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Abstract

In this thesis we study structural properties, techniques, and solution algorithms for the
survivable network design problem (SNDP). The problem is to design a network of mini-
mum cost that satisfies given connectivity requirements. We study this problem when the
objective is to design a minimum-cost k edge-connected network that spans a set of termi-
nals located in a “convex-hull” fashion on the plane, assuming we use straight lines as edges
to connect the points. We derive a structural property relating paths in a planar graph to
its boundary and show that the optimal solution on the plane is k/2 copies of the bound-
ary when k is even and k — 1/2 copies of the boundary plus one copy of the Steiner tree
when k is odd; this leads to a fully polynomial approximation to this problem. In the third
chapter, we derive a “no-crossing” property of a minimum-cost k edge connected network
for terminals on the plane when new points are not allowed; this property essentially says
that in the minimum-cost network, two edges do not cross each other. This result is useful
in designing local improvement heuristics. In the fourth chapter we study the network syn-
thesis problem, which can be thought of as a linear programming relaxation of SNDP on a
complete graph. We give a new algorithm to solve this problem that has the property that
it is guaranteed to use fewer or an equal number of edges in the optimal network design
than either Gomory and Hu’s algorithm or a more recent algorithm due to Gusfield. We
also give a lower bound on the number of edges needed in any solution of the network
synthesis problem. Finally, in chapter five we study a problem that has applications in the
computation of network reliablity: finding k disjoint [s,t] cuts. We give a path formulation
of a polytope whose vertices are the incidence vectors of subgraphs that contain exactly
k disjoint [s,t] dicuts. This formulation is similar in spirit to the path formulation of the
max-flow problem. Our results also give a path formulation of a recent generalization of
the max-flow problem due to Nishihara and Inoue and Orlin and Wagner.
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Chapter 1

Introduction

This thesis is concerned with the design and analysis of telecommunication networks.
Telecommunication networks are vulnerable to failure. Here failure means that in the
network, one or more customers are unable to communicate with other customers.
Failures usually occur because accidents or natural causes destroy the cables or trans-
mission nodes. In order to maintain communication despite failures, we would like to
build the network with alternate routes for communication that we could use when
some equipment fails. Such redundancy in the system reduces the chances of failure,
but at a greater overall network cost. Thus, we are led to the problem of designing a

minimum-cost network that meets certain connectivity requirements.

The problem has taken on even more importance in the recent past. New fiber
optic technology has begun to replace traditional copper cables for transmission links.
This new technology is reliable and cost-effective, and has an enoromously high trans-
mission capacity. For example, a strand of copper cable can carry around twenty four

conversations at a time, while a fiber optic cable can carry up to twenty thousand
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conversations at a time. While the low capacity of copper cables has led to dense
networks, in which the failure of a few links has an insignificant impact, fiber optic
networks are sparse and each cable carries a large amount of traffic, so failures are
catastrophic (see [49], [50], [51], [52], [53]). Consequently, planners need to trade off
the potential for lost revenues and customer goodwill against the extra costs required

to increase the network’s survivability.

In this thesis we study structural properties, techniques, and solution algorithms
for the network survivability problem. In this Chapter, in Section 1.1 we first state
some basic definitions that we use throughout the thesis. In Section 1.2 we state the
Survivable Network Design Problem and survey previous research on this problem and
its special cases. In Section 1.3 we state a mathematical programming formulation
that provides a framework for studying this class of problems. In Section 1.4 we
formulate the network reliability problem that is more concerned with analyzing an
existing network, rather than designing a survivable network. Finally, in Section 1.5

we outline the rest of the thesis in some detail.

1.1 Basic definitions and notation

In this section we state some basic notation and definitions that we will need in the
rest of the thesis. A set V of given nodes represents the locations of the switches
(offices) that must be connected by a network that provides the desired services. A
collection E of edges represents the possible pairs of nodes between which we can place
a direct transmission link. Therefore, G = (V, E) is an undirected graph of possible
direct link connections. We assume that G can have multiple edges, but no loops.
Each edge e € E has a nonnegative fized cost c. that we incur if we use this edge to

establish a direct link connection in the network. The cost of establishing a network
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consisting of a subset F' C E of edges is ¢(F) = ¥_.cr ce. This cost for establishing the
network topology for the communication network includes the installation of conduits
in which to lay the fiber optic cables, the placement of the cables into service, and
other related costs. These fixed costs do not include the costs incurred while operating

the network, such as routing, multiplexing, and repeater costs.

For a pair of distinct nodes s,t € V, an [s,t]-path P is a sequence of nodes and
edges (vg, €1,01,€2,...,V-1,€1,V;), With each edge e; incident to the nodes v;_; and
v; (=1,...,1), v0o = s and v = ¢, and no node or edge appears more than once in
P. When there is no room for confusion, we specify the path just by its nodes. A
collection Py, P,,..., P; of [s,t]-paths is edge-disjoint if no edge appears in more than
one path, and is node-disjoint if no node (except for s and t) appears in more than
one path. A graph with at least two nodes is k-edge (k-node) connected if the network

contains k edge-disjoint (node-disjoint) paths between every pairs of distinct nodes.

Let [W, W’] denote the subset of E with one endpoint in W and the other in W".
An edge cut of G is a subset of E of the form [W, W] formed by a nonempty proper
subset W of V and W = V \ W. A k-edge cut is an edge cut of cardinality k. By
a classical theorem of Menger (see [5]), G is k-(edge) connected if and only if every
edge cut has at least k edges. An edge cut is minimal if the graph created by the

removal of the edges of the cut has exactly two components.
For a given set of special nodes Z, known as terminals, a Steiner cut or Z-cut is a

cut [S, 5] with the property that both SN Z and S N Z are nonempty.

For a given embedding of the graph G on the plane, two edges of G are said to
be crossing if they cross in the embedding. If the embedding has no crossing edges,
we say that it is a planar embedding. A graph is planarif it has a planar embedding,.

The boundary of a planar graph is the boundary of the unbounded face.

For a given embedding of a 2-connected planar graph G, the boundary of the
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graph itself is a 2-connected subgraph of G.

1.2 The survivable network design problem

In this section we state the Survivable Network Design Problem and survey the liter-
ature on it. To each node of the network, we associate a nonnegative integer r; called

the survivability requirement. Qur goal is to build a minimum-cost network with
ry; = min(r;, ;)

edge-disjoint [s,t]-paths between each pair of distinct nodes ¢, 7 € V. The Survivable
Network Design Problem (SNDP) is as follows:

GIVEN: A network G = (V, E) with edge costs ¢, > 0,e € E and surviv-
ability requirements r;,z € V.

FIND: A minimum-cost subnetwork H = (V, F) of G that has r;; edge-

disjoint paths between every pair of nodes 7 and ;.

By applying small perturbations to the data, if necessary, we assume that ¢, > 0

for all edges in the network. We impose this assumption for simplicity.

Note that we are studying the edge-connected version of the problem. Although
we could very well have defined a node-connected version of the problem or a version
that requires both node and edge-connectivities, this thesis primarily focuses on the
edge-connected version. When designing a network, we have the option of designing
a network with n:ultiple copies of any edge. For designing vertex-connected networks,
multiple edges are redundant; when we require only edge-disjoint paths, we have two
models - one that prohibits multiple edges and one that allows multiple edges. We will

work with the latter model. When we have connectivity requirements of two or three
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between all pairs of terminals, our results will also show how to design minimum-
cost networks under the former model (in fact even for the vertex-connected version
of the problem). Thus, for low connectivities our results solve all three problems -
edge-connected version with and without zllowing multiple edges as well as the vertex-
connected version. If we use I, copies of an edge, we assign a multiplicity number I,
to that edge. The cost for these copies would, of course, be l.c.. Moreover for the
Euclidean version of the problem, which we define later in this section, studying the
proble.n with duplication of edges is unavoidable because we can always replace two
copies of an edge by two parallel edges that are very close to each other. In passing,
we might note that typically in practice r; € {0,1,2} foralli € V.

When r; = 1forall: € V, the SNDP is the Spanning tree problem on networks. For
this case, the research community has developed very efficient algorithms for solving
the problem: see Kruskal (40] or Prim [56]. Whenr; =1 for: € Z C V and r; = 0 for
i ¢ Z, the problem becomes the Network Steiner tree problem with terminal set Z.
The nodes in V' \ Z are called Steiner points. See Winter [62] for a recent survey of
algorithms for the Steiner tree problem in networks. This problem is NP-hard, so the
SNDP itself is NP-hard. When r; = k for all i € Z C V, the problem is known as the
k-connected Steiner Network Problem (k-SNP). Goemans and Talluri [27], Monma
and Shallcross [48], Monma, Munson and Pulleyblank [47], Steiglitz, Weiner and
Kleitman [59] and Goemans [25] have studied structural properties of minimum-cost
k-connected networks. Figure 1.1 shows a network and optimal solutions to all these

problems.

When these problems are defined on the plane, we are given a set of points on
the plane designated as terminals and we want to find a minimum-cost spanning
network using straight lines between the points as edges, the cost of an edge being

its length. Many combinatorial problems that can be solved in polynomial time in
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Figure 1.1: (a) The network with costs on edges (b) Minimum-cost spanning tree on
the terminal nodes (c) Steiner Tree (d) Minimum-cost 2-connected Steiner tree.
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networks become computationally easier to solve when posed on the plane with Eu-
clidean distances. For example, specialized algorithms for both the spanning tree and
the matching problem on the plane have better running times than general purpose
versions of these algorithms. Problems that are NP-hard, however, tend to remain
equally hard or become harder when defined on the plane. The Travelling Salesman
Problem and the Steiner tree problem on the plare are examples. The added com-
plexity of these problems, apart from their combinatorial difficulties, arises because of
irrational numbers. For example, for the Euclidean Steiner tree problem, the choice
of Steiner points is now uncountable and their location unknown. Thus, even formu-
lating this problem as an integer linear program is impossible and we cannot apply
traditional integer programming techniques like Lagrangian relaxation or polyhedral
combinatorics. Some structural properties for this problem are known. Some, like
the property that every Steiner point has degree three with the edges meeting at an
angle of 120 degrees (Gilbert and Pollack [24]), are local; some decomposition results
(as in Cockayne (8], Hwang et. al. [37]) help in reducing the problem size. Apart
from trivial cases, and for problems with fewer than five terminals, for no interesting
special cases can this problem can be solved efficiently. Figure 1.2 shows Euclidean
Steiner trees for three, four, five, and six nodes. We denote the Euclidean version of

k-SNP by k-SNPP (k-Steiner network problem on the plane).

1.3 Mathematical programming formulation

In this section we give a mathematical programming formulation for SNDP. Although
the main concern of this thesis is not polyhedral in nature, the formulation will provide

a framework for visuaiizing all the models that we are considering.
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Figure 1.2: Examples of Euclidean Steiner trees: Square nodes are terminals, round
nodes are Steiner points.
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Let us define two connectivity terms for subsets of nodes:

r(W) = max{r;|i €W} forall WCV,and
con(W) := max{r;|teW,j eV \W}
= min{r(W),r(V\W)} foral WCV,0£W#V.

For each edge e € E, define a variable z. and consider the vector space F. Every
subset F C E induces an incidence vector zF' = (zF).cr € RF by setting zF := 1
if e € F, and zF := 0 otherwise. In the other direction, each 0/1-vector z € RF
induces a subset F* := {e € E|z. = 1} of the edge set E of G. Using this notation,

we formulate SNDP as the following integer program:

Z = Min Z CeZe

e€EE
subject to

(P) > x> con(W) YWcCV, W+#0
e€[W\W]
0 < z., z. integer Ve€E.

By Menger’s theorem, any feasible solution of this program represents the incidence
vector of a subgraph with r;; edge-disjoint paths between nodes ¢,j € V. If we add

the constraint

z.<1 foralle€ E

to this formulation we obtain SNDP without duplication of edges. When G is a
complete graph, the linear programming relaxation of this integer program (that is,
the problem created by removing the restriction that z. be integer for all ¢ € E) is
called the network synthesis problem; Gomory and Hu [29] first studied this problem
- we will be studying it in Chapter 4.

In closing this section, we mention the approach taken in [31], [32], [33]. The idea

is to devise good valid inequalities for the integer polytope and solve the problem by
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branch and bound techniques. This approach has been found to be very succesful for
solving a number of combinatorial optimization problems such as the Traveling Sales-
man problem. In [32], Grotschel, Monma and Stoer use this cutting plane approach
to solve a number of real-world connectivity problems. Another succesful computa-
tional approach has been taken in Wong [65] and Balakrishnan, Magnanti and Wong
[1]. These authors apply an ascent procedure to the dual of the linear programming
relaxations of various integer programming formulations of the network design prob-
lem. This approach generates solutions that are guaranteed to be within one to five

percent of the optimal value for a number of test problems.

1.4 The network reliability problem

So far we have been concerned with building a network from scratch. Next, we study
the problem of analyzing an existing network to determine its reliability. In this model
we assume that each edge of the network fails with a certain probability. Moreover, we
assume that all of the probabilities specified are statistically independent. Network
reliability is concerned with the probability that the network is able to carry out some

desired operation. The following list describes some common network operations.

o For two specified nodes s,t € V, the two-terminal reliability denoted by Rely(G)
is the probability that the network G contains a [s, t]-path.

o The all-terminal reliability Rel4(G) is the probabiliiy that for every pair v;, v, of
nodes, the network contains a path from v; to v,; equivalently, the all-terminal

reliability is the probability that the graph contains at least one spanning tree.

o The final network operation generalizes both of the previous two and involves

pairwise communication of k specified nodes, 2 < k¥ < n. The k-terminal
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reliability Rely(G) is the probability that for k specified target nodes, the graph
contains paths between each pair of the k£ nodes. This is equivalent to asking

for the probability that the graph contains a Steiner tree.

In addition to these three measures, we might define a number of other reasonable
reliability measures. Network Reliability theory studies methods to calculate these
probabilities. For general graphs, almost all these measures are too difficult to calcu-
late exactly. Calculation of most of the interesting reliabilities has been proven to be
#P-hard, a complexity result roughly equivalent to being NP-hard for enumeration
problems. Thus, much of the research in this area is geared towards obtaining good,
quickly computable bounds for the measures. For a thorough survey of all the lit-
erature and techniques, see Colbourn’s recent book on the combinatorics of network
reliability [9]. Chapter 5 of this thesis studies a problem that arose from an attempt
to obtain bounds for Relz(G).

1.5 Thesis outline

The contribution of this thesis are new structural results that help in designing algo-
rithms for the survivable network design problem. For example, two immediate con-
sequences of these structural properties are a fully polynomial approximation scheme
for k-SNDP on the plane and theoretical justification for the use of 2-opt heuristics
for the k-connected network design problem on the plane without the use of Steiner
points. We have also investigated some theoretical properties that lead to a better

understanding of the problem of finding £ disjoint [s, ] cuts in a network.
The thesis is organized as follows:

In Chapter 2 we study the k-connected Steiner network design problem on planar

graphs when all the terminals lie on the outer face of the graph, and the k-SNPP for
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a special “convex-hull” type of configuration of terminals on the plane. We derive a
structural property relating paths in a planar graph to its boundary and show that the
optimal solution on the plane is k/2 copies of the boundary wher. k is even and £—1/2
copies of the boundary plus one copy of the Steiner tree when k is odd; thus when £ is
even, the design of minimum-cost k-edge connected networks is very easy, and when &
is odd, using a result due to Provan, there is a fully polynomial approximation scheme

to solve the k-SNPP on the plane for this “convex-hull” arrangment of terminals.

In Chapter 3 we study the problem of designing minimum-cost k-connected net-
works using only edges between terminals. We show that minimum-cost k-connected
networks have a “no-crossing” property that can be used in local improvement al-
gorithms. We also show that the support of the solution to the linear programming

formulation of this problem also has this property.

In Chapter 4 we consider the problem of network synthesis using as few edges as
possible. Our motivation is that edges have a certain set-up cost and so we would
like to use as few edges as possible. We give a new algorithm that improves upon
the algorithms of Gomory and Hu and Gusfield in the sense that it produces a design
that uses fewer or no more edges. We also give a lower bound on the number of edges

needed to provide the required network synthesis.

In Chapter 5 we study disjoint [s, t]-dicuts which are of importance in computing
two-terminal network reliability. We give a new path formulation to the polytope
whose extreme points are the incidence vectors of subgraphs with exactly & disjoint
[s,t]-dicuts. This leads to a characterization of all subgraphs that contain exactly
k disjoint [s,t]-dicuts. We also discuss connections with a new generalization of the

max-flow problem.

Finally, in Chapter 6 we conclude the thesis by discussing some open problems.



Chapter 2

The k-connected Steiner Network
Design Problem on the Plane

In this chapter we study the k-connected Steiner network design problem on the

plane.

2.1 Introduction

We are given n points on the plane (called terminals). Recall the definition of the
k-SNPP: using straight lines as edges, design a network that spans these points and
that contains k edge-disjoint paths between any pair of terminals. Qur objective is
to minimize the total cost of the network, which is defined as the sum of the lengths
of its edges. We refer to a solution to k-SNPP as a k-Steiner network (k-SN). If the
connectivity requirements all equal one and if the network cannot use any new points
(Steiner points), the resulting problem is the Euclidean spanning tree problem; if we

permit Steiner points, the problem is the Euclidean Steiner tree problem.
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One special configuration of the terminals arises often in practice: all the terminals
lie on the boundary of their convex hull. By making small perturbations, if necessary,
we assume that all the terminals are vertices of their convex hull - we do so for
simplicity. Cockayne [7], Du et. al. [16] and Provan [58] have studied the Euclidean
Steiner tree problem on such an arrangement of terminals. Provan gives a fully
polynomial approximation scheme for finding a Steiner tree for this arrangement of

terminals (finding the optimal solution seems quite hard even for this special case).

In this chapter we study the problem for this “convex-hull” configuration of termi-
nals when we require k edge-disjoint paths between every pair of terminals. We make
the assumption that we can use as many copies of an edge as we want. For example,
the minimum-cost network on two terminals would be & copies of the straight line
joining the two terminals. The multiple-edge assumption is not a major drawback
when designing networks on the plane because by using parallel edges very close to
each other, instead of multiple edges, we can design a new network without multipie

edges and whose cost is within an arbitrary constant ¢ of the optimal network.

We prove that for k even, the optimal solution is a design with k/2 copies of the
boundary of the convex hull, whereas for k odd, the optimal solution is a design with
(k — 1)/2 copies of the boundary and one copy of the Steiner tree. For example,
Figures 2.1(a), (b) and (c) show the minimum-cost one, two, and three connected
networks on the set of terminals represented by the square nodes. The black nodes
are the Steiner points. Since if a network is 2-vertex connected, it is also 2-edge
connected, the solution to the 2-edge connected problem which is 2-vertex connected
also solves the problem of finding the minimum-cost 2-vertex connected network. We
also show that the minimum-cost 3-vertex connected network on this arrangement
of terminals is one copy of the boundary of the convex hull and one copy of the full

Steiner tree on the terminal set.
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(a) (b)

(c)

Figure 2.1: Minimum-cost one, two and three connected networks.
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Thus the result says that under this model and arrangement of terminals, designing
connected Steiner networks for situations with even connectivity requirements is easy
and for odd connectivity requirements, it is no harder than solving a Steiner tree

problem.

The rest of the chapter is organized as follows: In Section 2.2 we state the problem
more precisely for situations both on the plane and on networks; in Section 2.3 we
state some definitions and summarize the results that we need; in Section 2.4 we
prove a theorem on planar graphs that will be the main tool for many of our proofs,
in Section 2.5 we prove that the k-connected Steiner network is planar; in Section
2.6 we prove our main result, and state a fully polynomial approximation scheme for
situations in which k is odd; in Section 2.7 we prove a generalization of a theorem
of Erickson, Monma and Veinott; and, finally, we make some concluding remarks in

Section 2.8.

2.2 Definitions and previous results

For one interesting class of networks - the 7-planar networks - the Steiner tree prob-
lem with terminal set Z, is polynomially solvable. A graph (G, with a given subset
of its nodes Z, is 7-planar (7-planar stands for terminal-planar) if it has a planar
representation with Z lying entirely on the boundary of G. It is possible to test
whether a graph has a r-planar embedding in polynomial time [3]. The following
theorem due to Erickson, Monma and Veinott [19], when used in conjunction with
the Dynamic Programming algorithm of Dreyfus and Wagner [15] and Levin [41],
leads to a O(n?z% + n3) (in this expression, |Z| = z) algorithm for finding a Steiner

tree in T-planar networks.
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Theorem 2.1 [19] Let P be any polygon in the plane, Z a subset of nodes of that
polygon, and T a planar tree spanning Z contained entirely inside P. For each edge
e = (u,v) €T, let T(e,v) be the connected subtree containing node v obtained if we
remove e from T. Then T(e,v) has the property that the nodes of Z contained in
T(e,v) form an interval in Z; that is, they appear consecutively on the boundary of

G.

In Section 2.7 we develop a generalization of this result that applies to minimum-
cost k-connected Steiner networks; we prove that these networks have a property

similar to that of trees.

2.3 A theorem on planar graphs
In this section we prove the following theorem on planar graphs:

Theorem 2.2 Let G be a planar 2-vertez-connected graph with a fized planar em-
bedding. If G contains r,, edge-disjoint paths between two nodes u and v, then it
contains T, edge disjoint paths between u and v satisfying the property that at most

two of them have an edge in common with the boundary of G.

The next set of definitions and theorem are used in proving Lemma 2.1. Given a
vertex z € V and two adjacent edges (z,u) and (z,v), we refer to the operation of
removing these two edges and creating a new edge that connects u to v, as splitting
off the two edges (r,u) and (z,v) from z. Note that splitting off two edges from a
vertex of an Eulerian graph produces another Eulerian graph. Let cg(u,v) denote the
maximum number of edge-disjoint paths between u and v in G. Lovasz [44] proved

the following result:
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¢ C,
u mv

Figure 2.2: A uv-necklace

Theorem 2.3 [{{] Let G be an Eulerian graph, z € V, and (z,u) an edge adjacent to
z. Then the graph elways contains another edge (z,v) adjacent to x with the property
that splitting off the edges (z,u) and (z,v) from z, the resulting graph G’ satisfies

CG’(aa b) = CG'(a’ b)

Jor any two nodes a,b € V — {z}.

For u,v € G, a uv-necklace is a subgraph of G that is a sequence of cycles
C1,Ca, - -+, C; satisfying the property that u € C1, v € Ck, C;NC; =0 if j #1+ 1,
CiNCiyy = {zi}, and z; # Ti4; for i = 1,2,--- , k — 1 (See Figure 2.2).

Let 2o = u and z; = v. For each cycle C;, we refer to the two portions of C;

between z; and z;,; as the upper and lower parts of C;.

Lemma 2.1 will give a useful tool for dealing with edge-disjoint paths. It essentially
says that the smallest set of edges that form two edge-disjoint paths between a pair
of nodes is a uv-necklace. Let @, and @, be two edge-disjoint paths in G between the
nodes u and v. As shown in Figure 2.3, @; U @, need not be a necklace. But notice
that in Figure 2.3, we can find a subgraph (not necessarily induced) of Q, U Q, that
is a uv-necklace. The next result shows that this is always true; that is, the graph

@1 U Q; always has a uv-necklace has a subgraph.

Lemma 2.1 @, UQ, contains a uv-necklace as a subgraph.
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Q 1
Figure 2.3: Two edge-disjoint paths need not be a necklace

Proof: Clearly Q, U @2 is a Eulerian graph in which all the nodes hayve degree two
or four. We use induction on k, the number of degree four nodes. If k = 0, then
@1 U Q, itself is the desired solution. Assume £ 2 1 and that the statement s true
for all graphs with & — 1 degree four vetrices. Let z be a degree four vertex. Clearly
 is neither u nor v since our paths are simple. From Theorem 2.3, we can find two
edges adjacent to z, say (z,a) and (z,b) that we can split off from z while preserving
the connectedness between u and v, Let e be this new edge created between @ and b,
By the induction assumption, the resulting subgraph is a uv-necklace. Suppose edge
e belong to cycle C; of this necklace and node z to cycle Cj. If i = j, and e and z
belong to different parts of Ci, then by putting back the two edges (z,a) and (z, b),
we still have a necklace. If they belong to the same part, or we have ¢ # j, we can

replace the = to a portion of the necklace by (z, b) and still obtain a necklace. ]

Let P be the boundary of G. Since G s 2-vertex-connected, P is a polygon. To
prove Theorem 2.2, we have to show that given any set of Tuw edge-disjoint paths Q
between u and U, we can obtain a new set of Tuy paths between u and v, @, that
satisfy the property that at most two of these new paths have an edge in common

with P. We next describe such a procedure.

For two nodes a,b on P, let [a,b]p be the portion of P going clockwise along P
from a to b. Assume that two paths @, and Q, of Q lie inside P. Let Q; = % =
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U, qiy 5y Gh—1,v = qi, for i = 1,2. For i = 1,2, let a; = ¢} where (¢}, g},,) € P
is the first edge of @; to belong to P. Similarly, for ¢ = 1,2, let b = q;: where
(¢:-1,4}) € P is the last edge of Q; to belong to P. We can assume, without loss of
generality, that a; appears before b; on P in the clockwise direction. (Otherwise, we
can switch the roles of u and v). If we assume that Q contains a minimal number
of edges, by Lemma 2.1, @; U Q; is a uv-necklace. We will show that we can obtain
two new edge-disjoint uv-paths Q] and @3 in @, U @2, satisfying the properties that
[a}, ] p has no edge in common with @ - for ¢ = 1,2, we define the nodes a; and b;
on P N Q! the same way as we have defined ¢; and b; for Q.

Give the polygon P a clockwise orientation. Call an edge e € (@1 U @2) NP
agreeaadle if going from u to v along Q) or Q)2, its direction agrees with the orientation

given to P, and disagreeable otherwise.

Lemma 2.2 In every cycle C; of the uv-necklace @, U Q2, no part contains both

agreeable and disagreeable edges.

Proof: Let (p,q) and (r,s) be an agreeable and a disagreeable edge on the upper
part of a cycle (belonging say, to @) . Since the paths @; and @), are simple, node
v lies in the region enclosed by [q,s]p — r — ¢ (see Figure 2.4).

Thus in order for @, to go from u to v, it must intersect @; at some node between
q and r, contradicting the assumption that all the nodes in this q-r segment have
degree iwo in @; U Q3. ]

Call a part of a cycle agreeable if it has agreeable edges and disagreeable otherwise.

Lemma 2.3 No cycle of the uv-necklace @y U Q2 can have both parts of the same

type.

Proof: Let the upper part of C; beclong to @; and the lower part to Q2. Suppose

both the upper and lower parts of a cycle C; are agreeable. That is, there are edges on
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Region [q,s]pr-q
containing node v

Figure 2.4: A part of a cycle does not have edges of both types.

Q:NPNC; and Q;NPNC; such that going from u to v along @; and @Q; respectively,
they agree with the clockwise orientation of P. Let (p;,q1) and (p2, ¢2) be the first
agreeable edges of the upper and lower parts respectively. Recall that z; and z;4, are
the two degree four nodes of the cycle C;. Now z;;, lies in the closed region defined
by (z; — [p1,22]p — ;) as otherwise we would have a degree four node on the z; — p,

path of the lower part (see Figure 2.5).

But the path from ¢; to z;,; will then intersect the upper part at some node as
it has to enter the closed region defined by (z; — [p1,p2]p — i) through some node
and it cannot enter through a node on [q;,p;)p 2s Q; and Q; are contained in P, nor
through the z; — p, segment of @), as all the nodes on this segment are assumed to
be of degree two. Thus no cycle can have both parts of the same type. 0

In this uv-necklace formed by @; U Q,, let @ be the path obtained by joining (i)
the agreeable parts of the cycles and (ii) if neither part of a cycle is agreeable, the

upper part. Let @, be the path obtained by joining the r2maining parts of the cycles.
In view of Lemmas 2.2 and 2.3, both the paths are well defined and edge-disjoint.
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Figure 2.5: A cycle does not have both parts of the same type.

Let us denote this procedure of obtaining new paths Q] and @} from @, and @, by

the following notation:

[Ql * Qz]}» = Q;
Q1 * Qa]p = Q5

Lemma 2.4 Q) has no edge in common with [a},b]p.

Proof: We use induction on the number of cycles r in the necklace @; U Q2. When
r = 1, the two paths are node-disjoint (except at nodes u and v) and the proof is

obvious from Figure 2.6 since @} and ), do not cross each other.

Assume the statement is true for all uv-necklaces with » — 1 cycles that join any
two nodes and whose paths are defined the same way as @] and Q). The lower part
of C; has no edge in common with [a], b}]p since otherwise a node (other than i, see
the definition of a necklace) on the lower part of C; will have degree four contradicting
the fact that C; is the first cycle in the necklace. Now the upper and lower parts
of the necklace from z; constitute a z;v-necklace. By the induction assumption, we

obtain the conclusion of the lemma. [}
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Figure 2.6: Two node-disjoint uv-paths.

Proof of Theorem 2.2 : If r,, < 2, there is nothing to prove. Assume r,, =k > 2.
Let @ = {Q1,---,Qx} be a set of k edge-disjoint paths from u to v. Assume that
the first ! of these paths @, ---,Q; each have at least an edge in common with the
P and the remaining paths do not have an edge in common with P. We assume that
the subgraph of G induced by the paths in Q is minimal. That is, every set of k
uv-edge-disjoint paths in this subgraph uses all the edges of the subgraph. Because of
this assumption and Lemma 2.1, we can assume that Q; UQ); is a uv-necklace for any
pair 7,7, 1 # j. If | <2 we have nothing to prove. Assume { > 2. Let H = UL, Q..
We will construct a path system in H that satisfies the conditions of the lemma. For
i=1,---,klet a; and b; be as defined before with respect to path ¢; and the polygon
P. Note a; = u, or b; = v (or both) are possible. What we do next is to untangle the

paths.

Intuitively, as shown in Figure 2.7, if @, and Q) are as shown in the picture, and
if Q3 is a third path that passes through P, we can find three edge-disjoint paths
u —ay — by — v, Qz and u — g — v with the property that at most two of them have

an edge in common with P. The difficulties arise because the paths need not be so
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Figure 2.7: Obtaining three new paths from @, Q2 and @,

nicely vertex-disjoint and more than three paths might touch P.
Now, consider the output of the following algorithm:

Initialize:

fori=1,---,k,do
Qi = Qi

Algorithm:
for j=2,---,1,do

Q=@ +Qjlk
Q;=[@ +Qilp

Let @' = {Q1, -, Q}-
By Lemmas 2.2, 2.3 and 2.4, it is clear that Q' is a set of k edge-disjoint paths

with the following properties :

1. @} has only agreeable edges and no other path of Q' has any agreeable edges.
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2. No path of @ other than Q} has an edge in the interval [a}, b|]p.

3. By the minimality assumption on the subgraph created by Q the paths of @'
still satisfy the property that Q; N Q; is a uv-necklace for any pair i, j, ¢ # j.

The second property is true because at the end of each step of the algerithm, @}
has no disagreeable edges and the clockwise interval on P spanned by its agreeable
edges is non-decreasing.

Now, run ihe same algorithm on {Q5,---,@}} with @} playing the role of Q4
and changing the orientation of P. The resulting Q3 will have only disagreeable
(with respect to the previous clockwise orientation of P) edges and the paths of
{@3%, - -, Q%} will have neither agreeable nor disagreeable edges. Thus we have a set

of paths Q" that have at most two paths with an edge in common with P. (m]

Notice that when we apply the algorithm described in this proof to the three paths

shown in Figure 2.7, we obtain the three paths « — a; — b; —v, ()2, and u — g —v.

2.4 Planarity of the £-SN

In this section and the next we study k-SNPP, that is the k-SNP on the plare. The
k-SN is a network on the plane that spans a given set of terminals and whose edges
are straight lines between points. We prove that the k-SN has no crossing edges. The
no-crossing property of k-SN is surprising because if we do not allow Steiner points,
i.e., we ask for a minimum-cost network spanning the terminals and that uses only
edges between terminals, the minimum-cost network can have crossing edges for odd
k as the three connected network on four nodes in Figure 2.8 shows. (The main result

of [27] is that such a network cannot have crossing edges for k even).

Theorem 2.4 Let G be a k-SN. Then G does not contain a pair of crossing edges.
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k-1

2

Figure 2.8: Counterexample for k odd, k£ > 3

Proof: Proof by contradiction. Suppose G has a pair of crossing edges (a’,c’) and
(¥, d') and that they cross at the point ¢. Choose four points a, b, ¢,d on (@', g), [V', g),
[¢,g) and [d', g), respectively, so that a, b, ¢,d forms a rectangle with opposite sides of
the same length. Assume, without loss of generality, that the angle made by a — g —d
(and ¢ — g — b) is less than or equal to ninety degrees. Let G' be the graph obtained
by replacing the crossing edges by (a,d) and (b,d\. and let G? be the graph obtained
by replacing the crossing edges by a Steiner tree on a,b,c,d. Note that G? has two
additional Steiner points e and f (see Figure 2.1). Moreover, note that the cost of
both G! and G? is strictly less than that of G. Therefore, both G and G? contain
Steiner cuts of cardinality less than k. Let [S1, S1] be a Steiner cut in G and [$2, 5?]
be a Steiner cut in G?, both with cardinality less than k (Figure 2.9).

Without loss of generality we can assume that a € S and a € S%. Since G is a

k-connected Steiner network, this implies that d € S and b € S%. Let

A = S'ns?
B = S1ns?
C = §1nS?
D = S§'ns2.

Clearly, a € A,b € B,c € C and d € D. Also, since both S* and S? are Steiner
cuts either B and D or A and C contain terminals. Assume without loss of generality

that B and D contain terminals. The fact that |[S?, $]| < k in G* and |[S?,5?]| < k
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Figure 2.9: G! and G?
in G? implies that
(4, B]| + 4, C]| + |[B, Dl| + |[D,C]| < k +1 (2.1)

(4, D]| + I[A, C]| + |[B, D]| + |[B, C]| < k- (2.2)
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