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Perception is the ability of an autonomous system to extract relevant 
knowledge and understanding about itself and its environment through 
internal sensing and external environmental sensing. Internal sensing 
is essentially to observe the states of current sensors, switches, and ac-
tuators, which are mainly used for self-diagnosis. The external sensing 
includes estimation of the current location, map features, and dynamic 
objects, which are used for localization, mapping, and obstacle detec-
tion, respectively. The detected obstacles are considered in both path 
planning and speed control.

Planning for autonomous driving is usually performed in a hierarchi-
cal manner. The mission planner (or route planner) considers high-
level objectives, such as assignment of pickup/drop-o  tasks and which 
roads should be taken to achieve the tasks. The behavioral planner 
(or decision-maker) makes ad-hoc decisions to properly interact with 
other agents and follow rules restrictions, and thereby generates local 
objectives, e.g., change lanes, overtake, or proceed through an intersec-
tion. The motion planner generates a locally-optimal path that avoids 
unexpected obstacles. The planned path is then fed into the motion 
control module.

The motion control module consists of several subsystems. The lon-
gitudinal controller outputs brake or throttle signals to the actuation 

 A
utonomous driving in urban 
environments has been of 
great interest to researchers 
due in part to the high density 
of vehicles and various area-
specific traffic rules that must 

be obeyed. The DARPA Urban Challenge 
[1], and more recently the V-Charge 
Project catalyzed the launch of research 
efforts into autonomous driving on urban 
roads for numerous organizations. Re-
ferring to Figure 1, the problem of urban 
driving is both interesting and difficult 
because it encompasses both increased 
operating speeds of autonomous ve-
hicles as well as increased environmen-
tal complexity. A mature solution in one 
environment may not work in another 
due to different traffic rules and human 
driving characteristics that are unique in 
each urban area. A particularly difficult 
problem arises when unexpected situa-
tions happen during the autonomous run, 
and may require the unmanned system 
to break the corresponding traffic rule in 
order to progress along its own course. 
Vehicle-to-Vehicle (V2V) communication 
offers the promise of enhancements on 
both urban driving fronts, especially when 
faced with unexpected situations.

An overview of autonomous vehicle 
software architecture [2] is shown in 
Figure 2. The subsystems of an autono-
mous vehicle can be broadly grouped 
into three categories: perception, plan-
ning and control.
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A few di erent approaches have been proposed in recent litera-
ture to handle this kind of unexpected dilemma. Sampling-based 
methods, such as RRT  and its variants, are popular for trajec-
tory planning. ne notable variant, Minimum Violation RRT  
(MVRRT ), has been proposed by Reyes Castro, et. al . The 
authors express tra c rules as formulas using inear Temporal 

ogic ( T ), and propose an incremental algorithm to generate a 
trajectory of a dynamical system that systematically picks which 
safety rules to violate and minimizes the level of risk involved. The 
system assumes a static environment, and that the environment 
is known a priori. The proposed system also relies on a carefully 
designed set of rules and formulations.

uo, et al.  proposed a solution to circumventing the illegally 
parked vehicle by nding a lead vehicle in the ego lane and 
following its behavior to generate a trajectory that is based on a 
cubic spline model with mass-spring-damper system. However, 
this approach may fail if there are no leading vehicles in the ego 
lane or if the intention of the vehicle is unknown, as the urban 
tra c rules can be complicated and very dynamic.

ee and Seo   have proposed another learning-based method 
for such circumstances. They proposed a framework based on 
inverse reinforcement learning and a aussian process. Real-world 
data collected from expert drivers are used to train a trajectory 
generator. Using the pre-trained weight, an optimal trajectory can 
be evaluated online. This approach also relies on manually de ned 
and engineered features that have to be carefully chosen. The 
method also su ers from discretization error due to discontinuity 
in the problem formulation and training. In general, learning-
based motion planning methods often act as black boxes that are 
very di cult to systematically analyze and therefore prove safety. 

earning-based methods also rely on availability of valid expert 
data and feature engineering. Acceptable driving styles under 
unexpected situations can di er from one place to another, and 
therefore a network that has been trained under one circumstance 
may not be applicable in the other.

Such problem is often formulated as a constrained optimization 
problem and the locally-optimal solution to the problem is computed 
with a receding horizon. This controller is referred to in the literature 
as a Model Predictive Controller (MPC). Compared to learning-
based methods, MPC requires more in-depth understanding of the 
problem, and accurate problem modeling and formulation. How-
ever, in contrast to learning methods, there is a huge literature on 
the analytical aspects of the optimization problem, and therefore it is 

system so that the speed of the vehicle tracks the desired speed. 
The lateral controller outputs a steering signal to the actuation 
system so that the vehicle follows the desired path. In case of any 
emergency situations, the emergency module will be enabled to 
stop the vehicle appropriately.

Autonomous driving on urban roads has seen tremendous prog-

ress in recent years, with several commercial entities pushing the 
research boundaries alongside academia. oogle has perhaps the 
most experience in the area, having tested its eet of autonomous 
vehicles for more than 2 million miles . Tesla is early to market 
their work, having already provided an autopilot feature in their 
2  Model S cars. Uber s mobility service has grown to upset the 
taxi markets in numerous cities worldwide, and has furthermore 
recently indicated plans to eventually replace all their human-driv-
en eet with self-driving cars. Nutonomy is the rst company in the 
world to introduce autonomous taxi service, which hit the roads of 
Singapore in August 2  . Nutonomy s success can also be at-
tributed to the Singapore overnment s initiative in opening some 
of the roads in one-north (Figure 3), a technology business district 
for autonomous vehicle testing.

However, all of the above-mentioned companies have reported 
accidents while driving autonomously. A preliminary analysis in 
2  by Schoettle and Sivak  has shown that autonomous ve-
hicles have a higher crash rate per million miles traveled compared 
to conventional vehicles, and similar patterns were evident for 
injuries per million miles traveled and for injuries per crash. The 
report also concluded that none of the accidents reported thus far 
has been the fault of the autonomous vehicles, as their vehicles 
have been programmed to follow the tra c rules conservatively.

UNEXPECTED SITUATIONS

 R eacting to potentially hazardous unexpected situations is 
one of the key issues in autonomous driving in urban environ-

ments. An example scenario that we encounter very frequently 
during our autonomous vehicle deployment at the ne-north area 
in Singapore is depicted in Figure 4. In this scenario, a car is 
illegally parked on the vehicle s ego lane, and therefore has to be 
overtaken. In this case, a human driver may have to move slightly 
into the opposite lane in order to clearly see in front of a car ahead. 

nce he has gathered enough information about the road ahead, 
then he can safely overtake. However, as this is two-way tra c, the 
overtaking implies that the vehicle invades to the opposite lane, 
and therefore will take the tra c head-on, causing a safety hazard.

4  DECEMBER 2017  

FIGURE 2  A typical 
autonomous vehicle 

system overview, 
highlighting core com-

petencies. Source: [1]

FIGURE 1  Complexity 
and operating velocity 
for various driving 
scenarios. Source: [1]
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possible to design a controller that balances safety and complexity.
MPC has a few other attractive features. First, it is possible to 

intuitively incorporate vehicle dynamics into the problem formula-
tion. Second, the problem can be formulated in continuous time, 
and therefore does not possess the problems that probabilistic 
motion planning methods possess, including inherent inaccuracy 
due to discretization limits, and the computational complexity 
that rises exponentially as the dimensionality of the planning state 
space increases.

Probabilistic motion planning methods’ main strength is its 
probabilistic completeness, and global optimality. However, due to 
the limitation in the sensor range and the uncertain nature of driv-
ing in an urban environment, re-planning with a receding horizon 
is always necessary, and therefore it may be more practical to plan 
a locally-optimal solution within the prediction horizon.

Researchers have also approached this problem from the philo-
sophical point of view, which argues whether autonomous vehicles 
have to be programmed to take the action that causes the least 
damage. Gerdes and Thornton [9] attempt to answer the ethical 
question for handling such dilemmas by formulating the motion 
planning as an MPC problem. They argue that ethical autonomous 
vehicles must obey tra c rules, except where obeying the tra c 
rules could cause a collision with human agents, other vehicles or 
the environment. Therefore, tra c rules have to be formulated as a 
cost term in the MPC formulation.

In recent work [10], we have formulated the problem of overtak-
ing an illegally parked vehicle on a 2-way street as an MPC prob-
lem. Referring to Figure 5, unexpected objects on the ego lane will 
cause occlusion and therefore the vehicle has to move out of its ego 

lane to gather su cient information before making the decision 
whether to overtake the obstacle or not. We have observed the 
following behavior of human drivers facing the described scenario: 
they will rst decelerate the vehicle, and move closer to the center 
of the lane and assess the tra c on the opposite lane as well as 
the distance that the driver has to overtake, before nally overtak-
ing the obstacle and merging back to the ego lane. Based on this 
observation, we have designed a behavior planner with costs and 
constraints of the MPC problem. In contrast to previous works, we 
also consider visibility maximization (blind spot minimization), to 
generate overtaking trajectories that take into account the percep-
tion limitations of the ego vehicle.

Simulation results have shown that the proposed method is 
capable of making a safe decision when deciding and overtaking 

the obstacles. However, there are risks associated with the limited 
perception range of the on-board sensors of the vehicle. These risks 
can be mitigated by having an inter-vehicle communication system, 
which will be discussed next.

CONNECTED VEHICLES

Cooperation between multiple autonomous vehicles (AVs) is 
possible with the development of vehicular communication. In 

particular, state estimation can be improved with multiple sources of 
information gathered from di erent vehicles. Cooperative state esti-
mation can also improve robustness against communication failure. 
With future trajectories shared among nearby vehicles, the motion 
can be coordinated to make navigation safer and smoother for AVs.

VEHICULAR COMMUNICATION

Vehicular communication technology has been progressing 
rapidly, enabling connection between vehicles via wireless 

networks. The bandwidth and range of wireless communication are 
increasing rapidly while the latency is being signi cantly reduced. 
For example, the communication range of Dedicated Short Range 
Communications (DSRC) can be up to one kilometer, allowing a 
vehicle to connect to nearby vehicles even beyond line-of-sight 
and eld-of-view. Furthermore, the information can be relayed 
and multi-hop connections are possible, which can signi cantly 
increase the connectivity. For vehicular communication, the IEEE 
802.11p standard has been designed to allow information exchange 
between high-speed cars, and between vehicles and roadside infra-
structure. Other wireless communication technologies, such as 3G, 
4G and WiFi, are also suggested in [11].

COOPERATIVE LOCALIZATION

Global Positioning System (GPS) is a widely-used method for 
estimating a vehicle’s location, however, it is generally unavail-

able or unreliable due to signal obstruction or multi-path e ects, 
especially in urban environments. Cooperative information sharing 
and fusion enables signi cant improvement in vehicle localization, 
e.g., by installing transmitters in the infrastructure, correction mes-
sages can be shared so as to improve the estimation accuracy. In 
order to reduce the common GPS bias, the GPS coordinates can be 
shared with neighboring vehicles through vehicle to vehicle (V2V) 
communication and recti ed by applying a constraint that the group 
of vehicles must all reside on the road. Usually, a digital map, i.e., 
the road network, is used for group map matching, however other 
approaches such as pairwise map merging using Simultaneous Lo-
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FIGURE 4  Unexpected 
static obstacle in the 

form of an illegally- 
parked car on a two-

way street. 
Image: Hans Andersen.

FIGURE 3  Autonomous 
vehicle testing area in 
One-north, Singapore. 
Image: Delphi.
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calization and Mapping (SLAM) methods [12] can also be utilized for 
estimating the relative pose between two vehicles. Relative observa-
tions are commonly used for cooperative localization, which can be 
categorized into four groups: relative range, relative bearing, relative 
position, and relative pose. Some sensors can only give the range 
information while others can only give bearing information. For 
instance, acoustic sensors can only measure the relative distance by 
measuring the Time of Arrival (TOA), while the monocular camera 
can only measure the bearing angle. If the sensor can measure both 
TOA and Angle of Arrival (AOA), it can provide the relative position.

After the shared information has been received, the remaining 
two steps of cooperative localization are data association and data 
fusion. Most of cooperative localization is performed in simula-
tion, where vehicle identities are assumed to be known. The vehicle 
identity problem is solved by using a distinct transmitting signal 
[13]. The data association is a challenging problem due to com-
binatorial explosion. Some methods use topology information or 
symmetric measurement equation (SME) to avoid data association. 
Other methods use PHD lter, nearest neighbors assignment with 
validation gate, and multiple hypotheses registration. For the data 
fusion, various methods are proposed, such as standard Kalman 

lter, cubature Kalman lter, Covariance Intersection lter, particle 
lter, factor graph optimization, maximum likelihood estimation 

(MLE), and Maximum A-Posteriori Estimation (MAP).
The open problems of multi-vehicle cooperative localization 

should at least include the following: communication delay and 
failure [13]; data bandwidth and cluttered environment [14]; robust 
data association and scalability [15].

COOPERATIVE CONTROL

P lanned future trajectories can also be shared so that the pre-
diction of cooperating vehicles’ future positions can be better 

facilitated. Potential motion con icts can then be identi ed and 
mitigated with motion coordination algorithms, which can guaran-
tee that decisions are jointly feasible.

With future trajectories shared among vehicles via vehicle to 
vehicle (V2V) communication, the collective vehicle motion can be 
coordinated in an optimal way to avoid con icts. Multi-robot mo-
tion planning has been studied extensively to take into account the 
paths of other robots so as to avoid any possible collision, congestion 
or deadlock. A wide variety of methods have been proposed in the 
literature, which is often categorized along the spectrum between 
centralized and decoupled planning. Centralized approaches plan 
the path in the composite con guration space that is formed by the 
Cartesian product of con guration spaces of individual robots and 
then extracts the trajectories for the individuals to execute. Proba-
bilistic motion planning algorithms, such as A*, D* and RRT*, can 
be leveraged to ensure completeness and optimality. The decoupled 
planning can be further classi ed into two, namely prioritized plan-
ning and path-velocity planning. The prioritized planning method 
plans the path sequentially, according to the prede ned or online 
computed priorities, and robots with planned paths are regarded as 
dynamic obstacles in the con guration-time space for the remain-
ing robots to avoid. Much of the related research work has focused 
on the assignment of priorities to improve the quality of the solution 
[16]. The path-velocity planning method plans the path concurrently 
while ignoring the mutual collisions in the rst phase and resolves 
the con icts by velocity planning in the second phase. A hybrid of 
prioritized planning and path-velocity planning is introduced in [17] 
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where motion coordination is conducted in an incremental manner. 
Nonetheless, the decoupled planning sacri ces the completeness and 
optimality for e ciency and applicability.

While there are many multi-robot/multi-vehicle motion plan-
ning algorithms available, only some are actually applicable in 
multi-vehicle motion coordination. There is some uniqueness to 
the multi-vehicle motion coordination problem. The following four 
traits are speci c to multi-vehicle motion coordination:

1) The goals are usually not interchangeable for vehicles because 
each vehicle has its own destination, and thus there is no need to 
maintain communication connectivity.

2) The vehicles need to stay in the middle of the lane, and thus 
the path is xed in most circumstances.

3) The vehicles are usually moving fast and thus communication 
latency is a critical variable in collision avoidance.

4) Reverse motion is typically not allowed on the road because of 
tra c rules.

An example motion coordination algorithm that considers these 
aspects is proposed in [18]. In the proposed method, V2V com-
munication is combined with graph search in the coordination 
diagram to resolve con icts in future trajectories and minimize the 
total waiting time, and plan time-optimal trajectories.

CONCLUSION

Autonomous vehicles have come a long way from research labs 
to nearing full commercialization. However, we believe that 

its best days are still ahead. Many modern cars have been adver-
tised to have autonomous driving capabilities, but these features 
are mostly demonstrated for automated highway driving, and still 
require human attention. Driving autonomously in urban areas 
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FIGURE 5  
Complete 
occlusion (top) 
and blind 
spot (bottom) 
of a vehicle 
approaching 
an obstacle. 
Source: [10]

poses a completely di erent challenge due to the complexity of the 
tra c rules as well as unexpected scenarios involved.

Reacting to these scenarios is still a very challenging topic, es-
pecially when the autonomous vehicle has to break tra c rules, or 
pick the best of two evils. The ultimate goal of deploying autono-
mous vehicles is to provide safe and comfortable mobility, and thus 
it is important to reduce the instances in which the system has to 
make such decisions by managing the unexpected risks associated 
with unenforced tra c rules.

Future research has to address these issues not only by planning 
safe behavior and motion, but also harnessing the superhuman 
perception that connected vehicles enable. Finally, it is then critical 
to carefully integrate all of the software components in the system, 
ensuring that the interactions between di erent software compo-
nents are meaningful and valid. 
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