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HYPERCONTRACTIVITY OF SPHERICAL AVERAGES IN
HAMMING SPACE\ast 

YURY POLYANSKIY\dagger 

Abstract. Consider the linear space of functions on the binary hypercube and the linear operator
S\delta acting by averaging a function over a Hamming sphere of radius \delta n around every point. It is shown
that this operator has a dimension-independent bound on the norm Lp \rightarrow L2 with p = 1+(1 - 2\delta )2.
This result evidently parallels a classical estimate of Bonami and Gross for Lp \rightarrow Lq norms for the
operator of convolution with a Bernoulli noise. The estimate for S\delta is harder to obtain since the
latter is neither a part of a semigroup nor a tensor power. The result is shown by a detailed study of
the eigenvalues of S\delta and Lp \rightarrow L2 norms of the Fourier multiplier operators \Pi a with symbol equal
to a characteristic function of the Hamming sphere of radius a (in the notation common in boolean
analysis \Pi af = f=a, where f=a is a degree-a component of function f). A sample application of
the result is given: Any set A \subset \BbbF n

2 with the property that A + A contains a large portion of some
Hamming sphere (counted with multiplicity) must have cardinality a constant multiple of 2n.
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1. Main result and discussion. Consider a linear space \scrL of functions on n-
dimensional Hamming cube f : \BbbF n

2 \rightarrow \BbbC . We endow \scrL with the following norms and
an inner product:

\| f\| p
\bigtriangleup 
= \BbbE 

1
p [| f(X)| p] , 1 \leq p \leq \infty ,(1.1)

(f, g)
\bigtriangleup 
= \BbbE [f(X)\=g(X)] ,(1.2)

where X is uniform on \BbbF n
2 . For any linear operator T : \scrL \rightarrow \scrL we define

\| T\| p\rightarrow q
\bigtriangleup 
= sup

f\in \scrL 

\| Tf\| q
\| f\| p

.

Let Z = (Z1, . . . , Zn) be a random element of \BbbF n
2 with components independent

and identically distributed (i.i.d.) according to Bern(\delta ) distribution: \BbbP [Zi = 1] =
1 - \BbbP [Zi = 0] = \delta . For the operator

(1.3) N\delta f(x)
\bigtriangleup 
= \BbbE [f(x+ Z)], x \in \BbbF n

2 , 0 \leq \delta \leq 1,

the so-called hypercontractive inequality was established by Bonami [3], Gross [12],
and others (see [22, Chapter 9, notes] for the history):

(1.4) \| N\delta f\| q \leq \| f\| p \forall q \geq p \geq 1, p - 1 \geq (q  - 1)(1 - 2\delta )2, p, q \geq 1.
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732 YURY POLYANSKIY

There are a number of applications of hypercontractive inequalities. For exam-
ple, we mention an early result in information theory [1], which has recently become
known as the ``small-set expansion."" A number of applications in theoretical com-
puter science are presented in [22, Chapters 9--10]. One of the pillars of the analysis
of boolean functions, the KKL lemma [14], is an ingenious application of (1.4). Hy-
percontractivity is also an indispensable tool in probability for analyzing mixing of
Markov chains [6] and isoperimetry [21, Theorem 3.4].

In this paper we analyze the Lp \rightarrow L2 norm for an operator S\delta of averaging over
a Hamming sphere \BbbS \delta n. Specifically, for x = (x1, . . . , xn) \in \BbbF n

2 denote the Hamming
weight of x and the Hamming sphere centered at zero as

| x| \bigtriangleup 
= | \{ j : xj = 1\} | ,(1.5)

\BbbS j
\bigtriangleup 
= \{ x : | x| = j\} .(1.6)

The operator S\delta is defined as follows:

S\delta f(x)
\bigtriangleup 
=

\biggl( 
n

j

\biggr)  - 1 \sum 
y\in \BbbF n

2 ,| y| =j

f(x+ y) ,

where j = \lceil \delta n\rceil if \delta < 1/2 and j = \lfloor \delta n\rfloor if \delta \geq 1/2. In other words, we may write

S\delta f
\bigtriangleup 
=
f \ast 1\BbbS j
| \BbbS j | 

,

where \ast denotes the convolution

f \ast g(x) \bigtriangleup 
=
\sum 
y\in \BbbF n

2

f(x - y)g(y) .

This definition ensures S\delta f(x) = S1 - \delta f(\=x) for \delta \not = 1
2 , where \=x = (1 - x1, . . . , 1 - xn).

Our main result is that S\delta satisfies an inequality entirely similar to N\delta , namely,

(1.7) \| S\delta f\| 2 \leq C\delta \| f\| p \forall p \geq 1 + (1 - 2\delta )2, \delta \not = 1

2
,

where the crucial part is that C\delta > 1 does not depend on dimension n. Note also
that the constant cannot be tightened to 1. Indeed, taking f = 1even to be the
characteristic function of the set of all even-weight vectors we get

\| S\delta \| p\rightarrow 2 \geq 2
1
2 - 

1
p , 1 \leq p \leq 2 , 0 < \delta < 1 ,

regardless of dimension n. More precisely, we show the following.

Theorem 1.1. Consider the set F \subset [0, 1]\times [1, 2]

F = \{ (\delta , p) : p \geq 1 + (1 - 2\delta )2, 0 \leq \delta \leq 1, 1 < p \leq 2\} .

For every compact subset K of F there exists a constant C = C(K) such that for all
(\delta , p) \in K, n \geq 1, and f : \BbbF n

2 \rightarrow \BbbC we have

(1.8) \| S\delta f\| 2 \leq C\| f\| p .
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HYPERCONTRACTIVITY IN HAMMING SPACE 733

Conversely, for any (\delta , p) \not \in F there is E > 0 such that

(1.9) sup
f

\| S\delta f\| 2
\| f\| p

\geq enE+o(n) , n\rightarrow \infty ,

with the exception of \delta = 1/2, p = 1 for which we have

(1.10) sup
f

\| S1/2f\| 2
\| f\| 1

= 2n/2
\biggl( 

n

\lfloor n/2\rfloor 

\biggr)  - 1
2

\sim 
\Bigl( \pi n

2

\Bigr) 1
4

.

Remark. The constants that can be extracted from our proof method (after
numerical evaluations) are as follows: for \delta \leq 0.16 we have C =

\surd 
2, while for larger

\delta we can take C to be arbitrarily close to
\surd 
2 for sufficiently large n.

The full proof is given in section 3, while here we give a high-level sketch. We note
first that the standard methods for showing hypercontractivity do not apply since they
require the operator to be a tensor power or be part of a semigroup. The semigroup
could be continuous-time, as in [6], or discrete-time as in [20], but S\delta is a member of
neither. Instead, our proof proceeds by noticing that S\delta andN\delta commute and are self-
adjoint, hence have common orthogonal eigenspaces (given by the Fourier transform,
also known as degree-d components). Consequently, decomposing a function f =\sum 

j fj into the sum of its projections on eigenspaces we have from (1.4)

(1.11) \| N\delta f\| 22 =
\sum 
j

\lambda j(N\delta )
2\| fj\| 22 \leq \| f\| 2p .

Writing a similar expansion for S\delta we have

(1.12) \| S\delta f\| 22 =
\sum 
j

\lambda j(S\delta )
2\| fj\| 22 .

If we had that \lambda j(S\delta ) \leq \lambda j(N\delta ), then we could just upper bound (1.12) with (1.11)
and conclude the proof. It turns out that such estimate does hold but only for a range
of j, and thus the bulk of the proof consists of showing that contribution to (1.12) of
the eigenspaces outside of this range is small. This part crucially depends on a curious
relation between norms of certain Fourier multiplier operators on \BbbF n

2 and eigenvalues
of S\delta . The corresponding estimates that bound energies in the degree-a components
of functions on the hypercube are, perhaps, of independent interest.

1.1. Discussion. Why would one conjecture that S\delta is hypercontractive? Note
that [6, Theorem 3.7] shows that a discrete-time Markov chain on state space \scrX and
whose kernel satisfies hypercontractive inequality mixes in time of order O(log log | \scrX | ).
For S\delta , this Markov chain is a nonstandard random walk on a hypercube \BbbF n

2 which
jumps by a distance exactly \delta n at each step. A simple coupling argument shows
that indeed such a random walk must mix in time O(log n), therefore giving some
probabilistic intuition as to why Theorem 1.1 might hold.

We note that our main goal was to show an O(1) estimate for \| S\delta \| p\rightarrow q. Indeed,
an O(

\surd 
n) estimate is much easier.

Theorem 1.2. For any \delta and p \geq 1 + (q  - 1)(1 - 2\delta )2 we have

\| S\delta \| p\rightarrow q = O(
\surd 
n) .
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734 YURY POLYANSKIY

Proof. Assuming without loss of generality that f \geq 0 it is easy to see from
Stirling's formula that

1\bigl( 
n
\delta n

\bigr) \sum 
| y| =\delta n

f(x+ y) \leq O(
\surd 
n)

\sum 
| y| =\delta n

f(x+ y)\delta | y| (1 - \delta )n - | y| .

Then extending summation to all of y we get

S\delta f(x) \leq O(
\surd 
n)N\delta f(x) \forall x \in \BbbF n

2 .

The result then follows from (1.4).

The importance of having an O(1) estimate for the p\rightarrow q norm is due to the fol-
lowing general result of Semenov and Shneiberg [26], which generalized earlier results
of Fefferman and Shapiro [8] and Segal [25]. Semenov and Shneiberg showed that if
T is any operator with \| T\| p\rightarrow q <\infty , then for all \epsilon < \epsilon 0 = \epsilon 0(p, q, \| T\| p\rightarrow q) we have

\| (1 - \epsilon )\BbbE + \epsilon T\| p\rightarrow q = 1 ,

provided that \BbbE \circ T = T \circ \BbbE , T1 = 1 and (\BbbE f)(x) \bigtriangleup 
= \BbbE [f(X)]. The key point is that

\epsilon 0 only depends on T through the norm \| T\| p\rightarrow q. Paired with our Theorem 1.1 this
allows us to establish that certain permutation-invariant (or Sn-equivariant) operators
in Hamming space have Lp \rightarrow Lq norm equal to 1.

1.2. Application: Sumsets in Hamming space. Our original interest in hy-
percontractivity was motivated by a remarkably simple solution it yields to a problem
that the author attempted to solve using more conventional semidefinite programming
(SDP); compare sections IV in [23] and [24]. Here is an application of the new result
(Theorem 1.1), similar in spirit.

Corollary 1.3. For every \epsilon \in (0, 1) there are constants C1, C2 > 0 such that
for any dimension n and any set A \subset \BbbF n

2 we have

sup
j\in [\epsilon n,(1 - \epsilon )n]

2n(1A \ast 1A, 1\BbbS j )
| \BbbS j | | A| 

\geq \lambda =\Rightarrow | A| \geq C1\lambda 
C22n .

In other words, \BbbP [X + Y \in A] \geq \lambda implies | A| \geq C1\lambda 
C22n, where (X,Y ) is uniform

on A\times \BbbS j.

Remark. It is known that any linear subspace V \subset \BbbF n
2 which contains an \Omega (1)-

fraction of any \BbbS \delta n must have co-dimension O(1) (in n \rightarrow \infty ). This corollary is a
generalization: if a sumset A + A contains a \lambda -fraction of any Hamming sphere \BbbS j
(counted with multiplicity normalized by | A| ), then the set must be of cardinality
\Omega (2n).

Proof. We prove a stronger statement:

(1.13)

\biggl( 
\phi \ast \phi ,

1\BbbS j
| \BbbS j | 

\biggr) 
\geq \lambda \| \phi \| 22 =\Rightarrow \| \phi \| 22

\| \phi \| 21
\leq 1

C1
\lambda  - C2 ,

from which the result follows by taking \phi = 1A. To show (1.13) denote \delta = j
n and

consider the chain
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HYPERCONTRACTIVITY IN HAMMING SPACE 735

\lambda \| \phi \| 22 \leq 
\biggl( 
\phi \ast \phi ,

1\BbbS j
| \BbbS j | 

\biggr) 
(1.14)

= (\phi , S\delta \phi )(1.15)

\leq \| \phi \| 2\| S\delta \phi \| 2(1.16)

\leq C\| \phi \| 2\| \phi \| p , p = 1 + (1 - 2\epsilon )2 < 2(1.17)

\leq C\| \phi \| 2\| \phi \| 
2
p - 1

1 \| \phi \| 2 - 
2
p

2 ,(1.18)

where (1.16) is Cauchy--Schwarz, (1.17) is from Theorem 1.1, and (1.18) is from log-
convexity of 1

p \mapsto \rightarrow \| \phi \| p. Rearranging terms yields (1.13).

In fact, this corollary can be interpreted in terms of the Frankl--R\"odl graphs \ttF \ttR n\gamma ,
which are defined on the vertex set \BbbF n

2 with v \sim v\prime if | v - v\prime | = (1 - \gamma )n. Denoting by
E(A,A) the number of internal edges of a set A, our corollary says

| A| \leq \mu 2n =\Rightarrow E(A,A) \leq C \prime 
1\mu 

C\prime 
2 | \BbbS \gamma n| | A| .

In the regime of constant \mu this is essentially tight. Indeed, an estimate in the opposite
direction has been obtained by Benabbas, Hatami, and Magen [2] (see [16, section 5]
for a public account of these results):

(1.19) | A| \geq \mu 2n =\Rightarrow E(A,A) \geq 
\Bigl( 
(\mu /2)

1
\gamma  - on(1)

\Bigr) 
2n| \BbbS \gamma n| ,

provided \gamma < 1/2. In particular, this implies that if A is an independent set of \ttF \ttR n\gamma 
(so that E(A,A) = 0) we must have | A| \leq o(1)2n. This is a weak form of the famous
Frankl--R\"odl theorem [9] showing that \alpha (\ttF \ttR n\gamma ) \leq (2  - \epsilon (\gamma ))n, where \alpha (\cdot ) denotes the
maximal independent set of the graph. Similar to our result, (1.19) was obtained by
employing a reverse hypercontractivity result of Borell [4], which states

(1.20) \| N\delta f\| q \geq \| f\| p \forall  - \infty < q < p < 1, p - 1 \leq (q  - 1)(1 - 2\delta )2

for any f > 0. Note that (1.20) cannot be extended to S\delta , but in [2] the authors
show that the eigenvalues of N\delta and 1

2 (S\delta +S\delta +1/n) are similar enough that the latter
operator is almost reverse-hypercontractive. We will further discuss results of [2]
below.

1.3. Hypercontractivity and SDP. Part of our motivation to study hyper-
contractivity is that it may be employed as an improvement to the method of SDP
relaxation in various constraint satisfaction problems. For example, the best known
bound [19] on the size of error correcting codes in Hamming space are obtained by
the SDP relaxation of Delsarte [5], and there has long been interest in using hyper-
contractivity to improve the SDP relaxation; see [15].

The relation between hypercontractivity and SDP has also been known in the com-
puter science literature.1 For example, [11] shows that any (fixed) number of rounds
of Lov\'asz--Schrijver SDPs is unable to prove a bound better than \alpha (\ttF \ttR (m, \gamma )) <
( 12  - \epsilon )2m, whereas we know from [9] that \alpha (FR(m, \gamma )) < (2  - \epsilon )m. At the same
time, [2] shows that reverse hypercontractivity proves \alpha (FR(m, \gamma )) < o(2m). Follow-
ing up on the latter, [16] shows that reverse hypercontractivity itself is provable in

1This paper was originally written before some of the discussed results were published. We thank
the reviewers for pointing out these references.
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736 YURY POLYANSKIY

a sum-of-squares (SOS) proof system, thereby showing that \alpha (\ttF \ttR (m, \gamma )) < o(2m) is
provable via Lasserre's SOS algorithm of a fixed (but dependent on \gamma ) degree.

This section gives another example where (direct, as opposed to reverse) hypercon-
tractivity supersedes SDP methods. We mention that while the previously mentioned
examples deal with integer-programming problems, our example below is inherently
``continuous.""

Define B\delta (x) = \delta | x| (1 - \delta )n - | x| to be a distribution function of an i.i.d. Bernoulli
noise. For \lambda \in (0, 1) we define

(1.21) Vn(\lambda ) = max

\biggl\{ 
(\phi , \phi )

(\phi , 1)2
: \phi \geq 0, (\phi \ast \phi ,B\delta ) \geq \lambda \| \phi \| 22

\biggr\} 
.

An argument entirely similar to (1.16)--(1.18) invoking Bonami--Gross (1.4) instead of
Theorem 1.1 demonstrates2

(1.22) Vn(\lambda ) \leq \lambda  - s

for some s > 0 and all dimensions n.
Note that the problem in (1.21) is completely ``L2"" and thus escaping to Lp space

in order to solve it looks somewhat unusual. Indeed, a more natural approach (at
least to us) would be to apply Fourier analysis or an SDP relaxation. Here is the
``spectral gap"" type of argument: Since the second-largest eigenvalue of N\delta equals
(1 - 2\delta ) we get

(\phi 0, N\delta \phi 0) \leq (1 - 2\delta )\| \phi 0\| 2 ,

where \phi 0 = \phi  - (\phi , 1). Simple manipulations then imply

Vn(\lambda ) \leq 
2\delta 

\lambda  - (1 - 2\delta )
if \lambda > (1 - 2\delta ) .

This proves a correct estimate of O(1) but only for large values of \lambda .
An improvement of this method comes with the use of an SDP relaxation. The

latter is obtained by considering \psi = \phi \ast \phi and retaining only the nonnegative defi-
niteness property of \psi , i.e. we have the following upper bound:

Vn(\lambda ) \leq SDP (n, \lambda )
\bigtriangleup 
= max

\biggl\{ 
2n

(\psi ,B0)

(\psi , 1)
: \psi \geq 0 , \psi \succeq 0 , (\psi ,B\delta ) \geq \lambda (\psi ,B0)

\biggr\} 
,

where B0(x) = 1\{ x = 0\} and \psi \succeq 0 denotes that f \mapsto \rightarrow f \ast \psi is a nonnegative definite
operator. It can be shown that3

SDP (n, \lambda ) = O(1) , \lambda > (1 - 2\delta )2 ,

while for smaller values of \lambda SDP (n, \lambda ) grows polynomially in n. Thus, while SDP
improves on the ``spectral gap"" argument, it is still unable to yield the correct estimate
of Vn(\lambda ) for the entire range of \lambda .

2The original question was to check whether there exists a small set A \subset \BbbF n
2 such that \BbbP [X+X\prime =

Z] \geq \lambda \BbbP [X + X\prime = 0], where X \bot \bot X\prime \sim uniform on A and Z \sim Bern(\delta ). Bound (1.22) shows any
such set occupies a nonvanishing fraction of \BbbF n

2 .
3These observations were made in collaboration with Prof. A. Megretski.
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2. Auxiliary results.

2.1. Notation. For x = (x1, . . . , xn) \in \BbbF n
2 define \=x

\bigtriangleup 
= (1  - x1, . . . , 1  - xn). For

each j = 1, . . . , n let

\chi j(x1, . . . , xn)
\bigtriangleup 
= 1\{ xj=0\}  - 1\{ xj=1\} .

Define the characters, indexed by v \in \BbbF n
2 ,

\chi v(x)
\bigtriangleup 
=

\prod 
j:vj=1

\chi j(x) = ( - 1)\langle v,x\rangle ,

where \langle v, x\rangle =
\sum n

j=1 vjxj is a nondegenerate bilinear form on \BbbF n
2 . The Fourier trans-

form of f : \BbbF n
2 \rightarrow \BbbC is

\^f(\omega )
\bigtriangleup 
=
\sum 
x\in \BbbF n

2

\chi \omega (x)f(x) = 2n(f, \chi \omega ) , \omega \in \BbbF n
2 .

Lp-norms are monotonic,

(2.1) \| f\| p \leq \| f\| p1 , p \leq p1 ,

and satisfy the Young inequality:

(2.2) \| f \ast g\| p \leq 2n\| f\| q\| g\| r ,
1

p
+ 1 =

1

q
+

1

r
, 1 \leq p, q, r \leq \infty .

For the size of Hamming spheres we have

(2.3) | \BbbS \delta n| =
\biggl( 

n

\lfloor \delta n\rfloor 

\biggr) 
= enh(\delta ) - 

1
2 lnn+O(1) , n\rightarrow \infty ,

where the estimate is a consequence of Stirling's formula, O(1) is uniform in \delta on
compact subsets of (0, 1), and

(2.4) h(\delta ) =  - \delta ln \delta  - (1 - \delta ) ln(1 - \delta ) .

Furthermore, for all 0 \leq j \leq n

(2.5) enh(
j
n )

\sqrt{} 
1

2n
\leq | \BbbS j | < enh(

j
n ),

and for 1 \leq j \leq n - 1 (cf. [10, exercise 5.8]),

enh(
j
n )

\sqrt{} 
n

8j(n - j)
\leq | \BbbS j | \leq enh(

j
n )

\sqrt{} 
n

2\pi j(n - j)
.(2.6)

2.2. Asymptotics of Krawtchouk polynomials. Krawtchouk polynomials
are defined as Fourier transforms of Hamming spheres:

(2.7) Kj(x)
\bigtriangleup 
= \widehat 1\BbbS j (x) = n\sum 

k=0

( - 1)k
\biggl( 
| x| 
k

\biggr) \biggl( 
n - | x| 
j  - k

\biggr) 
.

SinceKj(x) only depends on x through its Hamming weight | x| , we will abuse notation
and write Kj(2) to mean value of Kj at a point with weight 2, etc.
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738 YURY POLYANSKIY

Some useful properties of Kj are as follows (cf. [18]):

Kj(x) = ( - 1)jKj(n - x),(2.8)

Kj(x) = ( - 1)xKn - j(x),(2.9)

Kj(x)

Kj(0)
=
Kx(j)

Kx(0)
,(2.10)

Kj(0) = \| Kj\| 22 = | \BbbS j | =
\biggl( 
n

j

\biggr) 
,(2.11)

Kj(x) =
\sum 
| v| =j

\chi v(x).(2.12)

It is also well-known that Kj(x) has j simple real roots. For j \leq n/2 all of them
are in the following interval (see [18, equation (71)]):

n

2
 - 
\sqrt{} 
j(n - j) \leq x \leq n

2
+
\sqrt{} 
j(n - j) .

For large n the above bounds become tight, so that for j = \delta n the location of the first
root is at roughly

\xi crit(\delta )
\bigtriangleup 
=

1

2
 - 
\sqrt{} 
\delta (1 - \delta ) .

The following gives a convenient nonasymptotic estimate of the magnitude of
Kj(x).

Lemma 2.1. For all x, j = 0, . . . , n we have

(2.13) | Kj(x)| \leq enEj/n(x/n) ,

where the function E\delta (\xi ) = E1 - \delta (\xi ), and for \delta \in [0, 1/2]

(2.14) E\delta (\xi ) =

\Biggl\{ 
1
2 (h(\delta ) + ln 2 - h(\xi )) , \xi crit(\delta ) \leq \xi \leq 1 - \xi crit(\delta ),

\phi (\xi , \omega ) , \xi = 1
2 (1 - (1 - \delta )\omega  - \delta \omega  - 1) ,

where in the second case \omega ranges in

\omega \in 

\Biggl[ 
 - 
\sqrt{} 

\delta 

1 - \delta 
, - \delta 

1 - \delta 

\Biggr] 
\cup 

\Biggl[ 
\delta 

1 - \delta 
,

\sqrt{} 
\delta 

1 - \delta 

\Biggr] 

and

(2.15) \phi (\xi , \omega )
\bigtriangleup 
= \xi ln | 1 - \omega | + (1 - \xi ) ln | 1 + \omega |  - \delta ln | \omega | .

Remark. Exponent E\xi (\delta ) was derived in [15] for \xi \leq \xi crit(\delta ). Subsequently, a
refined asymptotic expansion for all \xi \in [0, 1] was found in [13]:

(2.16) K\delta n(\xi n) =
O(1)\surd 
n
enE\delta (\xi ) ,

where the O(1) term is \theta (1) for \xi \leq \xi crit, while for \xi \in [\xi crit, 1/2] the factor O(1)
is oscillating and may reduce the exponent for a few integer points x \in [\xi critn, (1  - 
\xi crit)n], which are close to one of the roots of Kj(\cdot ).
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HYPERCONTRACTIVITY IN HAMMING SPACE 739

Proof. Following [13]4 we have

(2.17) Kj(x) =
1

2\pi i

\oint 
\scrC 
(1 - z)x(1 + z)n - xz - j dz

z
,

where integration is over an arbitrary circle \scrC with center at z = 0. The derivative of
the function (1 - z)x(1 + z)n - xz - j is zero when

(2.18) n - 2x = (n - j)z + jz - 1 .

Due to (2.9) it is sufficient to consider j \leq n/2. Among the two solutions of (2.18)
denote by \omega the unique one with smallest | z| and \Im (z) \geq 0. Set, for convenience,

\xi = x/n, \delta = j/n \in [0, 1/2],

and note that we have the following relation between \omega and \xi :

\omega =
1

2(1 - \delta )

\Bigl( 
1 - 2\xi  - sgn(1 - 2\xi ) \cdot 

\sqrt{} 
(1 - 2\xi )2  - 1 + (1 - 2\delta )2

\Bigr) 
,(2.19)

1 - 2\xi = (1 - \delta )\omega +
\delta 

\omega 
.(2.20)

As \xi ranges from 0 to 1 the saddle point \omega traverses the path

\omega :
\delta 

1 - \delta 
\rightarrow 
\sqrt{} 

\delta 

1 - \delta 
\rightarrow  - 

\sqrt{} 
\delta 

1 - \delta 
\rightarrow  - \delta 

1 - \delta 
,

where the middle segment is along the arc ei\phi 
\sqrt{} 

\delta 
1 - \delta , \phi \in [0, \pi ]; corresponding to these

corner points \xi ranges as follows

\xi : 0 \rightarrow \xi crit \rightarrow 1 - \xi crit \rightarrow 1 .

It is more convenient to reparameterize the answer in terms of location of the saddle
point \omega . If we take \scrC to be the circle passing through \omega , then as shown in [13, (3.4)
and paragraph after (3.19)] the maximum

max
z\in \scrC 

\bigm| \bigm| (1 - z)x(1 + z)n - xz - j
\bigm| \bigm| 

is attained at z = \omega and is equal to enE\delta (\xi ), where

(2.21) E\delta (\xi ) = \phi (\xi , \omega ) ,

and \xi is a function of \omega defined via (2.20). Thus, upper-bounding the integrand \{ \cdot \} 
in (2.17) by the maximal value and noting that for any circle\oint 

\scrC 

\bigm| \bigm| \bigm| \bigm| dzz
\bigm| \bigm| \bigm| \bigm| \leq 2\pi 

we conclude that (2.13) holds.
It remains to show the simplified expression in (2.14) for \xi \in [\xi crit, 1 - \xi crit]. To

that end, notice that such \xi corresponds to

\omega = ei\phi 
\sqrt{} 

\delta 

1 - \delta 
, \phi \in [0, \pi ] .

4Note that Kj(\cdot ) in [13] corresponds to ( - 1)jKj(\cdot ) in this paper.
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Normalized exponents of Krawtchouk polynomials
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E
δ(ξ
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−
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)

 

 

Kδ n
(ξ n): δ=0.2

Kδ n
(ξ n): δ=0.3

Fig. 2.1. The exponent of
K\delta n(\xi n)
K\delta n(0)

is equal to E\delta (\xi ) - h(\delta ). The figure compares these exponents

for two values of \delta . Asterisks mark the interval [\xi crit, 1  - \xi crit] containing all the roots of K\delta n(\cdot ).
In this interval K\delta n(\cdot ) is oscillatory.

.

Substituting this \omega into (2.21) we see that (2.14) is equivalent to

(2.22) \xi ln
| 1 - \omega | \surd 

\xi 
+ (1 - \xi ) ln

| 1 + \omega | \surd 
1 - \xi 

=
1

2
ln

2

1 - \delta 
.

But for \omega on the arc we have

| 1 - \omega | \surd 
\xi 

=
| 1 + \omega | \surd 
1 - \xi 

=

\sqrt{} 
2

1 - \delta 
,

thus verifying (2.22) and (2.14).

Some of the properties of E\delta (\xi ) are summarized below (see Figure 2.1 for an
illustration):

1. (\delta , \xi ) \mapsto \rightarrow E\delta (\xi ) is continuous on [0, 1]\times [0, 1] and has two symmetries: E\delta (\xi ) =
E1 - \delta (\xi ), E\delta (\xi ) = E\delta (1 - \xi ).

2. E\delta (0) = E\delta (1) = h(\delta ), E\delta (1/2) = h(\delta )/2.
3. E1/2(\xi ) = ln 2 - h(\xi )/2.
4. E\delta (\xi ) = h(\delta ) - h(\xi ) + E\xi (\delta ).
5. \xi \mapsto \rightarrow E\delta (\xi ) is monotonically decreasing on [0, 1/2] and has continuous deriva-

tive on [0, 1].
6. \delta \mapsto \rightarrow E\delta (\xi ) is monotonically increasing on [0, 1/2].
7. \delta \mapsto \rightarrow E\delta (\xi ) - h(\delta ) is monotonically decreasing on [0, 1/2].
8. For fixed \delta and all \xi \leq \xi crit(\delta ) we have

(2.23) E\delta (\xi ) \leq \xi ln(1 - 2\delta ) + h(\delta ) .

We will also need a more refined estimate for Kj(x) when x is small.

Lemma 2.2. For j \leq n/2 and 0 \leq x \leq n\xi crit(j/n) = n/2 - 
\sqrt{} 
j(n - j) we have

(2.24)
Kj(x)

Kj(0)
\leq 
\biggl( 
1 - 2j

n

\biggr) x

.

Remark. With the additional factorO(
\surd 
n) the estimate (2.24) follows from (2.13).

Lemma 2.2 establishes the crucial relation between spectra of operators N\delta and S\delta 

powering Theorem 1.1.
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Proof. In the mentioned range of x the polynomial Kj(x) is monotonically de-
creasing since Kj(0) > 0 and all roots are to the right of x. Hence, for any x + 1 \leq 
n\xi crit(j/n) we have

(2.25) 0 \leq Kj(x+ 1)

Kj(x)
< 1 .

On the other hand (e.g., [18, (15)]), Kj(\cdot ) satisfies a three-term recurrence

(2.26) (n - x)Kj(x+ 1) - (n - 2j)Kj(x) + xKj(x - 1) = 0 .

Dividing by nKj(x) we get

Kj(x+ 1)

Kj(x)
=

\biggl( 
1 - 2j

n

\biggr) 
 - x

n

\biggl( 
Kj(x - 1)

Kj(x)
 - Kj(x+ 1)

Kj(x)

\biggr) 
(2.27)

\leq 
\biggl( 
1 - 2j

n

\biggr) 
,(2.28)

where (2.28) is from (2.25). The (2.24) then follows by iterating (2.28).

Note that for j \approx n
2 conditions of Lemma 2.2 are not satisfied for any x. For such

j we prove another (somewhat loose) estimate below.

Lemma 2.3. Fix arbitrary \theta 1 \in (0, 1/2). Then for all x, j such that

n - 2j \leq n\theta 1,(2.29)

0 \leq x \leq 1 +
\theta 1

1 + \theta 21
(n\theta 1  - (n - 2j))(2.30)

we have

(2.31)

\bigm| \bigm| \bigm| \bigm| Kj(x)

Kj(0)

\bigm| \bigm| \bigm| \bigm| \leq \theta x1 .

Proof. Denote \theta = 1  - 2 j
n \leq \theta 1. Clearly (2.31) holds for x = 0. From (2.27)

and (2.29) it also holds for x = 1. Let the induction hypothesis be that (2.31) holds
for x \leq x0. Then\bigm| \bigm| \bigm| \bigm| Kj(x0 + 1)

Kj(0)

\bigm| \bigm| \bigm| \bigm| = \bigm| \bigm| \bigm| \bigm| n\theta 

n - x0

Kj(x0)

Kj(0)
 - x0
n - x0

Kj(x0  - 1)

Kj(0)

\bigm| \bigm| \bigm| \bigm| (2.32)

\leq n\theta 

n - x0
\theta x0
1 +

x0
n - x0

\theta x0 - 1
1 ,(2.33)

where (2.32) is from (2.26) and (2.33) is by induction hypothesis. Finally, it is easy
to see that whenever n - x0 > 0 it holds that

x0 \leq n
\theta 1

1 + \theta 21
(\theta 1  - \theta ) \Leftarrow \Rightarrow n\theta 

n - x0
\theta x0
1 +

x0
n - x0

\theta x0 - 1
1 \leq \theta x0+1

1 ,

which concludes the proof of (2.31) for x = x0 + 1.

On the other extreme, for small values of j we can extend Lemma 2.2 to the whole
range 0 \leq x \leq n

2 .
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742 YURY POLYANSKIY

Lemma 2.4. There exist C1 \geq 1 and \delta 0 \in (0, 1) such that for all 0 \leq j \leq \delta 0n we
have \bigm| \bigm| \bigm| \bigm| Kj(x)

Kj(0)

\bigm| \bigm| \bigm| \bigm| \leq C1 \cdot 
\biggl( 
1 - 2j

n

\biggr) x

, 0 \leq x \leq n

2
.

Remark. In fact, one can show the statement with C1 = 1 and \delta 0 = 0.16. This is
achieved by carefully following constants in the analysis and showing that max\delta \in [0,\delta 0]

over the right-hand side of (2.34) is \leq 1 for n \geq 300. For smaller n the statement is
checkable numerically, e.g., by running the recurrence (2.26) for normalized functions

Kj(x)
Kj(0)(1 - 2\delta )x (to avoid large numbers).

Proof. For j = 0 the inequality is trivial. For x \leq \xi crit(j/n) it follows from
Lemma 2.2. Thus, it is sufficient to consider x \geq \xi crit(j/n), j \geq 1. Denote \delta = j/n.
Then from Lemma 2.1 and (2.6) we have for all n \geq 1

(2.34)

\bigm| \bigm| \bigm| \bigm| Kj(x)

Kj(0) (1 - 2\delta )
x

\bigm| \bigm| \bigm| \bigm| \leq \sqrt{} 8(1 - \delta ) \cdot en(f(\delta ) - 1
2h(\delta ))

\surd 
n\delta ,

where

f(\delta ) = max
\xi \in [\xi crit(\delta ),1/2]

1

2
(ln 2 - h(\xi )) - \xi ln(1 - 2\delta ) .

From convexity of the function under maximization, we conclude

f(\delta ) =
ln 2

2
 - 1

2
min (h(\xi crit(\delta )) + 2\xi crit(\delta ) ln(1 - 2\delta ), ln 2(1 - 2\delta )) .

Taking derivative at \delta = 0 we conclude that for some \delta \prime 0 > 0 we have

h(\xi crit(\delta )) + 2\xi crit(\delta ) ln(1 - 2\delta ) \leq ln 2(1 - 2\delta ) \forall \delta \in [0, \delta \prime 0] .

Consequently, for such \delta 

f(\delta ) =
1

2
(ln 2 - h(\xi crit(\delta ))) - \xi crit(\delta ) ln(1 - 2\delta ) .

Evidently, f is continuously differentiable and

f(\delta ) = 2\delta + o(\delta ), \delta \rightarrow 0 .

Therefore for some \delta 0 \in (0, \delta \prime 0] we must have

f(\delta ) - 1

2
h(\delta ) < 0 \forall \delta \in (0, \delta 0] .

The statement of the lemma then follows with C1 = max(1,
\surd 
8C \prime 

1), where C
\prime 
1 is the

finite supremum found in the following lemma.

Lemma 2.5. Let \alpha , \delta 0, C > 0 and f be a continuous function on [0, \delta 0] with f(0) =
0, derivative (one-sided at 0) bounded by C and satisfying

(2.35) f(\delta ) - \alpha h(\delta ) < 0 \forall \delta \in (0, \delta 0] .

Then

(2.36) sup
n\geq 1

max
\delta \in [0,\delta 0]

en(f(\delta ) - \alpha h(\delta ))
\surd 
n\delta <\infty .
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Proof. Under conditions of the theorem there exists 0 < \delta 1 < \delta 0 such that

f(\delta ) \leq \alpha 

2
h(\delta ) \forall \delta \in [0, \delta 1] .

Thus we have

max
\delta \in [0,\delta 1]

n(f(\delta ) - \alpha h(\delta )) +
1

2
ln(\delta n) \leq 1

2
max

\delta \in [0,\delta 1]
 - \alpha nh(\delta ) + ln \delta n(2.37)

\leq 1

2
max

\delta \in [0,\delta 1]
\alpha n\delta ln \delta + ln(\delta n) .(2.38)

Without loss of generality we may assume \delta 1 <
1
e and n > e2

\alpha . In this case, maxi-
mization in (2.38) is attained at \delta \ast \in (0, 1

n\alpha ). Consequently, upper-bounding the first
term by zero and the second by ln( 1

n\alpha \cdot n) we get

1

2
max

\delta \in [0,\delta 1]
\alpha n\delta ln \delta + ln(\delta n) \leq  - ln\alpha 

2
.

On the other hand, from (2.35) and continuity we get

max
\delta \in [\delta 1,\delta 0]

f(\delta ) - \alpha h(\delta ) =  - C2 < 0 .

Therefore, putting both bounds together,

max
n\geq 1,\delta \in [0,\delta 0]

en(f(\delta ) - \alpha h(\delta )) \leq max

\biggl( 
1\surd 
\alpha 
, sup

n

\sqrt{} 
\delta 0ne

 - C2n

\biggr) 
<\infty .

Remark. Reference [2] establishes the following estimate:\bigm| \bigm| \bigm| \bigm| 12
\biggl( 
Kc(n)

Kc(0)
+
Kc - 1(n)

Kc - 1(0)

\biggr) 
 - 
\biggl( 
1 - 2c

n

\biggr) n\bigm| \bigm| \bigm| \bigm| \leq O

\biggl( 
max

\biggl( 
n - 

1
5 ,
n

c2
log2

c2

n

\biggr) \biggr) 
,

for all e2
\surd 
nc \leq n

2 . This result is incomparable to ours: it bounds deviation from
(1 - 2c

n )n on both sides, albeit much less precisely.
Finally, for illustrating tightness of the bounds in the next section we will need the

following lemma, proved in the appendix. It is not used in the proof of Theorem 1.1.

Lemma 2.6. Lp norms of Krawtchouk polynomials are given asymptotically by the
following parametric formula: Let \omega \in [0, 1]; then for p \geq 2

\| K\lfloor \delta n\rfloor \| p = exp

\biggl\{ 
n

\biggl( 
h(\xi ) - ln 2

p
+ \phi (\xi , \omega )

\biggr) 
+O(log n)

\biggr\} 
, n\rightarrow \infty ,(2.39)

c =
(1 + \omega )p  - (1 - \omega )p

(1 + \omega )p + (1 - \omega )p
,(2.40)

\xi =
1 - c

2
=

1

2
(1 - (1 - \delta )\omega  - \delta \omega  - 1),(2.41)

\delta =
c\omega  - \omega 2

1 - \omega 2
(2.42)

and \phi (\xi , \omega ) is given by (2.15). For p \leq 2 we have

(2.43) \| K\lfloor \delta n\rfloor \| p = exp
\Bigl\{ n
2
h(\delta ) +O(log n)

\Bigr\} 
as n\rightarrow \infty along a subsequence such that both \lfloor \delta n\rfloor and n are even.
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2.3. Norms of Fourier projection operators. The Fourier projection oper-
ators \Pi a are defined as

(2.44) \widehat \Pi af
\bigtriangleup 
= \^f \cdot 1\BbbS a a = 0, 1, . . . , n ,

or, equivalently,

\Pi af
\bigtriangleup 
= 2 - nf \ast Ka .

On the other hand from Young's inequality (2.2) we have for any convolution operator

\| \phi \ast (\cdot )\| 1\rightarrow 2 = 2n\| \phi \| 2 .

Thus we have

(2.45) \| \Pi a\| 1\rightarrow 2 =

\sqrt{} \biggl( 
n

a

\biggr) 
.

Also, we note that
\| \Pi a\| p\rightarrow q = \| \Pi n - a\| p\rightarrow q ,

and thus we only consider a \leq n
2 below.

Estimates for other Lp \rightarrow L2 follow from the Bonami--Gross inequality (1.4) and
complex interpolation.

Lemma 2.7. For any 1 \leq p \leq 2 and 0 \leq a = n\delta \leq n
2 we have

\| \Pi a\| p\rightarrow 2 \leq 

\Biggl\{ 
(p - 1) - 

a
2 , p > p\ast ,

(p\ast  - 1) - 
(1 - s)a

2

\bigl( 
n
a

\bigr) s
p - 

s
2 , 1

p = 1 - s
p\ast + s, 0 \leq s \leq 1,

(2.46)

where p\ast = p\ast (a) = 2 if h(\delta )
\delta \leq 2, and otherwise p\ast \in (1, 2) is a solution of

p\ast  - ln(p\ast  - 1) =
h(\delta )

\delta 
.

We also have two weaker bounds,

\| \Pi a\| p\rightarrow 2 \leq (p - 1) - 
a
2 ,(2.47)

\| \Pi a\| p\rightarrow 2 \leq 
\biggl( 
n

a

\biggr) 1
p - 

1
2

.(2.48)

Remark. The estimate (2.47) has been the basis of Kahn--Kalai--Linial results [14],
so we refer to (2.47) as the KKL bound. Note that p\ast (a) = 2 corresponds to a >
0.3093n, and then bound (2.46) coincides with (2.48).

Proof. From the Riesz--Thorin interpolation [7, section VI.10.8], we know that
the map 1

p \mapsto \rightarrow \| \Pi a\| p\rightarrow 2 is log-convex. Thus (2.46) follows from (2.47) and (2.48) by

convexification (the value of p\ast is chosen to minimize the resulting exponent when
a = \delta n). Thus, it is sufficient to prove (2.47) and (2.48). The second one again follows
from interpolating between (2.45) and \| \Pi a\| 2\rightarrow 2 = 1. For the first one notice that for
any \tau we have

N\tau \Pi a = \Pi aN\tau = (1 - 2\tau )a\Pi a .

And thus from (1.4) with (1 - 2\tau )2 = p - 1 we get

\| \Pi af\| 2 = | 1 - 2\tau |  - a\| \Pi aN\tau f\| 2 \leq | 1 - 2\tau |  - a\| N\tau f\| 2 \leq | 1 - 2\tau |  - a\| f\| p .
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HYPERCONTRACTIVITY IN HAMMING SPACE 745

To verify the tightness of our bounds we derive a simple lower bound by consid-
ering permutation invariant functions.

Lemma 2.8. For any a \in \{ 0, . . . , n\} and any q, p \geq 1 we have

\| \Pi a\| p\rightarrow q \geq \| Ka\| q\| Ka\| p\prime 

\| Ka\| 22
,

where p\prime = p
p - 1 is the H\"older conjugate.

Proof. The lower bound is shown by optimizing over a class of permutation in-
variant functions,

f(x) = Ka(x) +

n\sum 
j \not =a

cjKj(x)
\bigtriangleup 
= Ka(x) + \Phi (x) ,

where \Phi \bot Ka. Note that

inf
\Phi \bot Ka

\| f\| p = inf
\Phi \bot Ka

sup
g:\| g\| p\prime \leq 1

(Ka +\Phi , g)(2.49)

= inf
\Phi \bot Ka

sup
g - sym.:\| g\| p\prime \leq 1

(Ka +\Phi , g)(2.50)

= sup
g - sym.:\| g\| p\prime \leq 1

inf
\Phi \bot Ka

(Ka +\Phi , g)(2.51)

=

\biggl( 
Ka,

Ka

\| Ka\| p\prime 

\biggr) 
=

\| Ka\| 22
\| Ka\| p\prime 

,(2.52)

where (2.49) is by duality (Lp)
\ast = Lp\prime , (2.50) states the obvious fact that suprem-

ization can be restricted to permutation-symmetric g, (2.51) is by Kneser's minimax
theorem [17] (for bi-affine function over X \times Y with X convex-compact, Y convex,
and f upper semicontinuous on X), and (2.52) is because the inner inf can only be
finite if g belongs to the one-dimensional subspace spanned by Ka, i.e., g = cKa for
a suitable c.

Since \Pi a(Ka +\Phi ) = Ka we conclude that

\| \Pi a\| p\rightarrow q \geq \| Ka\| q
inf\Phi \bot Ka \| Ka +\Phi \| p

=
\| Ka\| q\| Ka\| p\prime 

\| Ka\| 22

as claimed.

In Figure 2.2 we compare the upper and lower bounds on \| \Pi a\| p\rightarrow 2 as a ranges
from 0 to n/2 for two values of p. We note that the KKL bound (2.47) is significantly
suboptimal for small p and large a. For example, for a > 0.3093n the bound (2.48) is
strictly better than KKL.

Before proceeding to the proof of the main result, we need one last estimate
relating the magnitude of Krawtchouk polynomials (in the oscillating strip) to the
norms of projectors \Pi a.

Lemma 2.9. Fix arbitrary 0 < \delta 0 < \Delta < 1/2. Then there exist constants
C \prime 

1, C2 > 0 such that for all n \geq 1, all j \in [\delta 0n,\Delta n], and all

n

2
 - 
\sqrt{} 
j(n - j) \leq x \leq n

2
+
\sqrt{} 
j(n - j)
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Fig. 2.2. Exponent of \| \Pi a\| p\rightarrow 2 as a function of a for two values of p. Two upper bounds
correspond to Kahn--Kalai--Linial (2.47) and the interpolated one (2.46). The lower bound is given
by considering only permutation invariant functions (cf. Lemmas 2.6 and 2.8).

.

we have

(2.53)

\bigm| \bigm| \bigm| \bigm| Kj(x)

Kj(0)

\bigm| \bigm| \bigm| \bigm| \cdot \| \Pi j\| p( j
n )\rightarrow 2 \leq C \prime 

1

\surd 
ne - C2n,

where p(\delta ) = 1 + (1 - 2\delta )2.

Proof. Let \xi = a
n and \delta = j

n . From symmetry, we can and will assume \xi \leq 1
2 .

Since \xi is restricted to a critical strip of Krawtchouk polynomialK\delta n from Lemma 2.1,
bound (2.6), and Lemma 2.7 it is sufficient to show

(2.54) max
\delta 0\leq \delta \leq \Delta 

max
\xi :(1 - 2\xi )2+(1 - 2\delta )2\leq 1

1

2
(ln 2 - h(\xi ) - h(\delta )) + \pi (p(\delta ), \xi ) \leq  - C2 < 0 ,

where p(\delta ) = 1 + (1 - 2\delta )2 and
1

p
\mapsto \rightarrow \pi (p, \xi )

is the convexification of the function (cf. Lemma 2.7)

(2.55)
1

p
\mapsto \rightarrow min

\biggl\{ 
 - \xi 
2
ln(p - 1),

\biggl( 
1

p
 - 1

2

\biggr) 
h(\xi )

\biggr\} 
.

To show (2.54) we first change variable \delta to p = p(\delta ) = 1 + (1 - 2\delta )2. Set

p0 = 1 + (1 - 2\Delta )2 ,(2.56)

p1 = 1 + (1 - 2\delta 0)
2 .(2.57)

Then (2.54) is equivalent to (we also interchange the maxima in \xi and \delta )

(2.58) max
\xi :(1 - 2\xi )2\leq 2 - p0

max
p:p0\leq p\leq min(p1,2 - (1 - 2\xi )2)

\eta (\xi , p) +
ln 2 - h(\xi )

2
\leq  - C2 < 0,

where

\eta (\xi , p)
\bigtriangleup 
= \pi (p, \xi ) - 1

2
h

\biggl( 
1 - 

\surd 
p - 1

2

\biggr) 
.

By construction, 1
p \mapsto \rightarrow \pi (p, \xi ) is convex. Taking derivatives one can show that

h( 1 - 
\surd 
p - 1
2 ) is concave in 1

p . Thus, the maximization over p in (2.58) is applied to
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HYPERCONTRACTIVITY IN HAMMING SPACE 747

a convex function and therefore must be achieved at one of the boundaries. Conse-
quently, to verify (2.58) it is sufficient to show the following three strict inequalities:

max
\xi :(1 - 2\xi )2\leq 2 - p0

\eta (\xi , p0) +
ln 2 - h(\xi )

2
< 0,(2.59)

max
\xi :(1 - 2\xi )2\leq 2 - p1

\eta (\xi , p1) +
ln 2 - h(\xi )

2
< 0,(2.60)

max
\xi :2 - p1\leq (1 - 2\xi )2\leq 2 - p0

\eta (\xi , 2 - (1 - 2\xi )2) +
ln 2 - h(\xi )

2
< 0(2.61)

(the maximum value of the three left-hand sides is then taken to be  - C2). The first
two are verified as follows: From (2.55) we have

\pi (p, \xi ) \leq  - \xi 
2
ln(p - 1) .

Plugging this upper bound in (2.59) we arrive at the optimization

max
\xi :(1 - 2\xi )2\leq 2 - p

 - \xi 
2
ln(p - 1) - 1

2
h(\xi ) .

Equating derivative in \xi to zero, we find solution \xi \ast (p) = 1  - 1
p . Since for p > 1 we

have (1  - 2\xi \ast (p))2 < 2  - p, this is also the maximizer. Consequently, substituting
\xi = \xi \ast (p) we get

max
(1 - 2\xi )2\leq 2 - p

\eta (\xi , p) +
ln 2 - h(\xi )

2
\leq  - \xi 

\ast (p)

2
ln(p - 1)

+
1

2

\biggl[ 
ln 2 - h(\xi \ast (p)) - h

\biggl( 
1 - 

\surd 
p - 1

2

\biggr) \biggr] 
.

The function of a single variable p on the right is continuous and nonpositive and
attains Zero only at the endpoints of p \in [1, 2]. Since both p0 and p1 belong to the
interior of [1, 2], this completes the proof of (2.59) and (2.60).

To show (2.61) we apply the bound in (2.55) (without convexification),

(2.62) max
\xi 
\eta (\xi , 2 - (1 - 2\xi )2) +

ln 2 - h(\xi )

2
\leq max

\xi 

1

2
f(\xi ),

where maximization is over

(2.63) 2 - p1 \leq (1 - 2\xi )2 \leq 2 - p0

and f(\xi ) is defined as

f(\xi )
\bigtriangleup 
= min

\biggl\{ \biggl( 
(1 - 2\xi )2

2 - (1 - 2\xi )2

\biggr) 
h(\xi ), - \xi ln(4\xi (1 - \xi ))

\biggr\} 
+ ln 2 - h(\xi ) - h

\biggl( 
1

2
 - 
\sqrt{} 
\xi (1 - \xi )

\biggr) 
.(2.64)

The minimum in this expression selects the first term for \xi \in [\xi \ast , 1/2] and the second
term otherwise, where \xi \ast \approx 0.3082 is the solution of

8\xi 2(1 - \xi ) ln \xi + (2\xi  - (1 - 2\xi )2) ln(1 - \xi ) + 2\xi (2 - (1 - 2\xi )2) ln 2 = 0

in the interior of (0, 1/2). Furthermore, the function in (2.64) is nonpositive and
continuous and attains zero only at \xi = 0, 12 , both of which are excluded by the
constraints (2.63). Thus (2.61) holds.
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748 YURY POLYANSKIY

3. Proof of Theorem 1.1. Denote the boundary of F as

p(\delta )
\bigtriangleup 
= 1 + (1 - 2\delta )2 .

Note that every compact subset K \prime of F is contained in F \cap \{ p \geq p0\} for sufficiently
small p0 and in turn in some

(3.1) K = (F \cap \{ \delta : | 1 - 2\delta | \geq \theta \} ) \cup \{ (\delta , p) : | 1 - 2\delta | \leq \theta , p \geq p0\} 

for sufficiently small \theta . In particular, we may choose \theta so small that p0 > 1+\theta 2. Next
note that

(f \ast 1\BbbS n - a)(x) = (f \ast 1\BbbS a)(\=x)

and thus estimates for S\delta and S1 - \delta coincide asymptotically. Due to this symmetry
and thanks to the monotonicity (2.1) of norms, to prove the theorem it is sufficient
to prove the following pair of statements, corresponding to the boundary of K:

S1. (critical estimate for \delta < 1/2) For each \delta there is C\delta such that for all n \geq 1
and all functions f we have

(3.2) \| S\delta f\| 2 \leq C\delta \| f\| p(\delta ) ,

and function \delta \mapsto \rightarrow C\delta is bounded on each [0,\Delta ],\Delta < 1/2.
S2. (subcritical estimate around \delta = 1/2) For any p > 1 and sufficiently small \theta 

(in particular, p > 1 + \theta 2) there is C such that for all \delta \in [(1  - \theta )/2, 1/2],
n \geq 1, and functions f we have

(3.3) \| S\delta f\| 2 \leq C\| f\| p.

First we show S1. In accordance with (2.7)

(3.4) \| S\delta f\| 22 =

n\sum 
a=0

\bigm| \bigm| \bigm| \bigm| K\delta n(a)

K\delta n(0)

\bigm| \bigm| \bigm| \bigm| 2 \| fa\| 22 ,
where we denoted

fa
\bigtriangleup 
= \Pi af .

The scheme of our proof is illustrated by Figure 3.1:
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−0.25

−0.2

−0.15

−0.1

−0.05

0

Asymptotic spectra of Tδ and Nδ: δ = 0.1

a/n

(1
/n

) 
lo

g(
F

ou
rie

r 
co

ef
.)

Bernoulli noise Nδ
Spherical average Tδ

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

−0.4

−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

Asymptotic spectra of Tδ and Nδ: δ = 0.25

a/n

(1
/n

) 
lo

g(
F

ou
rie

r 
co

ef
.)

Fourier projection norm ||Π
a
||

p(δ)−>2

Bernoulli noise Nδ
Spherical average Tδ

Fig. 3.1. Comparison of exponents of ath eigenvalue of S\delta and N\delta . For larger \delta we also show
the negative of the exponent of \| \Pi a\| p(\delta )\rightarrow 2, p(\delta ) = 1 + (1  - 2\delta )2. As before asterisks denote the
critical value \xi crit(\delta ), i.e., the smallest root of Krawtchouk polynomial K\delta n(\cdot ).
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HYPERCONTRACTIVITY IN HAMMING SPACE 749

1. First, we show that summation in (3.4) can be truncated to a \leq n
2 .

2. Second, we show that for small values of \delta eigenvalues of S\delta are upper-bounded
by a constant multiple of eigenvalues ofN\delta defined in (1.3). This is the content
of Lemma 2.4.

3. Third, for larger values of \delta we show that although eigenvalues of S\delta can be
exponentially larger than those of N\delta , such eigenvalues correspond to large a

for which \| fa\| 2

\| f\| p
is exponentially smaller.

For the first step note that any f can be written as

f = feven + fodd ,

where each of the summands is supported on vectors x \in \BbbF n
2 of even/odd weight.

Note that S\delta feven and S\delta fodd are also of opposite parity. Thus,

\| S\delta f\| 22 = \| S\delta feven\| 22 + \| S\delta fodd\| 22 .

On the other hand, we have\bigl( 
\| feven\| 2p + \| fodd\| 2p

\bigr) 1
2 \leq 

\bigm\| \bigm\| \bigm\| \bigm\| \sqrt{} f2even + f2odd

\bigm\| \bigm\| \bigm\| \bigm\| 
p

(3.5)

= \| f\| p ,(3.6)

where (3.5) is from Minkowski's inequality and (3.6) is because the supports of feven
and fodd are disjoint. Thus, if (3.2) is established for both odd and even functions,
then (3.2) follows for all functions with the same constant C.

Note that for both odd and even functions we have

| \^f(\omega )| = | \pm \^f(\=\omega )| = | \^f(\=\omega )| ,

and for any such f from (3.4) and (2.8) we get

(3.7) \| S\delta f\| 22 \leq 2
\sum 

0\leq a\leq n/2

\bigm| \bigm| \bigm| \bigm| K\delta n(a)

K\delta n(0)

\bigm| \bigm| \bigm| \bigm| 2 \| fa\| 22 .
In the remaining we show that (3.7) is upper-bounded by C\| f\| p(\delta ) uniformly in

f and \delta \leq \Delta < 1/2. For all \delta \in [0, \delta 0] from Lemma 2.4 we have

\| S\delta f\| 22 \leq 2C2
1

\sum 
0\leq a\leq n/2

(1 - 2\delta )2a\| fa\| 22(3.8)

= 2C2
1\| N\delta f\| 22(3.9)

\leq 2C2
1\| f\| 2p(\delta ) ,(3.10)

where the last step follows from Bonami--Gross (1.4). For \delta \in [\delta 0,\Delta ] we have from
Lemma 2.2

(3.11)

\bigm| \bigm| \bigm| \bigm| K\delta n(a)

K\delta n(0)

\bigm| \bigm| \bigm| \bigm| \leq (1 - 2\delta )a , 0 \leq a \leq n\xi crit(\delta ) .

On the other hand, for a \in [n\xi crit(\delta ), n/2] we have the estimate given by Lemma 2.9.
Putting together (3.11) and (2.53) we get, similar to (3.10),

\| S\delta f\| 22 \leq 2C2
1\| N\delta f\| 22 + 2\| f\| 2p(\delta )

\sum 
a\in [n\xi crit(\delta ),n/2]

(C \prime 
1)

2ne - 2C2n(3.12)

\leq 2C2
1\| N\delta f\| 22 + 2(C \prime 

1)
2\| f\| 2p(\delta ) \cdot n

2e - 2C2n(3.13)

\leq 2(C2
1 + (C \prime 

1)
2n2e - 2C2n)\| f\| 2p(\delta ) ,(3.14)
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750 YURY POLYANSKIY

where in the last step we applied (1.4). Since constants C \prime 
1 and C2 only depend on \delta 0

and \Delta we finish the proof of (3.2) and of statement S1.
We proceed to statement S2. Showing (3.3) is significantly simpler since p > p(\delta )

this time. Take \theta 1 =
\surd 
p - 1 > \theta and \delta 1 = 1 - \theta 1

2 . Let

\xi 1
\bigtriangleup 
=

\theta 1
1 + \theta 21

(\theta 1  - \theta )

and assume that \theta is so small that \xi crit(\delta ) < \xi 1 for all \delta \in [ 1 - \theta 
2 , 12 ]. Then, on one

hand, for all 0 \leq a \leq n\xi 1 and all \delta \in [ 1 - \theta 
2 , 12 ] we have from Lemma 2.3\bigm| \bigm| \bigm| \bigm| Kj(a)

Kj(0)

\bigm| \bigm| \bigm| \bigm| \leq (1 - 2\delta 1)
a .

Thus, from (1.4) we get

(3.15)
\sum 

a\in [0,n\xi 1]

\bigm| \bigm| \bigm| \bigm| Kj(a)

Kj(0)

\bigm| \bigm| \bigm| \bigm| 2 \| fa\| 22 \leq \| N\delta 1f\| 22 \leq \| f\| 2p .

On the other hand, for a > n\xi 1 we have for some C1, E > 0

(3.16)

\bigm| \bigm| \bigm| \bigm| Kj(a)

Kj(0)

\bigm| \bigm| \bigm| \bigm| \cdot \| fa\| 2\| f\| p
\leq C1

\surd 
ne - nE \forall a \in 

\Bigl[ 
n\xi 1,

n

2

\Bigr] 
.

Indeed, from Lemma 2.1 and (2.48) the exponent of the left-hand side of (3.16) is
upper-bounded by

1

2
(ln 2 - h(\delta )) +

\biggl( 
1

p
 - 1

\biggr) 
h(\xi ) , \xi 

\bigtriangleup 
=
a

n
, \delta 

\bigtriangleup 
=
j

n
,

since \xi \in (\xi crit(\delta ), 1/2]. The largest value is attained when \delta = 1 - \theta 
2 and \xi = \xi 1,

yielding

1

2
(ln 2 - h(\delta )) +

\biggl( 
1

p
 - 1

\biggr) 
h(\xi ) \leq 1

2

\biggl( 
ln 2 - h(

1 - \theta 

2
)

\biggr) 
+

\biggl( 
1

p
 - 1

\biggr) 
h

\biggl( 
\theta 1(\theta 1  - \theta )

1 + \theta 21

\biggr) 
.

Since p > 1 as \theta \rightarrow 0 the function on the right-hand side becomes negative. Thus the
exponent of left-hand side in (3.16) is negative for sufficiently small \theta .

Estimating the sum in (3.7) via (3.15) and (3.16) we get similar to (3.14) that

\| S\delta f\| 22 \leq 2(1 + (C1)
2n2e - 2En)\| f\| 2p \forall \delta \in 

\biggl[ 
1 - \theta 

2
,
1

2

\biggr] 
.

This completes the proof of (3.3) and statement S2.
We proceed to lower bounds on \| S\delta \| p\rightarrow 2. To show (1.9) consider the function

f(x) =

n\prod 
j=1

(1 + \epsilon \chi j) =

n\sum 
t=0

(1 + \epsilon )n - t(1 - \epsilon )t1\BbbS t =

n\sum 
k=0

\epsilon kKk(x) .

On one hand,

\| f\| p =

\biggl( 
(1 + \epsilon )p

2
+

(1 - \epsilon )p

2

\biggr) n
p

(3.17)

= en
p - 1
2 \epsilon 2+o(\epsilon 2) , \epsilon \rightarrow 0.(3.18)
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On the other hand, from Lemma 2.1 and (2.16) we have

(3.19) \| S\delta f\| 22 =

n\sum 
a=0

e2n(E\delta (
a
n ) - h(\delta )+ a

n ln \epsilon + 1
2h(

a
n ))+o(n) ,

where we also used

\| fa\| 2 = \epsilon a
\biggl( 
n

a

\biggr) 1
2

= ea ln \epsilon +nh( a
n )+o(n) .

For convenience, set \xi = a
n . Then it is not hard to show from (2.14) that

E\delta (\xi ) - h(\delta ) = \xi ln(1 - 2\delta ) + o(\xi ) .

Then setting \xi = \epsilon 2(1 - 2\delta )2 we find that

E\delta (\xi ) - h(\delta ) + \xi ln \epsilon +
1

2
h(\xi ) =

(1 - 2\delta )2

2
\epsilon 2 + o(\epsilon 2) , \epsilon \rightarrow 0.

Thus from (3.19) and (3.18) we get

lim inf
n\rightarrow \infty 

1

n
ln

\| S\delta f\| 2
\| f\| p

\geq (1 - 2\delta )2  - (p - 1)

2
\epsilon 2 + o(\epsilon 2) .

Evidently, for p < 1 + (1 - 2\delta )2 the norm \| S\delta \| p\rightarrow 2 grows exponentially in dimension.
Finally, estimate (1.10) follows from Young's inequality (2.2):

\| S1/2f\| 2 \leq 2n\| f\| 1
\| 1\BbbS n/2

\| 2
| \BbbS n/2| 

(3.20)

= 2n \cdot 

\Biggl( 
2 - n/2

\biggl( 
n

\lfloor n/2\rfloor 

\biggr)  - 1/2
\Biggr) 
\| f\| 1(3.21)

= (1 + o(1))
\Bigl( \pi n

2

\Bigr) 1
4 \| f\| 1.(3.22)

This upper bound is tight as f(x) = 1\{ x = 0\} shows.

Appendix A. Proof of Lemma 2.6.

Proof. Let j = \lfloor \delta n\rfloor and note that from Plancherel we have

(A.1) \| Kj\| 2 =
\sqrt{} 
| \BbbS j | = exp

\Bigl\{ n
2
h(\delta ) +O(log n)

\Bigr\} 
.

Consequently, we only consider p \not = 2 from now on.
The lemma is shown by analyzing with exponential precision the expression

(A.2) \| Kj\| pp =

n\sum 
a=0

2 - n

\biggl( 
n

a

\biggr) 
| Kj(a)| p ,

so that
nE(p, \delta ) \leq ln \| Kj\| pp \leq ln(n+ 1) + nE(p, \delta ) ,

where

(A.3) E(p, \delta )
\bigtriangleup 
=

1

n
max
a\leq n/2

ln

\biggl( 
n

a

\biggr) 
 - n ln 2 + p ln | Kj(a)| ,
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and we used the symmetry to restrict analysis to a \leq n/2. We will show below that
for p > 2 the term exponentially dominating this sum occurs at a \leq n\xi crit(j/n), while
for p < 2 the dominating term is at a = n/2.

First, consider p > 2. From Lemma 2.1, we have

(A.4) E(p, \delta ) \leq max
0\leq \xi \leq 1/2

h(\xi ) - ln 2 + pE\delta (\xi ) +O

\biggl( 
log n

n

\biggr) 
.

In the regime \xi crit(\delta ) \leq \xi \leq 1/2 we have

h(\xi ) - ln 2 + pE\delta (\xi ) =
1

2
(h(\delta ) - ln 2) + (1 - p/2)h(\xi ) ,

which is decreasing in \xi , and hence we may restrict maximization in (A.4) to \xi \leq 
\xi crit(\delta ). We introduce parametrization \xi = \xi (\omega ) as in (2.14), with

\delta 

1 - \delta 
\leq \omega \leq 

\sqrt{} 
\delta 

1 - \delta 
.

Then using identity

(A.5)
d

d\omega 
\phi (\xi (\omega ), \omega ) = \xi \prime (\omega ) ln

1 - \omega 

1 + \omega 

we get that the derivative of the expression under the max in (A.4) is

(A.6)
d

d\omega 
(\cdot \cdot \cdot ) = \xi \prime (\omega )

\biggl( 
ln

1 - \xi 

\xi 
+ p ln

1 - \omega 

1 + \omega 

\biggr) 
.

It is clear that this function is strictly increasing as \omega ranges in (A.5). For the
right endpoint in (A.5) we have \xi = 0 and thus the derivative tends to  - \infty ; for the left
endpoint, notice that when p = 2 and \omega =

\sqrt{} 
\delta 

1 - \delta the expression (A.6) is exactly zero
and thus > 0 for p > 2. So there does exist a unique \omega \ast (p, \delta ) such that (A.6) equals
zero. Instead of finding the function \omega \ast (p, \delta ) and \xi \ast = \xi (\omega \ast ) we fix an arbitrary value
\omega \in [0, 1] and find the \delta for which \omega \ast (p, \delta ) = \omega . This gives expression for \delta = \delta (\omega )
given in (2.42). Plugging the values \delta = \delta (\omega ) and \xi \ast = \xi \ast (\delta (\omega ), \omega ) into (A.4) we
conclude that

E(p, \delta ) \leq h(\xi \ast ) - ln 2 + E\delta (\xi 
\ast ) +O

\biggl( 
log n

n

\biggr) 
,

where furthermore E\delta (\xi 
\ast ) = \phi (\xi , \omega ). This completes proof of the upper bound in (2.39).

To prove a matching lower bound, notice that for any fixed \delta we have argued
that \omega =

\sqrt{} 
\delta 

1 - \delta yields a positive value of (A.6). Consequently, the optimal value of \xi \ast 

in (A.4) is always < \xi crit(\delta ) - \epsilon for some \epsilon = \epsilon (p, \delta ) > 0. Thus, taking a = \lfloor \xi \ast n\rfloor , we
can apply the result of [15, section IV] establishing

Kj(a) = exp\{ nE\delta (\xi 
\ast ) +O(log n)\} ,

which shows that E(p, \delta ) \geq h(\xi \ast )  - ln 2 + pE\delta (\xi 
\ast ) + O( logn

n ) matching the previous
upper bound.

We now prove (2.43). The upper bound follows from \| Kj\| p \leq \| Kj\| 2 and (A.1).
For the lower bound, assume j and n are even. From (2.8) we have Kk(n/2) = 0 for
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any odd k, and thus from (2.10), we have that roots of Kn/2(\cdot ) are precisely all odd
integers in [n], so that

Kn/2(x) = c

n/2\prod 
m=1

(x - 2m - 1) ,

where constant c is found from Kn/2(0) =
\bigl( 

n
n/2

\bigr) 
. Applying (2.10) again, we find

Kj(n/2) =

\bigl( 
n
j

\bigr) \bigl( 
n

n/2

\bigr) Kn/2(j) .

When j is even, Kj(n/2) is nonzero, so analyzing this similarly to the proof of the
Stirling formula we get

Kj(n/2) = exp\{ nh(\delta )/2 +O(log n)\} .

The lower bound in (2.43) then follows from (cf. (A.2))

\| Kj\| pp \geq 2 - n

\biggl( 
n

n/2

\biggr) 
| Kj(n/2)| p .
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