
MIT Open Access Articles

The Anti-Social System Properties: Bitcoin Network Data Analysis

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

As Published: 10.1109/TSMC.2018.2883678

Publisher: Institute of Electrical and Electronics Engineers (IEEE)

Persistent URL: https://hdl.handle.net/1721.1/134903

Version: Author's final manuscript: final author's manuscript post peer review, without 
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/134903
http://creativecommons.org/licenses/by-nc-sa/4.0/


1
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Israa Alqassem, Iyad Rahwan and Davor Svetinovic, Senior Member, IEEE

Abstract—Bitcoin is a cryptocurrency and a decentralized
semi-anonymous peer-to-peer payment system in which the
transactions are verified by network nodes and recorded in a
public massively-replicated ledger called the blockchain. Bitcoin
is currently considered as one of the most disruptive technologies.
Bitcoin represents a paradox of opposing forces. On one hand,
it is fundamentally social, allowing people to transact in a
peer-to-peer manner to create and exchange value. On the
other hand, Bitcoin’s core design philosophy and user base
contain strong anti-social elements and constraints, emphasizing
anonymity, privacy and subversion of traditional centralized
financial systems. We believe that the success of Bitcoin, and the

financial ecosystem built around it, will likely rely on achieving
an optimal balance between these social and anti-social forces. To
elucidate the role of these forces, we analyze the evolution of the
entire Bitcoin transaction graph from its inception, and quantify
the evolution of its key structural properties. We observe that
despite its different nature, the Bitcoin transaction graph exhibits
many universal dynamics typical of social networks. However,
we also find that Bitcoin deviates in important ways due to
anonymity-seeking behavioral patterns of its users. As a result,
the network exhibits a two-orders-of-magnitude larger diameter,
sparse tree-like communities, and an overwhelming majority of
transitional or intermediate accounts with incoming and outgoing
edges but zero cumulative balances. These results illuminate the
evolutionary dynamics of the most popular cryptocurrency, and
provide us with initial understanding of social networks rooted
in and driven by anti-social constraints.

Index Terms—Social networks, Bitcoin, Cryptocurrency

I. INTRODUCTION

Bitcoin is a complex socio-cyber-physical system, e.g., [1],

consisting of a decentralized peer-to-peer payment network, a

currency unit, publicly preserved transaction history kept in

a massively-replicated public ledger, i.e., the blockchain, an

algorithm that controls money generation, and an ownership

verification mechanism using public-key cryptography, where

each Bitcoin address consists of a pair of public and private

keys [2]. The process of creating new coins in the system

is called mining. The mining process is computationally

expensive. Any node connected to the Bitcoin network can

participate in Bitcoin mining either as a part of a group of

miners (called mining pool) or individually. In pooled mining,

the generated coins are shared based on each member’s

contributed computational power.
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Many commentators liken Bitcoin’s present state to the

early days of the Internet, and suggest that its technology will

transcend financial transactions to encompass all kinds of new

social transactions.

The structure and evolution dynamics of various social

networks are well-studied [3], [4], [5], [6], [7], [8]. How-

ever, the Bitcoin transaction graph represents a novel kind

of network that consists of global financial transactions car-

ried out by users hidden behind pseudonyms represented by

public keys (accounts, addresses, or public keys are used

interchangeably to refer to users’ unique identifiers used in

Bitcoin system). These transactions are continually validated

by Bitcoin computational nodes; running on users’ computers

and other specialized mining hardware, added to blocks, and

newly generated blocks appended to the blockchain, which

serves as a key innovation of the Bitcoin network [2].

One of the main driving forces behind the creation of

Bitcoin was to counter the systematic move towards more

transparency (i.e., reduction of privacy) and centralization.

The original cash-based financial system got replaced with

credit cards, audited transactions, automatic reporting to gov-

ernmental entities, etc. As a reaction to such increased lack

of privacy, centralization of control, and extensive monitoring,

there appeared a need to develop a system that re-establishes

and protects the financial privacy. The second driving force

behind the creation of Bitcoin was to develop a currency with

a predictable, algorithm-controlled inflation rate, as opposed

to the unpredictable, human-controlled inflation rate of fiat

currencies.

As such, Bitcoin presents a paradox of social and anti-social

forces. On one hand, Bitcoin’s main function is to facilitate

economic transactions among individuals, which is a highly

social function. Indeed, by eliminating expensive, trustworthy

intermediaries, Bitcoin reduces the cost of transactions, thus

facilitating more open economic transactions, transcending

geographical and social boundaries.

On the other hand, at the core of the Bitcoin design

philosophy are strong anti-social elements. Among Bitcoin’s

user community, there is a strong emphasis on privacy and

anonymity, manifested in the fact that transactions only require

cryptographic public keys in order to take place. Furthermore,

the Bitcoin system embodies greater trust in algorithmic,

rather than human, control of the money supply. In addition,

Bitcoin’s key distinguishing feature is its ability to process

and verify transactions without transaction intermediaries that

hold privileged positions in the network. As such, Bitcoin is

distrustful, and arguably subversive, of centralized financial

institutions or intermediaries that may abuse their power.
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These seemingly contradictory social and anti-social ele-

ments of Bitcoin are, in fact, the key features behind its dis-

ruptive proliferation. However, we still lack a deep quantitative

understanding of Bitcoin’s adoption, use and growth dynamics.

In order to acquire such understanding, we need to quantify

the way in which Bitcoin’s transaction network evolves over

time, and to characterize the structural properties produced by

the social and anti-social forces and their interactions. This

will pave the way towards more complex analyses and may

facilitate the development of scalable algorithms and online

services that provide real-time insights into the blockchain and

its vulnerabilities.

In this paper, we inspect the Bitcoin transaction network’s

evolution dynamics. Our findings indicate that despite the

distinction in the nature of Bitcoin’s transaction network when

compared to other social networks, the Bitcoin transaction

network follows the common normal evolution patterns, i.e.,

the densification power law and shrinking diameter (although

the diameter shrinks only after the network reaches maturity).

On the other hand, we find that the absolute value of the

transaction graph diameter is extremely large when compared

to the other social networks which can be attributed to the

presence of long chains of transactions. The transaction graph

has less dense communities. Furthermore, the majority of

public keys (> 90% of total public keys in the network)

represent transitional or intermediate accounts with incom-

ing and outgoing edges but zero cumulative balances. Most

of the intermediate accounts are generated to complicate

tracing users’ wealth and identities. These observations can

be attributed to the anti-social component of the behavior

among Bitcoin users, i.e., they generate and discard accounts

constantly to preserve and even further protect their anonymity.

II. RELATED WORK

We cover three categories of related work. First, we discuss

the related work that examined the blockchain data either

as a single snapshot or at different time frames for vari-

ous purposes, such as analyzing the level of privacy and

anonymity in Bitcoin. Second, we discuss the related work

which examined the universal characteristics that govern graph

growth over time, from which we borrowed the graph growth

metrics. Third, we discuss the related work that covers various

applications of social network data analytics studies.

A. Blockchain Data Studies

Kondor et al. [9] investigated the evolution of basic charac-

teristics of the blockchain over time. They identified two main

phases of Bitcoin’s life, the initial phase and the trading phase.

The initial phase lasted until fall 2010, during which there was

no real-world value associated with a bitcoin. Then MtGox,

the previously popular Bitcoin exchange, went online and the

Bitcoin trading phase has begun, through which bitcoins have

gained market value. They examined the degree distribution,

degree correlation and clustering coefficients, and wealth

distribution. They showed that preferential attachment was

shaping both the degree of Bitcoin addresses and the wealth

distributions among these addresses which are fundamentally

related in Bitcoin transaction network. In our analysis, we

examine various network characteristics that were not covered

here. We also repeat our analysis on the approximation of

Bitcoin user graph based on a heuristic, that we discuss later,

and was built based on the fact that all input addresses of a

transaction must belong to a single entity that holds the private

keys of these addresses.

Ron et al. [10] examined different statistical properties of

Bitcoin transaction graph and analyzed the graph of the largest

transaction that took place at the time of their analysis, May

13th 2012, where an entity sent 90, 000 bitcoins to itself

multiple times. Instead of looking at global network properties

over time such as market price of bitcoins, number of daily

transactions, etc. they examined the typical behavior of Bitcoin

users e.g., the balances kept in their accounts, addresses associ-

ated with the largest balances, the size distribution of Bitcoin

transactions, and the percentage of micropayments. One of

their interesting findings was that the majority of bitcoins were

not circulating in the network. Other findings were: (i) Bitcoin

users tended to move their bitcoins large number of times in

self-loops manner between different accounts, (ii) large sums

of bitcoins were distributed in a binary tree-like structure,

(iii) Approximately 156, 722 addresses were associated with

Mt.Gox exchange at the time of their study. Their dataset

contained transaction data up to block 180, 000 (3, 120, 948
addresses). This research did not look into the evolution of the

transaction graph over time, instead they focused on statistical

properties in a single snapshot.

Maesa et al. [11] presented a scalable clustering algorithm

that constructed Bitcoin user graph with less false positives,

thus they reduced the size of the original transaction graph.

Then they analyzed the time evolution of the generated user

graph with a late starting point (January 2013), after the

Bitcoin system has matured and gained significant financial

impact. They examined the nodes richness in terms of their

degree and accumulated balances, and they confirmed the

previous finding [9] that the Bitcoin network is a scale-free

one where the richness is concentrated, and where high-degree

nodes play a vital role for network connectivity and their

constructed graph confirmed small-word phenomenon. They

also showed that the distribution of clusters follow a power-

law model. They inferred some address identities relying on

publically available tag datasets. In our analysis, we look into

different network characteristics in the full Bitcoin transaction

graph before and after the system gained its popularity and

we highlight how the users behavior changes over time to

adapt to the system. We do not examine the in- and out-degree

distributions and the distribution of the wealth in the network

since that were already verified in previous research.

In the next three papers, [12], [13], [14], the authors ana-

lyzed the transaction graph in order to investigate the claimed

anonymity that Bitcoin promised to offer. In doing so, they

matched some Bitcoin addresses to real-world entities while

constructing the Bitcoin transaction graph. Our work, however,

inspects different network characteristics without touching the

anonymity subject. We think Bitcoin supports pseudonymity

not full anonymity and the users of the network are responsible

to manage their addresses, i.e., public keys, in order to protect
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their privacy.

Fleder et al. [12] analyzed seven-month blockchain data

between March 25th 2013 and October 25th 2013 for the

purpose of examining the anonymity levels in Bitcoin. They

developed a system to link public keys to their real-world

entities by web scraping Bitcoin forum, public social network,

donation sites, and other services where Bitcoin fans publicly

announced their addresses. They also applied the PageRank

algorithm to figure out the most important nodes, i.e., the ones

that received large traffic like SatoshiDICE1). Furthermore,

they de-anonymized a number of Bitcoin users, e.g., they

identified some of Bitcoin forum users: (i) who gambled at

SatoshiDICE, (ii) who were one hop away from Silk Road,2

(iii) who had direct transactions with Wikileaks. In addition to

an address belonged to FBI. This work focused on the level of

anonymity that Bitcoin was supposed to offer and showed that

it is possible to link real-world identities to Bitcoin addresses.

Meiklejohn et al. [13] explored the evolution of Bitcoin

network through tracing the flows of both unspent and in-

circulation bitcoins over time. Their methodology was divided

into two stages. First, they identified public keys of well-

known Bitcoin merchants and services (such as Mt. Gox and

Silk Road) by making direct purchases from them. Addi-

tionally, they extracted self-labeled public keys from Bitcoin

forum. Then, they clustered the users of known public keys

into a graph where the nodes represent known services instead

of merely representing anonymous addresses. They, by no

means, aimed to de-anonymize all Bitcoin network, but rather

they leveraged certain characteristics of Bitcoin protocol (e.g.,

multi-input transactions in which all input addresses belong to

the same entity, and Bitcoin change) to reveal the identities

of certain Bitcoin services, then categorized these services

in order to calculate their overall balances, the percentage

of transactions they involved in, etc. Their dataset contained

blockchain data up to block 231, 207 (16, 086, 073 transactions

and 12, 056, 684 addresses).

Reid et al. [14] explored the limits of anonymity in Bitcoin

transaction and user networks. They showed that one could

easily figure out the total balance and incoming and outgoing

transaction of Bitcoin public keys and users. As an example

they visualized all WikiLeaks’ payments and degree distri-

bution over time and the number of transactions involving

its public key. As a case study of potential risks to the

anonymity in Bitcoin, they investigated the 25, 000 bitcoins

theft reported in June a3th, 2011, and they developed a tool to

trace the stolen bitcoins which was transferred among several

public keys. Their results showed that it is easy for Bitcoin

centralized service providers (such as exchanges and wallet

services) that have details on users’ identities to identify and

track considerable portions of their users. Furthermore, They

suggested some enhancements to Bitcoin protocol to protect

user’s privacy. It is worth pointing out that this research is

1The biggest Bitcoin gambling website.
2An online marketplace uses bitcoins to trade in illegal drugs, firearms and

other goods, operated as a Tor hidden service. It was shut down temporarily
by FBI in October 2013 but it reopened again as Silk Road 2.0 in November
2013.

among the earliest attempts that analyzed Bitcoin network.

Their dataset contained 1,253,054 public keys.

B. Social Network Analysis

Leskovec et al. [15] examined graph time evolution pro-

cess in terms of the average node in- and out-degree and

the effective diameter in nine graphs obtained from four

diverse datasets. These datasets are: (i) ArXiv citation graph

(29, 555 papers, 352, 807 edges), (ii) U.S. patent citation graph

(3, 923, 922 patents, 16, 522, 438 citations), (iii) autonomous

systems graph, this one exhibits addition and deletion of

nodes and edges from November 1997 to January 2000, (iv)

bipartite affiliation graphs (57, 381 nodes, 133, 170 edges).

These datasets were divided into regularly spaced snapshots in

time. And the results they obtained showed that densification

power laws3 and shrinking diameters4 are fundamental natural

phenomena in all the graphs they examined. To produce graphs

that capture shrinking diameter, heavy-tailed in- and out-

degree distributions, and densification properties they proposed

the Forest Fire Model. Indeed, shrinking diameter is rather

surprising; as one would expect the graph’s diameter to grow

as the number of nodes increases. Shrinking diameter may be

attributed to two reasons. One reason is the addition of edges,

as in the stylized Erdös-Renyi random graph model where

the diameter of the largest connected component (LCC) starts

quite large and then it decreases as edges are being added

continually. An alternative reason is what happens in real

graphs where the nodes become well-connected to each other

over time even after a graph reaches maturity, i.e., the diameter

continues to decrease in a steady manner when the LCC

contains almost all nodes. From this research we borrowed

the characteristics which define how real graphs evolve over

time. We also compare and contrast the growth patterns of

Bitcoin to the growth patterns observed in this research while

highlighting the novelty of Bitcoin network.

C. Applications

Kong et al. [16] have emphasized the need for social

network and media analysis within the context of the systems

development. They have explored the evolution patterns of

popularity with respect to the burst forms and decays. They

found that predicting the trends of popularity evolution is

beneficial for decision making for various types of systems,

e.g., emergency management, business intelligence, and pub-

lic security. They evaluated their approach using tweets in

SinaWeibo, a Chinese Twitter-like social media platform, with

positive results and improvements.

Liu et al. [17] have demonstrated the importance of the

social network analysis with respect to preserving system

properties such as privacy and anonymity. They emphasized

that the network analysis is even more effective when multiple

network analysis are performed for the identification of the

users. This is putting the context of our focus on the financial

social network in the perspective with respect to the other types

3Number of edges grows super-linearly in the number of nodes.
4Diameter decreases as network grows.
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of social networks. While their method has shown positive

results, it is unclear how it would perform within the context

of blockchain-based social networks.

Zhang et al. [18] have studied evolutionary game dynamics

of multiagent systems on multiple community networks. Given

the fast evolution of blockchain systems and their potential in-

tegration with the artificial intelligence (AI) systems is opening

even further application areas of the social network analysis

in the context of blockchain systems. The further integration

of the various blockchain systems is expending the analysis

opportunities on multiple social network systems. The ability

of agents to perform this analysis and interpret the data, will

open up a whole another range of application opportunities

for blockchain in complex AI-backed social networks.

Chang et al. [19] have used blockchain network data to

analyze different patterns of transactions occurring in the

Bitcoin network in order to cluster addresses that share the

same ownership. This clustering approach has increased our

ability to trace Bitcoin ownership thus potentially reducing the

privacy of the users.

III. METHOD AND RESULTS

The temporal information of Bitcoin transactions embedded

in the blockchain enables us to inspect the evolution dynamics

and the key structural properties of this innovative payment

network, where Bitcoin accounts represent the nodes and the

transactions occurring between these accounts correspond to

the edges. We identify 11 time-spaced sequential snapshots of

the blockchain between January 2009 and September 2014.

Six-month interval separates any two consecutive snapshots,

except for the last one which contains the blockchain trans-

actions up to the last block in our dataset. Table I shows our

snapshots statistics.

TABLE I
MAIN CHARACTERISTICS OF BLOCKCHAIN SNAPSHOTS.

Snapshot

index

Block depth #nodes #edges End date

1 18,650 1,054 1,098 03-Jul-09

2 32,800 2,877 3,630 03-Jan-10

3 64,000 24,404 34,965 03-Jul-10

4 100,800 126,353 259,669 03-Jan-11

5 134,500 1,060,648 2,962,425 03-Jul-11

6 160,400 2,736,480 8,554,243 03-Jan-12

7 187,300 4,662,573 20,875,170 03-Jul-12

8 215,000 8,725,003 50,567,140 03-Jan-13

9 244,600 14,998,319 102,040,630 03-Jul-13

10 278,400 24,882,840 165,402,563 03-Jan-14

11 319,359 46,043,947 398,145,539 06-Sep-14

In Bitcoin there is a special type of transaction without input

addresses, these transactions are called coinbase transactions.

One coinbase transaction is generated per block to send block’s

mining reward and transaction fees (whenever available) to

miners who participated in creating that block. The input

address of all coinbase transactions are mapped to a dummy

source address, then all coinbase transactions are excluded

from the subsequent analysis. Including coinbase transactions

would distort the results as they do not represent actual

transactions occurring between Bitcoin users or services but

merely transactions that generate coins in the system.

Two distinct stages of Bitcoin evolution are identified, i.e.,

the initial stage and the trading stage [9]. The initial stage

continued until the first half of 2010. After that, Bitcoin started

to attract growing number of users and online service providers

such as Mt. Gox exchange which went online in July 2010 and

Slush’s pool; the first mining pool that started in December

2010. Then, Bitcoin was recognized as a cryptocurrency and

a payment system, thus it gained a real purchase value and

its trading stage has begun after the beginning of 2011. While

the period in between represents a transitional stage. During

which, Bitcoin was adapted by more than amateur beginners

but it was still not yet recognized as a payment system neither

as a cryptocurrency. Fig. 1 shows how this intermediate stage

acts as a tipping point in the history of the first decentralized

cryptocurrency. Here we quantify the evolution of Bitcoin

and we show that some network properties differ noticeably

throughout these stages.

A. Bitcoin Accounts

There is no upper bound on the number of accounts a

Bitcoin user may have, nor a limit exists on the number

of transactions’ neighbours, unlike many of social networks

which constrain the maximum allowable number of outgo-

ing/incoming links. Moreover, in Bitcoin it is considered a

good practice to generate different key pairs to receive the

various incoming transactions in an attempt to maintain users’

anonymity by complicating the tracking of addresses’ owners

and their wealth. This results in the emerging of different

nodes types (i.e., Bitcoin account categories) which we cat-

egorize based on incoming transaction, outgoing transaction,

and total balance each account accumulates. These categories

are:

• Checking accounts: appeared as source and destination

of one or more transaction and have cumulative balance

greater than zero.

• Saving accounts: appeared only as destination of trans-

action(s) with cumulative balance greater than zero.

• Intermediate (transitional) accounts: accounts with zero

cumulative balance. These accounts are mostly created by

Bitcoin user or service, e.g., mixing or exchange service,

to transfer money between other accounts. A fraction of

these accounts may belong to users departing the network

and selling all their coins.

As Fig. 1 depicts, during the initial stage, saving accounts

were dominant since bitcoins did not have corresponding

purchase value in fiat money and consequently no merchants

were accepting them in exchange for goods or services. At

that stage, the checking and intermediate accounts represented

accounts owned by the early adopters who were trying or

testing the Bitcoin system. Later on, during the latter stage,

the intermediate accounts formed more than 90% of the total

created accounts. This reveals an expected common behavior

among Bitcoin users, i.e., they generate and discard public

keys constantly to preserve their anonymity which results in a

continually increasing transaction volume in the network. On
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the other hand, the percentage of saving accounts has relatively

diminished in the trading stage compared with the initial stage.

While the absolute number of newly created checking accounts

went up by several orders of magnitude, from less than 30 in

July 2009 to more than 250K in September 2014. This can be

an indication of more people nowadays considering Bitcoin as

a viable medium of exchange.

Two points can emphasize the aforementioned indication.

First, the growing merchant adoption and the increasing num-

ber of service providers supporting Bitcoin payment directly

or indirectly, (i.e., via conversion services such as Coinbase

and BitPay) have enhanced Bitcoin’s utility. Currently, big

businesses and multinational corporations such as Microsoft,

Dell, and Expedia support Bitcoin payments, moreover users

can buy a wide range of physical goods with bitcoins, different

gift card businesses accept bitcoins, and numerous physical

stores, hotels, restaurants, and charities are welcoming Bitcoin

payments [20]. Second, even though saving accounts have not

faded away, Bitcoin currently can not be viewed as a stable

store of value due to its high volatile price. Roughly speaking,

the average market price around the beginning of July 2013

reached 85 USD, six months later this value jumped to 793

USD, while in March 2015 it was about 270 USD. This

high price fluctuation leaves the user uncertain whether the

bitcoins he has today will worth the same value tomorrow,

hence incentivizes him to invest them in daily transactions

(checking or speculation in Bitcoin) rather than saving them.

Unlike the early adopters who used to keep their coins for the

hope of making more profit for the exact opposite reasons:

(i) due to limited options they had for spending their bitcoins

on, and (ii) the chances were high at that time for bitcoin’s

purchase value to increase day after day.

B. Largest Connected Component (LCC) and its Diameter

The LCC of a graph connects the majority of the graph

nodes. We examine the connectivity of Bitcoin transaction

graph over time by quantifying the percentage of Bitcoin

accounts taking part of its LCC, in addition to the diameter

of this LCC as shown in Fig. 1. In graph theory, the diam-

eter represents an important topological metric that helps in

understanding the size and density of a network. To find the

diameter of a graph (or its LCC), first we find the shortest

paths between each pair of vertices. Then, the path with the

maximum length represents the diameter of the graph, hence

the diameter is the largest shortest path.

Bitcoin addresses are almost fully connected with more than

99.9% of Bitcoin accounts taking part of the LCC by the

end date of the taken last snapshot. Network connectivity, in

the context of the nodes taking part of the LCC, in Bitcoin

scenario is similar to was reported for the LCCs of other social

networks. For example, in May 2011, the LCC of Facebook

had 99.91% of the total registered users [21]. In August 2009,

the LCC of Twitter had 94.8% of twitter profiles [22]. Further,

similar high percentage of nodes connecting to the LCC of

their graphs was observed for arXiv and U.S. patent citation

graphs [4].

There is a significant difference between the absolute value

of the transaction graph’s diameter in the last taken snapshot
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Fig. 1. (A) The evolution of Bitcoin account categories. A growth trend
towards intermediate accounts after the beginning of trading stage (vertical
dashed line). Intermediate accounts have incoming and outgoing transactions
but zero cumulative balances. Bitcoin users generate and discard such accounts
as a general practice to maintain their anonymity and avoid financial tracking.
(B) The evolution of the relative size of the transaction graph’s LCC and
its diameter. More than 99.9% of Bitcoin accounts are taking part of the
LCC as of September 2014. Similar high percentages are reported for nodes
connecting to the LCC in other social networks such as Twitter, Facebook, and
arXiv citation graph. After the beginning of the trading stage (vertical dashed
line), Bitcoin starts attracting growing number of users, therefore the graph’s
diameter expands, its transaction graph becomes sparser and the distances
between nodes increase continually until mid-2012. The expansion in diameter
at the beginning is observed for the earliest Facebook and Google+ datasets.
Later on, the diameter starts decreasing monotonically. The Shrinking diameter
after the network reaches maturity is also one of the observed phenomenon in
social networks, i.e., the diameter continues to decrease even after the LCC
contains almost all nodes since the graph becomes denser. The absolute values
of transaction graph’s diameter are two-orders-of-magnitude larger than what
is reported for social networks such as Facebook and Twitter which can be
attributed to the presence of long chains of transactions.

(> 2000) and the reported diameter values in a single snapshot

of other social social networks. For example the diameter of

Facebook is 41, the diameter of Twitter is 18, and the diameter

of Google+ is 22 as reported in [23]. Four possible causes of

this dramatic increase in the diameter of the transaction graph:

• Anonymity which acts as an incentive for Bitcoin sup-

porters to create several accounts to transfer their unspent

coins.

• Thieves usually exhaust the network by generating enor-

mous number of public keys to transfer and spread the

stolen bitcoins. For instance, in [14] it was reported that

more than 34, 100 new addresses were created by the

suspicious of Bitcoin theft which occurred in June 2011.

• The change addresses generated by Bitcoin client to

transfer the remainder of the payment back to the payer,

as bitcoins cannot be spent partially (Fig. 2).

• Bitcoin mixing services such as Bitcoin Fog and BitLaun-

dry which offer mixing users’ bitcoins with each other

by generating many new accounts. Mixing services are

generally used for Bitcoin laundry to complicate trailing

illegal fund [24].

All of the aforementioned points lead to the presence of

long transaction chains which in turn increases the shortest
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paths between graph nodes.
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Fig. 2. In Bitcoin the change is not returned to the same address to
protect user’s privacy. Here, we assume that blue circles represent addresses
owned by the same user. In scenarios 1&2, the user who owns address A1

sends a transaction to the user who owns address A2. The second scenario
demonstrates how the change address concept protects user’s privacy because
it is difficult to distinguish the recipient(s) of the payment. In scenarios 3&4,
the user who owns address A1 sends another transaction from the change
of previous transaction (partial amount of that change). In scenario 3, there
is no change address so the bitcoins are sent from the same address A1.
In scenario 4, the bitcoins are transferred from the change address C1 to
an address A3 owned by another user, a new change address C2 is created
after this transaction. In this example we try to demonstrate how these change
addresses increase the distance between nodes (here A2 and A3).
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Fig. 3. The transaction graph follows densification power law, i.e., the average
degree increases over time. The densification exponent is 1.1952.

The densification power law, or growth power law is an

empirical observation examined by other researchers when

studying the evolution of real graphs over time [4]. This law

of graph evolution states that the growth of graph’s edges is

super linear in terms of the growth of its nodes. The Bitcoin

transaction graph obeys this power law. In Bitcoin evolution

context, it indicates despite that Bitcoin addresses (i.e., public

and private key pairs) are being created continually, the edges

grow super linearly as a function of the growth of newly

added accounts. In other words, the growth of the network is

attributed to the increase number of transactions, which means

increase adaption and use of the Bitcoin financial system over

time.

The densification power law is represented mathematically,

as follows:

E(t) ∝ N(t)α where 1 < α ≤ 2

E(t) and N(t) are the number of graph’s edges and nodes

respectively at each timestamp t. The Bitcoin transaction graph

is becoming denser and its densification fits a power-law

pattern with a slope α = 1.1952, as shown in Fig. 3. The

values of the densification exponents are 1.69 and 1.12 for

arXive and Email networks, respectively. Although Bitcoin

users change their accounts frequently, i.e., new nodes are

being added continually to the transaction graph, still the

growth of the transaction graph’s edges is superlinear as a

function of the growth of its nodes over time, similar to what

was reported for other social networks such as IMDB actors

to movies network and Email network [4].

D. Degree Assortativity

The degree assortativity acts an ingredient of community

structure in a graph [25]. Degree assortativity coefficient mea-

sures whether or not graph’s nodes have tendency to interact

with similar nodes with regard to their in and out degree in

directed graph (or degree in undirected one) [26], [27]. Its

value lies between [−1, 1], where values close to or equal to 1
is a sign of assortative mixing. 0 indicates neutral assortativity.

Negative values reveal the opposite, i.e., “disassortativity”.

Social groups of real world typically have assortative mixing

as ‘birds of a feather flock together”. Whereas there is no rule

for online social networks [28]. For example, Flickr shows

assortative mixing (0.202), while Youtube demonstrates the

opposite (−0.033).

To measure degree assortativity in the transaction graph

self-edges are excluded as they are irrespective to how nodes

connect to each other. Table II shows negative assortativity

over time. Since in Bitcoin payment system, transactions occur

at two different levels: (i) internal, i.e., between different

accounts that belong to the same user, and (ii) external,

i.e., between different users in the network. In the internal

transactions users usually transfer their coins from high-

degree checking accounts to low-degree saving accounts. In

the external transactions bitcoins are usually sent from low-

degree addresses to high-degree addresses owned by known

merchants and service providers.

E. Time-evolving Community Structure

Communities are graph modules with internally dense

edges but relatively sparse external connections. We examine

the evolution of statistical properties of transaction graph’s

communities, i.e., hub dominance, scaled link density, and
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TABLE II
DEGREE ASSORTATIVITY COEFFICIENT, THESE VALUES ARE

STATISTICALLY SIGNIFICANT (T-TEST P-VALUE ¡0.05).

Date Degree assortativity

coefficient

03-Jul-09 -0.239
03-Jan-10 -0.043
03-Jul-10 -0.021
03-Jan-11 -0.034
03-Jul-11 -0.022
03-Jan-12 -0.041
03-Jul-12 -0.04
03-Jan-13 -0.041
03-Jul-13 -0.041
03-Jan-14 -0.027
06-Sep-14 -0.011

community size distribution which are proposed in [29]. Self-

edges cannot be indicative of how communities evolve thus

we discard them to simplify our graph, similar approach is

followed in [30].

Modularity is the first thing to look at when examining

community structure. It is a quality index for measuring the

presence of community structure in a graph by comparing the

edge coverage of a community with the coverage an algorithm

would achieve in a randomized null-model graph [31].

Modularity value depends on the community detection

algorithm used, in addition to how modular a network is. Its

value lies between [−0.5, 1.0], where higher values indicate

more modular networks, as such transaction graph tends to

be a modular network (Fig. 4). Remarkably, the number of

communities does not grow all the time, e.g., the number of

the total evolving communities declined in six-month period

between January 2011 and July 2011 which indicates that

smaller communities getting merged into larger ones. This

merge in communities coincided with the operation of the

first Bitcoin pooled mining service “Slush’s pool” which

attracted an increasing number of miners as soon as it was

released. The growth of evolving communities, on the other

hand, can be attributed to split in existing communities or/and

new nodes joining the network and establishing new well-

connected clusters.
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Fig. 4. Network’s modularity and the number of evolving communities.
We use a parallel implementation of Louvain method to detect Bitcoin
communities. Based on these relatively high modularity values, the transaction
graph tends to have modular structure.

1) Scaled link density: This property is defined as the

average internal degree5 of nodes within a community.

ρ = 2t
s(s−1) Link density

ρ̃ = ρs = 2t
s−1 Scaled link density

Where, t is the number of edges within a community and s

represents the size of that community, i.e., the number of nodes

forming it. Scaled link density reveals community’s nature.

For example, tree-like community has number of edges equals

to the lower limit (ttree = s − 1), substituting this value

in the second equation above gives us 2, therefore tree-like

communities always have scaled link density value equals to

2. Whereas in a full clique, each node is connected to all other

nodes, i.e., the number of edges in the undirected clique equals

to the upper limit (tclique = s(s−1)
2 ), substituting this value in

the scaled link density equation gives us a value of s, therefore

clique-like communities always have scaled link equals to s.

To examine the dependency of this property on the size

of the community, the median of scaled link densities are

plotted as a function of communities’ sizes over time as

illustrated in Fig. 5. The median values are chosen here

given the skewness in the distribution of scaled link density

values. Bitcoin communities’ scaled link densities lie in the

interval [2, 5], closer to the lower limit, which indicate tree-like

structure behind the majority of Bitcoin communities (Fig. 5).

Whereas social networks have denser communities than trees

but sparser than cliques based on the finding of a previous

study [29].

2) Hub-dominance: How dominant are the biggest hubs

within Bitcoin communities? This can be quantified according

to the following formula:

Hub− dominance = max(kin)
s−1

Where, max(kin) is the maximum degree of a node within

a community. The maximum possible degree is s − 1 when

a central node within a community is connected to all other

nodes in its community, consequently the value of the above

ratio will equal to 1 in such extreme case. For the majority

of social networks this ratio decline with community size

until dominant hubs almost vanished from large communities.

However, in the Email and the web graphs the dominant hubs

existed independent of community size [29]. We also study

this property as a function of community size over time. In the

transaction graph there is a hybrid existence of dominant and

non-dominant hubs. Roughly speaking, smaller communities

(s ≤ 100) tend to have full- to half-dominant hubs opposite to

larger ones (s > 104) which lack dominant nodes as depicted

in Fig. 6.

3) Distribution of communities’ sizes: The distribution of

communities sizes is an important statistic describing com-

munity structure. After the beginning of the trading stage the

community size distribution almost preserve the same shape.

We run a comparative test that leverages the log likelihood

ratios to compare the fit between various pairs of distributions

and find that the exponentially truncated power law represents

the best fit.

5Internal degree: node’s degree in the subgraph of the community.
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Fig. 5. Scaled link density. (A) Tree-like subgraph with scaled link density
equals to 2. (B) Clique-like subgraph with scaled link density equals to the
number of nodes 5. (C) The evolution of median values of scaled link density
in transaction graph as a function of community size s. In spite of community
size, the scaled link density median values are close to the lower limit which
indicates a tree-like structure behind the majority of Bitcoin communities,
which indicates “split or merge” of coins between accounts. The median value
of scaled link density spikes at the end for large communities > 104. More
investigation is needed to figure out the nature or causes of these relatively
sparse communities.

F. Inequality as measured by Gini Index

Here we study the distribution of wealth among these

accounts. From economics perspective, Lorenz curve measures

the inequality of the wealth distribution. In Fig. 7 the diagonal

(45◦) represents the line of perfect equality. The increase in

the area between this diagonal and Lorenz curve indicates the

greater the gap in wealth distribution among Bitcoin accounts

over time. Gini coefficient can be computed from this curve,

Kondor et al. conducted a detailed analysis into the Bitcoin

wealth distribution [9].

IV. DISCUSSION

Bitcoin aims at establishing a global financial network fa-

cilitating transactions among people from all around the world

without the need for expensive, trustworthy intermediaries.

Despite the different purposes of the various social networks

and Bitcoin transaction network, one can observe universal

dynamics such as the densification power law, shrinking

diameter, and modular structure as discussed previously in

the results section, and the power-law degree distribution as

reported in the previous work [9].

Social networks generally exhibit addition and deletion of

nodes and edges over time. However, in Bitcoin, after a trans-

action gets confirmed, all of the addresses encapsulated within

that transaction can never be deleted from the blockchain.

This criterion together with the financial nature of Bitcoin

network stimulate an anonymity-seeking behaviour among
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C

Fig. 6. Hub-dominance. (A) In this subgraph, the yellow node has the
maximum degree, it is connected to 4 out of 5 nodes, therefore the hub-
dominance value equals to 0.8. (B) The circular subgraph lacks of hub
presence. (C) Shows the evolution of median values of hub-dominance
as a function of community size s. The presence of hubs within Bitcoin
communities depends directly on community size, i.e., the hub-dominance
values decline with community size until dominant hubs vanish from large
communities. Similar to what is reported for other social networks. Noticeably,
communities of size > 104 appeared only after January 2011, after the Bitcoin
gained real market value and consequently started to attract growing number
of users and services. We examine different values of community size (s) and
the same trend holds for all values.

Bitcoin users which in turn leads to the key distinction between

Bitcoin transaction network and other social networks.

Thus, the vulnerable anonymity together and the inability to

erase addresses or transactions from the blockchain threaten

users with potential financial tracking. This is especially the

case if a user converts from a fiat currency to bitcoins from a

traditional financial account. In this scenario, their real identity

is linked to their Bitcoin account [14]. To prevent this identity

linking, the users engage in even further anonymity seeking

behavior. This is done using the features of the Bitcoin’s

core design which is equipped with the necessary capabilities

emphasizing anonymity and privacy, i.e., the concept of change

addresses in addition to user’s ability to generate as many new

addresses as desired.

Further, to improve anonymity, mixing services, which are

called sometimes laundry services, have been developed by

Bitcoin supporters. These services, when implemented prop-

erly, hide any connection between the user’s source address

(the account used to deposit an amount of bitcoins into the

service) and the destination address (the account used to with-

draw bitcoins) [24]. Consequently, Bitcoin users, sometimes

with the aid of mixing services, create various categories of

accounts as discussed previously and minimize the reusability
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Fig. 7. The evolution of Lorenz curve. The x axis is the cumulative share of
Bitcoin accounts from lowest balance to highest. The y axis is the cumulative
share of total bitcoins. The increase in the area between this diagonal and
Lorenz curve indicates the greater the gap in wealth distribution among
Bitcoin accounts. The distribution of wealth in the Bitcoin financial system
has become heterogeneous since 2011, i.e., users who own less than 10% of
addresses almost control the whole wealth. Prior to 2011, the Bitcoin network
was in its trial version where a few enthusiasts and developers (the number
of users by the end of initial stage was less than < 8, 000) tried the system
and split their coins among many accounts.

of their addresses by splitting or merging their coins in long

transaction chains which result in a huge diameter, different

account categories, and sparse tree-like communities which

distinguish the Bitcoin anti-social network from the other

social networks.

We also examined the same graph properties for an approx-

imation of Bitcoin user graph. In that approximation graph,

a single node represents a group of addresses that belong to

the same user 6. To generate an approximation of Bitcoin user

graph we used a heuristic that was developed and effectively

used in the previous research [10], [13]. This heuristic relies

upon the fact that all input addresses of a transaction must

belong to a single entity that holds the private keys of

these addresses. Quoting Satoshi Nakamoto from the original

Bitcoin white paper [2]: “Some linking is still unavoidable

with multi-input transactions, which necessarily reveal that

their inputs were owned by the same owner.” Establishing

a user graph from a transaction graph can be viewed as a

variation of the Union-Find known graph algorithm [32] as

illustrated in Fig. 9. However, the exact users of Bitcoin

cannot be determined precisely because the Bitcoin protocol

was intentionally designed to maximize user’s anonymity by

minimizing the possibility of linking the different addresses

owned by the same user.

The analysis of the approximation user graph confirmed

our previous findings since we discovered similar properties

in the approximation user graph: same large diameter, con-

6A user can have multiple nodes representing them in that graph, hence
this is just an approximation.

firmation of the densification power law, the disassortative

mixing, in addition to high modularity values (within the

range (0.70, 0.92)) which, as stated earlier, reflect the presence

of a community structure. We even found close similarities

between the underlying trends of scaled link density and hub-

dominance median values as shown in Fig. 8. These results

strengthen our reasoning behind the unique nature of the

Bitcoin.
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Fig. 8. (A) Similarly, the scaled link density median values for the ap-
proximation graph indicates a tree-like structure behind the majority of the
approximation user graph communities. The spike shown previously in Fig.
5 vanishes indicating those relatively denser communities where mapped to
a single entity in the approximation graph. (B) Here as well, our finding
indicates that the presence of hubs in our approximation graph depends
directly on community size.

From the systems perspective, it was observed that some of

these anti-social incentives are effecting ritical system prop-

erties such as security and privacy, e.g., [33], [34], [35]. The

anti-social incentives are leading to formation or disintegration

of certain network communities. This in turn is leading to the

improper use or the intentional misuse of the overall system.

These community alteration present serious threats to a subset

of the system properties that we identified: decentralization,

longevity (of the system that’s supposed to evolve over next

hundreds of years), trust, participation incentive, privacy, se-

curity, and usage ethics. As such, our contribution in under-

standing and measuring social network properties that lead to

the identification of the anti-social incentives and properties

represent a contribution with a potentially significant systems

impact in the design of this new generation of cryptocurrency

networks.

Given the recent expansion of the blockchain use as a

system infrastructure to support other kinds of mission critical

systems, such as smart grids, Internet of Things (IoT), au-

tonomous driving vehicles, health records management, assets

trading, etc., e.g., [34], [36], [37], [38], we are shifting from

Bitcoin as a socio-cyber network [1] to full blockchain-based

socio-cyber-physical systems. This integration is putting a
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Transaction ID Sending Address ID Receiving Address ID

Approx. User 

ID

1 A H 1

1 D 1

2 C L ?

2 F M ?

2 H ?

3 D C 1

3 G 1

4 E M 1

4 G 1

Fig. 9. The addresses {A,D} are inputs to the same transaction, on this
account they are owned by the same entity. Address {D} appeared as sending
address in transactions {1, 3} then all sending addresses of both transactions
belong to the same user. Moreover, address {G} appears as a common input
address to the transactions {3, 4}, which leads us to conclude that a single
entity holds the private keys of {A,D,G,E} and that entity initiated all
the three transaction {1, 3, 4}. We cannot assign a new user id to the input
addresses of the second transaction until we see the complete list of all
transactions; we might encounter a common address that link them to the
aforementioned user.

combination of additional system properties of safety and trust

as critical with respect to potential anti-social incentives in

these new mission critical systems. To deal with these issues,

we have to develop additional social network measures and

to work on design of community detection technologies. This

will help us support the development of blockchain-enabled

trust infrastructures that can ensure sufficient levels of privacy,

security, safety, trust and overall dependability. This must be

done in the context of planning for systems longevity, i.e.,

these systems are supposed to last hundreds of years, e.g,

Bitcoin’s longevity is critical to assume if it is to be considered

as the financial system infrastructure for these mission critical

socio-cyber-physical systems.

Finally, while this paper covers data from 2009–2014 that

correspond to the initial phase and trading phase identified

in [9], the paper does not cover the period from late 2014

until present that represents the currently ongoing heavy mass

media and heavy financial speculation phase. While this can

be considered as a limitation of this work, we believe that the

data from the ongoing speculation phase is worth studying in

its own light once the speculation phase is over. At the time

of the writing, we were unable to take into account either the

mass media coverage variable or heavy financial speculation

variable neither qualitatively nor quantitatively.

V. CONCLUSION

In summary, Bitcoin represents a move from relatively

local, transparent social networks created through the use of

traditional fiat currencies to relatively global, semi-anonymous

social networks created through the use of cryptocurrencies,

with Bitcoin being the leading example. If we assume that the

ultimate goal of social networks is to connect globally, one

could argue that the traditional currency networks could be

considered anti-social. The need to control a fiat currency and

to have a certain level of transparency within a local currency

network creates control conflicts among the sovereigns. This

in turn prevents effective, inexpensive expansion of the local

social financial networks evident through expensive financial

conversion protocols and services.

To fight this anti-social component of the local traditional

currency social networks, Bitcoin relies upon a set of its

own anti-social forces as observed in this paper. As we

have seen in our results, the evolutionary dynamics of the

Bitcoin as the most popular cryptocurrency provides us with

the initial understanding of social networks rooted in and

driven by anti-social behaviours. We can conclude that it is

indeed the optimal balance of the social and anti-social forces

that is critical for the success and acceptance of a particular

currency and the corresponding financial social network. And

the enforcement of anti-social behaviours is critical for the

users, even at the expense of adding the additional social

network noise as the results have shown.

As a part of our future research, we will work on the de-

velopment of other cryptocurrency network specific measures

and community detection approaches, and combine them with

our natural language analysis approach [39], [40] and generic

infrastructure models [41] to provide enhanced privacy, secu-

rity, and trust blockchain solution in the smart grid systems

domain. This will be combined with the use of questionable

arbitrary data recorded in the blockchains [34] in order to

tackle the issues of higher-level system usage ethics and trust-

ethical constraints.
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