytic function in
7,Im 7 > 0, and a meromorphic function in u € C. Suppose that Df =0 and Df = 0. Then g
18 a constant.

Proof. Recall that Déﬁ, = 0 (see the end of the proof of Theorem [2.3]). Hence, we have, by the
assumption on f :

dg 9% _26125,@
or  0u?

»B
0=Df =R, <4m . Du
Dividing both sides by RB | we obtain:

ab’
<4 0g 829> B alogﬁﬁ, @:

o ou? ou  Ou

m or  Ou? 0-

(4.27)

Since ¢ is independent of v, applying a% to both sides of ([£27]), we obtain:

9 9 8log]§£) @_0
v ou ou

It follows that % = 0. Hence, by (.21, we obtain that % =0.

Next, we have
- e 9\° f
O—Df— <47TZE+<%> >f—47TZE,

since f is meromorphic in u. Hence

9 58 599 _
E(Rab g) - Raba? - 07

and % = 0, proving the lemma. O
Proof of Lemma [3.3(c). Letting j =0, k=1 in (F3), we have
F(r,u,v +1,t) = ¥™ F(r,u,v,t), F(r,u,v+71,t)= e2mslq%e2””F(T, u, v, t).
Hence, by [B.3) and ([B.6]), the function Fy, defined by ([{.24]), satisfies
(4.28) Fy(1,u,v + 1,t) = 2™ Fy(1,u,v,t), Fy(T,u,v+7,t) = e27ri5/q_%e_2m”F1(7',u,v,t).

Since FlmssT depends only on s,s’ mod Z, we may assume that s,s’ are equal to 0 or %
Applying Lemma [L.8] for m = %, j=s, a=2, we deduce from (£.28]):

(4.29) Fi(1,u,v,t) = ™t (r,u) ®§E1 (1,2v),

2

where + (resp. -) corresponds to s’ = 0 (resp. = 1), and ¢ (7, u) is a function, real analytic in
7,Im 7 > 0, and holomorphic in u € C.
But we have (cf. Remark [[LI0):

0%, (7,20) = (—i)* oy 20 (, ).

’2
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Substituting this in ([@29]), and dividing both sides of (£29]) by ¥(7, v —u)I(7,v+u), we obtain:
(4.30) F(r,u,v,t) = ﬁi’%, (t,u,v,t) A(T,u),

where A(T,u) is a real analytic function in 7,Im 7 > 0, and meromorphic in u, and jo is given

by [222]).
Since, by condition (F5), DF = 0 and DF = 0, we conclude, by Lemma £, that A(7,u) is

a constant. This completes the proof. O
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