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The moiré superlattice formed by ABC stacked trilayer graphene aligned with a hexagonal boron nitride
substrate (TG/h-BN) provides an interesting system where both the bandwidth and the topology can be tuned
by an applied perpendicular electric field D. Thus the TG/h-BN system can simulate both Hubbard model
physics and nearly flat Chern band physics within one sample. We derive lattice models for both signs of D
(which controls the band topology) separately through explicit Wannier orbital construction and mapping of
Coulomb interaction. When the bands are topologically trivial, we discuss possible candidates for Mott insulators
at integer number of holes per site (labeled as νT ). These include both broken symmetry states and quantum spin
liquid insulators which may be particularly favorable in the vicinity of the Mott transition. We propose feasible
experiments to study carefully the bandwidth tuned and the doping tuned Mott metal-insulator transition at both
νT = 1 and νT = 2. We discuss the interesting possibility of probing experimentally a bandwidth (or doping)
controlled continuous Mott transition between a Fermi liquid metal and a quantum spin liquid insulator. Finally
we also show that the system has a large valley Zeeman coupling to a small out-of-plane magnetic field, which
can be used to control the valley degree of freedom.
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I. INTRODUCTION

Recently moiré superlattices in twisted Van der Waals
heterostructures have been shown to realize several strongly
correlated systems with high tunability [1–5]. Correlated in-
sulators and superconductors have been reported experimen-
tally in twisted bilayer graphene [2,3,5] and in ABC stacked
graphene/hexagonal boron nitride (TG/h-BN) [4]. In this
paper, we focus on the TG/h-BN system.

A bandwidth [4] and even band topology [6] can be tuned
by an applied perpendicular electric field D in TG/h-BN. The
displacement field D provides an energy difference �V for
electrons between the top and the bottom graphene layer, as
illustrated in Fig. 1. For �V < 0 (this convention assumes
that the h-BN layer on top is nearly aligned with the TG),
the bands of the two valleys have zero Chern number, while
for �V > 0, they have nonzero Chern numbers C = ±3 [6,7].
Correlated insulators are found at νT = 1 and νT = 2 for the
valence band of TG/h-BN at large |�V | [4], where νT is
defined as the total density of holes per moiré unit cell. When
�V > 0, physics similar to quantum Hall systems may be
realizable. For trivial narrow bands that obtain when �V < 0,
the physics is expected [8] to be governed by an anisotropic
SU(4) Hubbard model (with small anisotropies) at leading
order. Therefore TG/h-BN offers an experimental system
where both Hubbard model physics and quantum Hall like
physics can be simulated by simply switching the gate.

In this paper, we describe several new aspects of the
physics of TG/h-BN with a focus on the topologically trivial
side (�V < 0). We obtain an explicit interacting lattice model
and estimate its parameters using the continuum description
of the moiré band structure [9]. We use this lattice model
to discuss the physics both deep in the correlated insulator

regime and in the regime close to the Mott metal-insulator
transition. We highlight the opportunities presented by this
system to tunably study both the bandwidth tuned and doping
tuned Mott transitions. We propose a number of transport ex-
periments that can probe the Mott transition. We also present
some new results on the topological bands that obtain for
�V > 0.

For �V < 0, we build Wannier orbitals following the
standard approach, and explicitly construct an effective tight-
binding model. We project the Coulomb interactions to de-
termine the effective interactions in the lattice model. The
result is a spin-valley extended Hubbard model with Hund’s
couplings as much smaller perturbations. The SU(4) symme-
try from the spin-valley degrees of freedom is mainly broken
by a valley-contrasting flux in the hopping. Based on this
model, we argue that the insulators found in the experiment
should be understood as standard Mott insulators with charge
frozen by Hubbard U , in contrast to the nesting scenario in
Ref. [10]. In the limit of a nearly flat band, we argue that
the insulator should be a ferromagnet for both νT = 1 and
νT = 2. For intermediate strength interactions, quantum spin
liquids phases are promising candidates. In the vicinity of the
Mott transition, a natural candidate is a spin liquid with neutral
Fermi surface coupled to an emergent U(1) gauge field.

The Mott metal-insulator transition [11] is a fundamental
phenomenon in condensed matter physics. Graphene moiré
systems like TG/h-BN offer a wonderful opportunity to con-
trollably tune through the transition and explore its properties.
It has long been appreciated that there are a number of distinct
routes to the Mott transition in correlated solids. We describe
distinctive signatures—visible in feasible experiments on
TG/h-BN—of some of these distinct routes. Most striking is
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FIG. 1. Illustration of the ABC stacked trilayer graphene/h-BN
system. We assume the h-BN layer on top is nearly aligned with the
graphene layers. A and B refer to the two sublattices in each of the
graphene layers. Due to the large dimerization term γ1 ≈ 400 meV,
only A1 and B3 should be kept at low energy, forming a two-
component spinor. A vertical electric field gives an energy difference
�V for electrons between the top and the bottom graphene layers.
The aligned h-BN layer provides a moiré superlattice potential which
folds the original large Brillouin zone to a small moiré Brilloiun zone
(MBZ).

the possibility [12] of a bandwidth tuned continuous quantum
critical Mott transition from the Fermi liquid metal to a spin
liquid with a neutral Fermi surface. We show how to explore
such a continuous Mott transition through simple transport
experiments: a universal jump of residual resistivity at the
critical point and Shubnikov-deHaas oscillations even inside
the Mott insulator. Besides, we also discuss the possibility
of a doping controlled continuous metal-insulator transition
(DMIT) between the above two phases. Interestingly we find
that the existing experimental data in Ref. [4] may already
have signatures of such a doping tuned continuous metal-
insulator transition close to the filling νT = 2.

Finally, we show that there is a large valley Zeeman
coupling with averaged g factor g ∼ 54. Therefore a small
out of plane magnetic field can polarize the valley and lead
to a spin 1/2 model. We discuss some consequences of this
phenomenon.

For the topologically nontrivial �V > 0 side, valley pre-
serving localized Wannier orbitals are impossible because
of the nonzero Chern number C = ±3. Related but distinct
Wannier obstructions have also been discussed in the con-
text of the twisted bilayer graphene system [8,13–15]. The
Wannier obstruction for the �V > 0 TG/h-BN system can not
be removed by adding trivial bands and is therefore different
from the fragile topology of the twisted bilayer graphene
system [16]. Following a similar treatment of twisted bilayer
graphene in Ref. [8], we build a two-orbital model on the
triangular lattice, though the valley charge operator is not a
sum of on-site terms. As argued in our previous work [6], the
�V > 0 side is promising to realize a quantum anomalous
Hall insulating state with strong interactions at νT = 1. At
fractional fillings, fractional quantum anomalous Hall states
may also be possible. The model derived in the present paper
may in the future aid quantitative theoretical and numerical
studies of these phenomena.

II. LATTICE MODEL FOR �V < 0 SIDE: SPIN-VALLEY
HUBBARD MODEL

Band structures of TG/h-BN were calculated in Ref. [6]
using a continuuum model. An important feature, as demon-
strated experimentally in Ref. [4], is that the bandwidth can

simply be tuned by the perpendicular displacement field D
(equivalently the potential difference �V ). More details of the
band structure can be found in Appendix A. Here we will use
the results on the band structure to build an interacting lattice
model with a focus on the topologically trivial �V < 0 side.

When �V < 0, the valence band of each valley has zero
Chern number and exponentially localized Wannier orbital on
triangular lattice can be constructed for each valley separately.
Following the methods in Appendix C, we derived an inter-
acting triangular lattice model which we describe below. At
each site x of the lattice, there are four single-particle states
corresponding to two spin and two valley degrees of freedom.
We work in the hole picture. We write the corresponding hole
destruction operator as ψa,σ (x), where a = ± is the valley
index and σ =↑,↓ is the spin index.

Microscopically the system has symmetries of charge con-
servation, spin rotation, and time reversal. The latter acts by
flipping the two valleys:1

T : ψa,σ (x) → (τ x )abψb,σ (x). (1)

For a large period moiré structure, (super)lattice translations
are an excellent symmetry as is a C3 rotation (about a triangu-
lar site), which acts as

C3 : ψa,σ (x) → ψa,σ (x′), (2)

where x′ is the site to which x is taken by the C3 rotation.
Further, to an excellent approximation, the number of elec-
trons within each valley is independently conserved. There is
a corresponding valley charge U(1) symmetry. Finally within
the continuum model there is a mirror reflection symmetry
which also interchanges the two valleys (see Appendix A):

M : ψa,σ (x) → (τ x )abψb,σ (x′) (3)

where x′ is generated from x by a mirror reflection plane
passing through a1 + a2, where a1 = aM (1, 0) and a2 =
aM ( 1

2 ,
√

3
2 ) are two unit vectors for the triangular lattice.

Note that there is no microscopic C6, and hence C2 symme-
try. If present, C2T will forbid any nonzero Berry curvature
at generic points in the MBZ. However, there exist nonzero
Berry curvature close to the � point and the MBZ boundary
[6] though their sum cancels for the �V < 0 side. In the next
section, we will also show that there is a large out of plane
orbital magnetic moment m(k) at each momentum k, which
can not be compatible with the existence of both time-reversal
and C6 symmetry.

Below we will derive a lattice model for the active bands. In
the noninteracting limit, despite its absence as a microscopic
symmetry, the lattice tight-binding model is symmetric under
a C6 rotation (about a triangular site) which acts as

C6 : ψa,σ (x) → (τ x )abψb,σ (x′), (4)

where x′ is the site to which x is taken by the C6 rotation.
Thus C6 flips the two valleys. This symmetry will be broken
by interaction terms. However we will see that the part of

1It is convenient to define time reversal without flipping the spin.
We are free to combine this with a spin rotation to obtain a modified
time-reversal operation which flips both spin and valley.
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TABLE I. Tight-binding parameters for �V < 0 side. Both �V

and t are in units of meV.

�V t1 t2 t3 t4

−100 1.505ei0.780π −0.063 0.046e−i0.544π 0.323e−i0.292π

−70 1.113ei0.664π −0.195 0.089e−i0.305π 0.407e−i0.396π

−50 0.941ei0.482π −0.482 0.158e−i0.181π 0.478e−i0.487π

−30 1.227ei0.249π −0.879 0.267e−i0.100π 0.610e−i0.599π

−20 1.583ei0.169π −1.108 0.323e−i0.069π 0.732e−i0.653π

−10 1.998ei0.118π −1.330 0.4363e−i0.035π 0.905e−i0.692π

the interaction that breaks C6 is much smaller than other
terms. Hence C6 will be a good approximate symmetry of
the effective lattice model though it is not a microscopic
symmetry.

Using these symmetries, the lattice tight-binding model
can be written

HK = −
∑
x;σ

∑
m,n

t (m, n)ψ†
+σ (x + ma1 + na2)ψ+σ (x) + H.c.

−
∑
x;σ

∑
m,n

t∗(m, n)ψ†
−σ (x + ma1 + na2)ψ−σ (x) + H.c.

(5)

± is valley index and σ =↑,↓ is spin index. We need only
the following hopping terms: t1 = t (1, 0), t2 = t (1, 1), t3 =
t (1, 2), and t4 = t (2, 0), and other terms that can be generated
by C6 rotation and M reflection symmetry.

We list tight binding parameters for different �V in Table I
and Fig. 2. A key feature [8] allowed by the symmetries
is that within a single valley there is no time reversal, and
hence there can be a nonzero flux through each triangular
plaquette. However, this flux must be opposite on neighboring
plaquettes. From the explicit calculations of the tight-binding
parameters, we see that the staggered flux in one triangle for
each valley is about 0.5π–2π in the regime �V < −25 meV.
Such a valley contrasting flux strongly breaks the spin-valley

FIG. 2. Magnitude of the nearest neighbor hopping |t1| and the
next-nearest-neighbor hopping t2. t2 has no imaginary part because
of the Mirror reflection symmetry. The phase of t1 is shown in Fig. 3.
The vertical line labels �V = −20 meV where the bandwidth is
equal to the Hubbard U : W ≈ U ≈ 25 meV.

FIG. 3. The flux |
| of each triangle from the nearest neighbor
hopping. For each triangle, two valleys experience opposite 
. For
each valley, 
 changes sign under C6 rotation. The vertical line
labels �V = −20 meV where the bandwidth is equal to the Hubbard
U : W ≈ U ≈ 25 meV. For the Mott insulating regime at �V <

−25 meV, we expect a large valley contrasting flux |
| ∼ 0.5π − 2π

trhough each triangle. Such a flux breaks SU(4) symmetry, which
is inherited in the spin model for the Mott insulator through the
superexchange term.

U(4) symmetry2 down to U(2)+ × U(2)−. Here, U(2)a means
an independent SU(2) spin rotation combined with U(1)
transformation for each valley a. As we show in the next
section, this U(4) symmetry breaking term will be inherited in
the spin-valley model of the Mott insulator through superex-
change.

To obtain the interaction we start with the (screened)
Coulomb interaction and project it on to the active valence
bands, as explained in Appendix C. We find

HV = U

2

∑
i

n2
i + g1U

∑
〈i j〉

nin j

− 2ghU

2

∑
〈i j〉

∑
a1a2;σ1σ2

ψ
†
i;a1σ1

ψi;a2σ2ψ
†
j;a2σ2

ψ j;a1σ1

+ J ′
H

2

∑
〈i j〉

∑
σ1σ2

(
ψ

†
i;+σ1

ψi;−σ2ψ
†
j;−σ2

ψ j;+σ1 + H.c.
)

− JH

∑
i

(
1

4
n+in−i + S+i · S−i

)
. (6)

The first and second terms are the on-site and nearest-
neighbor repulsions, respectively. The third term is an intersite
Hund’s interaction which preserves the U(4) symmetry (as
do the first two terms). The last two terms however break
U(4). The term proportional to J ′

H is the U(4) symmetry
breaking part of the nearest-neighbor Hund’s coupling [it
breaks U(4) down to U(2)+ × U(2)−]. Finally the last term
(proportional to JH ) is an on-site intervalley Hund’s coupling

2This is a combination of total charge U(1) transformation and the
spin-valley SU(4) rotation.
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TABLE II. Parameters of interaction terms in units of meV
for �V = −30 meV. To estimate these parameters, we use a
screened Coulomb interaction V (q) = e2

2ξ0κ

1
q (1 − e−qr0 ) with κ =

8 and screening length r0 = 5aM ≈ 75 nm. g1 ≈ 0.4 and gh ≈
0.008 are estimated from Wannier orbital calculations explained in
Appendix C. The dependence of the interaction parameters on �V is
weak.

U g1U 2ghU J ′
H JH

25 10 0.4 0.05 0.136

term which breaks U(4) down to U(1)c × U(1)v × SU(2)s (up
to modding by a discrete Z2 group). Here U(1)c corresponds
to the total charge conservation and U(1)v corresponds to
the valley charge conservation. SU(2)s is the spin rotation.
In Table II, we list estimates of the parameters that enter
the interaction Hamiltonian. We note that the dominant part
of the interaction is given by the first three terms that preserve
the U(4) symmetry. Thus, to leading order, we can only
consider the SU(4) symmetric part in the interaction and view
the Hund’s coupling J ′

H , JH as small perturbations.
Equations (5) and (6) give the lattice model for �V < 0.

The dominant terms correspond to a spin-valley extended
Hubbard model on a triangular lattice. The most significant
U(4) symmetry breaking is from the valley-contrasting flux
in the hopping term. The interaction term is dominated by
the on-site and nearest-neighbor Hubbard repulsion, which is
guaranteed to be SU(4) symmetric. However, there is also a
small ferromagnetic Hund’s coupling term. Such a term plays
an important role in the spin physics of the Mott insulator
though its value is only 2% of the Hubbard U . The lattice
model has an approximate U(2)+ × U(2)− symmetry, which
is further broken down to U(1)c × U(1)v × SU(2)s by the
on-site intervalley Hund’s coupling JH term.

The intersite Hund’s coupling, like all the other interac-
tions, emerge from projection of the Coulomb interaction.
Why does the pure density-density interaction give rise,
after projection, to such a Hund’s interaction? The reason
is that the microscopic density operator has a complicated
form in terms of the lattice operators: ρphy(x) ∼ c†

i;aσ ci;aσ +
a(c†

i;+σ ci;−σ e−i2Ko·xi + H.c.) + bi jc
†
i;aσ c j;aσ with a, bi j small

but generically not zero. The a term gives the on-site inter-
valley Hund’s coupling JH and the b term gives the intersite
Hund’s coupling 2ghU and J ′

H terms. The a term originates
from the fact that the intervalley bilinear c†

+c− gives an
oscillating density wave with momentum 2Ko, where Ko is
the large momentum in the original Brillouin zone of a pure
graphene layer. The b term comes from the fact that two
nearest-neighbor Wannier orbitals 〈i j〉 are not tightly confined
and their electron densities overlap [8]. As is well-known the
Wannier orbital is gauge dependent and a natural question to
ask is if we can choose a good gauge to make these orbitals
sufficiently tightly confined that b ≈ 0. The answer is no: the
reason is that local regions of the valence band have nonzero
Berry curvature (though there is no net Chern number). Such a
nonzero Berry curvature is lost in the above one-orbital lattice
model. The cost of this loss is that the microscopic density
operator can not be purely on-site. In momentum space,

ρ(q) ∼ ∑
k λa(k, q)c†

a;k+qca;k. The form factor λa(k, q) ∼
|F (k)|eiA(k)·q at small q, where A(k) is the Berry connection.
Due to the nonzero Berry curvature, the form factor λa(k, q)
can not be equal to 1 in any gauge. Thus the density operator
can not be written as ρ(q) = ∑

k c†
a;k+qca;k in any gauge. As

a consequence, in the lattice model (for any gauge choice),
the microscopic density operator can not be pure on-site,
and will include intersite hopping terms. The original pure
density-density interaction will then lead to density-density,
density-hopping, hopping-hopping interaction in the lattice
models. As explained in the Appendix C, there are several
terms generated, like correlated hopping and pair hopping
terms. Of these the only term that does not involve double
occupancy (which is suppressed by the Hubbard U ) is the
intersite Hund’s coupling term 2ghU .

Response to magnetic field: valley Zeemann coupling

Not only does the one-orbital lattice model lose the in-
formation of the Berry curvature of the Bloch states, it also
loses information on the orbital magnetic moment. It is well
established that Bloch states have an orbital magnetic moment
m(k) in the z direction [17]. A large g factor for valley
orbital magnetic moment has been proposed theoretically
and verified experimentally in graphene systems [18–20]. A
recent experiment sees evidence of a very large g factor(of
the order of hundreds) for valley orbital magnetic moment in
monolayer graphene/h-BN system [21]. Motivated by these
previous results, we study the possibility of a large valley
orbital magnetic moment in the TG/h-BN system within the
continuum model.

The corresponding g factor g(k) = m(k) 4me

h̄2 is

g(k) = −4me

h̄2 Im
∑
n′ �=n

〈n|∂kx H |n′〉 〈n′|∂ky H |n〉
ξn(k) − ξn′ (k)

, (7)

where we suppressed the valley index a = ± in Ha(k) and
|na(k)〉. n is the valence band and n′ �= n labels the other
eigenstates of H (k).

Time reversal guarantees that g+(k) = −g−(−k). An ex-
ternal out-of-plane magnetic field B couples linearly to this
orbital moment:

HB = −B
∑

k

(g+(k)c†
+(k)c+(k) + g−(k)c†

−(k)c−(k)). (8)

We calculated ga(k) following Eq. (7) within the contin-
uum model. Generically ga(k) has a strong dependence on
momentum k. Its behavior for �V < 0 and �V > 0 are qual-
itatively different. The modified band structures that include
this orbital magnetic field are presented in Appendix A.

For �V < 0, g+(k) < 0 and g−(k) > 0 for every k. There-
fore effectively we have a valley Zeeman coupling. The aver-
aged g factor is ḡ ≈ 54, much larger than the g = 2 for spin.
Therefore for �V < 0, the most dominant effect of a small
out-of-plane magnetic field is the splitting of valley energy,
rather than the familiar spin Zeeman effect. In addition to
the splitting of the average energy of the two valleys, the
out-of-plane magnetic field also increases the bandwidth of
one valley while reducing the bandwidth of the other valley,
as shown in Fig. 4.
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FIG. 4. Response to out of plane magnetic field B from the valley
Zeeman coupling at �V = −25 meV. �E = Ē+ − Ē− is the splitting
of the average energy of the valley + and the valley −. δWa is the
change of the bandwidth for valley a. A small magnetic field B = 1 T
split the average energy for two valleys by about 3 meV. Meanwhile
the bandwidth of one valley is increased by around 1.5 meV while
the bandwidth of the other valley is reduced by around 1.5 meV.

At small B < 1 T, this valley Zeeman coupling term can be
used to polarize the valley in the Mott insulating regime. A
larger B ∼ 3 T can greatly increase the total bandwidth of the
two valleys, which could destroy the Mott insulating phases.
B = 3 T gives a flux per moiré unit cell 
B ≈ 0.12 h

e . The
system then crosses over to the Hofstadter butterfly region.

III. STRONG MOTT INSULATORS

We now discuss the experimentally observed insulating
states [4] at filling νT = 1 and νT = 2 for �V < 0 using the
model described in Sec. II. For the time being, we only focus
on the strong-coupling limit U 
 t . In this case, charge is
frozen and the low-energy physics is governed by an effective
spin-valley model. At each site, we define the spin operator
S = 1

2 c†
aσ1

�σσ1σ2 caσ2 and the valley operator I = 1
2 c†

a1σ
�τa1a2 ca2σ .

Here, �σ and �τ are Pauli matrices for the spin and the valley
respectively.3

Using the standard t/U expansion (see Appendix E), we
find the spin-valley model:

HS = J1

8

∑
〈i j〉

(1 + τi · τj)(1 + σi · σj)

+ J2

8

∑
〈〈i j〉〉

(1 + τi · τj)(1 + σi · σj)

+ 1

8

∑
〈i j〉

J1
p;i j

(
τ x

i τ x
j + τ

y
i τ

y
j

)
(1 + σi · σj)

+ 1

8

∑
〈i j〉

J2
p;i j

(
τ x

i τ
y
j − τ

y
i τ x

j

)
(1 + σi · σj)

+ O

(
t3

U 2

)
, (9)

3We have assumed Einstein summation convention.

where J1 = −2ghU + 4t2
1

Ũ
with Ũ = (1 − g1)U (=0.6U using

the estimate in Table II) and J2 = 4t2
2

U . J1 has two contributions:
a ferromagnetic part from the Hund’s coupling and an antifer-
romagnetic part from the standard superexchange. Here τ

μ
i σ ν

i
should be understood as tensor product and is the abbreviation
of the bilinear term c†

i;a1σ1
τμ

a1a2
σ ν

σ1σ2
ci;a2σ2 . At νT = 1, τi, and

σi are simply the corresponding valley and spin operator.
At νT = 2,

∑
aσ c†

i;aσ ci;aσ = 2 and the corresponding spin or
valley operator at each site is a 4 × 4 matrix, which can
be generated from the above bilinear terms of the fermionic
operator. The factor 1

8 is added to make the J consistent with
the traditional convention in the spin 1

2 model once valley is
polarized.

J1
p;i j and J2

p;i j are the SU(4) symmetry breaking terms,
mainly originating from superexchange term involving oppo-
site valleys. The valley-contrasting phase in the hopping is in-
herited in this term. We have J1

p;i j = (J1 + 2ghU )(cos 2ϕi j −
1) + J ′

H and J2
p;i j = (J1 + 2ghU ) sin 2ϕi j . The magnitude

|ϕi j | = |
|
3 . Here ϕi j is the phase of the hopping for the

valley + of the bond 〈i j〉. J ′
H ≈ 0.05 meV is from the SU(4)

breaking part of the Hund’s coupling and can be neglected.
In the above, we ignore t3 and t4 for simplicity. One can

easily add J3 = 4t2
3

U and J4 = 4t2
4

U terms. For the fourth neighbor
coupling, the SU(4) breaking term from the valley-contrasting
hopping phase should also be considered because t4 has a large
phase.

Even at second order of t/U expansion, we need to keep
four parameters for the spin-valley model: J1, J2, 
, and
2ghU . Ferromagnetic Hund’s coupling 2ghU ≈ 0.4 meV is
even larger than J1 and can not be ignored. These parameters
can be tuned by �V and a rich phase diagram may be acces-
sible in the experiment. For 
 ∼ 0.5π − 2π, J1

p;i j and J2
p;i j

are generically of the same order of J1. Therefore the SU(4)
symmetry is strongly broken to SU(2)+ × SU(2)− × U(1)v .4

For νT = 2, we also need to add the JH term in Eq. (6) which
further breaks down the symmetry to U(1)v × SU(2)s.

A plot of J1 − J2 with �V is shown in Fig. 5. J1 can be
tuned to be either ferromagnetic or antiferromagnetic. Though
we have presented estimates of the parameters J1, J2, 
,
and 2ghU , their precise quantitative value are sensitive to as-
sumptions used in the band structure calculation.5 It is useful
therefore to view them as phenomenological parameters and
discuss the general phase diagram of the model in Eq. (9).

In the following two sections, we discuss the possible states
for J1 < 0 and J1 > 0 region separately.

A. Ferromagnetic region

In the strict limit t
U → 0, the Hund’s coupling dominates

over the other terms. Then J1 < 0 and J2 ∼ J1
p;i j ∼ J2

p;i j ∼ 0.
The Mott insulator should thus be a spin-valley ferromagnetic
state.

4Strictly speaking, we need to further module some discrete
symmetries.

5Even the sign of J1 is sensitive to gh. If gh is increased by a factor
of 2, J1 will be ferromagnetic in the whole region of U > W .
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FIG. 5. J1 − J2 parameters with �V . We fix U = 25 meV, g1 =
0.4 and gh = 0.008 in the calculation. The vertical line is the value
of �V for which the bandwidth W = U . Deep inside the Mott
insulating phase, J1 is ferromagnetic from the Hund’s coupling. In
the intermediate regime, both J1 and J2 are antiferromagnetic.

For νT = 1, the ground state should be ferromagnetic. The
spin is polarized to any direction because of the SO(3) spin
rotation symmetry. For the valley, we need small anisotropic
terms to decide whether τx or τz order is favored. The small
SU(4)-breaking Hund’s coupling J ′

H (∼0.05 meV) term in
Eq. (6) favors τz valley polarization. But the anisotropy in-
herited from the valley-contrasting hopping term in J1

p;i j of
in Eq. (9) favors the τx polarization. Therefore interaction
term and kinetic term compete with each other. At the flat
band limit, we always have the τz valley polarization. At
any nonzero temperature T , the spin ferromagnetism will
be disordered immediately because of the Mermin-Wagner
theorem. However, valley polarization only breaks a discrete
time-reversal symmetry and will therefore be stable upto a
finite temperature continuous transition in the Ising univer-
sality class. The spontaneous breaking of time reversal at
small nonzero T may give an exponentially suppressed but
nonzero Hall conductivity. Such a valley polarization may
also be detectable via the magneto-optical Kerr effect, as
demonstrated in Ref. [22] for spin ferromagnetism. As the
out-of-plane magnetic moment from the valley is 20 times
larger than spin, this effect should be more significant for the
valley polarized state. Once t/U is increased, there can be
a phase transition to an inter-valley-coherent (IVC) order (τx

polarization). The IVC order does not break the time-reversal
symmetry. As it breaks the U(1)v symmetry, there can be a
Berezinskii-Kosterlitz-Thouless transition (BKT transition) at
finite temperature.

For νT = 2, just from the SU(2)+ × SU(2)− × U(1)v sym-
metric interaction in Eq. (9) there are several degenerate
states. The true ground state will be selected from these by
small anisotropies. The onsite intervalley Hund’s coupling JH

in Eq. (6) will select the spin polarized, valley singlet state as
the ground state. Such a spin ferromagnetic state cannot have
true long range order at any nonzero T .

In summary, for t
U → 0 limit, the ground states for both

νT = 1 and νT = 2 are ferromagnetic. There should be a finite

temperature transition corresponding to the valley polarization
for νT = 1 and no transition for νT = 2. We emphasize that
the destruction of the spin ferromagnetism at finite tempera-
ture does not close the charge gap, which is at order U and is
thus much larger than the ferromagnetic scale J1 ∼ 0.01U .

B. Antiferromagnetic region

With increasing t/U , we enter a regime dominated by the
antiferromagnetic superexchange: J1, J2 > 0. The frustrated
triangular geometry and the larger number of degrees of free-
dom6 than the standard spin-1/2 model both enhance the ef-
fect of quantum fluctuations. Density matrix renormalization
group (DMRG) calculations of Eq. (9) may be able to map the
phase diagram. Here we restrict ourselves to brief comments
about special cases where we can relate the model to others
studied in the literature. At νT = 1, because of of the large
valley Zeeman effect, a small out of plane magnetic field (of
order ≈0.2 T) can already give an energy splitting larger than
J1 and J2. Then the valley is frozen into a polarized state, and
the effective model becomes the standard Heisenberg J1 − J2

spin 1
2 model. This model is already well studied [23–25].

At small J2/J1, the ground state is the well known 120◦
magnetically ordered state. At large J2/J1 ratio, the ground
state is a stripe antiferromagnet. In the intermediate region,
a spin liquid phase is suggested from DMRG calculations
[23,24] though precisely which kind of spin liquid is not clear.
Candidates are a chiral spin liquid or a U(1) Dirac spin liquid.

Another special case is to apply a large in-plane magnetic
field to polarize the spin. We expect then that the remaining
valley degree of freedom forms a 120◦ order at small J2/J1.

IV. WEAK MOTT INSULATORS: POSSIBILITY OF A
CONTINUOUS MOTT TRANSITION

We now discuss the region close to the Mott metal-
insulator transition for �V < 0. In this region, the spin-valley
model derived in the previous section will not be adequate
to discuss the Mott insulator. We could keep higher order
terms in the t/U expansion which will include multisite
ring exchange processes [26]. Alternately the physics (even
in the insulating side) may be directly discussed within the
framework of the original Hubbard model.

The Mott transition is of course most central to the study of
correlated electron systems, and there is a vast literature [11].
It has long been appreciated that there are many distinct routes
by which a metal may evolve into a Mott insulator at zero
temperature. A common fate (realized in many experimental
systems) is that the transition occurs between the paramag-
netic metal and a magnetic insulator and is first order. Such a
route can potentially be avoided in frustrated low-dimensional
lattices (as pertinent to the present paper). A different route
[27], suggested by a simple Hartree-Fock theory for an an-

6In the limit where we only keep J1,2, we get an SU(4) antiferro-
magnet with spins in either the fundamental representation (at νT =
1) or in the six-dimensional representation (at νT = 2) of SU(4).
Such models, even when nearest neighbor, are more likely to be in
nonmagnetic ground states than their SU(2) versions.
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FIG. 6. Three possible phase diagrams tuned by t/U at νT = 2.
In (I), AF Metal means metal coexisting with antiferromagnetic
order. AF insulator is a Mott insulator with antiferromagnetic order
(The most likely candidate is the 120◦ valley order). In (II), the
Mott insulator may be antiferromagnetic or may be a quantum spin
liquid. In (III), the specific quantum spin liquid we consider has a
spinon Fermi surface coupled to a U(1) gauge field. At t

U = 0, the
ground state is a ferromagnet because of intersite Hund’s coupling.
We also show the plots of the Fermi surfaces. The Fermi surfaces are
calculated at νT = 2 using t1, t2, t3, t4 for �V = −20 meV. For the
AF metal, we use the 120◦ intervalley order with the order parameter
M = 2|t1|. The Fermi surface area should decrease continuously in
the AF metal region as M

|t1| increases.

tiferromagnetic order parameter,7 is that the paramagnetic
metal first undergoes a magnetic ordering transition into a
magnetic metal. Eventually there is a second transition where
the magnetic metal becomes a magnetic insulatior. A third
fascinating alternative is that there is a continuous quantum
critical Mott transition. A theory for such a continuous Mott
transition [12] exists when the Mott insulator is a quantum
spin liquid with a neutral spinon Fermi surface coupled to
a U(1) gauge field. Such a continuous Mott transition may
be relevant to experiments [28,29] on quasi-two-dimensional
organics. It is currently not at all clear if other kinds of Mott
insulators admit continuous zero-temperature quantum phase
transitions into the paramagnetic metal. The three possible
evolutions discussed above from metal to Mott insulator are
illustrated in Fig. 6.

The TG/h-BN (and other graphene moiré systems) offers a
tremendous opportunity to explore the band-width controlled
Mott transition in a frustrated two-dimensional lattice. There
is a large body of very interesting prior work (see, for instance,
Refs. [28–32]) on quasi-two-dimensional organic salts (also
on triangular lattices) which has probed the Mott transition
with pressure as a tuning parameter at low temperature. Com-
pared to the organics, the graphene system has the advantage
that the electric control of bandwidth should make it a lot

7In the following, we will use the term “magnetic” to denote
ordering in the spin-valley space.

easier to tune through the Mott transition at low temperature
and study it in exquisite detail.

With this in mind below we propose concrete (and we
believe, feasible, in TG/h-BN) experiments that distinguish
these various routes to the Mott transition.

A. “Magnetic” metal as an intermediate phase

We first consider the situation where the evolution from
the metal to an antiferromagnetic (in spin-valley space) Mott
insulator occurs in two stages. First there is a phase tran-
sition inside the metallic phase where the entiferromagnetic
order onsets leading to a modification of the unit cell. This
reconstructs the Fermi surface. With increasing amplitude of
the antiferromagnetic order parameter, the Fermi surfaces will
shrink and there will be a further transition to an antiferro-
magnetic insulator. This is the natural result of a Hartree-
Fock treatment of the interactions. In the TG/h-BN context,
such a symmetry breaking is suggested to arise from the
nesting of the Fermi surfaces for νT = 2 by Ref. [10]. Nesting
driven theories have also been proposed for the twisted bilayer
graphene system [33,34].

A clear experimental probe of this scenario is to study
Shubnikov-DeHaas (SdH) oscillations in the resistivity in a
perpendicular magnetic field. Through out the paramagnetic
metal phase the Fermi surface area, and hence the SdH
frequency, is fixed to be a constant by Luttinger’s theorem. In
the antiferromagnetic metal, the reconstruction of the Fermi
surface will change the SdH frequencies. On approaching
the insulator these frequencies will decrease (possibly all
the way to zero if the transition from the antiferromagnetic
metal to antiferromagnetic insulator is continuous). Thus in
this scenario there will be a change in the SdH frequencies
before the metal becomes an insulator similar to Fig. 7. We
caution that the SdH experiments should be performed in low
perpendicular magnetic field so that they are a soft probe of
the Fermi surface of the metal. At larger fields, we will enter
the quantum Hall regime and the oscillations may not directly
reveal the Fermi surface structure of the zero field metal.

Let us briefly further comment on this simple Hartree-Fock
scenario. In the strong Mott insulating region, the system may
possibly be in a spin-valley ordered antiferromagnetic phase.
However the mechanism for such ordering is different in the
metal where it may be driven by an approximate nesting of
the Fermi surface. Reference [10] suggested such a nesting
driven mechanism for νT = 2 by using a nearest-neighbor
tight binding model with valley contrasting flux 
 = π

2 . How-
ever, according to our calculation in Fig. 3, the flux 
 is
generically not equal to π

2 and t2, t3, t4 are also necessary to
reproduce the band structures. One natural question is whether
this nesting of Fermi surfaces at νT = 2 is fine tuned or
not. To test the robustness of the nesting properties of the
Fermi surfaces, we calculated the Density of States(DoS) at
�V = −5, −10, −15, −20, −25, −30, and − 40 meV
using the continuum model with a 300 × 300 mesh-grid in
momentum space. The Van-Hove singularity in our model
is away from the Fermi level at both νT = 1 and νT = 2 as
shown in Fig. 8. From the Fermi surface plots in Appendix
A, one can also see that there is no nesting instability in the
particle-hole channel. Thus it is not obvious that the Hartree-
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FIG. 7. The change of Fermi surface area(in units of the area of
the MBZ) with order parameter M for the 120◦ intervalley order:
HM = −M

∑
x c†

x(cos(Q · x)τx + sin(Q · x)τy )cx with Q = ( 4π

3 , 0).
We use t1 = 2.14ei0.141π meV and t2 = −1.372 meV for �V =
−20 meV. There are several Fermi surfaces and we only count
the hole pocket at � point. At M → 0, magnetic breakdown effect
should give a quantum oscillation frequency corresponding to the
original Fermi surface area equal to 0.5, which is not captured by our
calculation here. After adding a nonzero t2, Fermi surfaces can not
be fully gapped out until M = 8|t1|.

Fock scenario is realized in the experimental system. We will
therefore consider also other scenarios for the evolution from
metal to insulator.

FIG. 8. Density of state at �V = −25 meV. Two vertical lines
correspond to νT = 1 and νT = 2. The Van Hove singularity is away
from both νT = 1 and νT = 2. This is true for other values of D in
the region −40 < �V < −5 meV. The closest distance to νT = 1
for the Van-Hove singularity is still at least 10% doping away. The
Van-Hove singularity is associated with a Lifshitz transition of the
Fermi surfaces (see Appendix A). At exactly νT = 1 and 2, there is
no obvious instability for the Fermi surfaces.

B. First-order Mott transition

A common possibility is that there is a first-order transition
between the paramagnetic metal and a Mott insulator. This
may happen irrespective of the detailed description of the
insulator (antiferromagnetic or quantum spin liquid). In this
scenario, the Fermi surface area seen in quantum oscillations
should be constant in the metallic region. The first-order
transition will be accompanied by hysteresis when D is cycled
through the metal-insulator transition.

Further a T = 0 first-order transition will continue to T �=
0 (till a critical end-point in the Ising universality class) as
a sharp transition. Hysteresis will be observed on crossing
this finite T phase boundary. If such a first-order transition
is indeed seen the shape of the transition line in the T -D
plane may provide some clues8 about the nature of the Mott
insulator.

C. Bandwidth controlled continuous metal-insulator transition

It is hard to theoretically rule out either of the two scenarios
described above. However, for the simpler problem of the
spin-1/2 triangular lattice Hubbard model, it seems (from
numerical studies [26,35–38]) that a quantum spin liquid state
forms in the weak Mott insulating regime. Many existing
numerical calculations [26,35–37] as well as experiments
[30,32] on the organics are broadly consistent with this being
a spin liquid with a neutral Fermi surface. A recent DMRG
calculation [38] however reports instead a gapped chiral spin
liquid in the weak Mott region. The TG/h-BN system has
more degrees of freedom (than the spin-1/2 Hubbard model)
at each site which may make a spin liquid more likely in this
regime.

A remarkable feature of the neutral Fermi surface state is
that it admits a continuous Mott transition to the metal. We
turn therefore to how to look for this experimentally.

We first review a (small generalization of a) theory [12]
for the continuous Mott transition between a Fermi liquid
metal and a spin liquid Mott insulator with a spinon Fermi
surface coupled to a U(1) gauge field. The theory should
work for both νT = 1 and νT = 2. We use the slave boson
construction [39]: write ψaσ (x) = b(x) faσ (x). Here, b(x) is
a boson that carries the electric charge of the electron but
not its spin/valley quantum numbers and faσ (x) (the spinon)
is an electrically neutral fermion that carries the spin/valley
quantum number. There is a constraint nb = n f = nψ relat-
ing the number of b, f and ψ particles at each site of the
lattice. Correspondingly there is a U(1) gauge redundancy
b(x) → b(x)eiα(x) and faσ → faσ e−iα(x). A reformulation of
the original electronic problem in terms of the (b, f ) variables
necessarily must include a dynamical U(1) gauge field. In the
Fermi liquid phase the spinons form a Fermi surface while

8Specifically, through the Claussius-Clapeyron relation, the metal-
insulator phase boundary will tilt toward the insulator or metal
depending on which state has more entropy at a given low T . An
antiferromagnetic insulator will at low-T have lower entropy than
the metal while some spin liquid insulators have higher entropy than
a metal.
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〈b〉 �= 0, i.e., the bosons are in a superfluid state. Upon increas-
ing interactions, a Mott insulator will form. Within this slave
particle framework a natural Mott insulator is obtained by
letting b form a bosonic Mott insulator (where 〈b〉 = 0 while
keeping the f -Fermi surface [40]. The resulting state is a spin
liquid Mott insulator. The Mott metal-insulator transition is
then associated [12,39,41] with the superfluid-Mott transition
of the boson b in the presence of the spinon Fermi surface
and the U(1) gauge field. As shown in Ref. [12] the resulting
theory admits a continuous Mott transition which further is
tractable. We now highlight two predictions of this theory
for transport experiments that may be directly feasible in
TG/h-BN.

The first pertinent prediction is a universal jump [12,42]
by R h̄

e2 of the residual resistivity as the Mott critical point is
approached from the metallic side.9 Here, R is a universal
number of O(1). At a nonzero temperature, the resistivity
follows a useful scaling form described in Ref. [42]:

ρ(T, δ) − ρm = h̄

e2
G

(
δzν

T

)
(10)

with z = 1, and ν ≈ 0.672 in a clean sample. ρm is the
residual resistivity in the metal just before the Mott transition
and δ is the parameter used to tune across the transition.
For TG/h-BN, this is accomplished very simply by the per-
pendicular displacement field. Thus the TG/h-BN system
offers a promising platform to access such a continuous Mott
transition.

A second prediction enables directly detecting the neutral
Fermi surface, if it exists, just on the insulating side of the
Mott transition: such a neutral Fermi surface will lead to SdH
oscillations [43–45] in a weak Mott insulator. Detailed expres-
sions for the temperature dependence of such oscillations may
be found in Ref. [45]. The key point is that though the spinons
are electrically neutral, they couple to the internal U(1) gauge
field a, which locks to an external field A: a = αA with a
factor α < 1. In the vicinity of Mott transition point, α will be
of order 1. Therefore the spinon Fermi surface experiences an
internal magnetic field b = αB and show quantum oscillation
in the resistivity ρ f . At finite temperature, ρb is large but finite
even inside the Mott insulator, and therefore ρ = ρb + ρ f

should also show quantum oscillation with frequency enlarged
by a factor of 1

α
compared to the Fermi liquid side. α should

show dependence on voltage D and also temperature (see
Ref. [45]). Due to the large valley Zeeman coupling, in
practice, the oscillations may not have perfect periodicity in
1/B. However, an oscillating response to B inside a Mott
insulator will be strong evidence of the existence of neutral
Fermi surface and emergent gauge field. Remarkably SdH
oscillations in electrical resistivity have been reported in a
recent experiment on a mixed valence insulator [46].

9A simple explanation is from the Ioffe-Larkin rule which states
that the physical resistivity ρ = ρb + ρ f , where ρb, f are the boson
and f -fermion resistivities, respectively. Across the Mott transition,
ρ f evolves smoothly while ρb goes from 0 (in the metal) to a
universal constant = R h̄

e2 (at the critical point) and eventually is ∞
(in the insulator). The universal resistivity jump follows.

FIG. 9. Illustration of bandwidth-controlled metal-insulator tran-
sition (BMIT) and doping-controlled metal-insulator transition
(DMIT). The shaded region is the Mott insulator.

Another more direct evidence for a spinon Fermi surface
state is metallic thermal transport σthermal ∼ T . Measurement
of the thermal conductivity is hard, but may be possible in the
future.

We emphasize that the only currently understood theory
for such a continuous Mott transition is when the insulator
is a U(1) spin liquid with an emergent neutral Fermi surface
[12]. It is not known if there could be a direct continuous Mott
transition between the paramagnetic metal and other kinds of
Mott insulators (for instance, an antiferromagnetic insulator or
a chiral spin liquid). Such a continuous transition is exotic and
will presumably involve a novel formulation. In TG/h-BN if
none of the signatures discussed above are seen it will provide
experimental evidence for such an exotic continuous quantum
phase transition.

D. Doping controlled continuous metal-insulator transition

We now briefly address the Mott metal-insulator transition
induced by doping away from commensurate filling. We will
restrict to a discussion of the possibility of a continuous Mott
transition,10 which is possible if the Mott insulator is in the
quantum spin liquid with a spinon Fermi surface. Theoretical
descriptions of this doping-controlled metal-insulator transi-
tion (DMIT) may be found in Refs. [12,47,48], see Fig. 9.
Similar to our description of the bandwidth-controlled metal-
insulator transition (BMIT) in the previous section, we still
use the slave boson theory: c = b f . In this case, boson b goes
through a chemical potential tuned superfluid-Mott insulator
transition. We focus here on the predictions for electrical
transport. From the Ioffe-Larkin rule ρc = ρb + ρ f . In the
clean limit at a small but nonzero T it is known [48] that the
bosons have a resistivity ρb ∼ 1

log10
1
T

due to scattering from

(Landau-damped) gauge fluctuations. The weak logarithmic

10Strictly speaking continuous Mott transitions are also possible out
of paired spin liquid states. For instance, if we dope a Z2 spin liquid,
a natural outcome is a superconductor. We then have a continuous
Mott insulator-superconductor transition.
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dependence may not be visible, and hence we may roughly
expect the residual resistivity to jump as the critical point is
approached from the metallic side just like at the BMIT.

Disorder effects will further affect the nature of the transi-
tion. First it is natural that at very low densities the dopants
will be localized. The DMIT will then happen at a nonzero
critical doping. The bosons are expected to have a universal
conductivity at this disordered critical point which is dis-
tinct from that in the BMIT case. Thus, close to the critical
point, we will once again have a universal jump of residual
resistivity. Finally we note that near the disordered critical
point, scaling similar to Eq. (10) will hold but with different
values for the exponents z and ν. From the general result ν �
2
d = 1(where d = 2 is the spatial dimension) for disordered
critical points, and the expectation z = 1 in the presence of
Coulomb interactions, we have zν � 1 for the DMIT, larger
than zν ≈ 0.672 for the BMIT of a clean system.

This brief discussion was meant to motivate an experimen-
tal study of the doping induced Mott transition in TG/h-BN.
Interestingly the existing experimental data may already have
evidence for a continuous doping controlled metal-insulator
transition (DMIT) close to νT = 2. In the Fig. 3(a) of Ref. [4],
there is a critical V c

t ≈ −4.7 V for Vt which controls the
total density (and also the bandwidth). Resistance R increases
with temperature T when Vt < V c

t while when Vt > V c
t the

resistance R decreases with T . At exactly V c
t , the resistance

is finite (around 0.7 h
e2 ) and constant in the temperature re-

gion 1.5–40 K. Here 1.5 K is the lowest temperature reach-
able in the reported experiment in Ref. [4]. This suggests a
continuous metal-insulator transition. As a further test, we
suggest measurements at lower temperature and to scale the
data according to Eq. (10) but with modified exponents as
discussed above. It is also interesting to study the temperature
dependence of the resistivity close to the critical point to
search for non-Fermi-liquid behavior.

Finally within the theory of Ref. [12] the quasiparticle
effective mass in the metallic phase will diverge as 1√

δ
(up

to logarithmic corrections) where δ is the doping away from
the Mott insulator. This strong divergence may be observable
through SdH measurements. (In contrast at the BMIT, a
much weaker logarithmic divergence of the effective mass is
predicted).

V. COMMENTS FOR THE �V > 0 SIDE

When �V > 0, the valence bands of two valleys have
nonzero Chern numbers C = ±3. Therefore it is not possi-
ble to construct localized Wannier orbitals for each valley
separately. Following a similar construction [8] for twisted
bilayer graphene, we can construct a two orbital model on
the triangular lattice (see Appendix D) but with a non-on-
site implementation of the valley charge operator (i.e., the
valley charge operator is not a sum of on-site terms). As a
consequence, the interaction is in a complicated form, which
makes an analytical treatment of the model very hard. Such a
model may be useful for future numerical simulations.

Despite the complexity of the model, the �V > 0 side
can potentially realize interesting phases that show the quan-
tum anomalous Hall effect (QAHE) and even the fractional
quantum anomalous Hall effect (FQAHE) as proposed in

FIG. 10. Response to out of plane magnetic field B from the
valley Zeeman coupling at �V = 25 meV. �E = Ē+ − Ē− is the
splitting of the average energy of the valley + and the valley −. δWa

is the change of the bandwidth for valley a.

our previous paper [6]. Especially, similar to quantum Hall
ferromagnets, the νT = 1 insulator in the flat band limit should
be a spin and valley polarized Chern insulator with Hall con-
ductivity σxy = 3 e2

h even at zero magnetic field. One concern
about the experimental realization of this QAHE state is that
the energies of the two valley polarizations are degenerate
at zero magnetic field and hence the system forms domains.
However one can align the valley polarization by cooling in
an out-of-plane magnetic field. As shown in Fig. 10, there is
also a valley Zeeman coupling when �V > 0. The averaged g
factor is not so large as the �V < 0 side because g(k) changes
sign in the MBZ. However, within our model, for a z direction
magnetic field with 1 T, the bandwidth of one valley becomes
6 meV smaller than the other valley. Therefore one valley
polarization should be selected by a magnetic field and the
system will be in the QAHE state. The total filling of the QAH
insulator should also change with the magnetic field, leading
to an insulating Landau fan: νT = 1 − 3|
U | where 
U is the
uniform flux per moiré unit cell in units of h/e. For zero twist
angle, |
U | ≈ 0.04 for B = 1 T.

The proposal of quantum Hall ferromagnetism in our
previous paper [6] assumes the flat band limit W

V → 0. The
possible phases at intermediate W/V remain an open question,
as does the nature of the evolution from the weak interacting
metal. A simple possibility is that there is a an intermediate
ferromagnetic metallic phase which then gives way to the
ferromagnetic insulator. Clarifying this will require develop-
ing tools to deal with strong correlations in partially filled
dispersing ± Chern bands which we leave for the future.

VI. CONCLUSION

In this paper, we discussed several aspects of the moiré
superlattice system in ABC stacked trilayer graphene on
hexagonal boron nitride where previous work has shown that
an applied vertical electric field D can tune both the bandwidth
and the topology. Our focus in this paper was complementary
to our earlier work which mainly discussed the phenomenol-
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ogy of the topologically nontrivial side (�V > 0). Here we
mainly discussed the other topologically trivial side(�V < 0).
We explicitly constructed a lattice extended Hubbard model
with SU(4) degrees of freedom [but no SU(4) symmetry].
We used this model as a framework to discuss possible Mott
insulating states at at total filling νT = 1 and νT = 2. We also
showed that due to a large valley Zeeman coupling a small
perpendicular magnetic field may be a useful knob in this
system.

We emphasized the opportunities provided by TG/h-BN
(and other graphene moiré structures) to carefully experimen-
tally study the bandwidth tuned Mott metal-insulator transi-
tion in a frustrated two-dimensional lattice. We showed how
simple electrical transport experiments can distinguish many
different routes to the Mott transition. Particularly exciting
is the possibility that this system realizes a quantum spin
liquid with a spinon Fermi surface in the vicinity of the
Mott transition. Such a state admits a direct continuous Mott
transition to the Fermi liquid metal. The transport experiments
we describe can specifically also probe this state and the
continuous Mott transition.

Finally when �V > 0 and the bands have Chern number
C = ±3, we constructed a lattice two orbital model on the
triangular lattice but with a nonlocal implementation of the
valley charge operator (along the lines of the treatment of
twisted bilayer graphene in Ref. [8]). It remains to be seen
whether this kind of model can be useful for a future attack on
strongly correlated partially filled ± Chern bands.
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APPENDIX A: BAND STRUCTURES

First we give a brief introduction to the continuum model
approach used in Ref. [6] and the current paper. If the two
layers have slightly different lattice constants a1 and a2, or a
small twiste angle θ , then there is a moiré super lattice with
lattice constant aM ≈ a√

ξ 2+θ2
where ξ = |a1−a2|

a2
. For TG/h-

BN system, even if the twist angle θ = 0, there is still a moiré
superlattice with aM ≈ 58 a, where a ≈ 0.246 nm is the lattice
constant for the graphene layer. Besides, we treat the two
valleys separately. The two valleys are related by time-reversal
transformation. Therefore we can do calculations for only one
valley, for example, valley +.

First we ignore the h-BN layer. Then the ABC stacked
trilayer graphene has cubic band touching at two momentum
points Ko and K ′

o in the original Brillouin zone (BZ). We label
the two valleys as + and −. For each valley, the effective
low-energy model is a simple two band model, consisting of
the A sublattice of the top graphene layer and the B sublattice
of the bottom graphene layer. Other degrees of freedom are

FIG. 11. The dependence of the bandwidth W and the band gap
�2 on the applied vertical voltage difference D. �2 is the minimal
gap between the valence band and the band below. W and �2 are all
in units of meV. The band gap �1 between the conduction band and
the valence band is almost equal to |�V | and becomes larger than the
bandwidth after |�V | > 30 meV.

not active at low energy, and can be ignored. For the valley +,
the effective model in the basis (ct

A, cb
B) is

h+(k)

=
(

�V
2

t3

γ 2
1

(kx − iky)3 + 2 tγ3

γ1
|k|2

t3

γ 2
1

(kx + iky)3 + 2 tγ3

γ1
|k|2 −�V

2

)
.

(A1)

We use t = −3000
√

3
2 meV, γ1 = 380 meV, and γ3 =

293
√

3
2 meV. γ1 and γ3 are interlayer hoppings [49]. However

we do not expect these parameters to be quantitatively precise.
In the above equation, momentum k is in units of 1/a. �V

is the energy difference between the top and the bottom
graphene layers, which is controlled by an applied voltage.
The model for the valley—is the time-reversal transformation
of the above model.

Then moiré lattice gives a superlattice potentials:

HM =
∑

a;k,Gj

c†
a;t (k + Gj)V (G j )ca;t (k) + H.c., (A2)

where Gj is the moiré superlattice reciprocal vector and a =
+,− is the valley index. We choose G1 = (0, 4π√

3aM
) and G2 =

(− 2π√
3aM

, 2π
aM

) for the moiré Brillouin zone (MBZ). Because
only the h-BN on top of the graphene is aligned and effective,
we expect the moiré superlattice potential only acts on the ct

A
component. We use V (G1) = V0eiθ0 with V0 = −14.88 meV
and θ0 = −50.19◦. V (Gj ) for other j can be generated by C6

rotation: V (C6G) = V (G)∗. The bandwidth can be tuned by
�V , as shown in Fig. 11.

1. Symmetry

We first discuss the symmetries of the continuum model of
Eqs. (A1) and (A2).
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FIG. 12. Band structures of the valence bands in the hole picture for �V = −25 and 25 meV in ab out-of-plane magnetic field B. K ′ =
(0, 4π

3aM
). K ′′ = ( 2π√

3aM
, 2π

3aM
), and K = (0,− 4π

3aM
) are equivalent in the MBZ. Two horizontal lines are the chemical potential for νT = 1 and

νT = 2. For �V < 0, out-of-plane magnetic field split the energies of two valleys. It also increases the bandwidth of one valley while reducing
the bandwidth of the other valley. For �V > 0, out-of-plane magnetic field increase the bandwidth of one valley while decrease the bandwidth
of the other valley.

First, there is time-reversal symmetry which relates the
two valleys: complex conjugation combined with c+,α (k) →
c−,α (k) where α = t, b is the spinor index. Both Eqs. (A1)
and (A2) are also apparently invariant under C3 rotation
symmetry: ca;α (k) → ca;α (C3k) where a = +,− is the valley
index and α = t, b is spinor index in Eq. (A1). There is no
inversion symmetry (and therefore C6 rotation symmetry) in
Eqs. (A1) and (A2).

Within the continuum model there is also a mirror reflec-
tion symmetry along the G6 = (2π, 2π√

3
): θ (Mk) = π

3 − θ (k)
where θ (k) is the angle of k in the polar coordinate. The
Hamiltonian in Eqs. (A1) and (A2) is invariant under the
mirror symmetry c+,α (k) → c−;α (Mk). However, microscop-
ically this mirror reflection should be broken by the h-BN
layer. We view it as a a good approximation in the continuum
model.

2. Band structures in a small out-of-plane magnetic field

The moiré superlattice folds the orginal band of TLG to an
MBZ, which is a hexagon. We take both valleys of the original
band to be the � point of the MBZ.

We show band structures of the valence bands for TLG/h-
BN system in a small out-of-plane magnetic field in Fig. 12
incorporating the effects of the valley Zeeman coupling.

3. Fermi surfaces at νT = 1 and 2 for �V < 0

To aid the discussion of the metal-insulator transition for
νT = 1 and 2 in the �V < 0 side, we provide the plots of the
Fermi surfaces at several different values of �V in Fig. 13. In
our model, the Fermi surfaces do not have an obvious nesting
instability in the particle-hole channel. For νT = 1, the filled
Fermi sea has the topology close to �V ≈ −20 meV.

APPENDIX B: HAMILTONIAN IN MOMENTUM SPACE

In momentum space, we focus on the four valence bands labeled by spin σ =↑,↓ and valley a = +,−. The density operator
projected to the valence bands is

ρ(x) =
∑

aσ,k,q

λa(k, q)c†
aσ (k + q)caσ (k)e−iq·x +

∑
σ,k,q

(λ+−(k, q)c†
+σ (k + q)c−σ (k)e−i(2K+q)·x

+ λ−+(k, q)c†
−σ (k + q)c+σ (k)e−i(−2K+q)·x), (B1)

where K = ( 4π
3a , 0), a = 0.236 nm is the lattice constant of the graphene layer. Form factors λa(k, q) and λ+−(k, q) can be

calculated in the continuum model approach following Ref. [6].
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The full Hamiltonian is

H =
∑
k;a,σ

ξa(k)c†
aσ (k)caσ (k)

+ 1

2

∫
d2q

(2π )2

∑
k1,k2;a1,σ1,a2,σ2

c†
a1,σ1

(k1 + q)c†
a2,σ2

(k2 − q)ca2,σ2 (k2)ca1,σ1 (k1)V (q)λa1 (k1, q)λa2 (k2,−q)

+ 1

2

∫
d2q

(2π )2

∑
k1,k2;σ1σ2

(
c†
+,σ1

(k1 + q)c†
−,σ2

(k2 − q)c+,σ2 (k2)c−,σ1 (k1)V (2K + q)λ+−(k1, q)λ−+(k2,−q) + H.c.
)
, (B2)

where we use screened Coulomb interaction V (q) =
e2

2ξ0κ
1
q (1 − e−qr0 ). κ is the renormalized factor for dielectric

constant. In this paper, we use κ = 8. r0 is the screening length
for which we use r0 = 5aM ≈ 75 nm.

The first two terms of Eq. (B2) have SU(2)+ × SU(2)− ×
U(1)v symmetry, which means that SU(2) spin of each val-
ley is separately conserved. The third term breaks it further
down to U(1)c × U(1)v × SU(2)s. We expect this term is
suppressed by a factor a

aM
≈ 0.02 and therefore we only view

it as a perturbation.

APPENDIX C: LATTICE MODEL FOR �V < 0 SIDE

For �V < 0, the bands of both valleys are trivial(C = 0).
Therefore there is exponentially localized Wannier orbital for
each valley created by

ψ†
a (x0) = 1√

N

∑
k

e−ik·x0 eiθa (k)c†
a(k). (C1)

θa(k) can be obtained by the standard projection method
[50]: A = 〈μa(k)|ga(k)〉 and eiθa (k) = A/|A|. μa(k) is the
Bloch wave function for valley a. ga(k) is an initial ansatz
localized in real space. We choose ga(k) to be the Fourier
transformation of

|ga(x)〉 = e− (x−x0 )2

2α2 |φa〉 , (C2)

where α = aM
16 and |φa〉 is a constant vector corresponding

to sublattices (which can be viewed as pseudospin degree of
freedom and for simplicity we assume an ansatz for which the
pseudospin is independent of x). The value of |φa〉 is chosen
to optimize the overlap |〈μa(k)|ga(k)〉|.

After getting θa(k), we can easily transform the Hamilto-
nian in Eq. (B2) in terms of real space operator ψa(x) with x =
x0 + ma1 + na2 forming a two-dimensional triangular lattice.
a1 = aM (1, 0) and a2 = aM ( 1

2 ,
√

3
2 ).

For the kinetic term, we have

HK = −
∑

a;m,n,x

ta(m, n)ψ†
a (x + ma1 + na2)ψa(x) + H.c.

(C3)
with

ta(m, n) = − 1

N

∑
k

ξa(k)e−ik·(ma1+na2 ). (C4)

Similarly we can generate all of four fermion interactions.
The second line in Eq. (B2) gives

HV = 1

2

∑
x,R1,R2,R3

Vab(R1, R2, R3)ψ†
aσ1

(x)ψ†
bσ2

× (x + R1)ψbσ2 (x + R2)ψaσ1 (x + R3) (C5)

FIG. 13. Fermi surfaces at νT = 1 and νT = 2. Red and blue
lines denotes the Fermi surface contours for the two different valleys.
For νT = 1, there are three separate Fermi surfaces related by the C3

symmetry. When increasing νT , there is a Lifshitz transition to an
annulus-shape Fermi sea. At νT = 2, the Fermi surface is simply a
circle for each valley.
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with

Vab(R1, R2, R3)

= 1

N3

∑
k1,k2,q

∑
a,b

V (q)e−iθa (k1+q)e−iθb(k2−q)eiθb(k2 )eiθa (k1 )λa

× (k1, q)λb(k2,−q)ei(k2−q)·R1 e−ik2·R2 e−ik1·R3 . (C6)

The dominant term is on-site and nearest-neighbor Hub-
bard U . The next order is Hund’s coupling, as shown in
Eq. (6). There are also pair hopping and correlated hopping
terms:∑

ab

(
gdhUψ†

aσ1
(x)ψ†

bσ2
(x + a1)ψbσ2 (x)ψaσ1 (x)

+ ghhUψ†
aσ1

(x)ψ†
bσ2

(x + a1)ψbσ2 (x)ψaσ1 (x + a1) + H.c.
)
.

(C7)

These terms gdhU ∼ ghhU ∼ 0.02U ≈ 0.5 meV, which is
at the same order of Hund’s coupling ghU term in Eq. (6).
However, they involve onsite double occupancy, which should
be suppressed by the much larger Hubbard U . Therefore as
a simplifying approximation we only keep Hund’s coupling
term and ignore these correlated hopping and pair hopping
terms.

Last, we also need to include the third line of Eq. (B2).
It turns out that in real space this terms leads to an on-site
intervalley Hund’s coupling, i.e., JH term in Eq. (6).

APPENDIX D: �V > 0: C = ±3 CHERN BANDS

For �V > 0, localized Wannier orbitals for each valley are
impossible because of the nonzero Chern number. However,
we can have a triangular lattice model with two orbitals per
site at the cost that the valley Iz operator can not be on-site.
This kind of model was first discussed for the topologically
nontrivial bands of the twisted bilayer graphene system [8].

We choose two initial localized ansatz |g1〉 and |g2〉
centered at a triangular lattice. They are related by the
time-reversal transformation. We label valley +,− as 1,2.
Then we calculate the following 2 × 2 matrix: Amn(k) =
〈μm(k)|gn(k)〉 at each momentum point k. This give the
following two projected states:

ϕ†
n (x0) = 1√

N

∑
k;a

Aan(k)e−ik·x0 c†
a(k), (D1)

where m, n = 1, 2 and ca(k) is the annilation operator of the
valley a.

ϕ1 and ϕ2 create states which are not orthogonal and
normalized. We define the following unitary matrix:

U (k) = A(A†A)−
1
2 . (D2)

If we do singular value decomposition: A = ZDW †, then

U (k) = ZW †. (D3)

Then we get Wannier orbitals:

ψ†
n (x0) = 1√

N

∑
k;a

e−ik·x0 c†
a(k)Uan(k). (D4)

It is easy to prove that |ψ1〉 = ψ
†
1 (x0) |0〉 and |ψ2〉 =

ψ
†
2 (x0) |0〉 are normalized and orthogonal.
We can build our lattice models in terms of operators

ψ1(x0 + ma1 + na2) and ψ2(x0 + ma1 + na2) where a1 and
a2 are the unit vectors of the corresponding triangular lattice.

Using

ca(k) = 1√
N

∑
x0;n

e−ik·x0Uan(k)ψn(x0), (D5)

we can express Eq. (B2) in terms of these ψm Wannier
operators.

First for kinetic term, we have

HK = −
∑
i, j

∑
m,n

tmn(R)ψ†
i;mψ j;n, (D6)

where R = xj − xi.

tmn(R) = 1

N

∑
k;a

U †
ma(k)ξa(k)Uan(k)e−ik·R, (D7)

where m, n = A and B are orbital indexes for each site. a =
+,− is valley index. i and j are labels of triangular lattice
sites.

We keep intraorbital hopping t (x, y) = tAA(xa1 + ya2) and
interorbital hopping t ′(x, y) = tAB(xa1 + ya2). Other com-
ponents can be generated by the time-reversal transforma-
tion: ψm;i → εmnψn;i, where εAB = −εBA = 1 while εAA =
εBB = 0.

There is always the following symmetry t (x) = t (C3x) =
t∗(−x) = t∗(C6x) and t ′(x) = t ′(C6x). The mirror reflection
symmetry can not be kept explicitly in the current approach.

Iz = ∑
k c†

+(k)c+(k) − c†
−(k)c−(k) can not be imple-

mented as on site operator in the Wannier orbital ψi;m basis.
Instead, we have

Iz =
∑
i, j

∑
m,n

tv
mn(R)ψ†

i;mψ j;n (D8)

Again we have intraorbital hopping tV (x, y) = tAA(xa1 +
ya2) and interorbital hopping t ′

V (x, y) = tAB(xa1 + ya2).
The symmetry requirement is tV (x) = tV (C6x) and t ′

V (x) =
−t

′
V (C6x). tBB(x) = −tAA(x) and tAB(x) = −t∗

BA(x) follow
from T IzT −1 = −Iz under time reversal.

Similarly to the �V < 0 case, four fermion interaction can
be expressed in terms of Wannier orbital operator ψi;m in real
space:

HV = 1

2

∑
σ1;σ2

∑
x,R1,R2,R3

Vm1n1n2m2 (R1, R2, R3)ψ†
m1σ1

(x)ψ†
n1σ2

× (x + R1)ψn2σ2 (x + R2)ψm2σ1 (x + R3), (D9)

where

Vm1n1n2m2 (R1, R2, R3)

= 1

N3

∑
k1,k2,q

∑
a,b

V (q)U ∗
am1

(k1 + q)U ∗
bn1

(k2 − q)Ubn2

× (k2)Uam2 (k1)λa(k1, q)λb

× (k2,−q)ei(k2−q)·R1 e−ik2·R2 e−ik1·R3 . (D10)
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TABLE III. Tight binding parameters of the kinetic Hamiltonian HK for �V = 50 meV. t and t ′ are intraorbital and interorbital hopping
parameters in units of meV.

R (0,0) (1,0) (1,1) (2,1) (1,2) (2,0)

t 0 0.984ei0.006π −0.836 0.293e−i0.002π 0.293ei0.002π −0.236ei0.021π

t ′ −0.155e−i0.380π 0.064e−i0.380π −0.082e−i0.379π 0.026e−i0.256π −0.026ei0.496π 0.027e−i0.378π

Result

We provide a two-orbital model for the C = ±3 bands
following the procedure described above. For simplicity we
ignore the trigonal warping term γ3 of Eq. (A1) for the
calculation of �V > 0.

Tight binding parameters for HK and Iz are listed in
Tables III and IV for �V = 50 meV. These tight binding
parameters for a two orbital model can reproduce the two
valence bands for each spin with Chern number C = ±3.

One can also write four fermion interactions in terms of
these ψm operators. We list the dominant interaction terms
following the convention of Eq. (D10) in Table V. The dom-
inant term is still the on-site U and the next-nearest-neighbor
repulsion U1. For the �V > 0 side U = 10 meV and is only
one half of the value at the �V < 0 side. Meanwhile the
intersite Hund’s coupling and correlated hopping terms are
at the order of 0.1U instead of 0.01U for the �V < 0 side.
These are signatures of the Wannier obstruction. In the t

U � 0
limit for integer fillings, we still expect an insulating ground
state. These intersite Hund’s coupling, correlated hopping and
pair-hopping terms are much larger than the superexchange
t2/U terms and we expect the ground state is decided by
these terms. However, the lack of the explicit valley index
makes it hard to reliably deal with this lattice model. From
Hartree Fock calculations in the momentum space [6] we
expect the ground state to be valley polarized for νT = 1.
However, we do not know how to understand this conclusion
from the above lattice model.

APPENDIX E: SPIN-VALLEY MODEL FOR C = 0 SIDE

For the C = 0 side, to order t � U , we derive a spin-
valley model following the standard approach. There is
already a Hund’s coupling in the four fermion interaction.
Besides, at the order of t2/U , we get the following superex-
change antiferromagnetic term:

HS = t2

U

∑
〈i j〉

∑
a1σ1,a2σ2

(
ei(ϕi j

a1 −ϕ
i j
a2 ) f †

i;a1σ1
fi;a2σ2 f †

j;a2σ2
f j;a1σ1

+ H.c.
)
, (E1)

where a1, a2 are valley indexes and σ1, σ2 are spin indexes.
We use f instead of c to emphasize that they are neutral
degrees of freedom which only carry spin and valley quantum

numbers. ϕa is the phase in the nearest-neighbor hopping for
valley a. From time reversal, ϕ

i j
+ = −ϕ

i j
− = ϕ.

We label operator τi ⊗ σi = f †
i;a1σ1

τa1a2σσ1σ2 fi;a2σ2 with Ein-
stein summation convention. τi labels I, τx, τy, τz operator
acting on the valley Hilbert space at site i. Similarly σi labels
I, σx, σy, and σz.

For a1 = a2 = + part, we use the following equation:∑
σ1σ2

f †
i;+σ1

fi;+σ2 f †
j;+σ2

f j;+σ1

= 1

2

I + τ z
i

2

I + τ z
j

2
(I + σi · σj), (E2)

where terms like τσ refer to tensor products.
Similar for a1 = a2 = − part, we have∑

σ1σ2

f †
i;−σ1

fi;−σ2 f †
j;−σ2

f j;−σ1

= 1

2

I − τ z
i

2

I − τ z
j

2
(I + σi · σj). (E3)

Then a1 = +, a2 = − part gives

e2iϕ
∑
σ1σ2

f †
i;+σ1

fi;−σ2 f †
j;−σ2

f j;+σ1 = 1

2
e2iϕτ+

i τ−
j (1 + σi · σj).

(E4)

Similarly a1 = −, a2 = + part gives

e−2iϕ
∑
σ1σ2

f †
i;−σ1

fi;+σ2 f †
j;−σ2

f j;+σ1

= 1

2
e−2iϕτ−

i τ+
j (1 + σi · σj). (E5)

Summing the above four terms together, we get the spin-
valley coupling from the superexchange:

t2

2U

∑
〈i j〉

(
(I + τi · τj)(I + σi · σj)

− (1 − cos 2ϕi j )
(
τ x

i τ x
j + τ

y
i τ

y
j

)
(1 + σi · σj)

+ sin 2ϕi j
(
τ x

i τ
y
j − τ

y
i τ x

j

)
(I + σi · σj)

)
, (E6)

where the second and the third terms break SU(4) symmetry
to SU(2)+ × SU(2)− × U(1)v .

TABLE IV. Tight binding parameters of the valley operator Iz for �V = 50 meV. t and t ′ are intraorbital and interorbital hopping parameters
in units of meV.

R (0,0) (1,0) (1,1) (2,1) (1,2) (2,0)

tV 0.347 0.189 −0.133 0.020 0.019 −0.090
t ′
V 0 0.252ei0.121π −0.172e−i0.380π −0.044ei0.493π 0.044e−i0.255π 0.038ei0.125π
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TABLE V. Interaction parameters (in units of meV) for �V = 50 meV. The list is not complete. Other terms can be generated from
Hermitian conjugation and time reversal transformation.

m1 n1 n2 m2 R1 R2 R3 Vm1n1n2m2 (R1, R2, R3) Comments

A A A A (0,0) (0,0) (0,0) 9.39 on-site U
A A A A (1,0) (1,0) (0,0) 4.09 nearest-neighbor U
A A A A (1,0) (0,0) (0,0) 1.08e−i0.008π correlated hopping
A A A A (1,0) (0,0) (1,0) 0.65 intersite Hund’s
A A A A (1,0) (1,0) (0,0) 0.50 pair hopping

A B B A (0,0) (0,0) (0,0) 9.39 on-site U
A B B A (1,0) (1,0) (0,0) 4.09 nearest-neighbor U
A B B A (1,0) (0,0) (0,0) 1.08ei0.008π correlated hopping
A B B A (1,0) (0,0) (1,0) 0.50 intersite Hund’s
A B B A (1,0) (1,0) (0,0) 0.65 pair hopping

A B A B (0,0) (0,0) (0,0) 0.15
A B A B (1,0) (1,0) (0,0) 0.017ei0.77π

A B A B (1,0) (0,0) (0,0) 0.07ei0.42π

A B A B (1,0) (0,0) (1,0) 0.73
A B A B (1,0) (1,0) (0,0) 0.73

A A A B (0,0) (0,0) (0,0) 0.55ei0.58π

A A A B (1,0) (1,0) (0,0) 0.16ei0.68π

A A A B (1,0) (0,0) (0,0) 0.07ei0.70π

A A A B (1,0) (0,0) (1,0) 0.13e0.018π

A A A B (1,0) (1,0) (0,0) 0.147e−i0.78π

A A B A (0,0) (0,0) (0,0) 0.55ei0.58π

A A B A (1,0) (1,0) (0,0) 0.16ei0.54π

A A B A (1,0) (0,0) (0,0) 0.79ei0.078π

A A B A (1,0) (0,0) (1,0) 0.147e−i0.78π

A A B A (1,0) (1,0) (0,0) 0.147e−i0.78π
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