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ABSTRACT

The problem of a queuing system with changeover times is
studied to determine the effect of the queue discipline. Several
specific disciplines for the two-line case are investigated and
compared.

The alternating priority and strict priority disciplines are
investigated for the general two-line system. A class of disciplines
are analyzed for the two-line system with zero changeover times.
['or alternating priority, the mean waiting times are obtained and
it is shown how higher moments may be derived. I'or each of the
other disciplines explicit expressions for the Laplace-Steiltjes
transforms of the waiting time distributions are obtained and the
means of these distributions are computed. The non-saturation
condition and several other measures of performance are found in
each case. The technique used throughout is the application of

' generating functions to the ''imbedded"” process formed at the instants

of service-completion.

In an appendix the mean waiting time of an arbitrary customer
is obtained for a specialized K-line system. The method of solution
is instructive. ‘

The mean waiting times for various disciplines are compared
for a specific system. It is observed that disciplines which increase
the idle time do not necessarily decrease the waiting time, and in

 fact, might cause the waiting time to increase.

It is shown that disciplines which are potentially optimum can

~ be classified in a general way. The specific disciplines studied are
found to fall into this classification.

Thesis Suﬁervisor: Alvin W, Drake

Title: Associate Professor of Electrical Engineering
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CIHHAPTER I

INTRODUCTION

This report is a study of multi-queuing systems with changeover
times. Our objective is to determine now tiie benavior of such
systems may be improved by varying the queue discipline.

The hasic tecinnique employed is the application of generating
functions to a Markov process which is "inibedded'" within the actual
process. This method was introduced by Kendall who used it to
analyze the behavior of a simple queue. We discover its use to he
of considerable value for the study of much more complex queuing

situations.

I-a The Model

Many situations:aexist where customers of different types must
| HES
|
compete for service at a single facility. Often it happens that beflore
service can be undertaken on a customer of a new type ., a ceriain

preparation time-- which we call a changeover time -- is required

by the Server An example of this is a machine used [or making a

varlety of parts or a com puter used to com pile source programs

wr1tten in a varlety of languages
A model that can be used to characterlze such queues wiien there

It
|
.

are Just two customer types (] and 2) is shown in P1g, 1. Customers of
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_— ~each Lype are assumed to arrive ac-cor'dinp Lo independent Poisson
1 -~ laws, }\1 and ?- bun;ﬁ the respeclive average arrival rates,
We shall refer to customer-s of type 1 and 2 as "l-customers"
and ''2-customers,' respectively. The distribution funciions of

their service times arc
["S (t) = Prob (service time of 1-customer = t)
li‘S (t) = Prob (service time of 2-customer < 1).
2

\ The times required for the server to cross between lines

(the changeover times) have distribution functions

T““-' l.i‘S (t) = Prob (changeover time [rom 1 to 2 < t)

g 12

-

f ; ' FS (t) = Prob (changeover time from 2 to 1 < t) .
. 21

One could visualize a more general model consisting of K
lines. In addition to specifying the service time distribution
for each of tiie K types of customers, one would need to specify

the distribution of the ¢l1angeover times IJQtWeen all pairs of
‘ lineé.

To complete the specification of these systems, one must

T descrlbe the queue discipline , i.e.,the policy that is used by

_tPe server to choose the order‘in which customers are served.

i
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We soall use tne words "discipline'' and "policy" synonymously

throughout the remainder of this thesis.

I-b  The Queue Discipline

As the server goes about the task of serving customers, he must
from time to time make decisions which govern his actions, The
queue discipline is specified by what decisions are made and when

the server makes them.

If the server is allowed to make decisions
at any time the discipline is called "preemptive". In this thesis
we shall deal solely with "'non-preemptive" disciplines. Thal is. the

i . . . .
Server may exercise control over his behavior only at those times
|
wien neltq‘er a service nor a changeover is in progress. I'or

W

sim plicity“;‘We shall assume in addition that the server is not allowed

to make a c\l‘ecision at the instant between changeover-com pletion and
Service—beéiinning. One justification for this assumption is that in

i ’

|

many situations the changeover time is in reality a part of the service
’ |

time and the"l“refore cannot be diirorccd from it, Thus decisions by the
| ‘

|
1
1
i

server may take place only at instants of service-com pletion and at

times when the server is idle.

Having sp‘cé‘ified the times at which decisions are made, we must
. \‘ .
define what th “

decisions are. ['or a system with just two lines the

choice for the server is simple: either remain stationary (serving
, R ‘ :
. o A ‘ ! ! ) .
customers if'jl‘nyrare present, otherwise being idle) or cross to
i ‘
S
\

-




~— the other line. I'or a system with K lines, the server may remain
stationary or may choose to cross to any of the other K-1 lines.
Ilach time a decision is made, the server will take into account
as much inform:ation as possible about thé siate of the system. I'or
two lines the server will base his decisions on the aumber of
customers in line 1, the number of customers in line 2, and the
position of the server. ( The server might also wish to take into
account the order in which the customers arrived [or example as
in first-come-first-served. I[lowever this information is not
| relevant to the cost function which we shall use below. ) [or the
cases of K lines. the decisions made by the server will depend upon
- the number of customers in each of the K lines and the position of
the server.

- Since we have defined the allowed times for server decisions.

it follows that the queue diScipIine may be completely specified by a

function having the following properties: The arguments of the

function are the number of customers at each line and the current

position of the server. The value of the function is a number

1,2,...., K, telling the server which line to "go to'" next.

We shall choose a cost function wh1ch is proportional to the mean

) ‘ waltlng time of an arbltrary customer That is, we call "optimum'

that pol_icy which minimizes the mean waiting time. This choice has
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obvious drawbacks but it is one convenient measurce by wiich to
compare the effectiveness of the various disciplines.

It is desirable to be able to determine the optimum queue
discipline for any situation. While we do not achieve this
objective here, we do investigate several promising disciplines,
and from this develop an intuitive feeling for the selection of an
approi)riate one.

All of the work in the main body of this thesis is concerneq
with the case of just two types of customers. The complexity of
the analysis in the two-line case makes one view with a certain
amount of apprehension the study of systems having more lines.

Nevertheless, it is possi_ble that progress in this direction could

be made. Using a specialized method, some limited results for

a system with K lines are obtained in Appendix VI.

.

I-¢ The Imbedded Process

The queues that we are cbns‘ideri’ng are inherently non-

Markovian. That is, knowledge of the present state of the

o

system--the number of customers in each line and the position
of the server-- would not be sufficient to allow an accurate
predictior: of future behavior. Only if additional information were

incorporated into the definition of "state" would it be possible to
S ‘ ) i

- accurately assess the probabilities of subsequent events. Such




information could be "time spent so far on current serviee'', cle.

~ This expanded state definition would create a Markov process

but would also so complicate matters that a simple analysis would
become impossible.

It was recognized b_y'lx’.endall((') that. by taking .ote ol the
state ol the system only at scrvice-completion instants, one can
create a new process which has the Markov property. One can then
usc the characteristics of this so-called "imbedded'" process to
obtain information about the actual process,

The technique of working with the imbedded process rather
than the actual process is employed throughout this thesis. To gain
an understanding of the basic ideas involved, we now briefly outline
the use of the method for queuing systems having one line and those

having two lines .

THE IMBEDDED PROCESS I'OR A QUEUING SYSTEM WITII

A SINGLE LINE

We consider a single queue with Poisson arrivals (average
rate = &) and general service. The distribution function [or service
is li‘S(t) = Prob (service time = t).

The state of the imbedded process, formed at the instants of

service completions, is n, the number of customers in line.
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I’(n-n') is our notation lor the probability that the next state will he n',
viven the current state is n.  The calculation of these probahbilitics

is straightforward and we omit it here.  We shall have many occasions
to carry out such calculations in following chapters. We assume that
an equilibrium exists and let Trn be the steady-state probability that

the imbedded process is in state n. By definition, the cquations

Moy = S_ ﬂn_l’(n-+n') (1-1)
n=o
and w
TTn =1 (I'd)
n=o

1
must be satisfied. By multiplying Eq. (I-1) by 2" and sum ming over
all n'. and then making use c¢f Eq. (I-2), one obtains an expression

for T(z), the generating function of the imbedded probabilities.

m(z) = nnzn (I-3)

The usual quantltles of 1nterest are the distributions of the
waltmg time and number-in-line (number of customers present).
We now show that both distributions may be obtained from the imbedded

probabilities.
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Waiting Time -- [l.et the waiting time of a customer be delinad

as the length of time the customer must wait in the qucue belore
he is taken into service. ( The time a customer spends in service
is not included in our delinition of the waiting time, ) The distribution
function for the waiting time is denoted by
li‘w(t) = Prob (waiting time < t).
We observe that if the queue discipline is first-come, lirst~served

(I'CI'S), the number of customers remaining when a customer is

discharged is the number which arrived during his waiting time and

n

A -k
service. Since (n—,t)— e Mt is the probability that n customers arrive
in a time t, we have
@
- (kt) -)\t ~ ]
nn = J; W c dls w@l.‘s (t) (1'4)

where dI*y ® Fg(t) is used to signify the probability that the waiting

time plus the service time is between t and t +dt. Using generating

- functions, Eq. (1-4) becomes

™ (1- %)
W)= =5ty — (1-5)
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where W(s) and S(s) are the lLaplace-Steiltjes transforms ol l-‘W(L)

and I-‘q(t),res;)ectively.

_____ f -st
W(s) = o dIr (t) (1- )
J W
S(s) = J o St dirg(t) (I-7)
QO

IXq. (I-5) is what we set out to demonstrate. The transform of
the waiting time distribution can be expressed explicitly in terms

of m(z), the generating function of the imbedded probabilities.

Number-in-Line - We would like to find Py the general-time

probability that the state of the system is n (the fraction ol time
the actual process spends in state n). In generating [unction form
we have found o the probability that a service-coimnplction leaves
the system in state n. In fact, since the arrivals are [Poisson, the
imbedded probabilities and the general-time probabiliti’és are

equal
m = p (I—i!)
which we now show.

Consider a pafticular realization of the actual process ( a plot

of the number of customers in the system versus t). This is a
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—— function that takes on integer values and undergoces occasional unit
jumps, either upward or downward. The upward jumps are causcd
by arrivals and the downward jumps are caused by service-completions,
We concentrate on this function lfor a long interval of time T, In T

there are in downward jumps [rom n + 1 to n. Thetotal number of

r—

downward jumps (scrvice-completions) in T is i = in . Thus
n =o
lim i
nr1 - L (I-9)
T i '

since ™ is the fraction of service-completions that leave the system
o in state n.
In T there are ‘jn upward jumps from n to n+l. The total number

| _ v
3 i of upward jumps (arrivals) in T is j = ) jn. The quantities in and jn

! n=o
can differ by no more than one. ( If a horizontal line is drawn through

the function at a height n+l/2, the number of times this line is crossed
from above must differ by no more than one from the number of times
it is crossed from below.) As long as the system is unsaturated the

4 ratio of i to j (number of departures to number of arrivals) must go to

éig P one as T goes to infinit‘y. Hence it follows that

C lim j _
Tlimm in Tlr_lj © Jn (I - 10 )
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The quantity on the right-hand side of this cquation is the probability
that the system is in state n at the instant of an arrival , Since
arrivals occur at the points of a IPoisson process operating independently
of the state of the process, this probability is identical with the
general-time probability pn:::' Thus IEq. (I-8) is confirmed.

Using the above results it is possible to obtain an interesting
relationship. The average waiting time, W is minus the derivative of

W(s) evaluated at s = 0. Using Eq. (I-5) one has

= _ dn(z) 1 1 -
W=7 - (1-11)
z=1l
where
1 . .
il the average service time

I'rom Eq. (I-2) it follows that m(1) = 1. FFrom Eq. (I-8)

dri(z) : _ \’ _ -
dz z_|1 h >_,’ ny, "z Py (1-12)
B n=0 n=0

is recognized as n, the average number of customers in line.

Thus we have

n = )\(VV+E) ' (I-13)

* See, for éxample, Cox and Miller (p. 269)
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the well-known relation between the average waiting time and the
average number-in-system. ( This equation is in a slightly

different form than the familiar n = AW since we have defined W
to be the average wait in the queue, not including service, while

n is the average number in line, including scrvice. )

THE IMBEDDED PPROCIESS I'OR A QUEUING SYSTEM WITIT TWO T.INIS

In this section we examine the imbedded process lor a

- queuing system with two lines. The quantities of intercst are

the distributions of the waiting time for each type ol customer

and the distributions of the number-in-linc of cach type ol customer.
We shall find that, corresponding to the single-line case, these
distribﬁtions may be related to the imbedded probabilities. In addition,
we shall be able to relate the distribution of the total number of
customers present to the imbedded probabilities.

Consider a queuing system having two lines with Poisson arrivals

| (rates )\1 and XZ) and general service. The distribution functions for

service are
‘FS (t) = Prob (service time of 1-customer = t)
1

FS (t) = Prob (service time of 2-customer =t)
2 .

There may or not be changeover times. Their existenceis not of

importance to this discussion. The states of the imbedded process,

Mg
e
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formed at the instants ol service-completion are

~ _
1 - server is at line I, m l-customers and n 2-customers
m n arc present.
2 - server is at line 2, m l-customers and n 2 -customers
¢ m n are present.
We let the steady-state probability (assuming it exists) that the
. L _ | 2 1 2
imbedded process is in state or bhe T or ™ )
m n m n m n m n
i cs tivel m ! and T 2 satisfy a set of equilibrium
; respectively., m n m n Yy q

equations corresponding to Eq. (I-1). (See Eqgs. (II-3).) In a manner

similar to what was done in the single-line case, expressions for

the generating functions of the imbedded probabilities may be

obtained
it (y, z) i Z rrlmn yz" (I-14a)
m=0 n=0
A S (I-14b)

m=0 n=0

We now demonstrate the usefulness of these functions for finding
the statistics of interest. The present discussion applies in general
and does not dépend upon the queue discipline or the particular

form of ﬂl(y, z) and Trz(y, z).
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~— Waiting Times -- We assume that the qucue discipline in a given

line is I'CI'S, regardless of the method the server uses to choose

between lines . The waiting times have the distribution functions
FW (t) = Prob (waiting time ol 1-customer = t)
1
Fw (t) = Prob (waiting time ol 2-customer =t)

2

\ where. as before, the service period is not included in the

delinition.

At the instant of service completion, with probability

he was of type 2. If he was of type 1, then the number of 1-customers
remaining is the number that arrived during his waiting time and

service period. Hence,




~—

iy, @ l'g (t)
n=o0 ZJ) m! Wl Sl

(I-1-)

where cll"‘W ® l'g (t) denotes the probability that the waiting time

1 1

plus the service period for a l-customer is betwecen t and t + dt.

Using generating functions Eq. (I-15) becomes

w1-S 1)
1

ry Sl(s)

Wl(S) =

where Wl(s) and Sl(s) are the Laplace - Steiltjes transforms of

[~‘Wl(t) and [«‘Sl(t) respectively.
[}
Wo(s) = | e Star
1'%%7 = W
o] 1
r -st
S].(S) = .J e dFSI(t)
o
We can similarly show
m,1- 1)
W,(s) =
2 r,S,(s)
272
where o
-st
W, (s) = J;_e ary ©

(I-16a)

(I-17a)

(I-15a)

(I-16b)

(I-17b)

(I-16b)
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-— I2gs. (I-16) give the relationship between the waiting times and

the imbedded probabilities that we were seeking.

Numbers-in-Line -- One wonders whether the gencral-time probability

is equal to the imbedded probability T L n’ In

of the state
‘ m

m
fact these prohkabilitics are not equal. In order to demonstrate their
cquality, one would need to show that the imbedded probhubilities
at service-completion instants are equal to those at arrival instants.

In the‘single-line case, the state space had but one dimension

\ and it was impossible to avoi;l entering a state due to a service-
completion the same number of times it was left due to an arrival

————  (which is the statement that i and j_, defined earlier, differ by at

| most one). In the present case, the state space has two dimensions.
Now it is possible for the system to ''circle around” a particular
1 state. State ml n’ for example , may be entered many times due to a
servi'ce-completion without ever being left due to arrival and vice
versa. We therefore cannot equate the imbedded probability ™ nlw

~ to a corresponding general-time probability.

Let us, however, consider only m, the number of l1-customers
in line. This variable incfeases with 1-arrivals and decreases
with 1-services. Since m has but one dimension, we may argue
exactly as we did for the single-line case to show the equality between
the imbedded proba.bilities‘at l-service-completion instants

and those at 1-arrival instants. Since arrivals of type 1
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are Poisson, the imbedded probabilities and the gencral-time
probabilities are equal. llence,

@

IProb (m l-customers present) = lT / Tflmn (I-19a)
l —J

n=o0

(general-time probability)

where the expression on the right-hand side is the probability

m l-customers are present at a service-completion conditional

on the service being of type 1. Likewise

Prob (n 2-customers present) = Lr L m (I-19b)

(general-time probability)

Eqgs. (I-19) give the desired relationship between the distributions
of numbers-in-line and the imbedded probabilities.

We see that when two types of custbmers exist, the imbedded
proéess can be very useful, as it was for the single-line case.
In either case the waiting time and number-in-line statistics may
be \foﬁnd from the imbedded probabilities. The corresponding
qu;"i".fions are Eq. (I-5) and Egs. (I-16) for the waiting times and
ch&,\ (;#‘8) énd Egs. (I-19) for fhe numbers-in-line. Note that a
result more general than Eqgs. (I-19) would have been the joint

distribution of the numbers in each lice ( m and n). [HHowever,

\."
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rom an carlier discussion, we saw that this could not be obtainced,
Nevertheless, we shall determine below the distribution for the
total number of customers in the system (mtn),

Before doing this, let us find the relationship between the average
waiting times and numbers-in-line corresponding to liq, (I-13),

Taking the derivatives ol IEgqs. (I-16) onc obtains

- 1 d 1 1 1

w=+— Loaly | v (1-20a)

N | d 2 1 1

W, = - T°(1,z) | -— (I-20b)
2 r, dz a=l r2 M

where
1/;11 = mean service time of 1-customer

I/L.t2 = mean service time of 2-customer

In deriving Eqs. (I-20) we have used the fact that m'(1,1) = r|
and ﬂz(l,l) =7r,, since the fraction of l-customers and 2-customers

is ry and r, respectively. [From Eqgs. (I-19) we see that

17 di my.1) | = m (I-2la)
1 Y 7=1

+ L w2 | =5 (I-21b)
2 ’ z=1
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the average numbers ol customers in lines | and 2, so that ligs, (1-20)

hecome

— — 1 ;
m = )‘l (W1 + m ) (I-22a)

1 5
-Ir—“- ) (I-22h)

as expected.
We now find one further use for the imbedded probabilities

TTl and 112

mn mn + The total number of customers present k = m+n

(number-in-system) is a one-dimensional variable that increases
when arrivals occur and decreases when services occur. 'Thus for
this variable the imbedded probabilities at service-completion
instants and those at arrival instants are identical. This follows
from the same reasoning as before. Since arrivals are Poisson,
the imbedded probabilitics and the general-time probabilities

are equal. We can therefore write

1 2
Prob (system empty) = oot Moo (I-23a)
Prob(k customers in system)= 7 \L. (Trlmn + ﬂzmn) (I-23b)
m n
m+n=Kk

(general time probabilities)

Eq. (I-23a) is of particular value and we shall have several

occasions to make use of it in succeeding chapters.
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I-d Work of Other Authors

Gaver -- As previously noted, the queuing process ol Itig, 1 is
non-Markovian if the state description is specificed only by the
position of the server and the number in cach line, When the
queue discipline is strictly I'CI'S (and onlyin this case) a new
definition of state is possible which has the Markov property. 'r'his

(12)

is the virtual waiting time introduced by Takacs

(4)

lUsing this
concept, Gaver was able to find the non-saturaticon condition
and mean waiting times for the two-line system ol I'ig. ]l under

the I'CI'S discipline. The results are

Non-Saturation Condition:

"
12 ] ]
l-py = ps - (—— + 1) >0 (1- 24)
L P T - =

where

1/“12 = mean time of a 1 to 2 changeover

llu?_1 = mean time of a 2 to 1 changeover
A

P =_1_
Hy

: A

P2 =_2
v

2
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Mean Waiting Times:
Wi=Woto (I-250)
21
- = (I-25b)
W, = Wof_pl_
12
W_ = the average time to clear the system. The expression is

(o]

complicated and relatively uninformative. Therelore it is not
included here.

Gaver also obtained results for the case of a preemptive strict
priority discipline. Since preemption is prohibited in our worlk,
we do not rcpeat the results here.

R. G. Miller -- Using the method of the imbedded process, Nlillcr(w)

was able to obtain expressions for the mean waiting times in the
case of two queues with no changeover times under a strict priority
discipline. The absence of changeover times allowed the position
of the server to be omitted from the specification of state. 'The

results are

Non-Saturation Condition:

1-p,-p,>0 (I-26)



o

Mcean Waiting Times:

2 2
U . M ES ) E L ES)) s
| |- 2(I-p)) e

2
A ES )+ E(S Z)
1 1 2 2
W, = (L-27h)
2 Z(I-pl) (l—pl—pz)

where:
2 . . .
E(Sl ) = sccond moment of the service time for a | -customer
00

'2
gt d¥_ (1)
. S

1
o

second moment of the service time for a 2-customer

.-\ E(SZZ)

o0
i = S.tz dFSZ(t)
\““" o]
| Avi-Itzhak, Maxwell, and L. W. Miller -- The alternating priority disci-
“ pline (which we discuss in Chapter II) was investigated for the two-line

case with no changeover times. Through a specialized mathematical tech-

nique involving conditional expectations, the following rcsults were oblalncd( )

\ Non-Saturation Condition:
1 - PP, > 0 (I-28)

Mean Waiting Times:

2 2 2 2
[(L-p ML-p,)" + p, (1+p)] X E(S7)+ (1-p)) XLE(S,))

2(L-py-p,) (1-p -p,+2p p,)

Wl = (I-29)

g with a similar expression for W2 .
A

L. W. Miller - - In his Ph.D. thesis, Miller(g) examined the use of

. - Alternating Priority when changeover times are present. He determined
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the non-saturation condition to be
1- PP >0 (I-30)
independent of the changeover time distribution. [lc also
obtained an expression for the mean waiting time which is left in
terms of infinite summations. The assumptions of his model pertaining

to changeover times are slightly different than those we make so that

our results are not directly comparable.

I-2 Preview of Work

In the next three chapters, we study the system of Ivig.1
under some specific queue disciplines. In Chapter II we consider
the alternating priority discipline and in Chapter III we consider
strict priority. With the help of a simplifying assumption, we are
able to treat a wide class of disciplines in Chapter IV. Then in
Chapter V we compare the various disciplines and attempt to assess
their relative advantages.

(A fairly com plefe list of notation is given in Appendix I.

The reader may find it helbful to review this before continuing. )
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CHAPTRER L

AL TERNATING PRIORITY

The alternating priority rule lor the server is: 1) emptly the
current line before moving, 2) il both lines are empty, remain
stationary. This discipline was first discussed by Avi-Itzhak, Maxwcll
and Miller(l) and is so named because the line which is receiving
service has priority for the moment.

We choose this discipline for study because it is simple and

because it has the desirable property that the amount ol switching

by the server is kept small. Although it is surely not the best

policy to employ in every situation, there are occasions when itis
performance is superior to that of other simple disciplines, and it
may well be the optimum discipline to use in some circumstances.
The queuing systems that stand to benefit the most {rom its use

are those having large changeover times relative to service times,
and thbse where the service times of each customer type are nearly
equal.

Our pr£mary objective in this chapter is to obtain expressions
for the mean and distributiqn of the waiting time of each type of
customer. We shall use the method of the imbedded process outlined
in Chapter I. We saw there that the key to the method was the

determination of the generating function of the state probabilities.

Once this is known, the waiting times may easily be found.
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We lirst write the transition probabilities for the imbedded
process and [rom them we obtain expressions for the generating
functions of the staic probabilities. We note in these expressions
the appearance of undetermined boundary conditions. Careful
inspection of the generating (unctions, however, reveals the necessity
for the boundary conditions to satisly a pair of simultaneous
functional equations. Although the functional cquations can not be
solved in general, enough information can be extracted from them to
cnable us to obtain the moments of the waiting times. As a by-product,
we also obtain several other quantities which are of value in judging

the performance of the system.

II-a The Imbedded Process

We consider the imbedded process formed by observing the

system at the instants of service completion. The state of the system
1 2 ‘

is ‘ ( or ) , which denotes "'server is at line 1 (or 2), m
m n m n
customers are waiting at line 1, and n customers are waiting at line 2."

The transition probabilities for the process may be expressed in terms of

Pjir Yy Yjss and vij' which are defined below.

ij* iyt i

Pji = Prob (i l1-customers and j 2-customers arrive during
] the service time of a 1-customer)

R T WY
] 2 P -
- I) 5 e drg (© (II-1a)
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This can be explained as [ollows. The probability that i customers
A 1
( lt) At

i °

of type 1 arrive in a interval ol duration t is

The probability that j custorners of type 2 arrive in this interval

(L
1 e 2 . dl-‘S (t) is the probability that the service
J e > 1

time of a l-customer lasts a time between t and t +dt. Thus the

is

product of these probabilities, integrated over all t, produccs the

desired result for pij' [.Likewise

g.. = Prob (i l-customers and j 2-customers arrive during
ij : .
the service time of a 2-customer)
O R U (Y
S G o dirg (t) (I1-1b)
. ' >
o
u;. = Prob (i 1-customers and j 2-customers arrive during
Y changeover from 2 to 1)
w i i
R L (hprhpt dirg (t) (II-1c)
i 21

i = Prob (i l1-customers and j 2-customers arrive during
J a changeover from 1 to 2)

i i o
N A (ST e SO
= J‘ i' o] (¢] d}'s
0 . J. v 12

(t) (I1-1d)
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The generating functions for the above quantities arc

- " - Y )i()\ tz)-i :
~ N N r (MY (% A
prr=] g ety o ] T
is jso i=o J=0 0O ' J |
.()\1—>\1y+ XZ—)\ZZ)t ‘
=] € dl'S (L)
0 P
= S; (M My + A -h,z) (11-2a)

where we recall that Sl(s) is the Laplace-Steiltjes transform

of a type-1 service time. And

“03 ‘CD i .
Qy.z =) ) Y e TSy A, o) (11-2b)

1=0 J=0

\ i
U(Y'Z)ifcz‘ Ly 11 2) =8,k ek -k y2) (II-2c)

@ @

_ ij o } i )
Viy,z) =L L Vi E = Spptythy +hh,z) (11-2d)
i=o j=o0

We denote the transition probabilities from state ml , to state

1 'asP( LI

mn” m n') and the other transition probabilities

‘corr'espondingly. We have for alternating priority



mzl, all n

1 1
P(mn- m'n')=

m=0,nzl1

m=1, all n

m=o0, n=1

m=0, n=o
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1 -1 TRANSITIONS

0 , m'< m-1
0 , n'<n
[)

P(on >~m'n') =0

1 1
P(oo-m'n') =r

1 - 2 TRANSITIONS

m'-rn + 1,n'-n, otherwise

1 Pmn?

,n'< n-1

1 2
P(mn-m'n') =0
1 2
P(on - m'n') =| 0
m' n'-n+l

X z viqu‘-i ,n'-n+i-j, otherwise

i=o j=o0

m' n'

P(oo—»mn) rzz z

i=zo j=o

13 m-1

n'-j
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2 - 2 TRANSITIONS

n2l,all m 0 , n'< n-1
2 2
P(mn-m'n')= {0 , m'<sm
qm',n'—n+1 , otherwise
n=o0, mz21
2 2

P(mo - m'n')=0

n=0, m=0

2 2
- 1At _
P(oo »m'n') = r, q_ ..

2 - 1 TRANSITIONS

nzl, all m

2 1
P (mn - m'n' 0 R m'< m-1
= '-m+l n'
o -
L L Y%jPm'-m+l-i,n'-j , otherwise
i=o j=o0
n=o, m=o

m
2 1 i C
P(oo—~ m'n'):r1 Z ), U P
o
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l.et us look at some of the above expressions,

1 1
P(On m'n) =0fornz1land

2 2
P(m 0 m'n') = 0 for m 2 1 since, whenever the server emptics

a line and finds the other line occupied, he will move., A transition

1

m'n' will occur only il the next customer to arrive

\ 1
from 0 0 to
is of type 1 and m' l-customers and n' 2-customers arrive during
1 1
his service. Thus P(0 0 m'n') =r1p
1 2
expression for P(0 n m'n') for n 21, is a statement of the fact

m'n' Finally the

that, in order for this event to occur, it must happen that during the
time that it takes the server to cross to line 2 and serve a 2-customer,
a total of m' l-arrivals and n'-n+l 2-arrivals enter the system:.

We shall assume that an equilibrium exists and let the

steady-state probabilities be 111 and n? . The equilibrium
mn mn
cquations are
@ @
- 1 1 2 1
ﬂlm' n'= S /) [ ﬂllrnn P(mn - m'n') + ﬂzmn P(mn - m'n')|
mEon=e (I1-3a)
@ [= o]
T 1 1 2 2 2
1-“eru n' = /\_ L [Mmn P(mn - m'n') + Tp P(mn -~ m'n')]

m=0 n=o0
(II-3b)

These equations are homogeneous and serve to determine the ratios
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of all the probabilities, leaving one to be arbitrarily specified.

The ambiguity may be removed by using the condition that

- . 1 2
S (m mn T "mn )=1 (I1-4)
m=0 n=o

or equally as well by using either of the two conditions

Y T =T (I1-5a)
m=0 n=0

s 0] @™

‘? ‘/, 1T2 =r, (IL-5b)
U mn
m=0 n=0

The above conditions are valid since the fraction of customers
which are of type 1l is ry and the fraction which are of type 2 is r,.

Let ﬂl(y, z) and TTZ(y, z) be the generating functions of

ﬂlmn and Trzmn respectively.

Tfl(y.Z) =§‘ >_‘ TTlln-n ymzn (II-6a)
m=0 n=o0
w2y, -y T Mmn ¥ (11-6b)

m=0 n=0
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Thus, ,
o ® 1 l

©o ® @ ® ' '
Tll(y, “) = ;’ L lnlmn /\_. ., P(mn - m'n') yM "
m=0 n=o0 m'=o n'=o
© @ 2 1
\ . oAl
+ﬂ2mn /,“ L P(mn - m'n') ym Zn
m'=o n'=o0
(II-7a)
N ' . 1 2 1 !
TTZ(Y, z) =§/°’ 2’ lnllnn i }; P(mn » m'n') ym Zn
m=0 n=o m'=o n'=o
® 2 2 1t
L. 1
e (I1-7b

Upon substitution of the expressions for the transition probabilities

the above equations become

Tfl(y, z) = »%%zy)’ z) lﬂzorlymio(rly-l)U(y. Z)-WI(O, Z)+ﬂ2(y. 0)U(y, z)]
(I1-8a)

nz(y, z)= cng' ;), Z)[Trozorzz + ﬂ;o(rzz-l)V(y, z)-l‘rz(y, O)+TT1(O, z)V(y, z)]
(II-8b)

where P(y, z), Q(y, z), and U(y, z) and V(y, z), are defined in Eqgs. (II-a)
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“r—‘ The functions ﬂl(O, z) and ﬂz(y, 0) are boundary conditions
ol a type which often arises when solving equilibrium equations
of this kind. We shall later need to normalize TTl (y, z) and
nz(y, z) as indicated in Eqs. (II-4) and (II-5). Until then, we
shall assume nolo to be arbitrary and we will deal entirely with
the ratios of all the state probabilities to ﬂ(l)o. We therefore

make the following definitions,

2
‘ _m
™ b- (11-9)
11
00
4
T o (2) = 0. 2)
I (11-10a)
00
2 - nz( 0)
bo“(y) = —IL (II-10b)
I m

oo

The constant b is the ratio of the number of times the system
is emptied by completing service on a 2-customer to the number
of times the system is emptied by completing service on a

1-customer. crl(z) and bcrz(y)' are the generating functions for

1 1 2

1 . -
[T cand T mo! Moo Fespectively. These quantities are

on OO

not probabilities but are ratios of probabilities, and as a result

remain fixed, independent of the normalization. Notice that
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+(0) = ¢2(0) = | since o, 0) = n(lm and 12(0, 0) = bﬂéo. With the

above definitions the equations become

l Ly
_ Mol (v 2) | T + b(rly-l)U(y, z)-«rl(z)+bnrz(y)l.l(y, z) | (I1-1la)
- )"‘P(y, )

ﬂ;cg(y. z)
z-Qly, z)

n(y, z)= [ bryx +(r?_z—1)V(y,z)-btrz(y)+u-1(z) Viy,z)|  (I-1b)

Were it not for the fact that crl(z), az(y), and b are unknown,
Egs. (II-1i) would essentially be the solution to our problem. Most of the

remainder of this chapter deals with the determination of these

quantities.

[I-b Determination of Boundary Conditions

In this section we attempt to determine the functions
al(z) and O'Z(y) defined above. We do not get expliéit expressions
for them but we are able to specify them as the unique solution to
a pair of simultaneous functional equatipns. Although the equations
are too difficult to solve, we shall find in subsequent sections that
much valuable information can be obtained from them.

In general there are two ways to determine boundary conditions

of the kind that we are dealing with here. One is by examination
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of a more deeply imbedded process. The other is by the use
of consistency arguments. Very often one of these methods is
simpler to carry out than the other. In this case the later method
is simpler and is the one we now discuss. In Chapter IV we shall
have occasion to make use of the former method.

Inspection of Egs. (I1-11) reveals that the denominator of one
of the expressions goes to zero ity = Ply,z)orifz= Qly, z).
In order that Tll(y, z) and ﬂz(y, z) be true generating functions of
probability distributions, it is necessary that the numerators of the
expressions be zero at the same time.

The equation

y = P(y; Z) = S].()\]. - )\1)' + XZ—)‘.ZZ) (II"lZ)

defines a functional relationship between y and z. If it can be solved
for, say, y=f(z), then when f(z) is substituted for y in the numerator
of Eq. (II-1la), the resulting expression must be equal to zero.

In order to solve Eq. (II-12) we shall need some results originally

(12)

derived by Takacs We consider a single service facility with
Poisson arrivals (average rate = \) and arbitrary service (distribution

function FS(t). ) We define the busy period to be the time during which

the system is continuously busy, successive busy periods being

separated by empty periods. We define the distribution function for
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the length of a busy period to be I"B(t). Its Laplace-Steiltjes transform

is B(s). Takacs has shown that B(s) satisfies the functional equation
B(s) =S (st A - A B(s)) (11-13)

where S(s) is the Laplace-Steiltjes transform of the service time.

In addition he showed that the solution to Eq. (I1I-13) is unique.

Returning to our problem, we see that the Laplace-Steiltjes

transform of a type 1 busy period in isolation, Bl(s), satisfies

Bl(s) = Sl(s+X1->\lB(s) ) (I1-14)
Upon setting s = )\2-)\22 there results
B, ,-h,z) = 80 -0 By (L ,=h jz) + X y=h yz) (11-15)

Now if we let
y = 131 (XZ - )‘22) (Ii-16a)

we have

y =S,y +A,-hoz) (11-17)

We have thus shown that the solution of Eq. (II-12) is Eq. (II-16a).

Similarly the solution of z= Q(y, z) is




N
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where BZ(S) is the Laplace Steiltjes transform of a type 2 busy
period in isolation. Making the appropriate substitutions ol ligs.
(1I1-16) into the numerators of Igs. (I1-11) and setting the resulting

expressions to zero yields

1 r - r
o (z) = rlBl(XZ-XZz)+b(rlB1(X2—X2L)-1) U(Bl(hz—kzz.), )

(11-18a)
rbod (B (h =k ,2) ) U (B 520, %)
bol(y) = br,B,( - y) +(r,B; 0 -Ay)-D VB, (=2 y))
¢ eMB, 0 ) )V Gy By hy)) (11-18b)

A0) = 62(0) = 1

We have almost completely solvcd our problem in principle
at least. | The above functional equations specify o (z) and o (y)
uniquely. The constant b is still unknown and we now turn our

attention to its determination.
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II-¢ Determination of b

We note the appearance of the quantity b in Eqgs. (II-18),
In this section we discover that only one value ol b leads to a

consistent solution .f these functional equations. We use this

condition to determine the proper value of b.

Let us examine Eqgs. (II-18) carefully and make the aszumnption
for the moment that b has been correctly determined. Since
51(0) is known, ( al(O) =1 ) substitution of z = 0 into Eq. (II-1%a)
enables us to determine G'Z(BIO\Z) ). Now ity = Bl(XZ) is substituted
into Eq. (II-11b) the value of ul(BZ(Xl-)\lBI(XZ) ) may be found.
Continuing in this manner, by alternating the equations in which
substitutions are made, it is posrcible to evaluate the functions

0'1(2) and az(y) for many different sizes of their arguments.

On the other hand this process could also have been initiated
by first letting y = 0 in Eq. (II-18b), revealing the value of
crl(BZ()nl) ). Now setting z =B2(Xl) in Eq. (II-18a) allows us to find
UZ(BI(KZ-XZBZ(?\I) ). Again this procedure may be repeated many
times so that cl(z) and az(y) become known for some additional values
of their arguments. | |

The procedure we have just considered may be described

formélly by rewriting Eqs. (II-18) in the foilowing manner:




O —_— (0]
y; = Bj(A,-A,z.) (I1-19a)
2;17Bo( A -h ;) (LI-19b)
1
2 o (z;)-ryy;
o (yi) =1- ry; + bU(yi, Zi) (II-20a)
e(y.)-r,z
] L )77 22041
o (zi+1)—l rzzi+1+b Yo7 ) (II-20b)
Vi %in

We start with either zO=0 or y0=0 and proceed through increasing
values of i as indicated.
It is shown in Appendix II that

_lim z; = 1 (I1-21)

l] » ®

regardless of the starting point (either zo=0 or y0=0), as
long as the condition

1- Py~ P> >0 (I1-22)
lim

is satisfied. This means that |, o'(z,) = o'(1), again

regardless of the starting point. The important point to note is

this-- if the wrong value of b is used, 1i1m o'l(zi) will not be

. .}

independent of the starting point. In fact Appendix III shows that the
difference between the quantity

' lim

1 .
i . o ©0(z), startingatz = 0.
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and the quantity

lim

i'-—» ©

1 .
o (Zi)’ starting aty = 0

is linearly related to b. Taking advantage of this fact, it is easy to
determine the value of b which causes il_i’mm ol(z.l) to be the same,
independent of the starting point. A more detailed description of this
iterative procedure for finding b is given in Appendix III.

We have thus discovered a method whereby the value of the
constant b can be found. Since now b is known, and the functions
cl(z) and az(y) are completely specified, our problem is in principle
solved.

The trouble is that in general it is impossible to solve the
functional equations (Eqgs. II-18) explicitly. However, despite this,
much useful information can be obtained from them. We have already
seen how they can be used tc obtain b as well as the values of 0'1(2) and
az(y) for specific values of y and z. In particular, cl(l) was obtained
as a by-product of the iterative procedure described above. In the
next section we shall sez that still more use may be made of these
equations.

Before we do this, let us first examine one special case where it
is possiblé to get explicit solutions to Eqgs. (II-15). We let
“1 = uz = ®_, This corresponds to a situation where the service

times are extremely short. For this case
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o'(2) = r) + bS, (<A ,2) (e2(Q) - r,) (II-23a)

bs®(y) = br, + 5,00 -Ay)(a (1)-r ) (I1-23b)
so that for y=z=0

1 =1 +bS, () (6°(1) - r,) (I1-24a)

b=br, +S, A)'()-r) (I1-24b)

This is consistent with Eq. (II-28) (derived in the next section)

only if
b l2 S)2() (II-25)
ry S;0,)
And it follows that
Y
UI(Z)z r1+rZ Szé()\‘(z)\ )ZZ) (II-26a)
21V 2 a
200y < potr 51202 y)
o {y)=r,+r, slz(xl) (I1-26b)

which is the solution we were seeking.



- 43 -

r’ I[I-d Derivatives of (rl(Z) and (rzg) aty =z =1

In this section we lind that it is possible to obtain sufliciently

much information about rTl(Z) and «rz(y) from Iigs. (II-1%) so that all

moments of the waiting times may be determined.

We note, first ol all, that the moments of the waiting times can
be expressed in terms of derivatives of nl(_y, z) and ﬂz(y, Z)
evaluated at the pointy = z = 1. ﬂl(y, z) and ﬂz(y, %) are given in terms
of (rl(z) and (rz(y), and therefore we can obtain the moments of the

waiting times if we can find the following quantities

o‘l(l) UZ(”
01(1)' (72(1)'
(I1-27)
0'1(].)” 0_2(1) 1"
1 do'(z)
where ¢ (1)! = £22) | etc. It turns out, that since b and

dz z=1
,—rl(l) are already known (from the methods of the previous section),
all the other quantities listed above may be gotten by taking

appropriate derivatives of Eqs. (II-18). The remainder of this

section is devoted to showing this in detail.
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If y = z = 1is substituted into Lqgs. (I1-14), the result ol both

cquations is

o) - r = b (1) - r,) (11-25)

which gives cz(l) in terms of known quantities. Incidentally,
an interesting interpretation of this equation may be obtained by
deriving it in another way. The probability that a given scrvice is

followed by a changeover from 1to 2 is

8

pua |
+
3
=
|
g
o |
]
e |
>

(I1-29a)

m @) - )

This is true because a switch from 1 to 2 is made only if a

service completion leaves the system in one of the states

1

o n " 21, or if it leaves the system in state Ol o and the next

arrival is of type 2. Similarly the probability for a 2 to 1

changeover is

s ¢) o]
ZWZ +112 r =z nz —ﬂz r
mo oo 1 mo oo 2

m:=

m=1 o

2 2 _
=7 00(0‘ () - rz) (II-29b)
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The number of changeovers in either direction must be cqual.
IEquating the probabilities of Eqs. (II-29) and taking notc of the
definition of b in Eq. (II-9), produces Eq. (II-2%4).
Continuing, we take the first derivative ol ligs. (II-15) and

evaluate the result at y = z = 1. The outcome is

1 »> o2 2
g (1)' = W l (1+b)r1+b 'H—ZI ( (¢ (l)‘[‘z)" b(l' (l)' I (11_303)
A M
2 1 1 1 2 1 1 1 .
o (1)'= g;rz [ L+ E)r2+ B TIZ(G 1) - r)) o+ o ()]

(II-30b)

One notes that this pair of simultaneous equations may be solved
for ol(l)' and 02(1)' in terms of known quantities.
In a like manner the second derivatives of Eqgs. (II-18) may be

taken. The result is

3 2

1, 2 2 Ll1 ul )\2

2 2 3

ib | (ulhz) E(SZ ) M ( " ) E(S2) | (e2()-r,)
LR 217 My =t L 2
: e S I (I1-31a)

b L2 (L) g2 Sy

RS 2 N 1
A, z
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with an obvious counterpart for ”_2(1),. which we shall call kiq. (11-31D).
The only unknown quantities in this pair of simultancous cquations
are «rl(l)" and «rz(l)". Solving the equations gives the desired
derivatives.

One notes that the n-th derivative ol Eqs. (II-18) expresses
SO™ in terms of 2O™, .. ., o20), «2(1) and 2™
in terms of :rl(l)(n), Ce «rl(l)', o'(l). If the derivatives through
the (n-1)st have been determined, the nth derivatives can thus be
found by solving a pair of linear simultaneous equations. By
induction therefore, any number of derivatives can be obtained.

Of course, the manipulations involved in calculating the higher
derivatives become increasingly tedious.

Our knowledge of the behavior of the state probability generating
functions Tll(y, z) and ﬂz(y, z) is now quite complete. In particular,
‘we now have at our disposal any derivatives of these functions
evaluated at y= z = 1, and can thus determine moments of waiting
times and number-in-system. Belore proceeding with this,
‘however, there is the one final matter of normalization which needs

to be taken cai‘e of.

II-e Non-Saturation Condition

The quantity ﬂgo remains to be determined. In terms of

génerating functions, Eq." (II-5a) is
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lim ﬂl(y, z)

y -1 (I1-32)
A

Pl=

Using the expression of Eq. (II-1la) in the above, one linds that
both the numerator and denominator go to zcro so thai L' Hopital's
rule must be employed. One then obtains
1 (l-pl)rl
Mo~ X (I1-33)
(1+b) r, + b_l_ (e2(1)-r )+ba?(1)

Substituting ch(l)' which comes from the solution to Eqs. (II-30)

and also using Eq. (II-28), there results

U 1=p) -~ ¢,
00 — I i I (II-34)
1+b+ (MAAN + ) (¢ (1)-r,)
12huy, o My 1

where the values of both b and 01(1) are produced by the iterative

procedure discussed in Section II-c.

It was shown in Chapter 1 that the general-time probability

that the system is empty is n + n?

_ 1
Lo 00 - (1_+b)Tr 00" Thus the

stem will remain unsaturated as long as m__ . . .
system wi € turated a g oo is positive. The
non-saturation condition, then is

1- Py P2 >0 (II-35)

independent of the changeover time. This can be explained by

Ol



P ——

- 448 -

noticing that when traffic is extremely heavy,the time spent
in switching becomes negligibly small relative to the time spent

servicing customers.

II-/ Mean Waiting Times and Other Quantities

In this section we use the results of the previous sections
to obtain expressions for the mean waifing times and several
other quantities of interest.

The lL.aplace-Steiltjes transform of a l-customer was related
to the generating function of the state probabilities in Eq. (I-16a).

Making the appropriate substitutions here one finds

: X 3 1 2, s
s - Moo T1(1- l)- bS,1(s) (rptr) )= o (D+bS,)(s)a™(1- 5 )
187= 1
1 1 - x - Sl(s)

1
(I1-36)

where 11100 is given in Eq. (II-34). The mean waiting time for a

l-customer is

: . dw,(s)
= _ lim _ 1 -
W, = oo 15 (11-37)

The limit in the above requires the double application of
L'Hopital's rule. The outcome is an expression containing (rz(l)'
and aZ(l)", which are found by solving the simultaneous equations

indicated in Section II-d. The final result is
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2 2
B 1 (l-pl)(l-pz) tp1p, ‘
W = W=pp )06 70,7201 )(C7C)) T (ppCy11op))C, )
p,{1-p))
+ _“_1—2__ ( (l‘pz)C1 + pICZ)

1 2 2
A (CHCy) (((-p(p ) kp o5 + p5) MESD +(1-ph,E(SS))

L Cl-pp,) ((-p)1-p ) 4p 05 + p5) E(S5)) +(1-pE(S],)]

(I1-34)
where we have used
_ 1
C=+A) @) -r) (I1-39a)
- C
C,=E1l1+ —
1 I-l21 (I1-39b)
= C
C.Z b +—— (II-39c)
2 M2

The same equation with subscripts switched holds for V—VZ' The mean
waiting time for an arbitrary customer is W = r)W, + r,W, Using the
above definitions "i)o may be rewritten

1 e

m = — (I1-40)
00 C1+C2
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(11-41)

LIMITING CASES

1) Zero Changeover Times

In the special case M;,=H,,=% , the expression for W becomes

 Lep0mp )%+ p5 )] M ESDH1-p M E(SS )
W, =

I1-42
1 2(1-py-p, M0-py=p,+2 pip,) ( )

(2)

This agrees with the results of Avi-Itzhak, Maxwell, and Miller.
No iteration need be performed in this case unless the value of b,

defined in Eq. (II-9) is desired. Also in this case
mt (l+b) = 1-p, - (11-43)
00 L L
as expected, since the probability that the system is empty cannot
depend upon the queue discipline, as long as the serQer is never idle when

customers are waiting.

2) Zero Service Times

In the case u1=u2= @, results can again be obtained without

~iteration as shown in Section II-c. There follows

).
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_ My
W. =
1 1
AaS12() TASH O A, T, T,
(I1-44)
x | 12 1 E(S,) + E (S5)
Ay M RV * |
1 H21 12M 21 2
and
a1 1155 0,) (I1-45)
00 ~ 1 ; 1
MSp ) + A8 ,00) + A, (T T )
3) Symmetry

If the system is symmetric, considerable simplification is
achieved. The functions al(.) and az(. ) are identical. Thus the
sirhultaneous équations discussed in Section II-d reduce to a single
equation in a single unknown. Also we know from symmetry

that b = 1. The results for this case are:

w1 o1 2, ~dl 2 |
w =12, [ 2 + AE(S") + CTTOOE(ST)] (I1-46)
and
TTl = ﬂz = I-—ZL :
oo ~ 00 2C (I1-47)
1 44
where T
PEp=p,  E6%)=EESD - B
S P S AN
HpF H = Hy, E(S'1) FE(S;)) =E(S)) (II-48)
A= XI = )\z !

END OF LIMITING CASES
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We can readily obtain several other quantities of interest,
There are )\1 + )\2 service completions per unit time on the
average. With probability TT(iO (0'1(1) - rl) a given service is
followed by a switch from 1 to 2. (See Eq. (II-29a). Thus the

fraction of the time that the server spends crossing from 1 to 2 is

Cﬂ(l)o
< 1,1
(MHAL) T (o (1)-1r,) My, = (11-49)
17727 o0 1/ /F12 M,

and the fraction spent crossing from 2 tol is Cni)o/HZI‘
As pointed out in Chapter I (Eq. I-23a) the general-time

s . | A 1
probability that the system is empty is Mot oo = (1+b) Mo

2 1
State o o is entered on the average b times ¢s often as state o o.

Since the average time spent in each state is the same (each state
remains occupied until the next arrival, of either type, occurs), the
probability that the system is empty and the sefver is at line 1
must be

1
00 (I1-50)

1

1
T+b (l+b)noo =T

and the probability that the system is empty and the server is at
line 2 must be

1
00

P byt - b
00

I+b . (II-51)

Thus the probabilities of the states 010 and o % are the same

for the imbedded process and for general-time.
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The fraction of the server's time spent at line 1 is ncl)oi- Py
A fraction Tr(l)o is spent idle and a fraction P Is spent busy.
Similarly, the fraction of the server's time spent at line 2 is
1
bﬂoo t ey

The probability that the service completion of a I-customer

is followed by a switch is

Pr(customer is of type 1 and customer is [ollowed by switch
from | to 2)

Pr (customer is of type 1)

1 1
= TTOO(O— (1) - rl)

]

Similarly, the probability that the service completion of a 2-customer

is followed by a switch is

ol («1(1)-r1)
00

T2

The probability that an arbitrary customer is followed by a

switch is

r, Pr (1-customer is followed by a switch)

tr, Pr(2-customer is followed by a switch)
1,1

These latter quantities are of interest if a cost as well as a time

is associated with changeovers.
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A program has been written in the I'ORTRAN [V language

which carries out all ol the computation described in this chapter.

Run in double-precision mode on an IBM 360/ 65 computer, each
calculation for all of the quantities mentioned, for a given set of
input parameters requires somewhat less than one second, and
is accurate to more than 8 significant digits.
I'ig. 2 is ~ plot of the waiting time versus arrival rate

for a symmetri‘oai system. Also plotted is the fraction of time
that the server spends idle, serving customers, and switching.
It is of interest to note that, as expected, at near saturation
levels, the server spends only a very small portion of his time
crossing between lines. Results of simulation runs are super-

imposed on the plyots to verily the analytical predictions.

[[-g  Summary

An application of generating functions to the imbedded
IVlarkdv brocess has enabled us to find expressions for the mean

waiting time for each type of customer, as well as other

interestij}lg quantities. The complexity of the problem necessitated the

utilization of some novel mathematical techniques, but did not

otherwise affect the over-all approach.
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CHAPTER III

STRICT PRICRITY

The strict priority rule, as opposed to the alternating
priority rule, always gives customers of one type higher priority
than the other. We shall choose customers of type 1 to be "high
priority'' and those of type 2 to be ''low priority." Thus, whenever
both types are present, the server will attend to a customer of type l.
The motivations for the investigation of strict priority are
that it is simple and that situations exist when it is optimum or
near-optimum. It is known for example, that in the absence of
changeover times, a strict priority discipline, assigning high
pr_iority to those customers with the shorter mean service time,
is optimum (if performance is judged on the basis of the mean
waiting time of an arbitrary customer. )(8) We would expect,
therefore, if changeover times were not too large relative to
service times and if the mean service time of one type of customer
differed greatly from the mean service time of the other type,
the use of the strict priority discipline would be desirable.

The introduction of changeover times necessitates some

further specification of the server's behavior. There is the
qﬁestion of whether, after crossing from 1 to 2, tne server may

cross back to 1 without serving any 2-customers. We shall assume
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that this is not allowed and that at least one 2-customer must

be served. Also we must specifly the behavior ol the server when
the system becomes empty. We shall agssume that when service is
terminated on the last customer in the system, the server will
remain stationary at that line. It should be possible, using the
techniques we employ, to easily handle modifications of these two
assumptions.

The steps taken in this chapter parallel very closely those of
Chapter II. We again concentrate on the imbedded Markov process
lormed at service-cempletion instants. ['rom the transition
probabilities, expressions for the generating functions of the state
probabilities are obtained and as in Chapter II contain unknown

boundary conditions. These boundary conditions are observed to

satisfy two simultaneous equations which are solved, producing a complete

solution to the problem. It is then easy to obtain expressions [or the
mean waiting times and certain other measures of the system's

effectiveness.

III-a The Imbedded Process

The transition probabilities for the strict priority discipline

-are
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— 1 -1 TRANSITIONS
mz2l, alln . 0 , m'<m-1
1 1 -
P(mn - m'n') 0 , n'<n
pm'-m+l, n'-n° otherwise
m=0, n21
1 1
\ | R( on - m'n') - 0
L\ m=o, n=o
1 1
>mn') =
P(00 -m'n') = 1 Pmn
1 - 2 TRANSITIONS
m21, alln
1 2
“ P( mn - m|n|) = 0
{ l‘.
m=0, n21 ‘ | ,“n '<n-1
_P(on - m'n') +~ = m'-i,n'-n+l-j, otherwise
' ’ I e T~,—‘1:“‘*" 1 (o] J =0
/// """" m=0, n=0 - | l m'
[ I " ‘1 ,12E“ . |
TR B _’ ity R . .
| e ] o L A, i=o j=o
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_ 2 - 2 TRANSITIONS
mz1,all n
; 2 2
P(mn - m'n') = 0

m=o0, nl

: _ 0 , n'<n-1
2 2 q
P(on -~ m'n') m',n'-n+l , otherwisc
m=0, Nn=0
\ ‘ 2 2
‘ - 1! —
| P(oo - m'n') = rs Qo
I
T
" 2 -- 1 TRANSITIONS
. m2lalln 0 . m'<m-1
i 2. 1
P(mn - m'n') = 0 , n'<n

m'-m+l n'

o ‘ Z zuijpm'-mﬂ-i,n'—j, otherwise
. i=o j:o

m
Ty l 2 uijpm'-i, n'-j

;1:._ ‘ o ico j_-_-_o
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where pij’ qij' uij and "'ij were defined at thg beginning ol Chapter |11,
The difference between these probabilitics and thosce for ulternuting

priority appear in transitions [rom line 2, I'or example

2 2
P(mn - m'n'") =0when m 21 since the scrver will always go Lo

line 1 if there are any l-customers waiting., When the server is al
line 1, he treats l-customers as "'high priority'' and 2-customers as
"low priority' under either strict or alternating priority. Thus the
transition probabilities from line 1 are the same for hoth disciplines.

The equilibrium equations of Chapter II (Eqgs. (II-3) ) again hold,
as well as the normalization conditions (Eq. (II-4) and Egs. (II-5) ).
When the above transition probabilities are introduced into the

equilibrium equations, and generating functions taken, there results

iy, z) = P(y, 2) { [Mory + (7 (. 2)-(0, 2) )] +

(ITII-1a)
Uty 2) [ Mgory+ 5 (1%(y, 2) -0, zm}
’(y, 2) =Q(y, 2) iV(y,Z) [ Moty + 5 (M0, 2)-T )]
¥ [”io 2 +1E ("iorz %‘"2(0' Z)'“ic!]}s (III-1b)

where the functions P(y, z), Q(y, z), U(y, z) and V(y, z) are

given by Egs. (II 2) U
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One notes the appearance of the boundary conditions ﬂl(o, z) and
ﬂz(o, Z).

In order to isolate the problem of normalization from the
~other more fundamental issues, we treat ﬂgo for the time being
as arbitrary and deal with the ratios of the state probabilities.

To facilitate this, the following definitions are made

e
b =12 (I11-2)
T o0
N
1 ﬂl(o, Z)
A
oo (I1I-3a)
e ———
| 2
bo-Z(z)= m {o, z)
Moo ' (I1I-3b)

The quantity b, the ratio of the idle time spent by the server
at line 2 to the idle ’;ilne spent at line 1, has the same interpretation
‘as in Chapter II. Also the definition of crl(z) is the same. It should be
noticed tha;t bo-z(z) is the generating function of ﬂfm/ﬂlo, whereas in

Chapter II we used a similar notation for the generating function of
112 /Tr1

mo! Moo - One observes that cl(o) = 0'2(0)'= 1, since

1

111(0, 0) = Moo ghd 112(0, 0) = brrgo . Making use of these definitions

Egs. H(III;I)‘bec‘:ome
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|
n_ Py, z) 2., .
nl(y, z) = ;?P(y, Z) L ry -(rl(z) + U(y,zX brly-b:rz(z)vl-n_n{y_'_‘)_) I
00
(I11-4a)
2
2 1 ) a(z) + ZI‘Z-l v (z) +zr2-1
™y, 2z) =T Qly,2) [ Viy, z) ( - ) + b ( . )|
(I11-4b)

Egs. (III-4) are the generating functions for the state probabilities,

expressed‘in terms of the (as yet unknown) quantities 0'1(2), 0‘2(2) and b.

III-b Determination of Boundary Conditions

In this section we derive and solve equations which specify
the functions cl(z) and o-z(z). These equations 'also serve tb determine
the constant b, since it happens that only one value of b leads to an
acceptable solution.

The denominator of Eq. (III-4a) is zero when

y = Ply, 2) (111-5)

so that a necessary condition is that the numerator be zero when

Eq. (III-5) is satisfied. In Section II-c of Chapter II this equation
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was solved, the result being

y = By(A,-},2) (I1I-6)
where we recall that BI(S) is the Laplace-Steiltjes transform
of a type-1 busy period in isolation. Making the substitution of

Eq. (III-6) in the numerator of Eq. (III-4a) and setting the result

to zero yields

o(z) (2-8,,()S),(@)S,(a) ) = zr;S,(a)

+5,,(a) [bzr S (a) + S,(a) (2r,-1)(S, ,(a}tb)sbo” (2)(S,(a)-2) ]

(I11-7a)
where for the sake of simplicity we have used
a =a(z) = Xl-llBl (A ,-2,z) + A=hoz (111-8)
and also
B,(,-*,2) = 5,(a) (111-9)

the latter equation coming from Eg. (II-15). Another equation

satisfied by 0'1(2) and cz(z) can be obtained by requiring the expression
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for ﬂz(y, z) in Eq. (I1I-4b) to reduce to ﬂz(o, z) = bﬂgocrz(z) when y is

set to zero. From this conditicn one finds
br(2) (2-5,(B) ) =(zr,-1) S,(B)S, (B)b) + S, (B) S,(B) o' (z)  (11I-7b)

where we have used

B=plz)=h +X, -,z (111-10)

One notes that Eqs. (III-7) are linear and may be solved.
Considerable simplification is achieved if the equations are solved

for the quantities

(rl(z) + zr. -1 crz(z)+ zrz-l

Z and b
z z

rather than cl(z) and U'Z(Z). The solution is

1
o (z)+ zrz—l _ Al(z) (1Li-1la)
Z - D(z)
2
o (z)+ zr,-1 A (z)
b 2 S (I11-11b)
Z - D(2z)

where

Al(z) = [z-SZ(ﬁ)(1+b SZl(a))](rlsl(a) +zr2-1)+ bSZl(a)[zrlsl(a)+(zr2-1)SZ(a)]

(III-12a)



- 65 -

D(2) =(2-8,(B)Nz-S,, ()S,(@)S, (@) +(z-S, (a))S, ()5, (B)S, (1>

(I11-12h)

Jf\z(z) =Slz(ﬁ)52(ﬁ)(l+b821(o))(rlSI(a) +zr2-1)+b(zr2-1)('/.—521((1) SIZ(Q)SZ(G) )

(I11-12¢)

We now know ul(z) and O'Z(Z) and only b remains to be determinad.
In Appendix III it is proved that D(z) is zero for some value of

z between o and1l. It follows that Al(z) and AZ(Z) must also be zero
at that point. This condition is sufficient to determine b.
Let the value of z for which D(z) is zero be Z s i.e.

D(zo) = 0. Using eitrer Al(zo) =0 or Az(zo) = 0, one finds

(z,-S,(B ) (A-ry5)(a;) - 1y2,)

b= S,1(a )T riS,(a Nz -5, (@) +(r,z -1)(S,(a )-S,(B ) )] (I11-13)
where
a, = a(zo)
B, = Blz,)

The boundary conditions have now been determined completely.
The root of D(z) is found by standard methods, and b, ol(z), and

oz(z) are then given by Eq.(1II-13), Eq. (III-1la), and Eq. (III-1llb)
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respectively. The only unknowninthe expressions [or Tfl(y, z) and
112 (y,z) (Eqs. (III-4)) is 11100. We now turn our attention to the

determination of this quantity,

III-¢ Non-Saturation Condition

L. . 1
Proper normalization requires Moo to be chosen so that

né1,1) = r, (1114)
This follows from Eq. (II-5b).
In light of Eq. (III-4b) this means
r
k= 2 (I11-15 )

oo lgy -r b (s2(1) -r, )

We may derive this equation in another way. The probability that a

given servicc ic followed by a changeover from 1 to 2 is

[o0) @

1 1 A | 1
X Ton t Toot2 = £, "on™ Too'1
n= n=o

1 1
= noo( o (1)-1‘1) (III-16)

This follows from the fact that a service will be followed by
a switch from 1 to 2 only if it leaves the system in one of

1
the staies on, n=l, or if it leaves the system in the state o o
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and the next customer to arrive is ol type 2. 'The probahility

that a given service is followed by a changeover from 2 tol

is
2 2
>" +ﬂ0r1—r22non+n00r2
mes= 1n o n=o
1 1 2
=r, + brz”oo'b"oo" (1) (111-17)

since a changeover from 2 to 1 is made only if the system has been

left in one of the states m=1, or if it is left in the state
and the next arrival is of type 1. The number of changeovers in either
direction must be the same. Equating the probabilities of Eqgs. (III-16)
and (III-17) produces Eq. (III-15) and sheds some light on its significance.

One observes that

. 1 .
Ul(l)—rl _ 1213 o (z)tzr,-1 _ 1;1111 Al(Z)_ (11-162)
Z D(z)

2
lim b o (z) +ZI‘2"1 _lim AZ(Z)

b(cr 1)-r)) =", Z = z2-1 D(z) (I11-14b)
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Since Al(l) = AZ(I) =D()=0, L' [Topital's rule must be applied,

Thus
] AQ)
o (1) - r) = 5 (I11-19a)
2 A% (1)
bl ()-ry)=—pgrry (I1I-19b)
One finds that
Al ) = [r (14b)(1-S,(A)) ) +rb(l-p=p,) | (I1I-20a)
D'(1)= 11 [ (1- SZO\ )+SZ()\1)SIZ(>\ )N(1- P1- pz) (1-S (’\ ) >\2(“12 +_“;1 ) |
(I1I- 20b)
1 1 + 1
Al (1) =-1__p1[ Slz()\l)SZ(XI)(1+b)rZ—brl(l-p1-pz)+br1>\2(ulz T )]
(I1I- 20c)
so that there results from Eqgs. (20), Egs. (19), and Eq. (15)
r_D'(1) (=550 18,(1)S,, (1 D-pyp )= (1-5 , (1 A (Lt 1
"§o= .? 271721121 P17P2 17 2% W
' !
ARAZD 15,0 )45,0.)8), 0 N(L+b)+ b G )

(I11-21)



- 69 -

- The system will operate without saturation as long as

1 2

1
- S . ' . . S,
00 + ﬂoo (1+b)1'roo 0. Since Al(l) + Az(l) is always positive (see

m

Eq. III-21) ) this condition becomes T"'(1) > 0,

1-S. (\,)
1-p;=p, = A - (——t 2
1F2 0 72 1-5,(A 1+5,(4))S), (M) o Mol

)> o0
(II1-22)

This is the non-saturation condition.

The significance of the last term in the above inequality may be
better understood by obtaining it in another fashion. Let us consider
the period of time that elapses between the instant at which a changeover
from 1 to 2 begins and that at which a changeover from 2 to |l terminates.
In this interval the server crosses to line 2, serves some number of 2-
customers (at least one), and returné to line 1. We shall be interested

, in the number of 2-customers served in this "trip.'" [Ifor this purpose

‘ we note
@™ -)\lt
SZ()\I) = I e dFS (t) = Prob(exactly zero l-customers arrive
, o 2 during service of a 2-customer)
| - =q ! (I11-23a)
o -Xlt /
Slz(ll)= J‘ e dFS (t) = Prob(exactly zero l-customers arrive
o] 12 during a changeover from 1 to 2)

(I1I-23b)

n
<
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Since we are concerned with near-saturation conditions,
we shall neglect the possibility that the server spends idle time
at line 2 during his trip. When the server departs from line 1,
no l-customers are present. If a l-customer arrives either during
the changeover from 1 to 2 or during service of the first 2-customer,
the server will return to line 1 as soon as the service is completed.

In this case only one 2-customer is served. Thus

Prob (exactly one 2-customer served per trip) = l-qovO

Exactly two 2-customers will be served if no 1-customers arrive
during the changeover time from 1 to 2, and none arrive during the
service time of the first 2-customer, but that at least one
l-customer arrives during the service of the seéond 2-customer.

Thus

Prob(serve exactly two 2-customers before returning to line 1)

=v.a,(-q))
We can likewise find the probability that exactly n-customers

are served in succession

Prob(exactly n 2-customers served per trip)

_ n-1
= Vo9 (l-qo) nz2
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The average number of 2-customers served per trip then is

1-q0+q0v0

II1-24
=N (I11- 24)

[o0]
n-1
l-qovo + Y n Voqo (l—qo) =
n=2

The reciprocal of this is the average number of trips made per

2-customer. Since 2-customers arrive at a rate XZ per unit time

and each trip requires an average crossing time of t 1l )
M2 Ha
the server spends a fraction of his time
: 1-5,(*))
1_
A 4 (1 +_1 ) _ 2 1 ( 1+ 1
2 1ragta v, My, M2 IS, S, ()81, TR By

(I1I-25)

crossing between lines. To have non-saturation, the total
portion of the server's time servicing l-customers, serving
2-customers, and crossing must be less than 100 per cent. This

explains Eq. (III-22).

III-d Waiting Times and Other Quantities

The Laplace-Steiltjes transform for the high priority waiting

time is obtained by substitution of Eq. (III-4a) into Eq. (I-16a).

)
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o (61(1)-r1><321(s)slz<s)sz(s)-1)+b<(;2;1)-rl)su(s)(szw)-l)

W, (s) =
1 r 1 .
1 i + rl—— (H‘bSZl(b) )

1 -—?‘_1 - Sl(s)

(I11-26)

The mean wait for 1-customers may be obtained by two applications
of I'IHopital's rule to the derivative of the above expression.

The result is

2 2 1 1l Loy
o MBGUAGESS) BT, tep Ohg) gole ey
1~ 2{I-p;) (I-py M5y (1-p))
(11I- 27)
2 2
x [ EGpHES;) 1 o+ 1 |

+
z Habyo Mo

The quantity .0'1(1)-1‘1 is given in Eq. (III-19a), b is given in
Eq. (III-13), and ﬂ;o is given in Eq. (III-21).
Using a technique introduced by Cobham, (2)

(5)

and refined by
Holley, this equation may be rederived: An arriving l-customer

(high priority) has a wait which can be broken into two components:
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that contributed by the delay, il any, hetween the time ol arrival

and the time at which the server is prepared to attend to the next
l-customer ; and that contributed by the delay involved in

servicing all those 1-customers already waiting in line. We call the
first of these WO’ and deal with it below. The second component can be
obtained by observing that the average number ol l-customers in

line 1, not including the one which may be in service, is >\1V&71 (7)

Since each customer requires an average service time ofl /lethe

~ total average time required for their service is L !
1

Jrom this it follo'vs that

| Wq= Wo + plW (I11-28)

and thus

W
W, = —2

1 l-pl

(111-29)
\‘\ Now we consider the quantity Wo' It is well known that
\‘

in a\renewal process, the mean time between a random instant
| uE(s%)
and the occurrence of the next event is —— wherel /1
is thé\‘mean and E(SZ),is the second moment of the inter-event
- '
times. (2) An arriving 1-customer enters the system at a random
instant and m?y find the server in any one of six situations:

\
i
|

\
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1) The server may be idle at line 1. The probability of this is

1 . . . o .
oo and in this case service can begin immediately.

2) The server may be idle at line 2, and this occurs with

probability ﬂ§o=bﬂéo . An average delay of 1 is required

M
21
before the server is prepared to service the l-arrival.

3) The server may be busy at line 1, which has a probability
E(S,“)
Py An average time —“1——2; is required before the service

of the next 1-customer can begin. 4) The server may be busy 2
HL(S5),

at line 2. The probability of this is P and an average delay of — m
21

is required. 5) The server may be crossing f[rom 2tol. By

the same reasoning leading to Eq. (I1-49), the probability of this

is (K1+>\2)ﬂto(ol(1)-r1) . The average delay involved in
Ha1
HZIE\S )
this case is —2———— . 6) The server may be crossing from
1 to 2, the probability being (>\1+>\2)ﬂ;o(al(l)-rl) . The average
12
1y, E(S5)
delay is 12 siz + 1 ' 1 . Thus weighing the delays in each
2 M2 HMa

~case by their probabilities,

A E( Z)+>\ E(S 2) 4 +p
W =— Sl _ p;’ 2t +x2)n})0(¢1(1)-r1)
| | | , , (L11-30)
E(S5)+E(SS,)
X ( SLZZ 21 + 1 + 1 )

Moo MMy
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This, in conjunction with Eq. (II-29) gives Eq. (III-27).

For the low priority customers, the waiting time transform

is
nl r,s 5 r,s
(S) =—y lslz(s)(" (1- X )- -r1)+b(cr (1- ) T r )l
r (1 1 ) 2
(II1-31)
The mean walit is
1 dnr,ter) P, W) o Uy
~ _ 0O X +b X +
T, 2 2 M2
(I111-32)
One notes that
1 _
d o (z)+r, z-1 A (z)
sy +r2’("1(1)'r1) = dz - 1= & Dl(z) |
z=1 z=1
(I1I-33a)
‘ d 2(z)+rzz--1 d Az(z)
b [2Q)+r,~(c“Q)-rl= 5 b — z|=1=E 5z z|=1

(I1I-33b)
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The expressions become quite com plicated so they are omitted here.
['or completeness the expression for WZ is included in Appendix V.

No simple interpretation of the result for WZ is evident

to the author.

Limiting Cases

1) In the case M;,=H; =%, the expressions for the mean waiting

time become

A 2
[E(SD+ A ,E(S35)

W, = ) (I11-34a)
MEESHALESS)
= 1 1772 2 (I11-34b)
2" (l‘pl)(l'Pl"P27
The probability that the server is idle is
12 =
Mot oo = 1-p;-p, (II1-35)

These are the rather well-known results for a simple priority

(10)

quéue and were first derived by Cobham (2). See also Miller

Egs. (III-7) take on a particularly simple form in this case, and

the value of Zo' defined in Section I1I-b, is zero. The constant
b is then ‘
b= = 1

SZ(X1+)\Z )(l-rlBl()\ > ))
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2) The case M;=M,==is not of interest because the strict priority
discipline forces the server to wait on not more than one 2-customer
if a 1-customer is waiting. The waiting times could certainly be
reduced by allowing service to take place on all 2-customers present,
since this takes no more time than the service of a single 2-customer.

Thus strict priority is not an acceptable policy in this situation.

End of Limitiug Cases

If a cost is associated with changeovers we would be interested
in the following quantities: Probability that a 1-customer is [ollowed

M (e (D))
by a changeover = 00 1 . Probability that a 2-customer
r
1

(e ()-r))

is followed by a changeover = Probability that an

)

arbitrary customer is followed by a changeover = Zﬂloo(ol(l)-rl).

Fig. 3 plots the waiting time of the high priority and low
priority customers versus arrival rates for the cases of no changeover
time and a fairly large changeover time. 'The low priority customer
suffers most of the added delay when the changeover time is
increased. Superimposed on the plQFt are the results of some

simulation runs.



Ul-¢ Summary

The study of the imbedded process has resulted in the complete
solution for the transform of the waiting-time distributions, This wis
possible due to the simple form of the cquations which specificd the

boundary conditions,
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CHAPTER IV

ZERQO SERVICE TIMES

The assumption is made throughout this Chapter that My=H,=
i.e. , the service times are zero. This is done so that we may study
the effect of more sophisticated queue disciplines than we have
studied previously without at the same time adding tremendous
complexity to the analysis. The validity of the assumption in actual
practice depends on the extent to which the service times are small
with respect to both the changeover times and the inter=arrival times.

We consider the 2-line model of I'ig,1 with Fsl(t) = I"‘Sz(t)=u_1(t),
the unit step function. We restrict attention to those queue disciplines
which canbe described as follows: 1) All customers in a given line
are served immediately upon arrival of the server to that line,
'2) Unless the number of waiting customers in the other line is greater
than some critical value, the server will remain stationary ; the
moment this critical value is exceeded, a changeover is begun. To be
specific, the server will remain at line 2 until at least M customers
are present at line 1. Likewise, he will remain at line 1 until at least
N customers are present at line 2. One notes that there are
never ainy waiting customers at the line which is receiving service,
since the assumption of zero service times allows these customers

to be served immediately.
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The optimum policy-- in the sense of minimum mean waiting
time of an arbitrary customer-- falls within this set of disciplines,

It is certainly true that the optimum discipline always clears all
customers in a given line since this takes zero time and the waiting

times could only be increased by refusing to service some of thosc

who are present. Also, the fact that arrivals are PPoisson means

that any information, other than the number of waiting customers

in the other line, is irrelevant to the decision of when to cross. One notes
that setting M=N=1 here gives for the case of zero service time,

the alternating priority discipline discussed in Chapter II.

We again employ the technique of working with the process
imbedded at the instants of service completion. We find the boundary
conditions to have a more complicated form than previously, but
additional considerations lead to their complete determination.

Waiting times and other properties of the system are then obtained.

IV-a The Imbedded Process

1 2
The state of the imbedded process is again either mnor mn and the

transition probabilities for above discipline are listed below:

1 - 1 TRANSITIONS

ms,all n _
e 1 1
- 1ht) —
P(mn-m'n')-= 6m',m-1 Sn'n

m=0, n<n

P(on -+ ‘rrfi'ln") =0
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m=o0, n<N
1 1 2
- 'n') = -
P(on - m'n') 6orn'lrlénn'JrrZrI 6n+1,n'+r2r1 6n+f-',n'
N-n-1 - '
+ ------ +r2 rléN l’n ]

1-2 TRANSITIONS

m=<l, alln

1 2
Plmn-m'n')y =0

‘“m=0, nSN

1 2
P(on-m'n') =0 , n' < n-1

\4

m',n'-n+l, otherwise
m=0, n<N
1< -
1 2 o , n N-1
>m'n') =
P( on - m'n') . N-n .
2 Vm?', n'-N+1l, otherwise

2 - 2 TRANSITIONS

n>o, ali m

2 2

tt - '
P(mn»mn)~ 'ém_'m 6n‘.n-1

n=o, m<M o
22 |
i P(m o — mj'n') = 0

P
Co
]
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n=o, m<M

2 2 P
— n' = 6 4 6 1
P(m o - m'n') 6on' lrz mm'+ ) m-rl,m" ) "zém-rz,m'
M-m-1
toooa. try r, 6]Vl-1,m]
2 -1 TRANSITIONS
n>0, all m
2 1
Pmn-m'n'y = 0
n=o0, msM
2 1 0 m<m-1
P(mo - m'n') =
um'-m+1,n’
n=0, m<M
2 1 0 m'< M-1
P(m o—- m'n') =
pM-m
1 m'-M+1,n'
o ‘ 1 i=j
The quantity Gi' = i is the kroneker delta function of its
' o i7j

égguments i and j.
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l.et us examine some of the above expressions. Il the present
1

state of the system is , m<l

then when the next customer

is served, the state of the system must be m-ln ° This is so

because service times are zero and no arrivals could have occurred

during the service. This explains the expression for P ( ! - . ).

m n m'n'

If the present state is the next state (at a service-

1
on, n<N,
completion) depends upon the order of future arrivals. If the next

arrival is of type 1, he will be served immediately and the resulting

state wili again be oln . If a 2-arrival occurs, followed by a l-arrival,

the state becomes As many as N-n-1 2-arrivals might occur,

o n+l

followed by a l-arrival. In this case the next state is LI

1
o N-1
more than N-n-1 2-arrivals occur in succession, the server will

move to line 2. These possibilities are reflected in the expressions
1 1 1 2
for P(on—+ m'n') , n<N and P(on -~ m'n') , n<N. (It should be

‘remembered that the probability an arrival is of type 1 or 2 is r,orr,

respectively. )
Substitution of the above transition probabilities into the
equilibrium equations (Egs. (II-3) ) allows us to find the generating

functions of the steady-state probabilities. The result is

NNl

(—-))

+ bU(y, 2)(e’(y)-05, 0y e Mo (2 ) )-olz)

|

(IV-la)




- 85 -

2 M M2 1
Ty (o) -y'r GM(;I)

N 1

F VI, 2)(6 (2) a2z Ve, ot () )obay) |
2

(IV-1b)
where we have used the following
Moo
b = I (Iv-2)
m
00
1 ]
1, T(o,2) 1 1 n
o (z) = - = ol ) non z (IV-3a)
00 00
n=o
2 [«
m (y; 0) 1 \_\" Z m
00 00 m=o
N-1
1 1 Y 1 n
o (2) = — Tz (IV-4a)
N w4 on A
00 n=o
M-1
2 1 ) 2 m .
00 m=o0

" 0'1(0) = 0'2(0) = UIN(O) = 0'?\/[(0) =1 (IV-5)
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The quantities U(y, z) and V(y, z) are the generating functions
for the probabilities uij and vij defined in Eqs. (I[-1) and (II-2).
The quantities «rl(z), cr?'(y), and b have the same interpretation
that they had in Chapter II. The functions cr%\](z) and crﬁ/l(y) are the
power series in z and y for ol(z) and O'Z(y) truncated after the Nth
and Mth terms respectively.

We now give a preview of the steps that will be taken
in the next few sectiens. TLl(y, z) and Trz(y‘, z), the generating
functions which we seek, are expressed in Eqgs. (IV-1) in terms of

O'I(Z), az(y), 0'11](2), Uli/l(y), b and T(T)lo in addition to the known

quantities. In section IV-b we derive equations which express

O'I(Z) and O'Z(y) in terms of O'%V(Z) and crl%/l(y). In Section IV-c we
derive equations which determine (rlN(Z) and UZM(y) in terms of b,
These equations are solved and upon examination of the results,

it is seen that b ‘is uniquely specified. The outcome of this section
is a complete knowledge of the quantities o‘{\](z), cr?vl(y), and b.

In Section IV-d the last remaining unknown, TTLO, is determined from

the condition of normalization.

IV-b:‘.‘ Determination of crl(z) and o-z(y)

The purpose of this section is the determination of the

functions crl(z) and O'Z(y). Equations for these quantities may be



_87..

obtained by noticing that the numerators of Eqs. (IV-1) must be

zero, when y =1 and z =1 since the denominators are zero at this
point. Thus

I'
o' (z) =% =3 o Coy(z) = 2Nel ot (L)) bU(z)(a2<1>-o";\,,(1)+r{V'«fw(—1}T> )

* (IV-6a)

br, M M 2 N 1,1
bo (y) —I_I‘Y ( UM(y) yory oy ( —)) +V(y)(tr (1)- GN(I)H‘Z GN(TZ))
(IV 6b)

where we have used the notation

_ v i
U(z) = UQl,z) = L/, uijz (IV-7a)
1=0 j=o0
VO SV D= ) ) vy (IV-7b)

i
I

It is convenient to define the quantities

(IV-8a)

@
Ey = Prob (j 2-customers arrive during a
i=o changeover from 2 to 1)
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vi = Y i = Prob (i 1-customers arrive during a
j#o J changeover from 1 to 2) (IV-8b)

U(z) and V(y) then are the generating functions for the probabilities
defined above.
One observes that Eqs. (IV-6) express (rl(z) and Uz(y) in
terms of al(l) and 02(1) as well as U]N(Z)’ crﬁd(y), and b.
The quantities 0'1(1) and 0'2(1) may be eliminated by requiring
the expressions for crl(Z) and uz(y) to be equal to 1 wheny = z = o.

It follows that

r r
ol(z) = 1—# (g}\](z) - erzNU;I (lr-z) ) + U(z) f (IV-9a)
2 T2 2 M M2 ,1 |
o (y)=ﬁl—y— (@3 )=y 1 e '?1) )+ Viy) v, (IV-9b)

These equations express 0'1(2) and O'Z(y) ccmpletely in
terms of o}\](z)' and o-ﬁd(y). Thus the former functions can easily

be determined once the latter have been found.
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IV-c Determination of a}\l(z), (ri/l(y) and b

The purpose of this section is the determination of the functions
ulN(z) and a?w(y) as well as the constant b. Progress toward this
end could no doubt be made by taking advantage of the fact
in Eqs. (IV-9) that O'I(Z) and c;(z) agree up to the (N-1)st power of z,
and that oz(y) and 0'12\'/[()') agree to the (M-1)st power of y. [lowever, it
seems easier in this case to use the following method.

We make use of a more deeply imbedded process. This
new process is formed by taking note of the system only at that subset
of service-completion instants which cause a line to become empty
but do not cause a changeover to begin. That is, we ignore all
service-completion instants except those that leave the system in
one of the states oln with n <N or mzo with m <M ( a total of M+N
states). We use a prime (') on the transition probabilities to remind us
thét only those states mentioned above are being considered. The

transition probabilities are listed below.

1 - 1 TRANSITIONS

1 1
2 N-n-1
P!(on-on') =r?d .+ r2r16n+1’n,+rzr1 6n+2. n't-r -1 | GN-I, n'
N-n = - & N O B
+r) VMun,( 1+U,. .V +(UNVM) +(UNVM) +...)



1 2
P'(on - m'o)

=r

- 00 -

1 - 2 TRANSITIONS

N

-n - T R -
5 vm,(l+(VMUN) + (VMUN) F.o.0)

2 - 2 TRANSITIONS

2 2 2 M-m-1
' -—m' _ |
P!(m o~ mlo) = I'Zémm'+ ) 6m+1,m'+rl r"26m+ 2, mttre T
M-m= 5 = g T 22
tr) UNVm' (1+ VMUNHVIVIUN) tov.l)
2 - 1 TRANSITIONS
2 1
M-m — - = |2
' . "y =
P'(m o -~ on') ry un,(1+ UNVM+(UNVM) to...)
where
7 = Prob(N or more 2-customers arrive during a
N changeover from 2 to 1)
Ay -
=) uj (IV-10a)
=N
\TM = Prob(M or more l-customers arrive during a
changeover from 1 to 2
:z V.
i
i=M
5. . = 1 i=j
4 o kroneker delta

r'?.Jl\/l-l,m
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The special form of these expressions is interesting,

1
Suppose the present state is o n . If exactly j 2-customers

arrive before the next l-customer, where jsN-n-1, the next
1

state will be ontj’ This explains the first part of the expression
1 1
for P'(on --on') . The rest of this expression may be understood

by considering what happens in the event that N-n 2-customers arrive
in succession,

If the state is o ln. and if N-n successive 2-arrivals occur,
the server will cross to line 2. Depending upon the number of
lI-customers that arrive during the changeover from | to 2, the server
may or may not stop at line 2, If more than M l-arrivals occur,
th(f server will leave line 2 immediately. Likewise the server
will leave line 1 immediately if N or more 2-customers arrive during
the changeover from 2 to 1. Tﬁe server may travel back and forth
in this fashion many times. We are interested in the state of the
system when the server finally stops.

The probability that line 2 is left immediately after a1l to 2

changeover is \TM . The probability that line 1 is left immediately
after a 2 to 1 changeover is U_N . The last part of the expression
1 1

for P'(on—- on') feflects the possibility that the server crosses

to line 2 and back any number of times until finally a 2 to 1 crossing
is made during wbich exactly n' 2-customers arrive. The expressions
for P'( oln - rrzx'o“) , P'( mzo - oln') , and P'( mzo - mz'o) were obtained

through ’i:denticél reasoning.
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The steady-state probabilities must satisly the following

equilibrium equations

1 o 1 L1 M-, ¢
Tont =7, TopP'(on -~ on') +z Mol (mo ~on') n'<N
n=o m=o
(IV-lla)
N-1 1 2 M-1
1 ]
ni,():}j T onP'( on - m'o) +z nrio P'(mzo - mgo) m< M
n=o0 m=o0
(IV-11b)

which serve to determine the ratios of the indicated probabilities.
This is true since the ratios of the probabilities do not depend
upon whether or not all service-completions are taken into
consideration of just the subset we have chosen. Dividing Egs.
(IV-11) by ﬂ(l)o, substituting the expressions for the transition

probabilities, and taking generating functions produces the result

(1-r z)U (z)
7 o N 1 P M z N
N M
(IV-12a)
. Q-r.y)V, (y) 2,1

2 1 V"M - M 2 N .l M, M_ (%)

'D"M‘r1 Iy | TV (bUyry "M( THr N(_)by LX) Oy Ty
N 'M
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where we have used

N-1
j=o
M-1
T
V) LY (IV-13b)
1=0

Note that UN(Z) and VM(y) are merely truncations ol U(z) and V(y)
defined in Eqgs. (IV-7). Note also that

N-1
U‘N = UN(I) = l-UN =
J

J

uJ. (IV-14a)

It

(0]

= Prob(less than N 2-customers arrive during a changeover
from 2 to 1)
M-1
Vi = Vi = 1-Vy =)y (IV-14b)

1=0

=Prob (less than M l-customers arrive during a changeover
from 1 to 2)

Egs. (IV-12) express crl(z) and 02 (y) in terms of (rl (—1 ) and
N M N r,
2,1 ‘s 1,1 2 1
O’M(—l;l) as well as b. The quantities O'N(TZ) and aM(—rl)
may be eliminated by requiring the expressions for o'i\](z) and O'ZM(Y) to be

equal tol wheny =z = o. The outcome is
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(I-r_z) U (z) + 2Ne. T 2Nr %h
"111‘2) - l-lz l : = " : | (IV-15a)
Yo 2Yo
M. = M 2
0_2 (v} 1 (1-1‘1}') VM(}’) ty rZVM _ y Pz
MY 1oy v, brju_ (IV-15b)

¥

which expresses o‘lN(Z) and crl\zll(y) only in terms of b and known
quantities.

It is now possible to determine b exactly by observing that the
numerators of Egs. (IV-15) must be equal to zero wheny = z = 1.

Using either Eq. (IV-15a) or Eq. (IV-15b) we find

b=-—=2-2 (IV-16)

One notes that

u0 = Prob (no 2-customers arrive during a changeover from 2 to 1)

o]

j e -th dFSZl(t) = SZl(XZ) “r (IV-17a)

o

<
1

Prob (no l-customers arrive during a changeover from 1 to 2)

[o2]

-\ t e
Ie 1 dFslz‘t) =S1,0M) (IV-17b)
(o 8 )
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so that
0\ )
r2512 (IV-14)

b =
1321zx2)

We originally found this same value of b when the alternating
priority discipline was us;ed and ¥ = M, == . See Eq, (II-25).

b is the ratio of the time the system spends empty with the server
at line 2, to the time the system spends empty with the server at

line 1. It is interesting to find that b remains unchanged for a much

wider class of disciplines.

Using the expression of Eq. (III-16) in place of b in Eqs. (IV-15)
there results

N

] 1 [ (l-rzz)UN(z) -2z rlUN]

on(2) =13 u (IV-19a)

M
1 r (l'rly) VN[(Y) Yy FZVMJ

) .
U'M(Y)= 1_yL Vo (IV-19b)

which gives O']N(Z) and crl%/[(y) completely in terms of known quantities.

The importanf results of this section are Eqs. (IV-19) and

. Eq (IV-16). We have obtained these equations through the analysis

of a more deeply nnbedded process. These results may now be used in

conJunctmn w1th Eqs (IV-9), to specify the behavior of m (y, z) and

(y,‘z) as glve.n in Egs. (IV-1). Only the quantity 11:)0 remains to be

determined. and this is done by using the proper normalization condition.

1

i
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IV-d Non-Saturation Condition

Proper normalization requires
(IV-20)

i1, 1) = r,

This follows from Egq. (a) of Chapter II
One finds that L'Hopital's rule must be used in applying the above

condition to Eq. (IV-20). One obtains

u /KZ
1 M- N (IV-21)
m = ' —
00 7}_ Z (M-1)v1 + — Z (N-J)UJ + Hl_ +T11—
1 i=o0 2 j=o 12 21

L is greater

Saturation can never take place since it is always true that m
It is obvious that this must be the case since all customers

than zero.
in a given line can be cleared from the system at once, and a given

customer need never wait longer than the time required for two
changeovers.
IV-e Waiting Times and Other Quantities

The generatmg functions of Eqs. (IV-1) can be used in the expression

bf Eq. (I-16) to determine the Laplace- Steiltjes transform of the waiting

Taking the appropriate derivatives, the mean waiting time may be

: ,tlmes.

/ .
/“ found. The results are

f




2 2
— E(SSNHE(SS,)
1 T » S HEGL)
M-=-i)v.+ / 1 -1)- -1 .
_ MM Z M=)y a % v (M(M-1)-1-Djv; 2 H12H 21
\Vl = 1=0 1 i=o
M-1 N-1
j}— /T (M-i) v.+ 71:— \,— (N-ju, + — F -
1 1Ay o I M Ha1
i=o j=o
(IV-22a)
-1 N-1
, R (N-1) 1T 1 1 E(Siz)’“E(Szzﬂ 1
/ -jhu.+ - -1)-j(3- . .
RIS Pt 77 IN(N-1)-j(j-1)] uj + 5 v
. A - 12721
2 - J=o0 2 J=0
M-=1 N-1
1 . 1 . l I
X_z (M-l)vi+ - ? (N-J)u.+r + ;——
1, 2 i=o 12 21
(IV-22b)
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where, to repeat

' -uj = Prob. ( j 2-customers arrive during a changeover from 1 to 2)

i
Patr  a

O_Jr— e 2 dFS

(t) : (IV-24a)
12

v = Prob (i 1-customers arrive during a changeover from 2 to 1)

=4 e™ dFg (t) (IV-24b)
o : o 21
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One can determine the optimum policy by treating Eq. (IV-23) as
a function of M and N and determining by a direct search which valuecs
of M and N produce the minimum average waiting time.

If we set M = N =1 in the above, we find

2 2
E(SIZ) + E(S?.l)

1 1
v +
W - MHa T T HHy 2 (IV-25)
1 S U SRS

AoTo TR, To T, THy,
which in light of Eq. (IV-17) becomes
_ XA .
Wis 12 o) , 1

1 + 1 AL ST
Xzslzo‘l)”‘lszl()‘z’**l)fz(u—‘ u_) 1721 12721
. 12 21
2 2
+ > ] (IV-26)

This checks with Eq. (44) of Chapter II, as it should, since the
Giscfpline in this case is nothing more than alternating priority.
‘ Alfhough we have tacitly assumed M=l and N21 throughout
this analysis, it turns out that Egs. (IV-22) are valid for M=0
and N=0 as well, if the terms with summations are taken to be

- zero. Physically M=0 means that the server will alw'ays depart
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from line 2 immediately upon arrival, regardless of the number
of customers waiting at line 1. The equivalent holds if N =0.

We now obtain some other interesting measures of the system's
behavior. The probability that a particular customer is followed

by a changeover from 1 to 2 is

(10 2 ol 2 02" 2 on-1"2 A Ton (Iv-27).
This is explained as follows: A customer will be followed by a

1 to 2 changeover if its service completion leaves the system in one of
the states oln with n 2N. Also a changeover will follow a customer who
leaves the system in state olo with N 2-customers then arriving

before a 1-customer, or who leaves the system in state oll with

N-1 2-customers then arriving, etc. Manipulation of the above

expression yields

TT})O[O'I(I) - crlN(l) + er o{\l(riz)] (IV-28)

which from Eq. (IV-9a) is found to be

u (IV-29)

The probability that a given customer is followed by a 2 to 1
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changeover is the same as the above since the number of changeovers
in either direction must be the same.

The probability that a 1-customer is followed by a changeover

is then
1 TToorz TT:)orz
P a =T (IV-30)
1 o 1

is

1 00 2 00
—_— = (IV‘31)
T2 Yo Yo
The probability that an arbitrary customer is followed by a
changeover is |
1 1 1
m r m 2T r
170 o] o

In Figs. 4 and 5 we plot the average waiting time for an arbitrary
customer versus arrival rate for a number of different policies.
(We recall that the policy is specified by fixing M and N ). The
system considered is symmetrical, i.e. )‘1 = >‘2 = A and
My2 =Hop = Mg so that we need only deal with symmetrical disciplines

(M=N). In Fig. 4 the changeover times are exponentially distributed

and in Fig. 5 they are discrete. One observes that for low arrival rates,

o
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the alternating priority discipline is best (M=N=1). As A increases,

it begins to pay to wait until more customers are present at the other
line before a changeover is begun. Ifor very high arrival rates,

the optimum policy has a large value for M and N, but in this casc
there is very little improvement over the alternating priority discipline.
The reason for this is that when 4 >>L1T a very large number of
customers will probably arrive during a changeover, so that the

server will almost always leave a line as soon as he arrives. Under
theée circumstances, the behavior of the server is virtually indistin-

guishable from what it would be under alternating priority.

IV-f Summary

A wid.e class of disciplines was studied. ['or each of these
disciplines, the analysis of the imbedded process resulted in an
expression for the generating function of the state probabilities
in terms of boundary conditions having a fairly complicated form.

A number of techniques, including the study of a mofe deeply imbedded
process, were used to determine the boundary conditions, yielding

a complete solution.
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FIG. 4

. ARRIVAL
MMETRIC DISCIPLH\JES
CHANGEOVER TIMES —




-

DT

- 103 -

m

| I
Mo Ma

PLOT OF MEAN WAITING TIME vs. ARRIVAL
RATE FOR SEVERAL SYMMETRIC DISCIPLINES

—DISCRETE CHANGEOVER TIMES —
FIG. S

()\\: )\f’)\)



- 104 -

CHAPTER V

SELECTION OlI* A DISCIPI.INE

In this chapter we look more closely at the question of choosing
the queue discipline. Although we are not able to find the optimum
discipline we do discover certain characteristics that it must possess.
We show that the policies studied in Chapters II, III, and IV are
special cases of a general classification. To demonstrate these ideas
we give a specific example and compare the performance of several

disciplines.

V-a The Optimum Discipline

In the absence of changeover times the optimum discipline
is strict priority (SP), assigning high priority to the customers
with the shorier mean service time. The fact is to some extent,
intuitively obvious. (It must be undesirable to keep customers waiting
that could be served very quickly.) When the changeover times become
large, however, the primary concern becomes the minimizatién of
thé number of changeovers. In this case SP is unacceptable due to the
high amount of switching associated with it. Under these circumstances
more desirable;ﬁ‘discipline is alternating priority (AP).

We see frc)&n this that there are two competing factors that must

must be taken ,“‘in‘to account in choosing the queue discipline.
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Onc is the desirability of always scerving customers with the shorter
mean scervice time first,  The other is the desirvability of minimizing
the number of changeovers, The SP and AP disciplines represent
"limiting'" cases in the sensc that they cach give much more weight to
onc of these two factors than to the other factor,

To make the above reasoning more precise, let us consider a
situation where the mcean service time of l-customers is less than the
mecan scrvice time of 2-customers. Were it not for the presence of
changeover times, the server would always choose to serve a L -customer
if any arc available. If, howevcer, the server is at line 2, and there arc
only a few l-customers present, the server may decide to serve a 2-
customer rather than spend the extra time required to cross to line 1,
Even if line 2 is empty, the server may rcfuse to cross to line | if a
very few l-customers are waiting. If the scrver is at line |, he will,
of course, not consider lcaving until he has cleared all 1-customers.
When line 1 becomes empty, the scrver may not cross to line 2 unless
some minimum number of 2-customers are waiting. From this it follows

that the optimum policy of the server will take the following form:

At Line 1

Cross to line 2 only if line | is empty and line 2
contains N or more customers.



- 106 -
At Line 2

Cross to line 1 if it contains M_ or more customers
where Mn may depend upon n,  the number of 2-customers

in the system.
If the service times for customers of type 1 and type 2 are equal,
then it never pays to depart from a line which is occupied, and the

optimum policy takes the form:

At Line 1

Cross to line 2 only if line 1 is empty and line 2
contains N or more customers.

At Line 2

Cross to line 1 only if line 2 is empty and line 1 contains M or
more customers.

Note that the latter form is really a special case of the former

with

M =« (V-1)
n=1,2,3,...

' This is also recognized as the discipline we studied in Chapter IV
without the assumption of zero service times.

Using the above notation we can identify SP as

N =1
‘M0= 1
M_= 1 , n=1, 2, 3... (V-2)
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and AP as
N =1
Mo =1
Mn= ® ) n= 1:2:3--- (V'3)

[FCFS cannot be described in this manner since it depends on the
order in which customers arrive. Uence, it cannot possibly
be optimum in the sense we have defined.

When the changeover times are zero, the SP discipline is
optimum. As the changeover times are increased it becomes
desirable to increase the quantities N, M so that less switching
takes place. (Note the difference between Eq. (2) and Eq. (3).)
When the changeover times are very large, we would want to use
either AP or a discipline that causeé even less switching, such as
Eq. (1) with M, N 3. It should be observed that policies having
M =M0 >1 or N>1 have the propérty that at times the server
is idle while the system is not empty. That this could be a desirable
situation was demonstrated in Chapter IV.

The author has been unable to determine, other than in this
general Way, a method for finding the optimum discipline. In
general, if will depend on not only the arrival rates and the average

service and changeover times, but also on the distributions of these

-
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times. (One example of this can be seen in I'ig, 4 and 5.
When A = uTz 1, the optimum policy for exponentially distributed
changeovers is M = N = 2, while for discrete changeovers it is

M =N=1.)

V-b Comparison of Disciplines

To illustrate the ideas of the previous section we now
consider a specific example. We study a system with arrival rates

)\1 =5.0and )\2= 1. 0 and exponentially distributed service times

with means u—l—-= 0. 05 and ul = 0. 5. The changeover times are
1 2
1 =
also exponentially distributed with means — L (the same
| M2 Ma

in either direction). Fig. 6 plots the average waiting time ol an
arbitrary customer in this system versus the mean changeover
time for each of the disciplines FCFS, AP, and SP. ['or the case
of SP, type l-customers have ''high priority; "

One observes that SP has the lowest waiting time when the
changeover times are zero. This is to be expected since the
- service time for l-customers is less than that for 2~customers.
It is interesting to note that FCFS, while not better than SP,is to
be preferred over AP when the changeover times are small. This
is true beéause AP has the undesirable characteristic that it

often spends time serving 2-customers when l-customers are

e
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o POLICY "A"

(SIMULATION)
’
O + t : —+ —+—,
0 o4 08 12 16 20—
Gh a9

’>\|= 5.0 XZ= I.O

EXPONENTIALLY DISTRIBUTED
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TIME FOR SEVERAL DISCIPLINES
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waiting. Although I'CI'S will occasionally do the same thing,

it is more likely than AP’ to switch back to a l-customer nest,
As the changecover times increasg the advantage of SI?

and I'CI'S relative to AP? decreases. [In lact, with cach of the

former disciplines the qucuc saturates for a certain value of the

changeover time. Using Al° the qucue remains unsaturated no

matter how large the changeover times are made.

Also shown in IFig. 6 are some simulation results with the

policy
N =1
Policy "A" lVlO =1
M = 3 , (V-4)

n=1,2,3....

Policy "A" is the same as SP, except that il the scrver is at linc 2
and line 2 is occupied, at least 3 1-customer:s must be waiting lor a
2 to 1 changeover to take place. This policy is 'between' SP and AP
in the sense that it involves less switching than SP, but places morec
emphasis tﬂan AP does on the’importance of serving l-customers
first. It can be seen that at certain points this policy is better than
either SP or AP.

Another measure of the system behavior is the general-time
probability that the systefn is empty ﬂc1>0+ﬂ(fo (which we do not
plot), When the changeover times are zero in the example of
is the same for all three disciplines. This, of course,

. 1 2
Fig.6, "oo" Moo
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is expected since the fraction of time spent servicing customers
is p1te, regardless of the queue discipline. I'or non-zero
changeover times it is interesting to observe that néoJrﬂio is
greater for AP than for either of the other two disciplines,
even though the mean waiting time for AP is also greater. This
resuit is somewhat unexpected, since-gueues with a good deal
of server idleness are usually associated with short waiting
times, and vice versa. The reason is that AP does not ''waste
time" crossing back and forth between lines. It clears the system
in the fastest way possible.” The trouble is that many l-customers

are kept waiting till last when they could have been served very

quickly.

V-c Summary

In this chapter we have attempted to improve our understanding
of the relationship between the queue discipline and the behavior
of the system. We have catagorized the disciplines and demonstrated
some of their more important characteristics. [However, due to
the large number of parameters that can be varied, we have only
been able to investigate a small part of the problem. [Further
study could reveal the importance of such things as service

distributions, changeover distributions, and arrival rates.
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CHAPTER VI

CONCLUSIONS

A model was defined which had application to many queuing
situations where server changeover times exist. In order to
determine the effect of the server policy we analyzed some
specific disciplines for the two-line case. I'or the general
model we studied alternating priority and strict priority. With
the assumption of zero service times, we studied a class of
disciplines, specified by a pair of integers, M and N.

The method used was to concentrate on the "imbedded"
process formed at service-completion instants. For each discipline
considered, the transition probabilities were calculated and the
generating functions for the state probabilities were obtained.

In each case the result was expressed in terms of unknown boundary

conditions. Through a variety of mathematical techniques, enough

information about these boundary conditions could be found tn

determine the saturation condition, the mean waiting times, and certain
9the1~ qluanﬁties. :

s Thé disciplines were compared and judged on the basis of the

mean wait of an arbitrary customer. One interesting oﬁtcome was

the observation that a discipline with a greater' idle time is not

necessarily a better discipline. We concluded that two factors must
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be taken into account in choosing the server's policy: one is the
desirability to serve first those customers with the smaller mean
service time, the other is the desirability to minimirze the number
of changeovers. I'rom this wo were able to classily potentially optimun;
disciplines in a general way and to show how cach of the disciplines
we examined fell inio this classification,.

In an apperndix, the mean waiting time of an arbitrary customer
was obtained for a specialized system with K lines. Although the
particular results are not of great value, the method used to obtain
them is instructive.

The problem of queuing systems with changeover times has been

(11)

studied by Gaver(4), ]Vliller(g), and Stinner Gaver considercd the
disciplines first-come, first-served and preemptive strict priority,
Miller examined alternating priority. Skinner considered strict
priority. The author believes that the results of this thesis represent
a significant additional contribution. One of the most important
outcomes of this research, in the opinion of the author, is the
demonstration of the power of the method used. Much of the previous
work on thié problem has been highly specialized and of little
generality. In some cases unrealistic assumptions were necessary

due to the technique of solution. The method of the imbedded process,

on the other hand, has been shown to be useful for a number of different

situations and different disciplines. It is felt that the method could also
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be prolitably employed even if the model were considerably expanded,

One addition that appears easy to handle is the existence of

"setup times''-- extra time required to serve a customer if he arrives

at an empty queue, even il the server is at the same lince.

I'urther research topics include the investigation of morce
general classes of policies for the two-line case, and perhaps somec
simple policies [or the case ol three or more lines.  Also the question
of what constitutes the optimum policy is extremely interesting and

deserves additional study.
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LIST Ol NOTATION

average arrival rate of I-customers

average arrival rate of 2-customers

state of system '"server at line |, m customers at
line 1, n customers at line 2"

State of system ''server at line 2, m customers at
line 1, n customers at line 2"

imbedded probability of state

2
gnbegded probability of state m n

1 m n
L 2 T V2

m=0 n=0

(used in Chapters II and IV)

m 2" (used in Chapter III)
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Prob(service time of l-customer
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=

t)

Prob(service time of 2-customers )

Prob(changeover time [rom 1 to 2 < t)

Prob(changeoyver time from 2 tol

Prob (waiting time of 1-customer

A

iA

t)

t)

Prob (waiting time of 2-customer < t)

Prob (length of type 1 busy period in isolation = t)

Prob(length of type 2 busy period in isolation < t)
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51
1

average number of 1-customers in system
n = average number of 2-customers in system
_Wl = average waiting time of l-customer (not including service)
WZ = average waiting time of 2-customer (not including service)
W = rW, ZWZ
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APPENDIX II

PROOF OF EQ. (1I-21)

We have
yi = By ,-h,7)
2;,1=B (7 Myy)

and we desire to find under what conditions

lim z. =1
1

i

We define the quantities

and determine the conditions for which

im ¢

i - i

from which Eq. (A-II-2) immediately follows.

From Egs. (A-II-1) and (A-II-3)

€i41= 17B4%))

(A-1I-1a)

(A-11-1b)

(A-11-2)

(A-1I-3a)

( A-1I-3b)

(A-11-4)

(A-1I-5a)

(A-II-5b)

Using the finite Taylor series expansion (with error term) about

the point zero
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5 '(0) X B‘l'(g') 2
(= 1-B(0)-B, (0) A 5€; - L (hye)) (A-11-6a)
€, 71" B(0)-BYy (O 8, - —F— (Mf)) (A-11-6b)
where
0< Ei < xzei
0<m < )\161
We must have
B,(0) = B,(0) =1 | (A-11-1)

(since B(s) is the transform of a probability distribution) and [rom

Eq. (II-13) one finds

! 1
B,0) = - (A-11-8a)
! 4N
1 I
BIZ(O) - _._.X_uz_ ; (A'II"&I))

"“ Eqs\ﬁ, (A-II-6) thus reduce to

A . B"
5= —2 e, - 1(51) 2
i ul-Xl i —— (r,€) (A-II-9a)
)\1 n( ) >
— n. CTT-0
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Making the substitution of Eq. (A-1I-9a) into Eq. (A-I1-9b)

A A " "
€. .= 1)\2 X €. - 1) ! ) ( *.)2_ i Z(ni 2
A L P I 2710 T — (M8
(A-11-10)
['rom the convexity of Laplace transforms
B (§)= 0 (A-11-1l1a)
n .
B, (n;)= 0 (A-I1-11b)
so that
LA
e, . s L% c. (A-11-12)
It follows that
i
AA
12
€..4 S { — - ] € (A-TI-13)

Since ¢ _=1or 6,=1, (depending on the starting point)
Eqs. (A-II-5) show that also
€20 | (A-II-14)
Thus from Egs. (A-1I-13) and (A-II-14)

lim €.=0 (A-11-15)
i—»co 1
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for either starting point as long as

AA
12 P1P2
~ - = - < 1 (A-11-16)
The above inequality can be rewritten
(A-11-17)

].--pl-'p2 <1

which is the condition for which Eq. (A-II-2) is valid. (Incidentally,
the magnitude of the quantity in Eq. (A-II-16) gives an indication of the

speed at which the iteration will converge. )
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APPENDIX III

ITERATIVE METHOD IFOR IFINDING b

If b were known, it would be possible to determine the
functions crl(z) and o-z(y) for many different values of their argumcnts
by the iteration defined by Egs. (II-19) and (II-20). In particular,
since (as shown in Appendix II)

lim z =1

i-= i

(A-I1I-1)

we could obtain 0'1(1). The same value for this quantity must

result regardless of the starting point of the iteration (either

Yo = Oorz = 0. If, however, an incorrect value of b is used

in the iteration, the resulting value of 0'1(1) does depend upon the
starting point. The requirement that the convergent values of

0‘1(1) be ‘independent of the starting point is sufficient to determine b
uniquely. We nqw. show this in detail.

Substitution of Eq. (II-20a) into Eq. (II-20b) yields

1
ryY; : o (z.) l-rly.

1 i
¢ (Zi+l) =1 T2%i4 ~ U(y zZ, )V(y Z, * U(y Z, )V(y z, b V(yi’ZiH)

1+1) 1+1)

(A-111-2)
which expresses crl(ziH) in terms of crl(zi). If the iteration starts
with zo=0, we have from Eq. (II-2)

) Yo ‘ 1 b I-r¥,
2°1” Tly O)V(y z) Oy, oVG.z) T V,z)

crl(zl) = 1- -r, 2

o | o _ ‘(Zo =0)

(A-1II-3)
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wherceas if the iteration begins with y0=0, we have from lig. (I1-20h)

l-rzz1

1, yo1- _ - §
o (z)) =1l-r)y; +b | V(O,zl)] (A-111-4)

( Yo,=0)

It should be observed, even though it is not indicated by the notation,
that the value of z; when z, = 0 is used to begin the iteration is not
the same as z; when Yo = 0 is used to begin the iteration, Thus, (or
example, there is no need for 0‘1(21) of Eq. (A-III-3) to be equal to

(rl(Zl) of Eq. (A-III-4) since in the former case

z) = BZ()\I-)\IBl()\Z)) (ZO=O) (A-I1I-5)
and for the latter

2= B,(\)) (y,=0) (A-T11-6)

Note that both Eq. (A-III-3) and Eq. (A-III-4) are of the
form
1 :
0 (z)) = A_vB_b (A-111-7)
where Zl’AO’ and BO’
but do not depend on b. Using Eq. (A-III-7) one finds by induction

depend on the starting point (zo =0 or y0=0)

that the form of Eq. (A-III-2) is
o (z.. 1) =A.+B, b (A-Iii-6)
i+l i 71

Again Zi Ai’ and Bi’ depend upon the starting point (as well as i)

‘but do not depend upon b .
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['rom this it follows that the difference hetween the quantitics

0’1( ), starting at z,=0

Zitl 0

1 .
o (Zi+l) , starting at Yo=0

is of the form

Ci+Di b (A-111-9)

One notes that Eq. (A-III-1) is true independent of the starting

point so that

ol(l),starting at z,=0 01(1), starting at Yo=Y

- lim

i

[Ci+Dib] = C+Db = I'(b) (A-111-10)

The difference between the two convergent values of al(l) is
- linearly dependent upon b. [For an acceptable solution, the two
convergent values must be"the same, forcing I*(b) in Eq. (A-III-10)
tovbe equal to zero.
The method to find b then is as follows. I'irst we assume
an arbitrary value for b, say bl' Then we compute F(bl) (by performing

'the two iteratious and taking the difference of the results). If l?(bl)

'is zero then we are done. If F(bl)is not zero, we try a new value

of b, say bz, and compute I-‘(bz).
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The correct value of b is then

b1 P(bz) - bzl"(bl)

b=
(b,) - (b))

which follows directly from the linearity of I*(b).

(A-111-11)
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PROOI" TIIAT D(ZO) =0

We desire to show that there exists a quantity 24

0= zo< 1
such that

D(ZO) =0

where D(z) is given by Eqgs. (III-12b), (III-8), and (III-10).

One has forz = 0

D(0) = 5,(B(0)) S,,(a(0)) 5,(a(0)) [ 5, (a(0)) - S, (B(0)) |

One notes that

and since SIZ(S) is a non-increasing function of s

D(0) = 0
One also notes that
D(1) =0

/e

-We have, for the case of non-saturation '

D'(1)>0

(A-1V-1)

(A-1V=-2)

(A-1V-3)

(A-1V-4)

(A-1V-5)

(A-IV-6)

(A-1V-7)

See Eq. (III-21). Egs. (A-IV-5), (A-IV-6), and (A-IV-7) can only

'~ be satisfied by a function having the property mentioned at the

beginning of this appendix.
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APPENDIX V
EXPRESSION I'OR VVZ

Since Al(l) = Az(l) = D(l) = 0 in Eqs. (III-33), the use ol I.'ltopital's

rule is required. Thus

A" ()D'(1) - A" 1)D" (1) '
0'1(1)'+r2-(<rl(1)-r1) o1 21 (A-V-la)
2(D'(1)) '

, , AUD'(1) - AL()D" (1)
blo (1)'+r2- (o (1)-r1)] = > (A-V-1b)
2(D'(1))

The quantities of Eqgs. (A-V-1) are

AWD=r)y; 14b)(A-S, (A DI 2(r k41, )| (Lt)A-X LS, (A )b X, (1-5, (4 )]

+ 2b(1-X )(r

1 21 rz) - rlby2 | (A-V-2a)

ALQ) = r1y1(1+b)S (\ )slz(xl)+2(r X1, [(L+BR, S, ())S, (A)

F A5 0081, )+0X 58, ()8, ()] (A-V-2a)

(A-V-2b)

+2b(1-X2 )rzf_rlbyZ-Z b_ij(X12+X21)

+br (y12+y21+ 2 X 1X + 2x21xlz+ zxlez)
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D) = 2(1--\’2)(1-*282'“1)'Sz'(*l“zslz‘*l”sz“l”z%'z“z’*x2152“1)512“1”

- 2(1-)\23'20\1)) (X2+X.11) - (I‘Sz(}‘1)+sz()‘1)31z0‘1»)’2

—(I—SZ()\I)) (y12+y21+2X21X2+2 x21x12+ ZXZXIZ)

where
A/,
X, =21 i=1, 2,12, 21
i l-pl
2
A VST 2
_ 2 VM)

Combining Eq. (A-V-1) and (A-V-2) and Eqs. (III-20)

(A-V-2c)

with Eqs. (III-18) and (III-32), results in an expression for V_VZ.
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APPENDIX VI

SOME RESULTS IF'OR A QUEUING SYSTEM WITI K LINIS

In Chapters II, III, and IV, our attention was focused on the
"imbedded" process. In this appendix we concentrate instead on
the actual continuous-time process for a queuing system with K lines.
By making some highly specialized assumptions, we are able to
obtain an expression for the mean waiting time of an arbitrary
customer.

Consider a system having the following characteristics:

1) There are K lines.

2) The arrivals at each line are Poisson with the average
arrival rate A,

3) Service times at each line are zero.

4) The changeover time from any line to any other line
is exponentially distributed with mean 1/u.

5) The queue discipline is

a) All customers at a line are served immediately
upon arrival of the server to that line.

b) The server will remain stationary if, and only if,
the system is empty.

c) The line that the server chooses to go to next is
the one containing the earliest arriving customer.

The waiting times could obviously be reduced “v changing 5c) to read
"the line containing the largest number of customers.' The method

of solution makes the assumption of 5c) necessary. It is reassuring
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to some extent at least, that the line with the earliest arriving
customer is also the one which has a priori the greatest probability
of being the longest.

We first show that the average waiting time for an arbitrary
customer is completely specified by k, the number of occupied lines,
We then find the general-time probability that k lines are occupied.
By multiplying the expected wait in each case by the probability
of its occurrence and summing, the mean wait is determined.

If a customer arrives when the system is empty, he will

have to wait an average time

_K-1 1 1 T
W/O = T . E‘ +-—K . 0 (A VI 1)
where W/0 denotes "average wait given the customer arrives when

0 lines are occupied." Eq.(A-IV-1)is obtained by noticing that

- with probability K-1 the server is‘at a different line than the
K .

' A . .
customer and thus an average wait 1S required. If the server is
at the same line, the customer is served immediately.

If exactly one line is occupied when a customer arrives,

then his average wait is

L _K-l .2 1.1 .
wll_T T tK T | (A-VI-2)

where W/1 denotes ''average wait given the customer arrives when 1 line
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is occupied." This expression is explained as lollows: When the
customer arrives, the server must be traveling toward the
occupied line. If the customer enters this line he will experience
an average delay of 1/4. If he enters any other line, he must lirst
wait for the occupied line to be cleared, and then must wait for the
server to cross to the line which the customer entered. This takes
a total average time of 2/u.

If exactly k = 1; 2....,K-1, lines are occupied when a

customer arrives, his average wait is

K-k .. k+l
K M

k=1,2...,K-1

1. 1+ 1. 2 1
W/k:—< T K +.. .+ (A-VI-3)

.k
i K wu 't

This is obtained by noticing that the arrival could have entered the
line which is about to receive service, or the one which will be
served after that, or the next, etc., each with probability 1/K.

Or the customer might have entered an unoccupied line with

K-k

T

Finally, if all lines are occupied at the instant of arrival,

probability

the mean wait is

1 . K
+...+? T (A V1 4)

1 . 1 2
K u

+ 1
K H

W/K =

which is derived using the same reasoning as above.
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We now find the general-time probability that k lines
are occupied. Let pk(t) be the probability that k lines are occupied

at ime t. We can write

po(t+dt) = po(t) (1-(K-1)A dt) + P, (t) Mdt (A-VI-5)

This is obtained as follows: The system will be empty at time t +dt

if it was empty at time t and between t and t +dt no customers arrive

at any of the lines other than the one occupied by the server. (Note

that arrivals to the line receiving service are cleared immediately,
leaving the system empty.) The system could also be empty at time

t + dt if at time exactly one line was occupied, and this line was served

between t and t + dt. We can also write

p(t+dt) = p_()NK-DAdt + p (¢)(1-(K-1I)\ P-udt)+ p,(thdt (A-VI-6)

p, (t+dt)=p, _,(t) (K-k+1)\dt +pk(t)(l-(K-k)th-p dt)+pk+1(t) udt  (A-VI-7)

k

1]

[\
w
~
a—

) A dt + pK(t) (1-pudt) (A-VI -8)

pK(t+ dt) = Py - 1(t

 The derivatiorjé afe complétely similar to the above and an explanation
is therefore omitted:-

By 'rearranging terms, dividing by dt, and letting dt — O
we obtain e;{;;fessions for IP(t) In the steady state, —gf-z 0

| J dt
and pk?(t,) - Py ‘»Ithis easy to show that
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(K-1) (K-1)! (A )kpo k=l,2,....K (A-VI-9)
p, = (K-k)! M

Py is obtained by the requirement that

K
g
/. p =1 (A-VI-10)
k=0
The result is
Py= K ok
I (K-1)(K-1) T v (M (A-VI-11)
; K-k
k=1

The mean waiting time for an arbitrary customer is
K

N
W =_L pk

W/k . (A-VI-12)
k=1 ' V

Substitution of Eqgs. (A-VI-1), (A-VI-3), (A-VI-4), (A-VI-1l), and
(A-VI-9) into Eq. (A-VI-12) yields the desired result. The
assumption of zero service times insures that the queue will
never saturate.

The results of this appandix are of little value in themselves
due to the highly restricted nature of the problem. The reason
for including this analysis here is the possibility that the

. technique might have applicability to some more general problems.
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