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This article discusses the options and challenges of dynamic models for the diagnosis and operation of Li-ion batteries. It provides
a concise yet understandable overview on models and dynamics, and it discusses future developments needed to progress the field.
The diagnosis and operation of batteries require an understanding of the main processes and their dynamics, parameters, and time
constants. Processes with large time constants, such as thermal transport are equally important for safe high-performance operation
as are processes with shorter time constants such as diffusion. Depending on the specific problem or operating condition, taking
all of the scales into account is often unavoidable. Three separate, yet closely connected model classes are reviewed in terms of
physical insight and their capabilities and limits: mechanistic models, equivalent circuit models, and data-driven models. We provide
guidance for the selection of a suitable model for the particular diagnosis and operation problem of interest. The optimization
of battery diagnosis and operation require versatile and simple models that span multiple time scales and allow physical insight
and ease of parameterization. Fusing the existing modeling approaches may help to fully exploit their potential while integrating
first-principles physical insight and measurement data.
© 2018 The Electrochemical Society. [DOI: 10.1149/2.1061814jes]
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Li-ion batteries power portable equipment and appliances, are
essential components in electrical cars, and bear large potential as
buffer and storage elements in electrical grids to overcome fluctua-
tions caused by the intermittent nature of renewable energy sources.
For many applications, such as in automotives or energy storage,
Li-ion batteries need to operate at the upper performance limits to
provide cost-effective solutions. Operating outside these limits causes
fast deterioration and may lead to uncontrollable behavior.1,2 As such,
optimal design and diagnosis of cell state and optimal operation need
to be addressed carefully at all levels, from cell to module and sys-
tem. Dynamic mathematical models provide a means to address these
challenges.

Many different approaches for the dynamical modeling of batteries
exist, see for example Refs. 3 and 4, which describe the dynamic be-
havior of the cells, battery modules, or complete battery systems. Bat-
tery cells consist of a separator sandwiched between two electrically
conductive, porous electrodes, the positive and negative electrodes,
cf. Figure 1. The components are soaked in electrolyte to allow for
transport of Li ions between both electrodes.

During charging and discharging, an electrochemical or charge
transfer reaction occurs at the interfaces of electrode and electrolyte,
where Li ions are either reduced and intercalated, i.e. stored in the
electrode particles, or the stored Li is oxidized, releasing electrons.

Besides internal variables such as concentrations and temperatures,
two essential, performance-related variables of a battery are of general
interest for its diagnosis and operation: the state of charge, SOC, and
the state of health, SOH. SOC relates the available capacity at a given
time to the maximum available capacity when fully discharging a
battery:

SOC = CAh,max − CAh(t)

CAh,max
[1]

SOH in contrast takes into account that the maximum capacity de-
creases with time due to degradation:

SO H = CAh,max

CAh,max (t = 0)
. [2]

Too high charge or discharge rates or (dis)charging electrodes to
extreme ratios of active material to lithium cause degradation and can
trigger side reactions that lead to uncontrollable behavior. The stable
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operating range not only depends on electrode and electrolyte material
and the structure of electrode and battery, but also on temperature, state
of charge, and state of health. Further, slow relaxation processes in
the cell, which may take up to hours,5,6 mean that even the recent
history of operation needs to be considered. The highly complex and
nonlinear interplay of these factors and that only current, voltage,
and external cell temperature with no internal state variables can be
measured in commercial cells makes optimal design, state estimation,
and optimal operation challenging.

A battery management system is usually employed to actively
determine and monitor the battery states, and to control the charging
and discharging rate of the battery cells. Practically SOC is often
estimated by charge counting, i.e. integrating the current withdrawn
from or inserted into the cell, or by correlation of SOC to open-circuit
voltage (OCV).7 Charging of Li batteries, on the other side, is often
performed by simple charging protocols, which often only take limited
information of the battery state into account.2,8,9

Due to the lack of insight into the battery processes and state, intu-
ition or experimental trial-and-error design and operation of batteries
do not fully exploit the potential of the battery and may even lead to
failures of the battery system. Dynamic models provide insight into
the battery states and allow the use of systems tools for identification
of optimal battery configurations and trajectories.2,3 These models
should be dynamic to account for temporal changes of state variables
in the cell, provide insight into slow and fast processes, and allow for
better parameterization, and for assessing and adjusting dynamic oper-
ation. A detailed discussion on dynamic processes and time constants

Figure 1. Schematic of a Li-ion battery.
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in Li-ion battery cells and on dynamic measurements is provided in
Dynamic operation, processes, and analysis methods section.

There is a wide variety of Li-ion battery models; models are chosen
and tailored for specific tasks such as analysis, diagnosis, design, or
operation of Li-ion batteries. The variety of models makes it difficult
for newcomers to the field and for experienced researchers to identify
the best model for their particular task, to understand which informa-
tion and insight into the cell can be obtained from a given model, and
to properly and effectively use, train or parameterize the model.

Basically three different approaches for modeling of Li ion batter-
ies exist. Mechanistic models are based on first-principles modeling
and consider the physical, electrical, and chemical phenomena in the
battery. As such these models provide deep insight into the physical
and chemical processes and state of the battery. Mechanistic models
section discusses the versatility of mechanistic models. They can be
challenging to parameterize and are more computationally demanding
than other model types. Mechanistic models section also discusses the
use of mechanistic models for prevention or detection of operation in
fast-aging or safety-critical operational conditions. Equivalent circuit
models map the ionic and electric processes inside the cell to a net-
work of electric circuit components, such as resistors and capacitors.
Despite not containing first principle expressions for electrochemical
and transport processes, equivalent circuit models often can be eas-
ily adjusted to reproduce measured behavior reasonably well. Among
other aspects, Equivalent circuit and impedance models section dis-
cusses their suitability and limits regarding diagnosis and operation
of Li-ion batteries. Data-driven models are constructed based solely
on measurement data, often exploiting techniques from time series
analysis, machine learning, or artificial intelligence based approaches
to describe the input-output behavior. As such, they provide only
limited insights into the internal physicochemical phenomena within
the battery. Data-driven modeling approaches, which are discussed
in Data-driven models section, can potentially model complex be-
havior such as aging or other effects that may not yet be sufficiently
physically understood. Such modeling, however, may require use and
misuse scenarios that make the associated training and analysis time
consuming and expensive.

In addition to reviewing past achievements in understanding dy-
namic behavior and building models to further the efficient appli-
cation of Li-ion batteries, all sections provide suggestions on future
directions.

Dynamic Operation, Processes, and Analysis Methods

Dynamic operation and changes in battery state.—Due to the
resulting change in state of charge, i.e. chemical composition of the
electrodes, the electrodes continuously change state during operation.
Li-ion batteries are operated by adjusting cell current or voltage. For
most larger batteries, the management system comprises also active
heating or cooling of the cell, which adjusts the cell temperature.
Li-ion batteries can be operated highly dynamically with load (i.e.,
current or power) changes even in the sub-second time scale. Appli-
cations with such dynamic requirements may be found in transport10

but also for frequency stabilization of the electric grid.11 Whereas the
cell can produce the required current almost instantaneously, most
processes inside the battery will reach a new quasi-steady state only
after a significantly longer time (see Dynamic processes and their time
constants section); the cell may even need up to minutes or hours to
establish a new quasi-steady state. The vastly different time scales
hold especially for large cells, where a load change will trigger a
change in temperature and concentration distribution inside the cell.
The resulting local gradients trigger heat and mass transport processes
over long distances, i.e. long times, in the cells.

Batteries are closed systems, with Li being stored into or re-
leased from the electrodes during charging or discharging. Thus,
as long as the current is not set to zero, no steady state can be
reached and the SOC changes. The changing current in turn re-
sults in changes of solid and liquid Li concentration and potential –
and possibly other changes – over time. Also dependent on the

SOC are the time constants for the Li concentration and potential
to establish a new quasi-steady state after dynamic operation (see
Dynamic processes and their time constants section). As such, SOC
and the corresponding changes in local concentration and potential
can be detected by dynamic methods. For achieving high precision,
SOC estimation and prediction methods are more and more supported
by dynamic measurements (see Dynamic measurement methods sec-
tion) and by model-based methods, ranging from mechanistic models
(Mechanistic models section) to equivalent circuit models (Equivalent
circuit and impedance models section) to data-driven methods (Data-
driven models section). This article provides an overview on the var-
ious dynamic models used for understanding and estimating the cell
state and future developments needed to get more insight and more
precision.

On the long time scale and when operating outside a specified
safe operating range, the battery inevitably ages. A battery is thus
a time-variant system, i.e., a system with time-dependent constants
associated with aging. Aging causes changes in geometry and ma-
terial properties, which in turn affects the processes inside the bat-
tery, the corresponding time constants, and the state variables. Nearly
all state variables such as local concentrations and potentials thus
change during aging, even when at the same state of charge. A wide
range of degradation mechanisms can occur at the negative or positive
electrode and in the electrolyte, which depend not only on material
and cell design but also on past and present operating conditions.12

Barre et al.13 provide an overview on the degradation mechanisms and
their estimation. Of high practical implication is especially the loss of
available Li for reaction, i.e. the loss in the battery’s capacity, and as
such the SOH, caused by battery aging. The main process consuming
Li is the reaction of the electrolyte at the surface of the negative elec-
trode, which leads to a thin degradation film at the particle surface
known as the solid electrolyte interphase (SEI). Its growth rate and
composition is complex and depends on the past operating conditions
and on cell design.14

The cell, its state, and its dynamic behavior may also be impacted
by external disturbances, such as changes in the environmental tem-
perature and external mechanical forces that lead to deformation of
the cell. Mechanical deformation of the cell, but also past or present
operating or environmental conditions that favor (rapid) degradation,
may lead to violent reactions inside the battery that can cause the
cell to catch fire and/or explode. Recently, the state-of-safety was
proposed to quantify the probability that the cell remains in a safe
state15 after having been exposed to certain abuse conditions; The
state-of-safety accounts for various abuse conditions by multiplica-
tion of the probabilities for each abuse process. Rather than con-
sidering the fast processes occuring during such a runaway, which
are highly complex, this review focuses on stable operation with
and without aging. The reader is referred to the review by Abada
et al.1 and the work of Kim et al.16 for the modeling of instabilities
in batteries.

Most studies on dynamic battery operation and state estimation are
on a systems level. They usually contain sophisticated mathematical
analysis and estimation tools, but have minimal consideration of the
processes and materials in batteries. Bringing together battery experts
with systems experts will allow the increased use of knowledge of
battery processes and dynamics for more reliable and save battery
operation. Furthermore, knowledge of the demands and limits of cells
regarding stable, dynamic operation will benefit the cell and material
specialists as it enables them to tailor their cells for higher dynamic
performance.

Dynamic processes and their time constants.—The main state
variables of the cell are potential and Li concentration in the solid
active material and in the liquid electrolyte, as well as temperature. The
states may be spatially distributed inside each of the cell’s components.
Their dynamic behavior depends on the local accumulation capacity,
the transport to and from the location, and the sink or source terms at
the location. For each state variable, a conservation equation can be
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Figure 2. Dynamic processes in Li-ion batteries with typical range of their
time constants. Aging and degradation processes may cover wide range.

formulated in the generic form:

accumulation = transport into − transport out +
∑

i

source/sinki

[3]
To understand the dynamic behavior of batteries better, it is helpful
to extract from these balances characteristic time constants, which
are typical response times that reflect the interaction of a transport
or source process with the accumulation term. These time constants,
which often contain material and electrode properties, may range from
microseconds to hours, as illustrated in Fig. 2. The time constants may
depend not only on cell design, but also on SOC, on the operating
conditions – especially current and temperature – and on the SOH of
and degradation processes in the battery; as such, the numbers given
in Fig. 2 are approximate values. In the following we discuss the
main processes leading to dynamic behavior of batteries, with special
emphasis on Li-ion batteries.

Concentration changes inside Li-ion cells are described by species
conservation equations, with Li intercalation as sink or source at the
electrode particle surface, and the transport processes being diffusion
in electrode and electrolyte, migration in the electrolyte, and convec-
tion in the electrolyte. The latter process is usually negligible for Li-ion
batteries with intercalation electrodes. Diffusion is a slow transport
process; the corresponding time constant τdi f f is calculated from the
characteristic length of diffusion x and the diffusion coefficient D:5

τdiff = x2

D
[4]

Using the electrode thickness as characteristic length, typical time
constants of Li ion diffusion are in the range of five to twenty sec-
onds. Solid diffusion is often slower despite having a significantly
smaller characteristic length – the particle radius – as the solid dif-
fusion coefficient is very small. Time constants vary heavily with the
particle size and chemical composition and properties of the active
material and are typically in the range of ten to 120 seconds. For
material properties that change with concentration or SOC, the time
constant becomes SOC-dependent. These time constants, however,
cannot explain the relaxation process of several minutes up to hours,
which is observed when switching from operation to open circuit
voltage.5,6 Indeed, the slow relaxation process, which equilibrates the
Li concentration in the solid particles across the electrode thickness,
originates from a chain of processes, mostly solid diffusion, charge
transfer reaction, and liquid diffusion.

The dynamics of the potential is described by charge conservation
equations, with accumulation corresponding to double layer charging
or discharging, and the transport processes being electron transport in
the electrodes and Li ion or counter ion transport in the electrolyte.
Electric transport is described by migration only, which follows Ohm’s
law, whereas the transport terms in the electrolyte often contain mi-
gration and diffusion. At places, where no accumulation takes place,
i.e. at all places in the battery except for the interfaces between solids
and liquids, electroneutrality holds. Assuming migration as the main
charge transport process in solid or electrolyte, the time constants for
the solid and electrolyte may be calculated from Ref. 5 as

τcharge,mig = x2Cdlas

κ
[5]

with x being the characteristic length for conduction, Cdl as the dou-
ble layer capacitance, as as the specific active area, and κ as elec-

tric or ionic conductivity. Again, with x as the electrode thickness,
as = 3 εsolid

r , and typical ionic or electric conductivities. Typical time
constants are in the lower millisecond range, both for solid and the
electrolyte. These time constants are much smaller than the time con-
stant ascribed to the double layer charge/discharge experimentally,
which is usually in the range of few seconds.17 This difference is
attributed to two additional slower processes that affect the charge
balance, which are the electrochemical charge transfer reaction as a
source term and the diffusive charge transport in the electrolyte, both
of which depend on Li-ion concentration. As for the case of diffusion,
these time constants may depend on SOC when material properties or
Li concentration change at the interface. Also, changes at the inter-
face, such as the SEI, through which Li ions need to migrate between
electrolyte and active material, will lead to additional characteristic
time constants.

Temperature changes are described by an energy conservation
equation, with the accumulation term containing the change in in-
ner energy, and the energy leaving or entering being heat transport via
conduction and electric energy. The change in inner energy contains
the change in temperature, as well as the entropy and Gibbs energy
released during the electrochemical reaction. Taking into account heat
conduction as the main heat transport mechanism, the corresponding
time constant can be formulated analogous to that of diffusion as

τheat = x2ρcp

kheat
[6]

with the characteristic length x , the density ρ, heat capacity cp , and
heat conductivity kheat. Taking electrode thickness as the characteristic
length and typical values for the material constants,18 the time constant
is in the milliseconds range. However, technically relevant tempera-
ture gradients for Li-ion battery cells are rather occurring along the
length, height, or thickness of the complete battery. Depending on cell
design, a more appropriate length is therefore either the length of the
electrode or the thickness of the stack consisting of several electrodes,
separators, and current collectors. In this case, the time constants for
temperature of technical cells easily reach several minutes. Temper-
ature affects most material properties, and as such time constants of
non-thermal processes as well.

The slowest processes in battery cells are the degradation pro-
cesses, including SEI formation. Many different degradation processes
can occur in a Li-ion battery; furthermore, models for each degrada-
tion process are complex, which even more holds for formulating time
constants for them. These time constants depend strongly on operating
conditions. The same holds for the thermal runaway. Degradation and
the subsequent thermal runaway can thus take from a few minutes to
months. Last but not least, each degradation process affects the pro-
cesses in the battery in a specific manner, e.g. by modifying material
properties or even adding further processes, such as Li ion migration
through the SEI. As such, the respective time constants may change
or, as is the case for the SEI, new time constants need to be added.

Most research in the area of analyzing battery dynamics is on the
system level and focuses on reproducing, predicting, or controlling
batteries using dynamic models (see Mechanistic models, Equiva-
lent circuit and impedance models, and Data-driven models sections);
these models are often tailored to a given application, e.g. automo-
tive. Publications in this area usually do not analyze the origin of the
observed dynamic behavior or how to use insights on the dynamic
processes for better battery design, analysis, or operation. Other stud-
ies which are discussed in Dynamic measurement methods section,
focus on analyzing or interpreting dynamic measurements, such as
impedance spectroscopy, and on how to parameterize models. Such
research is mostly phenomenological, with resistances and capaci-
tances being extracted by the use of equivalent circuits. An approach
directed toward understanding the origin of dynamic behavior and its
link to time constants was started by the group of Newman.5 In the
last 20 years, there has been little systematic continuation of research
on time constants for Li-ion batteries despite their potential benefit
in developing deeper understanding of dynamic measurements that

) unless CC License in place (see abstract).  ecsdl.org/site/terms_use address. Redistribution subject to ECS terms of use (see 18.101.16.235Downloaded on 2019-01-14 to IP 

http://ecsdl.org/site/terms_use


Journal of The Electrochemical Society, 165 (16) A3656-A3673 (2018) A3659

Figure 3. (A) Nonlinear frequency response analysis and
(B) electrochemical impedance spectra of aged Li-ion bat-
teries. Region Ia: Diffusion-driven processes, Region Ib:
Reaction-driven processes, Region II: Transport/Interphase
processes of SEI (reprinted from Ref. 22 with permission
from Elsevier).

could be used in the design and operation of safer and better batteries.
The overview in the next section is hoped to catalyze research and
guide future activities in this direction.

Dynamic measurement methods.—As discussed in the previous
sections, batteries are frequently operated dynamically to follow load
demands, and various slow and fast processes take place in parallel
in the battery during such dynamic operation. These processes inter-
fere with each other and yield a complex dynamic behavior, which
is observable in the interplay of battery current and voltage vs. time.
Fast dynamic processes will govern the response within micro- and
milliseconds, whereas responses related to slow processes such as
solid diffusion will only be observable after longer response times.
The resulting overall dynamic response of the battery to a certain
change in voltage or current is thus characteristic for the processes
in its interior and, for a given design of a battery, its operating point,
state of charge, and state of health. Thus, dynamic signals contain sig-
nificantly more information on a battery’s state than a (quasi-)steady
state measurement point as recorded during a discharge curve, where
only the voltage is observed for a certain current, state of charge, and
operating point. Furthermore, dynamic measurements offer essential
insights into the state of the battery during operation which otherwise
can only be gained with highly expensive operando methods such as
X-ray microscopy.19,20 Such methods usually also require specially
designed in situ cells, i.e. they are not applicable to monitor full cells
in applications.

The dynamic response of current to a change in voltage or of volt-
age to changes in current is therefore used not only to evaluate how
fast a battery can deliver a certain power, but also to evaluate the pro-
cesses leading to good or bad performance and to determine its state
of charge and health. Dynamic measurements used in fundamental
research on material and batteries help to understand the behavior of
and processes in battery material and cells,21,22 and they are used to
parameterize or refine battery models.10,23 Finally, dynamic measure-
ments are essential parts of diagnostic tools to monitor the state of
health and state of charge of batteries,17,23–29 and they can be used to
design optimal battery operations, i.e. charging and discharging.30–32

Electrochemistry offers a variety of dynamic measurement meth-
ods that can be applied to batteries. The methods differ mostly in
the shape of the dynamic inlet signal, which may take the form of
step changes, impulses, ramps, sinusoidal signals or other defined or
random profiles.33 The latter often are application-specific. The anal-
ysis of the response to a step change in current or voltage is called
chronopotentiometry or chronoamperometry and yields a dynamic
change of voltage or current vs. time. The instantaneous response
within the first second is often used to determine internal electric
and ionic resistances, as the corresponding time constant of charge

transfer is in this range (see Dynamic processes and their time con-
stants section). Slower processes follow, so that the resulting response
contains – according to Fig. 2 – first the information on SEI transport,
reaction, and then on diffusion and heat transport. Fast Fourier Trans-
formation analysis of this signal may be done, if the step change is
within the linear range, to extract a characteristic linear frequency re-
sponse, i.e. an electrochemical impedance spectrum. Similarly, square
input signals may be used.34,35

The precise and standard way to record the linear frequency re-
sponse is by submitting the battery to a small sinusoidal change of
current (or voltage) and recording the sinusoidal response of voltage
(or current). Input frequency and output frequency ω are identical, and
the phase shift φ(ω) and ratio of amplitude �U (ω)

�I between both signals
are evaluated. Phase shift and amplitude ratio together constitute the
impedance Z (ω) of the cell:

Z (ω) = �U (ω)

�I
eiφ(ω) [7]

Electrochemical impedance spectra (EIS) are frequently plotted in
the Nyquist diagram for a wide range of inlet frequencies from
mHz to kHz. Typical spectra often resemble a composition of –
sometimes compressed or overlapping – semi-circles and optionally
tilted lines, as seen in Fig. 3b. Semicircles are usually attributed to
certain processes using their characteristic frequency.17,22 In contrast
to analysis of step changes, electrochemical impedance spectroscopy
allows a precise stimulation of processes with a certain time constant
by applying its corresponding frequency value. The transition from
one dominant process to a different characteristic process may be
visible in the spectra via changes of the angle and amplitude. This
characteristic change in slope may be better visible when applying
a data processing method such as distribution of relaxation times.36

However, this method requires the use of equivalent circuit models,
i.e. physically motivated empirical models (see Equivalent circuit and
impedance models section). EIS have been intensively used for esti-
mating the SOC and SOH, see e.g. Refs. 17, 23.

EIS is a linear analysis method, which simplifies interpretation
as a wide range of tools from the field of linear system analysis is
available. However, valuable information on the processes inside the
battery is ignored, as the linear analysis ignores the nonlinear na-
ture of the battery, which is reflected especially in the exponential
dependence of current to potential. The complexity and large num-
ber of processes and parameters in the cell lead often to non-unique
mapping of processes to features in the spectrum. As such, nonlinear
analysis methods are a very attractive alternative or complement to
EIS for batteries. For example, nonlinear frequency response analysis
analyzes the voltage (or current) resolving from subjecting the cell to
a sinusoidal input of large amplitude. This signal contains not only
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Figure 4. Scope of mechanistic models: Understanding, prediction, reproduction and control of physical states and behavior of Li-ion batteries.

sinusoidal responses Y1 with the same frequency as the inlet frequency,
but also higher harmonic responses at integer multiples of the inlet
frequency (Y2, Y3, ...). Typical frequency regions can be correlated to
that of EIS, as illustrated in Fig. 3 for cycle aging of Li-ion batteries.22

A comparison with EIS reveals that nonlinear frequency response
analysis offers essential additional information via a clear distinction
between linear processes such as transport through SEI (Region II)
and nonlinear processes (Region I). Our recent studies show that the
method may distinguish between different types of aging of a cell,
which is not the case for EIS.25 Nonlinear frequency response analy-
sis is thus especially attractive and useful for assessment of the SOH
and safety of a given battery. However, as the method is relatively
new, very few studies and experimental data is available and there is
little knowledge of how to interpret the spectra. Wolff et al.37 were the
first to simulate such spectra with mechanistic models and showed via
parameter variation the effect of the single processes and parameters
on the spectra. Future model-based research is recommended for a
quantitative and qualitative understanding and thus interpretation of
the spectra, including also aging effects.

Further methods used to investigate nonlinear cell behavior are
the dynamic EIS and the dynamic pulse method. Both methods pro-
vide current-dependent impedance spectra. With dynamic EIS, the
sinusoidal excitation is superimposed by an offset current. This offset
current leads to a nonlinear voltage response, which can be detected
and interpreted using the methods of the EIS.38 In analogy to dynamic
EIS, a pulse can also be superimposed with an offset current. The
advantages and disadvantages of the two methods are discussed in
Ref. 39.

Various dynamic operation scenarios, such as automotive driv-
ing cycles or dynamic charge strategies, may be used for training
and evaluating model-based SOH and SOC estimators. For example,
Charkhgard et al.40 estimated the SOC by analyzing the dynamic pulse
charging and the resulting noise, He et al.41 used a commuter driving
cycle and a resistance-capacitor model with data-driven methods to
estimate the SOC, while Klein et al.42 and Moura et al.43 used a driv-
ing cycle and a mechanistic model with observer to estimate SOC and
SOH and monitor cell states such as temperature. Few of these stud-
ies investigate internal state variables and processes during dynamic
operation, and most studies use artificial experimental data generated
from the model itself, leaving room for future studies.44

Mechanistic Models

The properties of battery cell components, especially of active
material and electrolyte, and of their geometrical arrangement de-
termine the properties and the dynamic behavior of battery cells.
Mechanistic models of Li-ion batteries aim to describe with math-
ematical equations, based on physical and chemical knowledge, the
processes occurring in or between the components and the resulting
battery performance and state, e.g. SoH or SOC. The major pro-
cesses that are covered in models thus are electrochemical reactions;
mass, charge, and heat transport; and unwanted chemical side reac-
tions or deformation of components leading to degradation of cell
performance. The local accumulation of chemical species, charge,
and energy, and the degradation and deformation processes finally

lead to the dynamic behavior of a cell (details on processes and dy-
namics see Dynamic processes and their time constants section). The
scope of the mechanistic models is illustrated in Fig. 4. Experimen-
tally, only a small portion of the dynamics can be directly measured,
whereas mechanistic models can reveal the dynamics of all processes
modeled. In addition, they can give an insight into the underlying
causes and interactions and thus allow the interpretation of the ex-
perimentally observed dynamic behavior (see also Dynamic mea-
surement methods section). This insight and the reproduction of the
experimentally observed behavior is, though, limited by the physico-
chemical phenomena covered by the model, and by the accuracy
of the corresponding mathematical descriptions and model parame-
ters. Model parameters that cannot be measured directly, e.g. using
porosimetry, or estimated theoretically, e.g. using quantum-chemical
simulations, need to be determined by adjusting the model output to
experimental cell behavior. Determining highly accurate parameters
is a cumbersome and tedious process,45 and uncertainties and ambigu-
ities in parameter estimation may lead to systematic and large errors
in simulation output, and as such in the conclusions drawn regarding
performance and state. This problem is especially severe when the
model should be used for control or state estimation of commercial
cells, as for commercial cells often barely any information is known on
the components and their parameters. Besides the model formulation
and parameter estimation, also the numerical implementation of the
model and the simulation process determine accuracy of the simulation
result.

As a rule, a model that describes all dynamic processes at all levels
is neither feasible nor usable. Mechanistic models of batteries always
need to be tailored to the purpose of usage, e.g. the scientific question
to be answered or the quality and speed with which a state or behavior
of the cell should be estimated, predicted or adjusted.

Models for analysis and diagnosis purposes employ detailed de-
scriptions of the phenomena and processes to maximize insight into
the property of interest, and thus are often multidimensional, mul-
tiphysical, and computationally slow. For control and optimization
purposes, usually simplified and computationally fast models with
a limited description of the phenomena are developed. Nevertheless
there is also a need of sufficient physical insight for operation, e.g.
for a state estimator, and of fast computation for diagnosis, e.g. to
enable parameter identification. Decades of research have aimed to
develop new models or model modifications which allow more ef-
ficient computation of phenomena, more detailed physical insight,
better resolution of heterogeneity, or simulation of actual geometries.
The next section provides an overview of the most commonly used
mechanistic model approaches for the simulation of dynamic pro-
cesses in Li-ion batteries, their fields of application and future trends.
The discussion focuses on particular application of those models for
operation and diagnosis and incorporate kinetics, thermodynamics,
and degradation.

Single-cell models with homogeneous electrodes.—Battery mod-
eling often focuses on analyzing and optimizing the performance
of a single homogenized electrode-separator-electrode unit, i.e.
a single cell. The most commonly used mechanistic model for
single cells is the pseudo-two-dimensional (P2D) model.46 Good
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Figure 5. Illustration of the pseudo-two-dimensional battery model and its output.

agreement to experimentally recorded discharge curves and its
computational efficiency, which allows simulations from short to long
time scales, makes the P2D model a good compromise for a wide
range of applications. Figure 5 illustrates the idea of the P2D model,
the main processes implemented in the model, and typical simulation
outputs, i.e. discharge curves and impedance spectra.

P2D models usually include lithium-ion accumulation and dif-
fusion as well as electrical charge transport in one dimension x in
the direction of electrode thickness, electrochemical reactions at both
electrodes, and the diffusion and accumulation of intercalated lithium
into the active material particles in a second dimension r . The model
allows the modeling of electrochemical performance and SOC, while
also providing important insights into the cell state via local potential,
concentration, and reaction rate. In the P2D model, electrodes are
modeled as homogeneous multiphase systems based on porous elec-
trode theory.47 The actual scope depends on the particular implemen-
tation, and thus various models with similar structure are still widely
used and under development. In the following, some common exten-
sions and modifications are discussed, which include chemical and
mechanical degradation, temperature accumulation and charge accu-
mulation, i.e. double layer charging, at the electrochemical interface.

Inclusion of the rapid double layer (dis)charging process at the par-
ticle surface48 is not required for modeling constant charge/discharge
operation, as the double layer is in quasi-steady state after very few
seconds (see Dynamic processes and their time constants section).
However, the inclusion of this process does enable simulation of EIS49

and nonlinear frequency response.37 To simulate EIS, two distinct ap-
proaches exist; either equations are transformed into the frequency
domain and solved analytically,50 or the model is evaluated in the time
domain and simulation output is transferred via fast Fourier transfor-
mation. The latter approach can be also used for nonlinear frequency
response analysis.37 The double layer charging/discharging process
becomes relevant when highly dynamic current profiles including
ramps or step changes are applied and the response in the first sec-
onds is of interest. Besides Legrand,51 who included the double layer
to model ramps, most other works neglect this voltage dynamics. The
double layer is also ignored for models that simulate driving cycles of
electric vehicles, as those models focus on a larger time scale.42,43

Most of the processes, such as diffusion and electrochemical re-
actions, strongly depend on cell internal temperature. Moreover, heat
generation within the cell is the result of multiple physical processes
(see Dynamic processes and their time constants section). Besides
current and voltage, the cell temperature is the only variable that
can be manipulated from outside the cell during operation, and it
has a significant impact on performance, safety, and degradation.

During operation of Li-ion battery cells in many applications, such
as electric cars, the temperature frequently changes due to cell in-
ternal heating, environmental conditions, or active cooling systems.
Therefore, an accurate consideration of temperature dependency and
heat generation is usually essential for diagnosis and control, and
may only be excluded for diagnosis of small cell formats and slow
charging under temperature-controlled laboratory conditions. Mech-
anistic models considering temperature and heat generation require
an extension of the classical model equations and parameters.52,53

Temperature dependence of parameters such as for diffusion coef-
ficients or reaction rates usually enters the models via Arrhenius
terms using activation energies, which can be estimated for instance
by pulse tests at various temperatures and current rates.54 As most
transport and reaction parameters are temperature dependent with
different activation energies, identification of a unique set remains
challenging.

Degradation of Li-ion batteries inevitably occurs during opera-
tions. As degradation affects many processes and parameters in the
cell including time constants and quasi-steady-state cell performance;
extending P2D models toward degradation is essential. Most model
extensions regarding degradation consider the solid electrolyte inter-
face (SEI) at the negative electrode, which results in a decrease in
capacity and SOH, and in increased ion transport resistance. The ma-
jor impact of the SEI film on the dynamic behavior of Li-ion batteries
can be covered by implementing an additional resistance at the surface
of the particle55 and a shift of open circuit potentials of the electrodes.
Simulation of the impact on EIS requires using models with an addi-
tional double layer capacitance.49 Such models are applicable for the
simulation of battery behavior for different surface film thicknesses,
and may in future be used to estimate the film thickness based on
measurement data. However, simulation of transient changes of bat-
tery performance over a long time scale, as needed to predict cell
aging, requires the implementation of a film growth. The growth rate
decreases with increasing film thickness, which has been implemented
as a diffusion-limited56 or kinetic-limited57 process. However, the ac-
tual physical causes are still under discussion. Due to volume change
of active material during lithiation/delithiation, active material par-
ticles and electrode structures, are stressed mechanically, which can
lead to cracks in particle and electrodes and loss of active material.58,59

A combination with SEI modeling60 is of high interest, because the
volume expansion can cause SEI destruction and reformation. To bet-
ter understand degradation in Li-ion batteries, future studies should
focus on the interaction of various degradation processes and impact
of local conditions, such as local current densities and temperature.
However, distributed or multiscale models seem to be more suitable
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for this purpose, as many degradation processes originate or spread
from heterogeneity in the cell (see below).

P2D models describe physicochemical processes by using more
than fifteen parameters containing geometric information, such as
layer thicknesses, porosity and average particle sizes, material prop-
erties such as diffusion coefficients and conductivities, and further
parameters such as active surface area, exchange current density, and
initial concentrations. Many of these parameters are available at the
manufacturer; while geometric information is more easy to acquire,
other parameters are more intricate, and may not be directly mea-
surable. Further, many parameters have a strong nonlinear depen-
dency on temperature, which requires careful parameterization of the
model with electrochemical measurements, such as charge/discharge
curves61 or electrochemical impedance spectroscopy.62 Half cell mea-
surements allow to separately measure – and thus parameterize –
negative and positive electrodes, but they are challenging. Indeed, the
uniqueness of the identified parameter set is debatable, especially if
parameter estimation involves a high number of parameters that are
jointly identified using only discharge curves or only electrochemi-
cal impedance spectra. Furthermore, parameters may be sensitive to
changes in the manufacturing procedure.63 Already small changes in
the production process of electrodes were shown to strongly impact
internal electrode parameters identified by the model.64 In addition,
measurement errors or fluctuations caused by the production process
can cause quite large uncertainties in parameters and as such in sub-
sequently identified parameters and the predicted performance of the
model. Uncertainty quantification and global sensitivity analysis are
excellent methods to identify how accurate parameters are required
to be measured or adjusted in production.63,65 Identifying more accu-
rate model parameters improves the accuracy of the predicted model
results. Furthermore, knowing which battery parameters to focus on
during production and adjusting them more accurately will allow the
minimization of performance fluctuations occurring during produc-
tion. More sophisticated parameterization and uncertainty analysis
thus are important future research directions. Better established and
reliable methodologies for parameterization furthermore will make
switching from easily parameterizable (semi-)empirical models, such
as equivalent circuit models, more attractive.

P2D models are often an adequate platform to better understand
cells, e.g. the effect of cell design and operation on performance and
to get an insight into the limiting processes or process interactions.
P2D models are too lumped or simplified to describe processes at the
molecular level or their the complex electrode structure and composi-
tion. On the other hand, their computational cost is often too high and
further simplifications are usually done before application of model
predictive control or state estimation.32,66,67 Several approaches for
model reduction of the P2D model are possible. Reductions can be
motivated either by the need for computationally faster models or by
focusing on only on those features that the model is required to have
for a certain task. A widely applied reduction is the single-particle
model, where the distribution of current, voltage, and concentration
along the electrode layer is neglected, and the layer is represented by
a single particle, respectively.68 This approximation is good as long
as electrolyte concentration or electrical potential is homogeneous
along the thickness of the electrode, which is often the case for slow
charging/discharging, thin film electrodes,69 or fast ionic and elec-
trical conductivity. A further frequently applied model reduction is
the approximation of the diffusion process inside the active material.
Approximations can be a polynomial68 or analytical.70 Alternatively,
the concentration gradient may be neglected, which can be sufficiently
accurate for active materials with fast diffusion or short diffusion path-
ways, i.e. small particles. In general, thermal aspects,71 chemical72 and
mechanical degradation73 and double layer capacitance50 can be con-
sidered comparable to P2D model. With the physically motivated sim-
plifications as discussed here, computational efficiency of the model
can be increased considerably. Another possibility is to reformulate
the model implementation and numerics to decrease computational
cost.74–76 This approach may facilitate their application for operation
in a real-time optimization in nonlinear model predictive control32,75,77

Models for large-scale cells and battery modules.—Actual tech-
nical batteries are hierarchical structures that are composed of mod-
ules, which are composed of large-scale cells connected in parallel or
sequence; the cells may again consist of several stacked single cell
layers or may be composed of just one long rolled or folded electrode-
separator-electrode entity. The composition and geometry of the cells
and modules are tailored to the application and considerably impact
performance and dynamic behavior of the battery. Uneven concentra-
tion and temperature distributions are typical features of large cells,
causing complex dynamic behavior and bearing the risk of producing
local sub-optimal or even safety-critical conditions. The distributed
nature of the battery makes intuitive battery design and operation dif-
ficult, which holds even more for dynamic operation, and thus favors
the use of mechanistic models with high spacial discretization.

3D simulation of the electrochemical processes in larger cells is
computationally expensive and numerically challenging. To overcome
this problem, the battery model can be decomposed into a 1D electro-
chemical model for describing the processes in the cell, coupled to a
2D resistor network and a 3D thermal model.78 This approach is moti-
vated by the fact that transport of electrical charge and heat conduction
are major processes, which are on a significantly larger length – and
thus time – scale than the electrochemical processes taking place over
the thickness of one electrode or electrode-separator-electrode entity.
Such multi-physical models enable dynamic simulation of the in-
teraction between thermal, electrical, and electrochemical processes.
Various tailored models have been developed to analyze spacial dis-
tribution of degradation, e.g. SEI growth,79 thermal and mechanical80

abuse, several cells in series81 and whole battery packs including the
cooling system.82 Moreover, these models can be used to investigate
the impact of dynamic operation of the batteries on heat generation,83

which showed that uneven heat generation in battery packs are most
critical with cycling in narrow state of charge ranges and pulse load-
ing and may lead to uneven load of the battery, localized heating, and
thermal runaways. In general these models are applied to aid design
of battery packs, their temperature management, and optimal opera-
tion strategies to improve performance, life time, or safety. However,
for an online prediction or state estimation for control purposes, the
computational cost needs to be reduced significantly. Global sensi-
tivity analysis on such high dimensional electrochemical models can
indicate which parameters most affect performance or safety critical
conditions, and may thus motivate future model reduction.84

Models with heterogeneity in electrodes.—Porous electrodes in
most battery types, such as Li-ion batteries, are highly heterogeneous
systems that have pore and particle size distributions, and their com-
position and arrangement inside the electrode is heterogeneous as
well. In P2D models, this heterogeneity is homogenized based on
porous electrode theory. Even though homogenization might often
be sufficient for reproducing the overall performance of a battery, it
is insufficient for diagnosing and predicting electrode performance
for specific structures and for understanding certain degradation or
dynamic effects triggered by local heterogeneity, e.g. local current
densities or temperatures. As a consequence, a few works have come
up in the last years that include heterogeneity in electrode models.
Further, some key processes in batteries are on very small length
scales, which cannot be modeled by continuum approaches, but af-
fect the overall macroscopic processes. Examples are atom-to-atom
interaction in degradation reactions leading to SEI film growth. Un-
derstanding these processes and their effect and interaction with other
processes and cell performance would enable knowledge-based de-
sign and control with the aim to avoid degradation and failure, and
to increase energy or power density or fast charging. Understand-
ing is barely possible using only experiments, so mechanistic models
covering these phenomena are essential. Modeling of both aspects,
i.e. consideration of inherent heterogeneity of battery electrodes and
meso- and nanoscale processes, that determine the overall dynamic
behavior are discussed below.

In general, explicit and statistical heterogeneity can be distin-
guished. Few models explicitly model the transport and reaction
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phenomena in consideration of the microstructure in 2D85 and 3D;86

microstructures may be experimentally recorded by computer tomog-
raphy or stochastically generated.87 Since the resolution of the particle
compartment in an electrode is computationally very expensive and
numerically challenging, in some models only a representative part
of the microstructure is simulated using surrogate models and is ei-
ther directly88 or indirectly89 coupled with a homogeneous model.
Further, models are available that consider details about heteroge-
neous particle particle interaction and electron transport to gain a
more accurate understanding of the impact of particle properties such
as size- and volume-fraction distribution.90 Those models can be ap-
plied in diagnosis and design of those structural aspects, which is
not possible with homogeneous models, where aspects are reduced
and concentrated by application of effective parameters. Of special
interest are models that allow the study and reproduction of the mul-
tiple solid phases during charge and discharge, and the resulting un-
even particle-by-particle (dis)charging in an electrode and hysteresis
behavior;91,92 the single-particle model is found not to reproduce the
observed hysteresis behavior.93 Whether multiple solid phases occur
is strongly material dependent, with these citated studies focusing on
iron phosphate cathode materials. To avoid explicit consideration of
complex structures, efforts have been made to consider the particle
size distribution as statistical property in homogeneous electrochemi-
cal models to simulate performance94 or degradation.95,96 Using such
multi-particle models enables a better agreement of simulation results
in particular for higher discharge rates.97 This approach has been used
to identify the change of particle size distribution due to aging of the
cell with the aid of EIS simulations.96 The application of population
balances to model a continuous change of particle size distribution
has been demonstrated,95 and it revealed that large and small particles
are stressed differently due to strongly varying local charge. Such in-
formation could be used to predict the lifetime of batteries for a given
operating profile. In general, models including heterogeneity are com-
putationally more expensive compared to homogeneous models, but
enable a more detailed insight for diagnosis. As such, their value and
limitation for estimating SOH and SOC needs to be investigated fur-
ther. Statistical heterogeneity or surrogate models can nevertheless
enable to include this information with a reasonable computational
effort.

Besides the inherent heterogeneity of electrodes, several physical
processes on meso- and nanoscale show complex nonideal behavior
and strongly interact over multiple scales, which is often insufficiently
considered by homogeneous models. Multi- and mesoscale models
have been developed to enable a more accurate consideration of
these phenomena than the previously described lumped models can
do. Models have been developed to simulate the structure of the
electrochemical double layer at non-equilibrium conditions, which
enables consideration of its structure on the redox reactions.98 In
particular, as soon as a considerable amount of charge is stored in the
electrochemical double layer, e.g. in electrochemical supercapacitors,
the three-dimensional structure of the electrochemical double layer
should be taken into account.99 Other mesoscale models have been
applied to investigate the transport of ions and electrons in solid
material, which is used to understand material specific limitations
and enable a tailored design of material structures to achieve higher
performance.100 Diffusion coefficients are often considered as con-
stant in homogeneous models; however, mesoscale models101 reveal
that diffusion coefficients in solid material can vary in orders of mag-
nitude with concentration. The change of small sized pores in porous
electrodes can significantly impact the performance of batteries, which
can be predicted using kinetic Monte Carlo simulations.102 In context
of chemical degradation, similar techniques have been applied to in-
vestigate passivation of the negative electrode surface through hetero-
geneous side reaction.103 Such models can be further directly coupled
to homogeneous cell models though multiscale simulation and reveal
the interaction between macroscopic properties, such as particle size,
and atomistic reaction mechanisms, e.g. SEI growth.104 Meso- and
multiscale models are currently underestimated compared to their
importance for battery operation, diagnosis, and design. Further, these

techniques allow consideration of first-principles information gained
by molecular or density functional theory simulations. This approach
enables part-wise parameterization of models; however, ab-initio
simulations mostly consider ideal surfaces and it remains a challenge
for the future to get accurate parameters for technical electrodes.105

In combination with multiscale algorithms, this approach enables
simulation of dynamic processes over a wide range of length and time
scales. There are promising experimental and theoretical tools and
concepts available for understanding detailed chemistry and transport
phenomena in batteries so we expect increasing application in the
future.

Equivalent Circuit and Impedance Models

A common phenomenological approach to simulate the dynamic
behavior of cells or battery systems is the usage of equivalent circuit
models (ECMs). These models consist of simple electrical elements
which represent the dominating electrochemical processes within a
cell. The number of model parameters can be reduced by omitting or
lumping electrochemical processes and physical effects; this holds es-
pecially, if they occur at similar time constants, where they may not be
separated with dynamic experiments. As such, ECMs are mainly used
to simulate key performance parameters such as power, energy and
heat generation under a wide range of operating conditions. Further-
more, ECMs can easily be scaled up to battery up to system models.

ECM can be classified in approaches containing elements that
reproduce physical electrochemical processes and effects, and in ap-
proaches that don’t. In models without electrochemical considerations
the electrical cell behavior is usually described by an arbitrary num-
ber of RC elements, where each element contains a resistance (R)
and capacitor (C) connected in parallel. Usually the impact of an RC
element is independent from other RC elements; thereby they have no
interaction with each other. This allows an extremely fast calculation
and simple implementation. Possible fields of application including
online parameterization of these models are discussed in detail in
Simple and phenomenological equivalent circuit models section and
Fusing data-driven modeling with other model types: grey box mod-
eling section. However, due to the lack of electrochemical relations,
interpolation and extrapolation with the model and its parameters un-
der all operating conditions are not possible or at least only up to
certain extent.

In contrast, an electrochemically motivated ECM that contains
known physical dependencies enables interpolation and extrapolation
of model parameters. These models can be categorized into models
with spatially lumped and distributed parameters. In addition, ele-
ments and equations with fractional derivatives are typically used
for description of porous structures. The electrochemical ECMs are
usually assigned to the cell components which are anode (negative
electrode), cathode (positive electrode), electrolyte, separator and cur-
rent collector.106,107 The advantage of the ECM approach is that the
measured current or voltage response of the cell corresponds to an
averaged physical quantity of all parallel processes across all parti-
cles with the respective current and concentration distributions. This
leads to a considerable reduction of model order. Ecker108 presented
that even half cells, i.e. test cells with only one technical electrode,
may be simulated by ECMs using a more detailed description of the
electrodes. Furthermore, the author simulates the particle to particle
interactions and the associated current and concentration distribution
in the electrodes. The model approaches presented and discussed in
the following differ considerably in terms of measurement, parame-
terization and implementation as well as computing time.

The quality of the model depends directly on the quality of the
measurements. Cell effects which account for only a small proportion
of the total cell behavior, are usually neglected as they often cannot
be detected with the present measurement methodology and measure-
ment technology. This means that an increase in the quality of ECMs
can only be achieved by further development of the measurement
methodology and measurement technology.
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Simple and phenomenological equivalent circuit models.—The
most popular way to describe and reproduce battery dynamics is
by a simple ECM. In the simplest case, ECMs consist of an SOC-
dependent voltage source in series with a resistor and one or more
RC circuits.109–111 This choice is primarily due to the early prevalence
of models for battery management systems for portable electronics,
where the approximation of the battery model with an ECM is ade-
quate. This modeling approach was then extended to Li-ion batteries
for automotive or similar energy storage applications. However, di-
rect application of equivalent circuit models for battery-management-
systems can lead to two drawbacks. First, the theoretical basis for ECM
is often based on the response of the battery to a low-amplitude ac sig-
nal. Due to the nonlinear battery dynamics for large currents (see 2.3),
these ECMs have limited prediction capabilities for high power appli-
cations such as in the field of automotive applications, where higher
accuracy is required compared to portable electronic applications.
The standard ECM can be extended by making the circuit parameters
depend on SOC and temperature, or even the applied current.112–116

However, this approach highlights the second drawback, wherein a
large number of parameters is needed to fit the extended ECM. Fur-
thermore, since these parameters turn into mere fitting parameters for
the model, the physical intuition behind the meaning of these param-
eters in an ECM is lost.

A more empirical approach is presented in Refs. 117–119 where
state space models of the battery are used together with state and
parameter estimation algorithms. Further developments of parameter
estimation for battery management systems of hybrid electric vehicles
are reported in Refs. 120,121 While this approach seems promising at
first, the same drawbacks as in ECM are encountered: lack of extrap-
olation capability due to the simplistic model, and lack of physical
relevance of the model parameters.

Since simple ECM models do not contain physical or electrochem-
ical models, their parameters are typically time constants. Often pulses
are used to determine these parameters. The parameters are stored in
lookup tables or polynomial without physical relations.122 Thus, an
interpolation and extrapolation is only possible to a very limited ex-
tent. It is necessary to point out that even if the extrapolation capability
of ECM can be further improved, such a model often does not pro-
vide any insight into internal physical processes occurring inside the
battery as can be offered by mechanistic models. Thus, models cov-
ering the processes in the battery more detailed are advantageous if
increased performance and battery life are critical factors, such as in
automotive and energy storage applications.

Equivalent circuit models based on electrochemical processes.—
ECMs that are derived from electrochemical effects and processes are
usually used to optimize the design of battery systems considering
energy content, cooling and performance as well as for concept evalu-
ations. Identification and parameterization of the individual processes
as well as model order reduction are mainly carried out by analyzing
EIS in the frequency domain or by using the distribution of relax-
ation times method. However, the determination of highly precise and
reliable measurement curves is challenging and requires a lot of ex-
perience, as these curves are influenced by many disturbing effects.
In order to minimize errors, an optimal combination of measuring
and evaluation methods must be selected (see Dynamic measurement
methods section). Using impedances always requires paying attention
to the amplitude of the current signal to prevent nonlinear responses
and damaging of cell. In addition, there is always a compromise be-
tween the amplitude of the excitation signal and the resolution of the
measuring system. A drawback of evaluation with the distribution of
relaxation times method is the necessary filter. The filter is essential
to separate the individual processes more clearly, but it may disturb
or distort the results and resulting time constants.123

Figure 6 shows a typical procedure for creating an electrochemical
ECM. The process incorporates and combines a variety of different
ECM components and has been set up to contain elements that cover
the main dynamic processes in cells and reproduce its cell behavior
as done in Refs. 124–128 The starting point of the modeling is a

sectional view of the cell (Figure 6a). There, electrical elements are
drawn representing the physical effects and processes. In the next step,
the model structure is created using the recorded cell impedance (see
Figure 6c) and the model order is reduced by combining the elements.

The ECM shown in Figure 6b is a typical and flexible core model,
which is often a good basis for EC modeling. An advantage of the
presented approach is the modular design, which allows an extension
to further cell effects, such as hysteresis, reversible heat generation
and temperature dependence of the OCV (entropy change) as well as
diffusion-limiting effects. In contrast to ECMs with a separate view of
the negative and positive electrode, no destruction of the cell is nec-
essary for the parameterization. The underlying reason is that ECMs
with a differentiating view of electrodes need a separate measurement
of negative and positive electrode. This can be done at cells where a
reference electrode is installed inside as done in Ref. 106 It should
be noted that it presently is challenging to guarantee that the refer-
ence electrode itself does not influence the measurement. The most
important disturbances are the long-term stability of the reference and
the change in the current density distribution within the cell due to
the additional reference electrode. In order to prevent the influence
of reference electrode, a symmetrical cell (negative electrode-negative
electrode or positive electrode - positive electrode) can be constructed.
The problem here is that a cell opening must be performed at a mini-
mum of 50 percent SOC to remove the electrodes and to build a full
chargeable cell. Though the here discussed ECMs are physically mo-
tivated, parameterization in general is conducted without taking into
account measured material parameters. This is in contrast to mecha-
nistic modeling, where physical parameters may require extensive and
complex measurements, such as porosity or microscopy (see Single-
cell models with homogeneous electrodes section).

The elements of the ECM and their correlation to physical pro-
cesses as shown in Figure 6 can be combined easily to reproduce
the features of the experimental impedance spectra in the frequency
domain. However, the transformation of these elements into the time
domain is not trivial. Possible approximations and transformation
into the time domain are discussed below. The dynamic processes
presented in Dynamic processes and their time constants section are
usually condensed to four processes related to potential losses, i.e.
impedances, when setting up ECMs, as they are easily identifiable in
the impedance spectrum. These are the inductive losses of metallic
elements in the cell, the ohmic resistance as the sum of electrolyte,
separator, current collector and electrical conductivity of the active
material, the double layer and charge transfer effects at the solid elec-
trolyte interfaces of the electrodes and the ionic mass transport within
the electrodes.129

To describe the dynamics of the double layer and the charge trans-
fer, an RC element is often used. A closer look at the EIS and distribu-
tion of relaxation times method reveals that a simple RC element does
not adequately reproduce the observed depressed semicircle, which
is a characteristic feature for porous electrodes. In many cases, the
RC element is extended to a so-called ZARC element. It consists of
an ohmic resistance and a parallel connected constant-phase element,
which allows a representation of the porous electrode structure:

Z Z ARC = R

1 + R · Q · (iω)α
[8]

The parameter α is a function of porosity, R is the charge trans-
fer resistance and Q is the double layer capacity. Equation 8 cannot
be transformed into the time domain with a finite calculation rule.
Many different approaches to approximate transformations do exist.
In Ref. 130 a good agreement can be achieved by using 3 or 5 RC
elements for reproducing spectra with a range of α from 0.6 to 1. The
charge transfer is reproduced with an ohmic resistance R which has a
temperature dependence according to Arrhenius and also has an SOC
dependency.123,128 For currents causing a voltage drop of more than
25 mV at room temperature, the nonlinear current-voltage relation
must be taken into account. This leads to a reduced charge transfer
resistance at high currents, which is usually described by the Butler-
Volmer equation. The current dependence of the resistance can be
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Figure 6. Example for ECM components and physical
equivalences, a) sectional view of the cell with physical phe-
nomena reproduced by electric circuit elements, b) resulting
ECM consists of a resistor, two ZARC elements modeled
by an ohmic resistance and a parallel connected constant-
phase element, a finite length Warburg (FLW) and a finite
space Warburg (FSW), c) cell impedance spectra with the
respective decomposition into electric circuit components.

determined by the change of the semicircles in the impedance spec-
trum. In the literature, often non-physical parameters for the cathodic
and anodic charge transfer coefficient as well as the number of elec-
trons involved in the electrode reaction were determined so far, leaving
room for further improvements.

Fick’s first and second law can be used in order to describe the
usually slow Li-ion diffusion within the electrodes (see Mechanistic
models section). The resulting equation for a semi-infinite diffusion
layer is called Warburg impedance. In the frequency domain, the
Warburg impedance is a line with a slope of –45 degree. Two additional
Warburg elements can be formulated under idealized conditions and
limited diffusion: finite length Warburg and finite space Warburg.129

The finite length Warburg can be derived directly from Fick’s laws
with an ideal reservoir and a diffusion layer between it and the surface.
At very low frequencies the finite length Warburg has the behavior of
an ohmic resistor. In opposite to the finite length Warburg, the finite
space Warburg has a fixed amount of electroactive substance. This
leads to a capacitive behavior at low frequencies. In Refs. 106,127 the
three basic Warburg elements are presented and discussed in detail. For
diffusion with non-ideal boundary conditions, the Warburg elements
can be extended and generalized. The influence of the pore geometry
and the impacts of the particle distribution on the diffusion behavior
of a cell is investigated in Refs. 131,132 Furthermore, 1-, 2- and
3-dimensional diffusion can be classified.106 For the use of Warburg
elements in ECM, a transformation into the time domain is necessary.
A common transformation approach uses a transmission line model
consist of an RC ladder network. It can be shown that the Warburg
elements and transmission line models lead to the same mathematical
formula.125 Transformation approaches into the time domain for all
diffusion types are presented in Refs. 106,107,133,134 The Warburg
elements can be parametrized by using the impedance and the OCV

slope. The behavior of an electrode can be modeled by connecting the
double layer model with the diffusion elements. A common approach
to describe the electrode behavior is given by the Randles model.135

For real cells and time constants a serial connection of the ZARC
element with the Warburg element is possible (see Figure 6) which
leads to good agreement to the Randles model.106

With ECM aging effects and processes can only be calculated and
predicted to a limited extend. The main reason for this is that aging
is related to a series of different factors, which have are complex
influence on the cell performance and their impacts on cell impedance
are not understood well yet. In Ref. 136 the effects of artifical aging of
cells under laboratory conditions on the impedance and the extracted
ECM parameters are investigated.

The ECM for cells shown in Figure 6b can easily be extended to
a battery system model. In Figure 7, a common model approach for
a battery system is presented. This battery model contains different
approaches and is reduced to the essential components as done in
Refs. 125,126,137 The battery model consists of the electrical ECM,
the thermal model and the model parameter sets. Such models allow
online monitoring and control of batteries; the behavior is usually re-
produced by simulating the response of the electrical-thermal model
to a given current. The output signals of the electrical model are the
voltage and the irreversible heat generation. The model parameters
required for this purpose are determined from offline measurements
carried out in advance. The inputs of the thermal model are the irre-
versible heat generation and the reversible heat generation due to the
entropy change as well as the heat transfer to the cooling system or
environment. Thus, the temperature change can be calculated. Due to
the interaction of thermal and electrical processes in the model, the
battery behavior can be predicted under a wide range of operating
conditions.
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Figure 7. Typical battery system model to calculate the voltage response V and the heat generation Q̇ cooling system to a given current I. The blue boxes calculate
the output and internal values online by the use of the offline determined measurement curves (gray boxes). The solid line are the in- and output parameters and
the dashed line represents the internal values of the battery system model. The internal values are the state of charge SOC, the charge transfer resistance Rx and the
double layer capacity Cx for different conditions, the derivative of the OCV Cdi f f , the reversible and irreversible heat generation Q̇ rev and Q̇ irr , the temperature
T as well as the temperature dependent open circuit voltage OCV(T).

Data-driven Models

Data-driven modeling techniques use historical data, real-time
data, or both138–141 for the purpose of monitoring, diagnosis, design,
understanding of physical phenomena and operation. This section
considers data-driven methods for the prediction or estimation of the
state of Li-ion cells and batteries.

Figure 8 is a schematic on data-driven algorithms used to map the
features of batteries commonly reported in the literature.

Most of the literature on data-driven methods is on the most im-
portant variables for the diagnosis and operation of batteries, SOC
and SOH (see Introduction section). The main advantage of data-
driven methods is that the underlying complicated physicochemical
processes (see the discussion in Dynamic operation and changes in
battery state and Dynamic processes and their time constants sec-
tions) that govern the SOC or SOH of Li-ion batteries do not need to
be known. Instead, data-driven algorithms learn relationships between
states and performance features empirically by using historical and/or
real-time operational data. Some characteristics and features of Li-ion
battery performance are vital to correlate to the SOC or SOH of the
batteries. For example, the open circuit voltage (OCV) is a function of
both SOC and SOH. Further, the peaks of incremental capacity (IC)
curves, where IC = dCAh/dV is plotted vs. cell voltage V of batteries,
reflect the aging of batteries, which in turn can be used to quantify the
SOH of batteries.

The main objective of data-driven algorithms for Li-ion batteries is
to learn the relationships between these measurable key performance
features and the SOC or SOH, for use in the estimation of the SOC
and prediction of the SOH.

This section broadly categories data-driven modeling techniques
into two main groups: (1) black-box modeling and (2) gray-box mod-
eling, where the data-driven modeling is coupled to another model
type. Furthermore, data-driven modeling techniques can be subcate-
gorized as online (aka on-board, on-the-fly, or real-time) and offline.
Most online algorithms mainly utilize partially dynamic data while

offline algorithms are mostly based on full-cycle data. As tracking
and optimization of the state of batteries are essential for most prac-
tical applications, online algorithms are more relevant than offline
algorithms for most practical applications. Online algorithms are es-
pecially relevant for applications in electric vehicles, hybrid electric
vehicles, and plug-in hybrid electric vehicles.

The next two sections discuss black-box and gray-box modeling
in SOC estimation and SOH prediction for Li-ion batteries, which has
the been the main focus of the literature. Remarks and perspectives
section discusses the application of these methods to other operational
variables.

Black-box modeling.—In black-box modeling, c.f. Figure 9, the
relationships between battery features (or characteristics) and SOC or
SOH are learned completely based on historical or operational data. In
general, the underlying relationships are nonlinear, so nonlinear data-
fitting algorithms are applied for SOC estimation and SOH prediction.

Incremental capacity analysis is a common technique142 to analyze
the capacity fade of Li-ion batteries. The capacity fade was mainly
due to the SEI formation at the negative electrode (see the discussion
in Dynamic operation and changes in battery state section). As SOH
can be quantified via capacity fade, incremental capacity analysis is
an effective tool to predict the SOH. The basic idea of using it for
SOH monitoring is first to fit the charged capacity (CAh) vs. battery
voltage using either full-cycle data or normal operational data. Then
the identified model is used to determine the IC peaks analytically.
As IC peaks are sensitive to capacity fade – IC peaks decrease as
battery capacity fades – the next step is to fit a correlation between
the highest sensitive IC peak and the amount of capacity fade. The
identified IC peak-capacity correlation can then be used to predict the
SOH of the battery. Figure 9 shows the basic concept of ICA-based
SOH prediction for Li-ion batteries.

Machine learning algorithms such as support vector regression
have been applied to identify the underlying nonlinear correlations
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Figure 8. Popular data-driven algorithms, battery characteristics, and features for state-of-charge (SOC) estimation and state-of-health (SOH) prediction. Black-
box approaches are completely based on data and no physically motivated model structure is assumed, while gray-box approaches are based on fusing a physically
motivated model as well as data-driven techniques. The abbreviated terms for the techniques are support vector machine (SVM), Gaussian process regression
(GPR), least squares (LS), neural network (NN), genetic algorithm (GA), recursive least square (RLS), Kalman filter (KL), unscented Kalman filter (UKF),
extended Kalman filter (EKF), and singular value decomposition (SVD).

Figure 9. An example of black-box modeling: a basic framework of state-of-health (SOH) prediction by using the incremental capacity analysis (ICA) method.

between battery features and the SOH or SOC. The basic idea of
support vector regression is to map the input space data via a non-
linear function into a feature space such that a linear regression can
be formulated in the feature space. Support vector regression ap-
proaches attempt to achieve generalized predicting power by using
sample data.143 A sparse algorithm is proposed in Ref. 144 to fit the
CAh-V curve using electric operational data during charge. With the
identified CAh-V model, the correlation between normalized capacity
and normalized peaks are then identified. An advantage of the pro-
posed technique is its suitability for online application that leverages
normal operational data in vehicles. However, the proposed strategy
does not consider the effects of ambient or cell temperature on the
IC curve and peaks, which is one of the most significant degrada-
tion factors in automotive applications.138 Environmental temperature
could be included as an additional input into any data-driven model,
which would fit instantaneous effects but not the history of environ-
mental temperature variations known to affect SOH, SOC, and battery
lifetime.

An alternative data-driven approach is an artificial neural network
algorithm145 that uses the ambient temperature, dynamic operational
current, and voltage data to predict the SOH of Li-ion cells. The pro-
posed technique first uses the K-means clustering algorithm, which is
a popular unsupervised machine learning technique, to subgroup his-
torical data of different driving patterns. The unsupervised algorithm
uses the input data, i.e. temperature, voltage, and current, without

labeled responses, i.e. different driving patterns. The identified sub-
groups are then used as inputs to an artificial neural network, which is
then learned with historical data to predict the capacity. The learning
process is performed offline. Once the online data are available, the
data are first classified and are represented as densities in subregions.
Here the densities of subregions refer to the number of points assigned
to the subregions (for more details, see Ref. 145). Then the density vec-
tor is used to predict SOH of cells by using the learned neural network.
Although the proposed technique is fast enough for on-line applica-
tion, with less than 100 ms for one SOH prediction to be applied in
online operation, the training data do not consider the resting of cells
after each cycle. The resting in between cycles reflects a more practical
scenario for Li-ion batteries and also exhibits a sudden increment in
capacity (aka regeneration or self-recharge phenomenon) for the next
cycle;146,147 for physical details see Dynamic processes and their time
constants section. In Ref. 147 such a regeneration of capacity is taken
into account when predicting the SOH of Li-ion batteries. The algo-
rithm uses Gaussian process regression algorithms to predict the SOH
by using a number of cycles. The main advantage of such techniques
is their explicit accounting of the effects of uncertainty in their predic-
tions. The proposed algorithm uses a sinusoidal covariance function
to capture regeneration phenomena and a radial basis function, as
another covariance function, to capture the general degradation. The
mean function is either linear or quadratic. This modified Gaussian
process regression algorithm is referred to as combination Gaussian
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Figure 10. The basic idea of RC equivalent circuit-based gray-box modeling for estimating SOC and predicting SOH of batteries. The f, g, h, l refer to analytical
expressions.

process functional regression.147 Although it effectively captured the
regeneration and the general degradation phenomena, temperature ef-
fects were not addressed. Furthermore, the training data do not reflect
real dynamic operations and so potential application of the proposed
technique is limited.

Besides SOH estimation, the black-box modeling approach also
has been applied to SOC estimation. In Ref. 148, a fuzzy logic SOC
estimator was designed and implemented for Li-ion batteries. The
SOC estimator was designed in particular for the application in auto-
mated external defibrillators, where the load profile consists of pulses.
The SOC was characterized in terms of the number of current pulses
that a battery can deliver at a given time. Thus, the number of load
pulses that a battery can deliver reflects the capacity in this partic-
ular application. The fuzzy logic algorithm used features of voltage
recovery and minimum and maximum difference voltages during the
current loading of battery packs as inputs to the model. Using ex-
perimental data, a Sugeno-type fuzzy inference system was trained
to learn the correlation between the voltage features and the number
of pulses remaining. Although an fuzzy logic estimator of SOC had
high accuracy (one pulse error), the fuzzy inference system did not
consider temperature effects in its SOC estimation. In Ref. 149 the
effects of temperature was considered when developing a fuzzy logic
estimator of SOC. The proposed technique used classical EIS mea-
surements (see Dynamic measurement methods section) to infer the
SOC. A practical limitation of EIS is the need for batteries or cells to
operate at steady state.141

One reason that the literature on black-box methods focuses on
SOC estimation and SOH prediction is that the methods are limited
to the measurements that are available. The models are not faster to
apply than ECMs, which can describe the local dynamics needed for
control purposes, so the motivation for using black-box methods for
battery control is limited. Information on battery degradation mech-
anisms or any other physicochemical information are not needed by
black-box methods, which can be argued to be an advantage; how-
ever, black-box methods also cannot exploit such information and so
are limited in terms of the achievable performance for SOC estima-
tion, SOH prediction, and optimizing operations and control. Another
limitation of black-box models is that the model parameters are not
relatable to any parameters of the system. As such, the quantification
of uncertainties in model parameter estimates is not as useful as for
the P2D model,150 in which such analyzes can track and quantify
the degradation of specific components by tracking with confidence
the variation in the physical model parameters (see also Single-cell
models with homogeneous electrodes section).

The computational cost of constructing a black-box model for most
data-driven methods (including machine learning and artificial neural
networks) is orders of magnitude higher than for ECMs but is lower
than the most sophisticated first-principles models. Once a black-box
model is constructed, the cost of running the black-box model in
parallel with operations online is low. The high computational cost
of construction of many black-box mode remains a drawback online

since the black-box model needs to be reconstructed as the battery
ages. One approach could be reconstruct the black-box model only
occasionally, when significant change in the battery behavior has been
detected.

Although the effectiveness of black-box models depends on the
battery chemistry and the shape of the discharge curve, by being based
only on data, the steps in their application is the same. In contrast,
mechanistic models need to be modified when changing to battery
chemistries in which different phenomena occur, such as moving from
a battery with single to multiple solid phases (e.g., Ref. 92).

Fusing data-driven modeling with other model types: grey box
modeling.—Black-box modeling requires a significant amount of data
for correlating variables, while discarding any other information that
would decrease the amount of data for training and estimation. In
gray-box modeling, the data-driven approach is combined with other
model types, by fusing the complementary information derived from
multiple approach. In the literature, equivalent circuits have been
overwhelmingly utilized to model lumped phenomena such as charge
transfer and diffusion that occur in Li-ion cells.138,151,152 As discussed
in Equivalent circuit and impedance models section, these phenomena
can be represented by using parallel RC circuits, which model the
dynamic response of a battery voltage. In this section, RC-equivalent
circuit-based data-driven approaches are discussed. As the focus is on
SOC estimation and SOH prediction, as that has been the focus of the
literature in this area.

The main idea of combined RC-equivalent circuit and data-driven
modeling approaches is shown in Fig. 10. In the SOC estimation
algorithms used in this framework, most data-driven approaches map
the correlation between the OCV and SOC. Note that an identified
OCV-SOC model could be directly used to determine the SOC of
batteries after resting a certain time to reach steady state after operation
of the battery. A long resting period is not practical,139 however, and
the transient behavior of the battery must be taken into account when
determining the SOC; here, equivalent circuits allow the deduction
of open circuit voltage from dynamic battery voltage and current.
The values of RC-equivalent circuit parameters also reflect the SOH
of a battery. Therefore, in RC-equivalent circuit algorithms for SOH
prediction, most data-driven approaches mainly focus on mapping
variations in lumped parameters from equivalent circuits to the SOH of
cells or batteries. The gray-box modeling framework follows two main
steps: first equivalent circuit parameters are identified by using online
operational data or offline experimental data, and then by employing
both equivalent circuit and data-driven modeling, the SOH is predicted
by using the identified parameters, and the SOC is estimated using the
equivalent circuit model with the identified parameters.

In Ref. 153 the OCV-SOC nonlinear relationship was characterized
using sigmoid functions. The sigmoid functions are shown to effec-
tively capture the staging phenomena during intercalation and dein-
tercalation of lithium, compared to other nonlinear functions used
in the literature. By using the overall model, an extended Kalman
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filter (EKF) algorithm was then proposed to estimate the SOC of the
battery. The application of the proposed technique is, however, limited
as the method used constant RC parameters in the equivalent circuit.
The RC parameters are time varying due to aging or temperature, and
hence need to be identified online using operational data to be able to
accurately model the battery. In Ref. 152 the OCV-SOC relationship
was mapped offline with two polynomial functions, one for charging
and one for discharging. The RC parameters were then identified for
both charging and discharging processes using a genetic algorithm. A
robust EKF algorithm was proposed to estimate the SOC of batteries
in order to cope with uncertainties in the identified RC model param-
eters and measurement noise. Although the robust EKF estimator had
a better convergence of the SOC to the true value compared to an EKF
algorithm, the proposed robust EKF design did not explicitly consider
uncertainties in parameters or the initial SOC. Uncertainty in the initial
SOC is one of the main challenges for estimating SOC using direct
methods139 such as coulomb counting, open-loop, or Ampere-hour
integral algorithms.

In the literature, alternatives to direct SOC algorithms are referred
to as indirect estimation algorithms (such as the EKF118,119,154). These
indirect algorithms should explicitly take into account the initial SOC
uncertainty to be comparative with direct algorithms. In general, EKF
algorithms may diverge (mean and variance) due to the coarse approxi-
mation associated with linearizing of the system dynamics (first-order
accuracy) when propagating through the nonlinear systems. An al-
ternative to EKF algorithms are unscented Kalman filter algorithms,
which can handle nonlinearity effectively with statistics that are accu-
rate up to third order.155 They have been applied for SOC estimation.41

Further, particle filter algorithms, which can effectively tackle both
nonlinearity and non-Gaussian random variables, have also been ap-
plied to the estimation of SOC in batteries.44,156 However, particle
filter algorithms have a slow rate of convergence.156

An alternative to such state estimation algorithms is an online
algorithm157 in which the OCV is identified as a parameter along with
other RC parameters in the identification step. The identification can
be performed online, i.e. by evaluating current and voltage during
operation, using a recursive least squares algorithm. The identified
OCV is then used to determine the corresponding SOC by using an
OCV-SOC lookup table, which has been formulated offline. Although
the technique is a promising online algorithm, storing the OCV-SOC
lookup table may be expensive, as the size of the memory require-
ments grow with the number of points in the OCV-SOC table, which
in turn determines the resolution of the SOC. To reduce the mem-
ory requirements, data reduction techniques such as singular value
decomposition can be applied for the OCV-SOC relationship.158,159

In general, lookup table approaches may need to apply interpolation
techniques to determine the SOC, which is a drawback compared to
analytical OCV-SOC expression-based estimation techniques.

Besides SOC estimation, the RC-equivalent circuit-based gray-box
modeling framework has been applied to predict the SOH of batteries.
A degradation index is defined in Ref. 160 using the internal resis-
tance of a battery’s RC-equivalent circuit model, and it is shown to
reflect the SOH of batteries. The proposed algorithm first identified
online the internal resistance of the RC model using a least squares
algorithm. Then, the SOH was predicted using a lookup table in which
the internal resistance over temperature data of the new cell had been
stored. The predictive technique had low enough computational effort
to be suitable for practical electric vehicle applications. The accuracy
of the prediction depends on the number of grid points used in the
lookup table. Storing a large amount of data points may be expensive
as discussed before and use of interpolation techniques may cause less
accurate predictions. In contrast, the SOH is directly parameterized in
Ref. 161 in terms of diffusion capacitance and temperature, and the
capacity of a battery is shown to increase as temperature increases and
decrease as diffusion capacitance increases. The diffusion capacitance
reflects the effect of concentration dynamics and thus voltage dynam-
ics due to slow Li diffusion, represented in equivalent circuits by an
additional diffusion-related RC-circuit. The technique first identified
the diffusion capacitance online using a genetic algorithm and then

predicted the SOH of the battery using the parameterized model. The
proposed technique requires fast identification of OCV as a parameter
(to avoid OCV changes significantly during the identification step).
While the proposed technique has a better SOH prediction capability
(∼5% error in SOH), a drawback noted in Ref. 161 is that the GA
does not converge quickly.

Remarks and perspectives.—The prediction of remaining useful
life is an other important task of battery management systems. In the
literature, remaining useful life is defined as the number of cycles
remaining until a battery reaches its end of life. The latter is usually
considered as 80% of rated capacity or 80% of SOH. Numerous arti-
cles have been published on data-driven methods for RUL estimation,
including artificial neural networks,162 support vector machine,163 and
relevance vector machine164 algorithms, and the reader is referred to
these papers and references therein for more details. As the remain-
ing useful life is a function of the current cycle and the SOH of a
battery, common ideas of these algorithms are first to estimate the
current cycle number162,163 or SOH164 of a battery and then to project
the remaining useful life using current cycle number-remaining useful
life or SOH-remaining useful life relationships, respectively. This sec-
tion focuses on data-driven and on coupled equivalent circuit-based
data-driven techniques for the SOC estimation and SOH prediction,
primarily with a focus on guidance on when to use which methods in
which application. In Ref. 165 Gaussian process modeling has been
used to predict the battery state of health and the remaining usful life
of a battery.

As discussed before, the main objective of data-driven approaches
for SOC estimation and SOH prediction is to map the underlying non-
linear relationships between battery characteristics or features, and the
SOC or SOH. Such correlations need to be time varying mainly due
to aging and environmental conditions, e.g. temperature. Online algo-
rithms that learn the nonlinear correlations using operational data are
promising, especially in electric vehicle applications. However, the
current data-driven literature tends to follow sequential approaches,
for example, common SOC estimation techniques such as extended
Kalman filter first identify the parameters and then estimate SOC.
Instead, a promising route would be to use a dual-estimation frame-
work in which parameters and the SOC are estimated simultaneously.
Future research should also consider developing robust or stochastic
estimation and prediction techniques that take explicitly into account
measurement noise and uncertainties in parameters and initial condi-
tions of batteries.

Conclusions

A huge variety of Li-ion battery models are available which are
largely tailored for specific tasks. Selecting the most suitable model
for a given purpose in terms of required accuracy, insight into the bat-
tery, simulation time and training or parameterization is challenging
and requires a sound overview of their pros and cons. This article
presented the available options and open challenges when using dy-
namic battery models for diagnosis, as well as operation and control of
Li-ion batteries. Diagnosis and control of batteries needs to take into
account the processes that determine the safety and performance of
the cells, and thus it requires an understanding of the main processes,
parameters, and time constants. Li-ion batteries are multiscale in na-
ture, that is, they have time scales that span many orders of magnitude
and these processes interact with each other. We presented a system-
atic overview on the range of time constants expected for the single
processes in the battery and how to calculate these time constants.
Together with an overview on dynamic measurement methods, the
value of such methods for assessing dynamic behavior was discussed.
Dynamic measurements are not limited to understanding battery be-
havior, but are essential also for model parameterization and state
estimation. Here, a combination of various methods, including non-
linear methods, is crucial to establish uniqueness of the result.

We discussed three separate, yet closely connected model classes.
Mechanistic models provide deep insight into the physical and
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chemical processes and state of the battery but are can be difficult to
parameterize and computationally demanding, especially when con-
taining detailed physical descriptions. Significant extensions are
needed especially in the area of degradation modeling to enable accu-
rate SOH estimation, and in the model-based understanding of multi-
scale effects and production influences including their uncertainties.
Equivalent circuit models map the battery to a network of electric
circuit components; ECMs can easily reproduce measured behavior
but are limited in the depth of physical interpretation. Given the low
on-line costs of ECMs, a future direction is to how to efficiently
construct ECMs from more complicated first-principles models. The
first-principles model would be operating only occasionally while
the ECM would be operating in real time. Finally, the literature on
data-driven models is discussed. Data-driven models are typically
constructed using least-squares, machine learning, or artificial intel-
ligence approaches. Although in principle data-driven models may
cover complex behavior such as aging, their application is limited by
the difficulty in incorporating any known details on first-principles
mechanism. Also, data-driven model need to be trained to every sit-
uation. Some of the limitations are reduced by coupling data-driven
modeling with equivalent circuit models. An open question is how
to best tailor these methods to include some semi-quantitative in-
formation on the battery operation, e.g., how to account for battery
chemistries that have multiple stable solid phases. Each of the model
classes has a range of model variants which allows to select the best
model variant for a given purpose.

In the authors’ opinion, diagnosis and optimal operation and design
of batteries require models that are able to span multiple time scales
and allow physical insight and ease of parameterization. None of the
existing modeling approaches is sufficiently versatile yet simple to
bridge this gap. Thus, one of the biggest challenges is a fusion of the
existing modeling approaches, fully exploiting their potentials and
integrating first-principles physical insight and measurement data.
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13. A. Barré, B. Deguilhem, S. Grolleau, M. Gérard, F. Suard, and D. Riu, A Re-
view on Lithium-Ion Battery Ageing Mechanisms and Estimations for Automotive
Applications, Journal of Power Sources, 241, 680 (2013).

14. H. Bryngelsson, M. Stjerndahl, T. Gustafsson, and K. Edström, How Dynamic is
the SEI?, Journal of Power Sources, 174(2), 970 (2007).

15. E. Cabrera-Castillo, F. Niedermeier, and A. Jossen, Calculation of the State of Safety
(SOS) for Lithium Ion Batteries, Journal of Power Sources, 324, 509 (2016).

16. G.-H. Kim, A. Pesaran, and R. Spotnitz, A Three-Dimensional Thermal Abuse
Model for Lithium-Ion Cells, Journal of Power Sources, 170(2), 476 (2007).

17. D. Andre, M. Meiler, K. Steiner, Ch. Wimmer, T. Soczka-Guth, and D. U. Sauer,
Characterization of High-Power Lithium-Ion Batteries by Electrochemical
Impedance Spectroscopy. i: experimental investigation, Journal of Power Sources,
196(12), 5334 (2011).

18. L. Song and J. W. Evans, Electrochemical-Thermal Model of Lithium Polymer
Batteries, Journal of The Electrochemical Society, 147(6), 2086 (2000).

19. J. Wang, Y.-C. K. Chen-Wiegart, and J. Wang, In Operando Tracking Phase Transfor-
mation Evolution of Lithium Iron Phosphate with Hard X-Ray Microscopy, Nature
Communications, 5, 4570 (2014).

20. M. E. Holtz, Y. Yu, D. Gunceler, J. Gao, R. Sundararaman, K. A. Schwarz,
T. A. Arias, H. D. Abrua, and D. A. Muller, Nanoscale Imaging of Lithium Ion
Distribution During in situ Operation of Battery Electrode and Electrolyte, Nano
Letters, 14(3), 1453 (2014).

21. D. Aurbach Review of Selected Electrode-Solution Interactions which Determine
the Performance of Li and Li Ion Batteries, Journal of Power Sources, 89(2), 206
(2000).
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