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ABSTRACT

Despite large experimental and computational efforts
aiming to dissect the mechanisms underlying dis-
ease risk, mapping cis-regulatory elements to tar-
get genes remains a challenge. Here, we introduce
a matrix factorization framework to integrate physi-
cal and functional interaction data of genomic seg-
ments. The framework was used to predict a regu-
latory network of chromatin interaction edges link-
ing more than 20 000 promoters and 1.8 million en-
hancers across 127 human reference epigenomes,
including edges that are present in any of the input
datasets. Our network integrates functional evidence
of correlated activity patterns from epigenomic data
and physical evidence of chromatin interactions. An
important contribution of this work is the representa-
tion of heterogeneous data with different qualities as
networks. We show that the unbiased integration of
independent data sources suggestive of regulatory
interactions produces meaningful associations sup-
ported by existing functional and physical evidence,
correlating with expected independent biological fea-
tures.

INTRODUCTION

The disruption of cis-regulatory elements is considered the
key mechanism through which disease risk is conferred
by noncoding mutations (1–3). However, in order to sup-
port this hypothesis and apply it in the development of ra-
tional therapeutic strategies, several difficulties have to be
surpassed. First, identification of cis-regulatory elements
proved a difficult task given the dimension of the noncod-
ing genome (4). This has been overcome using the asso-
ciation of chromatin marks with genome activity in cod-
ing and noncoding regions as a widely accepted approx-
imation to map the tissue-specific activity and dynamics

of distal and proximal cis-regulatory elements (5–7). The
highly correlated structure displayed by combinatorial pat-
terns of marks across the genome enables computational
identification of a reduced number of robust chromatin
states (8,9) for display in a single annotation track. Thanks
to these experimental and computational advances, refer-
ence epigenomes were recently profiled and annotated for a
large number of human tissues (10), including the tissue-
specific annotation of active cis-regulatory elements (e.g.
enhancers).

Having defined systematic strategies for genome-wide
mapping of cis-regulatory elements, efforts have more re-
cently shifted toward tackling the more challenging prob-
lem of determining what genes are likely to be targeted by
given cis-regulatory elements, mostly enhancers. Numerous
solutions have been proposed on both the computational
and experimental fronts.

On the computational side, several efforts have ex-
ploited the correlated structure of epigenomic features to
infer associations between enhancers and target promot-
ers. Enhancer–promoter associations have been mapped by
quantifying patterns of coactivity of annotated enhancer
elements and promoters across and within tissues (8,10).
Supervised machine learning approaches with the goal of
learning epigenomic patterns discriminative of functional
interactions have also been proposed (11–13). On the exper-
imental side, techniques to measure chromatin conforma-
tion enable the mapping of high confidence interactions at
different levels of resolution and across several human cell-
types and tissues (14,15), These methods can be targeted to
elucidate regulatory interactions by enrichment of potential
enhancer–promoter contacts in assays like the Chromatin
Interaction Analysis by Paired-End Tag Sequencing (ChIA-
PET) or promoter capture Hi-C, a promoter centered chro-
mosome conformation capture technique (14,16). However,
both approaches suffer from limitations. First, there is no
gold standard interaction set. Second, it is currently not fea-
sible to profile chromatin interactions in a large number of
cells and tissues to provide a tissue-specific reference for an
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organism. In addition, the level of resolution of Hi-C ex-
periments makes it far from trivial to precisely localize the
particular enhancer and promoter pairs that might be in-
volved in functional transcriptional regulatory interactions.
Given these and associated limitations, and the availabil-
ity of recently published human reference epigenomes (127
cell/tissue types) (10) and the largest sets of mapped chro-
matin interactions across human tissues (17 primary blood
cell types and 21 cell/tissue types) (14,15), we reasoned that
a hybrid and integrative computational approach is timely.

This article presents SWIPE-NMF, a computational
method that implements Sliding WIndow PEnalized Non-
negative Three-factor Matrix Factorization on heteroge-
neous association data represented as networks. This ap-
proach was used to integrate the functional and physical
evidence of regulatory interactions provided by computa-
tional coactivity inference and experimental data, respec-
tively. This method was applied to annotate a weighted set
of potential interactions for each of the 127 cell and tis-
sue types within human reference epigenomes (10). Further-
more, SWIPE-NMF was implemented as a flexible tool that
can be applied to integrate any set of enhancer annotations
with prior evidence sources for regulatory interactions to
infer tissue-specific weighted interactions.

MATERIALS AND METHODS

Datasets and data processing

High resolution HiC interactions were obtained for a to-
tal of 21 human cell lines and primary tissues (15,17); in
both cases, the significant interactions reported by the au-
thors were used. Cell/tissue types were matched to the
corresponding reference epigenome identifiers (EID) from
the Roadmap epigenomics project, or matched to the clos-
est EID according to information from the authors. Only
interactions with q-value <1e-3 were considered. Tissue-
specific coactivity based enhancer–promoter associations
inferred as described in Ernst et al. were obtained from the
Roadmap Epigenomics Consortium 2015 (10). eQTL data
(V6p) were obtained from the GTEX consortium, consid-
ering only associations with a P-value < 1e-5. TAD anno-
tations were obtained from Dixon et al. (18). DHS data
were obtained from Thurman et al. (19), considering only
associations with a score >0.9. Transcription factor bind-
ing motifs were obtained from Marbach et al. (20). ChIA-
PET data were obtained from Li et al. (21). The tissue-
specific enhancer annotations used as reference were ex-
tracted from the Roadmap epigenomics project, using the
non-genic chromatin state (7 Enh) annotated with the core
ChromHMM 15-state model. CTCF-binding peaks were
downloaded from ENCODE website; Broad and Narrow
peaks were combined (4).

Tissue-specific algorithm inputs

The inputs into the SWIPE-NMF algorithms consist of 17
types of matrices for each cell or tissue type. Each row or
column of a matrix is a genomic segment such as an en-
hancer or promoter (Figure 1B). A total of six different
types of genomic segments, namely enhancers, promoters,

Hi-C anchors, eQTL SNPs, TADs and NaseI hypersensitiv-
ity, were included in this study. Entries in the input matri-
ces are binary, with 1 representing presence significant ac-
tivity association or physical interactions (both called ‘in-
teractions’ in this study) and 0 standing for absence of such
interactions. Details of each type of interactions are given in
Supplementary Table S1. Tissue/cell type specific genomic
segments and their interactions were used when available.
When not available, the union over the total available cell
and tissue types was used as global reference of potential
association.

Three factor penalized sliding-window matrix factorization

The SWIPE-NMF method includes matrix factorization al-
gorithm proposed by Žitnik and Zupan (22), a sliding win-
dow setting to run the algorithm on different segments of
the genome and a data processing pipeline to convert dif-
ferent data types into appropriate matrix format as input
into the matrix factorization algorithm. Regularized factor-
ization was conducted on each sliding windows of size 5M
bp along each chromosome. The window slid at step size of
2.5M bp, making first half of each window overlapped of
the previous one and second half overlapped with next win-
dow. Many of the input matrices are very big in size with
more than 10 000 rows or columns, making it impossible
to conduct matrix operations using computers available in
most academic settings. The NMF algorithms can only run
when we break the giant matrices into smaller ones using
sliding window approach. We set the sizes of sliding win-
dows to 5M bp so that they are similar to sizes of TADs,
and balance performance and computational speed (Sup-
plementary Table S2). In each 5M bp window, NMF was
conducted on all the 17 input matrices to produce new inter-
action matrices. In the overlapped region between windows,
mean values of overlapped matrices were used. Output ma-
trices from different windows are concatenated together as
the new interaction matrix of the corresponding chromo-
some. Interaction matrices of all chromosomes were then
concatenated to form the interaction map of the tissues/cell
type for later analysis and performance evaluation.

The algorithm can be formulated mathematically as fol-
lows. In each tissue/cell type ε1, ε2 . . . εr are the genomic
segment types. In this study, r = 6. If there are ni segments
of type εi and n j segments of type ε j , the input data ma-
trix that relates the two datatypes (εi , ε j ) is represented as a
sparse matrix Ri j of dimension ni × n j . Matrices Ri j and
Rji are generally asymmetric. An example of data source
Ri j is the activity correlation between enhancer and pro-
moter pairs. An input data matrix that provides interactions
among genomic segment of the same type εi is referred to as
a constraint matrix Θ ii with dimension of ni × n j . An exam-
ple of such constraint is Hi-C data that suggest enhancer–
enhancer interactions in a specific tissue or cell type. All the
interaction matrices Ri j are factorized simultaneously con-
strained by matrices Θ. One advantage of the method is that
it produces factors that are specific to each data source (e.g.
Hi-C) and factors that are specific to each type of genomic
segments (e.g. enhancer). The three-factor penalized matrix
factorization method simultaneously decomposes all rela-
tion matrices Ri j into Gi (with dimension ni × kj ), G j (with
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dimension n j × kj ) and Si j (with dimension ki × kj ) such
that Ri j ≈ Gi Si j GT

i j . ki and kj are chosen so that ki � ni

and kj � n j . One intuitive way to understand this is thank-
ing ki and kj are clusters or ‘topics’. Gi describes member-
ship of each genomic segment of type εi to each cluster in
ki . G j describes membership of each genomic segment of
type εi to each cluster in kj . Therefore, the factorization
algorithm is, to some extent, mathematically equivalent to
a clustering algorithm. Unobserved entries in Ri j are esti-
mated from the factorization. The initial input into the fac-
torization algorithm can be conceptually represented as a
block matrix R :⎡

⎢⎢⎢⎢⎢⎣

∗ R12 . . . R1r
R21 ∗ . . . R2r
. . . . . .
. . . . . .
. . . . . .
Rr1 Rr2 . . . ∗

⎤
⎥⎥⎥⎥⎥⎦

The i th row and j th column of the block matrix R is the
interactions between genomic segments i and, i.e. Ri j . This
method does not require all relation matrices be available.
Therefore, any Ri j can be missing. The pth segment of type
εi and qth segment of type εj is Ri j (p, q). In this project,
constraint matrices are organized as a diagonal matrix:

� = Diag (�11, �22, . . . , �rr )

If constraint matrix for a type of genomic segment is miss-
ing. The i th block of Θ is zero. The entries in Θ ii are positive
if the two segments are not interacting and negative if inter-
acting. The block matrix R is factorized into block matrix
factors G and S.

G = Diag
(

Gn1×k1
1 , Gn2×k2

2 , . . . , Gn2×k2
2

)

And S matrix is:

∗ Sk1×k2
12 . . . Sk1×kr

1r
Sk2×k1

21 ∗ . . . Sk2×kr
2r

. . . . . .

. . . . . .

. . . . . .

Skr ×k1
r1 Skr ×k2

r2 . . . ∗
Factor Si j defines latent association between genomic

segment type εi and εj. Gi is specific to εi. The original
block matrix R is reconstructed as:

∗ G1S12GT
2 . . . G1S1r GT

r
G2S12GT

1 ∗ . . . G2S2r GT
r

. . . . . .

. . . . . .

. . . . . .

Gr Sr1GT
1 Gr Sr2GT

2 . . . ∗
Be reminded that the objective function is:

minG≥0 f (G, S) =
∑
Ri j εR

∥∥Ri j − Gi Si j G j
∥∥2

+ trace(GTθG).

The procedures of SWIPE-NMF method is as follows:
The ranks ki is chosen using a hyperparameter k such

that k1, k2, . . . , kr = kn1 , kn2, . . . , knr . Different values for
the hyperparameter k were used. The rank of each matrix is
integer N*k, where N is the number of columns in the data
type. Ten different values of k (0.05, 0.1, 0.15, 0.2, 0.25, 0.3,
0.35, 0.4, 0.45, 0.5) were tried on each window. As differ-
ent initializations of G matrices gave different factorization
and there is no guarantee of global minimum, we used an
ensemble learning strategy of running 20 rounds of the al-
gorithm with slightly different initialization, using random
Acol initialization and averaged the outputs (22). The rank
for each window was determined by selecting k where a
maximum kink was attained in total reconstruction error
curve (22,23). The algorithm was stopped if the difference
between two iterations was smaller than 0.01 or the maxi-
mum number of interaction (200) was reached.

Enhancer–promoter interaction set

In order to provide a set of high-confidence scored interac-
tions for other researchers to use, in addition to the direct
output from the inference, we determined a cut-off value
for the enhancer–promoter association score produced by
SWIPE-NMF, filtering out interactions with lower scores.
The cutoff was set so that the average number of promoters
per enhancer was consistent with previous estimates (∼3)
(11). Given that a similar criterion for enhancer–enhancer
and promoter–promoter interactions is not available, the fil-
tering step was not performed for these.

Enhancer–enhancer and promoter–promoter interactions

The factor G2 (Figure 1C) produced by three-factor penal-
ized factorization provides information about the learned
structures of promoter networks. A weighted enhancer–
enhancer interaction matrix was calculated as G2GT

2 for
each sliding window. Similarly, an enhancer–enhancer in-
teraction matrix was calculated as G1G1

T.
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Baseline data integration method

A total of four baseline methods were compared with
SWIPE-NMF in enhancer–promoter network prediction.
The first baseline is concatenation where means of normal-
ized scores of all input data type were used. The second
method is to link each enhancer to its nearest promoter,
which is called ‘nearest promoter assignment’. The third
baseline used is interaction prediction using only enhancer–
promoter activity correlation.

The fourth baseline is a widely used unsupervised net-
work integration method in biological community called
similarity network fusion (24). In similarity network fusion,
nodes of all input networks were standardized to enhancers
or promoters of the corresponding cell or tissue type based
on overlaps of genomic segments. No local neighborhood
restriction was used to avoid subjective bias. Following the
notations of original authors, Pi is a square matrix with
its dimension equal to sum of total number of enhancers
and promoters in a specific cell or tissue type i. An entry
in the matrix is normalized as Pi (x, y) = Pi (x,y)

2
∑

k�=x Pi (x,k) when

x �= y, and Pi (x, y) = 1
2 when x = y. Each matrix is up-

dated as Pi |t = Pi | t−1 ×
(∑

k�=i Pk | t−1

m−1

)
× PT

i | t−1 where m is

the number of input matrix types. After fusion, the final
enhancer–promoter network is computed as PC =

∑
Pi | t

m
.

Performance evaluation

For 5-fold cross validation experiments, 20% of the as-
sociations were randomly chosen and excluded from in-
puts. In addition, an equal number of non-interacting pairs
were randomly selected to balance the data. When a whole
dataset was left out to evaluate the performance of SWIPE-
NMF, that dataset was used a ground truth for testing. Only
interactions occurring at a distance larger than 5 kb were
considered for the analyses of biological correlates.

RESULTS

A matrix dimensionality reduction framework integrating ev-
idence of enhancer–promoter interactions

In order to computationally integrate the large set of qual-
itatively different data suggestive of potential enhancer–
promoter interactions in a principled way, we first curated
a database including five experimental data sources (Fig-
ure 1). We considered previously published (i) enhancer–
promoter coactivity associations (8,10), (ii) physical chro-
matin interaction calls from Hi-C data in 21 tissues (15,17),
(iii) cis-regulatory–gene associations defined by eQTL in
53 human tissues (25), (iv) cis-regulatory–promoter asso-
ciations defined by activity correlation between DNase-I
hypersensitivity sites (DHS) and promoters (19), and (5)
topologically associated domain (TAD) annotations de-
fined from Hi-C data (18). A description of each data type
and the nature of evidence provided is included in the Sup-
plementary Data (Supplementary Table S1). As an example,
Figure 1A shows the density of data in a randomly selected
region in K562 cells.

For consistency, we defined a reference set of potential
enhancer elements to which all data were mapped. The ref-
erence selected was the non-genic enhancer ChromHMM
chromatin state (7-Enh) annotated for all 127 reference hu-
man epigenomes in the roadmap epigenomics project (10).
The heterogeneous nature of the data, i.e. association data
at different length scales, in addition to annotations of dis-
crete genomic regions (e.g. TAD domains), made the inte-
gration task challenging. We approached the problem by
first devising an individual network representation for each
data source representable in matrix form and compatible for
mapping across sources (Figure 1B and C). We then applied
an extended NMF algorithm to fuse the independent net-
work data.

Specifically, we considered six types of genomic segments:
enhancer, promoter, Hi-C anchor, cis-eQTL (i.e. the SNP
position having the association), DHS and TAD. Each net-
work is composed of the total genomic segments in the data.
We can define two qualitatively different types of associa-
tions (Figure 1C): interaction and incidence associations.
Interaction matrices (blue) code associations between ge-
nomic segments of different types that are supported by
either physical or functional experimental data. Incidence
matrices represent the incidence of one element within the
other (orange), i.e. one genomic segment overlapping with
the other. Finally, we define two diagonal incidence matri-
ces � (red), which operationalize the prior knowledge that
regulatory interactions are expected to be supported by Hi-
C physical interactions and preferentially occurred within
TAD domains. We defined a consistent set of matrices for
each cell/tissue type (for details, see ‘Materials and Meth-
ods’ section). Thus, we solved the problem of heterogeneous
data representation by operationally defining networks of
experimentally supported association as binary matrices Ri j
that code associations between genomic segments of types
i and j. Importantly, integrating the data into this format
enables the application of well-established matrix factoriza-
tion algorithms. The matrices R and � are the inputs of the
matrix factorization algorithm.

Three-factor penalized matrix factorization (PMF)

The traditional three-factor penalized matrix factorization
(PMF) approach has been recently used for gene func-
tions and pharmacologic action predictions with an addi-
tional constraint imposing genomic locality of regulatory
interactions (22,26,27). In this study, we extended original
approach the sliding windows of size 5M bp along each
chromosome to make the algorithm computational feasi-
ble given the large sizes of the input data (see more details
in ‘Materials and Methods’ section). This method is de-
signed to fuse the heterogeneous network datasets and infer
a scored set of enhancer–promoter, enhancer–enhancer and
promoter–promoter interactions (Figure 1C).

Our method seeks to decompose the observed interac-
tion matrix into a lower-dimensional representation that re-
veals biologically meaningful components. All the associa-
tion matrices Ri j are simultaneously factorized: each indi-
vidual matrix is decomposed into Gi , G j and Si j so that
Ri j ≈ Gi Si j GT

i j . In other words, an entry Ri j (p, q) is ap-
proximated by the inner product of the p-th row of matrix
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Figure 1. Schematic representation of the SWIPE-NMF framework. Het-
erogeneous association data coded as binary networks were integrated,
and scored sets of tissue-specific enhancer–promoter, enhancer–enhancer
and promoter–promoter interactions inferred for 127 human reference
epigenomes in an unsupervised manner. (A) Different genetic interactions
in a randomly selected region on chromosome 22. Enhancer–promoter ac-

Gi and a linear combination of the columns of Si j , weighted
by the q-th column of matrix G j (see detailed explanation
in ‘Materials and Methods section’). The objective function
to minimize is:

minG≥0 f (G, S) =
∑
Ri j R

∥∥Ri j − Gi Si j G j
∥∥2

+trace
(
GTθG

)
.

From a biological perspective, a matrix Ri j defines the
association between two different genomic segment types i
and j, such as enhancers and promoters. A matrix G is spe-
cific to a type of genomic segments and records associations
among genomic segments of that type.

• Each row of Gi is a genomic segment of type i (e.g. an
enhancer).

• The columns of Gi can be understood as clusters divid-
ing genomic segments of type i based on shared patterns
of regulatory or physical interactions.

• The matrix Gi specifies the probability of each genomic
segment of type i belonging to each cluster.

• The matrix Si j can be interpreted as defining association
among clusters of genomic segment type i and type j .

Using a sliding window of size 5Mb, the matrix factoriza-
tion algorithm estimated interactions among genomic seg-
ments within the windowed genomic region, Gi Si j G j . Inter-
actions estimated from each segment were then conjugated
together to form the interaction map of the whole chromo-
some and genome, which are used for biological analysis
and performance evaluation later.

In addition to interactions between different types of ge-
nomic segment, Gi Si j G j , association among genomic seg-
ments of the same type, such as enhancer–enhancer interac-
tions, can be estimated from Gi matrices by Gi G j

T. In this
way, Ri j is dissected into, and can be reconstructed from,
three matrices, Gi , G j and Si j in a systematic, tractable and
interpretable way.

The algorithm iteratively updates G and S by fixing one
of them in an alternate way. We applied this method to all

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
tivity correlations (EP) are shown in blue. Hi-C links are in red. Links be-
tween SNPs and promoters detected by eQTL are in green. Correlation
between DNaseI hypersensitivity sites and promoters across multiple cell
types are in sky blue. Topologically associated domains are not shown to
avoid confusion with links among genomic elements. Locations of genes,
reference enhancers and histone marks were also included. (B) All data
types were organized into matrix/networks. Each row or column repre-
sents a type of genomic segments such as enhancers, promoters or Hi-C
anchors. (C) SWIPE-NMF was used to integrate all five data types to
produce cell/tissue type specific enhancer–promoter, enhancer–enhancer
and promoter–promoter links for each of the 127 cell/tissue types. Each
matrix Ri j was decomposed into three matrices Gi , Si j and GT

j such

that Ri j ≈ Gi Si j GT
j . Ri j is the relation between data type i and j. R12

is enhancer–promoter interaction. Gi is an n × m matrix where n is the
number of elements in that data type (e.g. number of enhancers) and m
is the number of ranks. Si j is a matrix representing the relation between
columns in Gi and G j . Joint factorization of matrices allows integration
of information from all data types while minimizing information loss. This
factorization was conducted on 5 Mb overlapped windows on each chro-
mosome in each cell and tissue type.
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the integrative tissue-specific sets of matrices, including Hi-
C, enhancer–promoter activity correlation, DHS–promoter
correlation, eQTL and TAD domains; obtaining a tissue-
specific weighted set of interaction matrices for enhancer–
promoter (reconstructed R12), enhancer–enhancer (G1G1

T)
and promoter–promoter (G2G2

T) interactions.

Evaluation of the data integration strategy

There is currently no large gold-standard compendium of
known regulatory region interactions, and lines of evidence
for physical, functional and genetic interactions each cap-
ture different aspects of the underlying regulatory network.
However, these complementary biological datasets enabled
us to validate our predictions on a genome-wide basis us-
ing a diversity of methods and evidence. (i) For enhancer–
promoter c-activity associations, we used 5-fold cross val-
idation; (ii) for each independent empirical dataset sug-
gestive of regulatory associations, we excluded one whole
dataset from inputs; (iii) with orthogonal experimental
data, we used separate ChiA-PET data and (iv) finally, we
examined biological correlates and cell/tissue-type speci-
ficity of the scored sets of interactions inferred by SWIPE-
NMF.

In 5-fold cross validation, SWIPE-NMF was used to
reconstruct the functional coactivity data of enhancer–
promoter associations (8), with 20% of the associations
excluded from inputs. SWIPE-NMF showed good perfor-
mance on this task (AUC = 0.82) (Figure 2A). Next, in
four evaluation experiments, each evidence source (HiC,
eQTL, TAD and DHS) was left out and used to test the
model’s consistency with the interactions inferred by in-
tegrating the rest of the datasets. When each eQTL and
DHS was individually excluded from inputs and used as
ground truth, the inference also performed well (AUROC
> 0.7, Figure 2B), indicating that the interactions predicted
by integration are supported by eQTL and DHS correla-
tion (19). In addition, when TAD incidence annotation is
excluded from inputs, the corresponding inferred interac-
tions occurring within TAD domains have much higher
scores compared with those involving cross-domain inter-
actions (P-values <10−10) (Figure 2C). Finally, most of the
interactions with high confidence scores are within TAD
domains (15) (Figure 2D). When testing using orthogonal
ChiA-PET data (from the K562 cell line) (21), the perfor-
mance of SWIPE-NMF (AUROC ≈ 0.75) is better com-
pared with either enhancer–promoter activity correlation
(AUROC ≈0.6), averaging links across data types (AU-
ROC ≈ 0.6), nearest promoter assignment (the brown point
in Figure 2E) and similarity network fusion (AUCORC
≈ 0.71). Performance of SWIPE-NMF on two randomly
picked 5M bp window in K516 cell using ChiA-PET as gold
standard are shown in Supplementary Figure S1. The AU-
ROC is different from previous publications because en-
hancers are defined in different way, we only focus on en-
hancers in non-genic regions in this project and input data
were handled in a more conservative way (see ‘Materials
and Methods’ section for details). Interestingly, we found
that a considerable portion (50–80% depending on cell and
tissue type) of enhancer–promoter interactions inferred by
SWIPE-NMF with low scores does not occur in any of the

input datasets (Figure 2F). When comparing with ChiA-
PET links, we found that these interactions uniquely pre-
dicted by SWIPE-NMF show better performance than ran-
dom expectation (AUROC ≈0.6). This suggests that factor-
ization is able to transfer information by learning associa-
tion patterns in observed enhancer–promoter interactions.
The results are consistent with orthogonal data of chro-
matin interactions mediated by RNA polymerase (21). Pre-
sumably the degree of overlap will increase when matching
tissue-specific ChiA-PET data are considered, once avail-
able. Overall, the evaluation experiments demonstrate that,
through integration by SWIPE-NMF, different sources of
evidence provide complementary information with predic-
tive power.

Predicted enhancer–promoter interactions are biologically
meaningful

Several studies have shown a strong correlation between
chromatin interactions and gene co-expression, due to the
spatial colocalization of transcribed genes and their regu-
latory elements (28,29). We tested whether the inferred as-
sociations present a similar behavior. Using a large set of
tissue-specific gene coexpression networks (30), we found
that coexpressed gene pairs tend to share common inter-
acting enhancers (P-value < 1e-30, hypergeometric test),
agreeing with the expected behavior (Figure 3A). We also
found enrichment of transcription factor binding sites (TF-
BSs) within enhancers and promoters, and moreover, we
show that inferred interacting enhancer–promoter pairs
(G2S21G1) sharing TF-binding motifs are more likely to
interact (Figure 3B) than those without co-occurring mo-
tifs. These results are consistent with previous reports sug-
gesting that transcription factors might facilitate enhancer–
promoter interactions (30,31). Previous studies have also
shown that CTCF, an insulator binding protein that is
thought to be involved in the regulation of chromatin struc-
ture and DNA looping (32), is enriched near interacting
promoters and enhancers (11,13). We found enhancers in-
teracting with promoters and promoters interacting with
enhancers are both highly enriched in CTCF Chip-seq
peaks with significant P-values (Figure 3C and D), within
the inferred associations.

Tissue-specific promoters show more enhancer interactions

Enhancers are known to regulate tissue-specificity predom-
inantly by modulating the expression of different target
genes across tissues (33). We tested whether genes being tar-
geted by enhancers show distinctive properties of gene ex-
pression relative to other genes using the inferred interac-
tions. We found that genes interacting with enhancers show
higher expression (RPKM) than those without enhancer
regulation (Figure 3E). In addition, the level of gene expres-
sion in each cell type shows a positive correlation with the
number of incoming enhancer interactions to the promot-
ers, consistent with an additive effect of the regulatory in-
put (Figure 3F). Furthermore, given the role of enhancers
in establishing tissue-specificity, we hypothesized that genes
with tissue-specific functionality are more prone to target-
ing by enhancers. To test this hypothesis, we used an entropy
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Figure 2. Performance of SWIPE-NMF in enhancer–promoter interaction inference. (A) Receiver operating characteristic (ROC) curve was used to demon-
strate the power of SWIPE-NMF method to reconstruct enhancer–promoter network inferred by activity correlation alone (5-fold cross validation). About
20% of the enhancer–promoter activity correlation links were left out in each fold. An area under ROC curve (AUROC) > 0.8 was reported (AUORC
≈0.5 for random predictions). (B) Performance of SWIPE-NMF by leaving each of the entire datasets out in inputs. Using eQTL-promoter links (red)
and DNaseI hypersensitivity site to promoter correlation links (green) as ground truth, AUROC were both > 0.70. (C) Confidence scores of interactions
within topologically associating domains (TAD) are significantly higher than inter-TAD interactions with a P value <10−5. (D) Most of the high score
interactions are within TAD domains. Each block on x-axis is a TAD. Chromosome 22 of the K562 cell line is shown. Yellow color indicates high interac-
tion scores and blue color indicates lower scores. (E) Performance of SWIPE-NMF using ChiA-PET as gold standard (21). SWIPE-NMF (black, AUROC
≈0.75) performs better than activity based correlation (red, AUROC ≈ 0.6), concatenation (green, AUROC ≈ 0.6), nearest promoter (brown point) and
similarity network fusion (blue, AUROC ≈0.71). (F) About 50–80% of the enhancer–promoter links were unique to output of SWIPE-NMF, i.e. not seen
in any of the five input data types. The confidence scores of links unique to SWIPE-NMF were generally in middle to lower range (P-value <10−3). (G)
Enhancer–promoter links unique to SWIPE-NMF output had an AUROC ≈ 0.6 when ChiA-PET was used as ground truth.
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Figure 3. Biological correlates of inferred enhancer–promoter networks produced. No enhancer–enhancer and promoter–promoter links are considered
in this figure. (A) Co-expressing gene pairs are more likely to share interacting enhancers compared with gene pairs not showing co-expression (P-value <

10−15) (30). Data for K562 cell were shown. (B) Enhancer–promoter pairs sharing more TF-binding motifs are more likely to interact (P-value <10−5). (C)
Promoters interacting with enhancers show enrichment in CTCF-binding sites detected by Chip-Seq that agrees with previous findings (13). (D) Enhancers
interacting with promoters also show enrichment in CTCF-binding sites detected by Chip-Seq. (E) Genes regulated by enhancers show enrichment in
expression levels compared with genes not interacting with enhancers (P-value < 10−10). (F) Numbers of interacting enhancers of genes have a positive
correlation with expression levels. (G) Number of enhancers interacting with each promoter also positively correlates with cell/tissue type expression
specificity measured by entropy rank (11) (P-value < 10−5).
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Figure 4. Biological properties of enhancer–enhancer and promoter–promoter interactions are similar to enhancer–promoter links. (A and B) ROC curve
of enhancer–enhancer and promoter–promoter interactions predicted by SWIPE-NMFusing ChiA-PET as gold standard both >0.6. Results of K562
are shown. (C) Promoters of co-expressing genes are more likely to interact with each other (P-value < 10−15). (D and E) Enhancer–enhancer pairs and
promoter–promoter pairs sharing more TF-binding motifs are more likely to interact (P-value < 10−15 and < 10−4). (F and G) Enhancers involved in
enhancer–enhancer and promoters involved in promoter–promoter interactions are enriched in CTCF-binding sites detected by Chip-Seq.
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Table 1. Gene ontology term enrichment

Roadmap EID Cell/tissue type GO ID GO term P values

E028 Breast variant Human
Mammary Epithelial Cells

GO:0007156 Homophilic cell adhesion via plasma
membrane

1.80E-14

E028 Breast variant Human
Mammary Epithelial Cells

GO:0098742 Cell–cell adhesion via plasma membrane 4.80E-10

E028 Breast variant Human
Mammary Epithelial Cells

GO:0015732 Rostaglandin transport 1.10E-05

E111 Stomach Smooth Muscle GO:0043279 Response to alkaloid 1.30E-05
E111 Stomach Smooth Muscle GO:0007626 locomotory behavior 0.00017
E111 Stomach Smooth Muscle GO:0044763 Single-organism cellular process 0.00021
E127 NHEK-Epidermal

Keratinocyte Primary Cells
GO:0007608 Sensory perception of smell 8.40E-11

E127 NHEK-Epidermal
Keratinocyte Primary Cells

GO:0050911 Detection of chemical stimulus 1.20E-10

E127 NHEK-Epidermal
Keratinocyte Primary Cells

GO:0007606 Sensory perception of chemical stimulus 2.50E-09

based measure of gene expression specificity for each gene
across the reference human transcriptome of the Roadmap
epigenomics project (10,11), and found that gene expression
specificity does correlate with the number of incoming en-
hancer interactions of a promoter (Figure 3G). This result is
consistent with the expectation that enhancer–promoter in-
teractions contribute to the cell/tissue type specific expres-
sion of genes and agrees with findings in previous publica-
tions (11).

In order to further test whether genes targeted by more
enhancers tend to be associated with tissue-specific (related)
functions, we performed gene ontology (GO) term enrich-
ment tests using the genes with the top 5% of incoming en-
hancer interactions as gene query set. In Table 1, we show
examples of the enriched terms found for randomly chosen
cell and tissue types. By looking at the top 3 GO terms in
biological processes for each cell and tissue types, we found
that highly targeted genes were generally enriched in func-
tions related to the underlying biology of the tissue. This
further supports our hypothesis that the inferred enhancer–
promoter interactions contribute to the regulation of tissue-
specificity.

SWIPE-NMF enhancer–promoter, enhancer–enhancer and
promoter–promoter interactions

In addition to enhancer–promoter interactions, chromatin
interactions involving only promoters or only enhancers
have been shown to spatially organize the transcriptional
machinery (21,34). Although the mapping and character-
ization of enhancer–promoter interactions have received
much more attention, chromatin interactions occurring at
similar resolution but involving only promoters or en-
hancers might be relevant under normal and abnormally
disrupted conditions. One advantage of using SWIPE-
NMF for data integration is that all three types of chro-
matin interactions are simultaneously learned during the
matrix factorization process (see details in ‘Materials and
Methods’ section). When using ChiA-PET as gold stan-
dard, both enhancer–enhancer and promoter–promoter
networks show considerable AUROC scores (>0.6) (Fig-
ure 4A and B). Similar to enhancer–promoter interac-
tions, promoters interacting with each other tend to pref-
erentially show co-expression (Figure 4C), consistent with

the existence of chromatin-mediated transcription facto-
ries within the cell (35). Interacting enhancer–enhancer
pairs and promoter–promoter pairs sharing more TF mo-
tifs have higher chances of interaction (Figure 4D and E),
and interacting enhancers and promoters are enriched in
CTCF ChIP-Seq peaks (Figure 4F and G). Overall, the ob-
served consistency of biological correlates across the differ-
ent types of inferred interactions indicates that, by integrat-
ing physical and coactivity evidence of association, SWIPE-
NMF is able to infer general chromatin interactions, with
enhancer–promoter associations as an important subset.

DISCUSSION: CONSTRUCT ENHANCER PROMOTER
NETWORKS USING AN INTERMEDIATE INTEGRA-
TION STRATEGY

After mapping cis-regulatory elements to their target genes,
testable mechanistic hypotheses can be proposed for detri-
mental effects conferred by non-coding pathogenic muta-
tions. With the goal of accelerating such mapping genome-
wide, and to provide a starting reference set of poten-
tial chromatin mediated regulatory interactions across ref-
erence human tissues, here we introduced and applied
SWIPE-NMF.

Several features distinguish the proposed computational
framework from other tools concerned with particular in-
stances of the same problem. When dealing with data in-
tegration, most existing methods either transform all data
sources into a single feature-based table and apply to it
well-established feature-based machine learning algorithms
(‘early integration’) or build an independent model for each
data source (‘late integration’). SWIPE-NMF, instead, is
based on a more recent, ‘intermediate integration’ strategy
that explicitly addresses the multiplicity of data types by
fusing them through inference of a single joint model (36).
Importantly, such an intermediate level of integration re-
tains the structure of the data sources, incorporating them
within the structure of the learned model. SWIPE-NMF
was specifically designed to exploit the information pro-
vided by both computational coactivity-based inferences
and experimentally grounded physical evidence of chro-
matin interactions, overcoming their individual limitations.
An important contribution of this method is the representa-
tion of heterogeneous data with multiple resolutions as net-
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works, enabling their integration without resolution conver-
sion. SWIPE-NMF implements an unbiased, unsupervised
approach that directly factorizes all the integrated data ma-
trices using non-negativity constraints (37). The simultane-
ous factorization of matrices allows sharing of information
by revealing the latent structure of all input network data.
Finally, SWIPE-NMF is applied using overlapped sliding
windows along chromosomes, facilitating the capture of
both local and global patterns from the data, while at the
same time improving efficiency. Although, in this project,
five experimental datasets were selected to provide reliable
resources of interactions among promoter and enhancers,
the proposed framework is flexible and can easily take into
account other datasets of interest. Moreover, the method
can be applied to other purposes such as improving predic-
tions of eQTLs and chromatin physical interactions.

This new matrix factorization based approach integrates
independent data sources suggestive of regulatory interac-
tions. Application to a large set of reference human tis-
sues produces meaningful associations supported by exist-
ing functional and physical evidence, and which correlate
with expected, independent biological features. The integra-
tive emphasis underlying the design of our approach lim-
its its predictive reach, as the quality and quantity of in-
ferred interactions depend on the status of the available
data. However, we consider this as a strength of our ap-
proach on inferred sets of tissue-specific interactions. Data
are being produced and curated at an accelerated pace. By
integrating new data, SWIPE-NMF will enable inference of
novel associations and improvement of the current analysis.
Unbiased and integrative computational tools are required
to fully exploit the power of the multiple flavors of next-
generation sequencing data and epigenomic information.
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