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High Order Methods for the Integration of the Bateman Equations and
Other Problems of the Form of y′ = F (y, t)y

C. Joseya,∗, B. Forgeta, K. Smitha

aMassachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139

Abstract

This paper introduces two families of A-stable algorithms for the integration of y′ = F (y, t)y: the extended
predictor-corrector (EPC) and the exponential-linear (EL) methods. The structure of the algorithm families
are described, and the method of derivation of the coefficients presented. The new algorithms are then
tested on a simple deterministic problem and a Monte Carlo isotopic evolution problem.

The EPC family is shown to be only second order for systems of ODEs. However, the EPC-RK45
algorithm had the highest accuracy on the Monte Carlo test, requiring at least a factor of 2 fewer function
evaluations to achieve a given accuracy than a second order predictor-corrector method (center extrapolation
/ center midpoint method) with regards to Gd-157 concentration.

Members of the EL family can be derived to at least fourth order. The EL3 and the EL4 algorithms
presented are shown to be third and fourth order respectively on the systems of ODE test. In the Monte
Carlo test, these methods did not overtake the accuracy of EPC methods before statistical uncertainty
dominated the error.

The statistical properties of the algorithms were also analyzed during the Monte Carlo problem. The
new methods are shown to yield smaller standard deviations on final quantities as compared to the reference
predictor-corrector method, by up to a factor of 1.4.
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1. Introduction

In the study of nuclear reactors, it is often useful to know how the composition of fuel develops throughout
the life of the reactor. This process as a whole is known as depletion. This evolution with time is governed by
the Bateman equations [1]. In its most simple form, the Bateman equations can be written as y′ = F (y, t)y,
where y is a vector of nuclide quantities, and F is a matrix representing decay and reaction rates.

The function F can be calculated in a few ways, but the two main categories of interest are deterministic
and stochastic methods. Deterministic solutions can be extremely quick, depending on how one approximates
the physics. Conversely, a typical Monte Carlo function evaluation makes no approximations, but can take
many hundreds of thousands of CPU hours to evaluate. Thus, when F is evaluated with Monte Carlo, the
cost to integrate y in time is almost entirely due to the number of function evaluations.

This conflicts with the main difficulty in solving the Bateman equations. The equations are incredibly
stiff. While the average engineering problem considers time scales of months, the eigenvalues of F can have
values on the order of −1021 s−1 [2]. Section 2 of this paper focuses on how current methods solve this
problem. The predictor and predictor-corrector family of methods are introduced, as well as the matrix
exponent these algorithms rely on.
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The rest of the paper focuses on two new families of methods for integrating y that minimize the number
of function evaluations so as to improve Monte Carlo performance. The first family is a simple extension of
current predictor-corrector methods, and is detailed in Section 3. These methods are high order for single
ODEs, but only second order for systems of ODEs. However, these methods can still be useful, as the leading
coefficients of their temporal truncation error terms are quite a bit smaller than commonly used methods.

In order to get beyond second order, the Taylor series must be derived for both vector y and for the
matrix exponent. These expansions are derived in Section 4. The results of this section are then used to
derive a true third order algorithm and a true fourth order algorithm in Section 5.

Finally, a simple test case designed to maximize difficulty for the integrator is presented in Section 6,
and the algorithms are tested against one another for accuracy and statistical properties in Section 7.

2. The Bateman Equations and Current Methods

First, it would be best to identify precisely why the Bateman equations are so hard to solve, so as to
explain decisions made later. The general Bateman equation is shown as Equation (1) [1].

dNi(t)

dt
=
∑
j

[∫ ∞
0

σj→i(E, t)φ(E, t)dE + λj→i

]
Nj(t)

−
∑
j

[∫ ∞
0

σi→j(E, t)φ(E, t)dE + λi→j

]
Ni(t) (1)

Where:

Ni(t) = nuclide i quantity at time t

σi→j(E, t) = microscopic cross section of a reaction

where nuclide i generates j at

neutron energy E and time t

φ(E, t) = neutron flux at energy E and time t

λi→j = decay constant of nuclide i to j

This equation is strongly dependent on N in a linear way, and weakly dependent on N in a nonlinear way
(via the change in flux as a function of time). As such, Equation (1) can be simplified into a matrix equation
of the form in Equation (2).

y′(t) = F (y(t), t) y(t) (2)

Where:

y(t) = vector of nuclide quantities

F (y(t), t) = decay matrix at time t

for nuclide quantity y

This equation could in theory be solved with any common ODE solution method. The issue is that the
eigenvalues of matrix F typically span [−1021, 0] s−1 [2]. In order for a normal ODE solver to stably integrate
the ODE, the product of the span of eigenvalues and the time step must lie entirely within the stable region
of a method. For example, explicit Euler has a stability disk which covers the real axis from [−2, 0]. The
time step would then have to be on the order of 10−21 s to get a stable result.

As such, it is effectively impossible to perform depletion without an A-stable algorithm. Implicit methods
may possibly be used, but the added cost of attempting to invert the transport operator would make that
path also impractical. This lead to the development of the predictor and predictor-corrector methods. These
methods leverage the analytical solution for a constant F to eliminate the stiffness. These are discussed in
Section 2.1 and Section 2.2, respectively.
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2.1. Predictor Method

The simplest A-stable solution for Equation (2) is the predictor method. It is derived by first noting
that if F is assumed to be a constant matrix, then the ODE has an exact solution. This solution is given as
Equation (3).

y(t) = eFty(0) (3)

So long as the matrix exponential can be numerically resolved, for which a great number of methods have
been developed [2, 3], this equation can be evaluated.

In order to allow for an F that varies with y and t, F is then approximated as piecewise constant using an
F evaluated at the beginning of the time step. For each constant region n, the integration can be performed
as before. This method is shown in Equation (4), where h is the time span in which F = Fn.

yn+1 = eFnhyn (4)

The predictor method can be shown to converge O(h). This is often insufficient due to the number of F
evaluations required, so the predictor-corrector methods were developed.

2.2. Predictor-Corrector

The idea behind predictor-corrector methods is that the method described earlier in Equation (4) only
uses information at the beginning of the time step and can only provide a low quality prediction of yn+1.
Instead, predictor-corrector integrates to some intermediate step, evaluates F at that intermediate step, and
combines the two evaluations of F in some way to integrate to the end of the step. The general structure of
a two-stage predictor-corrector method is shown in Equation (5).

x = eha11F (yn,tn)yn

yn+1 = eh[a21F (yn,tn)+a22F (x,tn+a11h)]yn (5)

In the first equation, y is integrated using predictor to some intermediate step x at t = tn + a11h. F is then
evaluated at x, and in the second equation mixed (using the coefficients a21 and a22) with the original F to
perform the final integration.

There are quite a few predictor-corrector methods available [4]. The most common of these methods are
the so-called “CE/CM” and the “CE/LI” methods. CE/CM stands for constant extrapolation, constant
midpoint, and is the algorithm used for depletion in MCNP6 [5]. In this algorithm, the predictor depletes to
the midpoint, evaluates F , and uses only this new F as the average. This method is shown in Equation (6).

x = e
h
2 F (yn,tn)yn

yn+1 = ehF(x,t+h
2 )yn (6)

CE/LI stands for constant extrapolation, linear interpolation, and is the default algorithm in Serpent
[6]. The predictor integrates all the way to the end of the time step. The F from the end of the time step
is then averaged with the F at the beginning, and this new function is used to deplete from the beginning
to the end again. The algorithm is shown in Equation (7).

x = ehF (yn,tn)yn

yn+1 = eh[ 1
2F (yn,tn)+

1
2F (x,tn+h)]yn (7)

Both of these methods are O(h2). A summary of the properties of the predictor and predictor-corrector
methods is given in Table 1. Notably, the CE/CM algorithm has lower memory requirements, as a sum over
multiple F does not occur.

There are also a few methods that take advantage of previous time steps. One such method is “LE/QI”,
the linear extrapolation, quadratic interpolation method. Unfortunately, this algorithm relies on F being
continuous everywhere (not just within a time step), lowering its utility.
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Method Order Stages # F stored

Predictor 1 1 1
CE/CM 2 2 1
CE/LI 2 2 2

Table 1: Predictor and predictor corrector method properties
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Figure 1: 48 term CRAM matrix exponential in incomplete partial fraction form and scipy.linalg.expm compared against an
analytic solution

2.3. Matrix Exponentials

As mentioned earlier, there are quite a number of matrix exponential methods. In the case of depletion,
we value two aspects in a matrix exponential. The first is that no dense matrices are formed. F is very
sparse, so a dense matrix would increase memory consumption by orders of magnitude. The second is that
the method has to be highly accurate for matrix eigenvalues spanning [−1021, 0]. The Chebyshev rational
approximation method (CRAM) [2] was specifically developed to incorporate both of these. As such, it will
be the matrix exponential used elsewhere in this paper.

There is one weakness in the method, which will become important during the development of the
exponential-linear methods in Section 5. While the method is valid for negative eigenvalues, error rapidly
increases for positive ones. To demonstrate this issue, a simple problem was tested. A matrix M is formed
as shown in Equation (8).

M(a) =

(
a 1
1 a

)
A = eM(a) (8)

Aexact =
1

2

(
ea−1 + ea+1 ea+1 − ea−1
ea+1 − ea−1 ea+1 + ea−1

)
The eigenvalues of M are λ = {a − 1, a + 1}. We then take the exponent of this matrix, for which an
analytical representation is known. In Figure 1, this analytic solution is compared against both CRAM and
the method used in SciPy, which combines a Padé approximation with a scaling and squaring step [7, 8].
The downside of scaling and squaring is that it requires the formation of dense matrices to be efficient.

CRAM is extremely accurate for negative values of a. Once it reaches a = 7, roughly, the error rapidly
increases. If positive eigenvalues are a possibility (such as in point kinetics, for example), or the problem does
not require sparse matrices for memory reasons, the Padé method used in SciPy is a suitable alternative.
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3. Improving on Predictor-Corrector

The first possible way to improve on predictor-corrector is to add more intermediate steps. The general
method would take the form of Equation (9).

x1 = yn

xi = eh
∑i−1

j=1 aijF (xj ,tn+cj)yn

yn+1 = eh
∑s

j=1 bjF (xj ,tn+cj)yn (9)

In the more common Runge-Kutta methods, the coefficients of a method are commonly arranged into a
Butcher’s tableau [9]:

0
c2 a21
c3 a31 a32
...

...
. . .

cs as1 as2 . . . ass−1
b1 b2 . . . bs−1 bs

The coefficients of Equation (9) also fit into such a tableau form. As such, we can convert the methods
described in Section 2 into a tableau shorthand. For example, the predictor method is given by Equation (10),
the CE/LI method is given by Equation (11), and CE/CM is given by Equation (12).

0
1

(10)

0
1 1

1
2

1
2

(11)

0
1
2

1
2

0 1
. (12)

Every one of these methods have tableaux that match those of more conventional linear methods. The
predictor method matches that of explicit Euler, and both CE/CM and CE/LI have valid 2nd order Runge-
Kutta tableaux [10].

Since all of these methods have matching tableaux to normal Runge-Kutta methods, one might think
that high order Runge-Kutta methods might yield superior results. This is the case to an extent. One of the
easiest ways to show that a method has a given order is to assume y is a scalar and perform a Taylor series
expansion of y and an approximate y. If, when subtracted from one another, all the terms O(hm),m ≤ n
are zero, then the method is order n.

If Equation (9) with coefficients from an order n Runge-Kutta tableau are used as the approximate y,
one will find that the resulting approximate y is also order n. However, it is incorrect to assume that this
will still apply when y is a vector. For example, it is possible to form a Runge-Kutta method that is 5th
order for a single ODE, and 4th order for a system [11].

In order to test this with this new family of methods, two simple problems were run. The first is an
ODE in which y is scalar, shown in Equation (13).

y′ = sin(y)y (13)

y(0) = 1

y(1.5) ≈ 2.965401170854292
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Figure 2: The error for the extended predictor-corrector methods as a function of time step count

The second one is a simple system of ODEs, shown in Equation (14).

y′1 = sin(y2)y1 + cos(y1)y2 (14)

y′2 = − cos(y2)y1 + sin(y1)y2

y1(0) = 1

y2(0) = 1

y1(1.5) ≈ 2.3197067076743316

y2(1.5) ≈ 3.1726475740397628

(15)

Each problem was integrated from t = 0 to t = 1.5. A variety of algorithms were tested. The first was the
predictor method from Section 2.1, which should be first order. The second was the CE/CM method from
Section 2.2, which should be second order. Then, the tableau for the traditional Runge-Kutta 4 method
was used in Equation (9) (abbreviated as “EPC-RK4”). This method has a scalar order of 4. Finally, the
Cash-Karp RK45 tableau [12] was used in Equation (9) (abbreviated as “EPC-RK45”). This method has a
scalar order of 5.

The results for these tests are shown in Figure 2a and Figure 2b, for the single ODE and system of
ODEs respectively. For the scalar problem, all algorithms converge at their expected rate. For the system,
however, the EPC-RK4 and EPC-RK45 methods converge merely at second order.

As will be shown in Section 4, the reason for this is that y′′′ has fewer terms in scalar arithmetic than
in the vector form. The resulting system of equations to generate a third order EPC method for scalar
arithmetic can be solved without issue. The additional equations required for a system of ODEs generates
mutually exclusive equations that cannot be solved simultaneously. As such, it is impossible to generate
a true third order EPC method. To get around this, one needs a different form of integrator, such as the
exponential-linear form presented in Section 5.

It is worth noting that this does not make the EPC-RK4 and EPC-RK45 methods useless. While they
are not better than second order, the coefficients of many of the truncation terms are smaller than those
of current methods. As will be shown in Section 7, this can yield significant performance advantages when
moderate accuracy is needed. These new methods are summarized in Table 2. Although the EPC-RK45
method is 6 stages, some coefficients are zero such that fewer F need to be stored.
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Method Order Stages # F stored

EPC-RK4 2 4 4
EPC-RK45 2 6 5

Table 2: Extended predictor-corrector method properties

4. Series Expansions for Vector y

In the prior section, it was shown that a simple scalar Taylor series of y is not sufficient to derive a
high-order method for a system of ODEs. This section introduces the mathematical framework required to
derive such a method. First, the series for y is derived in Section 4.1, and then the series for the general
exponent of sums of matrices is derived in Section 4.2.

4.1. Series Expansion of y

First, we expand the matrix multiply required for Equation (2) into the form shown in Equation (16).

y′i =

N∑
j=1

fij(y)yi (16)

In this form, one can apply the chain rule to calculate y′′. Since the first derivative of y is known, it can be
substituted in as well.

y′′i =

N∑
j=1

fij(y)

N∑
k=1

fjk(y)yk

+

N∑
j=1

N∑
k=1

∂fij(y)

∂yk
yi

N∑
l=1

fkl(y)yl

For compactness, it is useful to introduce a set of operators.

fuv =

N∑
j=1

fij(u)vj

fu
′(v;w) =

N∑
j,k=1

∂fij(u)

∂uk
vjwk

fu
′′(v;w, x) =

N∑
j,k,l=1

∂2fij(u)

∂uk∂ul
vjwkxl

Here, u, v, w, and x are arbitrary vectors. This set of operators can be extended for any fu
(n) as needed.

These operators have a few useful properties. First, they are linear on each component.

fu
′(v;w + αx) = fu

′(v;w) + αfu
′(v;x)

fu
′(v + αx;w) = fu

′(v;w) + αfu
′(x;w)

fu
′(v; 0) = 0

Secondly, the first vector before the semicolon is index linked to fij , and the rest are index linked to the ∂u
terms. As such, the vectors after the semicolon are interchangeable.

fu
′′(v;w, x) = fu

′′(v;x,w)

fu
′′(v;w, x) 6= fu

′′(w; v, x)
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Finally, taking derivatives of these operators is relatively easy.

∂fu
(n)(v;w, x, . . .)

∂t
= fu

(n+1)(v;w, x, . . . , u′)

+ fu
(n)(v′;w, x, . . .)

+ fu
(n)(v;w′, x, . . .)

+ fu
(n)(v;w, x′, . . .) + . . .

Using this new syntax, a much more compact form of the derivatives of y can be formed.

y′ = fyy

y′′ = fy
′(y, fyy) + fyfyy

Using this procedure, the third derivative can be written compactly as well.

y′′′ = 2fy
′(fyy; fyy) + fyfy

′(y; fyy) + fyfyfyy

+ fy
′′(y; fyy, fyy) + fy

′(y; fy
′(y; fyy))

+ fy
′(y; fyfyy)

This can then be continued onwards to any order necessary. It is worth comparing this to the equivalent
scalar forms.

y′ = f(y)y

y′′ = f ′(y)f(y)y2 + f(y)2y

y′′′ = f ′′(y)f(y)2y3 + 4f ′(y)f(y)2y2

+ f ′(y)2f(y)y3 + f(y)3y

While the scalar y′′ has the same number of terms and the same approximate structure as the vector y′′,
this is not the case for y′′′. Here, all terms with a single fy

′ collapse together. This reduces the number of
constraint equations for a 3rd order method from 6 to 4, making it possible for a method to be 3rd order
for scalar arithmetic and 2nd order for vector arithmetic.

4.2. Series Expansion of e
∑

F (xi)v

A similar procedure can be performed for the matrix exponential. First, we replace the matrix exponential
with an infinite sum.

u = e
∑

j hajF (xj)v

u =

∞∑
k=1

1

k!

∑
j

ajhfxj

k

v

Let’s then assume for simplicity that there is only two fxj
in the above sum.

u =

∞∑
k=1

1

k!
(ha1fx1 + ha2fx2)

k
v

Truncating to second order yields:

u = v + ha1fx1
v + ha2fx2

v

+
h2

2
a21fx1

fx1
v +

h2

2
a1a2fx1

fx2
v

+
h2

2
a1a2fx2

fx1
v +

h2

2
a22fx2

fx2
v +O(h3)
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Figure 3: The error of CE/CM, CE/CM Richardson extrapolated once, and Richardson extrapolated twice as a function of
time step count

To perform the Taylor series, one then calculates the derivatives of u as shown earlier. Then, one substitutes
derivatives of x1, x2, and v as needed. Using these building blocks, one then constructs the series expansion
of yapprox, which can then be used with the series expansion of y to derive a method.

5. Exponential-Linear Method

Now that the framework is fully derived, a formalism is needed such that high order is achievable. As
mentioned earlier, simply extending predictor-corrector cannot achieve third order for systems of ODEs, so
another approach must be taken.

One way to generate a high order method is to apply Richardson extrapolation to a working low order
method, such as CE/CM. Each application should increase the order of a method by one. For example,
Richardson extrapolation with CE/CM should create a 3rd order 5 term method. A double application on
CE/CM should create a 4th order 12 term method.

Both of these Richardson extrapolated forms were tested on the same ODE test problems from Section 3.
The results are shown in Figure 3a and Figure 3b for the single ODE and system of ODEs cases, respectively.
As shown, the extrapolation yields methods that are truly higher order, yielding third and fourth order
methods.

A single application of Richardson acceleration yields the algorithm in Equation (17).

x1 = eh/2F (yn,t)yn

x2 = eh/4F (yn,t)yn

x3 = eh/2F (x2,t+h/4)yn

x4 = eh/4F (x3,t+h/2)x3

yn+1 =
4

3
eh/2F (x4,t+3h/4)x3 −

1

3
ehF (x1,t+h/2)yn (17)

The two distinctions from extended predictor-corrector are that the matrix exponential does not operate on
just yn and terms can be sums of vectors. In general, such a method takes the form of Equation (18), where
s is the number of intermediate stages.
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x1 = yn

xi+1 =

i∑
j=1

dije
h
∑i

k=1 aijkF (xk,tn+ck)xj

yn+1 = xs+1 (18)

To calculate the correct values of the a, c and d coefficients, we need the consistency conditions and order
conditions. For consistency, we just need to ensure that

∑
j dij = 1 for all i so that a constant F is treated

correctly. An example set of order conditions are shown in Appendix A for y − yapprox in a two-stage EL
method. If we set all coefficients up to order n to zero, then the resulting method is order n. We note that
the final equation for fy

′(y; fy
′(y, fyy)) cannot be set to zero in this example, so a third order method cannot

be derived with a two-stage EL method. The maximum possible order of a method matches the number of
stages, at least up to order 4.

The result is that there are more unknowns than constraint equations. This gives us flexibility. One use
of this flexibility is to try to minimize as many order n + 1 terms as possible, to improve accuracy. In our
case, we summed the squares of each n + 1 coefficient and minimized that function. The other use of the
flexibility is to add a few more constraints that improve the stability of the method. These constraints are
described in the next section.

5.1. Coefficient Considerations for Stability

In the ideal case, all coefficients a and d are non-negative. This ensures three things: the sums of reaction
rates are non-negative, the decay constants are non-negative, and the vector sums are non-negative. During
the search for a third and fourth order method, no method was found in which all terms were non-negative.
As such, some level of compromise had to be made.

A negative reaction rate can occur if some a have negative values. To demonstrate why this is an issue,
take the following simple ODE system:

y′1 = −cy1
y′2 = cy1

If c is negative, then y1 is growing exponentially. y2 is decreasing at a rate not proportional to its value.
If integrated over too long a time span, then it becomes possible for y2 to go negative. During testing,
however, none of the algorithms used demonstrated this issue. As such, this constraint was not enforced
during the derivation.

If the sum of the a coefficients used during a summation are negative, then it becomes possible for the
decay constants themselves to go negative. This is a much worse circumstance, as the largest eigenvalues
in the decay matrix are typically due to the decay constants. As mentioned in Section 2.3, if positive
eigenvalues are too large, then CRAM will fail to calculate the correct matrix exponential. As such, the
constraint listed in Equation (19) was always used.

∑
k

aijk ≥ 0 (19)

Finally, if any d is allowed to go negative, then the sum of positive vectors can become negative. As the
vectors fluctuate over many orders of magnitude during depletion, even small negative d values can form
negative xi components. Where possible, then, the constraint in Equation (20) was used.

dij ≥ 0 (20)

There is a way around this issue if the constraint cannot be met. During vector summation, the vector can
be clipped so that it can never go below a small, nearly infinitely dilute concentration.
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Figure 4: The error of the EL3 and EL4 algorithms as a function of time step count

For the third order method, a solution was found in which both of the constraints in Equation (19) and
Equation (20) held. In the fourth order case, a method could be found in which Equation (19) held, but not
Equation (20). For this method, the clipping workaround was used, with the cutoff set at 10 atoms per cell.

5.2. Solving for Coefficients

The end result is that we have a constrained minimization problem. We are minimizing the sum of
the squares of the order n + 1 coefficients, with the constraint that the order n and under coefficients
must be zero. Additionally, we have the constraints in Equation (19) and, when possible, Equation (20).
Unfortunately, the resulting equations are so complex for anything beyond a two term second order method
that non-numeric approaches are infeasible. As such, the coefficients are computed numerically. Specifically,
the NMinimize function in Mathematica [13] was used to compute the coefficients.

The optimization process NMiminize uses has a statistical component to it, so several random sequences
were run and the most optimal (by objective function value) was selected. A three stage, third order method
and a four stage, fourth order method were derived, with properties summarized in Table 3. The resulting
coefficients are listed in Appendix B. The ODE tests from earlier was run again with these new methods.
The result for the single ODE is shown in Figure 4a, and the result for the system shown in Figure 4b.
These methods converge at the anticipated order for both.

Method Order Stages # F stored

EL3 3 3 3
EL4 4 4 4

Table 3: Exponential-linear method properties

6. Testing Methodology

In order to test a depletion problem, several components will need to be developed. The first is the
depletion tool itself, along with its corresponding depletion chain. The second is the test geometry. The
third is the reference solution. Each component will be discussed in the next few sections.
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6.1. Depletion Tool and Depletion Chain

The depletion tool used is a wrapper for the OpenMC Python API [14]. This tool generates a geometry,
runs an OpenMC simulation, extracts tallies, and carries out the actual depletion algorithm. Each simulation
was run with the parameters listed in Table 4. As the number of neutrons is quite low, each simulation
is computed many times with different random sequences and the average used. The reference solution
was computed 50 times each, and all others were computed 75 times each. The discrepancy is due to the
computational cost of the reference solution. This allows for analysis of the distribution of results as well.

Parameter Value

Inactive Batches 40
Active Batches 60
Neutrons Per Batch 5000

Table 4: Simulation parameters

Matrix exponentiation is performed with a 48-term CRAM method, so as to minimize the possibility
that exponentiation errors contribute to the results [2].

The decay chain utilized the ENSDF data [15], in which all nuclides with Z < 92 were included. All
those above 92 are listed in Table 5. There were 3396 nuclides in total. The rationale behind including so
many nuclides was to ensure that the span of eigenvalues of the problem was as wide as possible. Neutron
capture branching ratios were not included, as the goal was merely to make a challenging problem so as to
compare integrators.

Element Isotope List

Uranium 234, 235, 236, 237, 238
Neptunium 237, 238
Plutonium 238, 239, 240, 241, 242

Table 5: Nuclides, Z > 91 in Decay Chain

As mentioned in Section 5.1, the 4th order exponential-linear method can possibly generate negative
nuclide concentrations. For that algorithm only, nuclide concentrations are clipped during vector summation
so that a nuclide cannot have fewer than 10 atoms in any cell.

6.2. Test Geometry

The test geometry is a simple 2D geometry containing 4 pins with reflective boundary conditions. All
pins are 4.5 % enriched UO2. One pin is segmented into five rings and additionally contains 2% 157Gd by
weight. A diagram of the geometry is shown in Figure 5. This geometry was chosen to exhibit the strong
spatial self-shielding gadolinium has, which is particularly difficult to correctly deplete [16].

6.3. Time Steps Chosen

In order to generate a reference solution, the CE/CM algorithm was used with a time step of 6 hours.
The end point of the simulation was chosen as the point in which the eigenvalue reaches maximum, at
108 days. This corresponds to when the gadolinium concentration in the center ring of the discretized pin
is dropping, which is when the relative error is near its maximum. A plot of the relative error in 157Gd
concentration in the center ring between the 6 hour time step reference solution and a 3 day time step is
shown in Figure 6. Both solutions were calculated using CE/CM. This figure indicates a steady rise in error
until 108 days, at which point it begins to level off.

12



Figure 5: The geometry of the test problem, as plotted by OpenMC
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Figure 6: Relative error, Gd-157, between reference and 3 day time step, CE/CM
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Figure 7: 235U convergence vs. the total number of function evaluations used during the integration

7. Results

There are two topics of interest when it comes to depletion algorithms. The obvious one is whether
or not a new method can achieve superior accuracy using the same number of function evaluations as the
old method. The second one is with regards to how statistical uncertainty propagates throughout the time
integrator. The first one is important for both deterministic and stochastic algorithms. The second is
important for Monte Carlo.

7.1. Convergence

For this part, six algorithms were tested. First, from current methods, the predictor and CE/CM methods
were tested. From the improved predictor-corrector methods, the EPC-RK4 and EPC-RK45 methods were
tested. Finally, from the exponential-linear methods, the EL3 and EL4 methods were tested.

Each algorithm was used to integrate to 108 days, with a number of time steps from 1 to 36. The relative
error compared to the reference solution was calculated for each algorithm and time step combination for
the center cell of the segmented fuel pin.

For 235U, the results are plotted in Figure 7. There are quite a number of interesting results in this
figure. First, most of the algorithms begin to run into convergence issues by ε = 3× 10−5. As will be shown
in Section 7.2, this is most likely due to statistics. The second is that the extended predictor-corrector
algorithms appear to converge much better than 2nd order. As these methods have very small truncation
coefficients below the scalar order of the method, this indicates that high order terms dominate in this
region. If statistics were not an issue, these methods should eventually begin converging second order for
extremely fine time steps.

Next, the exponential-linear methods converge roughly at the predicted order. However, the EL4 algo-
rithm shows a much less uniform convergence. It is not clear why, but it is perhaps due to the stabilization
added to ensure that nuclide concentrations cannot go negative. Disabling this feature to do a direct test
would require a Monte Carlo solver that can support negative probability, a feature OpenMC does not
currently have.

The exact same graph was also made for 157Gd. This is shown in Figure 8. The results are much the
same as that for 235U, except that the EL4 algorithm converges a bit more smoothly.

Overall, the EPC-RK45 method has the best accuracy per unit cost in this regime. By the time EPC-
RK45 is statistically limited, it is two orders of magnitude more accurate than CE/CM for a fixed number of
function evaluations. When examined from a fixed error point of view, EPC-RK45 costs at most half as many
function evaluations as CE/CM. This ratio improves as higher accuracy is desired. The exponential-linear
methods should eventually overtake the EPC-RK45 method for short time steps if statistics are converged
very tightly.
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Figure 8: 157Gd convergence vs. the total number of function evaluations used during the integration
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Figure 9: 238U convergence vs. the total number of function evaluations used during the integration
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Finally, the convergence of 238U is plotted in Figure 9. In this particular case, 238U is converged to
within 0.1% for all algorithms and time steps. This will become useful later on during the statistical analysis,
as it essentially eliminates convergence errors from affecting the uncertainty.

7.2. Statistics

As with anything involving Monte Carlo, it is very important to get a handle on the statistical properties
of a method. As each method was run 75 times, it is possible to perform some statistical analysis on the
distribution formed for each nuclide.

The standard deviation for 235U, 157Gd, and 238U are shown in Figure 10-12 respectively. Most notably,
for both 235U and 238U , convergence of the standard deviation is proportional to 1/

√
Nf , Nf being the

number of function evaluations. This is a useful fact, as more time steps not only improves the convergence
of the algorithm, but it also improves the statistics. There is one point for EL4 which is significantly higher
than the other values. This corresponds with an increase in error as seen in the previous section, and may
also be caused by the stabilization required for the algorithm.

The 157Gd plot is similar, except at small numbers of function evaluations. The likely reason for this is
that the value the distribution represents is not temporally converged. The 1-step predictor solution has an
error for 157Gd of over two orders of magnitude. As such, an increase in standard deviation by an order of
magnitude is not surprising.

In order to get a figure of merit for statistics between algorithms, we can fit Equation (21) to the data.

σ(Nf ) ≈ C√
Nf

(21)

238U was used for the fitting, as this nuclide was highly converged for all runs. The ratio of the coefficient
C to the C of predictor for 238U is given in Table 6.

Method Cmethod/Cpred

Predictor 1.000
CE/CM 1.422
EPC-RK4 1.005
EPC-RK45 1.268
EL3 1.041
EL4 1.177

Table 6: 238U relative statistical performance

This indicates that the magnitude of the standard deviation is loosely sensitive to the method itself. As
such, it is worthwhile to select an algorithm that not only minimizes the temporal truncation error, but also
minimizes the statistical error propagation. Of the new methods tested, the predictor, EPC-RK4, and EL3
algorithms appear to have the best statistical properties.

8. Summary

In this paper, two new families of depletion algorithms, as well as a more rigorous way of testing high
order methods was introduced.

The extended predictor-corrector methods (EPC-RK4 and EPC-RK45) are shown to be merely second
order. However, the error coefficients for higher order terms are sufficiently small as to give substantial
benefit in the moderate accuracy regime most nuclear analysis is performed in. The EPC-RK45 algorithm
had the highest accuracy of all methods tested in this regime.

The exponential-linear methods (EL3 and EL4) are shown to be genuinely higher order. These methods
test moderately well, beating the predictor and CE/CM algorithms. However, unless extreme accuracy is
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Figure 10: 235U statistics
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Figure 11: 157Gd statistics
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Method Order Stages # F stored Function Evals for Relerr: Relative Std. Dev
10% 157Gd 1% 157Gd

Predictor 1 1 1 204∗ 949∗ 1.000
CE/CM 2 2 1 38 146∗ 1.422
EPC-RK4 2 4 4 14 28 1.004
EPC-RK45 2 6 5 12 17 1.267
EL3 3 3 3 20 45 1.041
EL4 4 4 4 21 49 1.177

Table 7: Overall comparison of methods (* extrapolated from last two datapoints)

desired, the extended predictor-corrector family has shown to be a cheaper alternative. Further, the EL4
algorithm has to be stabilized to ensure that the number density stays positive throughout the simulation.

The negative cost of using these new methods is the increased number of decay matrices that must be
stored. The EPC-RK45 method requires the summation of 5 matrices to get the final value of y. If memory
is a limiting consideration, these methods will have less utility.

With regards to statistics, two interesting properties were shown. First, the standard deviation is pro-
portional to 1/

√
Nf , Nf being the number of function evaluations. As such, reducing the time step will

decrease statistical error and temporal truncation error simultaneously.
Finally, each algorithm has a slightly different statistical performance. The predictor, EPC-RK4, and

EL3 algorithms all yield approximately the same standard deviation for a fixed number of neutrons. The
CE/CM, EPC-RK45, and EL4 algorithms yield slightly higher standard deviations. If statistical uncertainty
is the chief worry, these algorithms should be avoided.

These results are summarized in Table 7, in which each algorithm can be compared by accuracy, memory
usage, and statistical performance.
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A. Formal Expansion of a Two-Stage Exponential Linear Method

Term Order Coefficient

y 0 −1 + d21 + d11d22

fyy 1 −1 + a211d21 + a212d11d21 + d11(a111 + a221 + a222d11)d22

fyfyy 2 −1 + (a211 + a212d11)2d21 + d11(a111 + a221 + a222d11)2d22

fy
′(y; fyy) 2 −1 + 2a111d

2
11(a212d21 + a222d11d22)

fyfyfyy 3 −1 + (a211 + a212d11)3d21 + d11(a111 + a221 + a222d11)3d22

fy(fy
′(y; fyy)) 3 −1 + 3a111d

2
11(a212(a211 + a212d11)d21 + a222d11(a221 + a222d11)d22)

fy
′′(y; fyy, fyy) 3 −1 + 3a2111d

3
11(a212d21 + a222d11d22)

fy
′(y′; fyfyy) 3 −1 + 3a2111d

2
11(a212d21 + a222d11d22)

fy
′(fyy; fyy) 3 −2 + 3a111d

2
11(a212(a211 + a212d11)d21 + a222d11(2a111 + a221 + a222d11)d22)

fy
′(y; fy

′(y; fyy)) 3 −1

Table 8: Formal series coefficients for y − yapprox for a 2-stage exponential linear method to third order
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B. Exponential-Linear Coefficients

B.1. EL3

Coeff. Value

c1 0.0
d11 1.0
a111 4.546 892 904 137 023 0× 10−1

c2 4.546 892 904 137 023 0× 10−1

d21 4.917 209 126 428 904 7× 10−1

a211 −9.357 880 632 412 118 3× 10−2

a212 8.796 663 817 251 793 8× 10−1

d22 5.082 790 873 571 095 3× 10−1

a221 −5.901 222 142 248 917 6× 10−1

a222 9.215 207 140 261 931 5× 10−1

c3 1.0
d31 2.037 857 322 055 807 3× 10−2

a311 2.323 856 318 306 070 0× 10−1

a312 1.815 985 521 375 668 1× 10−1

a313 5.860 142 159 064 473 0× 10−1

d32 5.023 605 076 944 110 8× 10−1

a321 1.105 777 934 011 147 9× 10−2

a322 2.782 279 660 329 436 3× 10−2

a323 5.064 301 564 868 396 1× 10−1

d33 4.772 609 190 850 308 4× 10−1

a331 2.721 242 491 737 410 7× 10−2

a332 −1.076 902 283 649 226 7× 10−1

a333 2.943 901 631 394 099 0× 10−1

Table 9: Coefficients for the exponential-linear 3rd order method EL3
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Coeff. Value

c1 0.0
d11 1.0
a111 2.638 017 781 099 526 4× 10−1

c2 2.638 017 781 099 526 4× 10−1

d21 4.714 899 766 145 780 3× 10−1

a211 −1.096 345 914 231 227 6× 10−1

a212 7.549 479 388 690 35 × 10−1

d22 5.285 100 233 854 22 × 10−1

a221 −8.139 969 413 877 527 × 10−1

a222 1.195 508 497 529 188 3
c3 6.453 133 474 459 122 4× 10−1

d31 2.333 112 759 614 89 × 10−1

a311 2.432 927 685 490 108
a312 −1.886 991 744 360 153 8
a313 4.540 639 985 471 296 × 10−1

d32 5.526 116 522 082 521 × 10−1

a321 1.440 240 011 283 619 1
a322 −1.999 581 093 585 001 1
a323 1.295 539 340 166 664
d33 2.140 770 718 302 588 4× 10−1

a331 −3.341 457 198 009 325 5× 10−1

a332 −1.551 927 277 833 745
a333 2.240 759 630 039 589
c4 1.0
d41 −2.540 101 046 715 893 8× 10−2

a411 6.342 361 480 700 457 × 10−1

a412 −1.426 165 912 825 637 6
a413 −7.209 962 986 478 266 × 10−1

a414 2.512 926 068 677 481
d42 2.913 365 964 654 815 5× 10−1

a421 5.602 130 520 260 26 × 10−1

a422 −1.036 247 635 307 391 7
a423 1.403 357 266 739 732 5
a424 −1.911 244 663 312 152 1× 10−1

d43 6.387 934 650 493 379 × 10−1

a431 1.138 564 243 974 421 3× 10−1

a432 1.137 278 934 630 576 9× 10−1

a433 −3.355 485 694 559 844 4× 10−1

a434 4.626 509 125 349 493 3× 10−1

d44 9.527 094 895 233 958 × 10−2

a441 −1.138 311 740 251 085
a442 4.998 539 153 859 359 3× 10−1

a443 1.196 593 771 894 506 6
a444 −5.581 359 405 254 164 × 10−1

Table 10: Coefficients for the exponential-linear 4th order method EL4
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