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ARTICLE OPEN

Virtual screening of inorganic materials synthesis parameters
with deep learning
Edward Kim1, Kevin Huang1, Stefanie Jegelka2 and Elsa Olivetti1

Virtual materials screening approaches have proliferated in the past decade, driven by rapid advances in first-principles
computational techniques, and machine-learning algorithms. By comparison, computationally driven materials synthesis screening
is still in its infancy, and is mired by the challenges of data sparsity and data scarcity: Synthesis routes exist in a sparse, high-
dimensional parameter space that is difficult to optimize over directly, and, for some materials of interest, only scarce volumes of
literature-reported syntheses are available. In this article, we present a framework for suggesting quantitative synthesis parameters
and potential driving factors for synthesis outcomes. We use a variational autoencoder to compress sparse synthesis
representations into a lower dimensional space, which is found to improve the performance of machine-learning tasks. To realize
this screening framework even in cases where there are few literature data, we devise a novel data augmentation methodology
that incorporates literature synthesis data from related materials systems. We apply this variational autoencoder framework to
generate potential SrTiO3 synthesis parameter sets, propose driving factors for brookite TiO2 formation, and identify correlations
between alkali-ion intercalation and MnO2 polymorph selection.

npj Computational Materials  (2017) 3:53 ; doi:10.1038/s41524-017-0055-6

INTRODUCTION
To accelerate the design and realization of novel materials, a
number of recent studies have screened promising candidates
across a variety of categories, including light-emitting molecules,1

perovskite compounds,2–5 catalysts,6,7 thermoelectrics,8–12 and
metal-organic frameworks.13,14 Accordingly, the rise of virtual
materials screening, along with high-throughput first-principles
computations and experimentation, has resulted in the creation of
numerous accessible databases for the materials science commu-
nity.15–22 There is, consequently, a pressing need for analogous
virtual screening of inorganic materials syntheses to complement
the growing volume of predicted and screened compounds.23,24

Such synthesis screening approaches have indeed found recent
success in organic chemistry, where a wealth of tabulated reaction
data is available,25–35 and synthesis parameter screening, driven
by machine learning, has also been explored for the specific case
of organically templated metal vanadium selenites.20 These efforts
have laid the groundwork for analogous large-scale inorganic
synthesis screening. However, to the best of the authors’
knowledge, no comprehensive approaches yet exist for compu-
tationally screening materials syntheses parameters across broad
categories of inorganic materials systems.
Developing an approach toward virtual synthesis parameter

screening introduces two primary computational challenges: data
sparsity and data scarcity. We represent synthesis routes by
constructing high-dimensional vectors consisting of synthesis
parameters text-mined from the literature, including common
solvent concentrations, heating temperatures, processing times,
and precursors used.36 Such canonical representations, however,
are necessarily sparse as there are many more actions that one
might perform during the synthesis of a material, compared to the

number of actions actually used. Compressed, low-dimensional
representations are typically more desirable than sparse, high-
dimensional feature descriptors as low-dimensional representa-
tions are able to emphasize the most relevant dimensions (e.g.,
combinations of synthesis temperatures used) while also avoiding
the so-called “curse of dimensionality.”37,38 Indeed, neural
network-based dimensionality reduction has seen success in
learning representations of meaningful word vectors,39 hierarch-
ical image filters,40 representations of organic chemicals,1,41 and
quantum spin systems.42

While neural networks show broad potential for learning
compressed data representations, they often consume large
amounts of training data to achieve high accuracies,43,44 and
standard training sets often include millions of data points.45,46

However, literature-reported inorganic materials syntheses are
scarce by comparison, especially when considering the syntheses
of a specific material system (e.g., SrTiO3). To realize a deep
learning approach to materials synthesis screening, it is, therefore,
critical that a data augmentation method be used to increase the
volume of available training data examples.
In this work, a computational synthesis screening framework is

presented in which a variational autoencoder (VAE) neural
network is used to learn compressed synthesis representations
from sparse descriptors, and a novel data augmentation approach
is developed to enable this framework for materials with
uncommon syntheses. We perform synthesis screening on SrTiO3

and BaTiO3 syntheses, since these materials systems have only
hundreds of text-mining-accessible published syntheses, and thus
provide an environment for examining the advantages of data
volume augmentation. We also visually explore two-dimensional
learned VAE latent vector spaces to investigate potential driving
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factors for brookite TiO2 formation and to understand ion
intercalation effects in MnO2 phase selection.

RESULTS AND DISCUSSION
To determine the effectiveness of VAE-driven dimensionality
reduction from sparse data descriptors, we first describe three
different encodings of synthesis parameters. In this study, we
compare (1) the unmodified canonical synthesis features, which
include descriptors such as heating temperatures or solvent
concentrations, (2) canonical features modified by linear dimen-
sionality reduction with principal component analysis (PCA), and
(3) canonical features modified by non-linear dimensionality
reduction using a VAE. The first of these techniques is an intuitive
encoding of synthesis parameters, while the latter two techniques
are compressed encodings which have lower dimensionality than
the canonical descriptors. These compressed encodings auto-
matically select combinations of the most informative synthesis
parameters, and dimensionality reduction has been found to
increase predictive performance in materials property prediction
by improving the computational efficiency of training machine-
learning algorithms for classification or regression.47,48

Autoencoders are a class of neural network algorithms that
learn to reproduce the identity function, and thus reconstruct the
training data, while “squeezing” the data through a low-
dimensional inner layer, which acts as a bottleneck. This inner
layer with lower dimensionality corresponds to a continuous
“latent space,” which aims to preserve information from the
higher-dimensional input space. More formally, we may think of
autoencoders as combinations of encoding and decoding
functions f and g, which project data points x into and out of
the latent space points x′, with the combined goal of approximat-
ing the identity function:

f xið Þ ¼ x0i g f xið Þð Þ ¼ g x0i
� � � xi xi 2 Rn; x0i 2 Rm andm<n (1)

A variational autoencoder adds an additional constraint: the
learned representations in the latent space must approximate a
prior probability distribution, which improves the generalizability
of the model by reducing the possibility of overfitting to the
training data.49 A common convention is to use a Gaussian
function as the latent prior distribution, and we follow this
convention in our work.49,50 Beyond improving the performance
of the model, this Gaussian prior provides a simple distribution
from which to sample new data points, meaning that VAEs are

also generative models that can produce virtual data. A schematic
diagram of the VAE architecture is provided in Fig. 1.
We compare the three aforementioned representations of

synthesis data in the context of materials synthesis screening by
using the different feature representations as inputs to a classifier
that learns to solve the problem of synthesis target prediction
between two closely related materials, SrTiO3 and BaTiO3. A similar
task, involving synthesis target prediction from chemical reactions,
has recently been used as a benchmark task for synthesis planning
in organic chemistry.27 In our supervised learning problem, a
classifier is given synthesis descriptor vectors and must learn to
differentiate between syntheses of SrTiO3 and BaTiO3, which are
both perovskite-type materials exhibiting a variety of electronic
properties with ferroelectric behavior as one example.51–53

Traditionally, these materials are synthesized with the involvement
of high-temperature heating steps to drive the formation of the
final ternary compound from binary precursors.54,55 As shown in
Table 1, we find that a logistic regression classifier achieves an
accuracy of 74% when differentiating between SrTiO3 and BaTiO3

syntheses using canonical feature input vectors. This suggests that
distinguishing between SrTiO3 and BaTiO3 syntheses is neither
impossible nor trivially easy, as such cases would tend to yield
accuracies of 50% and 100%, respectively. Furthermore, this
prediction accuracy is comparable to recent work in synthesis
target prediction, where a machine-learned one-shot prediction
accuracy of 72% is achieved for organic reaction outcomes.27 As a
baseline for desirable performance, human-intuition strategies
achieve 78% accuracy when applied to the problem of predicting
successful or failed reactions,20 and this is again comparable to the
accuracy achieved by our model.
As a representative method for linear dimensionality reduction,

PCA is applied to this data set to explore the trade-off between
data compression and prediction accuracy in the target prediction
task. Two-dimensional PCA vectors, along with ten-dimensional
PCA vectors, are able to capture approximately 33% and 75% of
the variance in the data, respectively. Nonetheless, neither the
prediction accuracies of the 2-D reduced features (accuracy = 63%)
nor the 10-D PCA-reduced features (accuracy = 68%) match the
prediction accuracy of the original canonical features (accuracy =
74%), as outlined in Table 1. This implies that the data compressed
via PCA has lost information critical to predicting the target
synthesized material associated with each set of synthesis
parameters, and additionally provides us with a baseline
performance against which to compare the non-linear VAE
method for feature representation learning. Moreover, this
suggests that information loss in compressed representations

Canonical Synthesis Vectors
(High-dimensional)

Reconstructed Synthesis Vectors
(High-dimensional)

Latent Synthesis Vectors
(Low-dimensional)

Low-dimensional Latent Synthesis Space

Fig. 1 Schematic set-up for variational autoencoder architecture. An
overview of the architecture for the variational autoencoder. The
canonical (and reconstructed) vector spaces are sparse, high-
dimensional synthesis descriptors. The variational autoencoder
minimizes data reconstruction error, while also learning to project
the data into latent space points according to a continuous
Gaussian distribution (diffuse red area)

Table 1. Prediction accuracies for determining correct synthesis target
between syntheses of SrTiO3 and BaTiO3

Features used for
classifier

Threefold cross-
validation accuracy (%)

Threefold cross-validation
standard deviation (%)

30-D Canonical 74 3

2-D PCA 63 3

10-D PCA 68 6

2-D Latent VAE 63 3

10-D Latent VAE 74 6

The canonical synthesis descriptors, 2-D and 10-D PCA features, and 2-D
and 10-D VAE features were all used to train logistic regression classifiers
on the task of correctly predicting a synthesis target given the text-mined
synthesis parameter descriptors. The canonical features and the 10-D VAE
features achieve the same prediction accuracy and are emphasized in
boldface font. Additional details and comparisons to naive autoencoders
are available in the Supplementary Methods
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can increase the difficulty of mapping between synthesis
parameters and synthesized target materials.
To enable a VAE approach for learning compressed representa-

tions that reduce data sparsity, we first introduce a novel data
augmentation algorithm to alleviate the problem of data scarcity.
The total data set for SrTiO3 syntheses is comprised of less than
200 total text-mined synthesis descriptors, and attempting to train
a VAE on such a small data set is not likely to produce optimal
results. To enable accurate training of a VAE, we devise a training
data augmentation scheme based on ion-substitution material
similarity functions (see Methods section). In brief, we apply
context-based word similarity algorithms,39 ion-substitution com-
positional similarity algorithms,56 and cosine similarity between
the canonical synthesis descriptor vectors to create an augmented
data set, comprised of a neighborhood of similar materials, with
an order of magnitude more data (1200 + text-mined synthesis
descriptors). This augmented data set contains synthesis para-
meters drawn from a neighborhood of materials syntheses
centered on the material of interest (SrTiO3), and we train the
VAE to learn feature representations using this larger data set with
greater weighting placed on the most closely related syntheses. A
schematic outline of this process is shown in Fig. 2a.
This data augmentation technique allows us to significantly

boost data volume without resorting to artificial noise or
interpolated data points. Moreover, we incorporate relevant
domain knowledge via data-mined ion-substitution probabilities
to ensure that the augmented data is pertinent to the original
material system of interest. By training the VAE separately on both
the non-augmented data set and the augmented data set, we find
that the VAE attains reduced error in reconstructing the data when
using the augmented data set, as shown in Fig. 2b. This weighted-
error approach is easily incorporated into the iterative training of
neural networks, whereas PCA cannot incorporate error-weighting
parameters in a straightforward manner.
The performance of VAE features for differentiating SrTiO3 and

BaTiO3 syntheses is reported in Table 1. The 10-D VAE features,
which are compressed 67% compared to the canonical features,
recover the prediction accuracy (74%) of the original features and
appear to outperform PCA features at the same level of data
compression. However, the authors do note that the standard
deviations of these accuracies are fairly high (as reported in
Table 1), and a more rigorous understanding of the general
predictive capabilities of VAE-learned features will be explored in
future work. Beyond data compression to a lower-dimensional
continuous vector space, an additional advantage of the VAE is its
nature as a generative model, which allows us to jointly produce
entire sets of synthesis parameters (e.g., the entire set of reaction
temperatures/times and solvent concentrations for a synthesis
attempt). These generated virtual synthesis parameters represent
plausible suggestions of synthesis conditions for planning novel
syntheses.
We develop an additional machine-learning model to validate

the quality of the learned SrTiO3 VAE latent space. This model is a
logistic regression binary classifier, which is trained to differentiate
between virtual synthesis descriptor data, created by sampling
from the Gaussian prior, and real data text-mined from the
literature. Through this set-up, which is motivated by recent
adversarial machine-learning techniques,57 we verify the VAE’s
ability to learn accurate latent representations of SrTiO3 synthesis
parameters. Figure 3a shows a schematic of this model and its
relation to the VAE. First, virtual data samples are drawn from the
latent distribution and decoded using the VAE. Then, the decoded
data are classified as real (i.e., text-mined from literature) or virtual
by the binary classifier. Thus, data produced by the VAE which
“tricks” the binary classifier into misclassifying it as text-mined
data is, to an extent, indistinguishable from genuine literature-
reported synthesis parameters.

The virtual data is assessed by repeated trials of sampling new
data from the Gaussian prior and recording the number of sample
attempts needed until the classifier erroneously categorizes a
virtual sample as a real sample. Across 50 total trials, we count the
number of latent samples drawn in each trial until the classifier
makes an error. Then, the probability of having at least one
sample, which tricks the classifier is computed from these
recorded counts and the cumulative probability distribution is
displayed in Fig. 3b. Indeed, only five sampling attempts are
needed to exceed a 95% chance of having produced at least one
virtual data sample, which is sufficiently realistic to trick the
classifier.
To provide examples of specific text-mined and virtual synthesis

parameters for SrTiO3 synthesis, Table 2 shows both text-mined
and virtual data, demonstrating that the VAE is capable of jointly
generating multivariable sets of realistic synthesis parameters. In
each of the literature examples, only a subset of possible
processing steps is used, as one would expect (e.g., calcination
but not sintering). The virtual data from the VAE successfully
mimics this aspect of the data, predicting that in any single
synthesis only some subset of synthesis parameters should be
used. Beyond this, the generated values for the synthesis

Fig. 2 Data augmentation for enabling deep learned synthesis
parameter representations. a Schematic diagram outlining the
process for data augmentation. A primary material of interest,
SrTiO3, is first chosen as the non-augmented data set. Then, the
Word2Vec algorithm is used to find materials that appear in similar
contexts across journal articles.39 This list is then ranked by ion-
substitution similarity scores with respect to SrTiO3,

56 and selection
by this ranking produces the final augmented data set. b The
training and validation cross-entropy losses for the variational
autoencoder are plotted against the number of training epochs for
both the non-augmented and the augmented data sets. The cross-
entropy loss is a standard classification training error function used
in neural networks27,75
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parameters are comparable in magnitude to literature-reported
values, without being trivially identical across all examples.
By using a generative model, such as a VAE, we screen entire

sets of plausible and novel synthesis parameters, based upon
those already reported in the literature. This technique can thus
provide guidance for experimental synthesis planning or provide
insight into driving factors for previously reported synthesis
outcomes. This builds upon recently reported methodologies for
sampling new synthesis parameters, where a discriminative model
(i.e., classifier) is used to rank proposed synthesis routes where a
single parameter is varied.20 In particular, the model we have
presented here allows for multivariate sampling in which each
sample has a high probability of containing a realistic set of
multiple synthesis parameters.
Having examined the ability of the VAE to compress data in the

context of retaining predictive accuracy for synthesis target
classification between SrTiO3 and BaTiO3, we now explore two
additional materials of interest, TiO2 and MnO2. For each of these
materials, we learn two-dimensional latent spaces with a VAE to
maximize visual interpretability of the encoded synthesis para-
meters. We also produce augmented data sets for these materials
using the same weighted neighborhood technique as previously
described, and incorporate these larger data sets when training
the VAE for TiO2 and MnO2 syntheses.
We first examine TiO2, as an example of a frequently

synthesized material with applications ranging from photocata-
lysis to lithium-ion battery electrodes.58,59 However, although
there are myriad reported syntheses of anatase and rutile-phase
TiO2, we focus here on uncovering synthesis patterns, which lead
to the rarely reported brookite phase.60 In Fig. 4a, latent synthesis
vectors corresponding to text-mined syntheses are plotted for
TiO2, with darkened points denoting syntheses, which report the
brookite phase. In this two-dimensional latent space, the VAE
learns three broad clusters. Each are approximately outlined by
dashed ovals, and these clusters are primarily separated by
syntheses involving methanol, ethanol, and citric acid, which
almost exclusively appear in each of their, respectively, labeled
clusters (e.g., > 95% of ethanol-using syntheses appear in the
ethanol-labeled cluster).

Brookite TiO2 is poorly understood compared to anatase or
rutile, and multiple synthesis parameters have been found to
select for brookite formation, including pH,61,62 particle size,63 and
phase-stabilizing anions.64 From this latent 2-D space of text-
mined articles, we, therefore, explore the various synthesis
parameters, which lead to the formation of brookite by high-
lighting exemplar regions containing text-mined brookite synth-
eses, denoted as regions A and B, which contain 1120 and 312
total text-mined syntheses, respectively. These regions are chosen
as two examples of latent space corresponding to brookite
syntheses in areas of high data point density (region A) and low
data point density (region B). Additionally, we note that the varied
distribution of brookite-reporting syntheses throughout the latent
space corresponds with the aforementioned knowledge that
many different synthesis techniques have been utilized to
selectively form the brookite phase. Consequently, the VAE thus
provides a method for visualizing and exploring multiple valid
paths for achieving a synthesized product.
In both of the highlighted regions A and B in Fig. 4a, the driving

effect of pH is clear when examining the underlying data points:
NaOH is commonly used to raise pH during brookite synth-
eses,60,63 and is used by over 75% of the syntheses in both regions
A and B. However, in region A, ethanol appears in 100% of the
synthesis routes used (as one might expect by its location in the
larger ethanol-dominated cluster), while in region B, no syntheses
report the usage of ethanol. There is some existing discussion in
the literature that alcoholysis may be another factor capable of
selecting for brookite phases, but very few articles have
considered this effect in detail,60,65 and—to the best of the
authors’ knowledge—the specific influence of using ethanol as a
solvent for brookite phase selection does not appear to be present
in the literature. This difference in ethanol usage between regions
A and B highlights the ability of the VAE-learned latent space in
identifying diverse sets of synthesis parameters, which each yield
valid pathways toward synthesizing a desired phase: the use of
ethanol in the high data-point density regions (A) suggests
dissolution in ethanol may often be a sufficient driving factor for
phase selection, yet the existence of brookite-producing syntheses
in other low density regions (B) suggests that this is not a
necessary condition.

a) b)

0.0

1.0

0.5

1 2 3 4 5 6
Number of Sampling Attempts

VAE LR

Latent
Samples

Gaussian Prior Distribution

Decoded
Data

O / X
Real or Virtual?

Fig. 3 Set-up and results for realistic synthesis data generation. a To assess the quality of virtual data produced by the variational autoencoder
(VAE), random samples are drawn from its latent Gaussian prior distribution, and decoded into higher-dimensional canonical synthesis
descriptors. The decoded data is passed to a binary logistic regression classifier (LR), which has been trained to differentiate between text-
mined (“real”) and VAE-generated (“virtual”) synthesis descriptors. Latent samples are fed through this process until the trained classifier is
“tricked” by erroneously classifying a virtual sample as a real sample, which signifies that the virtual sample is indistinguishable from a real
one. b In 50 trials of the data quality assessment procedure, the number of sampling attempts needed to trick the classifier is recorded for
each trial. From this data, the cumulative probability of tricking the classifier as a function of sampling attempts is computed. Dashed lines are
drawn at 50 and 100% probabilities
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Our approach of using visualizable and explorable latent
synthesis spaces allows us to generate reasonable synthesis
hypotheses supported by the literature. In particular, the
commonly used step of dissolving precursors in ethanol is
selected as a strong major clustering feature (corresponding the
central oval-marked cluster in Fig. 4a), and additionally indicates a
potential driving factor for brookite phase selection. Since ethanol
is a ubiquitous solvent, considering its usage as a phase-selecting
solvent may not be an obvious hypothesis in the absence of the
clustering learned by the VAE, and future work could test this
hypothesis experimentally.
To further examine the VAE-learned latent spaces, we apply the

VAE to the problem of phase selection in MnO2, a system
comprised of several polymorphs with notable applications in
energy storage and catalysis.66,67 As recently computed by
Kitchaev et al.,66 MnO2 phase selection is strongly controlled by
free energy differences resulting from alkali-ion intercalation:
magnesium and lithium ions select the spinel (λ) phase across a
wide range of ion concentrations, potassium selects strongly for
hollandite (α), while sodium and potassium both select for
birnessite (δ) at higher intercalated ion concentrations. Addition-
ally, the ramsdellite phase (R) is not thermodynamically favored
upon intercalating any of the aforementioned alkali ions.
In Fig. 4b, a latent phase diagram is computed using the VAE-

learned representations of MnO2 syntheses. Figure 4b shows the
2-D latent space, which has been divided into a uniformly
distributed 250 × 250 grid of two-dimensional points (although
grid lines are not shown for clarity). Each of these points is fed into
the VAE decoder to generate a synthesis vector corresponding to
the sampled point in latent space, analogous to the data
generation set-up used in Fig. 3. Then, the phase regions and
boundaries are generated by computing the maximally probable
phase corresponding to each grid point (black curves in 4b).
Although the VAE has no explicit learning objectives other than

reproducing training data and approximating a multivariate
Gaussian distribution, Fig. 4b shows that the latent space captures
the concepts of phase and synthesis-involved ions into broad,
consistent regions. There are distinct boundaries separating where
one polymorph dominates from another, and similarly distinct
boundaries for separating ions. Thus, the VAE is capable of
autonomously learning continuous two-dimensional neighbor-
hoods of latent space where nearby syntheses produce similar
phases and use chemically similar precursors or solvents. This
result is somewhat serendipitous, since the VAE is not given an
explicit objective related to clustering the data according to any
particular variable.
Beyond this implicitly learned consistency, we find that the

latent space corresponds well to the calculations performed by
Kitchaev et al.66 regarding intercalation-based phase stability. In

Fig. 4b, the polymorph regions are overlaid with regions
corresponding to syntheses, which are most probable to use
particular alkali-ion bearing materials during synthesis (e.g., a
precursor or dissolved salt). The spinel (λ) region entirely
encompasses the magnesium and lithium regions, while the
hollandite (α) phase lies entirely within the potassium region and
the birnessite phase (δ) jointly spans the sodium and potassium
regions. All these correspondences in the latent phase space are in
good agreement with the first-principles-computed phase selec-
tion trends discussed earlier. Additionally, ramsdellite (R) encom-
passes only a small fraction of latent space, which again aligns
with the previously computed result that this phase is not favored
by any of the considered alkali-ion intercalations.66

In this work, we have presented an approach for synthesis
screening, which combines deep learning and data augmentation
techniques to address computational challenges around data
sparsity and data scarcity, respectively. We find that this synthesis
screening technique enables the generation of suggested
synthesis parameters, accelerates positing of driving factors in
forming rare phases, and identifies correlations across material
polymorphs and intercalated ions. While this work has focused on
the examples of SrTiO3, TiO2, and MnO2, due to their technological
relevance in applications ranging from energy storage to catalysis,
these systems are intended primarily as representative cases to
illustrate the scientific validity of this screening approach. We also
show that using data-mined similarity functions for training data
augmentation allows for tractable deep learning-based dimen-
sionality reduction, even for specific materials with very few
examples reported in the literature.
As part of the utility of this VAE approach lies in visualization,

the general applicability is difficult to quantify rigorously; however,
the authors believe that this VAE method should apply well to
other inorganic materials, which are commonly made by solid-
state, hydrothermal, and sol–gel synthesis routes, and thus should
have similar canonical feature descriptors (e.g., calcination
conditions). Moreover, we expect that the data augmentation
methodology presented in this work will apply for many materials
cataloged in materials databases, as the ion-substitution similarity
function is constructed from querying such a data set.16,17 As an
approximate guideline for evaluating, which materials have a
suitable neighborhood of similar materials for data augmentation,
the ion-similarity matrix presented by Yang and Ceder could be
used.56 The authors do note that this data augmentation scheme
will likely not extend to cases where the underlying first-principles
assumption—that ion-substitution similarity is a relevant metric
for considering similar syntheses—is false. Such cases may include
highly amorphous materials, where crystal structure-based simi-
larity may not prove very useful, or materials produced from
recycled/waste material, where bulk chemical compositions are

Table 2. Examples of literature-reported synthesis parameters and VAE-generated synthesis parameters for SrTiO3 synthesis

Calcination conditions
(°C, H)

Sintering conditions
(°C, H)

Annealing conditions
(°C, H)

NaOH concentration
(M)

Synthesis type Reference

800, 2 – – 1.0 Hydrothermal Ye et al., 201452

800, 2 1250, 2 – – Solid State Zhao et al., 200476

1000, 12 – 500, 2 – Hydrothermal Zhao et al., 201577

600–750, 4 – – – Sol–gel Puangpetch et al., 200854

721, 1.8 – 468, 0.4 – – N/A

- – 450, 0.9 1.0 – N/A

955, 6.0 1182, 7.5 – – – N/A

Four rows of literature data are followed by three rows of virtual generated data, selected from points which successfully “tricked” the classifier in Fig. 3. Virtual
generated data rows are emphasized in boldface font
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poorly defined and so compositional similarity cannot easily be
computed from underlying ion similarities.
While the VAE models presented in this study provide

generative and exploratory capabilities for synthesis parameter
screening, direct optimization of synthesis route parameters (e.g.,
to achieve a particular morphology or phase) is not addressed,
and future work would benefit from the inclusion of techniques
such as Bayesian optimization for this purpose, which may be
performed in our learned latent space.68,69 Overall, the authors
believe that this VAE-based technique provides a first step
towards virtual screening of inorganic materials syntheses.

METHODS
Text-mined synthesis data
A corpus of scientific literature is first text-mined using the methods
described by Kim et al.36 to produce a data set of machine-readable
synthesis routes. In brief, experimental synthesis sections of journal articles
are automatically identified and parsed for relevant synthesis keywords,
including temperatures, synthesizing actions (e.g., heating), and material
names. These keywords are then assembled into a database object, which
can be queried programmatically in further data processing steps.
The text-mined synthesis routes are then converted to feature vectors

by a user-specified list of features to consider per material system. Each
material system has syntheses described by a list of features, including
times and temperatures of common operations (e.g., “calcination at 800
degrees Celsius for 3 h”), indicator functions for these actions (e.g. “did not
use annealing”), and indicators for common solvents and precursors. A full
list of the features used in this study is provided in the Supplemental
Information. These one-dimensional arrays of flattened synthesis para-
meters then serve as the canonical space for synthesis vectors.

Data augmentation with similar materials
Some materials systems are described by only a modest volume of
published synthesis literature, and so to realize a robust methodology for
synthesis exploration and screening, we make use of similarity metrics to

boost the training data volume. That is, we consider for each material
system a training set X , composed of two data types, the non-augmented
data and the augmented data. Each data point, x i 2 X , represents a set of
synthesis parameters corresponding to a single synthesis route, along with
an associated similarity value that measures how relevant the data point is
to the original material system of interest. The non-augmented and
augmented data refer to the original material of interest (e.g., SrTiO3) and
related materials (e.g., BaTiO3, PbTiO3), respectively:

X ¼ Xnon�aug ∪ X aug (2)

For each element of this data set, we wish to compute a similarity value
that captures the relevance of the augmented data to the original, non-
augmented data. Each data point x i 2 X is composed of a real-valued
similarity vector Si , ranging from zero to one, along with a real-valued
feature descriptor vector ϕi . A similarity value of one is only achieved for
data points belonging to the non-augmented data set:

8x i 2 X ; x i ¼ fSi ;ϕig; Si 2 ½0; 1�;ϕi 2 Rn; Si ¼ 1 iff x i 2 Xnon�aug (3)

Each similarity value Si, is the product of two similarity measures: a
material-based similarity Smi , and synthesis parameter-based similarity Spi :

Si ¼ Smi ´ Spi ; S
m
i 2 ½0; 1�; Spi 2 ½0; 1� (4)

The material-based similarity is measured between compositions of two
material systems, such as SrTiO3 and BaTiO3, and denoted by Smi ðc1; c2Þ.
Each material system contains multiple literature-reported syntheses, and
each instance of a literature-reported synthesis is denoted by a set of
parameters ϕi . The synthesis parameter-based similarity is then measured
at this more granular level, between individual sets of synthesis parameters
reported into two different journal articles, and is denoted by Spi ðϕ1;ϕ2Þ.
To compute Smi , we first use the word2vec70 algorithm to select the

nearest neighbors of a material system of interest in a word-embedding
vector space (e.g., representing “SrTiO3” as a single word vector). Then we
rank these neighbor compositions (e.g., “PbTiO3”) by their ion-substitution-
based composition similarity56 with respect to the original composition of
interest, which generates values in the range [0,1]. More specifically, Smi is
computed directly from composition similarity, where each composition c
is a count vector of elements in a chemical formula unit:

Smi ¼ Simion cnon�aug; caug
� �

(5)

Fig. 4 Latent space for TiO2 synthesis vectors and MnO2 synthesis vectors. a Latent space for TiO2, with each data point corresponding to the
latent coordinates of a text-mined synthesis descriptor set. Darkened points contain reports of synthesized brookite phase titania. A kernel
density estimate for data points is overlaid in the background by the red density map, with darker red indicating higher point density. The
high- density regions of the primary clusters are highlighted with overlaid dashed ovals (which only approximate the exact shape of their,
respectively, labeled clusters), and are labeled by synthesis parameters, which dominate the clustering behavior. Two example regions
containing reports of brookite synthesis are highlighted with dashed squares, and are denoted as regions A and B. b Latent synthesis phase
space for MnO2 with phase boundaries of probabilistically dominant polymorph regions (black lines). Each region, labeled by an MnO2
polymorph symbol, represents a continuous area where a single polymorph is most likely to be produced, as predicted by VAE decodings
from latent space. Phase boundaries for probabilistically dominant ions used during synthesis are overlaid in the latent space (red lines)
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As an example, Simion cnon�aug; caug
� � ¼ Simion SrTiO3; BaTiO3ð Þ � 0:892

in the case of computing material-based similarities for (augmented)
BaTiO3 synthesis parameters as compared to (non-augmented) SrTiO3

synthesis parameters. For the original material system of interest,
which corresponds to the non-augmented data set, the value of
Smi ¼ Simion cnon�aug; cnon�aug

� � ¼ 1. When building the augmented data
neighborhood, we use a cutoff minimum compositional similarity of 0.80
for ternary compounds and 0.50 for binary compounds. Higher cutoffs are
used for ternaries, compared to binaries, since a single ion-substitution in a
ternary yields a higher overall relative compositional similarity (since two
other ions are unchanged, vs. in binaries, where a single ion-substitution
leaves only one other ion unchanged).
Following this, additional text-mined syntheses are sampled from our

database corresponding to syntheses of these related materials, which
have been selected by word2vec and ranked by ion-based similarity. Thus,
for each material system, numerous corresponding journal articles are text-
mined to produce synthesis descriptor vectors ϕi . The synthesis parameter
similarity for an augmented data point Spi is computed by considering the
mean cosine similarity between the augmented data point ϕaug

i and the
five nearest neighboring non-augmented data points ϕnon�aug

j , and this
generates a value ranging from zero to one since all ϕ contain only
positive values:

Spi ¼
1
N

XN
j¼1

cos ϕaug
i ;ϕnon�aug

j

� �
; N ¼ 5 (6)

The number N of non-augmented syntheses over which we average
similarities may be treated as a hyperparameter, and the authors found
that N = 5 performed well for the materials discussed in this work. In
principle, there is a trade-off between the risk of including too many
outliers with very low values of N (since the augmented data points may
cluster around a single outlier in the non-augmented data set), and never
achieving any high similarity values with very large N (since any single
augmented data point is unlikely to be similar to the entire distribution of
non-augmented data points).
For data points ϕnon�aug

i , which belong to the non-augmented data set,
Spi is fixed to a value of one. It then follows that, as stated previously,
Si ¼ 1 iff x i 2 Xnon�aug since both Smi and Spi each attain their maximal
values only for non-augmented data points.
Finally, the similarities Si, for each training data point x i , are incorporated

into the training of the VAE by weighting each training sample ϕi by the
similarity value in the computation of the overall training loss function.
The cross-entropy loss function, denoted by lðϕi ;ϕ

0
iÞ; measures how

accurately the VAE can reconstruct the original data X by comparing the
original and reconstructed synthesis descriptors.27 The training of the VAE
aims to find, via stochastic gradient descent, the neural network weights θ
that minimize the weighted loss function Lðθ;XÞ, computed over n
training data points:

θ� ¼ argmin
θ

L θ;Xð Þ; L θ;Xð Þ / 1
n

Xn
i¼1

Si ´ lðϕi ;ϕ
0
iÞ (7)

Thus, training data with zero similarity do not contribute to representa-
tion learning at all, and training data with similarity one (i.e., belonging to
the original queried data set) contribute maximally to representation
learning.
The computed material system similarities for neighboring materials

centered around SrTiO3, TiO2, and MnO2 are presented in Supplementary
Table S1.

Variational autoencoder
The VAE consists of input/output layers that match the dimensionality of
the canonical data, along with an inner latent layer fixed to either two or
ten dimensions to match the dimensionalities of the PCA models. All layers
of the autoencoder are densely connected feed-forward layers, with the
exception of the inner probabilistic layer, which samples from a
multivariate Gaussian distribution. Validation and hyperparameter selec-
tion was performed by grid searches, where the latent layer dimension was
varied from 2 through 30 dimensions and the standard deviation of the
Gaussian prior was varied between 0.001 and 10.0. Hyperparameters were
selected in each case based on minimizing validation loss while training
the VAE, where the validation set was constructed by randomly selecting
10% of the training data to be held-out. Optimal latent dimensionality was
found to be approximately ten dimensions, and optimal standard

deviation for the Gaussian prior was found to be between 0.1 to 1.0 (i.e.,
the performance did not change appreciably between these values).
In the MnO2 latent space in Fig. 4b, the entire latent region is divided

into a 250 × 250 grid, and each grid point is sampled and inputted into the
VAE decoder. The regions represent continuous sections of grid points
with a consistent maximally probably decoded variable (e.g., α-MnO2 being
more probable than any other phase). The boundary lines represent
transitions between regions where a different phase (or ion, or precursor)
becomes the probabilistically favored one, as determined by the VAE.

Data availability
The code used to download journal articles for large-scale text-mining is
available at [www.github.com/olivettigroup/article-downloader]. The
trained word-embedding matrix, used for both text mining and materials
similarity calculations, is available at [www.github.com/olivettigroup/
materials-word-embeddings]. The VAE was written using Keras71 and
Tensorflow.72 Chemical formula parsing was performed using pymatgen.73

Logistic regression classifiers and PCA models were implemented using
scikit-learn.74 Any reasonable requests for additional data can be directed
to the corresponding author.
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