
MIT Open Access Articles

High-throughput phenotyping with electronic medical record 
data using a common semi-supervised approach (PheCAP)

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

As Published: 10.1038/S41596-019-0227-6

Publisher: Springer Science and Business Media LLC

Persistent URL: https://hdl.handle.net/1721.1/134827

Version: Author's final manuscript: final author's manuscript post peer review, without 
publisher's formatting or copy editing

Terms of Use: Article is made available in accordance with the publisher's policy and may be 
subject to US copyright law. Please refer to the publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/134827


High-throughput phenotyping with electronic medical record 
data using a common semi-supervised approach (PheCAP)

Yichi Zhang*,1, Tianrun Cai*,2, Sheng Yu*,3,4, Kelly Cho5,17, Chuan Hong1, Jiehuan Sun1, Jie 
Huang2, Yuk-Lam Ho5, Ashwin N. Ananthakrishnan6, Zongqi Xia7, Stanley Y. Shaw8, Vivian 
Gainer9, Victor Castro9, Nicholas Link5, Jacqueline Honerlaw5, Selena Huang2, David 
Gagnon5,10, Elizabeth W. Karlson2, Robert M. Plenge2,11, Peter Szolovits12, Guergana 
Savova13, Susanne Churchill14, Christopher O’Donnell5,15, Shawn N. Murphy9,14,16, J. 
Michael Gaziano5,17, Isaac Kohane14, Tianxi Cai*,1,14, Katherine P. Liao*,2,5,14

1Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA

2Division of Rheumatology, Immunology, and Allergy, Brigham and Women’s Hospital, Boston, 
MA USA

3Center for Statistical Science, Tsinghua University, Beijing, China

4Department of Industrial Engineering, Tsinghua University, Beijing, China

5Division of Data Sciences, VA Boston Healthcare System, Boston, MA

6Department of Gastroenterology, Massachusetts General Hospital, Boston, MA

7Department of Neurology, University of Pittsburgh, Pittsburgh, PA

8Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Boston, MA

9Research Information Science and Computing, Partners Healthcare, Boston, MA

10Department of Biostatistics, Boston University, Boston, MA, USA

11Inflammation & Immunology Thematic Center of Excellence (TCoE) Unit, Celgene, Cambridge, 
MA (contribution to study prior to current affiliation)

12Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA

Correspondence: Katherine P. Liao, MD, MPH, Division of Rheumatology, Immunology, and Allergy, Brigham and Women’s 
Hospital, 60 Fenwood Rd, Boston, MA 02115, Ph: 617-525-8819, Fax: 617-731-3030, kliao@bwh.harvard.edu.
*contributed equally to the work
AUTHOR CONTRIBUTIONS
YZ, TC1, SY, CH, JS, JH, ANA, ZX, SYS, VG, VC, NL, DWK, RMP, PS, GS, SC, SNM, IK, TC2, KPL contributed to the 
development of pipeline; YZ, TC1, SY, CH, JS, NL, TC2, contributed to the development of the R package and software development 
used in this protocol; YZ, TC, KC, CH, JS, JH, HL, ANA, ZX, SYS, VG, VC, NL, JH, SH, DG, PS, GS, SC, CO, SNM, JMG, IK, TC, 
KPL, contributed to the validation and enhancements to pipeline; YZ, TC1, SY, CH, JS, VG, VC, GS, TC2, KPL drafted the 
manuscript; all authors contributed to revisions and proofreading of the manuscript.

COMPETING INTERESTS
RMP is employed at Celgene, however his contributions to the protocol were performed while at Brigham and Women’s Hospital. The 
remaining authors declare that they have no competing financial and non-financial interests.

DATA AVAILABILITY STATEMENT
The datasets generated or analyzed in this protocol can be downloaded from: https://celehs.github.io/PheCAP/

CODE AVAILABILITY STATEMENT
The R package and code referenced in this protocol can be downloaded from: https://celehs.github.io/PheCAP/

HHS Public Access
Author manuscript
Nat Protoc. Author manuscript; available in PMC 2020 June 29.

Published in final edited form as:
Nat Protoc. 2019 December ; 14(12): 3426–3444. doi:10.1038/s41596-019-0227-6.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://celehs.github.io/PheCAP/
https://celehs.github.io/PheCAP/


13Computational Health Informatics Program, Children’s Hospital, Boston, MA

14Department of Biomedical Informatics, Harvard Medical School, Boston, MA

15Division of Cardiology, VA Boston Healthcare System, Boston, MA

16Department of Neurology, Massachusetts General Hospital, Boston, MA

17Division of Aging, Brigham and Women’s Hospital, Boston, MA

Abstract

Phenotypes are the foundation for clinical and genetic studies of disease risk and outcomes. The 

growth of biobanks linked to electronic medical record (EMR) data has both facilitated and 

increased the demand for efficient, accurate, and robust approaches for phenotyping millions of 

patients. Challenges to phenotyping using EMR data include variation in the accuracy of codes, as 

well as the high level of manual input required to identify features for the algorithm and to obtain 

gold standard labels. To address these challenges, we developed PheCAP, a high-throughput semi-

supervised phenotyping pipeline. PheCAP begins with data from the EMR, including structured 

data and information extracted from the narrative notes using natural language processing (NLP). 

The standardized steps integrate automated procedures reducing the level of manual input, and 

machine learning approaches for algorithm training. PheCAP itself can be executed in 1-2 days if 

all data are available; however, the timing is largely dependent on the chart review stage which 

typically requires at least 2 weeks. The final products of PheCAP include a phenotype algorithm, 

the probability of the phenotype for all patients, and a phenotype classification (yes or no).
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INTRODUCTION

Electronic medical record (EMR) data are a rich resource for clinical research studies 

ranging from pharmacovigilance to genetic association studies1–4. The growth of large 

biobanks with novel biologic data linked with EMR data has increased the demand and 

urgency for efficient, accurate, and robust approaches for phenotyping millions of 

patients5–9. The majority of studies using EMR data employ algorithms to classify patients 

with specific phenotypes of interest such as coronary heart disease or rheumatoid arthritis. 

The most common method for phenotyping using EMR data is a rule-based approach, 

applying combinations of structured EMR data such as International Classification of 

Disease (ICD) billing codes and medication prescriptions. While these approaches are 

simple to use, they are challenging to scale across multiple conditions because each 

phenotype algorithm typically requires a large degree of manual input to identify the 

potential features of interest and to create sufficient gold standard labels for training and 

validation. The performance of these algorithms can also vary as the accuracy of the codes 

varies across conditions and institutions10, 11.
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Since the goal of many large-scale EMR-biobank studies is to perform in-depth studies of 

specific phenotypes, there was a large unmet need for scalable, standardized, efficient, and 

portable approaches to develop phenotype algorithms with high accuracy. To address this 

challenge, we developed, tested, and validated a common semi-supervised approach for 

phenotyping, PheCAP for use across multiple phenotypes and institutions12–15. The product 

of PheCAP is an algorithm that can be applied to a large dataset to classify patients with a 

specific disease or condition. Those who are classified can be included into an EMR based 

cohort for in-depth studies on risk factors or outcomes. For the clinical readership of these 

cohort studies, information on the performance characteristics such as positive predictive 

value (PPV) is important to understand the degree of misclassification in the cohort being 

studied. Thus, PheCAP, in contrast to unsupervised approaches, requires chart review 

defined gold standards.

The basic framework of the PheCAP approach was developed as part of the NIH Informatics 

for Integrating Biology and the Bedside (i2b2) project16. This approach incorporates natural 

language processing (NLP) and machine learning, enabling a scalable phenotyping pipeline 

applicable to most common conditions. This goal contrasted with existing rule-based 

approaches which developed phenotype algorithms one at a time, using project-specific 

methodologies. It is also important to note that there are several other robust approaches 

using NLP or machine learning for phenotyping using EMR data7–9, 17–19. In this protocol, 

we describe PheCAP as an option for investigators interested in using a standardized semi-

supervised input from the clinical expert as part of the approach for phenotyping. 

Additionally, the accuracy of the phenotype algorithm is known. PheCAP has been tested at 

several institutions to define phenotypes for cohorts in studies on risk factors and 

outcomes15, 20–22. The standardized steps in PheCAP improve efficiency compared to 

current approaches and facilitate data checks as well as replication across institutions. As 

part of this protocol, we have developed R packages and either anonymized datasets or links 

to freely available datasets to allow the user to understand the details and underlying 

methods for developing a phenotype algorithm using PheCAP (https://celehs.github.io/

PheCAP/).

Application of PheCAP for Clinical and Translational Studies

The most common use of phenotype algorithms is to provide an approach to identify 

patients with certain conditions among the millions of patients in the EMR to develop a 

cohort for further study. Operationally, this requires a relational database containing EMR 

data. The data can then be extracted for the features of interest on all patients to train and 

validate the phenotype algorithm. Ultimately, the algorithm classifies patients as either 

having or not having the phenotype. Patients with the phenotype can be included in cohort 

studies on risk factors and outcomes23–25; additionally, the phenotypes themselves can be 

used as outcomes in epidemiologic studies. Further, algorithms developed as part of this 

protocol can be ported across institutions to define subjects in the same manner, allowing for 

multi-center association studies9, 21.

EMR cohorts are increasingly linked to biorepositories where genetic and biomarker studies 

can be performed. This EMR research platform has facilitated novel markers of risk or 
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replication of GWAS studies3, 26–28. Prospective cohort studies often take years to decades 

to recruit sufficient subjects for studies. This issue is particularly apparent when 

investigating low prevalence conditions. The ability to efficiently develop an algorithm to 

establish an EMR research platform with linked clinical, biomarker, and genetic data, 

provides an alternative dataset to perform these studies, particularly for phenotypes for 

uncommon conditions where there are few existing traditional cohort studies.

The final products of PheCAP provide other advantages compared to other phenotyping 

approaches using EMR data. One output of the algorithm is a probability of the condition, in 

addition to the traditional binary yes or no classification. The simplest use of this output is 

selecting a threshold probability above which subjects are considered to have a phenotype. 

The threshold itself can be tailored to the study. For example, a genetic association study 

may have improved power at a specificity of 95%, with a “cleaner” phenotype, compared to 

a pharmacovigilance study where a specificity of 90% but higher sensitivity is desired. 

Additionally, the actual probability output can be used in the association study, which can 

improve the power of genetic association studies29.

Comparison with other methods

Several unsupervised machine learning approaches for algorithm development exist. The 

learn and anchor approach uses expert-curated “anchors” as silver standard labels to assist 

with assigning potential phenotypes30. XPRESS31 and APHRODITE7 replace annotated 

labels with noisy silver standard labels such as the free text count of the phenotype name. 

PheNorm models key predictors such as the ICD and NLP counts of the phenotype as 

Gaussian mixture distributions32. All these unsupervised methods rely on silver standard 

labels for training the phenotyping algorithms. As such, they have varying degrees of 

accuracy depending on the quality of the silver standard labels. These unsupervised methods 

cannot provide a binary classification rule to define the cases or to assess the prediction 

performance without gold standard labels for validation, both important when defining a 

cohort for study.

Overview of PheCAP

The basic framework of EMR phenotyping starts with the EMR data (Figure 1). A filter 

provided by the clinical expert, such as the presence of one or a group of ICD billing codes 

associated with the phenotype of interest, is applied to identify all possible subjects with the 

condition. This excludes patients with an extremely low probability of having the condition. 

All subjects who pass the filter are included into a “data mart” containing the de-identified 

patient information. Next a set of potentially informative features are constructed using both 

structured data and information extracted from the unstructured narrative data using NLP. 

The NLP features are curated from online knowledge sources in an automated fashion and 

selected using a data driven method described in more detail in the NLP dictionary step 

below.

In parallel, a training and validation set are selected randomly from the data mart and 

clinical domain experts review the records to assign gold standard labels for whether or not a 
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patient has the phenotype. The list of codified features such as ICD, procedure codes and 

medication prescriptions relevant to the phenotype can be provided by clinical experts.

Also performed in parallel is the creation of an NLP Dictionary (Figure 2). We developed an 

automated process to extract narrative data using a pipeline which includes the use of the 

Unified Medical Language System (UMLS)33 and NLP. The extracted codified and NLP 

data are compiled to provide a broad list of potential features for the algorithm.

Unsupervised learning methods are then applied to identify the most informative features for 

the phenotype from the combined codified data and NLP list (Figure 3). Using a sparse 

regression model trained against the surrogate features obtained from the EMR database, the 

final set of features predictive of the phenotype are selected for the final algorithm. The final 

model is an equation where each feature is assigned a weight. The algorithm is applied to a 

dataset containing the information for each feature on all patients. When the algorithm is 

deployed, a predicted probability of having the phenotype is assigned to each individual in 

the EMR data mart.

The pipeline we describe here incorporates several innovations since our publication in 

201514. These innovations automate previously manual, time-intensive steps. As shown in 

Figures 1 and 2, we developed a parallel process using online medical knowledge sources 

and NLP, to assist the investigator in creating a broad list of potentially relevant features to 

extract from the narrative notes14 Additionally, we have added an intermediate step to prune 

the list of potential features prior to training the final algorithm against the gold standard. 

This step uses silver standards in the “unsupervised feature learning” step13 (Figure 3). 

Finally, a “denoising” step is applied by orthogonalizing the structured and NLP data before 

training the algorithm against the gold standards, with the aim to create a parsimonious 

algorithm (Figure 4).

Chart review to create gold standard labels is the major rate-limiting step for algorithm 

development. The automated steps outlined above simultaneously improve efficiency and 

reduce the number of un-informative and potentially noisy features, thus reducing the 

number of gold standard labels required for training. Overall the innovations improve the 

efficiency of the algorithm development process. PheCAP has been tested across over 20 

different phenotypes and 4 EMR systems15, 20–22 as well as Veterans Affairs EMR data 

which covers approximately 170 health centers across the US6 (Table 1).

Experimental Design

Here we provide more detail on the key steps mentioned above for the development and 

validation of an EMR phenotype algorithm starting with the data mart (Figure 1).

Patient consent.—The phenotyping studies performed by our team to date using de-

identified EMR data were considered minimal risk to patients, and individual informed 

consent of millions of patients was not feasible. Thus, our Institutional Review Board (IRB) 

considered the consent obtained at routine clinical visits pertaining to studying patient EMR 

data sufficient. Patients who do not wish to participate are flagged in the system and their 

data are not available for research studies. As phenotypes and the goal for phenotyping 
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projects can vary, and national guidelines regarding using of EMR data have changed over 

time, investigators should consult with their IRB or ethical boards before initiating a study. 

At our institutions, an IRB approved protocol is a required part of all requests for any type of 

research using EMR data.

Manual Annotation of Gold Standard Labels.—From the data mart, select a random 

set of approximately 200 subjects for chart review to assign gold standard labels. This set 

will be further divided into a training set, used for algorithm development, and a validation 

set to evaluate the accuracy of the algorithm. We recommend initiating chart reviews once 

the data mart has been created since obtaining gold standard labels from chart reviews is the 

most rate-limiting step in phenotyping algorithm development.

Clearly defining the phenotype is a crucial stage prior to chart reviews. We recommend that 

at the outset the domain expert or end-users of this algorithm write down the phenotype 

definition in a manner that could be replicated by an investigator at another institution. 

When available, components of validated diagnostic or classification criteria for the 

phenotype are also extracted during chart review to provide face validity. However, we 

typically do not require that patients labeled as having the phenotype meet all published 

classification criteria, as criteria are often designed for research purposes and these data may 

not be recorded in the EMR as part of usual care.

We recommend assigning the following categories during chart review: definite, possible, or 

no phenotype present. Depending on the ultimate application of the algorithm, one may 

assign the “possible” labels to either “yes” or “no” for algorithm training. Grouping 

“possible” with “no” can ensure that the algorithm classifies cases that are highly likely at 

the expense of having a smaller number of identified cases. Grouping “possible” with “yes” 

can ensure that the algorithm increases the yield of identified cases at the expense of a lower 

positive predictive value (PPV). The unsupervised feature learning and supervised training 

will identify patterns in the data based on the training labels. The upper limit of accuracy for 

the algorithms is directly related to how well two independent investigators can identify the 

phenotype and agree on the presence or absence of the phenotype on chart review.

Feature Curation.—For most phenotypes, there are typically many potential features that 

can be informative for the phenotyping algorithm. Using coronary artery disease as an 

example, potential features include the number of ICD codes for myocardial infarction, 

cholesterol levels from laboratory testing, procedure codes for cardiac catheterization, or 

narrative information in a report about perfusion abnormalities on a cardiac stress test. 

PheCAP leverages both structured data and information extracted using NLP from narrative 

notes. Feature curation includes identifying and extracting the possible features from the 

EMR data, as well as reducing the potential features to those that are most informative for 

the phenotype of interest.

The codified features can be provided by domain experts when feasible. When limited 

resources are available to curate codified features, one may identify ICD codes 

corresponding to the phenotype of interest from databases such as the Monarch Disease 

Ontology34 (MONDO) or the PheWAS catalog2. The investigator can then use the total 
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count of the ICD codes for the phenotype, denoted by main ICD code, as the codified 

feature.

To form an initial set of candidate NLP features, we have developed a pipeline to extract 

medical concepts from publicly available knowledge sources including Wikipedia, 

Medscape eMedicine, Merck Manuals Professional Edition, Mayo Clinic Diseases and 

Conditions, and MedlinePlus Medical Encyclopedia (Figure 2). Clinical terms are extracted 

from relevant articles from the knowledge sources using named entity recognition (NER) 

and are mapped to Concept Unique Identifiers (CUIs) in UMLS14. Briefly, NER is a process 

that identifies clinical terms in the narrative text and maps the terms to the UMLS concepts. 

To remove potentially uninformative CUIs, only CUIs that appear in more than half of the 

source articles are retained, a step we call “Majority Voting” (Figure 2). These CUIs, along 

with their relevant clinical terms, are used as the NLP dictionary for processing the EMR 

notes.

For most common phenotypes, online knowledge sources including Wikipedia provide 

sufficient detail to create a robust dictionary. When there are multiple potential articles from 

the same source, they can be merged into a single file to ensure broader coverage to avoid 

missing critical concepts. Alternative sources such as detailed clinical notes from the EMR 

or paragraphs of review articles can also be used to supplement when online sources are 

insufficient or not available for a specific phenotype.

Unsupervised Feature Learning.—The previous “Feature Curation” step focuses on 

generating a broad list of potentially relevant features for the algorithm. Once this broad list 

is created, the next step is to determine which features among this list are most informative 

in identifying the phenotype of interest. Reducing the feature space is important because the 

more features that need to be evaluated in the supervised training step, the more gold 

standard labels are needed to create a robust algorithm. Thus, the first step is to exclude 

features that are present <5% of the time in the narrative notes that contain positive mentions 

of the target phenotype14, a step we call “frequency control.” Next, we pass the features first 

through an unsupervised feature learning step to further prune the list of features prior to the 

supervised training step where gold standard labels are used (Figure 3).

To pare down the list of features, the list is regressed against a surrogate, or the “silver 

standard label”, such as the main ICD code(s) or the main concept extracted using NLP13. 

The “main ICD” code corresponds with the ICD code(s) that would be used to diagnose the 

condition. The main NLP concept would be the CUI(s) associated with the phenotype of 

interest. For example, in a phenotype algorithm for rheumatoid arthritis, the “main NLP” 

would be C0003873, the CUI for “rheumatoid arthritis.” With the additional candidate 

features selected, an orthogonalization step is also performed by regressing each candidate 

feature against the main surrogate features as well as the healthcare utilization level (such as 

the total number of notes) to obtain the residual as the new representation of the features 

(Figure 3). This step ensures that the additional candidate features are only included in the 

final algorithm if they provide information about the disease phenotype above and beyond 

the main surrogate features. The goal of this step is to reduce the model complexity.
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Although the default surrogates include the number of main ICD codes, main NLP, or a 

combination of the main ICD+NLP for the disease, alternative surrogates can be selected 

based on domain knowledge. For example, in type II diabetes, laboratory values such as 

glucose or hemoglobin a1c lab tests can be used as surrogates instead of or in addition to 

billing codes. The goal of this unsupervised feature learning step using surrogates is to 

identify features that are associated with the condition of interest, and thus this step may 

select other related conditions. When hba1c is used as a surrogate for a Type II diabetes 

algorithm, Type I diabetes codes were selected as a potentially important feature to be 

assessed for the final supervised training step. In this scenario, when the algorithm is trained 

against a gold standard in the supervised step, Type I diabetes remained in the algorithm for 

Type II diabetes as an informative negative predictor.

Supervised Algorithm Training and Validation.—A supervised machine learning 

algorithm is then trained with the gold standard labels and the candidate features that passed 

the feature selection step. The default algorithm is the logistic regression with adaptive 

Elastic-Net penalty which typically yields a sparse regression model. The output is a 

predicted probability of having the phenotype for each patient.

The algorithm is then validated against gold standard labels in the validation set. Predictive 

accuracy measures including the area under the Receiver Operating Characteristic curve 

(AUC), sensitivity, specificity, positive predictive value (PPV) and negative predictive value 

(NPV) across different probability threshold values for defining a case. Patients in the EMR 

who did not pass the filter are assigned a probability of zero.

If the ultimate goal is to have a binary classification yes or no for the phenotype, a threshold 

value for probability can be determined based on a desired level of sensitivity, specificity or 

PPV. Those with a probability above the threshold value are considered as cases for 

subsequent studies. For example, cases can be defined at a specificity of 95% for which the 

corresponding threshold probability is π+ . Thus, all subjects with probability of π+ or 

higher are defined as cases and included in a phenotype cohort.

A wide range of machine learning algorithms in addition to penalized logistic regression can 

be used in the supervised training step with gold standard labels. Examples include support 

vector machine and random forest. In testing different approaches, we found that the 

penalized logistic regression generally works well with comparable or superior performance 

to the more complex algorithms with training sets of moderate size (n=200 to 500 subjects).

Expertise Needed to Implement

Developing EMR phenotyping algorithms require collaborative efforts from different 

backgrounds including NLP, domain knowledge, biostatistics, machine learning, and 

database programming. Domain expertise is required to clearly define the phenotype of 

interest, provide gold standard labels and define the downstream application for the 

algorithm. Additionally, the domain experts can provide information on candidates for the 

codified features, verify the knowledge source articles for the phenotype, and determine 

whether the default surrogate features for the unsupervised training step are reasonable. Both 

the NER applied to the source articles and NLP of the notes require NLP experts. Team 
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members with statistical expertise are needed to perform the analytical steps of the 

algorithms including surrogate assisted feature selection and the algorithm training and 

validation, as well as apply the machine learning approaches. Database programming 

expertise is crucial for extraction and management of the data.

Limitations

This pipeline was developed for phenotypes where there is a universally agreed upon 

definition among clinicians. Further adaptation of the protocol would be needed to apply this 

pipeline to less well-defined phenotypes where there is no consensus regarding the clinical 

definition or where no ICD code exists. Additionally, the majority of the phenotypes tested 

had a prevalence of 1% or higher in the source EMR population and performance of the 

algorithms for phenotypes <1% has not been rigorously tested. The phenotyping algorithms 

can only perform as well as the ability of domain experts to define the phenotype using the 

available EMR data; the upper limit of performance for the algorithm is directly related to 

how well two independent reviewers can agree on the presence or absence of a phenotype. 

Thus, uncommon phenotypes that are poorly documented will be challenging to study. 

Finally, the PheCAP algorithm can be used in other registry databases where features may 

only include codified data but gold standard labels are available through existing studies. 

Deploying PheCAP in claims databases would require linking claims data with registry or 

EMR cohorts where gold standard labels are available.

MATERIALS

EQUIPMENT

• Storage space and server: will vary depending on the number of patients and 

depth of EMR data available. In general, we recommend performing these 

analyses using data stored in a relational database, e.g. SQL.

• R (version 3.3.0 or newer; https://www.r-project.org/) The complete R codes for 

PheCAP and a test data set are available at: https://celehs.github.io/PheCAP/.

• Java Runtime Environment (JRE) version 8 or newer

• NLP software: The UMLS database33 is needed for extracting information from 

the narrative text for phenotyping.

– ▲CRITICAL The NLP software may come with a built-in dictionary. 

However, UMLS is generally needed for a comprehensive coverage of 

clinical concepts.

• NLP software needed for NER and semantic analysis. There are a number of 

biomedical information extraction systems (see below for a non-exhaustive list), 

each implementing various core text processing components that can be used for 

phenotyping.

– APACHE Clinical Text Analysis and Knowledge Extraction system 

(cTAKES), http://ctakes.apache.org/35
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– Health Information Text Extraction (HiTEX), https://www.i2b2.org/

software/projects/hitex/hitex_manual.html36

– MedTagger, http://ohnlp.org/index.php/MedTagger_Project_Page37

– MetaMAP, https://metamap.nlm.nih.gov/38

– Narrative Information Linear Extraction (NILE), https://

celehs.github.io/PheCAP/articles/NLP-NILE.html39

– OBO annotator, http://www.usc.es/keam/PhenotypeAnnotation

– Stanford CoreNLP, https://stanfordnlp.github.io/CoreNLP40

Equipment setup

Obtaining UMLS data33—First Download UMLS data from https://www.nlm.nih.gov/

research/umls/licensedcontent/umlsknowledgesources.html.

Follow instructions on the website to load the content into a MySQL database: https://

www.nlm.nih.gov/research/umls/implementation_resources/scripts/

README_RRF_MySQL_Output_Stream.html

• The current recommended version of MySQL version 5.5 for use with UMLS is 

(https://dev.mysql.com/doc/refman/5.5/en/installing.html). Follow instructions 

from your NLP software’s website to use the UMLS database as the dictionary.

▲CRITICAL Some users have reported disk space issues with early versions of 

MySQL 5.6 due to default database settings.

Obtaining EMR data elements—Obtain a data mart containing EMR data on all patients 

of interest. These data are broadly characterized into structured or codified data, and 

unstructured data. From the data mart, extract the potential features for the algorithm. 

Codified features include diagnostic codes, procedure codes, laboratory tests, medication 

codes as well as demographic information. Extract NLP features for all patients from 

narrative notes via NLP.

Randomly select a subset of patients from the data mart and review charts and assign gold 

standard labels, for example: yes, possible, no presence of phenotype. Our labeling is 

typically performed by a domain expert via manual chart review. ▲CRITICAL Prior to 

extracting EMR data elements, the study should be reviewed by an institutional or ethical 

review board.

PROCEDURE

▲CRITICAL A detailed overview of the protocol is provided in Figure 4.

Creating EMR data mart [TIMING ~24h, varies depending on size of data and 

infrastructure]
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CAUTION: Please consult with your institutions’ ethical review board regarding patient 

informed consent before initiating the data request.

1. Select a filter criterion with high sensitivity and negative predictive value. The 

goal of the filter is to identify patients with some chance of having the disease 

(prevalence filter) with sufficient data in the EMR (information filter). We 

typically use ≥1 ICD code for the phenotype of interest as the filter. Patients who 

do not fulfil the criteria, termed the filter negative set, have a near zero 

probability of having the disease; patients in the filter positive set typically have 

a reasonable prevalence (e.g. ≥20%). We also apply an information filter of ≥2 

notes with more than 500 characters each. This ensures that patients have 

sufficient information documented in the EMR for classification.

?TROUBLESHOOTING

2. Next, export all possible data elements of interest from the EMR from the filter 

positive patients to create a data mart. Examples of data elements include 

demographics, diagnosis codes, medications, procedures codes, vital signs, 

laboratory test codes and results, and narrative clinical notes. Having a data mart 

provides a static version of the EMR data and facilitates reproducibility and 

quality control checks. If the selected filter population is too large to query, a 

random subsample can be used. Ideally, a database programmer creates a 

relational database and data are loaded from the EMR into the database.

Our studies utilized the i2b2 platform (https://www.i2b2.org/) which provides the 

ability to query a data warehouse for a specific population and then create a data 

mart, also in i2b2 format. Each project has its own data mart separate from the 

EMR data warehouse. A project-specific data mart facilitates both protection and 

sharing of study data. For example, some studies require access to identified 

data. Rather than granting access to all projects, having separate data marts 

enables access only to the project(s) where identified data are needed.

For most phenotypes, information from the narrative notes regarding clinical 

concepts are informative for the phenotype definition. In our studies, we perform 

NLP on all types of narrative texts including progress notes, discharge 

summaries, radiology notes, cardiology reports, for all the patients in the data 

mart and who are filter positive, i.e. passed both the prevalence and information 

filter.

▲CRITICAL Prior to data processing, we recommend performing general 

checks on the data to ensure that the upload/download of data were successful. 

For example, the total number of patient encounters and total number of notes 

should increase in the same order of magnitude in successive years.

Conduct chart review and obtain gold standard labels [Timing 1 week, depending on 

availability of domain expert]; this step can be done in parallel with steps 5 through 36 but 

we recommend initiating immediately after creation of the data mart as this is the most time-

consuming step.
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3. Randomly select at ≥200 subjects from the data mart with ≥100 for training and 

≥100 for validation.

4. Perform manual chart review for all patients. When multiple reviewers are 

available, select a subset of patients for which chart review is performed by 

multiple reviewers to assess whether raters agree. We suggest providing the 

following labels for the phenotype of interest: definite, possible/probable, or no 

phenotype present.

▲CRITICAL Develop a set of criteria for defining a case prior to chart review 

such that the guidelines can be replicated by an independent reviewer; for 

multiple reviewers perform review of charts for at least 10 patients to determine 

inter-rater reliability. If there is disagreement between the reviewers, we 

recommend discussing the cause for discrepancies and updating the phenotype 

definition.

▲CRITICAL We strongly recommend performing a check to ensure that the 

random selection for chart review yielded a subset of subjects with 

characteristics similar to the data mart. Specifically, we recommend selecting 5 

random sets and comparing common characteristics across the 5 sets and the data 

mart, e.g. mean age, gender, ICD’s of interest and common ICDs and selecting 

the random set most similar to the data mart.

▲CRITICAL If patients outside of the data mart, i.e. those do not satisfy the 

filter criteria, are of interest, additional chart review can be performed on a small 

subset of patients sampled from the filter negative set to examine the NPV of the 

filter.

Identify and extract codified data features from the structured EMR data for the algorithm 

[TIMING ~12h]

5. For the initial list, get the clinical domain experts to generate a list of terms or 

concepts associated with the phenotype. These features may include the target 

phenotype, competing diagnoses, relevant medications, procedures, and 

laboratory tests.

6. Next, identify the corresponding codes in the EMR for each identified term or 

concept. Then map the clinical concepts to specific EMR codes. We use standard 

ontologies to map terms and concepts to codes. These include diagnosis codes 

(ICD-9, ICD-10, DRG, PheCodes), procedure codes (CPT-4, ICD-10), 

medications (RxNorm, NDF-RT, NDC) and laboratory tests and vital signs 

(LOINC). In addition, sites often have institution specific codes, e.g. codes for 

problem lists, that can be included in the mapping. Depending on the phenotype 

of interest, the domain experts can provide the ICD codes or online resources can 

be used for mapping to codes. These include but are not limited to: the Monarch 

Disease Ontology (MONDO) (https://www.ebi.ac.uk/ols/ontologies/mondo)34 

and the PheWAS catalogue (https://phewascatalog.org/phecodes)2. To map to the 

codes of medications, procedures, and laboratory tests, knowledge of the 

institutions’ codes of preference is needed. If the hospital’s EMR uses a 
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standardized coding system, such as RxNorm for medications or CPT for 

procedures, one can use the online UMLS Terminology Services - Metathesaurus 

Browser (https://uts.nlm.nih.gov/home.html) to find the corresponding codes. To 

map to institution specific codes, input from the institution’s hospital is needed.

?TROUBLESHOOTING

7. Create a large table with one row per patient containing each codified data as a 

column. Get the EMR database programmer to create an analysis file from the 

data mart using the mapping of EMR codes and custom SQL scripts. Typical 

columns include patient ID, total number of main ICD codes as well as counts of 

other codes. When counting the total number of ICD codes, we only count each 

unique ICD code once per day.

You will often need to decide how to aggregate the important features of interest 

described in step 2. For example, a clinical concept of body mass index (BMI) 

might produce multiple columns, for example mean patient BMI, max patient 

BMI, count of BMI measurements, and count of BMI measurements over 30.

▲CRITICAL The codified data is later combined with the data extracted from 

narrative notes using NLP (see below) to create the training data for the 

unsupervised and supervised learning steps.

Prepare analysis environment in R [TIMING <1h]

8. Install the R package PheCAP by launching R and making sure the Internet 

connection works prior to running the code below:

install.packages(“devtools”)

devtools::install_github(“celehs/PheCAP”)

As an alternative method to install the PheCAP package, download 

PheCAP_1.0.tar.gz from https://github.com/celehs/PheCAP to a particular folder. 

Launch R, set the working directory as that folder, and run the code below:

install.packages(“PheCAP_1.0.tar.gz”, repos=NULL, type=“source”)

9. Download “cui_processing.R” and “main.R” from https://github.com/celehs/

PheCAP/tree/master/paper. “cui_processing.R” will be used in Steps 13-14 for 

performing majority voting and creating the NLP dictionary for note parsing. 

“main.R” is an example of using PheCAP functions in Steps 23-45 for data 

preparation, feature selection, and algorithm training and validation.

Concept collection for candidate NLP features [TIMING ~12h]

10. Create a list of clinical concepts relevant for the phenotype of interest. 

Specifically, the concepts should link to a UMLS Concept Unique Identifier 

(CUI)33. Investigators can also identify concepts starting with a list of codified 

features and map these features to CUIs using the MRCONSO table in UMLS. 

The MRCONSO maps CUIs to codes in other coding systems, such as ICD, 

CPT, and RxNorm.
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11. Identify text articles describing the phenotype from publicly available knowledge 

sources including Wikipedia, Medscape, eMedicine, Merck Manuals 

(Professional Version), Mayo Clinic, and MedlinePlus. Save the articles in plain 

text (such as .txt, rather than the MS Word’s .doc file). For wikipedia use text 

from the entire article. For Medscape/eMedicine, click the “Show All” button in 

the left-hand box and view the entire article on one page. For the Merck Manual 

select “Professional Version”; the in-site search bar located at the top right corner 

can also be used. For the Mayo Clinic articles use the content under Basics. Use 

the Print button to display the entire article. For MedlinePlus, search for the 

condition of interest, then select the article from the “Medical Encyclopedia.” 

The page can usually be found in the “External Links” box on the Wikipedia 

page.

?TROUBLESHOOTING

12. Use the NER software along with the UMLS33 to identify clinical terms in each 

of the articles and record the UMLS CUIs for identified terms.

This can be done using MetaMap. To do this, go to the online MetaMap service 

(batch mode): https://ii.nlm.nih.gov/Batch/UTS_Required/metamap.shtml. Copy 

and paste the text of one of the source articles to the text area. In Output/Display 

Options, check “Show CUIs (-I)”. In “I would like to only use specific Semantic 

Types,” check the checkbox, and select all the semantic types of which you may 

want a clinical concept as a feature for the target phenotype. Click “Submit 

Batch MetaMap.” An email will notify you once MetaMap has finished 

processing the file. Download “text.out” and rename it, such as “Wikipedia.out”. 

Create a new folder and save all the output files to the folder.

▲CRITICAL MetaMap only works on ASCII characters and will not run if the 

text contains non-ASCII characters. One can detect and remove non-ASCII 

characters with the regular expression “[^\x00-\x7F]”.

13. Perform Majority voting. Concepts (CUIs) that appear in ≥50% of articles are 

considered as potentially important. Denote these concepts as candidates. The 

occurrence of these concepts in the clinical notes will be assessed at a later step. 

Next, launch R and open the file “cui_processing.R.” Run line 1. In line 6 of the 

R code, edit the program to point to the folder where the MetaMap outputs are 

saved. Run line 6 to extract the CUIs from the output file and identify the 

features that pass majority voting.

14. Extract the terms of the candidate concepts from the UMLS to create a custom 

dictionary for the note parsing step below. Based on the database connection 

authentication details, make appropriate changes to lines 13-16 in 

“cui_processing.R”. Run lines 13-16 to generate the dictionary file.

?TROUBLESHOOTING

Note parsing to obtain NLP feature data [TIMING ~20h+; can vary widely depending on 

size of dataset and size of NLP dictionary]
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15. Parse the clinical notes in the data mart using the NLP software. The NLP 

program should be set to extract information only on non-negated mentions in 

the notes. Clinical NLP software typically implements a negation analysis 

module. For example, the default entity extraction pipeline of Apache clinical 

Text Analysis and Knowledge Extraction System (cTAKES)35 consists of a 

sentence splitter, context sensitive tokenizer, part-of-speech tagger, a fast 

dictionary look-up module for entity recognition and terminology/ontology 

mapping. Each entity is populated with a set of modifiers amongst which are 

negation41, experiencer (patient, family member, other), uncertainty41, and a 

conditional value. Although cTAKES has other modules, its default entity 

extraction pipeline provides all necessary functionalities for the phenotyping 

task.

If negation is not available, NegEx (https://github.com/chapmanbe/negex) is an 

option for negation analysis, which can be incorporated into most clinical NLP 

software. Additionally, mentions of concepts in the family history should be 

excluded. If the NLP software does not offer an analyzer for family history, one 

approach is to remove the family history section from the notes.

In practice we exclude negated concepts as potential features because we have 

found that this reduces the number of gold standard labels needed for training. 

For example, if a note states that a patient “has no evidence of coronary heart 

disease,” that note will not be considered to have a mention of coronary heart 

disease. While including all mentions of a concept, whether or not they are 

negated may benefit the model, it also doubles the number of features, which in 

turn increases the number of gold standard labels needed and time for chart 

review. In practice, we have found that if we include the differential diagnoses of 

the target phenotype (which are identified from the knowledge sources), also 

including negated features, for example, “no coronary heart disease” had limited 

effect on the accuracy. Since chart review is a major rate limiting factor, we do 

not recommend adding negated features to the model.

The processing time depends on many aspects such as the NLP software, the 

format of data (e.g. files on a local computer, data tables on databases), the 

performance of computing environment such as CPU clock speed, RAM and the 

volume of notes including the number and the average length of notes.

The NLP data used as examples in this manuscript were generated by NILE39, 

which was developed to identify medical concepts in narrative EMR data. In 

addition to identifying medical concepts, NILE is able to perform analysis for 

negation and family history. On a server with multi-core 2.64GHz processors and 

64Gb system RAM, the time for processing 62,155 notes is 57,22 seconds by 

NILE with a single thread of computation using a dictionary with # terms. The 

average length of each note above is 2523 characters.

16. Assemble the NLP output. Represent the identified clinical terms with CUIs, and 

extract those that have been identified as candidates. Assemble the output in a 

tabular format, where each row represents a note of a patient. A data row must 
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have a column for the patient ID, and a column for each candidate CUI. The 

column for candidate CUIs provides the number of positive mentions in the note 

for a specific concept, not including negated concepts and concepts mention in 

the family history (Figure 5).

17. Perform quality control for the note processing by checking if the number of 

notes with more than 500 characters matches the row number of result file and 

manually reviewing a small number of notes to confirm the software extracted all 

potential concepts listed in the dictionary.

?TROUBLESHOOTING

18. Group the drug or chemical concepts into their hierarchical relationship as 

recorded in the UMLS MRREL table. Concepts grouped by the main active 

ingredient generally have better predictive power than the individual features. 

For example, C0699142 Tylenol, C0000970 Acetaminophen, and C0002771 

Analgesics may all be candidate CUIs. UMLS provides the relationship between, 

for example, Tylenol a trade name of acetaminophen, and that acetaminophen is 

a kind of analgesic. Thus, for this example add the column of Tylenol and all 

other identified trade names of acetaminophen to the column of acetaminophen, 

and then add acetaminophen and all other identified analgesics to the column of 

analgesics. Note that the adding must be done from the bottom moving up the 

order of the hierarchy.

19. Perform frequency control, Part 1 of 2. A clinical concept is unlikely to be 

informative if it rarely co-occurs with the CUI of the target phenotype. Create a 

list of CUIs that are mentioned in <5% of the clinical notes that have a positive 

mention of the target phenotype’s CUI. This list will be used to exclude NLP 

features at a later step.

20. Aggregate the NLP note level data to the patient level such that each patient will 

have a number of NLP mentions for each concept. The output will be CUI 

columns representing the count of each concept mentioned in the notes for each 

patient. For example, patient A has 5 notes. Rheumatoid arthritis is mentioned 3 

times in one note and twice in another note. Patient A will have a value of 5 in 

the CUI column for rheumatoid arthritis.

21. Perform frequency control, Part 2 of 2. Remove the CUIs listed in Step 19 from 

the aggregated patient level NLP data created in Step 20.

22. Create the feature for healthcare utilization (H). Create a table with one row per 

patient and two columns. It should contain a column for patient ID and a column 

for measurement of the patient’s healthcare utilization, denoted by H. Healthcare 

utilization is an important feature that can significantly improve the prediction. 

The H feature can be the total number of unique billing codes, the total number 

of visits, or the total number of notes. Based on our previous experience, the 

results are not sensitive to which specific definition is used to represent 

healthcare utilization.

Load EMR data into R [Timing: <1h]
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23. Launch R and open the script “main.R”.

24. Run line 1 in “main.R”.

25. Modify the path in line 4 in “main.R” to reflect the actual location of the 

PheCAP data file(s). Alternatively, uncomment line 7 to use the sample dataset in 

PheCAP.

26. Specify the variable name for the H feature, the variable name for the label, and 

the proportion of data reserved as the validation set in line 12 in “main.R”.

27. Load the data into R by running lines 3-13 in “main.R”. Verify that the data 

summary (number of observations, number of variables, and so on) is consistent 

with your knowledge of the data.

?TROUBLESHOOTING

Perform surrogate assisted feature selection (SAFE) [Timing <1h]

28. Specify a set of surrogate variables that are expected to be highly predictive of 

the phenotype status when their values are in extreme tails. For most phenotypes, 

good surrogates include the total ICD count of the phenotype (denoted by SICD), 

the total NLP mentions of the phenotype (SNLP), as well as SICDNLP=SICD

+SNLP. Alternative surrogates can be used to replace or augment the ICD or NLP 

based on procedure codes or laboratory measurements. For example, 

measurements of fasting glucose or HbA1c can be used as alternative or 

additional surrogates for type II diabetes.

29. For each surrogate Sk, specify lower (lk) and upper (uk) cutoff values to define 

silver standard labels. Patients with Sk value higher than uk are assigned with 

Sk*=1; those with value below the lower cutoff value are assigned with Sk*=0; 

and those between the lower and upper cutoff values are excluded.

30. Based on steps 28 and 29, modify lines 22-31 in “main.R” accordingly. Then run 

these lines.

31. For each surrogate Sk, sample 500 patients with Sk*=1 and another 500 patients 

with Sk*=0. I.e. a total of 1000 patients. To change this number, add the 

argument subsample_size=<number> within phecap_run_feature_extraction in 

line 34 in “main.R”.

▲CRITICAL Steps 31 to 35 can be conducted by running lines 33-35 in 

“main.R”. The selected features will be printed to the R console.

32. Perform penalized logistic regression for those sampled patients with S* being 

the response variable and all features other than S as predictors to obtain 

regression coefficients for the features. Assign a coefficient of 1 to the surrogate 

itself.

33. Repeat steps 31 and 32 200 times for each choice of the surrogate.

34. Calculate the percentage of times each feature receives a non-zero coefficient 

across all replications and all surrogates.
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35. Select features with non-zero frequency higher than 50% as potential features for 

supervised algorithm training. The selected feature set is denoted by X+=(X

+1,...,X+J)

?TROUBLESHOOTING

Supervised algorithm training [Timing <1h]

▲CRITICAL Steps 36-39 can be done via lines 37-40 in “main.R”.

36. Create the list of features for the supervised algorithm training. These include the 

surrogates used in the unsupervised feature selection step (denoted by S), H, and 

the candidate features selected in the previous steps: unsupervised feature 

selection (denoted by X+). The default program uses SICDNLP as a candidate 

feature in the supervised algorithm. For example, if SICD, SNLP and SICDNLP are 

used as surrogates in the unsupervised algorithm training, and X+ are selected 

from the unsupervised feature selection, the final list of candidate features for the 

supervised training step would be {SICD, SNLP, SICDNLP, H, X+}; using this full 

set of features typically produces the best prediction model and is the default in 

the PheCAP R package. However, if the goal is to have interpretable coefficients 

in the algorithm, SICDNLP should be excluded from the list of potential features 

for supervised training. This is because SICDNLP is created from the combination 

of SICD and SNLP and can be potentially collinear leading to coefficients that 

may be difficult to interpret.

37. For each feature X+j in X+, orthogonalize it against S and H by performing a 

linear regression of X against S and H and taking the residual from the fitting to 

obtain X+j*. Assemble S, H and all { X+1*,...,X+J* } to create the feature set F 

for algorithm training.

38. Fit a supervised machine learning algorithm with F as the predictors and the 

annotated labels as the response. The default algorithm in the R package is the 

penalized logistic regression with the tuning parameter selected via the cross 

validation. Alternative algorithms such as the support vector machine and 

random forest can also be considered.

?TROUBLESHOOTING

39. Obtain the initial estimates of the model prediction performance, including the 

AUC, sensitivity, specificity, PPV, and NPV, on the training set via cross-

validation.

40. The supervised algorithm training process also generates an output containing 

the probability of having a phenotype for each subject in the data mart (Figure 

7). This can be performed by running lines 42-43 in “main.R”.

Algorithm validation [Timing <1h]

41. Use the predicted probability, π, and the gold standard labels in the validation set 

to compute sensitivity, specificity, PPV, NPV across a range of threshold values 

as well as the AUC to summarize the overall classification performance. Lines 
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45-49 in “main.R” show how to obtain the AUC on the validation set, as well as 

how to visualize ROC and related curves.

?TROUBLESHOOTING

Application of the model [Timing <1h]

42. Run the function “phecap_predict_phenotype” to generate the predicted 

probabilities for all subjects.

43. Determine the cutoff value for the predicted cases, π+, using the cross-validated 

accuracy table (“split_roc”) or the validation-set accuracy table (“valid_roc”) 

created by the “phecap_validate_phenotyping_model” function. Choose π+ to 

match the desired specificity or PPV. Patients with π greater than or equal to π+ 

are the predicted cases and labeled as phenotype=yes. Alternatively, the actual 

predicted probabilities can be directly used for downstream analyses (e.g. genetic 

association studies) without thresholding.

TROUBLESHOOTING

See Table 3 for troubleshooting guidance.

TIMING

Steps 1-2, Creating EMR data mart [TIMING ~24h, varies depending on 

infrastructure]

Steps 3-4, Conduct chart review and obtain gold standard labels [Timing 1 week, 

depending on availability of domain expert]

Steps 5-7, Identify and extract codified data features from the structured EMR data 

for the algorithm [TIMING ~12h]

Steps 8-9, Prepare analysis environment in R [TIMING <1h]

Steps 10-14, Concept collection for candidate NLP features [TIMING ~12h]

Steps 15-22, Note parsing to obtain NLP feature data [TIMING ~20h+; can vary 

widely depending on size of dataset and size of NLP dictionary]

Steps 23-27, Load EMR data into R [Timing: <1h]

Steps 28-35, Perform surrogate assisted feature selection [Timing <1h]

Steps 36-40, Supervised algorithm training [Timing <1h]

Step 41, Algorithm validation [Timing <1h]

Steps 42-43, Application of the model [Timing <1h]

ANTICIPATED RESULTS

Below, we demonstrate some of the anticipated data from key steps in the phenotype 

algorithm development process. The key stages include data extraction and curation, 
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algorithm training and validation, and assigning predicted probabilities and case status for 

all patients of interest.

While data extraction for structured data is more straightforward, we provide anticipated 

results for the steps involving NLP. In this example, we demonstrate the results of applying 

MetaMAP on an article for “coronary artery disease” in Wikipedia (Procedure step #13). 

Figure 5 demonstrates the output from MetaMap indicating that “coronary artery disease” 

was identified as a clinical term and mapped to three distinct CUIs, C0010054, C0010068, 

and C1956346. The link to the source article and the coronary artery disease dictionary 

generated using MetaMap can be found at, https://celehs.github.io/PheCAP/articles/NER-

MetaMAP.html.

To generate NLP features, we parse the narrative notes in the EMR to identify and count 

positive mentions of all CUIs in the dictionary. We provide an example of NLP output using 

NILE after processing a set of notes (Figure 6). This same set of narrative notes can be 

found on the i2b2 website, i2b2 NLP Research Data Sets (https://www.i2b2.org/NLP/

DataSets/Main.php), “Training: RiskFactors Complete Set 1 MAE” data under “2014 De-

identification and Heart Disease Risk Factors Challenge”/. We use “xml_Utils.java” (https://

celehs.github.io/PheCAP/articles/NLP-NILE.html) to extract notes from downloaded xml 

files. We then use the dictionary generated from MetaMap and parse these notes using NILE 

(Procedure step #15).

With the curated feature data along with labels, the algorithm training and validation starts 

with SAFE (Procedure step 28 - 35) to perform unsupervised feature selection. Next, the 

coefficients are assigned to the features in the supervised training step using the gold 

standard labels. Figure 7A shows the coefficients for the selected features after SAFE 

(Procedure step 38 using the EMR example data available from, https://celehs.github.io/

PheCAP/index.html. The sensitivity, specificity, PPV and NPV for a range of probability 

cut-off values for defining cases are reported in the validation step as part of the R package 

(Figure 7B). Investigators can choose different threshold values depending on the goal of the 

study. For example, if the goal for the algorithm is to achieve a PPV >95%, line 9 might be 

selected as the threshold. In this case, all subjects with a cutoff or a probability of having the 

phenotype ≥0.853 would be considered a case. The estimated performance of the algorithm 

at this threshold (p=0.853) corresponds to a false positive rate (FPR), 0.059 or specificity of 

94%; true positive rate (TPR) 0.644, or a sensitivity of 64%, and a PPV of 97%. Once the 

threshold for probability is selected, all subjects with a probability of the threshold or higher 

are classified as cases. The final output shown in Figure 7C contains predicted probabilities 

for each patient along with classified case status, 1=yes, 0=no.
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EDITORIAL SUMMARY

PheCAP takes structured data and narrative notes from electronic medical records and 

enables patients with a particular clinical phenotype to be identified.

TWEET

High throughput phenotyping with electronic medical record data

COVER TEASER

High throughput phenotyping with EMR data

RELATED LINKS

Key reference(s) using this protocol

Xia, Z. et al. PLoS One. 8:e78927 (2013) [doi: 10.1371/journal.pone.0078927]

Liao, KP. et al. Ann Rheum Dis. 73, 1170-1175 (2014) [doi: 10.1136/

annrheumdis-2012-203202]

Liao, KP. et al. BMJ. 350, h1885 [doi: 10.1136/bmj.h1885]

Ananthakrishnan, AN. et al. Inflamm Bowel Dis. 22:151-158 (2016) [doi: 10.1097/

MIB.0000000000000580]
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Figure 1. PheCAP Overview.
Starting with all EMR data, a sensitive filter (Procedure step #1) such as a diagnosis code is 

used to create a data mart (Procedure step #2) containing all patients who may potentially 

have the phenotype. Codified data, such as diagnoses codes or medication prescriptions 

related to the phenotype are extracted from the data mart (Procedure steps #5-6). 

Additionally, concepts or terms related to the phenotype are extracted using natural language 

processing (NLP) (Procedure steps #10-15). The NLP dictionary can be developed 

manually or using an automated process. These data are combined into a patient level data 

table (Procedure step #7). In parallel, a random sample of patients is selected for chart 

review to provide gold standard labels (Procedure steps #3-4). Sparse machine learning is 

applied in two steps: an unsupervised (Procedure steps #28-35) and a supervised step 

(Procedure steps #36-41) to identify the important features of interest. The output of the 

pipeline is a phenotype algorithm, a probability of the phenotype for all subjects in the data 

mart, and a classification of the phenotype for each subject (yes/no) (Procedure steps 
#42-43).
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Figure 2. Creating an NLP dictionary.
Automated process to generate an NLP dictionary by processing knowledge sources using 

NLP (Procedure steps #10-14).
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Figure 3. Unsupervised Feature Learning.
Steps to identify informative codified and NLP features for the algorithm prior to supervised 

training of the algorithm with gold standard labels (Procedure steps #28-35).
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Figure 4. Detailed flow of PheCAP protocol.
User input required at various steps in the PheCAP protocol are specified at the top of the 

figure as the protocol moves from data extraction, data processing, through algorithm 

training and validation, and the final outputs: a phenotype algorithm, a probability of the 

phenotype for all subjects in the data mart, and a classification of the phenotype for each 

subject (yes or no). Numbers in the figure correspond to Procedure steps.
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Figure 5. 
Clinical terms identified by MetaMAP along with their mapped CUIs from a Wikipedia 

article on coronary artery disease (example of results obtained from Procedure step #13).
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Figure 6. 
Output from parsing the notes using after processing the i2b2 NLP Research Data Set using 

NILE (example of results obtained from Procedure step #15).
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Figure 7. 
Output from the supervised algorithm training step depicting (a) SAFE selected features 

with coefficients from the supervised training step (example of results obtained from 
Procedure step 38); (b) estimated percent of patients classified as cases (pos.rate), false 

positive rate (FPR), true positive rate (TPR), PPV, NPV, and F-score over a range of cut-off 

values from validating the algorithm (example of results obtained from Procedure step 
41); (c) predicted probability of being a case for patients in the data mart along with their 

predicted case status, 1=case, 0=non-case (example of results obtained from Procedure 
steps 42-43).
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Table 2.

Phenotype algorithms developed using the PheCAP framework.

General clinical categories Phenotype

Cancer Breast cancer

Cardiovascular Cerebral aneurysms

Coronary artery disease

Hypertension

Heart failure

Ischemic stroke

Myocardial infarction

Endocrine Diabetes Mellitus, Type 1

Diabetes Mellitus, Type 2

Diabetic neuropathy

Polycystic Ovarian Syndrome

Gastrointestinal Crohn’s Disease

Ulcerative Colitis

Neurology Multiple sclerosis

Epilepsy

Psychiatry Bipolar Disorder

Depression

Schizophrenia

Suicidal ideation in pregnancy

Pulmonary Asthma

Chronic Obstructive Pulmonary Artery Disease

Pediatric pulmonary hypertension

Rheumatology Axial spondyloarthropathy

Rheumatoid arthritis

Systemic Lupus Erythematosus
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Table 3.

Troubleshooting table.

Steps Problem Possible reason Solution

1 The prevalence of the phenotype after 
the filter is much lower than 20%

Suboptimal ICD code selected Consider either more specific or additional ICD codes

5-6 Limited resources to extract codified 
data

Lack of informatics support at 
some institutions

Reduce the codified list to features such as key 
medications, procedures or lab results

11 Failure to process the full articles from 
website

Incorrect character encoding Please use UTF-8 for the entire NER or NLP process

14 Error in R: Failed to connect to 
database

The UMLS MySQL database 
has not been set up correctly or 
the authentication specified in 
the R code is wrong

Check if the UMLS database is working properly; put 
correct authentication information in lines 13-16 in 
“cui_processing.R”

17 The number of notes with more than 
500 characters doesn’t match the 
number of rows in the result file

Incorrect character encoding 
of notes

Convert note encoding to UTF-8

Some concepts in the dictionary are not 
extracted

Possible issue with character 
encoding in the dictionary file

Convert the dictionary to UTF-8

27 Error in R: <variables> are not found in 
the dataset

The name for the H feature 
and the label are not consistent 
with the column names in the 
data

Make sure the names specified in line 12 in “main.R” 
can be matched to the column names of the data

27 Error in R: ‘feature_transformation’ 
should be a function or NULL

The transformation given is 
not a function

By default, the log(1+x) transformation is applied to the 
ICD counts and CUI counts. To suppress the 
transformation, use NULL. To use an alternative 
transformation, for example, add 
feature_transformation=sqrt in line 12 in “main.R”

35 Error in R: <surrogate> has too few 
cases / controls

For rare phenotypes, the 
patients are so few that one 
cannot sample as many as 500 
patients from each extreme

Sample fewer patients as instructed in step 31. One may 
also consider changing the lower and upper cutoff values 
in step 29. However, such changes may lead to fewer 
features selected in step 35

35 Too few features are selected The subsample size is too 
small

Instead of sampling 500 patients from each extreme, 
sample 1000 or more instead. To achieve this, add 
subsample_size=1000 (or a larger number) in line 34 in 
“main.R”

38 Error in R: “Unrecognize specification 
for method”

Method specified is not 
included in the options or 
misspelled

Check the available options for methods and make sure 
the specified method is correctly spelled

38 Error in R: “Too few training samples” The size of training set is too 
small

Check the percentage of validation labels specified in 
PhecapData in line 12 in “main.R”, and make sure the 
percentage of training labels is not too small

38 Error in R: “Package randomForestSRC 
not found”

Packages for alternative 
algorithms have not been 
installed

Go to R CRAN page, search and install the related 
packages

41 The AUC on the validation set differs 
substantially from the cross-validated 
estimate of the AUC on the training set

The training and validation 
labels are created differently, 
either over different time 
periods or by different chart 
reviewers

To resolve this, check the consistency of the labeling 
process to recalibrate the labels. Alternatively, pool the 
training and validation sets together and resample, 
randomly sampling a new training and validation set
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