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A characterization of modified mock theta functions

Victor G. Kac∗ and Minoru Wakimoto†

Abstract

We give a characterization of modified (in the sense of Zwegers) mock theta functions, parallel
to that of ordinary theta functions. Namely, modified mock theta functions are characterized
by their analyticity properties, elliptic transformation properties, and by being annihilated by
certain second order differential operators.

0 Introduction

The mock theta functions (also called Appell’s functions [Ap], [KW2]; or Lerch sums in [Z]) of
degree m are defined by the following series:

e0.1e0.1 (0.1) Φ±[m,s](τ, z1, z2, t) = e2πimt
∑

n∈Z

(±1)n
qmn2+nse2πi(mn(z1+z2)+sz1)

1− e2πiz1qn
,

where m ∈ Z>0, s ∈ Z (resp. m ∈ 1
2 + Z≥0, s ∈ 1

2 + Z) in case of + (resp. −). These series
converge to meromorphic functions in the domain X = {(τ, z1, z2, t) ∈ C4 | Im τ > 0}.

These kind of functions first appeared in Appell’s study of elliptic functions of the third kind
in the 1890’s [Ap]. A number of identities for various specializations of these functions have
been discovered in the attempts to understand Ramanujan’s mock theta functions (hence the
name for the functions Φ±[m,s]). On the other hand, it has been understood that the numerators
of the normalized supercharacters of the lowest rank affine Lie superalgebras (of positive defect)
ŝℓ2|1 and ôsp 3|2 can be expressed in terms of the functions Φ±[m,s], see [KW2]–[KW4]. (For the
higher rank affine Lie superalgebras one needs higher rank mock theta functions, see [KW1]–
[KW5] and [GK], which are not considered in this paper.)

Consider in more detail the example of the simple Lie superalgebra g = sℓ2|1 over C with
the invariant bilinear form (a|b) = str ab. Choose its Cartan subalgebra h, consisting of super-
traceless diagonal matrices. The associated affine Lie superalgebra is the infinite-dimensional
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Lie superalgebra over C :
ĝ = g[t, t−1]⊕ CK ⊕ Cd,

with the following commutation relations (a, b ∈ g,m, n ∈ Z) :

[atm, btn] = [a, b]tm+n +mδm,−n(a|b)K, [d, atm] = matm, [K, ĝ] = 0.

Let ĥ = Cd+ h+ CK be the Cartan subalgebra of ĝ with the following coordinates for h ∈ ĥ :

h = 2πi(−τd + z1(E22 + E33)− z2(E11 + E33) + tK), where τ, z1, z2, t ∈ C.

For eachm > 0 the Lie superalgebra ĝ has a unique irreducible module Vm, such thatK = mIVm

and there exists a non-zero vector vm ∈ Vm for which (g[t] + Cd)vm = 0. We showed in [KW2]
that the (normalized) supercharacter of V1 is given by the following formula (h ∈ ĥ):

strV1e
h = e2πitη(τ)3ϑ11(τ, z1)ϑ11(τ, z2)µ(τ, z1, z2),

where
µ(τ, z1, z2) = ϑ11(τ, z2)

−1Φ−[ 1
2
, 1
2
](τ, z1, 2z2 − z1).

The function µ(τ, z1, z2) is the prototype for a mock theta function in the sense that specializing
the complex variables z1 and z2 to torsion points (i.e. elements of Q + Qτ), one gets mock ϑ-
functions in the sense of Ramanujan, see [Z], [Za].

An important discovery of Zwegers is the real analytic, but not meromorphic, function
R(τ, u), τ, u ∈ C, Im τ > 0, such that the modified function

µ̃(τ, z1, z2) = µ(τ, z1, z2) +
i

2
R(τ, z1 − z2)

is a modular invariant function with nice elliptic transformation properties ([Z], Theorem 1.11).
Furthermore, Zwegers introduces real analytic functions Rm,ℓ(τ, u), similar to R(τ, u) (in fact,
R(τ, u) = R2,1(τ, u/2) − R2,−1(τ, u/2)), such that, adding to a rank 1 mock theta function of
degree m a suitable linear combination of rank 1 Jacobi forms Θm,ℓ as coefficients, he obtains a
modular invariant real analytic function [Z], Proposition 3.5 (see (2.10), (2.11) for our version
of this construction). The latter functions are used in the study of Ramanujan’s mock theta
functions ([Z], Chapter 4).

In our paper [KW3], Section 5, we used the functions Rm+1,ℓ of Zwegers (see (2.9) for our

version of these functions) in order to modify the (normalized) supercharacter of the ŝℓ2|1-
module Vm, where m is a positive integer. The normalized supercharacter is given in this case
by the following formula:

R̂A(τ, z1, z2, t) str Vme
h = Φ+[m+1,0](τ, z1, z2, t)− Φ+[m+1,0](τ,−z2,−z1, t),

where R̂A is the affine superdenominator (see (2.21) for its expression).
Following Zwegers’ ideas, we introduced in [KW3] the real analytic modified numerator

Φ̃+[m+1,0](τ, z1, z2, t)− Φ̃+[m+1,0](τ,−z2,−z1),

where

Φ̃+[m+1,0](τ, z1, z2, t) = Φ+[m+1,0](τ, z1, z2, t)−
1

2
Φ
+[m+1,0]
add (τ, z1, z2, t),
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and Φ
+[m+1,0]
add is a real analytic function (defined by (2.9)–(2.11) of the present paper), and

proved its modular and elliptic transformation properties. This establishes modular invariance
of the modified (normalized) supercharacter

(
Φ̃+[m+1,0](τ, z1, z2, t)− Φ̃+[m+1,0](τ,−z2,−z1, t)

)
/R̂A(τ, z1, z2, t)

of Vm.
In [KW4] and [KW5] we study, in a similar fashion, the supercharacters of more general

integrable ŝℓ2|1 (resp. ôsp 3|2)-modules, which use the functions Φ+[m,s] (resp. Φ−[m,s]).
In the earlier paper [KP] close connections of character theory of integrable modules over

affine Lie algebras ĝ and the theory of theta functions have been displayed. The key role in
this theory was played by the fact that the translations subgroup (of finite index) of the Weyl
group of ĝ consists of transformations tα ∈ End ĥ, given by formula (1.7), where α runs over the
coroot lattice of the simple Lie algebra g. This has lead to a simple characterization of theta
functions (recalled in Definition 1.2).

In the present paper we propose a similar characterization of the modified mock theta
functions

ϕ̃±[m,s](τ, u, v, t) := Φ̃±[m,s](τ, v − u,−v − u, t).

Note that, like in the theta function case, one can construct higher rank mock theta functions
(see (2.3), (2.4)). Moreover, in [KW5] we construct an inductive modification of these functions
and use them to construct modular invariant families of modified normalized supercharacters
for affine Lie superalgebras ĝ, where g is a basic simple Lie superalgebra, different from psℓn|n.
However, we do not know of any characterization of these higher rank modified mock theta
functions, similar to that of theta functions.

The contents of this paper are as follows. In Section 1 we recall the axiomatic definition
of the spaces of degree m theta function Th±m (see Definitions 1.2 and 1.4) and their modular
transformation properties, following [KP] and [K2] (in the case of +).We discuss in detail
the rank 1 theta functions (= Jacobi forms) Θj,m and, in particular, the four Jacobi forms
ϑab, a, b = 0 or 1.

In Section 2 we introduce degree m mock theta functions Θ±
λ;B of arbitrary rank (which are

theta functions if B = ∅), following [KW3–KW5]. Following [Z] and [KW3–KW5] we construct
the modification Φ̃±[m,s] of rank 1 mock theta functions Φ±[m,s]. Furthermore, we introduce
axiomatically the spaces of functions F [m;s,s′], where m ∈ 1

2Z>0, s, s
′ ∈ 1

2Z, and state our main
Theorems 2.2 and 2.3. Theorem 2.2 states that for m > 1 and for m = 1, (s, s′) /∈ Z2, the space
F [m;s,s′] is spanned (over C) by the modified mock theta functions ϕ̃+[m,s] (resp. ϕ̃−[m,s]) if
s′ ∈ Z (resp. ∈ 1

2 + Z). Theorem 2.3 covers the remaining cases; in particular it states that

in these cases F [m;s,s′] is the span of ϕ̃+[m,s] (resp. ϕ̃−[m,s]) if s′ ∈ Z (resp. ∈ 1
2 + Z) and a

holomorphic affine superdenominator.
In Section 3 we give proofs of the main theorems, based on Lemmas 3.1–3.3, and in Section

4 we prove these lemmas.

1 A brief theory of theta functions

Let h be an ℓ-dimensional vector space over C, endowed with a non-degenerate symmetric
bilinear form ( . | . ). Let m be a positive real number and let L be a lattice (i.e. a free abelian
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subgroup) in h, such that

e1.01e1.01 (1.1) m(α|β) ∈ Z for all α, β ∈ L.

This condition means that mL ⊂ L∗, where L∗ = {λ ∈ CL | (λ|L) ⊂ Z} is the dual lattice.
Let ĥ = h⊕CK⊕Cd be the ℓ+2-dimensional vector space over C with the (non-degenerate)

symmetric bilinear form ( . | . ), extended from h by letting

e1.02e1.02 (1.2) (h|CK + Cd) = 0, (K|K) = 0 = (d|d), (K|d) = 1.

We will identify h with h∗ and ĥ with ĥ∗ using this form. Given λ ∈ ĥ, we denote by λ̄ its
orthogonal projection on h. Let

e1.03e1.03 (1.3) X = {h ∈ ĥ | Re (K|h) > 0}.

For a function F on X we will say that it has degree m if

e1.04e1.04 (1.4) F (h+ aK) = emaF (h) for all a ∈ C.

We shall use the following coordinates on ĥ :

e1.05e1.05 (1.5) h = 2πi(−τd + z + tK) =: (τ, z, t), where τ, t ∈ C, z ∈ h.

Then X = {(τ, z, t)| Im τ > 0}, and q := e2πiτ = e−K .

r1.01 Remark 1.1. One has an obvious bijection between functions on X0 = {(τ, z)| Im τ > 0, z ∈ h}
and functions of degree m on X :

F (τ, z) 7→ F (τ, z, t) = e2πimtF (τ, z),

the converse map being F (τ, z, t) 7→ F (τ, z, 0). Adding the factor e2πimt simplifies the trans-
formation formulae. Given a function F (τ, z, t) of degree m, we will let F (τ, z) = F (τ, z, 0)
throughout the paper.

For α ∈ h define the shift pα of ĥ by

e1.06ae1.06a (1.6) pα(h) = h+ 2πiα, h ∈ ĥ.

Define the following representation of the additive group of the vector space h on the vector
space ĥ :

e1.06e1.06 (1.7) tα(h) = h+ (K|h)α−
(
(α|h) + |α|2

2
(K|h)

)
K, α ∈ h, h ∈ ĥ.

(We use throughout the shorthand |α|2 for (α|α).) This action leaves the bilinear form ( . | . ) on
ĥ invariant and fixes K, hence leaves the domain X invariant. Let D be the Laplace operator
on ĥ, associated to the bilinear form ( . | . ), i.e. Deh = |h|2eh, h ∈ ĥ. In the coordinates (1.5)
we have:

e1.07e1.07 (1.8) D =
1

4π2

(
2
∂

∂t

∂

∂τ
−

ℓ∑

i=1

(
∂

∂zi

)2
)
,

where z1, . . . , zℓ is an orthonormal basis of h.
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d1.02 Definition 1.2. Assume that L is a lattice of rank ℓ (i.e. CL = h) and that the restriction of
the form ( . | . ) to L is positive definite. For m > 0, such that (1.1) holds, a theta function of
degree m is a holomorphic function F in the domain X of degree m, such that the following
properties hold:

(i) F (pα(h)) = F (h) for all α ∈ L;

(ii) F (tα(h)) = F (h) for all α ∈ L;

(iii) DF = 0.

r1.03 Remark 1.3. Due to (1.4) and (1.7), property (ii) of a function F of degree m is equivalent to
the property

(ii)′ F (pτα(h)) = e−πimτ |α|2−m(α|h)F (h) for all α ∈ L.

d1.04 Definition 1.4. A signed theta function is defined by the same axioms as in Definition 1.2,
except that (i) and (ii) are replaced by their signed versions:

(i)− F (pα(h)) = (−1)m|α|2F (h) for all α ∈ L,

(ii)− F (tα(h)) = (−1)m|α|2F (h) for all α ∈ L.

(Then (ii)′ is replaced by (ii)
′
− with the sign (−1)m|α|2 inserted in the RHS.).

In order to construct theta functions and signed theta functions, let

Leven = {α ∈ L
∣∣ m|α|2 ∈ Zeven}, Lodd = {α ∈ L

∣∣ m|α|2 ∈ Zodd},

and let
P+
m = {λ ∈ ĥ∗| (λ|K) = m, (λ|L) ⊂ Z},

P−
m = {λ ∈ ĥ∗| (λ|K) = m, (λ|Leven) ⊂ Z, (λ|Lodd) ⊂

1

2
+ Z}.

Note that, for λ ∈ ĥ, such that (λ|K) = m, among the vectors {λ−aK| a ∈ C} there is a unique

isotropic one, for a = |λ|2

2m . Hence, in view of axioms (ii) (resp. (ii)−) and (iii), we construct, for
λ ∈ P+

m (resp. λ ∈ P−
m) the theta function Θ+

λ (resp. signed theta function Θ−
λ ) by

e1.08e1.08 (1.9) Θ±
λ = e−

|λ|2
2m

K
∑

α∈L

(±1)m|α|2etα(λ).

The series (1.9) converges to a holomorphic function in the domain X and obviously satisfies
the axioms (i), (ii), (resp. (i)−, (ii)−), and (iii). Note that

e1.09e1.09 (1.10) Θ±
λ+mγ+aK = (±1)m|γ|2Θ±

λ for a ∈ C, γ ∈ L.

In coordinates (1.5) we have the usual formula, where λ ∈ P±
m :

e1.10e1.10 (1.11) Θ±
λ (τ, z, t) = e2πimt

∑

α∈L

(±1)m|α|2q
m
2
|α+ λ̄

m
|2e2πim(α+ λ̄

m
|z).
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Recall the action of the group SL2(R) on the domain X in coordinates (1.5):

e1.11e1.11 (1.12)

(
a b
c d

)
· (τ, z, t) =

(
aτ + b

cτ + d
,

z

cτ + d
, t− c(z|z)

2(cτ + d)

)
.

This action induces the right action of weight w ∈ 1
2Z of SL2(R) on functions in X :

e1.12e1.12 (1.13) F

w∣∣∣∣(
a b
c d

)(τ, z, t) = (cτ + d)−wF

((
a b
c d

)
· (τ, z, t)

)

(Actually, this is an action of the double cover of SL2(R) if w ∈ 1
2 + Z.) The square root of a

complex number a = reiθ, where r ≥ 0,−π < θ ≤ π, is, as usual, chosen to be a
1
2 = r

1
2 e

iθ
2 . As

usual, we will discuss the action of its subgroup SL2(Z), which is generated by the elements

S =

(
0 −1
1 0

)
and T =

(
1 1
0 1

)
.

Denote by Th+m (resp. Th−m) the space of holomorphic functions on X of degree m satisfying
properties (i), (ii) (resp. (i)− , (ii)− ), and (iii).

t1.05 Theorem 1.5. Let L be a positive definite lattice of rank ℓ and let m be a positive real number
such that (1.1) holds. Then

(a) The set of theta functions {Θ+
λ | λ ∈ P+

m mod (mL+CK)} is a basis of the space Th+m.

(b) One has the following modular transformation formulas for λ ∈ P+
m :

Θ+
λ

ℓ/2∣∣∣∣
S

= e−
πiℓ
4 |L∗/mL|− 1

2

∑

µ∈
P+
m mod (mL+CK)

e−
2πi
m

(λ̄|µ̄)Θ+
µ .

(c) Provided that m(α|α) ∈ 2Z for all α ∈ L, one has

Θ+
λ

ℓ/2∣∣∣∣
T

= e
πi|λ̄|2

m Θ+
λ ,

hence the space Th+m is SL2(Z)-invariant.

Proof. The key formula for the proof is

e1.13e1.13 (1.14) (DF )

w∣∣∣∣
A

= (cτ + d)2D(F

w∣∣∣∣
A

), A =

(
a b
c d

)
∈ SL2(R), if w =

ℓ

2
.

See [KP] or [K2], Proposition 13.3, Lemma 13.2, and Theorem 13.5, for details.

t1.06 Theorem 1.6. Let L and m be as in Theorem 1.5, and assume that Lodd 6= ∅. Then
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(a) The set {Θ−
λ | λ ∈ P−

m mod (mL+ CK)} is a basis of the space Th−m.

(b) One has for λ ∈ P−
m the same modular transformation formulas for Θ−

λ , λ ∈ P−
m , where

P+
m is replaced by P−

m ,

hence the space Th−m is SL2(Z)-invariant.

Proof. Uses reduction to Theorem 1.5, see [KW4], Proposition A3.

r1.07 Remark 1.7. In view of (1.11) one sometimes uses a slightly different notation Θ±
λ̄,m

for (1.9).

x1.08 Example 1.8. Let L = Z with the bilinear form (a|b) = 2ab, so that L∗ = 1
2Z. Then for a

positive integer m we have the following basis of Th+m (τ, z, t ∈ C, Im τ > 0) :

Θ+
j,m(τ, z, t) = e2πimt

∑

n∈Z

qm(n+ j

2m
)2e2πim(n+ j

2m
)z, j = 0, 1, . . . , 2m− 1.

The modular transformation formulae are:

Θ+
j,m

(
−1

τ
,
z

τ
, t− z2

2τ

)
=

(−iτ
2m

) 1
2

2m−1∑

j′=0

e−
πijj′
m Θ+

j′,m(τ, z, t),

Θ+
j,m (τ + 1, z, t) = e

πij2

2m Θ+
j,m(τ, z, t).

x1.09 Example 1.9. Let L and (.|.) be the same as in Example 1.8. Then for m ∈ 1
2 + Z≥0 we have

the following basis of Th−m :

Θ−
j+ 1

2
,m
(τ, z, t) = e2πimt

∑

n∈Z

(−1)nqm(n+
2j+1
4m )

2

e4πim(n+
2j+1
4m )z, j = 0, 1, . . . , 2m− 1.

The modular transformation formulae are (i = 0, 1, . . . , 2m− 1):

Θ−
j+ 1

2
,m

(
−1

τ
,
z

τ
, t− z2

2τ

)
=

(
− iτ
m

) 1
2

2m−1∑

j′=0

e−
πi
m

(j+ 1
2
)(j′+ 1

2
)Θ−

j′+ 1
2
,m
(τ, z, t),

Θ−
j+ 1

2
,m
(τ + 1, z, t) = e

πi
2m

(j+ 1
2
)2Θ−

j+ 1
2
,m
(τ, z, t).

Note that Th−1
2

is 1-dimensional, and is spanned by Θ−
1
2
, 1
2

(τ, z, t) = −ieπitϑ11(τ, 2z).
One has the following elliptic transformation formulas:

Θ±
j,m(τ, z + a, t) = eπijaΘ±

j,m(τ, z, t) if am ∈ Z,

Θ±
j,m

(
τ, z +

τ

m
, t
)
= q−

1
4m e−πizΘ±

j+1,m(τ, z, t).
e1.15e1.15 (1.15)

r1.10 Remark 1.10. For each m ∈ 1
2Z>0, all the function Θ±

j,m, j ∈ 1
2Z, span a finite dimen-

sional SL2(Z)-invariant space, whose modular and elliptic transformation properties follow
from [KW4], Proposition A3. Especially important are the four Jacobi forms

ϑ00(τ, z) = Θ+
0, 1

2

(τ, 2z, 0), ϑ01(τ, z) = Θ−
0, 1

2

(τ, 2z, 0),

ϑ10(τ, z) = Θ+
1
2
, 1
2

(τ, 2z, 0), ϑ11(τ, z) = iΘ−
1
2
, 1
2

(τ, 2z, 0),

which span an SL2(Z)-invariant subspace of functions, holomorphic in X0 (see [M], p 36, or
[KW3], Proposition A7 for the modular transformation formulas).
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r1.11 Remark 1.11. For an arbitrary w ∈ 1
2Z one should add the following term in the RHS of (1.14):

2c( ℓ2 −w)(cτ + d)−1(dFdτ )

w∣∣∣∣
A

.

2 Mock theta functions.

In this Section we keep notation and assumptions of Section 1, except for the assumption that
CL = h in Definition 1.2 (resp. 1.4) of a theta (resp. signed theta) function.

Let B ⊂ h be a linearly independent set of vectors, such that the following two properties
hold:

e2.01e2.01 (2.1) (B|B) = 0 and h = CL⊕ CB.

Let

e2.02e2.02 (2.2) P±
m;B = {λ ∈ P±

m

∣∣ (λ|B) = 0}

For λ ∈ P±
m;B we construct the degree m mock theta function Θ+

λ;B and signed mock theta

function Θ−
λ;B as follows [KW3–5], cf. (1.9):

e2.03e2.03 (2.3) Θ±
λ;B = e−

|λ|2
2m

∑

λ∈L

(±1)m|α|2tα
eλ∏

β∈B(1− e−β)
.

This series converges to a meromorphic function in the domain X, and in the coordinates (1.5)
it looks as follows:

e2.04e2.04 (2.4) Θ±
λ;B(τ, z, t) = e2πimt

∑

α∈L

(±1)m|α|2 q
m
2
|α+ λ̄

m
|2e2πim(α+ λ̄

m
|z)

∏
β∈B

(
1− q−(α+ λ̄

m
|β)e−2πi(β|z)

) .

Note that for mock theta functions we have an analogue of (1.10):

e2.05e2.05 (2.5) Θ±
λ+mγ+aK;B = (±1)m|γ|2Θ±

λ;B for a ∈ C, γ ∈ L.

Moreover, these functions satisfy all axioms (i), (ii) (resp. (i)−, (ii)−) and (iii) for + (resp. −)
of Definition 1.2 (resp. 1.4). However, not being holomorphic, they are not members of Th+m
(resp. Th−m)

x2.01 Example 2.1. Let h be a 2-dimensional vector space with basis α1, α2 and the symmetric bilinear
form ( . | . ), given by

|αi|2 = 0, i = 1, 2, (α1|α2) = 1.

Let θ = α1 + α2, so that |θ|2 = 2, let L = Zθ and B = {β = α1}. Let m be a positive integer.
Then

P+
m;B = {λ+m,s = md+ sα1

∣∣ s ∈ Z}+ CK,

and in coordinates

e2.06e2.06 (2.6) h = 2πi(−τd − z1α2 − z2α1 + tK) =: (τ, z1, z2, t)

8



we have:
Θ+

λ+
m,s;B

= Φ+[m,s](τ, z1, z2, t),

where

e2.07e2.07 (2.7) Φ+[m,s](τ, z1, z2, t) = e2πimt
∑

n∈Z

qmn2+nse2πi(mn(z1+z2)+sz1)

1− e2πiz1qn
.

Now, let m ∈ 1
2 + Z≥0. Then

P−
m;B = {λ−m,s = md+ sα1

∣∣ s ∈ 1
2 + Z}+ CK,

and in coordinates (2.6) we have

Θ−
λ−
m,s;B

= Φ−[m,s](τ, z1, z2, t),

where

e2.08e2.08 (2.8) Φ−[m,s](τ, z1, z2, t) = e2πimt
∑

n∈Z

(−1)n
qmn2+nse2πi(mn(z1+z2)+sz1)

1− e2πiz1qn
.

Unlike the (signed) theta functions Θ±
λ , the (signed) mock theta functions Θ±

λ;B with B 6= ∅,
have neither good elliptic transformation properties analogous to (i) and (ii) (resp. (i)− and
(ii)−) of Definition 1.2 (resp. 1.4), nor good modular transformation properties, given by
Theorem 1.5 (resp. 1.6). It was S. Zwegers, who showed in Chapter 1 (resp. 3) of his beautiful

paper [Z] that, upon adding (in our notation) to Φ−[ 1
2
, 1
2
] (resp. Φ+[m,0]) a real analytic, but

not holomorphic, “modifier”, the modified function does satisfy beautiful elliptic and modular
transformation properties. His results were extended to all functions Φ±[m,s], described in
Example 2.1, in [KW3] and [KW4].

Moreover, we showed in [KW5] that, under some assumptions on L and B, the modified
mock theta function Θ̃±

λ;B, by making use of the function Φ̃±[m,s], satisfy nice elliptic and
modular transformation properties as well. We used this in [KW5] to show that the character
of “tame integrable” modules over affine Lie superalgebras have nice modular transformation
properties.

Let us recall the construction of the modified mock theta function Φ̃±[m,s] and their trans-
formation properties from [Z], [KW3], [KW4].

For x ∈ R, t, z ∈ C, Im τ > 0, m ∈ 1
2Z>0, and n ∈ 1

2Z let

E(x) = 2

∫ x

0
e−πu2

du, and ψm,n(τ, z) =

(
n− 2m

Im z

Im τ

)√
Im τ

m
.

For m ∈ 1
2Z>0, j ∈ 1

2Z let

e2.09e2.09 (2.9) R±
j,m(τ, z) =

∑

n∈ 1
2
Z

n≡j mod 2m

(±1)
n−j

2m

(
sign(n− 1

2 − j + 2m)− E(ψm,n(τ, z))
)
e−

πin2

2m
τ+2πinz,
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and define the modifier

e2.10e2.10 (2.10) Φ
±[m,s]
add (τ, z1, z2, t) = e2πimt

∑

j∈s+Z
s≤j<s+2m

R±
j,m

(
τ,
z1 − z2

2

)
Θ±

j,m(τ, z1 + z2).

For m ∈ 1
2Z>0 and s ∈ 1

2Z define the modified mock theta function

e2.11e2.11 (2.11) Φ̃±[m,s] = Φ±[m,s] − 1

2
Φ
±[m,s]
add .

It is proved in [KW4], Corollary 1.6(a), that Φ̃±[m,s] remains unchanged if we add to s an
integer.

As in [KW3–5], consider the following change of coordinates:

e2.12e2.12 (2.12) z1 = v − u, z2 = −v − u, i.e. u = −z1 + z2
2

, v =
z1 − z2

2
,

and let

e2.13e2.13 (2.13) ϕ±[m,s](τ, u, v, t) = Φ±[m,s](τ, z1, z2, t), ϕ̃
±[m,s](τ, u, v, t) = Φ̃±[m,s](τ, z1, z2, t).

The action (1.12), (1.13) of SL(2,R) for w = 1 on functions on X in the coordinates
(τ, u, v, t) looks as follows:

e2.14e2.14 (2.14) ϕ
∣∣(

a b
c d

)(τ, u, v, t) = (cτ + d)−1 ϕ

(
aτ + b

cτ + d
,

u

cτ + d
,

v

cτ + d
, t− c(u2 − v2)

cτ + d

)
.

Here and further on we skip w from notation (1.13) if w = 1.
We will use two coordinate systems of the vector space Cτ +Cv, viewed as a 4-dimensional

vector space over R :

e2.15e2.15 (2.15) τ, τ̄ , v, v̄

and

e2.16e2.16 (2.16) τ = x+ iy, τ̄ = x− iy, a, b, where v = aτ − b.

We have:

e2.17e2.17 (2.17) 2x = τ + τ̄ , 2iy = τ − τ̄ , 2iya = v − v̄, 2iyb = τ̄ v − τ v̄.

Hence

e2.18e2.18 (2.18) ∇ :=
∂

∂a
+ τ

∂

∂b
= −2iy

∂

∂v̄
.

When writing ∂
∂τ ,

∂
∂τ̄ ,

∂
∂v ,

∂
∂v̄ (resp. Dτ ,Dτ̄ ,

∂
∂a ,

∂
∂b), we mean partial derivatives with respect to

coordinates (2.15) (resp. (2.16)). As in [Z] and [KW4], coordinates (2.16) play an important
role in what follows.
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Introduce the following differential operators:

e2.19e2.19 (2.19) D = 4
∂

∂t

∂

∂τ
+

(
∂

∂v

)2

−
(
∂

∂u

)2

, D̄ = 2
∂

∂t
Dτ̄ +

(
∂

∂v̄

)2

, ∆ = 2a
∂

∂t

∂

∂v̄
− ∂

∂v

∂

∂v̄
.

Note that, up to a constant factor, D is the Laplace operator, associated to the bilinear form
of Example 2.1. We have formulas, similar to (1.14), for A ∈ SL2(R) :

e2.20e2.20 (2.20) (D̄F )
∣∣
A
= (cτ̄ + d)2D̄(F

∣∣
A
), (∆F )

∣∣
A
= |cτ + d|2∆(F

∣∣
A
) .

Let m ∈ 1
2Z>0 and s, s′ ∈ 1

2Z. Let F [m;s,s′] be the space of functions F on the domain X,
i.e. functions in τ, u, v, t ∈ C4, such that Im τ > 0, satisfying the following five conditions:

(F1) F (τ, u, v, t) = e2πimt F (τ, u, v, 0), i.e. F is a function of degree m;

(F2) ϑ11(τ, v−u)ϑ11(τ, v+ u)F (τ, u, v, t) is a holomorphic function in u and real analytic in τ
and v; ∂F

∂v̄ (τ, u, v, t) is a real analytic function in all variables;

(F3) for all j, k ∈ Z one has:

(i) F (τ, u+ j, v + k, t) = e2πis(j+k) F (τ, u, v, t),

(ii) F (τ, u+ jτ, v + kτ, t) = e2πi(s
′(j+k)+2m(kv−ju))qm(k2−j2) F (τ, u, v, t);

(F4) for all k ∈ Z one has:

(i) F
(
τ, u+ k

2m , v +
k
2m , t

)
= F (τ, u, v, t),

(ii) F
(
τ, u+ kτ

2m , v +
kτ
2m , t

)
= e2πik(v−u) F (τ, u, v, t).

(F5) DF = 0, D̄F = 0, ∆F = 0.

The main results of the paper are the following three theorems.

t2.2 Theorem 2.2. Provided that m > 1
2 , and either s or s′ is not an integer if m = 1, one has

F [m;s,s′] = Cϕ̃+[m,s] (resp. = Cϕ̃−[m,s]) if s′ ∈ Z (resp. s′ ∈ 1

2
+ Z).

t2.3 Theorem 2.3. (a) If m = 1 and s, s′ ∈ Z, then

F [1;s,s′] = Cϕ̃+[1,0] ⊕ CR̂A,

where

e2.21e2.21 (2.21) R̂A(τ, u, v, t) = e2πit
η(τ)3ϑ11(τ, 2u)

ϑ11(τ, v − u)ϑ11(τ, v + u)
.

(b) If m = 1
2 , then

F [ 1
2
;s,s′] = Cϕ̃+[ 1

2
,s] ⊕ CR̂B

2s mod 2Z,0 if s′ ∈ Z,

and

F [ 1
2
;s,s′] = Cϕ̃−[ 1

2
,s] ⊕ CR̂B

2s mod 2Z,1 if s′ ∈ 1

2
+ Z,

where

e2.22e2.22 (2.22) R̂B
ab(τ, u, v, t) = eπitR̂A(τ, u, v, 0)

ϑab(τ, v)

ϑab(τ, u)
, a, b = 0 or 1.
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t2.4 Theorem 2.4. If F ∈ F [m;s,s′] , then

F
∣∣
S
∈ F [m;s′,s], and F

∣∣
T
∈ F [m;s,s+s′+m]

with respect to the action (2.14). Consequently F [m;s,s′] is SL2(Z)-invariant, provided that
m ≡ s ≡ s′ mod Z.

r2.5 Remark 2.5. The function R̂A is the superdenominator for the affine Lie superalgebra ŝℓ2|1,

and the functions R̂B
ab are the untwisted and twisted denominator and superdenominator for

ôsp 3|2, see [KW4]. Since, by the product decompositions of the function ϑab (see e.g. [M] or
[KW4]), one has ∏

a,b=0,1

ϑab(τ, u) = η(τ)3ϑ11(τ, 2u),

the functions R̂B
ab satisfy condition (F2).

r2.6 Remark 2.6. Property (F3) is equivalent to the following two properties:

F (pα(h)) = (−1)s|α|
2
F (h) and F (tα(h)) = (−1)s

′|α|2F (h) for all α = n1α1 + n2α2,

where n1, n2 ∈ Z and α1, α2 are as in Example 2.1, cf. Remark 1.3. Also, property (F4) is
equivalent to the following:

F (pα(h)) = F (h) and F (tα(h)) = F (h) for all α =
n

m
α1, n ∈ Z.

Thus, the modified mock theta functions have more symmetries than the mock theta functions.

r2.7 Remark 2.7. It follows from Theorems 2.2 and 2.3 that if f ∈ F [m;s,s′] is a real analytic func-
tion in τ, u, v, then f = 0. Indeed the functions ϕ̃±[m,s](τ, u, v, t) (resp. R̂A(τ, u, v, t) and
R̂B

ab(τ, u, v, t)) have singularities at the points v− u ∈ Z+ τZ (resp. v± u ∈ Z+ τZ). It follows
that if ϕ(τ, u, v, t) is a function of degree m and fi ∈ F [m;s,s′], i = 1, 2, are such that fi −ϕ are
real analytic functions, then f1 = f2.

r2.8 Remark 2.8. In Definition 3.2 of [Z], Zwegers introduces function fv(u; τ) and in Definition 3.4
their modifications f̃v(u; τ). One has:

e2πimtfv(u; τ) = −ϕ+[m,1](τ, u, v, t).

Furthermore, it follows from Remark 2.7 that

e2πimtf̃v(u; τ) = −ϕ̃+[m,1](τ, u, v, t) (= −ϕ̃+[m,0](τ, u, v, t)).

r2.9 Remark 2.9. If we replace condition (F2) by a stronger condition

(F2)′ ϑ11(τ, v− u)F (τ, u, v, t) is holomorphic in u and real analytic in τ and v, and ∂F
∂v̄ is a real

analytic function in all variables,

then the corresponding space of functions F ′[m;s.s′] is spanned by ϕ̃±[m,s](τ, u, v, t), where +
(resp. −) corresponds to s′ ∈ Z (resp. ∈ 1

2 + Z).
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r2.10 Remark 2.10. The operator Dτ̄ = ∂
∂τ̄ +a

∂
∂v̄ satisfies the following commutation relations (recall

that a = v−v̄
τ−τ̄ ):

[
Dτ̄ ,

∂

∂τ

]
=

a

τ − τ̄

∂

∂v̄
,

[
Dτ̄ ,

∂

∂τ̄

]
= − a

τ − τ̄

∂

∂v̄
,

[
Dτ̄ ,

(
∂

∂v

)2
]
=

−2

τ − τ̄

∂

∂v

∂

∂v̄
,

[
Dτ̄ ,

(
∂

∂v̄

)2
]
=

2

τ − τ̄

(
∂

∂v̄

)2

,

[
Dτ̄ ,

∂

∂v

∂

∂v̄

]
=

1

τ − τ̄

∂

∂v̄

(
∂

∂v
− ∂

∂v̄

)
.

From these formulas we obtain the following commutation relations on the space of functions
of degree m :

[D̄,D] =
16πim

τ − τ̄
∆, [∆,D] =

8πim

τ − τ̄
∆, [∆, D̄] = −8πim

τ − τ̄
∆ .

It follows that condition (F5) can be replaced by

(F5)′ DF = 0, D̄F = 0.

While the proof of Theorems 2.2 and 2.3 is rather involved, and will be given in the next
sections, the proof of Theorem 2.4 is straightforward from the definition of the spaces F [m;s,s′],
and it is given here.

Proof of Theorem 2.4. By equation (2.14) we have for F of degree m :

e2.23e2.23 (2.23) F
∣∣
S
(τ, u, v, t) =

1

τ
e

2πim
τ

(v2−u2)F

(
−1

τ
,
u

τ
,
v

τ
, t

)

Using this, condition (F3)(i) gives

e2.24e2.24 (2.24) F
∣∣
S
(τ, u+ jτ, v + kτ, t) = e2πis(j+k)e4πim(kw−ju)qm(k2−j2)F

∣∣
S
(τ, u, v, t)

Next, replacing j, k by −j,−k and (τ, u, v) by (− 1
τ ,

u
τ ,

v
τ ) in (F3)(ii), we obtain:

e2.25e2.25 (2.25) F
∣∣
S
(τ, u+ j, v + k, t) = e2πis

′(j+k)F
∣∣
S
(τ, u, v, t).

Formulas (2.24) and (2.25) mean that if F satisfies conditions (F1) and (F3), then F
∣∣
S
satisfies

(F3) for F [m;s′,s].
Similarly one shows that if F satisfies conditions (F1) and (F4), then F

∣∣
S
satisfies condition

(F4). Also, by (1.14) and (2.20), F
∣∣
S
satisfies condition (F5) if F does, proving the first part

of the theorem.
In order to prove the second part, it suffices to show that if F (τ, u, v, t) of degree m satisfies

condition (F3)(ii), then F (τ + 1, u, v, t) satisfies that condition with s′ replaced by s+ s′ +m.
This is straightforward.
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3 Proof of Theorems 2.2 and 2.3.

In order to prove Theorem 2.2 and 2.3, consider the space G[m;s,s′] of functions G(τ, u, v, t),
satisfying the following conditions:

(G1) G(τ, u, v, t) = e2πimtG(τ, u, v, 0);

(G2) G(τ, u, v, 0) is a holomorphic function in u and v̄, and real analytic in τ, Im τ > 0;

(G3) for all j, k ∈ Z one has

(i) G(τ, u + j, v + k, t) = e2πis(j+k)G(τ, u, v, t),

(ii) G(τ, u + jτ, v + kτ, t) = e2πi(s
′(j+k)+2m(kv̄−ju)) e2πim(k2 τ̄−j2τ)G(τ, u, v, t);

(G4) for all k ∈ Z one has:

(i) G
(
τ, u+ k

2m , v +
k
2m , t

)
= G(τ, u, v, t),

(ii) G
(
τ, u+ kτ

2m , v +
kτ
2m , t

)
= e2πik(v̄−u) e

πik2

2m
(τ̄−τ)G(τ, u, v, t).

(G5) DG = 0,
(
4 ∂
∂t

∂
∂τ̄ +

(
∂
∂v̄

)2)
G = 0.

Next, we construct a linear map F 7→ θF from the space F [m;s,s′] to the space G[m;s,s′], show
that ϕ̃±[m,s] lies in F [m;s,s′], where + (resp. −) corresponds to s′ ∈ Z (resp. ∈ 1

2 +Z), and that

the image of this function spans G[m;s,s′]. The last step of the proof is the study of the kernel
of this map.

Given a differentiable in v̄ function F = F (τ, u, v, t) of degree m in the domain X (i.e.
τ, u, v, t ∈ C, Im τ > 0), let

e3.1e3.1 (3.1) θF (τ, u, v, t) = y−
1
2 e4πma2y∇F = −2iy

1
2 e4πma2y ∂F

∂v̄
,

where ∇ is the operator, defined in (2.18). We shall prove that

e3.2e3.2 (3.2) θϕ̃±[m,s] = −2
√
m θ±[m,s],

where

e3.3e3.3 (3.3) θ±[m,s](τ, u, v, t) = e2πimt
∑

j∈s+Z mod 2mZ

Θ±
j,m(−τ̄ , 2v̄)Θ±

−j,m(τ, 2u).

Theorems 2.2 and 2.3 follow easily from the following lemmas, where m ∈ 1
2Z>0, s, s

′ ∈ 1
2Z.

L3.1 Lemma 3.1. For F ∈ F [m;s,s′] we have: θF ∈ G[m;s,s′].

L3.2 Lemma 3.2. (a) G[m;s.s′] = Cθ+[m,s] (resp. = Cθ−[m,s]) if s′ ∈ Z (resp. ∈ 1
2 + Z),

(b) ϕ̃±[m,s] ∈ F [m;s,s′], where + (resp. −) corresponds to s′ ∈ Z (resp. s′ ∈ 1
2 + Z).

(c) Formula (3.2) holds.
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L3.3 Lemma 3.3. Let F ∈ F [m;s,s′] be such that θF = 0.

(a) If m > 1, or m = 1 and (s, s′) /∈ Z2, then F = 0.

(b) If m = 1 and s, s′ ∈ Z, then F ∈ CR̂A.

(c) If m = 1
2 , then F ∈ CR̂B

2s mod 2Z, 2s′ mod 2Z.

Now we give proofs of Theorems 2.2 and 2.3, using these three lemmas. Proofs of the latter
will be given in Section 4.

Proof of Theorem 2.2. Let F ∈ F [m;s,s′], then θF ∈ G[m;s,s′] by Lemma 3.1. Hence by Lemma
3.2 (a),

θF = c+θ
+[m,s] (resp. c−θ

−[m,s]) if s′ ∈ Z (resp. ∈ 1

2
+ Z), where c± ∈ C.

Hence, by Lemma 3.2 (b), (c),
θF+

c±
2
√

m
ϕ̃±[m,s] = 0,

and therefore, by Lemma 3.3(a),

F +
c±

2
√
m
ϕ̃±[m,s] = 0,

proving Theorem 2.2.

Proof of Theorem 2.3. Let F ∈ F [m;s,s′]. Then, by (3.3) and Lemma 3.3 (b) and (c) we have:
e3.4e3.4 (3.4)

F +
c±

2
√
m
ϕ̃±[m,s] ∈ CR̂A if m = 1 and s, s′ ∈ Z (resp. ∈ CR̂B

2s mod 2Z, 2s′ mod 2Z if m =
1

2
).

It remains to check that the functions R̂A (resp. R̂B
ab) , given by (2.21) (resp. (2.22) lie in

F [1;0,0] (resp. in F [ 1
2
;s,s′] if a ≡ 2s mod 2Z, b ≡ 2s′ mod 2Z). Property (F2) is obvious for R̂A

and it follows from Remark 2.5 for R̂B. Properties (F3) and (F4) of these functions follow from
the elliptic transformation properties of ϑab, a, b = 0 or 1, n ∈ Z, which can be easily derived
from [M], page 19:

e3.5e3.5 (3.5) ϑab(τ, z +
n

2
) = (−1)abn+

an(1−n)
2 ϑa,b+n mod 2Z(τ, z),

e3.6e3.6 (3.6) ϑab(τ, z +
n

2
τ) = (−i)bnq−n2

8 e−πinzϑa+n mod 2Z,b(τ, z).

Finally, the functions R̂A and R̂B
ab being mock theta functions, due to the denominator

identities (cf. [KW1], [G], [GK]), lie in the kernel of D, and trivially they lie in the kernels of
D̄ and ∆, hence satisfy (F5).
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4 Proof of Lemmas 3.1 – 3.3

First, we prove the following lemma, which gives one of the inclusions of Lemma 3.2(a). Its
proof is along the same lines as the proof of Proposition 13.3 in [K2].

L4.1 Lemma 4.1. Let m ∈ 1
2Z>0 and s ∈ 1

2Z, let s
′ = 0 (resp. = 1

2), which corresponds to +
(resp. −) case below.

(a) If g(τ, u, v, t) is a function, satisfying conditions (G1)–(G3), then

g(τ, u, v, t) = e2πimt
∑

n,n′∈s+Z mod 2mZ

cn,n′(τ)e
πis′
m

(n+n′)Θ±
n,m(−τ̄ , 2v̄)Θ±

n′,m(τ, 2u)

for some real analytic functions cn,n′(τ) in τ, Im τ > 0.

(b) If, in addition, g(τ, u, v, t) satisfies condition (G5), then

g(τ, u, v, t) = e2πimt
∑

n,n′∈s+Z mod 2mZ

cn,n′e
πis′
m

(n+n′)Θ±
n,m(−τ̄ , 2v̄)Θ±

n′,m(τ, 2u)

for some cn,n′ ∈ C.

(c) If g(τ, u, v, t) satisfies all the conditons (G1)–(G5), then

g(τ, u, v, t) = c θ±[m,s](τ, u, v, t),

where c ∈ C and θ±[m,s] is given by (3.3). Consequently G[m;s,s′] ⊂ Cθ±[m,s].

Proof. First we prove (a) in the case s′ = 0. Since, by (G2), g(τ, u, v, t) is a holomorphic function
in u, and it satisfies (G1) and (G3) (i) for k = 0, we have its Fourier series decomposition in u :

e4.01e4.01 (4.1) g(τ, u, v, t) = e2πimt
∑

n∈Z

An(τ, v)e
2πi(n+s)u.

Hence we have:

e4.02e4.02 (4.2) g(τ, u+ jτ, v, t) = e2πimt
∑

n∈Z

An(τ, v)e
2πi(n+s)uq(n+s)j,

e−4πimjuq−mj2g(τ, u, v, t) = e2πimt
∑

n∈Z

An(τ, v)q
−mj2e2πi(n−2mj+s)u,

= e2πimt
∑

n∈Z

An+2mj(τ, v)q
−mj2e2πi(n+s)u.

e4.03e4.03 (4.3)

Due to (G3)(iii) for k = 0, comparing the coefficients of e2πi(n+s)u in the RHS of (4.2) and (4.3),
we obtain:

An(τ, v)q
(n+s)j = An+2mj(τ, v)q

−mj2 .

Hence we have:

e4.04e4.04 (4.4) Bn = Bn+2mj , where Bn = Anq
− (n+s)2

4m .
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Substituting this in (4.1), we obtain:

e4.05e4.05 (4.5) g(τ, u, v, t) = e2πimt
∑

p∈Z mod 2mZ

Bp(τ, v)Θ
+
p+s,m(τ, 2u).

Next, we compute the coefficients Bp(τ, v), p ∈ Z. Since, by (G2), Bp(τ, v) is holomorphic
in v̄ , by (G3)(i) with j = 0, we have its decomposition in the following Fourier series:

e4.06e4.06 (4.6) Bp(τ, v) =
∑

n∈Z

α(p)
n (τ)e2πi(n+s)v̄ .

Arguing as above and using (G3)(ii) for j = 0, we obtain

e4.07e4.07 (4.7) c(p)n (τ) = c
(p)
n−2mk(τ), where c(p)n (τ) = α(p)

n (τ)e
πiτ̄
2m

(n+s)2 .

Substituting this in (4.6), we obtain:

e4.08e4.08 (4.8) Bp(τ, v) =
∑

p′∈Z mod 2mZ

c
(p)
p′ (τ)Θ

+
p′+s,m(−τ̄ , 2v̄),

which completes the proof in this case. The proof in case s′ = 1
2 is similar.

In order to prove (b), we apply D to both sides of the formula in (a) to obtain, using (G5):

0 = 8πim e2πimt
∑

n,n′∈s+Z mod 2mZ

∂cn,n′(τ)

∂τ
Θ±

n,m(−τ̄ , 2v̄)Θ±
n′,m(τ, 2u)

+ e2πimt
∑

n,n′∈s+Z mod 2mZ

cn,n′(τ)Θ±
n,m(−τ̄ , 2v̄)

(
8πim

∂

∂τ
−
(
∂

∂u

)2
)
Θ±

n′m(τ, 2u).

Since one has

e4.09e4.09 (4.9)

(
8πim

∂

∂τ
−
(
∂

∂u

)2
)

Θ±
n,m(τ, 2u) = 0,

we deduce that
∂cn,n′ (τ)

∂τ = 0.

Similarly, applying 4 ∂
∂t

∂
∂τ̄ +

(
∂
∂v̄

)2
, we deduce that

∂cn,n′ (τ)
∂τ̄ = 0, proving (b).

In order to prove (c), introduce the following functions, for m ∈ 1
2Z>0, j, k ∈ 1

2Z :

h±j,k(τ, u, v) = Θ±
j,m(−τ̄ , 2v̄)Θ±

−k,m(τ, 2u).

These functions have the following elliptic transformation properties, which follow from (1.15).

h±j,k

(
τ, u+

p

2m
, v +

p

2m

)
= e

πi(j−k)p
m h±j,k(τ, u, v), p ∈ Z;

h±j,k

(
τ, u+

τ

2m
, v +

τ

2m

)
= e

πi
2m

(τ̄−τ)e2πi(v̄−u)h±j−1,k−1(τ, u, v).
e4.10e4.10 (4.10)

By (b) we have:

g(τ, u, v, t) = e2πimt
∑

n,n′∈s+Z mod 2mZ

cn,−n′e
πis′
m

(n−n′)h±n,n′(τ, u, v),
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where cn,−n′ ∈ C. Using (4.10), and condition (G4)(i), we obtain that cn,−n′ 6= 0 only if
n− n′ ∈ 2mZ, hence

g(τ, u, v, t) = e2πimt
∑

n∈s+Z mod 2mZ

cnh
±
n,n(τ, u, v).

Using (4.10) and condition (G4) (ii), we deduce that all the cn’s are equal, proving (c).

L4.2 Lemma 4.2. The functions ϕ̃±[m,s](τ, u, v, t) satisfy the elliptic transformation properties (F3).

Proof. It follows from [KW5], Theorem 1.5(c).

L4.3 Lemma 4.3. Dϕ̃±[m,s](τ, u, v, t) = 0, where D is defined in (2.19).

Proof. Letting

fm(τ, v) =

(
m

y

)1
2

e−4πmya2 ,

and using (2.17), we observe that

e4.11e4.11 (4.11)

(
8πim

∂

∂τ
+

(
∂

∂v

)2
)
fm(τ, v) = 0.

We claim that

e4.12e4.12 (4.12) D

(
∂

∂v̄
ϕ
±[m,s]
add

)
= 0,

where ϕ
±[m,s]
add (τ, u, v, t) is obtained from Φ

±[m,s]
add (τ, z1, z2, t) given by (2.10), by the change of

variables (2.12).
Indeed, by Lemma 1.7(1) from [KW4] and using (2.18), we obtain:

e4.13e4.13 (4.13)
∂

∂v̄
R±

j,m(τ, v) = 2ifm(τ, v)Θ±
j,m(−τ̄ , 2v̄).

Hence
∂

∂v̄
ϕ
±[m,s]
add (τ, u, v, t) = −ie2πimt

∑

j∈s+Z
s≤j<s+2m

fm(τ, v)Θ±
j,m(−τ̄ , 2v̄)Θ±

−j,m(τ, 2u).

Applying D to both sides of this equation, we obtain

D

(
∂

∂v̄
ϕ
±[m,s]
add

)
=

(
8πim

∂

∂τ
+

(
∂

∂v

)2

−
(
∂

∂u

)2
)

∂

∂v̄
ϕ
±[m,s]
add = 0,

using (4.9) and (4.11). Hence (4.12) is proved.

Next, Dϕ±[m,s] = 0, since ϕ±[m,s] is a mock theta function. Hence Dϕ̃±[m,s] = Dϕ
±[m,s]
add is

a real analytic function, since ϕ
±[m,s]
add is. On the other hand,

∂

∂v̄
Dϕ̃±[m,s] =

∂

∂v̄
Dϕ

±[m,s]
add = D

∂

∂v̄
ϕ
±[m,s]
add = 0

18



by (4.12). Hence, being real analytic, the function Dϕ̃±[m,s] is holomorphic in v.
Since D commutes with the transformations pα and tα (defined by (1.6) and (1.7)), it follows

from Lemma 4.2 that Dϕ̃±[m,s] satisfies (F3) as well. Hence, letting ψ̃ = Dϕ̃±[m,s] for short, we
have, in particular:

e4.14e4.14 (4.14) ψ̃(τ, u, v + 2, t) = ψ̃(τ, u, v, t) and ψ̃(τ, u, v − 2τ, t) = e8πim(τ−v)ψ̃(τ, u, v, t).

Now, by (3.5) and (3.6), we have:

e4.15e4.15 (4.15) ϑ11(τ, v + 2) = ϑ11(τ, v), ϑ11(τ, v − 2τ) = e4πi(v−τ)ϑ11(τ, v).

Letting f(v) = ψ̃(τ, u, v, t)ϑ11(τ, v)
2m, we have by (4.14) and (4.15):

f(v + 2) = f(v), f(v − 2τ) = f(v),

and since ψ̃ is holomorphic in v, f(v) is holomorphic in v as well. Thus f(v) is a bounded
holomorphic function in v ∈ C, hence f(v) is constant in v. Since ϑ11(τ, 0) = 0, we deduce that
f(v) = 0, hence ψ̃ = 0, proving the lemma.

L4.4 Lemma 4.4. Let f = f(τ, u, v, t) be a real analytic function of degree m on the domain X.
Then

(a) The function θf (defined by (3.1)) is holomorphic in v̄ if and only if ∆f = 0.

(b)
(
8πim ∂

∂τ̄ +
(

∂
∂v̄

)2)
θf = θD̄f .

(c) If ∆f = 0, then Dθf = θDf (see (2.19) for the definition of D, D̄, and ∆).

Proof. Let, for simplicity of notation, g = i
2θf . Then, by (3.1),

e4.16e4.16 (4.16) g = y
1
2 e4πma2y ∂f

∂v̄
.

In order to perform the computations of partial derivatives, we will need the following formulas,
which are immediate by (2.17):

e4.17e4.17 (4.17)
∂a

∂v
=

1

2iy
,

∂a

∂v̄
= − 1

2iy
,

∂a

∂τ
=
ia

2y
,

∂y

∂τ
=

1

2i
,

∂

∂τ̄
= Dτ̄ − a

∂

∂v̄
.

Using the first of these formulas and (4.16), we obtain:

∂g

∂v
= −y 1

2 e4πma2y∆f,

proving (a).
Using (4.16) and (4.17), we obtain:

e4.18e4.18 (4.18)
∂g

∂τ̄
=

1

4i
y−

1
2 e4πma2y ∂f

∂v̄
− 2πimy

1
2a2e4πma2y ∂f

∂v̄
− y

1
2 ae4πma2y ∂

2f

∂v̄2
+ y

1
2 e4πma2y ∂

∂v̄
Dτ̄f,

e4.19e4.19 (4.19)
∂g

∂τ
=

1

4i
y−

1
2 e4πma2y ∂f

∂v̄
+ 2πimy

1
2 e4πma2y ∂f

∂v̄
+ y

1
2 e4πma2y ∂

2f

∂v̄∂τ
,
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∂2g

∂v̄2
=− 2πmy−

1
2 e4πma2y ∂f

∂v̄
− (4πm)2y

1
2a2e4πma2y ∂f

∂v̄
+ 8πmiy

1
2 ae4πma2y ∂

2f

∂v̄2

+ y
1
2 e4πma2y ∂

3f

∂v̄3
.

e4.20e4.20 (4.20)

Multiplying (4.18) by 8πim and adding to it (4.20), we obtain (b).
Similarly, we find

∂2g

∂v2
=−2πmy−

1
2 e4πma2y ∂f

∂v̄
−(4πm)2y

1
2 a2e4πma2y ∂f

∂v̄
−8πimy

1
2ae4πma2y ∂

2f

∂v∂v̄
+y

1
2 e4πma2y ∂3f

∂v2∂v̄
.

If ∆f = 0, we can replace in this formula ∂2f
∂v∂v̄ by 4πima∂f

∂v̄ , hence we have

e4.21e4.21 (4.21)
∂2g

∂v2
= −2πmy−

1
2 e4πma2y ∂f

∂v̄
+ (4πm)2y

1
2a2e4πma2y ∂f

∂v̄
+ y

1
2 e4πma2y ∂3f

∂v2∂v̄
,

provided that ∆f = 0. Multiplying (4.19) by 8πim and adding to it (4.21), we obtain:

e4.22e4.22 (4.22)

(
8πim

∂

∂τ
+

∂2

∂v2

)
g = y

1
2 e4πma2y ∂

∂v̄

(
8πim

∂

∂τ
+

∂2

∂v2

)
f,

provided that ∆f = 0. Subtracting from (4.22) the equation

∂2g

∂u2
= y

1
2 e4πma2y ∂

∂v̄

∂2

∂u2
f,

we obtain

Dg = y
1
2 e4πma2y ∂

∂v̄
Df,

provided that ∆f = 0, proving (c).

L4.5 Lemma 4.5. Let m ∈ 1
2Z>0, s ∈ 1

2Z, and let f = f(τ, u, v, t) be a function of degree m on the
domain X, which is real analytic in v̄. Let j, k ∈ Z. Then

(a) f(τ, u+ j, v + k, t) = e2πis(j+k)f(τ, u, v, t) implies that

θf (τ, u+ j, v + k, t) = e2πis(j+k)θf (τ, u, v, t).

(b) f(τ, u+ jτ, v + kτ, t) = (±1)j+ke4πim(kv−ju)qm(k2−j2)f(τ, u, v, t) implies that

θf (τ, u+ jτ, v + kτ, t) = (±1)j+ke4πim(kv̄−ju)e2πim(k2τ̄−j2τ)θf (τ, u, v, t).

(c) f
(
τ, u+ k

2m , v +
k
2m , t

)
= f(τ, u, v, t) implies that

θf
(
τ, u+ k

2m , v +
k
2m , t

)
= θf (τ, u, v, t).

(d) f
(
τ, u+ kτ

2m , v +
kτ
2m , t

)
= e2πik(v−u)f(τ, u, v, t) implies that

θf
(
τ, u+ kτ

2m , v +
kτ
2m , t

)
= e2πik(v̄−u)e

πik2

2m
(τ̄−τ)θf (τ, u, v, t).
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Proof. (a) is obvious. In order to perform calculations, it is convenient to rewrite the definition
(3.1) of θf , using (2.17) and (2.18), as follows:

e4.23e4.23 (4.23) θf (τ, u, v, t) = −(2i)
1
2 (τ − τ̄)

1
2 e−2πim

(v−v̄)2

τ−τ̄
∂f

∂v̄
.

It is clear that it suffices to prove (b) for j = 0. By the assumption on f, we have, using (4.23):

θf (τ, u, v + kτ, t)

= −(2i)
1
2 (τ − τ̄)

1
2 (±1)ke

−2πim

(
(v−v̄)2

τ−τ̄
+2k(v−v̄)+k2(τ−τ̄ )

)

e4πimkve2πimk2τ ∂f

∂v̄
(τ, u, v, t)

= (±1)ke4πimkv̄e2πimk2τ̄θf (τ, u, v, t),

proving (b). The proof of (c) and (d) is similar.

L4.6 Lemma 4.6.

D̄R±
j,m(τ, v) = 0.

Proof. First, we compute Dτ̄R
±
j,m(τ, v), using that Dτ̄y = i

2 :

Dτ̄R
±
j,m(τ, v) = − iy−

1
2

2
√
m
e−4πma2y

∑

n≡j mod 2mZ

(±1)
n−j
2m (n− 2ma)e−

πin2 τ̄
2m e2πinv̄ .

Letting n = j + 2mk, k ∈ Z, in this equation, we obtain:

Dτ̄R
±
j,m(τ, v) =

−iy− 1
2

2
√
m

e−4πma2y

(∑

k∈Z

(±1)k(j + 2mk)e−2πiτ̄m(k+ j

2m)
2

e2πim(k+
j

2m)2v̄

−2ma
∑

k∈Z

(±1)ke−2πiτ̄m(k+ j

2m)
2

e2πim(k+
j

2m)2v̄

)

= − 1

4π
√
m
y−

1
2 e−4πma2y

(
∂

∂v̄
Θ±

j,m(−τ̄ , 2v̄)− 4πima Θ±
j,m(−τ̄ , 2v̄)

)

= − 1

4π
√
m

(
y−

1
2 e−4πma2y ∂

∂v̄
Θ±

j,m(−τ̄ , 2v̄)− 4πimay−
1
2 e−4πma2yΘ±

j,m(−τ̄ , 2v̄)
)
.

Using that ∂a
∂v̄ = i

2y , we deduce that

Dτ̄R
±
j,m(τ, v) = − 1

4π
√
m

∂

∂v̄

(
y−

1
2 e−4πma2yΘ±

j,m(−τ̄ , 2v̄)
)
.

Hence, using formula (4.13), we obtain

Dτ̄R
±
j,m(τ, v) =

−1

8πim

∂2

∂v̄2
R±

j,m(τ, v),

proving the lemma.
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L4.7 Lemma 4.7. Let m ∈ 1
2Z>0, s ∈ 1

2Z, and let a ∈ Q be such that am ∈ Z. Then

(a) R±
j,m(τ, v + a

2 ) = eπijaR±
j,m(τ, v).

(b) ϕ
±[m,s]
add (τ, u+ a

2 , v +
a
2 , t) = ϕ

±[m,s]
add (τ, u, v, t).

Proof. (a) is Lemma 1.6 from [KW4]. (b) follows from the proof of Theorem 1.11(2) from
[KW4].

Proof of Lemma 3.1. Let F ∈ F [m;s,s′]. Then property (F1) of F obviously implies property
(G1) of θF . By Lemma 4.4a, properties (F2) and the third one of (F5) imply property (G2)
of θF . By Lemma 4.5, properties (F3) and (F4) of F imply properties (G3) and (G4) of θF .
Finally, by Lemma 4.4 (b), (c), the first two properties in (F5) of F imply property (G5) of
θF .

Proof of Lemma 3.2. By Lemma 4.1(c), in order to prove (a), it suffices to show that θ+[m,s]

(resp. θ−[m,s]) is contained in G[m;s,s′] if s′ ∈ Z (resp. ∈ 1
2 + Z). This holds by claim (c). In

order to prove claim (c), note that, since ∂ϕ±[m,s]

∂v̄ = 0, we have:

θϕ̃±[m,s] = −2iy
1
2 e4πma2y ∂ϕ

±[m,s]
add

∂v̄

= iy
1
2 e4πma2ye2πimt

∑

k∈s+Z
s≤k<s+2m

∂

∂v̄
R±

k,m(τ, v)Θ±
−k,m(τ, 2u).

Substituting (4.13) in this formula completes the proof.
It remains to prove claim (b). For this we use Lemma 4.2, Lemma 4.3, and it remains to

check (F4) and (F5).
It is straightforward to check that the function ϕ±[m,s] satisfies property (F4)(i). It follows

by Lemma 4.7 that the function ϕ̃±[m,s] satisfies this property too. Then, using S-invariance of
the function ϕ̃±[m,s], given by Corollary 1.6 from [KW5], property (F4)(ii) of ϕ̃±[m,s] holds as
well.

The function ϕ̃±[m,s] is annihilated by D, D̄ and ∆ by Lemmas 4.3, 4.6, and 4.4(a) respec-
tively, which proves that it satisfies property (F5).

Proof of Lemma 3.3(a). Let

e4.24e4.24 (4.24) ϑ̃(τ, u, v) = ϑ11(τ, v − u)ϑ11(τ, v + u), F1(τ, u, v, t) = ϑ̃(τ, u, v)F (τ, u, v, t).

Since ∇F = 0, we have ∂
∂v̄F = 0, and hence ∂

∂v̄F1 = 0. Due to condition (F2) on F we deduce
that the function F1(τ, u, v, t) is holomorphic in v. By conditions (F3) on F we obtain

F (τ, u, v + 2, t) = F (τ, u, v, t), F (τ, u, v − 2τ, t) = e8πim(τ−v)F (τ, u, v, t).

From this, and (3.5) and (3.6) we obtain:

e4.25e4.25 (4.25) F1(τ, u, v + 2) = F1(τ, u, v), F1(τ, u, v − 2τ) = e8πi(m−1)(τ−v)F1(τ, u, v).
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Letting h(v) = ϑ11(τ, v)
2m−2F1(τ, u, v, t), we deduce from (3.5), (3.6) and (4.25):

h(v + 2) = h(v), h(v − 2τ) = h(v).

Thus, the function h(v) is a bounded holomorphic function if m ≥ 1, and h(0) = 0 if m > 1
(since ϑ11(τ, 0) = 0). This completes the proof in the case m > 1.

In the case m = 1 we obtain that F1(τ, u, v, t) is independent of v. Letting j = 0 and k = 1
in (F3)i (resp in (F3)ii), and using (3.5) and (3.6), we obtain

e4.26e4.26 (4.26) F1(τ, u, v + 1, t) = e2πisF1(τ, u, v, t) andF1(τ, u, v + τ, t) = e2πis
′
F1(τ, u, v, t).

Hence F1 = 0 if either s or s′ is not an integer.

In order to prove Lemma 3.3(b) and (c), we need the following lemma. We omit its proof,
which is along the same lines as the proof of Proposition 13.3 in [K2], and Lemma 4.1.

L4.8 Lemma 4.8. Let m ∈ 1
2Z>0, j ∈ 1

2Z, and let α be a non-zero real number. Let f(τ, z) be a
function, which is real analytic in τ, Im τ > 0, and holomorphic in z ∈ C. Suppose that

f

(
τ, z +

2

α
τ

)
= ±q−me−2πimαzf(τ, z) and f

(
τ, z +

2

α

)
= e2πijf(τ, z).

Then there exist real analytic functions cn(τ), n ∈ j + Z, 0 ≤ n < 2m, such that

f(τ, z) =
∑

n∈j+Z
0≤n<2m

cn(τ)Θ
±
n,m(τ, αz).

Proof of Lemma 3.3(b). By (4.26), the function F1 = ϑ11(τ, v − u)ϑ11(τ, v + u)F (τ, u, v, t)
is independent on v, and by the condition on F, it is independent on v̄. Hence the function
f(τ, u) := e−2πitF1(τ, u, v, t) is a function, which is real analytic in τ, Im τ > 0, and holomorphic
in u ∈ C. This function satisfies all conditions of Lemma 4.8 with m = 1

2 , j =
1
2 , α = 4, due to

conditions (F3) on F and (3.5), (3.6). Hence we have (cf. Example 1.9):

f(τ, u) = c 1
2
(τ)Θ−

1
2
, 1
2

(τ, 4u, 0) = −ic 1
2
(τ)ϑ11(τ, 2u),

where c 1
2
(τ) is a real analytic function in τ, Im τ > 0.

Thus, by (2.21) we have:

F (τ, u, v, t) =
c 1
2
(τ)

i η(τ)3
R̂A(τ, u, v, t).

Since F is annihilated by D and D̄ by (F5), we obtain that
c 1
2
(τ)

η(τ)3
is annihilated by ∂

∂τ and ∂
∂τ̄

respectively. Hence
c 1
2
(τ)

η(τ)3 is a constant, completing the proof.

In order to prove Lemma 3.3(c), we need the following lemma.
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L4.9 Lemma 4.9. Let f(τ, u, v, t) = R̂B
ab(τ, u, v, t)g(τ, u), where g(τ, u) is a real analytic function in

τ, Im τ > 0, and a meromorphic function in u ∈ C. Suppose that Df = 0 and D̄f = 0. Then g
is a constant.

Proof. Recall that DR̂B
ab = 0 (see the end of the proof of Theorem 2.3). Hence, we have, by the

assumption on f :

0 = Df = R̂B
ab

(
4πi

∂g

∂τ
− ∂2g

∂u2

)
− 2

∂R̂B
ab

∂u

∂g

∂u
.

Dividing both sides by R̂B
ab, we obtain:

e4.27e4.27 (4.27)

(
4πi

∂g

∂τ
− ∂2g

∂u2

)
− 2

∂ log R̂B
ab

∂u

∂g

∂u
= 0.

Since g is independent of v, applying ∂
∂v to both sides of (4.27), we obtain:

−2

(
∂

∂v

(
∂ log R̂B

ab

∂u

))
∂g

∂u
= 0.

It follows that ∂g
∂u = 0. Hence, by (4.27), we obtain that ∂g

∂τ = 0.
Next, we have

0 = D̄f =

(
4πi

∂

∂τ̄
+

(
∂

∂v̄

)2
)
f = 4πi

∂f

∂τ̄
,

since f is meromorphic in u. Hence

∂

∂τ̄
(R̂B

ab g) = R̂B
ab

∂g

∂τ̄
= 0,

and ∂g
∂τ̄ = 0, proving the lemma.

Proof of Lemma 3.3(c). Letting j = 0, k = 1 in (F3), we have

F (τ, u, v + 1, t) = e2πisF (τ, u, v, t), F (τ, u, v + τ, t) = e2πis
′
q

1
2 e2πivF (τ, u, v, t).

Hence, by (3.5) and (3.6), the function F1, defined by (4.24), satisfies

e4.28e4.28 (4.28) F1(τ, u, v + 1, t) = e2πisF1(τ, u, v, t), F1(τ, u, v + τ, t) = e2πis
′
q−

1
2 e−2πivF1(τ, u, v, t).

Since F [m;s,s′] depends only on s, s′ mod Z, we may assume that s, s′ are equal to 0 or 1
2 .

Applying Lemma 4.8 for m = 1
2 , j = s, α = 2, we deduce from (4.28):

e4.29e4.29 (4.29) F1(τ, u, v, t) = eπitc±s (τ, u) Θ
±
s, 1

2

(τ, 2v),

where + (resp. -) corresponds to s′ = 0 (resp. = 1
2), and c

±
s (τ, u) is a function, real analytic in

τ, Im τ > 0, and holomorphic in u ∈ C.
But we have (cf. Remark 1.10):

Θ±
s, 1

2

(τ, 2v) = (−i)4ss′ϑ2s,2s′(τ, v).

24



Substituting this in (4.29), and dividing both sides of (4.29) by ϑ(τ, v−u)ϑ(τ, v+u), we obtain:

e4.30e4.30 (4.30) F (τ, u, v, t) = R̂B
2s,2s′(τ, u, v, t) A(τ, u),

where A(τ, u) is a real analytic function in τ, Im τ > 0, and meromorphic in u, and R̂B
ab is given

by (2.22).
Since, by condition (F5), DF = 0 and D̄F = 0, we conclude, by Lemma 4.9, that A(τ, u) is

a constant. This completes the proof.
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