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This Letter reports measurements of differential cross sections for the production of two Z bosons in 
association with jets in proton–proton collisions at 

√
s = 8 and 13 TeV. The analysis is based on data 

samples collected at the LHC with the CMS detector, corresponding to integrated luminosities of 19.7 
and 35.9 fb−1 at 8 and 13 TeV, respectively. The measurements are performed in the leptonic decay modes 
ZZ → �+�−�′ +�′ −, where �, �′ = e, μ. The differential cross sections as a function of the jet multiplicity, 
the transverse momentum pT, and pseudorapidity of the pT-leading and subleading jets are presented. In 
addition, the differential cross sections as a function of variables sensitive to the vector boson scattering, 
such as the invariant mass of the two pT-leading jets and their pseudorapidity separation, are reported. 
The results are compared to theoretical predictions and found in good agreement within the theoretical 
and experimental uncertainties.

© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The production of massive vector boson pairs is a key process 
for the understanding of both the non-Abelian gauge structure of 
the standard model (SM) and of the electroweak symmetry break-
ing mechanism. Thus, relevant information can be gathered mea-
suring vector boson scattering [1] and triboson production pro-
cesses that occur through the electroweak (EW) production of jets 
in association with bosons. Because of the very low cross sections 
for these processes compared to others leading to the same final 
state, a detailed understanding of the quantum chromodynamics 
(QCD) corrections to the associated production of vector boson 
pairs and jets is of paramount importance. The analysis presented 
in this Letter has been designed to provide such detailed under-
standing.

Both the ATLAS and CMS Collaborations have measured the in-
clusive production cross section of Z boson pairs and the differen-
tial cross sections as a function of Z boson pair observables [2–8]. 
In this Letter we present new measurements of differential cross 
sections for the production of two Z bosons in association with 
jets in proton–proton (pp) collisions at 

√
s = 8 and 13 TeV that ex-

� E-mail address: cms -publication -committee -chair @cern .ch.

tend the analyses of Refs. [6,8] to jet variables. The most recent 
publication from the ATLAS Collaboration [4] includes jet variables 
as well. The decay modes of the Z boson to electron and muon 
(� = e, μ) pairs have been exploited. Reconstructed distributions 
are corrected for event selection efficiency and detector resolu-
tion effects by means of an iterative unfolding technique, which 
makes use of a response matrix to map physics variables at gener-
ator level onto their reconstructed values.

This Letter presents the dependence of the cross section on the 
jet multiplicity and the kinematic properties of the two pT-leading 
jets (where pT is the transverse momentum). Comparison with 
theoretical predictions provides an important test of the QCD cor-
rections to ZZ production. Normalized differential cross sections as 
a function of the pT and pseudorapidity η of the two pT-leading 
jets, as well as their invariant mass (mjj) and pseudorapidity sepa-
ration (�ηjj), are presented. The study of mjj establishes the basis 
for future multiboson final-state searches and for the investiga-
tion of phenomena involving interactions with four bosons at a 
single vertex, while the measurement of the �ηjj distribution is 
instrumental in the study of vector boson scattering. The anal-
ysis presented in this paper together with the analyses reported 
in [5–9] seeks a detailed understanding of the SM processes that 
generate four leptons in the final state through the production of 
two Z bosons. All measurements are compared to predictions from 
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recent Monte Carlo (MC) event generators. The data sets corre-
spond to integrated luminosities of 19.7 and 35.9 fb−1, collected 
by the CMS Collaboration at 8 and 13 TeV, respectively.

2. The CMS detector

The central feature of the CMS apparatus is a superconduct-
ing solenoid of 6 m internal diameter, providing a magnetic field of 
3.8 T. Within the solenoid volume are silicon pixel and strip track-
ing detectors, a lead tungstate crystal electromagnetic calorimeter 
(ECAL), and a brass and scintillator hadron calorimeter (HCAL), 
each composed of a barrel and two endcap sections. Forward 
calorimeters extend the η coverage provided by the barrel and 
endcap detectors up to |η| = 5. Muons are measured in gas-
ionization detectors embedded in the steel flux-return yoke out-
side the solenoid, using three different technologies: drift tubes for 
|η| < 1.2, cathode strip chambers for 0.9 < |η| < 2.4, and resistive 
plate chambers for |η| < 1.6. The silicon tracker measures charged 
particles within the range |η| < 2.5. For nonisolated particles in 
the range 1 < pT < 10 GeV and |η| < 1.4, the track resolutions are 
typically 1.5% in pT and 25–90 (45–150) μm in the transverse (lon-
gitudinal) impact parameter [10].

The first level of the CMS trigger system [11], composed of cus-
tom hardware processors, uses information from the calorimeters 
and muon detectors to select the most interesting events within 
a time interval of less than 4 μs. The high-level trigger processor 
farm further decreases the event rate from around 100 kHz to less 
than 1 kHz, before data storage.

A more detailed description of the CMS detector, together with 
a definition of the coordinate system used and the relevant kine-
matic variables, can be found in Ref. [12].

3. Signal and background simulation

Several MC event generators are used to simulate the signal 
and background contributions. The MC simulation samples are em-
ployed to optimize the event selection, evaluate the signal effi-
ciency and acceptance, estimate part of the background, and ex-
tract the unfolding response matrices used to correct for detector 
effects in the measured distributions.

For the 8 TeV data analysis, MadGraph5 1.3.3 [13,14] is used 
to simulate the production of the four-lepton final state at lead-
ing order (LO) in QCD with up to 2 jets included in the matrix-
element calculations. powheg 2.0 [15–18] is used for the simula-
tion of the same process at next-to-leading-order (NLO). A sample 
of events generated with MadGraph5_amc@nlo 2.3.3 (abbreviated 
as MG5_amc@nlo in the following) [14,19], which simulates signal 
processes at NLO with zero and one jet included in the matrix-
element calculations, is produced only at generator level and used 
for comparison purposes. For the 13 TeV data analysis, the four-
lepton processes are simulated at NLO in QCD with 0 or 1 jet in-
cluded in the matrix-element calculations with MG5_amc@nlo and 
with powheg 2.0 at NLO. The latter is scaled by a factor of 1.1 to 
reproduce the total ZZ production cross section calculated at next-
to-next-to-leading order (NNLO) [20] at 13 TeV. MG5_amc@nlo

and powheg 2.0, for both the 8 and 13 TeV analyses, include ZZ, 
Zγ ∗ , Z, and γ ∗γ ∗ processes, with the generator level constraint 
m�+�− > 4 GeV applied to all pairs of oppositely charged same-
flavor leptons, to avoid infrared divergences.

The gg → ZZ processes, which occur via loop-induced diagrams, 
are generated at LO with mcfm 6.7 (7.0) [21] for the 8 (13) TeV
analysis. The 13 TeV samples are scaled by a factor of 1.7 to match 
the cross section computed at NLO [22]. Electroweak production of 
four leptons and two jets is simulated at LO with Phantom [23]. 
This sample includes triboson processes, where the Z boson pair is 

accompanied by a third vector boson that decays into jets, as well 
as diagrams with quartic vertices.

Other diboson and triboson processes (WZ, Zγ , WWZ) as well 
as ttZ, tt, and Z+jets samples are generated at LO with MadGraph5 
for the 8 TeV analysis, and at NLO with MG5_amc@nlo, for the 
13 TeV analysis.

For the 8 TeV analysis, the pythia 6.4.24 [24] package, with 
parameters set by the Z2* tune [25], is used for parton shower-
ing, hadronization, and the underlying event simulation for all MC 
samples except for MG5_amc@nlo, for which pythia 8.205 [26] is 
employed. The default sets of parton distribution functions (PDFs) 
are CTEQ6L [27] for the LO generators, and CT10 [28], for the 
NLO ones. For the 13 TeV analysis, pythia 8.212 [26], with param-
eters set by the CUETP8M1 tune [29], is used for parton show-
ering, hadronization, and the underlying event simulation. The 
NNPDF3.0 [30] PDF set is the default. For all simulated event sam-
ples, the PDFs used are evaluated at the same order in QCD as the 
process in the sample.

The detector response is simulated using a detailed description 
of the CMS detector implemented with the Geant4 package [31]. 
The simulated events are reconstructed with the same algorithms 
used for the data. The simulated samples include additional inter-
actions per bunch crossing, referred to as pileup. Simulated events 
are weighted so that the pileup distribution reproduces that ob-
served in the data, with an average of about 21 (27) interactions 
per bunch crossing for the 8 (13) TeV data set.

4. Particle reconstruction and event selection

The primary triggers for this analysis require the presence of 
two loosely isolated leptons of the same or of different flavor. The 
minimum pT for the first lepton is 17 GeV, while it is 8 (12) GeV
for the second lepton in the 8 (13) TeV analysis. Triggers requiring 
a triplet of low-pT leptons with no isolation requirement and, for 
the 13 TeV analysis, isolated single-electron and single-muon trig-
gers, with minimal pT-thresholds of 27 and 22 GeV, respectively, 
help to increase the efficiency. The overall trigger efficiency for 
events that pass the ZZ selection is greater than 98%.

The offline event selection procedure is similar to that of the 
inclusive ZZ analyses [6–8] and is based on a global event descrip-
tion [32] that classifies particles into mutually exclusive categories: 
charged hadrons, neutral hadrons, photons, muons, and electrons. 
Events are required to have at least one vertex [10] within 24 cm
of the geometric center of the detector along the beam direction, 
and within 2 cm in the transverse plane. Because of pileup the se-
lected event can have several reconstructed vertices.

For the analysis at 8 TeV the vertex with the largest sum of 
the p2

T of the tracks associated to it is chosen as the primary 
pp interaction vertex, while at 13 TeV the reconstructed vertex 
with the largest value of summed physics-object p2

T is taken to 
be the primary vertex. The physics objects are the objects re-
turned by a jet finding algorithm [33,34] applied to all charged 
tracks associated with the vertex, and the associated missing pT, 
taken as the negative vector sum of the pT of those jets. Events 
with leptons are selected by requiring each lepton track to have a 
transverse impact parameter, with respect to the primary vertex, 
smaller than 0.5 cm and a longitudinal impact parameter smaller 
than 1.0 cm.

Electrons are measured in the range |η| < 2.5 by using both 
the tracking system and the ECAL. They are identified by means of 
a multivariate discriminant that includes observables sensitive to 
bremsstrahlung along the electron trajectory, the geometrical and 
momentum-energy agreement between the electron track and the 
associated energy cluster in the ECAL, the shape of the electro-
magnetic shower, and variables that discriminate against electrons 
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originating from photon conversions [35]. The momentum resolu-
tion for electrons with pT ≈ 45 GeV from Z → e+e− decays ranges 
from 1.7% for nonshowering electrons in the barrel region to 4.5% 
for showering electrons in the endcaps [35].

Muons are reconstructed in the range |η| < 2.4 by combining 
information from the silicon tracker and the muon system [36]. 
The matching between the inner and outer tracks proceeds either 
outside-in, starting from a track in the muon system, or inside-out, 
starting from a track in the silicon tracker. The muons are selected 
among the reconstructed muon track candidates by applying min-
imal requirements on the track in both the muon system and the 
inner tracker system, and taking into account the compatibility 
with minimum-ionizing particle energy deposits in the calorime-
ters. In the intermediate range of 20 < pT < 100 GeV, matching 
muons to tracks measured in the silicon tracker results in a rel-
ative pT resolution of 1.3–2.0% in the barrel, and better than 6% in 
the endcaps. The pT resolution in the barrel is better than 10% for 
muons with pT up to 1 TeV [36].

Electrons (muons) are considered candidates for inclusion in 
the four-lepton final states if they have p�

T > 7 (5) GeV and |η�| <
2.5 (2.4). In order to suppress electrons from photon conversions 
and muons originating from in-flight decays of hadrons, we place 
a requirement on the impact parameter computed in three dimen-
sions. We require that the ratio of the impact parameter for the 
track and its uncertainty to be less than 4. To discriminate between 
prompt leptons from Z boson decay and those arising from elec-
troweak decays of hadrons within jets, an isolation requirement for 
leptons is imposed. The relative isolation is defined as

R iso =
[ ∑

charged
hadrons

pT + max
(
0,

∑
neutral
hadrons

pT +
∑

photons

pT − pPU
T

)]/
p�

T,

(1)

where the sums run over the charged and neutral hadrons, and 
photons, in a cone defined by �R ≡

√
(�η)2 + (�φ)2 around the 

lepton trajectory. The radius �R is set to be 0.4 and 0.3 in the 8 
and 13 TeV data analyses, respectively. To minimize the contribu-
tion of charged particles from pileup to the isolation calculation, 
charged hadrons are included only if they originate from the pri-
mary vertex. The contributions of neutral particles from pileup to 
the activity inside the cone around a lepton is referred to as pPU

T , 
and is obtained with different methods for electrons and muons. 
For electrons, pPU

T is evaluated with the jet area method described 
in Ref. [37]. For muons, it is taken to be half the sum of the pT
of all charged particles in the cone originating from pileup ver-
tices. The factor of one-half accounts for the expected fraction of 
neutral to charged particles in hadronic interactions. A lepton is 
considered isolated if R iso < 0.4 (0.35) in the 8 (13) TeV data anal-
ysis.

The lepton momentum scales are calibrated in bins of p�
T and 

η� using the decay products of known resonances decaying to lep-
ton pairs. The measured lepton momentum scale is corrected with 
a Z → �+�− sample, by matching the peak of the reconstructed 
dilepton mass spectrum to the nominal value of mZ [38]. Muon 
momenta are calibrated by using J/ψ decays as well. We account 
for final-state radiation of leptons by correcting their momenta 
with photons of pT > 2 GeV and within a cone of �R = 0.5 around 
the lepton momentum direction [39,40]. The photons selected by 
this algorithm are excluded from the lepton isolation computa-
tion. The efficiency of the lepton reconstruction and selection is 
measured with the tag-and-probe technique [41] in bins of p�

T
and η� . This measurement is used to correct the simulation effi-
ciency.

Jets are reconstructed from particle candidates by means of 
the anti-kT clustering algorithm [33], as implemented in the 
FastJet package [34], with a distance parameter of 0.5 (0.4) in 
the 8 (13) TeV data analysis. The jet energy resolution amounts 
typically to 15% at 10 GeV, 8% at 100 GeV, and 4% at 1 TeV.

Jet energy corrections are extracted from the data and the 
simulated events by combining several measurements and meth-
ods that account for the effects of pileup, non-uniform de-
tector response, and residual data-simulation jet energy scale 
(JES) differences. The JES calibration [42,43] relies on corrections 
parametrized in terms of the uncorrected pT and η of the jet, and 
are applied as multiplicative factors to the four-momentum vector 
of each jet.

In order to maximize the reconstruction efficiency while reduc-
ing the instrumental background and contamination from pileup 
jets, loose identification quality criteria [44] are imposed on jets, 
based on the energy fraction carried by charged and neutral 
hadrons, as well as charged leptons and photons. A minimum 
threshold of 30 GeV on the pT of jets is required to ensure that 
they are well measured and to reduce the pileup contamination. 
Jets are required to have |η| < 4.7 and to be separated from 
all selected lepton candidates by at least �R = 0.5 (0.4) in the 
8 (13) TeV analysis.

A signal event must contain at least two Z/γ ∗ candidates, each 
reconstructed from a pair of isolated electrons or muons of op-
posite charges. The highest-pT lepton must have pT > 20 GeV, 
and the second-highest lepton pe

T > 10 (12) GeV if it is an elec-
tron, or pμ

T > 10 GeV in case of a muon for the analysis at √
s = 8 (13) TeV. All leptons are required to be separated by 

�R 
(
�, �′) > 0.02, and electrons are required to be separated from 

muons by �R (e,μ) > 0.05.
Within each event, all permutations of oppositely charged lep-

tons giving a valid pair of Z/γ ∗ candidates are considered sepa-
rately. For each 4� candidate, the lepton pair with the invariant 
mass closest to the nominal Z boson mass is denoted by Z1 and 
the other dilepton candidate is denoted by Z2. Both Z1 and Z2
are required to have a mass between 60 and 120 GeV. All pairs 
of oppositely charged leptons in the 4� candidate are required to 
have m��′ > 4 GeV regardless of their flavor to remove contribu-
tions from the decay of low-mass hadron resonances.

If multiple 4� candidates within an event pass this selection, 
the candidate with mZ1 closest to the nominal Z boson mass is 
chosen. In the rare cases (0.3%) of further ambiguity, which may 
arise in events with more than 4 leptons, the Z2 candidate that 
maximizes the scalar pT sum of the four leptons is chosen. The set 
of selection criteria just described is referred to as the ZZ selection, 
and gives a total of 288 (927) observed events at 

√
s = 8 (13) TeV. 

The corresponding number of expected signal events from MC pre-
diction is about 271 (850).

5. Background estimation

The largest source of background arises from processes in which 
heavy-flavor jets produce secondary leptons, and from processes 
in which jets are misidentified as leptons. The main contributing 
processes are Z+jets, tt, and WZ+jets.

However, the lepton identification and isolation requirements 
reduce this background to a very small level compared to the 
signal. The residual contribution is estimated from data samples 
consisting of Z +�� events that are required to pass the ZZ se-
lection described in Section 4, except that either one or both 
leptons belonging to the Z2 candidate fail the isolation or iden-
tification requirements. Two control samples are selected, with 
one and two misidentified leptons, respectively. The background 
yield in the signal region is estimated by weighting the number of 
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Table 1
The contributions to the uncertainty in the absolute and normalized differential cross section measurements in Fig. 2 and 3, 
upper panels. Uncertainties that depend on jet multiplicity are listed as a range.

Systematic source 8 TeV data 13 TeV data

Absolute (%) Normalized (%) Absolute (%) Normalized (%)

Trigger 1.5 – 2.0 –
Lepton reconstruction and selection 0.9–4.4 ≤0.1 3.7–4.5 0.1–0.8
Jet energy scale 1.5–9.2 1.5–9.1 4.6–17.5 4.6–17.5
Jet energy resolution 0.2–1.7 0.2–1.7 2.1–8.4 2.1–8.4
Background yields 0.7–7.2 0.7–5.4 0.5–2.8 0.4–2.0
Pileup 1.8 1.8 0.3–1.9 0.6–1.8
Luminosity 2.6 – 2.5 –
Choice of Monte Carlo generators 0.2–3.7 0.2–3.7 0.5–5.0 0.8–4.7
qq/gg cross section 0.1–0.8 0.1–0.8 <0.1–0.3 0.1–0.2
PDF 1.0 – <0.1–0.2 <0.1–0.2
αS <0.1 <0.1 ≤0.1 ≤0.1
events in the control samples by the lepton misidentification rate 
measured in data in a dedicated control region. The procedure is 
identical to that of Refs. [7,8] and is described in more detail in 
Ref. [39].

Another source of background arises from processes that pro-
duce four genuine high-pT isolated leptons, pp → ttZ and pp →
WWZ. This contribution is small and is estimated by using the cor-
responding simulated samples.

The total estimated background yields are 8 ±4 (37 ±11) events 
in the 8 (13) TeV signal region.

6. Systematic uncertainties

The systematic uncertainties are estimated by varying the quan-
tities that may affect the cross section and by propagating the 
changes to the analysis procedure. The systematic uncertainties 
from sources that may affect the differential cross section shapes 
have been estimated through the unfolding procedure by recom-
puting the response matrix, after varying each source of systematic 
uncertainty independently and in both directions, up and down. 
The systematic uncertainties in the differential cross section as a 
function of the jet multiplicity are summarized in Table 1. Those 
that depend on the number of jets in the event are listed as a 
range.

The systematic uncertainty in the trigger efficiency is evaluated 
by taking the difference between the value obtained from the data 
and that from the simulated events, and it leads to a 1.5 (2.0)% 
uncertainty in the differential cross sections measured with the 
8 (13) TeV data. The uncertainties arising from lepton reconstruc-
tion and selection (identification, isolation, and impact parameter 
determination) depend on the jet multiplicity, are sensitive to sta-
tistical fluctuations, and range between 0.9 and 4.4%, in the 8 TeV
analysis (3.7 and 4.5%, in the 13 TeV analysis). The largest contribu-
tion to the systematic uncertainty in the differential cross section 
measurements comes from the JES determination, which increases 
with the jet multiplicity and reaches 9.2 (17.5)% when the number 
of jets exceeds two in the 8 (13) TeV analysis. Likewise, the uncer-
tainty due to the jet energy resolution (JER) increases from 0.2 to 
1.7% (2.1 to 8.4%) for the 8 (13) TeV samples. The larger JES and 
JER uncertainties for the 13 TeV sample reflect the increase in the 
number of soft jets (with pT close to the 30 GeV threshold) as a 
function of the center-of-mass energy.

The uncertainties in the Z+jets, WZ+jets, and tt background 
have two components, which are added in quadrature. The first 
relates to the different relative fraction of these background 
processes in the control sample where we measure the lepton 
misidentification rate and the sample to which this rate is applied. 

The second is the statistical uncertainty in the control sample. The 
effect of these uncertainties increases with the jet multiplicity and 
amounts to 0.7–6.9% (0.5–2.4%) in the 8 (13) TeV measurement. 
The contribution to the uncertainty from the modeling of gen-
uine four lepton background is smaller and varies between 0.1 
and 2.0% (<0.1 and 1.2%) for the 8 (13) TeV data. The pileup un-
certainty is evaluated by varying the pileup modeling in the MC 
samples within its uncertainty. The uncertainty in the integrated 
luminosity is 2.6 [45] and 2.5% [46] for the 8 and 13 TeV data, 
respectively.

The contribution of the MC generator choice to the systematic 
uncertainty is obtained by comparing the results found with two 
different sets of MC samples: MadGraph5 + mcfm + Phantom

(MG5_amc@nlo + mcfm + Phantom) and powheg + mcfm +
Phantom for the 8 (13) TeV measurement, and ranges from 0.2 to 
3.7% (0.5 to 5.0%) at 8 (13) TeV. The impact of the relative con-
tribution of the qq → ZZ and gg → ZZ processes in the response 
matrix definition is less than 1% and is evaluated by varying the 
corresponding cross section within their renormalization and fac-
torization scale uncertainties. For 8 TeV, where no LO to NLO factor 
is applied to the mcfm cross section, the gg → ZZ cross section is 
varied by 100% of its value. The statistical uncertainties of the MC 
samples result in negligible contributions to the response matrix 
uncertainty. The systematic uncertainty arising from the choice of 
the PDF and the strong coupling strength αS has been evaluated 
using the PDF4LHC recommendations [47–49], using the CT10, 
MSTW08, and NNPDF2.3 [50] PDF sets, in the 8 TeV analysis, and 
the NNPDF3.0 set in the 13 TeV analysis.

The total systematic uncertainty is obtained by summing all the 
sources in quadrature, taking into account the correlations among 
the different channels.

For the normalized differential cross sections, only systematic 
uncertainties affecting the shape of the distributions are relevant. 
The uncertainties in the luminosity and trigger efficiency cancel 
out completely, as well as other contributions to the uncertainty 
in the total yield.

7. The ZZ+jets differential cross section measurements

The distributions of the jet multiplicity combining the 4μ, 4e, 
and 2μ2e channels are shown in Fig. 1, together with the SM 
expectations, the estimated backgrounds, and the systematic un-
certainty in the prediction.

The differential pp → ZZ → ���′�′ cross section is measured 
as a function of the jet multiplicity, the pT-leading jet transverse 
momentum (pj1

T ) and pseudorapidity (ηj1) with the 8 and 13 TeV
data. Because of the limited number of events with more than 
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Fig. 1. Distribution of the reconstructed jet multiplicity in the 8 TeV (left) and 13 TeV (right) data. The points represent the data and the vertical bars correspond to the statis-
tical uncertainty. The shaded histograms represent MC predictions and the background estimates, while the hatched band on their sum indicates the systematic uncertainty 
of the prediction. The Z+jets and tt background is obtained from the data.
Table 2
Phase space definitions for cross section measurements 
at 8 TeV [6] and 13 TeV [8]. The common definitions ap-
ply to both measurements.

8 TeV 13 TeV

pe
T > 7 GeV, |ηe| < 2.5 pe

T > 5 GeV, |ηe| < 2.5

pμ
T > 5 GeV, |ημ| < 2.4 pμ

T > 5 GeV, |ημ| < 2.5

Common definitions

p�1
T > 20 GeV, p�2

T > 10 GeV

m�+�− > 4 GeV (any opposite-sign same-flavor pair)

60 < (mZ1 ,mZ2 ) < 120 GeV

one jet at 8 TeV, the differential cross section as a function of 
the pT-subleading jet transverse momentum (pj2

T ) and pseudora-
pidity (ηj2), as well as the invariant mass of the two pT-leading 
jets (mjj) and their pseudorapidity separation (�ηjj) are stud-
ied at 13 TeV only. For all measurements we consider jets with 
pj

T > 30 GeV and |ηj| < 4.7. For the jet multiplicity distribution we 
also present the measurements made with central jets (|ηj| < 2.4) 
only. The measurements are performed for the two slightly dif-
ferent phase space regions adopted for the 8 [6] and 13 [8] TeV
data, which are given in Table 2. The generator-level lepton mo-
menta are corrected by adding the momenta of generator-level 
photons within �R (�, γ ) < 0.1. The Z bosons are then selected 
with the same method adopted to extract the signal at the recon-
struction level. In order to define the jets at generator level, the 
generated particles are clustered using the anti-kT algorithm, with 
a distance parameter identical to the corresponding one at recon-
struction level.

Each distribution is corrected for the event selection efficiency 
and the detector resolution effects by means of a response ma-
trix that translates the physics variables at generator level into 
their reconstructed values. The correction procedure is based on 
the iterative D’Agostini unfolding method technique [51], as imple-
mented in the RooUnfold toolkit [52], and regularized by stopping 
after four iterations. The robustness of the result is tested against 
the singular value decomposition (SVD) [53] alternative unfolding 
method. For each measured distribution, a response matrix is eval-
uated using two different sets of generators: the first one includes
MadGraph5 (qq → ZZ), mcfm (gg → ZZ) and Phantom (qq →
ZZ + 2 jets) for the 8 TeV data set and MG5_amc@nlo (qq → ZZ),

mcfm (gg → ZZ) and Phantom (qq → ZZ + 2 jets) for the 13 TeV
data set. In the second one, the powheg sample is instead used for 
the qq → ZZ process in both the 8 and 13 TeV data analyses. The 
former set, where the leading-order MC generator can simulate up 
to two jets at matrix-element level, is taken as the reference, while 
the latter is used for comparison and to estimate the systematic 
uncertainty due to the MC generator choice. After the unfolding, 
the cross sections for pp → ZZ + N jets → ���′�′ + N jets, for N = 0, 
1, 2, and ≥3, are extracted.

The differential cross sections as a function of the jet multiplic-
ity are shown in Fig. 2 for |ηj| < 4.7 (upper) and for |ηj| < 2.4
(lower). The ratios between the measured and expected distri-
butions from the MadGraph5, MG5_amc@nlo, and powheg set 
of samples for 

√
s = 8 TeV, and powheg and MG5_amc@nlo for √

s = 13 TeV are also shown in the figures. Uncertainties in the 
MC predictions at the matrix-element level are evaluated by vary-
ing the renormalization and factorization scales independently, up 
and down, by a factor of two with respect to the default values 
of μR = μF = m4� for powheg and μR = μF = 1

2

∑
pj

T + ∑
p�

T for
MG5_amc@nlo. In the mcfm predictions, the uncertainty in the LO 
to NLO cross section scaling factor includes the renormalization 
and factorization scales uncertainty. The theoretical uncertainties 
also include the uncertainties in the PDF and αS . The measured 
and expected cross section values for |ηj| < 4.7 are given in Ta-
bles 3 and 4.

The differential distributions, normalized to the cross sections, 
are presented in Figs. 3–6 together with the theoretical predic-
tions. For the theoretical predictions, only the uncertainty in the 
shape is included, which yields a smaller uncertainty compared to 
the unnormalized case. Fig. 3 (top panels) shows the normalized 
differential cross section as a function of the jet multiplicity, with 
|ηj| < 4.7. The observed fraction of events in the first bin with 
zero jets is larger than the predicted value, while for 1, 2, and 
≥ 3 jets, the fraction is lower. Better agreement is observed for 
|ηj| < 2.4 (Fig. 3, bottom panels). The measurements of the differ-
ential cross section as a function of the jet multiplicity are fairly 
well reproduced by the predictions both at 8 and 13 TeV when NLO 
matrix-element calculations are used in conjunction with pythia 8 
for parton showering, hadronization, and underlying event simula-
tion. In the data, jets tend to have a lower pT value than in the 
simulations and therefore, on average, they are less likely to pass 
the 30 GeV threshold, thus increasing the number of events with 
no jets. The observation of fewer events than expected with at 
least one jet can be ascribed to a softer distribution of the trans-
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Fig. 2. Differential cross sections of pp → ZZ → 4� as a function of the multiplicity of jets with |ηj| < 4.7 (top panels) and |ηj| < 2.4 (bottom panels), for the 8 (left) and 13 
(right) TeV data. The measurements are compared to the predictions of MG5_amc@nlo, powheg, and MadGraph5 (8 TeV only) sets of samples. Each MC set, along with the 
main MC generator, includes the mcfm and Phantom generators. pythia 6 and pythia 8 are used for parton showering, hadronization, and underlying event simulation, for 
the 8 and 13 TeV analysis, respectively, with the sole exception of MG5_amc@nlo, which is always interfaced to pythia 8. The total experimental uncertainties are shown as 
hatched regions, while the colored bands display the theoretical uncertainties in the matrix-element calculations.

Table 3
The pp → ZZ → ���′�′ cross section at √s = 8 TeV as a function of the jet multiplicity. The integrated luminosity uncer-
tainty for number of jets = 2 and ≥3 is negligible and not quoted. The cross sections are compared to the theoretical 
predictions (last column) from MG5_amc@nlo + mcfm + Phantom.

Number of jets (|ηj| < 4.7) Cross section [fb] Theoretical cross section [fb]

0 16.3 ± 1.2 (stat)+1.0
−0.9 (syst) ± 0.4 (lumi) 13.2+0.9

−0.7

1 3.2 ± 0.6 (stat)+0.3
−0.3 (syst) ± 0.1 (lumi) 4.0+0.5

−0.3

2 0.7 ± 0.3 (stat)+0.1
−0.1 (syst) 1.2+0.2

−0.1

≥3 0.14 ± 0.1 (stat)+0.01
−0.01 (syst) 0.3+0.1

−0.1
verse momentum of the hadronic particles recoiling against the 
diboson system. This explanation is supported by the measurement 
of a softer-than-expected pT distribution of the ZZ system [6,8]. 

The observed discrepancy may be due to higher-order corrections 
to ZZ production, not included in MC samples used in this analysis, 
or to the parton shower modeling.
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Table 4
The pp → ZZ → ���′�′ cross section at √s = 13 TeV as a function of the jet multiplicity. The integrated luminosity uncer-
tainty for the number of jets ≥3 is smaller than 0.1 fb and is not quoted. The cross sections are compared to the theoretical 
predictions (last column) from MG5_amc@nlo + mcfm + Phantom.

Number of jets (|ηj| < 4.7) Cross section [fb] Theoretical cross section [fb]

0 28.3 ± 1.3 (stat)+1.7
−1.5 (syst) ± 0.7 (lumi) 23.6+0.8

−0.9

1 8.0 ± 0.8 (stat)+0.7
−0.8 (syst) ± 0.2 (lumi) 9.7+0.5

−0.5

2 3.0 ± 0.5 (stat)+0.3
−0.4 (syst) ± 0.1 (lumi) 4.0+0.3

−0.3

≥3 1.3 ± 0.4 (stat)+0.2
−0.2 (syst) 1.7+0.1

−0.1

Fig. 3. Differential cross sections normalized to the cross section of pp → ZZ → 4� as a function of the multiplicity of jets with |ηj| < 4.7 (top panels) and |ηj| < 2.4 (bottom 
panels), for the 8 (left) and 13 (right) TeV data. Other details are as described in the caption of Fig. 2.
Fig. 4 shows the differential cross sections at 8 and 13 TeV
as functions of the transverse momentum and pseudorapidity of 
the pT-leading jet, normalized to the cross section for Njets ≥ 1. 
Figs. 5 and 6 show the cross section at 13 TeV as a function of 

several variables for events with Njets ≥ 2, normalized to the cor-
responding cross section. More specifically, Fig. 5 presents the nor-
malized differential cross sections as functions of the transverse 
momentum and pseudorapidity of the pT-subleading jet, while 
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Fig. 4. Differential cross sections normalized to the cross section for Njets ≥ 1 of pp → ZZ → 4� as a function of the pT-leading jet transverse momentum (top panels) and 
the absolute value of the pseudorapidity (bottom panels), for the 8 (left) and 13 (right) TeV data. Other details are as described in the caption of Fig. 2.
Fig. 6 displays the differential cross section as a function of mjj
and �ηjj .

Overall agreement is observed between data and theoretical 
predictions for all measurements related to the pT-leading and 
subleading jets. The �ηjj distribution (Fig. 6, right) measured with 
13 TeV data tends to be steeper than the MC predictions, but the 
differences are not statistically significant.

8. Summary

The differential cross sections for the production of Z pairs in 
the four-lepton final state in association with jets in proton–proton 
collisions at 

√
s = 8 and 13 TeV have been measured. The data 

correspond to an integrated luminosity of 19.7 (35.9) fb−1 for a 
center-of-mass energy of 8 (13) TeV. Cross sections are presented 

for the production of a pair of Z bosons as a function of the num-
ber of jets, the transverse momentum pT, and pseudorapidity of 
the pT-leading and subleading jets. Distributions of the invariant 
mass of the two pT-leading jets and their separation in pseudo-
rapidity are also presented. Good agreement is observed between 
the measurements and the theoretical predictions when next-to-
leading order matrix-element calculations are used together with 
the pythia parton shower simulation. Cross sections for ZZ produc-
tion in association with jet have been measured with a precision 
ranging from 10 to 72% (8 to 38%) at 8 (13) TeV, for jet multi-
plicities ranging from 0 to ≥ 3. The systematic uncertainty is of 
the same size, or smaller, than the statistical one. Analyses using 
future, larger data sets, with smaller statistical uncertainties, will 
allow the theoretical prediction of ZZ+jets to undergo more strin-
gent tests.
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Fig. 5. Differential cross sections normalized to the cross section for Njets ≥ 2 of pp → ZZ → 4� at √s = 13 TeV as a function of the pT-subleading jet transverse momentum 
(left) and the absolute value of the pseudorapidity (right). Other details are as described in the caption of Fig. 2.

Fig. 6. Differential cross sections normalized to the cross section for Njets ≥ 2 of pp → ZZ → 4� at √s = 13 TeV as a function of the invariant mass of the two pT-leading jets 
(left) and their pseudorapidity separation (right). Other details are as described in the caption of Fig. 2.
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