

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. COMPUT. c© 2017 Society for Industrial and Applied Mathematics
Vol. 46, No. 6, pp. 1827–1892

MULTIKEY FULLY HOMOMORPHIC ENCRYPTION AND
APPLICATIONS∗

ADRIANA LÓPEZ-ALT† , ERAN TROMER‡, AND VINOD VAIKUNTANATHAN§

Abstract. We propose a new notion of secure multiparty computation aided by a computation-
ally powerful but untrusted “cloud” server. In this notion, on-the-fly multiparty computation (MPC),
the cloud can noninteractively perform arbitrary dynamically chosen computations on data belonging
to arbitrary dynamically chosen sets of users chosen. All users’ input data and intermediate results
are protected from snooping by the cloud as well as other users. This extends the standard notion
of fully homomorphic encryption (FHE), where users can only enlist the cloud’s help in evaluating
functions on their own encrypted data. In on-the-fly MPC, each user is involved only when initially
uploading his (encrypted) data to the cloud and in a final output decryption phase when outputs
are revealed; the complexity of both is independent of the function being computed and the total
number of users in the system. When users upload their data, they need not decide in advance which
function will be computed, nor who they will compute with; they need only retroactively approve
the eventually chosen functions and on whose data the functions were evaluated. This notion is
qualitatively the best possible in minimizing interaction, since the users’ interaction in the decryp-
tion stage is inevitable: we show that removing it would imply generic program obfuscation and is
thus impossible. Our contributions are two-fold: (1) We define the new notion of multikey FHE, an
enhanced FHE system which is capable of operating on inputs encrypted under multiple, unrelated
keys. A ciphertext resulting from a multikey homomorphic evaluation can be jointly decrypted using
the secret keys of all the users involved in the computation. We show how on-the-fly MPC can
be achieved using any multikey FHE scheme. (2) We construct a multikey FHE scheme based on
NTRU, a very efficient public-key encryption scheme proposed in the 1990s. It was previously not
known how to make NTRU fully homomorphic even for a single party.

Key words. fully homomorphic encryption, multiparty computation, cloud computing, NTRU
encryption

AMS subject classifications. 68P25, 94A60

DOI. 10.1137/14100124X

1. Introduction. We are fast approaching a new digital era in which we store
our data and perform our expensive computations remotely, on powerful servers—
the “cloud.” While the cloud offers numerous advantages in costs and functionality,
it raises grave questions of confidentiality, since data stored in the cloud could be
vulnerable to snooping by the cloud provider or even by other cloud clients [122]. Since
this data often contains sensitive information (e.g., personal conversations, medical

∗Received by the editors December 23, 2014; accepted for publication (in revised form) July 31,
2017; published electronically December 7, 2017. An extended abstract of this work appears in
Proceedings of the 44th ACM Symposium on Theory of Computing (STOC 2012).

http://www.siam.org/journals/sicomp/46-6/100124.html
Funding: The first author’s work was done in part while visiting the University of Toronto and

was supported by DARPA award FA8750-11-2-0225. The second author’s work was done in part at
Columbia University and was supported by the Blavatnik Interdisciplinary Cyber Research Center
(ICRC), Check Point Institute for Information Security, the Defense Advanced Research Project
Agency (DARPA), and Army Research Office (ARO) under contract W911NF-15-C-0236, the Israeli
Centers of Research Excellence (I-CORE) program (center 4/11), and by NSF awards CNS-1445424
and CCF-1423306. The third author’s work was done at the University of Toronto and was supported
by an NSERC Discovery Grant and DARPA award FA8750-11-2-0225. Any opinions, findings, and
conclusions or recommendations expressed are those of the authors and do not necessarily reflect the
views of ARO, DARPA, NSF, the U.S. Government, or other sponsors.

†New York University, New York, NY 10012 (adrilopo@gmail.com).
‡Tel Aviv University, School of Computer Science, Tel Aviv 69978, Israel (tromer@cs.tau.ac.il).
§MIT, Cambridge, MA 02139 (vinodv@csail.mit.edu).

1827

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

http://www.siam.org/journals/sicomp/46-6/100124.html
mailto:adrilopo@gmail.com
mailto:tromer@cs.tau.ac.il
mailto:vinodv@csail.mit.edu

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1828 LÓPEZ-ALT, TROMER, AND VAIKUNTANATHAN

information, and organizational secrets), it is prudent for the users to encrypt their
data before storing it in the cloud. Recent advances in fully homomorphic encryption
(FHE) [71, 132, 30, 29, 72, 27] make it possible to perform arbitrary computations on
encrypted data, thus enabling the prospect of personal computers and mobile devices
as trusted but weak interfaces to a powerful but untrusted cloud on which the bulk
of computing is performed.

FHE is only suitable in settings where the computations involve a single user,
since it requires inputs to be encrypted under the same key. However, there are
many scenarios where users, who have uploaded their large data stores to the cloud in
encrypted form, then decide to compute some joint function of their collective data.
For example, they may wish the cloud to compute joint statistical information on their
databases, locate common files in their collections, or run a computational agent to
reach a decision based on their pooled data (without leaking anything but the final
decision). More generally, in contexts where multiple (mutually distrusting) users
need to pool together their data to achieve a common goal, FHE is not quite enough.

The multiparty scenario is significantly more complex and comes with a set of
natural but stringent requirements. First, the participants involved in a computation
and the function to be computed may be dynamically chosen on-the-fly, well after
the data has been encrypted and uploaded to the cloud. Second, once the function is
chosen, we should not expect the users to be online all the time, and consequently it
is imperative that the cloud be able to perform the bulk of this computation (on the
encrypted data belonging to the participants) noninteractively, without consulting
the participants at all. Finally, all the burden of computation should indeed be
carried by the cloud: the computational and communication complexity of the users
should depend only on the size of the individual inputs and the output and should be
independent of the complexity of the function computed (and ideally, also the total
number of users in the system) which could be very large.

On-the-fly multiparty computation (MPC). Consider a setting with a large uni-
verse of computationally weak users and a powerful cloud. An on-the-fly MPC pro-
tocol proceeds as follows.

1. The numerous users each encrypt their data and upload them to the cloud,
unaware of the identity or even the number of other users in the system.
Additional data may arrive directly to the cloud, encrypted under users’
public keys (e.g., as encrypted emails arriving to a cloud-based mailbox).

2. The cloud decides to evaluate an arbitrary dynamically chosen function on
the data of an arbitrary dynamically chosen subset of users. (The choice may
be by some users’ request, or as a service to compute the function on the
data of parties fulfilling some criterion, or by a need autonomously antici-
pated by the cloud provider, etc.) The cloud can perform this computation
noninteractively, without any further help from the users. The result is still
encrypted.

3. The cloud and the subset of users whose data was used in the computation
interact in a decryption phase. At this point the users retroactively approve
the choice of function and the choice of peer users on whose data the function
was evaluated and cooperate to retrieve the output.

Crucially, the computation and communication of all the users (including the
cloud) in the decryption phase should be independent of both the complexity of the
function computed and the size of the universe of parties (both of which can be
enormous). Instead, the effort expended by the cloud and the users in this phase
should depend only on the size of the output and the number of users who participated

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MULTIKEY FHE AND APPLICATIONS 1829

in the computation. Also crucially, the users need not be online at all during the bulk
of the computation; they need to “wake up” only when it is time to decrypt the output.

We call this an on-the-fly (MPC) to signify the fact that the functions to be
computed on the encrypted data and the participants in the computation are both
chosen on-the-fly and dynamically, without possibly even the knowledge of the par-
ticipants. Protocols following this framework have additional desirable features such
as the ability for users to “join” a computation asynchronously.

Motivating scenario: Malware sharing. When malware is detected by a company,
it is helpful for its security analysts to know which other companies have observed
similar malware. However, it is undesirable for companies to publicize all malware
they have detected. Using on-the-fly MPC, each company can build an ever-growing
dataset of malware it has detected, stored encrypted on a cloud service: whenever
it detects a new sample, the company simply encrypts it with its own public key
and sends it to the cloud. The cloud service, on a daily basis, gathers the encrypted
datasets of its current subscribers, evaluates a comparison function which scans these
datasets for similar malware samples using some executable-code similarity metrics,
and sends the short encrypted results to those subscribers, for (interactive but cheap)
decryption. Crucially, subscribers may join or leave the service at any time.

Possible approaches (and why they do not work). The long line of work on secure
MPC [84, 14, 35, 135] does not seem to help us construct on-the-fly MPC protocols
since the computational and communication complexities of all the parties in these
protocols depends polynomially on the complexity of the function being computed.1

In contrast, we are dealing with an asymmetric setting where the cloud computes a
lot, but the users compute very little. (Nevertheless, we will use the traditional MPC
protocols to interactively compute the decryption function at the end.)

FHE is appropriate in such an asymmetric setting of computing with the cloud.
Yet, traditional FHE schemes are single-key in the sense that they can perform (ar-
bitrarily complex) computations on inputs encrypted under the same key. In our
setting, since the parties do not trust each other, they will most certainly not want to
encrypt their inputs using each other’s keys. Nevertheless, Gentry [70] proposed the
following way of using single-key FHE schemes in order to do multiparty computation:
first, the parties run a (short) MPC protocol to compute a joint public key, where the
matching secret key is secret-shared among all the parties. The parties then encrypt
their inputs under the joint public key and send the ciphertexts to the cloud who then
uses the FHE scheme to compute an encryption of the result. Finally, the parties run
yet another (short) MPC protocol to recover the result. A recent work by Asharov
et al. [6] extends this schema and makes it efficient in terms of the concrete round,
communication, and computational complexity.

This line of work does not address the dynamic and noninteractive nature of on-
the-fly MPC. In particular, once a subset of parties and a function are chosen, the
protocols of [70, 6] require the parties to be online and run an interactive MPC proto-
col to generate a joint public key. In contrast, we require that once the function and a
subset of parties is chosen, the cloud performs the (expensive) computations noninter-
actively, without help from any of the users. It would also be unsatisfactory to post-
pone the (lengthy) computation of the function until the interactive decryption phase;
indeed, we require that once the users wake up for the decryption phase, the running

1The works of Damg̊ard and co-authors [51, 50] are an exception to this claim. However, it is not
clear how to build upon these results to address the dynamic and noninteractive nature of on-the-fly
MPC.

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1830 LÓPEZ-ALT, TROMER, AND VAIKUNTANATHAN

time of all parties is independent of the complexity of the function being computed.
Thus, even the feasibility of on-the-fly MPC is not addressed by existing techniques.

1.1. Our results and techniques. We present a new notion of FHE that we
call a multikey FHE that permits computation on data encrypted under multiple
unrelated keys, a new construction of multikey FHE based on the NTRU encryp-
tion scheme (originally proposed by Hoffstein, Pipher, and Silverman [96]), and a
new method of achieving on-the-fly multiparty computation (for any a priori bounded
number of users) using a multikey FHE scheme. Although the number of users in-
volved in any computation has to be bounded in our solution, the total number of
users in the system is arbitrary.

Multikey FHE. An N -key fully homomorphic encryption scheme is the same as a
regular FHE scheme with two changes. First, the homomorphic evaluation algorithm
takes in polynomially many ciphertexts encrypted under at most N keys, together
with the corresponding evaluation keys, and produces a ciphertext. Second, in order
to decrypt the resulting ciphertext, one uses all the involved secret keys. As mentioned
above, one of our main contributions is a construction of N -key FHE for any N ∈ N
from the NTRU encryption scheme. We give an overview of our construction below
(in section 1.2) and refer the reader to section 3.3 for more details.

Our NTRU-based construction raises a natural question: can any other FHE
schemes be made multikey? We show that any FHE scheme is inherently a multikey
FHE for a constant number of keys (in the security parameter), i.e., it can homomor-
phically evaluate functions on ciphertexts encrypted under at most a constant number
of keys.2 Furthermore, we show that the ring-LWE based FHE scheme of Brakerski
and Vaikuntanathan [30] is multikey homomorphic for a logarithmic number of keys
but only for circuits of logarithmic depth. This arises from the fact that when multiple
keys are introduced, it is no longer clear how to use relinearization or squashing to go
beyond somewhat homomorphism. We refer the reader to section 3.2 for more details.

On-the-fly MPC from multikey FHE. A multikey FHE scheme is indeed the right
tool to perform on-the-fly MPC as shown by the following simple protocol: the users
encrypt their inputs using their own public keys and send the ciphertexts to the
cloud, the cloud then computes a dynamically chosen function on an arbitrary subset
of parties using the multikey property of the FHE scheme, and finally, the users
together run an interactive MPC protocol in order to decrypt. Note that the users
can be offline during the bulk of the computation, and they need to participate only
in the final cheap interactive decryption process. Note also that participants in the
protocol need not be aware of the entire universe of users, but only those users that
participate in a joint computation. This simple protocol provides us security against
a semimalicious collusion [7, 6] of the cloud with an arbitrary subset of parties. We
then show how to achieve security against a malicious adversary using zero-knowledge
proofs and succinct argument systems [99, 100, 108, 88, 89, 19, 20].

We further remark that the computation of the decryption function can itself
be outsourced to the cloud. In particular, using the cloud-assisted MPC protocol of
Asharov et al. [6] yields an on-the-fly MPC protocol with one offline round and 5
online rounds (for decryption).

We give an overview of our construction below (in section 1.3) and refer the reader
to section 4 for more details.

2This construction was originally suggested to us by an anonymous STOC 2012 reviewer; we
include it here for completeness.

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MULTIKEY FHE AND APPLICATIONS 1831

Completely noninteractive on-the-fly MPC? We know from the work of Halevi,
Lindell, and Pinkas [95] that in the noninteractive setting, the server can always
evaluate the circuit multiple times, keeping some parties’ inputs but plugging in fake
inputs of its choosing for the other parties. However, even if we accept this as the
ideal functionality, we show that a noninteractive online phase cannot be achieved by
drawing on the impossibility of general program obfuscation as a virtual black-box
with single-bit output [10]. Thus, our notion is qualitatively “the best possible” in
terms of interaction. Our techniques in showing this negative result are inspired by
those of van Dijk and Juels [133]. We refer the reader to section 4.3 for more details.

1.2. (Multikey) fully homomorphic encryption from NTRU. The start-
ing point for our main construction of multikey FHE is the NTRU encryption scheme
of Hoffstein, Pipher, and Silverman [96] with the modifications of Stehlé and Steinfeld
[130]. NTRU encryption is one of the earliest lattice-based cryptosystems, together
with the Ajtai–Dwork cryptosystem [2] and the Goldreich–Goldwasser–Halevi cryp-
tosystem [83]. One of our most important contributions is to show that NTRU can be
made fully homomorphic (for a single key)3 and, moreover, that the resulting scheme
can handle homomorphic evaluations on ciphertexts encrypted under any number of
different and independent keys.

We find this contribution particularly interesting because NTRU was originally
designed to be an efficient public-key encryption scheme, meant to replace RSA in
applications where computational efficiency is at a premium (e.g., in applications that
run on smart cards and embedded systems). Although the transformation to fully
homomorphic encryption degrades the efficiency of the scheme, we believe it to be a
leading candidate for a practical FHE scheme. Therefore, we view this as an important
contribution of independent interest.

In this section we give an overview of our construction and refer the reader to
section 3.3 for more details.

NTRU encryption. We describe the modified NTRU scheme of Stehlé and Ste-
infeld [130], which is based on the original NTRU cryptosystem [96]. The scheme is
parametrized by the ring R

def= Z[x]/〈xn + 1〉, where n is a power of two, an odd
prime number q, and a B-bounded distribution χ over R for B � q. By “B-bounded,”
we mean that the magnitude of the coefficients of a polynomial sampled from χ is
guaranteed to be less than B. We define Rq

def= R/qR, and use [·]q to denote
coefficient-wise reduction modulo q into the set {−� q

2�, . . . , � q
2�}.• Keygen(1κ): Key generation samples “small” polynomials f ′, g ← χ and sets

f
def= 2f ′+1 so that f (mod 2) = 1. If f is not invertible in Rq, it resamples

f ′. Otherwise, it computes the inverse f−1 of f in Rq and sets

sk = f and pk = h
def=

[
2gf−1]

q
.

• Enc(pk, m): To encrypt a bit m ∈ {0, 1} with public key pk = h, the encryp-
tion algorithm samples small polynomials s, e← χ and outputs the ciphertext

c = [hs + 2e + m]q .

• Dec(sk, c): To decrypt a ciphertext c, the decryption algorithm computes
μ = [fc]q and returns μ (mod 2).

3The observation that NTRU can be made single-key fully homomorphic was made concurrently
by Gentry et al. [74].

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1832 LÓPEZ-ALT, TROMER, AND VAIKUNTANATHAN

Correctness follows from a few simple observations. First note that [fc]q =
[2gs + 2fe + fm]q. Furthemore, since the elements g, s, f, e were all sampled from
a B-bounded distribution and B � q, the magnitude of the coefficients in 2gs +
2fe + fm is smaller than q/2, so there is no reduction modulo q: in other words,
[2gs + 2fe + fm]q = 2gs+2fe+fm. Therefore, μ = 2gs+2fe+fm. Taking modulo
2 yields the message m since by construction, f ≡ 1 (mod 2).

Multikey homomorphism. We now briefly describe the (multikey) homomorphic
properties of the scheme and the challenges encountered when converting it into a
fully homomorphic encryption scheme.

Let c1 = [h1s1 + 2e1 + m1]q and c2 = [h2s2 + 2e2 + m2]q be ciphertexts under
two different keys h1 = [2g1f

−1
1]q and h2 = [2g2f

−1
2]q, respectively. We claim that

cadd
def= [c1 + c2]q and cmult

def= [c1c2]q decrypt to m1 + m2 and m1m2, respectively,
under the joint secret key f1f2. Indeed, notice that

f1f2(c1 + c2) = 2 (f1f2e1 + f1f2e2 + f2g1s1 + f1g2s2) + f1f2(m1 + m2)
= 2eadd + f1f2(m1 + m2)

for a slightly larger noise element eadd. Similarly,

f1f2(c1c2) = 2(2g1g2s1s2 + g1s1f2(2e2 + m2) + g2s2f1(2e1 + m1)
+ f1f2(e1m2 + e2m1 + 2e1e2)) + f1f2(m1m2)

= 2emult + f1f2(m1m2)

for slightly larger noise element emult. This shows that the ciphertexts cadd
def= [c1+c2]q

and cmult
def= [c1c2]q can be correctly decrypted to the sum and the product of the

underlying messages, respectively, as long as the error does not grow too large.
Extending this to circuits, we notice that the secret key required to decrypt a

ciphertext c that is the output of a homomorphic evaluation on ciphertexts encrypted
under N different keys is

∏N
i=1 fdi

i , where di is the degree of the ith variable in the
polynomial function computed by the circuit. Thus, decrypting a ciphertext that
was the product of a homomorphic evaluation requires knowing the circuit! This is
unacceptable even for somewhat homomorphic encryption.

We employ the relinearization technique of Brakerski and Vaikuntanathan [29]
to essentially reduce the degree from di to 1, so that the key needed to decrypt the
evaluated ciphertext is now

∏N
i=1 fi. This guarantees that decryption is dependent

on the number of keys N but independent of the circuit computed. After using relin-
earization, we can show that the resulting scheme is multikey somewhat homomorphic
for ≈ nδ keys and circuits of depth ≈ log log q − δ log n for any δ ∈ (0, 1).

From (multikey) somewhat to fully homomorphic encryption. Once we obtain a
(multikey) somewhat homomorphic encryption scheme, we can apply known tech-
niques to convert it into a (multikey) fully homomorphic scheme. In particular, we
follow the original template of our work [106] and use modulus reduction [29, 27] to
increase the circuit depth that the scheme can handle in homomorphic evaluation.
This yields a leveled homomorphic scheme for N keys that can evaluate circuits of
depth D as long as ND ≈ log q. For any number of keys N and any depth D, we
can set q to be large enough to guarantee the successful homomorphic evaluation of
depth-D circuits on ciphertexts encrypted under N different keys.

Theorem 1.1 (informal). For all N ∈ N and D ∈ N, there exists a leveled homo-
morphic encryption (HE) scheme that can homomorphically evaluate depth-D circuits

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MULTIKEY FHE AND APPLICATIONS 1833

on ciphertexts encrypted under at most N different keys. The size of the keys and
ciphertexts in the scheme grow polynomially with N and D.

Finally, using an analogue of Gentry’s bootstrapping theorem [71, 70] for the
multikey setting, we can convert the leveled homomorphic encryption scheme into a
fully homomorphic encryption scheme, in which the algorithms are independent of the
circuit depth D. This requires a “circular security” type assumption which, roughly
speaking, asserts that the leveled HE encryption retains semantic security even if the
adversary is given an encryption of the bits of the secret key (under the leveled HE
scheme). We refer the reader to Definition 2.9 for a precise formulation. Constructing
a fully homomorphic encryption scheme, even in the single key setting, without such
circular security type assumptions is a major open problem (although, see [34] for
some recent progress, using the incomparable assumption that indistinguishability
obfuscation [10, 66] exists).

On the other hand, even with the circular security assumption, we are unable to
remove the dependence on the number of keys N and therefore obtain a scheme that is
fully homomorphic with respect to the depth of circuits it can evaluate but “leveled”
with respect to the number of different keys it can handle. This state of affairs has
since been improved [41, 110]; we refer the reader to section 1.5 for more details.

We remark that using the recent noise-management technique of Brakerski [26],
it is possible to obtain a simpler leveled (single-key) homomorphic encryption scheme,
based on a weaker security assumption. This was already noted in the follow-up work
of Bos et al. [25]. In another recent work, Gentry, Sahai, and Waters [79] show how
to remove the required evaluation key, yielding an even simpler scheme.

Security. Stehlé and Steinfeld [130] showed that the security of the modified
NTRU encryption scheme can be based on the ring-LWE assumption of Lyubashevsky,
Peikert, and Regev, which can be reduced to worst-case hard problems in ideal lattices
[107]. To prove the security of NTRU, Stehlé and Steinfeld first show that the public
key h = [2gf−1]q is statistically close to uniform over the ring R if f ′ and g are
sampled from a discrete Gaussian with standard deviation poly(n)

√
q (which can be

shown to be a poly(n)
√

q-bounded distribution). Unfortunately, if we sample f ′ and
g from this distribution, the error in a single homomorphic multiplication would grow
large enough to cause decryption failures. We must therefore make the assumption
that the public key h = [2gf−1]q is computationally indistinguishable4 from uniform
over R when f ′ and g are sampled from a discrete Gaussian that is B-bounded for
B � q.

Ultimately, we arrive at the following theorem.

Theorem 1.2 (informal). For all N ∈ N, there exists a fully homomorphic
encryption scheme that can perform homomorphic evaluation on ciphertexts encrypted
under at most N different keys. The size of the keys and ciphertexts in the scheme
grow polynomially with N . The security of the scheme is based on the ring-LWE
assumption, the assumption that the public key is pseudorandom, and the assumption
that the scheme is weakly circular secure.

In a follow-up work, Bos et al. [25] show how to apply Brakerski’s techniques
[26] to maintain the fully homomorphic properties of the scheme while sampling the
elements f ′ and g from a discrete Gaussian with standard deviation poly(n)

√
q, as

in the work of Stehlé and Steinfeld [130]. This yields an NTRU-based (single-key)

4It is not difficult to see that with our setting of parameters, the distribution of the public key
is not statistically close to uniform. We rely on computational indistinguishability.

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1834 LÓPEZ-ALT, TROMER, AND VAIKUNTANATHAN

FHE scheme that is secure under the RLWE assumption alone. However, their scheme
is not a multikey FHE scheme. In a nutshell, this is because decrypting a multikey
evaluated ciphertext in the setting of [25] would entail multiplication by the product
of all keys that were involved in the generation of the ciphertext. With the parameter
settings required by Stehlé and Steinfeld, namely, when f ′ and g are sampled from
a discrete Gaussian with standard deviation poly(n)

√
q, multiplying by a product of

only two keys would already lead to a noise overflow, making it impossible to decrypt
correctly. Nevertheless, their scheme can be made into a multikey FHE scheme for a
constant number of parties using the general transformation described in section 3.2.1.
We refer the reader to [25] for a more detailed description of their scheme.

1.3. On-the-fly MPC from multikey FHE. Once we have constructed mul-
tikey FHE for any number of keys, we can construct on-the-fly MPC. The following
gives an informal outline of our protocol.
Offline phase: The clients sample independent key pairs (pki, ski, eki), encrypt their

input under their corresponding public key: ci ← Enc(pki, xi), and send this
ciphertext to the server along with the public and evaluation keys (pki, eki).

Online phase: Once a function has been chosen, together with a corresponding subset
of computing parties V :
Step 1. The server performs the multikey homomorphic evaluation of the de-

sired circuit on the corresponding ciphertexts and broadcasts the evalu-
ated ciphertext to all computing parties (i.e., all parties in V).

Step 2. The computing parties (i.e., parties in V) run a generic MPC protocol
to decrypt the evaluated ciphertext using their individual secret keys ski.

Observe that the computation of the decryption function in Step 2 of the online
phase can itself be delegated to the server. In particular, if we instantiate the decryp-
tion protocol using the cloud-assisted MPC protocol of Asharov et al. [7, 6] we obtain
a round-efficient solution: the overall protocol has an online phase of only 5 rounds.

1.3.1. Protocol security. We show that the above protocol is secure against
semimalicious adversaries [7, 6], who follow the protocol specifications (like semihon-
est adversaries) but choose their random coins from an arbitrary distribution (like
malicious adversaries). We then show how to modify the protocol to achieve security
against malicious adversaries. To this end, we make three modifications, described
below.

Modifying the decryption protocol. The first modification we make is to change
the decryption protocol in Step 2 of the online phase to first check that the secret
key being used is a valid secret key for the corresponding public and evaluation keys.
This ensures that if decryption is successful, then in particular, a corrupted party
knows a valid secret key s̃ki. This secret key binds the corrupted party to the input
x̃i = Dec(s̃ki, c̃i), which by semantic security of the FHE, must be independent of the
honest inputs.

Once again, we note that the computation of this function can be delegated to
the server using the cloud-assisted protocol of Asharov et al. [7, 6], yielding a 5-round
online phase.

Adding zero-knowledge proofs. We further require that in the offline phase, each
party create a noninteractive zero-knowledge proof πenc

i showing that the ciphertext
ci is well-formed (i.e., that there exists plaintext xi and randomness si such that
ci = Enc(pki, xi ; si). This guarantees that for a corrupted party, Dec(s̃ki, c̃i) �= ⊥
and thus the party really “knows” an input x̃i. Furthermore, it guarantees that the
ciphertexts ci are fresh encryptions, which is important in our setting of fully homo-

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MULTIKEY FHE AND APPLICATIONS 1835

morphic encryption where we must ensure that the error stays low in a homomorphic
evaluation.

While constructions of NIZK arguments are known for all of NP [92, 93], using
these constructions requires expensive NP reductions. To avoid this, in section 4.2.3
we show how to construct an efficient NIZK argument system, secure in the random
oracle model, for proving the well-formedness of a ciphertext in the NTRU-based
multikey FHE scheme (the scheme we use to instantiate the generic multikey FHE
scheme in our on-the-fly MPC construction).

Adding verification of computation. Finally, we must also rely on a succinct ar-
gument system [99, 100, 108, 88, 89, 19, 20] to ensure that the server performs the
homomorphic computation correctly. Due to the dynamic nature of our on-the-fly
model, we are unable to use verifiable computation protocols in the preprocessing
model [68, 40, 5] or succinct arguments with a reference string that depends on the
circuit being computed [90, 103, 69, 115, 104]. These would require the clients to
perform some precomputation dependent on the circuit to be computed before know-
ing the circuit or to interact with the server after a function has been selected and
compute in time proportional to the circuit-size of the function. Indeed, the beauty
of our on-the-fly MPC model is that the server can choose any function dynamically,
on-the-fly, and homomorphically compute this function without interacting with the
clients, who additionally, compute in time only polylogarithmically in the size of any
function being computed.

We show how to guarantee verification of computation in two different cases.
Verification for small inputs: When the total size of the inputs (and therefore the

ciphertexts) is small enough to be broadcasted to all parties, it suffices for the
server to use any of the succinct arguments of [99, 100, 108, 88, 89, 19, 20]
to prove that it carried out the computation correctly as specified. Along
with this argument, the server broadcasts the ciphertexts ci and public and
evaluations keys (pki, ski) for all parties in V . With this information, the
computing parties can verify the argument before engaging in the decryption
protocol.

Verification for large inputs: In the case when the total size of the inputs (and there-
fore the ciphertexts) is too large to be broadcasted to all parties, then we ad-
ditionally require the parties to sample a hash key hki for a collision-resistant
hash function and compute a digest di of the ciphertext ci. Each party then
sends the tuple (pki, eki, ci, π

enc

i , hki, di) to the server in the offline phase. It
is then sufficient for the server to broadcast the tuples (pki, eki, hki, di) and a
succinct argument for the NP language:

there exist c̃1, π̃
enc

1 , . . . , c̃N , π̃enc

N such that di = Hhki
(c̃i) and

c = Eval(C, (c̃1, pk1, ek1), . . . , (c̃N , pkN , ekN)) and π̃enc

i is a valid
proof.

If the succinct argument is additionally a proof of knowledge, as in the case of
CS proofs [108] under Valiant’s analysis [131], and the SNARKs of Bitansky
et al. [19, 20], then we are guaranteed that the server actually “knows” such
c̃1, π̃

enc

1 , . . . , c̃N , π̃enc

N whenever it successfully convinces the clients.
Putting everything together, we arrive at the following theorem.

Theorem 1.3 (informal). There exists an on-the-fly MPC protocol with the fol-
lowing properties:

• It achieves security against malicious corruptions of an arbitrary subset of
clients and possibly the server, under the ring-LWE assumption, the assump-

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1836 LÓPEZ-ALT, TROMER, AND VAIKUNTANATHAN

tion that the public key in the (modified) NTRU cryptosystem [96, 130] is
pseudorandom for a special setting of parameters, and the existence of zero-
knowledge proofs and a secure succinct argument system.
• The offline phase runs in one (asynchronous) round of unidirectional com-

munication from the parties to the server. The online phase runs in 5 rounds.
• The communication complexity of the online phase and the computation time

of the computing parties therein is polylogarithmic in the size of the computa-
tion and the total size of the inputs and linear in the size of their own input
and the size of the output.
• The computation time of the server is polynomial in the size of the circuit.

We remark that our MPC protocol inherits any setup assumptions (such as the
existence of a common random or reference string or the use of random oracles)
from the underlying primitives, namely, zero-knowledge proofs and succinct argument
systems. In the common random string model, the prover and the verifier in a proof
system are given access to a uniformly random string chosen by a trusted process
that neither entity has control over. The common reference string model is the same,
except that the string is chosen from some fixed (not necessarily uniform) distribution.
In the random oracle model [13], all parties (including the adversary) are assumed to
have access to a random function that they can access as an oracle. Sections 2.2 and
2.3 discuss the state of the art in the construction of these primitives (including the
setup assumptions).

1.4. Related work. We briefly survey related works in the areas of fully homo-
morphic encryption, MPC from homomorphic encryption, and MPC with the aid of
a cloud server.

Fully homomorphic encryption. The notion of fully homomorphic encryption was
first proposed by Rivest, Adleman, and Dertouzos [123] and was constructed in the
groundbreaking result of Gentry [71, 70]. In subsequent years, many improvements
and new constructions have appeared in the literature, including [132, 30, 72, 29, 27,
26, 25, 79, 31, 38].

Gentry’s first construction [71, 70] followed the following blueprint: first, he con-
structed a somewhat homomorphic encryption scheme working over ideal lattices that
was able to perform a limited number of evaluations. He then proved a bootstrapping
theorem, showing that if a somewhat homomorphic scheme can homomorphically eval-
uate its own decryption circuit (plus one more gate), then (a) it can be converted into
a leveled fully homomorphic scheme, namely, a scheme that can evaluate circuits of
any a priori bounded (polynomial) depth, under the same assumption, and (b) it can
be converted into a fully homomorphic scheme that can evaluate circuits of arbitrary
depth, assuming in addition that the somewhat homomorphic scheme is “circular se-
cure.” Unfortunately, Gentry’s somewhat homomorphic scheme cannot evaluate its
own decryption circuit and is therefore not bootstrappable. Nevertheless, he was able
to construct a bootstrappable scheme by squashing the decryption circuit sufficiently
for the scheme to be able to homorphically evaluate it. Using this squashing tech-
nique required making an additional security assumption, namely, the sparse subset
sum (SSS) assumption.

Van Dijk et al. [132] subsequently showed how to construct a different FHE
scheme “over the integers” under the approximate-GCD assumption, and Brakerski
and Vaikuntanathan [30] showed how to construct FHE from the ring-LWE assump-
tion of Lyubashevsky, Peikert, and Regev [107]. Both of these works use squashing and
bootstrapping, as in Gentry’s original blueprint (and thus, require the accompanying

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MULTIKEY FHE AND APPLICATIONS 1837

additional assumptions). Gentry and Halevi [72] showed how to use depth-3 arith-
metic circuits and a hybrid of somewhat homomorphic encryption and multiplicatively
homomorphic encryption (e.g., Elgamal encryption [63]) to construct FHE without
the use of squashing and therefore without assuming the hardness of the SSS problem.

The second generation of FHE schemes arrived with the work of Brakerski and
Vaikuntanathan, who showed how to construct a leveled FHE scheme from Regev’s
(standard) learning with errors (LWE) assumption [120, 121] alone. In particular,
they introduced the techniques of relinearization and modulus reduction which have
been instrumental in many subsequent FHE constructions. Brakerski, Gentry, and
Vaikuntanathan [27] subsequently refined and generalized these techniques into key-
switching and modulus switching and showed how to build a leveled FHE scheme
directly, without the use of squashing or bootstrapping. Formally, they show that for
every D ∈ N, there exists a homomorphic scheme E(D) that is able to homomorphically
evaluate circuits of depth D. Their technique involves switching to a smaller modulus
after every level in a homomorphic computation, therefore requiring a fairly large
modulus at the start of the computation. This required basing security of their scheme
on the hardness of solving approximate-SVP to within subexponential factors.

In work subsequent to ours, Brakerski [26] showed a new noise-management tech-
nique that forwent the modulus switching step, allowing the use of a single modulus
that is much smaller than the one needed in the BGV scheme. The security of Brak-
erski’s scheme can be based on the hardness of solving approximate-SVP to within
quasi-polynomial factors, a much weaker assumption. Bos et al. [25] show how to ap-
ply Brakerki’s noise-management technique to the (multikey) FHE described in this
paper [106], based on the NTRU encryption scheme of Hofftein, Pipher, and Silver-
man [96] with the modifications of Stehlé and Steinfeld [130]. They further show that
using these techniques, one can base security of the resulting FHE scheme on the
ring-LWE assumption alone, by using Stehlé and Steinfeld’s original analysis. Their
construction, however, is multikey for only a constant number of keys, which we show
can be achieved from any generic FHE scheme already.

Finally, in another work subsequent to ours, Gentry, Sahai, and Waters [79] came
up with a third generation of FHE schemes: they constructed a leveled homomorphic
scheme that does not require the use an evaluation key to perform homomorphic
computation, as all previous schemes do. Brakerski and Vaikuntanathan [31] show
how to leverage the techniques of Gentry, Sahai, and Waters [79] to build a leveled
homomorphic scheme that is as secure as standard (nonhomomorphic) LWE-based
public-key encryption.

Many other works study the efficiency of the schemes described above and present
several optimizations [128, 127, 73, 43, 75, 44, 76, 77, 78, 36, 42, 129].

MPC from homomorphic encryption. The basic idea of using threshold homo-
morphic encryption (e.g., Paillier encryption [114]) to boost the efficiency of MPC
protocols was first presented by Cramer, Damg̊ard, and Nielsen [46], predating the
existence of fully homomorphic encryption (first showed by Gentry in 2009 [71, 70]).
They show that if the parties have access to a public key for an additively homomor-
phic encryption scheme, and if they also have a corresponding secret key secret-shared
among them, then they can evaluate any boolean circuit “under the covers” of the
encryption. Using the homomorphic properties of the scheme, the parties can lo-
cally evaluate all addition gates. Cramer and co-authors additionally show a short,
interactive subprotocol for evaluating multiplication gates. After showing the first
construction of fully homomorphic encryption, Gentry used the same template to
show a generic MPC construction from any FHE [70].

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1838 LÓPEZ-ALT, TROMER, AND VAIKUNTANATHAN

In a work concurrent to ours, Myers, Sergi, and Shelat [111] show a black-box
construction of MPC from any threshold FHE scheme. Their main hurdle is devising
a way for parties to prove plaintext knowledge of a ciphertext. To this end, they
present a 2-round protocol for proving plaintext knowledge, which they construct
from any circuit-private FHE scheme. Their protocol is not zero-knowledge [85], but
it conserves the semantic security of the ciphertext in question. They also show how
to construct threshold FHE using the scheme of van Dijk et al. [132] over the integers.
While the communication of their protocol is independent of the circuit-size of the
function being computed, their protocol is not computation-efficient: parties compute
proportional to the complexity of the function.

Other works by Damg̊ard and co-authors [18, 53, 52] build MPC from “semi-
homomorphic” and somewhat homomorphic encryption. Their protocols require all
parties to compute proportional to the complexity of the function at hand and require
interaction between parties at every gate. However, they display very good concrete
efficiency. A work of Choudhury et al. [39] shows how to trade computation efficiency
for communication efficiency. Their protocol is parametrized by an integer L. Setting
L = 2 yields a classic MPC protocol, in which interaction is required for computing
every gate. As L increases, interaction is required less frequently and only to “re-
fresh” the computation after an increasing number of steps. Thus, at their heart of
their construction lies an interactive bootstrapping protocol that refreshes ciphertexts
during the evaluation.

Finally, a recent work by Garg et al. [65] shows how to achieve 2-round MPC in
the common random string (CRS) model from indistinguishability obfuscation (iO)
[11]. As an optimization, they use multikey FHE (as defined in this work) to construct
2-round MPC with communication complexity that is independent of the circuit be-
ing computed. Though an efficient construction of iO is known for all circuits [66],
its security is based on assumptions on multilinear maps [64] that are not very well
understood yet.

MPC on the cloud. The idea of using a powerful cloud server to alleviate the
computational efforts of parties in an MPC protocol was recently explored in the
work on “server-aided MPC” by Kamara, Mohassel, and Raykova [98]. Their proto-
cols, however, require some of the parties to do a large amount of work, essentially
proportional to the size of the computation.

Halevi, Lindell, and Pinkas [95] recently considered the model of “secure compu-
tation on the web,” wherein the goal is to minimize interaction between the parties.
While their definition requires absolutely no interaction among the participants of the
protocol (they only interact with the server), they show that this notion can only be
achieved for a small class of functions. Our goal, on the other hand, is to construct
MPC protocols for arbitrary functions.

1.5. Subsequent work. Garg and Polychroniadou [67] showed a construction of
two-round MPC from indistinguishability obfuscation. Their MPC protocol achieves
the stronger notion of adaptive security [32].

Clear and McGoldrick [41] constructed a multikey leveled fully homomorphic
encryption scheme based on the LWE problem. (This can be bootstrapped into a
nonleveled scheme assuming the circular security of the underlying leveled scheme.)
Subsequently, Mukherjee and Wichs [110] significantly simplified their construction
and showed how to use it to construct a two-round MPC protocol in the CRS model
from LWE. These results improve on our work in two significant ways: first, they
rely on a much more standard assumption, namely, LWE; and secondly, their multi-

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MULTIKEY FHE AND APPLICATIONS 1839

key FHE schemes work for an a priori unbounded number of parties N , whereas our
schemes require N to be known in advance of choosing the parameters; and finally,
the techniques, based on [79], are very different and truly novel. We refer the reader
to [41, 110] for more details.

Dodis et al. [55] showed how to extend the multikey FHE scheme of [41, 110] into a
primitive that they call a spooky encryption scheme. In a spooky encryption scheme,
one can start from Epk1

(x1) and Epk2
(x2) and compute two ciphertexts c1 and c2 such

that Decsk1(c1) ⊕ Decsk2(c2) = f(x1, x2) for any function f of the evaluator’s choice.
This results in a particularly simple two-round MPC protocol where the parties can
locally compute an additive secret sharing of the output at the end of the first round.
It also gives a strong counterexample to a method proposed by Aiello et al. [1] to
construct succinct arguments for NP using homomorphic encryption.

Finally, Brakerski and Perlman [28] and Peikert and Shiehian [117], concurrently
and using different methods, showed how to make the scheme of [41, 110] into a multi-
hop multikey FHE scheme; that is, while the [41, 110] scheme required the evaluator to
know all the keys involved in the computation in advance, the scheme of [117] does not.

1.6. Roadmap. We have given a high-level overview of our results. Detailed
descriptions of all the results highlighted in this introduction can be found in the
corresponding sections.

In section 2 we present preliminaries, definitions, and technical tools used through-
out the remaining chapters.

In section 3, we define multikey FHE and describe several constructions. In partic-
ular, we show that any FHE is inherently multikey for a constant number of keys and
that the ring-based FHE scheme of Brakerski and Vaikuntanathan is somewhat homo-
morphic for a logarithmic number of keys. More importantly, we show that the NTRU
encryption scheme can be made multikey fully homomorphic for any number of keys.

In section 4 we show how to construct on-the-fly MPC from multikey FHE. We
show a basic protocol that is secure against semimalicious corruptions and then de-
scribe how to modify it to achieve security against malicious adversaries. We also show
how to construct efficient NIZKs (in the random oracle model) for proving plaintext
knowledge for the NTRU-based FHE scheme described in section 3. Finally, we show
that a completely noninteractive solution is impossible.

2. Definitions and preliminaries.

2.1. Notation. In this work, we use the following notation. We use κ to denote
the security parameter. For an integer n, we use the notation [n] to denote the
set [n] def= {1, . . . , n}. For a randomized function f , we write f(x; r) to denote the
unique output of f on input x with random coins r. We write f(x) to denote a random
variable for the output of f(x; r) over uniformly random coins r. For a distribution or
random variable X , we write x← X to denote the operation of sampling a random x
according to X . For a set S, we overload notation and use s← S to denote sampling
s from the uniform distribution over S. We use y := f(x) to denote the deterministic
evaluation of f on input x with output y. For two distributions, X and Y , we use
X

c≈ Y to mean that X and Y are computationally indistinguishable and X
s≈ Y to

mean that they are statistically close.

2.2. Σ-protocols and zero-knowledge proofs.
Σ-protocols. We recall the notion of gap Σ-protocols [7], a weaker version of Σ-

protocols [47], where honest-verifier zero-knowledge (HVZK) holds for all statements
in some NP relation Rzk but soundness only holds w.r.t. Rsound ⊇ Rzk. In other words,

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1840 LÓPEZ-ALT, TROMER, AND VAIKUNTANATHAN

zero-knowledge is guaranteed for an honest prover holding a statement in Rzk, but an
honest verifier is only convinced that the statement is in a larger set Rsound ⊇ Rzk.

Definition 2.1 (gap Σ-protocol). Let Rzk and Rsound be two NP relations such
that Rzk ⊆ Rsound ⊆ {0, 1}∗×{0, 1}∗, and let Lzk and Lsound be their corresponding NP
languages. A gap Σ-protocol for (Rzk, Rsound) is a 3-step interactive protocol 〈P, V 〉
between a prover P = (P1, P2) and a verifier V = (V1, V2) with the following syntax:

• (a, st) ← P1(x, w): Given a statement and witness pair (x, w), outputs a
message a and a state string st.
• c← V1(x, a): Given a statement x and message a, outputs a random challenge

c from a challenge space C.
• z ← P2(st, c): Given a state string st and a challenge c, outputs an answer

z.
• b ← V2(x, a, c, z): Given a statement x, a message a, a challenge c, and an

answer z, outputs a bit b, i.e., either accepts or rejects the transcript (a, c, z)
for statement x.

We require that the following three properties hold:
Completeness: For any (x, w) ∈ Rzk,

Pr

⎡
⎣ V2(x, a, c, z) = 1

∣∣∣∣∣∣
(a, st)← P1(x, w)

c← V1(x, a)
z ← P2(st, c)

⎤
⎦ = 1.

Special soundness: There exists an “extractor” such that for any two accepting tran-
scripts (a, c, z) and (a, c′, z′) for the same statement x with c �= c′, the ex-
tractor outputs a valid witness for x ∈ Rsound. Formally, there exists a ppt

algorithm Ext such that for all x and all (a, c, z) and (a, c′, z′) such that c �= c′

and V2(x, a, c, z) = V2(x, a, c′, z′) = 1:

Pr
[

(x, w) �∈ Rsound
∣∣ w ← Ext(x, a, c, z, c′, z′)

]
= 1.

Honest-verifier zero knowledge: There exists a ppt simulator Sim that “simulates”
valid transcripts without knowing a witness if it sees the challenge beforehand.
Formally, there exists ppt algorithm Sim such that for all (x, w) ∈ Rzk and
all c ∈ C, we have[

(a, c, z)
∣∣∣∣ (a, st)← P1(x, w)

z ← P2(st, c)

]
s≈ [(a′, c, z′) | (a′, z′)← Sim(x, c)] .

For an NP relation R with corresponding language L, a well-known construction
using Σ-protocols allows a prover to show that either x0 ∈ L or x1 ∈ L without
revealing which one holds. Suppose 〈P, V 〉 is a Σ-protocol for R such that the challenge
space C is a finite additive group. We construct a new protocol for proving that either
x0 ∈ L or x1 ∈ L. Let b be such that (xb, wb) ∈ R for some witness wb known
to the prover. The prover chooses c1−b at random from the challenge space C and
runs (ab, st) ← P1(xb, wb) and (a1−b, z1−b) ← Sim(x, c1−b). It sends (a0, a1) to the
verifier, who returns a challenge c. The prover computes cb = c − c1−b, runs zb ←
P2(st, c), and sends (c0, c1, z0, z1) to the verifier, who checks that V2(x0, a0, c0, z0) =
V2(x1, a1, c1, z1) = 1 and c = c0+c1. The resulting protocol is called an OR Σ-protocol.
The theorem below modifies this to the setting of gap Σ-protocols.

Theorem 2.1. Let Rzk and Rsound be two NP relations such that Rzk ⊆ Rsound ⊆
{0, 1}∗ × {0, 1}∗, and let 〈P, V 〉 be a gap Σ-protocol for (Rzk, Rsound) such that the

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MULTIKEY FHE AND APPLICATIONS 1841

challenge space is a finite additive group. The construction described above is a gap
OR Σ-protocol for (Rzk, Rsound).

Noninteractive zero-knowledge. We also recall the notion of noninteractive zero-
knowledge (NIZK) [24]. For our purposes, it is more convenient to use the notion of
(same-string) NIZK arguments from [126]. This definition and all our constructions
that use it can be extended in the natural way to NIZK proofs, where soundness
holds for all unbounded adversaries.5 Furthermore, similar to our presentation of Σ-
protocols, we choose to present the notion of gap NIZKs, where zero-knowledge holds
for all statements in some NP relation Rzk but soundness only holds w.r.t. Rsound ⊇
Rzk. In other words, zero-knowledge is guaranteed for an honest prover holding a
statement in Rzk, but an honest verifier is only convinced that the statement is in a
larger set Rsound ⊇ Rzk.

Definition 2.2 (gap NIZK). Let Rzk and Rsound be two NP relations such that
Rzk ⊆ Rsound ⊆ {0, 1}∗ × {0, 1}∗, and let Lzk and Lsound be their corresponding NP
languages. A gap NIZK argument system for (Rzk, Rsound) consists of three algorithms
(Setup, Prove, Verify) with syntax:

• (crs, tk)← Setup(1κ): Outputs a CRS crs and a trapdoor key tk to the CRS.
• π ← Provecrs(x, w): Given a statement and witness pair (x, w), outputs an

argument π.
• 0/1 ← Verifycrs(x, π): Given a statement x and an argument π, verifies

whether or not the argument π is correct.
For the sake of clarity, we write Prove and Verify without the crs in the subscript when
the crs can be inferred from context. We require that the following three properties hold:
Completeness: For any (x, w) ∈ Rzk,

Pr
[

Verify(x, π) = 1
∣∣ (crs, tk)← Setup(1κ)

π ← Prove(x, w)

]
= 1.

Soundness: For any ppt adversary P̃ ,

Pr
[

Verify(x∗, π∗) = 1
x∗ �∈ Lsound

∣∣∣∣ (crs, tk)← Setup(1κ)
(x∗, π∗)← P̃ (crs)

]
= negl(κ).

Unbounded zero-knowledge: There exists a ppt simulator Sim that “simulates” valid
proofs without knowing a witness but with the aid of the trapdoor key. We
start by defining two oracles.
The Prover Oracle: A query to the prover oracle P(·) consists of a pair

(x, w). The oracle checks if (x, w) ∈ Rzk. If so, it outputs a valid
argument Prove(x, w); otherwise it outputs ⊥.

The Simulation Oracle: A query to the simulation oracle SIMtk(·) consists
of a pair (x, w). The oracle checks if (x, w) ∈ R. If so, it ignores w and
outputs a simulated argument Sim(tk, x); otherwise it outputs ⊥.

Formally, we require that for any ppt adversary A, the advantage of A in
the following game is negligible (in κ):
• The challenger samples (crs, tk) ← Setup(1κ) and gives crs to A. The

challenger also samples a bit b← {0, 1}.
5Apart from modifying the soundness condition, in the setting of proofs key generation samples

a CRS but not a trapdoor, and the zero-knowledge simulator first samples a simulated CRS that is
computationally indistinguishable from the real CRS and a trapdoor to this CRS.

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1842 LÓPEZ-ALT, TROMER, AND VAIKUNTANATHAN

• If b = 0, the adversary A is given access to the prover oracle P(·). If
b = 1, A is given access to the simulation oracle SIMtk(·). In either
case, the adversary can adaptively access its oracle.
• The adversary A outputs a bit b̃.

The advantage of A is defined to be |Pr[b̃ = b]− 1
2 |.

Fiat and Shamir [60] showed how to convert a Σ-protocol 〈P, V 〉 for an NP relation
R into a NIZK argument for R secure in the random oracle model [13]. Informally,
the CRS contains a description of a hash function H , which is modeled as a random
oracle. To compute a noninteractive argument, the prover runs (a, st)← P1(x, w) and
obtains the verifier’s challenge by applying the hash function to a and x: c := H(a, x).
It then computes z ← P2(st, c) and sends the argument π = (a, c, z). The verifier runs
V2(x, a, c, z) to verify the argument. The theorem below modifies this to the setting
of gap Σ-protocols and gap NIZKs.

Theorem 2.2 (see [60]). Let Rzk and Rsound be two NP relations such that
Rzk ⊆ Rsound ⊆ {0, 1}∗ × {0, 1}∗, and let 〈P, V 〉 be a gap Σ-protocol for (Rzk, Rsound).
Applying the Fiat–Shamir transform to 〈P, V 〉 yields a gap NIZK argument sys-
tem where soundness holds w.r.t. Rsound and completeness and zero-knowledge hold
w.r.t. Rzk, secure in the random oracle model.

Though secure in the random oracle model, we remark that in some cases standard-
model security of the resulting NIZK appears to be harder to achieve [49, 22]. In par-
ticular, if the language L is quasi-polynomially hard and the protocol has messages of
size polylog(κ) and is κlog κ-HVZK, then the resulting NIZK cannot be proven sound
via a black-box reduction to a (superpolynomially hard) falsifiable assumption [112].

2.3. Succinct noninteractive arguments: SNARGs and SNARKs. We
review the definitions of succinct noninteractive arguments (SNARGs) and succinct
noninteractive arguments of knowledge (SNARKs); we use the formalization of Gentry
and Wichs [80] and Bitansky et al. [19]. As in the work of Bitansky et al., we allow
the proof size to be polynomial in the size of the statement but require it to be
polylogarithmic in the size of the witness. We also require fast proof verification.

Definition 2.3 (SNARG). Let R be an NP relation on pairs (x, w) with corre-
sponding language L = {x | ∃ w s.t. (x, w) ∈ R}. A SNARG system for L consists
of three algorithms (Setup, Prove, Verify) with syntax:

• (vrs, priv)← Setup(1κ): Outputs a verification reference string vrs and a pri-
vate verification state priv.
• ϕ← Prove(vrs, x, w): Outputs an argument ϕ showing that R(x, w) = 1.
• 0/1← Verify(priv, x, ϕ): Verifies whether or not the argument ϕ is correct.

We require that the following properties hold:
Completeness: For any (x, w) ∈ R,

Pr
[

Verify(priv, x, ϕ) = 1
∣∣∣∣ (vrs, priv)← Setup(1κ)

ϕ← Prove(vrs, x, w)

]
= 1.

In addition, Prove(vrs, x, w) runs in time poly(κ, |x| , |w|).
Adaptive soundness: For any ppt adversary P̃ ,

Pr
[

Verify(priv, x∗, ϕ∗) = 1 ∧
x∗ �∈ L

∣∣∣∣ (vrs, priv)← Setup(1κ)
(x∗, ϕ∗)← P̃ (vrs)

]
= negl(κ).

Succinctness: The length of the proof and the time required for its verification are poly-
logarithmic in the size of the witness, i.e., poly(κ) (poly(|x|) + polylog(|w|)).

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MULTIKEY FHE AND APPLICATIONS 1843

Definition 2.4 (SNARK). A SNARG Φ = (Setup, Prove, Verify) is additionally
a proof of knowledge or a SNARK if it satisfies the following stronger definition of
soundness:
Adaptive extractability: There exists an extractor Ext that “extracts” a valid witness

from any valid proof ϕ. Formally, for any ppt adversary P̃ , there exists a
ppt algorithm Ext such that

Pr

⎡
⎣ Verify(priv, x∗, ϕ∗) = 1 ∧

R(x∗, w′) = 0

∣∣∣∣
(vrs, priv)← Setup(1κ)

(x∗, ϕ∗)← P̃ (vrs)
w′ ← Ext(x∗, ϕ∗)

⎤
⎦ = negl(κ).

Public vs. private verifiability. In the case where priv = vrs, we say that the
SNARG or SNARK is publicly verifiable. In this case, anyone can verify all proofs.
Otherwise, we say that it is a designated-verifier SNARG/SNARK, in which case
soundness/extractability is only guaranteed as long as priv remains secret to the
prover. In this case, only the party holding priv can verify the proof.

2.3.1. Delegation of computation from SNARGs. In delegation of compu-
tation we are concerned with a client C, who wishes to delegate the computation of a
prespecified polynomial-time algorithm M on an input x, to a worker W . The client
additionally wishes to verify the correctness of the output y returned by W (i.e., verify
that y = M(x)) in time that is significantly smaller than the time required to compute
M(x) from scratch.

SNARGs can be used in this setting as follows: Define the NP language: LM =
{ (x, y) such that M(x) = y }. A straightforward witness to the statement (x, y) ∈ LM

consists of the steps taken by M in a computation of M(x) resulting in the output
y. The size of this witness is proportional to the size of the computation. Using
a SNARG guarantees that the size of the proof is polylogaritmic in the size of the
witness and therefore polylogarithmic in the size of the computation.

2.3.2. Constructions. Gentry and Wichs [80] proved that standard-model se-
curity of SNARGs with adaptive soundness and proof size sublinear in the witness and
statement sizes cannot be based on any falsifiable assumption [112]. The constructions
we show below either assume a random oracle [13] or a nonfalsifiable assumption.

CS proofs. Kilian [99, 100] showed how to perform succinct interactive verification
for any NP language. His solution describes a 4-round protocol, where the prover first
constructs a PCP for the correctness of the computation and then uses Merkle hashes
to compress it to a sufficiently small proof. Micali’s CS proofs [108] apply the Fiat–
Shamir transform [60] to Kilian’s protocol, obtaining a noninteractive solution. CS
proofs are publicly verifiable SNARGs (and SNARKs under Valiant’s analysis [131]);
indeed, the only “setup” required is a description of a hash function H to use as the
random oracle. This can be ensured by letting the vrs be a random key for a (say)
collision-resistant hash function.

Due to its use of the Fiat–Shamir transform, Micali’s solution is only secure in the
random oracle model [13]. Unfortunately, several results have shown the implausibility
of instantiating the random oracle in the Fiat–Shamir transform with any explicit hash
function [94, 9, 33, 58, 86]. In particular, Dachman-Soled and co-authors [49, 22] show
that the security of CS proofs (even with nonadaptive soundness) cannot be based
on any falsifiable assumption. On the other hand, it has been shown that the secu-
rity of the Fiat–Shamir paradigm can be based on specific nonfalsifiable assumptions
regarding the existence of robust randomness condensers for seed-dependent sources
[12, 56].

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1844 LÓPEZ-ALT, TROMER, AND VAIKUNTANATHAN

Constructions will small CRS. Bitansky et al. [19, 20] and Goldwasser, Lin, and
Rubinstein [89] revisit the construction of CS proofs and, based on the works of Di
Crescenzo and Lipmaa [48] and Valiant [131], show how to construct SNARGs and
SNARKs based on a different nonfalsifiable assumption relating to the existence of
extractable collision-resistant hash functions. In these works, the verifier’s entire com-
putation (both in computing its reference string vrs and in verifying the proof) depends
only polylogarithmically in the size of the witness (i.e., the delegated computation).

Allowing a large CRS. Another series of works constructs SNARGs and SNARKs
where the verifier’s reference string vrs is allowed to depend on the circuit being
delegated. In particular, Groth’s construction [90] has a CRS of size quadratic in
the circuit size. Lipmaa [103] reduces this size to be quasi-linear, and the works of
Gennaro et al. [69] and Parno et al. [115] further reduce it to linear in the circuit
size. Bitansky et al. [21] give a framework for construction of such SNARKs. Further
improvements and variants are given by [104, 59, 17, 105, 102, 136, 54, 134, 8, 91].
All of these constructions are based on certain nonfalsifiable assumptions.

2.4. Secure multiparty computation. Let f be an N -input function with
single output. A multiparty protocol Π for f is a protocol between N interactive
Turing machines P1, . . . , PN , called parties, such that for all �x = (x1, . . . , xN), the
output of Π in an execution where Pi is given xi as input, is y

def= f(�x).

2.4.1. Security in the ideal/real paradigm. Informally, a multiparty pro-
tocol Π is secure if after running Π, no colluding set of corrupt parties can learn
anything about an honest player’s input or change the output of an honest party. We
formalize this in the ideal/real paradigm (see, e.g., [82]).

Ideal and real worlds. We define an ideal world in which the computation of f is
performed through a trusted functionality F that receives inputs xi from each party
Pi, computes y

def= f(x1, . . . , xN), and gives y to all parties P1, . . . , PN . It is clear
that in the ideal world, the only information that any party learns is its own input
and the output y. We also define a real world in which parties P1, . . . , PN run the
protocol Π.

The network. We assume that the real-world execution of the protocol is per-
formed over a secure and synchronous network; that is, we assume that parties can
reliably send messages to other parties without these being read or altered in trans-
mission and that all point-to-point communications happen at the same time. We
also assume that a secure broadcast channel is available to all parties.

The adversary. In either world, we consider a single adversary that is allowed to
corrupt any subset of t < N parties. An adversary is modeled as an interactive Turing
machine that receives all messages directed to the corrupted parties and controls
the messages sent by them. In this work, we consider only static adversaries, that
is, adversaries that select the subset of corrupted parties nonadaptively, before any
computation is performed. On the other hand, we assume that in each round of the
protocol, the adversary chooses the messages for the corrupted parties adaptively,
based on the entire transcript of the protocol, up to that round.

We remark that our results can be extended to achieve security against rushing
real-world adversaries who, on any given round, choose the messages for the corrupted
parties adaptively, based on the entire transcript of the protocol and the messages of
the honest parties on that round. Note that rushing adversaries correspond to a
semisynchronous model of communication.

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MULTIKEY FHE AND APPLICATIONS 1845

Output distributions. We use IDEALF ,S(�x) to denote the joint output of an ideal-
world adversary S and parties P1, . . . , PN in an ideal execution with functionality F
and inputs �x = (x1, . . . , xN). Similarly, we use REALΠ,A(�x) to denote the joint
output of a real-world adversary A and parties P1, . . . , PN in an execution of protocol
Π with inputs �x = (x1, . . . , xN).

We say that a protocol Π securely realizes F against the class of adversaries Adv
if for every real-world adversary A ∈ Adv, there exists an ideal-world adversary S
with black-box access to A such that for all input vectors �x,

IDEALF ,S(�x)
c≈ REALΠ,A(�x).

2.4.2. Types of adversaries. As stated above, in this work we only consider
classes of adversaries Adv containing static adversaries that corrupt any subset of
t < N parties. We now describe three different types of adversaries: malicious,
semihonest, and semimalicious. The first two are used extensively in the literature,
while the latter was introduced recently by Asharov et al. [7, 6]. Of these, malicious
adversaries are the strongest, and it is our end goal to achieve security against them
in all our protocols.

It is customary to prove security against semihonest adversaries as a stepping
stone to proving security against malicious adversaries. However, in this work we
follow a different path and first prove security against semimalicious adversaries. We
then show how to modify the protocol at hand to achieve security against malicious
adversaries. For completeness, we describe all three types of adversaries below and
describe how security against one type is related to security against another.

Semihonest adversaries. A semihonest adversary, also known as an honest-but-
curious adversary, is one that follows the protocol as described (samples randomness
from the correct distribution and computes the specified message at each round) but
given its view of the protocol will try to learn information about honest players’
inputs.

Malicious adversaries. A malicious adversary is not restricted in how it samples
random elements or how it computes its messages at each round. It can sample random
elements from any arbitrary distribution and compute the messages of corrupted
parties in any arbitrary way, adaptively, according to the partial view it has seen up
to that point.

Semimalicious adversaries. Recall that an adversary is modeled as an interactive
Turing machine (ITM). A semimalicious adversary is an ITM with an additional wit-
ness tape. At each round � and for every corrupted party Pj , the adversary must write
on the special witness tape, some witness pair (x(�)

j , r
(�)
j) of input and randomness

that explains the message m
(�)
j sent by Pj on that round. More formally, the messages

of a corrupted party Pj must match those of the specified honest protocol when at
each round � party Pj is run with input and randomness (x(�)

j , r
(�)
j).

A semimalicious adversary can sample random elements from any arbitrary dis-
tribution, but it must follow the correct behavior of the honest protocol with inputs
and randomness that it knows. It is therefore weaker than a malicious adversary, who
might not know witnesses for the messages it sends at every round, but stronger than
a semihonest adversary, whose witnesses at every round are distributed honestly.

From semimalicious to malicious security. Asharov et al. [7, 6] show how to
generically transform a protocol that is secure against semimalicious adversaries into
one that is secure against malicious adversaries. The idea behind the compiler is
to have each party prove in zero-knowledge that every message it sends follows the

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1846 LÓPEZ-ALT, TROMER, AND VAIKUNTANATHAN

honest protocol and is consistent with all previous messages. In particular, this forces
all parties to know witnesses that explain their behavior at every round. The same
compiler works in our security model with one subtlety: instead of using standard
zero-knowledge proofs, the protocol must use zero-knowledge proofs of knowledge.
This is to ensure that the simulator can extract the witness w

(�)
j from the proof sent

on round � by the malicious adversary on behalf of the corrupted party Pj . We refer
the reader to the work of Asharov et al. [7, 6] for more details.

Finally, we note that unlike the standard GMW compiler from semihonest security
to malicious security [84], the parties are not required to perform any coin-flipping.
This, in particular, reduces the round complexity of the resulting protocol.

2.5. Fully homomorphic encryption. We review the definitions of fully and
leveled homomorphic encryption.

Definition 2.5 (C-homomorphic encryption [71]). For a class of circuits C,
a C-homomorphic encryption scheme is a tuple of algorithms E = (Setup, Keygen,
Enc, Dec, Eval) with the following syntax:

• params ← Setup(1κ): For security parameter κ, outputs public parameters
params. All other algorithms, Keygen, Enc, Dec, Eval, implicitly take params
as input, even when not explicitly stated.
• (pk, sk, ek) ← Keygen(1κ): For a security parameter κ, outpus a public key

pk, a secret key sk, and a (public) evaluation key ek.
• c← Enc(pk, m): Given a public key pk and a message m, outputs a ciphertext

c.
• m := Dec(sk, c): Given a secret key sk and a ciphertext c, outputs a message

m.
• c := Eval(ek, C, c1, . . . , c�): Given an evaluation key ek, a (description of a)

circuit C and � ciphertexts c1, . . . , c�, outputs a ciphertext c.
We require that for all c ∈ C, all (pk, sk, ek) in the support of Keygen(1κ) and all

plaintexts (m1, . . . , m�) and ciphertexts (c1, . . . , c�) such that ci is in the support of
Enc(pk, mi), if c := Eval(ek, C, c1, . . . , c�), then Dec(sk, c) = C(m1, . . . , m�).

Definition 2.6 (fully homomorphic encryption [71]). An encryption scheme E
is fully homomorphic if it satisfies the following properties:
Correctness: E is C-homomorphic for the class C of all circuits.
Compactness: The computational complexity of E’s algorithms is polynomial in the

security parameter κ, and in the case of the evaluation algorithm, the size of
the circuit.

We now state the definition of leveled homomorphic encryption from [27], which is
a relaxation of the original definition of fully homomorphic encryption (Definition 2.6).
The main difference is that Definition 2.6 requires all algorithms (decryption in par-
ticular) to be independent of the circuit(s) that the scheme can evaluate. Leveled
homomorphic encryption relaxes this definition to let all algorithms (including de-
cryption) depend on the circuit depth D.

Definition 2.7 (leveled homomorphic encryption [27]). Let C(D) be the class of
all circuits of depth at most D (that use some specified complete set of gates). We say
that a family of homomorphic encryption schemes {E(D) : D ∈ Z+} is leveled fully
homomorphic if, for all D ∈ Z+, it satisfies the following properties:
Correctness: E(D) is C(D)-homomorphic.
Compactness: The computational complexity of E(D)’s algorithms is polynomial in the

security parameter κ and D, and in the case of the evaluation algorithm, the

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MULTIKEY FHE AND APPLICATIONS 1847

size of the circuit. We emphasize that this polynomial must be the same for
all D.

2.5.1. Bootstrapping. We remind the reader of the definition of a bootstrap-
pable encryption scheme and present Gentry’s bootstrapping theorem [71, 70] that
states that a bootstrappable scheme can be converted into a fully homomorphic one.

Definition 2.8 (bootstrappable scheme). Let E = (Keygen, Enc, Dec, Eval) be a
C-homomorphic encryption scheme, and let fadd and fmult be the augmented decryption
functions of the scheme defined as

f c1,c2
add (sk) = Dec(sk, c1) XOR Dec(sk, c2),

f c1,c2
mult (sk) = Dec(sk, c1) AND Dec(sk, c2).

E is bootstrappable if {f c1,c2
add , f c1,c2

mult }c1,c2 ⊆ C, namely, if it can homomorphically
evaluate fadd and fmult.

Definition 2.9 (weak circular security). A public-key encryption scheme E =
(Keygen, Enc, Dec) is weakly circular secure if it is IND-CPA secure even for an
adversary with auxiliary information containing encryptions of all secret key bits:
{Enc(pk, sk[i])}i. Namely, no polynomial-time adversary can distinguish an encryp-
tion of 0 from an encryption of 1, even given this additional information.

Theorem 2.3 (bootstrapping theorem). Let E be a bootstrappable scheme that is
also weakly circular secure. Then there exists a fully homomorphic encryption scheme
E ′.

2.6. Rings. In this section we introduce preliminaries to our concrete construc-
tions, which are all ring-based. Some of the discussion in this section is taken verbatim
from the work of Brakerski and Vaikuntanathan [30].

We work over rings R
def= Z[x]/ 〈φ(x)〉 and Rq

def= R/qR for some degree
n = n(κ) integer polynomial φ(x) ∈ Z[x] and a prime integer q = q(κ) ∈ Z. Note
that Rq is isomorphic to Zq[x]/ 〈φ(x)〉, the ring of degree n polynomials modulo
φ(x) with coefficients in Zq. Addition in these rings is done componentwise in their
coefficients (thus, their additive group is isomorphic to Zn and Zn

q , respectively), and
multiplication is polynomial multiplication modulo φ(x) (and also q, in the case of
the ring Rq). An element in R (or Rq) can be viewed as a polynomial of degree at
most (n− 1) over Z (or Zq). We represent such an element using the vector of its n
coefficients. In the case of Rq each coefficient is in the range {−� q

2�, . . . , � q
2�}. For an

element a(x) = a0 + a1x + · · ·+ an−1x
n−1 ∈ R, we let ‖a‖∞ = max |ai| denote its �∞

norm.
In this work, we set φ(x) = xn+1, where n is a power of two, and use distributions

over the ring R
def= Z[x]/ 〈φ(x)〉. For the purpose of homomorphism, the only

important property of these distributions is the magnitude of the coefficients of a
polynomial output by the distribution. Hence, we define a B-bounded distribution to
be a distribution over R where the �∞-norm of a sample is bounded by B.

Definition 2.10 (B-bounded polynomial). A polynomial e ∈ R is called B-
bounded if ‖e‖∞ ≤ B.

Definition 2.11 (B-bounded distribution). A distribution ensemble {χκ}κ∈N
,

supported over R, is called B-bounded (for B = B(κ)) if for all e in the support
of χκ, we have ‖e‖∞ < B. In other words, a B-bounded distribution over R outputs
a B-bounded polynomial.

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1848 LÓPEZ-ALT, TROMER, AND VAIKUNTANATHAN

The following lemma says that multiplication in the ring Z[x]/ 〈xn + 1〉 increases
the norm of the constituent elements only by a small amount.

Lemma 2.4. Let n ∈ N, let φ(x) = xn + 1, and let R = Z[x]/ 〈φ(x)〉. For any
s, t ∈ R,

‖s · t‖ ≤ √n · ‖s‖ · ‖t‖ and ‖s · t‖∞ ≤ n · ‖s‖∞ · ‖t‖∞.

Lemma 2.4 yields the following corollary.

Corollary 2.5. Let n ∈ N, let φ(x) = xn +1, and let R = Z[x]/ 〈φ(x)〉. Let χ be
a B-bounded distribution over the ring R and let s1, . . . , sk ← χ. Then s

def=
∏k

i=1 si

is (nk−1Bk)-bounded.

2.6.1. Discrete Gaussians. For any real r > 0 the Gaussian function on Rn

centered at c with parameter r is defined as

∀x ∈ Rn : ρr,c(x) def= e−π‖x−c‖2/r2
.

Definition 2.12. For any n ∈ N and for any c ∈ Rn and real r > 0, the discrete
Gaussian distribution over Zn with standard deviation r and centered at c is defined
as

∀x ∈ Zn : DZn,r,c
def=

ρr,c(x)
ρr,c(Zn)

,

where ρr,c(Zn) def=
∑

x∈Zn ρr,c(x) is a normalization factor.

We present some elementary facts about the Gaussian distribution. The first
fact shows that the discrete Gaussian distribution over Zn with standard deviation r
outputs a (r

√
n)-bounded polynomial with high probability. This allows us to define

a truncated Gaussian distribution that is (r
√

n)-bounded and statistically close to the
discrete Gaussian.

Lemma 2.6 (see [109]). For any real number r > ω(
√

log n), we have

Pr
x←DZn,r

[‖x‖ > r
√

n
] ≤ 2−n+1.

Using Lemma 2.6 together with the fact that for all x ∈ Rn, ‖x‖ ≥ ‖x‖∞ yields
the following bound.

Lemma 2.7. Let n = ω(log κ). For any real number r > ω(
√

log n), we have

Pr
x←DZn,r

[‖x‖∞ > r
√

n
] ≤ 2−n+1 = negl(κ).

Define the truncated discrete Gaussian distribution with standard deviation r and
centered at c, denoted by DZn,r,c, to be one that samples a polynomial according
to the discrete Gaussian DZn,r,c and repeats the sampling if the polynomial is not
(r
√

n)-bounded. As long as n = ω(log(κ)), Lemma 2.7 implies that this distribution
is statistically close to the discrete Gaussian : DZn,r,c ≈s DZn,r,c.

The second fact says that the statistical distance between a discrete Gaussian with
standard deviation r and centered at 0 and one centered at c ∈ Zn is at most ‖c‖ /r.
In particular, if r is superpolynomially larger than ‖c‖, then the two distributions are
statistically close.

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MULTIKEY FHE AND APPLICATIONS 1849

Lemma 2.8 (see [87, Lemma 3]). Let n ∈ N. For any real number r > ω(
√

log n)
and any c ∈ Zn, the statistical distance between the distributions DZn,r and DZn,r,c
is at most ‖c‖/r.

Corollary 2.9. Let c ∈ Zn. For any real number r ≥ 2ω(log κ) ‖c‖, the distribu-
tions DZn,r and DZn,r,c are statistically close.

2.6.2. The ring-LWE and polynomial LWE assumptions. We now dis-
cuss the ring learning with errors (RLWE) assumption introduced by Lyubaskevsky,
Peikert, and Regev [107] and a close variant called Polynomial Learning with Errors
(PLWE) introduced by Brakerski and Vaikuntanathan [30].

The PLWE assumption is analogous to the standard LWE assumption, first defined
by Regev [120, 121] (generalizing the learning parity with noise assumption of Blum
et al. [23]). The PLWEφ,q,χ assumption is that for a random ring element s ← Rq,
given any polynomial number of samples of the form (ai, bi = ai · s + ei) ∈ R2

q , where
ai is uniformly random in Rq and ei is drawn from the error distribution χ, the
bi’s are computationally indistinguishable from uniform in Rq. We use the Hermite
normal form of the assumption, as in [30], where the secret s is sampled from the
noise distribution χ rather than being uniform in Rq. This presentation is more useful
for the purposes of this work and is equivalent to the original up to obtaining one
additional sample [4, 107].

We note that PLWE is different from, but closely related to, the RLWE assumption
defined in [107]. In particular, the two differ in the fact that in PLWE, the secret s
is chosen from R whereas in RLWE, it is chosen from the “dual ring” of R (which is
a fractional ideal). There are also differences in the choice of the error distribution.
However, in the case of cyclotomic rings R = Z[x]/ 〈xn + 1〉, where n is a power of two,
the only rings we will consider in this paper, these two assumptions are essentially
the same modulo a scaling in the noise distribution. For a detailed discussion of the
relation between the assumptions, we refer the reader to [107, 30, 57]. Henceforth in
this paper, we will use the terms RLWE and PLWE interchangeably.

Definition 2.13 (the PLWE assumption—Hermite normal form [107]). For all
κ ∈ N, let φ(x) = φκ(x) ∈ Z[x] be a polynomial of degree n = n(κ), let q = q(κ) ∈ Z

be an odd prime integer, let the ring R
def= Z[x]/ 〈φ(x)〉 and Rq

def= R/qR, and let χ
denote a distribution over the ring R.

The decisional PLWE assumption PLWEφ,q,χ states that for any � = poly(κ) it
holds that

{(ai, ai · s + ei)}i∈[�]
c≈ {(ai, ui)}i∈[�] ,

where s is sampled from the noise distribution χ, ai are uniform in Rq, the “er-
ror polynomials” ei are sampled from the error distribution χ, and finally, the ring
elements ui are uniformly random over Rq.

We now present a couple of facts about the PLWE assumption. The first says
that the assumption also holds if the error is multiplied by 2 in every sample. This
follows immediately from the fact that q is an odd prime and therefore relatively
prime with 2.

Fact 2.10. The PLWEφ,q,χ assumption implies that for any � = poly(κ),

{(ai, ai · s + 2 · ei)}i∈[�]
c≈ {(ai, ui)}i∈[�],

where ai, ui are uniformly random in Rq and s, ei are drawn from the error distribution
χ.

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1850 LÓPEZ-ALT, TROMER, AND VAIKUNTANATHAN

The second fact says that the assumption also holds if the distinguisher is addi-
tionally given samples with the same parameter aj and different secret key si. This
follows from a hybrid argument that slowly changes the samples, one secret at a time,
from PLWE to uniform.

Fact 2.11. The PLWEφ,q,χ assumption implies that for any � = poly(κ), �′ =
poly(κ),

{(aj , aj · si + ei,j)}i∈[�],j∈[�′]
c≈ {(aj , ui,j)}i∈[�],j∈[�′],

where aj , ui,j are uniformly random in Rq and si, ei,j are drawn from the error dis-
tribution χ.

2.6.3. Choice of parameters. As already stated above, we will rely of the
following specific choices of the polynomial φ(x) and the error distribution χ. For
security parameter κ and a dimension parameter n = n(κ) which is a power of two
the following hold:

• We set φ(x) def= xn + 1, where n is a power of two.
• The error distribution χ is the truncated discrete Gaussian distribution DZn,r

with standard deviation r > 0. A sample from this distribution is a (r
√

n)-
bounded polynomial e ∈ R. As described above, this is done by sampling
a vector (p0, . . . , pn−1) from the discrete Gaussian distribution over Zn and
outputting a polynomial p(x) =

∑
0≤i<n pix

i whose coefficients are elements
of this vector.

2.6.4. The worst-case to average-case connection. We now state a worst-
case to average-case reduction from the shortest vector problem (SVP) on ideal lat-
tices to the PLWE problem for our setting of parameters. For details and the formal
definition of the (approximate) R-SVP problem, we refer the readers to the original
work [107].

Theorem 2.12 (see [107]). Let φ(x) = xn + 1, where n is a power of two. Let
r ≥ ω(

√
log n) be a real number, and let q ≡ 1 (mod 2n) be a prime integer. Let

R
def= Z[x]/ 〈φ(x)〉. Then there is a randomized reduction from the approximate

shortest vector problem on R-ideal lattices, namely, the 2ω(log n) ·(q/r)-approximate R-
SVP, to PLWEφ,q,χ, where χ = DZn,r is the truncated discrete Gaussian distribution.

Solving approximate R-SVP to within a subexponential factor is believed to be
hard. Thus, if q/r = 2o(n), then the PLWEφ,q,χ assumption is believed to be hard.

2.7. NTRU encryption. We describe the NTRU encryption scheme of Hoff-
stein, Pipher, and Silverman [96], with the modifications proposed by Stehlé and
Steinfeld [130]. For security parameter κ, the scheme is parameterized by a prime
number q = q(κ), a degree n = n(κ) polynomial φ(x) ∈ Z[x], and an error distribu-
tion χ = χ(κ) over the ring R

def= Z[x]/ 〈φ(x)〉. The parameters n, φ, q, χ are public
and we assume that given κ, there are polynomial-time algorithms that output φ and
q and sample from the error distribution χ. The message space is M = {0, 1}, and
all operations are carried out in the ring R (i.e., modulo φ(x)).

• Keygen(1κ): Sample polynomials f ′, g ← χ and set f
def= 2f ′ + 1 so that

f ≡ 1 (mod 2). If f is not invertible in Rq, resample f ′; otherwise, let f−1

be the inverse of f in Rq. Set

pk def= h :=
[
2gf−1]

q
∈ Rq , sk def= f ∈ R.

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MULTIKEY FHE AND APPLICATIONS 1851

• Enc(pk, m): To encrypt a bit m ∈ {0, 1} with public key pk = h, sample
polynomials s, e← χ and output the ciphertext

c
def= [hs + 2e + m]q ∈ Rq.

• Dec(sk, c): To decrypt a ciphertext c ∈ Rq with secret key sk = f , let

μ
def= [fc]q and output m

def= μ (mod 2).
It is easily seen that this scheme is correct as long as there is no reduction modulo

q. To decrypt a ciphertext c, we compute

[fc]q = [fhs + 2fe + fm]q = [2gs + 2fe + fm]q .

If there is no reduction modulo q, then

[fc]q (mod 2) = 2gs + 2fe + fm (mod 2) = fm (mod 2) = m.

Furthermore, our choice of parameter φ(x) = xn +1 ensures there is no reduction
modulo q. Notice that since the coefficients of g, s, e are all bounded by B and
the coefficients of f are bounded by 2B + 1. By Corollary 2.5, we know that the
coefficients of [fc]q are bounded by 2nB2(2nB + 1)(2B + 1). As long as we set q to
be large enough so that q/2 is larger than this quantity, a fresh ciphertext generated
by Enc is guaranteed to decrypt correctly. From here on, we refer to μ = [fc]q ∈ Rq

as the “error in ciphertext c.”

2.7.1. Security. The security of the (modified) NTRU encryption scheme can be
based on two assumptions—the PLWE assumption described in section 2.6 as well as an
assumption that we call the (decisional) small polynomial ratio (DSPR) assumption.

Definition 2.14 (decisional small polynomial ratio assumption). Let φ(x) ∈ Z[x]
be a polynomial of degree n, let q ∈ Z be a prime integer, and let χ denote a distribution
over the ring R

def= Z[x]/ 〈φ(x)〉. The DSPR DSPRφ,q,χ says that it is hard to
distinguish the following two distributions:

• a polynomial h
def= [2gf−1]q, where f ′ and g are sampled from the distribution

χ (conditioned on f
def= 2f + 1 and g being invertible over Rq) and f−1 is

the inverse of f in Rq,
• a polynomial u sampled uniformly at random over Rq.

The security proof uses a hybrid argument, in two steps.
1. The hardness of DSPRφ,q,χ allows us to change the public key h = [2gf−1]q

to a uniformly sampled h.
2. Once this is done, we can use PLWEφ,q,χ to change the challenge ciphertext

c∗ = [hs + 2e + m]q to c∗ = [u + m]q, where u is uniformly sampled from Rq.
In this final hybrid, the advantage of the adversary is exactly 1/2 since c∗ is
uniform over Rq, independent of the message m.

Stehlé and Steinfeld [130] showed that the DSPRφ,q,χ assumption is uncondition-
ally true even for unbounded adversaries (namely, the two distributions above are
statistically close) if n is a power of two, φ(x) = xn +1, and χ is the discrete Gaussian

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1852 LÓPEZ-ALT, TROMER, AND VAIKUNTANATHAN

DZn,r for r >
√

q · poly(n). Thus, with this setting of parameters, semantic security
of the modified NTRU scheme can be based on the PLWEφ,q,χ assumption alone.

On the DSPR assumption. Subsequent to our work, Albrecht, Bai, and Ducas [3]
and Cheon, Jeong, and Lee [37] independently presented two attacks against the
NTRU scheme and in particular, the DSPR assumption, with an extreme choice of
parameters. More precisely, both works show (different) polynomial-time algorithms
that solve DSPRφ,q,χ for a class of rings φ including Z[x]/ 〈xn + 1〉, when χ = DZn,r

for r = poly(n) and q = 2Õ(
√

n). The DSPR assumption remains unbroken for smaller
q, namely, q = 2nε

for some small constant ε < 1/2, to the best of our knowledge.

3. Multikey FHE. As mentioned earlier, the main building block in our con-
struction of on-the-fly MPC is multikey FHE: fully homomorphic encryption that
allows homomorphic evaluation on ciphertexts encrypted under different and indepen-
dent keys. In this chapter, we formally define multikey FHE and show a construction
for any number of keys based on the NTRU encryption scheme [96, 130] described in
section 2.7. We also show that any FHE scheme is inherently multikey for a constant
number of keys (in the security parameter) and that the Brakerski–Vaikuntanathan
scheme [30, 27] is somewhat homomorphic for a logarithmic number of keys.

3.1. Definition. To formally define multikey fully homomorphic encryption, we
introduce a parameter N , which is the number of distinct keys that the scheme can
handle; all algorithms will depend polynomially on N . This is similar to the definition
of leveled homomorphic encryption from [27] (see Definition 2.7), but we note that
in our definition, the algorithms depend on N but are independent of the depth of
circuits that the scheme can evaluate. Thus, we consider schemes that are “leveled”
with respect to the number of keys N but fully homomorphic (“nonleveled”) with
respect to the circuits that are evaluated. The construction of multikey FHE schemes
that are not leveled with respect to the number of keys (i.e., where all algorithms are
independent of N) remains an open problem.

Finally, we note that to guarantee semantic security, decryption requires all cor-
responding secret keys.

Definition 3.1 (multikey C-homomorphic encryption). Let C be a class of cir-
cuits. A family {E(N) = (Keygen, Enc, Dec, Eval)}N>0 of algorithms is multikey C-
homomorphic if for all integers N > 0, E(N) has the following properties:

• (pk, sk, ek) ← Keygen(1κ): For a security parameter κ, outputs a public key
pk, a secret key sk, and a (public) evaluation key ek.
• c ← Enc(pk, m): Given a public key pk and message m, outputs a ciphertext

c.
• m := Dec (sk1, . . . , skN , c): Given N secret keys sk1, . . . , skN and a ciphertext

c, outputs a message m.
• c := Eval(C, (c1, pk1, ek1), . . . , (c�, pk�, ek�)): Given a (description of) a boolean

circuit C along with � tuples (ci, pki, eki), each comprising of a ciphertext ci,
a public key pki, and an evaluation key eki, outputs a ciphertext c.
We require absence of decryption failures and compactness of ciphertexts.
Formally, for every circuit C ∈ C, all sequences of N key tuples {(pk′j , sk

′
j ,

ek′j)}j∈[N] each of which is in the support of Keygen(1κ), all sequences of �

key tuples {(pki, ski, eki)}i∈[�] each of which is in {(pk′j , sk
′
j , ek

′
j)}j∈[N], and

all plaintexts (m1, . . . , m�) and ciphertexts (c1, . . . , c�) such that ci is in the
support of Enc(pki, mi), Eval satisfies the following properties:

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MULTIKEY FHE AND APPLICATIONS 1853

Correctness: Let c := Eval(C, (c1, pk1, ek1), . . . , (c�, pk�, ek�)). Then
Dec(sk′1, . . . , sk

′
N , c) = C(m1, . . . , m�).6

Compactness: Let c := Eval(C, (c1, pk1, ek1), . . . , (c�, pk�, ek�)). There exists
a polynomial P such that |c| ≤ P (κ, N). In other words, the size of c
is independent of � and |C|. Note, however, that we allow the evaluated
ciphertext to depend on the number of keys, N .

Definition 3.2 (multikey fully homomorphic encryption). A family of encryp-
tion schemes {E(N) = (Keygen, Enc, Dec, Eval)}N>0 is multikey fully homomorphic if
it is multikey C-homomor-phic for the class C of all circuits.

Semantic security of a multikey FHE follows directly from the semantic security
of the underlying encryption scheme in the presence of the evaluation key ek. This is
because given ek, the adversary can compute Eval himself. Note that taking N = 1
in Definitions 3.1 and 3.2 yields the standard definitions of C-homomorphic and fully
homomorphic encryption schemes (Definitions 2.5 and 2.6).

3.2. Multikey FHE for a small number of keys. As a prelude to our main
result in section 3.3, we show that multikey homomorphic encryption for a small num-
ber of keys can be easily achieved. In particular, we show that any (standard) FHE
can be converted into a multikey FHE for a constant number of keys, N = O(1).
Furthermore, we show that the Brakerski–Vaikuntanathan (ring-based) FHE [30] is
multikey homomorphic for a logarithmic number of keys, N = O(log κ). Unfortu-
nately, once we introduce multiple keys we are unable to use either relinearization or
squashing and can therefore only obtain a somewhat homomorphic encryption scheme.

3.2.1. O(1)-multikey FHE from any FHE. We show that any FHE scheme is
inherently multikey for a constant number of keys, N = O(1).7 Let E = (Keygen, Enc,
Dec, Eval) be an FHE scheme with message space {0, 1} and ciphertext space {0, 1}λ,
where λ = p(κ) for some polynomial p(·). For x ∈ {0, 1}∗, define x[i] to be the ith bit
of x and define Ẽnc to be the bitwise encryption of x:

Ẽnc(pk, x) def= (Enc(pk, x[1]), . . . , Enc(pk, x[|x|])) .

Furthermore, for any k ∈ N, recursively define “onion” encryption and decryption:

Enc∗(pk, x) def= Enc(pk, x),

Enc∗ (pk1, . . . , pkk, x) def= Enc∗
(
pk1, . . . , pkk−1, Enc (pkk, x)

)
,

= Enc (pk1, Enc (pk2, . . . , Enc ((pkk, x))) ,

Dec∗(sk, x) def= Dec(sk, x),

Dec∗ (sk1, . . . , skk, x) def= Dec∗ (sk2, . . . , pkk, Dec (sk1, x)) ,

= Dec (skk, Dec (skk−1, . . . , Dec (sk1, x))) .

We highlight two properties of onion encryption and decryption:

6Note that correctness still holds even if the circuit C completely ignores all ciphertexts encrypted
under a public key pk′

i or if none of the original ciphertexts were encrypted under this key. In other
words, using superfluous keys in the decryption process does not affect its correctness (as long as
decryption uses at most N keys).

7The idea for this construction was originally suggested to us by an anonymous STOC 2012
reviewer. We include it in this dissertation and formally prove its correctness for the sake of com-
pleteness.

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1854 LÓPEZ-ALT, TROMER, AND VAIKUNTANATHAN

1. First, note that Enc∗ and Dec∗ satisfy correctness: if (pki, ski)← Keygen(1κ)
for all i ∈ [k], and then for all m ∈ {0, 1}:

Dec∗ (sk1, . . . , skk, Enc∗ (pk1, . . . , pkk, m)) = m.

2. Second, note that the bit-size of the ciphertext Enc∗ (pk1, . . . , pkk, m) is λk.
Recall that the ciphertext space of Enc is {0, 1}λ and λ = p(κ) for some
polynomial p(·).

Construction overview. We now give an overview of the construction. Given N
ciphertexts ci ← Enc (pki, mi) encrypting plaintext mi under key pki, for all i ∈ [N],
it is possible to homomorphically compute onion ciphertexts:

zi ≈ Enc∗ (pk1, . . . , pkN , mi) .

This is done by homomorphically evaluating the function Enc∗(pki+1, . . . , pkN , ·)
on ciphertext ci. This outputs an onion encryption z̃i ≈ Enc∗(pki, . . . , pkN , mi).
The ciphertext zi can be obtained by onion encrypting z̃i with the remaining keys:
zi = Enc∗(pk1, . . . , pki−1, z̃i)

Once the ciphertexts z1, . . . , zN have been obtained, we can recursively perform
homomorphic evaluations corresponding to the keys pk1, . . . , pkN (in that order) to
obtain a ciphertext:

c ≈ Enc∗ (pk1, . . .pkN , C (m1, . . . , mN)) .

By correctness of onion encryption, decrypting c can be easily achieved using
onion decryption:

Dec∗ (sk1, . . . , skk, c) = C (m1, . . . , mN) .

However, recall that the size of each ciphertext zi is λN = p(κ)N for some poly-
nomial p(·). This means that the multikey homomorphic evaluation is efficient only
if N = O(1). Thus, this generic construction of multikey FHE from (standard) FHE
allows only a constant number of keys.

Formal description. We now give a formal description of the generic multikey
construction and prove its correctness. Let E = (Keygen, Enc, Dec, Eval) be an FHE
scheme with message space {0, 1} and ciphertext space {0, 1}λ, where λ = p(κ) for
some polynomial p(·). Let Enc∗ and Dec∗ be the onion encryption and decryption
algorithms described above.

• GMK.Keygen(1κ): Run Keygen(1κ).
• GMK.Enc(pk, m): Run Enc(pk, m).
• GMK.Dec (sk1, . . . , skN , c): Output Dec∗ (sk1, . . . , skN , c).
• GMK.Eval (C, (c1, pk1, ek1) , . . . , (cN , pkN , ekN)): For i ∈ [N], define

Gi(x) def= Enc∗
(
pki+1, . . . , pkN , x ; r

)
for some fixed and valid randomness r8 and recursively define

C(k) (x1, . . . , xN) def=
{

C (x1, . . . , xN) for k = N.

Eval
(
ekk+1, C

(k+1), x1, . . . , xN

)
for k < N.

8We need to include the randomness in the definition because we want Gi(x) to be a deterministic
circuit with x as its sole input.

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MULTIKEY FHE AND APPLICATIONS 1855

For i ∈ [N], compute

z̃i
def= Eval (eki, Gi, ci) , zi

def= Enc∗
(
pk1, . . . , pki−1, z̃i

)
and output the ciphertext c

def= Eval(ek1, C
(1), z1, . . . , zN).

Theorem 3.1. The encryption scheme EGMK = (GMK.Keygen, GMK.Enc, GMK.Dec,
GMK.Eval) is multikey fully homomorphic for N = O(1) keys.

Proof. To prove correctness of evaluation, we wish to prove that if (pki, ski, eki)
is in the support of GMK.Keygen(1κ) = Keygen(1κ) and ci ← GMK.Enc (pki, mi) =
Enc (pki, mi), then

GMK.Dec (sk1, . . . , skN , c) = Dec∗ (sk1, . . . , skN , c) = C (m1, . . . , mN) .

We first show that each zi is a valid onion encryption of mi. By correctness of
evaluation with evaluation key eki, we know that

Dec (ski, z̃i) = Gi (mi) = Enc∗
(
pki+1, . . . , pkN , mi ; r

)
,

and by correctness of encryption, we conclude that

Dec∗ (ski, . . . , skN , z̃i) = mi and Dec∗ (sk1, . . . , skN , zi) = mi.

We now make the following claim, which constitutes the bulk of the proof.

Claim 3.1.1. For every k ∈ [N],

Dec∗ (sk1, . . . , skk, c) = Ck

(
z
(k)
1 , . . . , z

(k)
N

)
,

where z
(k)
i

def= Dec∗ (sk1, . . . , skk, zi).

In particular, for k = N , this claim implies

Dec∗ (sk1, . . . , skN , c) = C(N)
(
z
(N)
1 , . . . , z

(N)
N

)
= C (m1, . . . , mN) ,

where the second equality follows from the fact that CN = C by definition and the
fact that z

(N)
i = Dec∗ (sk1, . . . , skN , zi) = mi, which we proved earlier.

It thus suffices to prove Claim 3.1.1 to conclude the proof of the theorem.

Proof. We prove Claim 3.1.1 by induction. The base case, k = 1, follows directly
from correctness of evaluation and correctness of decryption:

Dec∗ (sk1, c) = C(1) (Dec (sk1, z1) , . . . , Dec (sk1, zN)) = C(1)
(
z
(1)
1 , . . . , z

(1)
N

)
.

Now suppose that the claim holds for k − 1; that is, suppose

Dec∗ (sk1, . . . , skk−1, c) = C(k−1)
(
z
(k−1)
1 , . . . , z

(k−1)
N

)
.

Decrypting both sides by skk yields

Dec∗ (sk1, . . . , skk, c) = Dec
(
skk, C(k−1)

(
z
(k−1)
1 , . . . , z

(k−1)
N

))
= Dec

(
skk, Eval

(
ekk, C(k), z

(k−1)
1 , . . . , z

(k−1)
N

))
= C(k)

(
Dec

(
skk, z

(k−1)
1

)
, . . . , Dec

(
skk, z

(k−1)
N

))
= C(k)

(
z
(k)
1 , . . . , z

(k)
1

)
,

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1856 LÓPEZ-ALT, TROMER, AND VAIKUNTANATHAN

where the second-to-last equality follows from correctness of evaluation and correct-
ness of decryption. This concludes the inductive step and the proof.

3.2.2. O(log κ)-multikey FHE from ring-LWE. We now show that the
Brakerski–Vaikuntanathan FHE [30] based on the RLWE assumption is multikey some-
what homomorphic for N = O(log κ) keys.

Decryption in Regev-style encryption consists of computing the inner product
〈c, s〉 (mod 2), where c, s ∈ R2

q are the ciphertext and secret key, respectively. Brak-
erski and Vaikuntanathan [30] generalize this to allow the ciphertext and secret key
to grow in dimension. For c, s ∈ Rd

q , they define Dec(s, c) = 〈c, s〉 (mod 2). Homo-
morphic operations are then defined as follows:

• Given two same-length ciphertexts c1 and c2, output the ciphertext cadd
def=

c1 + c2 as an encryption of the sum of the underlying messages.
The ciphertext cadd is decryptable with the same secret key s since

〈c1 + c2, s〉 = 〈c1, s〉+ 〈c2, s〉 .

• Given two ciphertexts c1 and c2 of potentially different length, output the
ciphertext cmult

def= c1 ⊗ c2 as the product of the underlying messages.
The ciphertext cmult is now decryptable with the secret key s⊗ s since

〈c1 ⊗ c2, s⊗ s〉 = 〈c1, s〉 · 〈c2, s〉 .

We can extend this to the multikey setting. Multiplication is trivial, but some
changes are necessary in the case of addition.

• Given two same-length ciphertexts c1 and c2 decryptable with secret keys
s1, s2, respectively, output the ciphertext cadd

def= (c1, c2) as an encryption
of the sum of the underlying messages.
The ciphertext cadd is decryptable with the same secret key (s1, s2) since

〈(c1, c2), (s1, s2)〉 = 〈c1, s1〉+ 〈c2, s2〉 .

• Given two ciphertexts c1 and c2 decryptable with secret keys s1, s2, respec-
tively, and of potentially different length, output the ciphertext cmult

def= c1⊗
c2 as the product of the underlying messages.
The ciphertext cmult is now decryptable with the secret key s1 ⊗ s2 since

〈c1 ⊗ c2, s1 ⊗ s2〉 = 〈c1, s1〉 · 〈c2, s2〉 .

Observe that each homomorphic operation (at most) doubles the size of the ci-
phertext. Starting with fresh ciphertexts of length 2, after (N − 1) operations (which
can combine ciphertexts encrypted under at most N distinct keys), the size of both the
ciphertext and the joint decryption key is 2N . This is only feasible if N = O(log κ).

As shown in the work of Brakerski and Vaikuntanathan [30], the scheme can
evaluate circuits of depth D < ε logn − log log n + Θ(1), where q = 2nε

for constant
ε ∈ (0, 1). Unfortunately, we do not know how to apply relinearization or squashing
in the multikey setting and are therefore not able to convert the resulting multikey
scheme into a leveled or fully homomorphic one.

3.3. Multikey somewhat homomorphic encryption for any number of
keys. We now turn to our main result in this section: we construct a multikey

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MULTIKEY FHE AND APPLICATIONS 1857

somewhat homomorphic encryption scheme based on the (modified) NTRU encryption
scheme [96, 130] described in section 2.7. Unlike the schemes in section 3.2, the scheme
we describe in this section will be multikey for N ≈ nε keys with constant ε ∈ (0, 1).
In section 3.4, we show how to convert the scheme into a multikey fully homomorphic
scheme for N ≈ nε keys. By setting n ≈ N1/ε, we can construct a multikey FHE for
any number of keys N , as long as N is known a priori.

We begin by informally describing the multikey homomorphic properties of NTRU
encryption and some of the problems encountered when trying to convert the scheme
from section 2.7 into a somewhat homomorphic one. We then show a formal descrip-
tion of our somewhat homomorphic scheme, formally prove its homomorphic proper-
ties, and discuss its security. In section 3.4, we show how to convert this scheme into
a fully homomorphic scheme.

3.3.1. Multikey homomorphism. Recall from section 2.7 that an NTRU key
pair consists of ring elements (h, f) such that h = [2gf−1]q, where g, f are “small”
ring elements sampled from a B-bounded distribution χ, and f−1 is the inverse of f
in Rq. Further recall that an NTRU ciphertext has the form c = [hs + 2e + m]q for
small elements s, e sampled from χ, and decryption computes [fc]q (mod 2).

Let (h1, f1) and (h2, f2) be two different NTRU public/secret key pairs, and let
c1

def= [h1s1 +2e1 +m1]q and c2
def= [h2s2 +2e2 +m2]q be two ciphertexts, encrypted

under public keys h1 and h2, respectively. We show how to compute ciphertexts that
decrypt to the sum and the product of the underlying plaintexts, m1 and m2. In
particular, we show that the ciphertexts cmult

def= c1 · c2 and cadd
def= c1 + c2 can be

decrypted to the product and the sum of m1 and m2, respectively, using the secret
key f12

def= f1 · f2.
To see this, note that

[f1f2(c1 + c2)]q = [2f1f2e1 + 2f1f2e2 + 2f2g1s1 + 2f1g2s2 + f1f2(m1 + m2)]q ,

[f1f2(c1 · c2)]q = [4g1g2s1s2 + 2g1s1f2(2e2 + m2) + 2g2s2f1(2e1 + m1),

+ 2f1f2(e1m2 + e2m1 + 2e1e2) + f1f2(m1m2)]q ,

= m1 ·m2 (mod 2).

Since f1 ≡ f2 ≡ 1 (mod 2), we can conclude that as long as there is no reduction
modulo q,

[f1f2(c1 + c2)]q (mod 2) = m1 + m2 (mod 2),

[f1f2(c1 · c2)]q (mod 2) = m1 ·m2 (mod 2).

In other words, the “joint secret key” f12
def= f1f2 can be used to decrypt cadd =

[c1 + c2]q and cmult = [c1 · c2]q. We can extend this argument to any combination of
operations, with ciphertexts encrypted under multiple public keys.

Of course, the error in the ciphertexts will grow with the number of operations
performed (as with all known fully homomorphic encryption schemes). Thus, correct-
ness of decryption will only hold for a limited number of operations. We can show
that the scheme can correctly evaluate circuits of depth roughly ε log(n) when q = 2nε

and B = poly(n).
Problems in multikey decryption. An astute reader will have observed that in

order to successfully decrypt a ciphertext that was the result of a homomorphic eval-
uation, we must know the circuit that was evaluated. For example, to decrypt c2

1 + c2

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1858 LÓPEZ-ALT, TROMER, AND VAIKUNTANATHAN

we need to multiply by f2
1 f2, whereas to decrypt c1 + c2

2 we need to multiply by f1f
2
2 .

This is unsatisfactory.
Furthermore, consider what happens when we add or multiply two ciphertexts

c, c′ that are themselves a result of homomorphic evaluation. Suppose, for example,
that c = c1c2 and c′ = c2c3, where ci is encrypted under hi for i ∈ {1, 2, 3}. We know
c can be decrypted using f1f2 and c′ can be decrypted using f2f3. Thus, we know
that

[f1f2 · c]q = 2e + f1f2m , [f2f3 · c′]q = 2e′ + f2f3m
′

for some messages m and m′ and error terms e and e′. Following the discussion above,
we can see that c + c′ can be decrypted using the key f1f2f3:

[f1f2f3 · (c + c′)]q = [f3(f1f2 · c) + f1(f2f3 · c′)]q = 2(f3e + f1e
′) + f1f2f3(m + m′).

In general, given a ciphertext c encrypted under a set of keys K, and c′ encrypted
under a set of keys K ′, their sum can be decrypted using the product of the keys in
the union K ∪ K ′. We note that the absolute magnitude of the coefficients of this
product grows exponentially with the number of keys in K∪K ′, i.e., the total number
of keys involved in the homomorphic computation.

Analogously, in the context of homomorphic multiplication, we need f1f
2
2 f3 to

decrypt c · c′:[
f1f

2
2 f3 · (c · c′)

]
q

= [(f1f2 · c) · (f2f3 · c′)]q = 2Emult + f1f
2
2 f3(m ·m′),

where Emult
def= 2ee′+ef2f3m

′+e′f1f2m. This hints at the fact that the magnitude of
the coefficients of the joint secret key needed to decrypt an evaluated ciphertext grows
exponentially with the degree of the evaluated circuit (and not just with the number
of keys involved, as in the case of addition). Indeed, after M multiplications, the
joint secret key needed to decrypt the evaluated ciphertext will be the product of M
polynomials, and the magnitude of the coefficients of this product will be exponential
in M .

Our solution. To solve the above problems, we use relinearization (also known
as key-switching), a technique first introduced by Brakerski and Vaikuntanathan [29].
Informally, we introduce a (public) evaluation key ek that will be output by the
Keygen algorithm. Every time we multiply ciphertexts that share a key fi, we will
use the evaluation key to ensure that we only need fi, and not f2

i , to decrypt the new
ciphertext. This ensures two things.

1. First, it ensures that to decrypt a ciphertext c∗, we only need to multiply it
by one copy of each secret key, making decryption independent of the circuit
used to produce c∗.

2. Second, it ensures that the size of the joint secret key needed to decrypt the
new ciphertext depends only on the number of keys N and not on the degree
of the circuit C that was evaluated.

Though we are able to eliminate the dependence (of the magnitude of the coeffi-
cients of the joint secret key) on the degree of the circuit, we remark that we do not
succeed in eliminating the exponential dependence on N , the number of keys—indeed,
this is the reason why our solution will eventually assume an a priori upper bound on
N .

3.3.2. Formal description. We present a formal description of our multikey
somewhat homomorphic encryption scheme based on the (modified) NTRU encryption

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MULTIKEY FHE AND APPLICATIONS 1859

scheme [96, 130] described in section 2.7. The scheme uses two subroutines that
expand a polynomial in Rq into �log q� polynomials. For any x ∈ Rq, the following
hold:

• Bit (x) decomposes x into its bit representation. Namely,

Bit (x) = (x0, x1, . . . , x�log q�) ∈ R

log q�
2 such that x =

�log q�∑
j=0

2jxj .

• Pow (x) =
[
(x, 2 · x, . . . , 2�log q� · x)

]
q
∈ R

log q�
q .

Observe that for any x, z ∈ Rq,

[〈Bit (x) , Pow (z)〉]q =

⎡
⎣�log q�∑

j=0

xj · 2jz

⎤
⎦

q

=

⎡
⎣z ·

�log q�∑
j=0

2jxj

⎤
⎦

q

= x · z.

The encryption scheme is defined as follows:
• SH.Keygen(1κ): Sample f ′, g ← χ and set f := 2f ′+1 so that f ≡ 1 (mod 2).

If f is not invertible in Rq, resample f ′; otherwise let f−1 be the inverse of f
in Rq. Set

pk def= h :=
[
2gf−1]

q
∈ Rq , sk def= f ∈ R.

Sample s̃, ẽ ← χ
log q� and compute ek def= [hs̃ + 2ẽ + Pow (f)]q ∈ R

log q�
q .

Output the key tuple (pk, sk, ek).
• SH.Enc(pk, m): Sample s, e← χ. Output the ciphertext c := hs+2e+m ∈ Rq.
• SH.Dec(sk1, . . . , skN , c): Parse ski = fi for i ∈ [N]. Compute μ = [f1 · · · fN ·

c]q ∈ Rq and output m := μ (mod 2).
• SH.Eval(C, (c1, pk1, ek1), . . . , (c�, pk�, ek�)): We show how to evaluate an �-

variate boolean circuit C : {0, 1}� → {0, 1} of depth D. To this end, we show
how to homomorphically add and multiply two elements in {0, 1}. Given
two ciphertexts c, c′, we assume that we also have a set of distinct public
keys associated with each ciphertext.9 We will denote these lists by K, K ′,
respectively. The public-key set of a fresh encryption is simply the set {pk}
containing the public key under which it was encrypted. For convenience,
in our analysis we sometimes assume that the set contains the indices of the
public keys instead of the keys themselves.

– Given two ciphertexts c and c′ with corresponding public-key sets K and
K ′, output the ciphertext

cadd = [c + c′]q ∈ Rq

as an encryption of the sum of the underlying messages. Output the set
Kadd = K ∪K ′ as its corresponding public-key set.

– Given two ciphertexts c and c′ with corresponding public-key sets K and
K ′, compute ciphertext c0 = [c · c′]q ∈ Rq.
∗ If K ∩K ′ = ∅, let cmult = c0.
∗ Otherwise, let K ∩K ′ = {pki1 , . . . , pkit

}. For j ∈ [t], compute cj =
[〈Bit (cj−1) , ekij 〉]q, and let cmult = ct at the end of the iteration.

9That is, we assume each set contains distinct public keys, but the intersection of any two sets
might not be empty.

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1860 LÓPEZ-ALT, TROMER, AND VAIKUNTANATHAN

In either case, output cmult as an encryption of the product of the under-
lying messages, and output the set Kmult = K ∪K ′ as its corresponding
public-key set.
For a set S ⊆ [N], let fS

def=
∏

i∈S fi. Note that the ciphertext c0
can be decrypted to m · m′ with the “joint” secret key fKfK′ , which
contains the term f2

i1 . . . f2
it
. The goal of relinearization is to convert it

into a ciphertext that decrypts to the same message under the secret key

fKfK′

⎛
⎝ ∏

j∈K∩K′
fj

⎞
⎠
−1

= fK∪K′,

which replaces the term f2
i1

. . . f2
it

with the term fi1 . . . fit .
We first show that the scheme works correctly as advertised.

Lemma 3.2. If q = 2nε

for ε ∈ (0, 1) and χ is a B-bounded distribution for
B = poly(n), then the encryption scheme ESH = (SH.Keygen, SH.Enc, SH.Dec, SH.Eval)
described above is multikey homomorphic for N = O(nδ) keys and circuits of depth
D < (ε− δ) log n− log log n−O(1).

Proof. We define the (multikey) error of a ciphertext c with corresponding public-
key set K to be μ

def= [fK · c]q. We start by showing that the magnitude of the error
coefficients does not grow too much after a homomorphic evaluation.

Claim 3.2.1. Let c, c′ be ciphertexts encrypting m and m′, respectively, and sup-
pose that the magnitude of their error coefficients is bounded by E < q/2. Then
cadd and cmult correctly decrypt to m + m′ and m · m′, respectively, and their error
coefficients are bounded by (nB)2NE2.

Proof. Let c, c′ be encryptions of m, m′, respectively, with corresponding public-
key sets K, K ′. We know that for some e, e′ ∈ R we have

[fK · c]q = 2e + m , [fK′ · c′]q = 2e′ + m′

and ‖2e + m‖∞ , ‖2e′ + m‖∞ < E. Then

[fKadd · cadd]q = [fK∪K′ · (c + c′)]q =
[
fK\K′(fK · c) + fK′\K(fK′ · c′)]

q

= fK\K′(2e + m) + fK′\K(2e′ + m′).

We can thus bound the magnitude of the coefficients of [fKadd · cadd]q by 2(nB)NE <

(nB)2NE2, as desired. Furthermore, it easy to see that [fKadd · cadd]q (mod 2) =
m + m′.

The multiplication case is more complex. Let K ∩ K ′ = {i1, . . . , it}, as before.
Define F0

def= fKfK′ , and for j ∈ [t], define Fj = Fj−1 · f−1
ij

. Then Fr = fK∪K′ is a
simple product of the secret keys fi without any quadratic terms. We know that

[F0 · c0]q = [(fK · c)(fK′ · cK)]q = (2e + m)(2e′ + m′)

so that ‖[F0 · c0]q‖∞ < nE2 and [F0 · c0]q (mod 2) = m · m′. Furthermore, for all
j ∈ [t],

[Fj · cj]q =
[
Fj ·

〈
Bit (cj−1) , hij s̃ + 2ẽ + Pow

(
fij

)〉]
q

=
[
Fj ·

〈
Bit (cj−1) , hij s̃

〉
+ Fj · 〈Bit (cj−1) , 2ẽ〉+ Fjcj−1fij

]
q

= Fjf
−1
ij
· 〈Bit (cj−1) , 2gij s̃

〉
+ Fj · 〈Bit (cj−1) , 2ẽ〉+ Fj−1cj−1.

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MULTIKEY FHE AND APPLICATIONS 1861

Using the fact that each Fj is the product of at most (2N − j) keys, we have that∥∥∥[Fj · cj]q
∥∥∥
∞

< 2 �log q�n2B2 · (nB)2N−j−1 + 2 �log q�nB · (nB)2N−j

+
∥∥∥[Fj−1 · cj−1]q

∥∥∥
∞

= 4 �log q� (nB)2N−j+1 +
∥∥∥[Fj−1 · cj−1]q

∥∥∥
∞

.

This yields the following bound on the error of cmult:

∥∥∥[FK∪K′ · cmult]q
∥∥∥
∞

=
∥∥∥[Ft · ct]q

∥∥∥
∞
≤ nE2 +

t∑
j=1

4 �log q� (nB)2N−j+1

= nE2 + 4 �log q� (nB)2N+1
t∑

j=1

(nB)−j

≤ nE2 + 8 �log q� (nB)2N+1

≤ (nB)2NE2,

where the last inequality holds by the fact that q = 2nε

.
Furthermore, notice that [Fj ·cj]q ≡ Fj−1cj−1 (mod 2). Since [F0 ·c0]q (mod 2) =

m ·m′, we can conclude that [FK∪K′ ·cmult]q (mod 2) = [Ft ·ct]q (mod 2) = m ·m′.
Once we have bounded the magnitude of the error coefficients after a homomor-

phic operation, we can bound the overall error incurred after evaluating a circuit of
depth D. Starting with error E0 ≤ 3(nB)2, after D levels of homomorphic operations,
the error magnitude can grow to at most

(
(nB)2NE0

)2D

≤
(
(3nB)2

D ·(2N+2)
)

.

This results in correct decryption as long as D < log log q−log log n−log N−O(1),
where we use the fact that B = poly(n). In particular, for N = O(nδ) keys and
q = 2nε

, we get D < (ε− δ) log n− log log n−O(1).

3.3.3. Security. Recall from section 2.7 that the security of the (modified)
NTRU encryption scheme can be based on two assumptions—the RLWE assump-
tion and the DSPR assumption. Recall further that Stehlé and Steinfeld [130] showed
that the DSPRφ,q,χ assumption is unconditionally true if n is a power of 2, φ(x) =
xn + 1 is the nth cyclotomic polynomial, and χ is the discrete Gaussian DZn,r for
r >

√
q · poly(n). This allowed them to prove semantic security for the modified

NTRU scheme under the RLWEφ,q,χ assumption alone.
Unfortunately, their result holds only if r >

√
q · poly(n), which is too large

to permit even a single homomorphic multiplication.10 To support homomorphic
operations, we need to use a much smaller value of r, for which it is easy to see that
the DSPRφ,q,χ assumption does not hold in a statistical sense any more. Thus, it is
necessary to assume that the decisional small polynomial ratio problem is hard for
our choice of parameters.

10Nevertheless, Bos et al. [25] show a different way to achieve (single-key) homomorphism for
parameters that result from [130], using different methods. Their parameters still do not support
homomorphic evaluation with even two different keys. See the paragraph after Theorem 1.2 and [25]
for more detailed discussion.

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1862 LÓPEZ-ALT, TROMER, AND VAIKUNTANATHAN

Additionally, note that the evaluation key ek contains elements of the form [hsτ +
2eτ + 2τf]q, which can be thought of as “pseudoencryptions” of (multiples of) the
secret key f under the corresponding public key h.11 The security of the scheme must
then additionally rely on a “circular security” assumption that states that semantic
security of the scheme is maintained given the evaluation key as constructed above.
We remark that this assumption can be avoided at the cost of obtaining a leveled
homomorphic encryption scheme (where the size of the evaluation key grows with the
depth of the circuits that the scheme supports).

Thus, we can base the security of the scheme on the DSPR assumption, the RLWE
assumption, and the circular security assumption described above.

Lemma 3.3. Let n be a power of 2, let φ(x) = xn + 1, and let q = 2nε

for
ε ∈ (0, 1) and χ = DZn,r with r = poly(n). Then the somewhat homomorphic en-
cryption scheme ESH = {SH.Keygen, SH.Enc, SH.Dec, SH.Eval described above is secure
under the DSPRφ,q,χ and RLWEφ,q,χ assumptions and the assumption that the scheme
remains semantically secure even given the evaluation key ek.

3.4. From somewhat to fully homomorphic encryption. We use a gener-
alization of Gentry’s bootstrapping theorem [71, 70] (see section 2.5) to convert the
multikey somewhat homomorphic scheme from section 3.3 into a multikey fully ho-
momorphic one. We modify Gentry’s bootstrapping theorem and the corresponding
definitions from their original presentation to generalize them to the multikey setting.

Definition 3.3 (multikey bootstrappable schemes). Let E = {E(N) = (Keygen,
Enc, Dec, Eval)}N>0 be a family of multikey C-homomorphic encryption schemes, and
let fadd and fmult be the the augmented decryption functions of the scheme defined as

f c1,c2
add (sk1, . . . , skN) = Dec(sk1, . . . , skN , c1) XOR Dec(sk1, . . . , skN , c2),

f c1,c2
mult (sk1, . . . , skN) = Dec(sk1, . . . , skN , c1) AND Dec(sk1, . . . , skN , c2).

Then E is bootstrappable if {f c1,c2
add , f c1,c2

mult }c1,c2 ⊆ C. Namely, the scheme can
homomorphically evaluate fadd and fmult.

We now state a generalization of Gentry’s bootstrapping theorem to the multikey
setting. Taking N = 1 yields the theorem and the definitions from [71, 70] and
section 2.5.

Theorem 3.4 (multikey bootstrapping theorem). Let E be a bootstrappable fam-
ily of multikey homomorphic schemes that is also weakly circular secure. Then there
is a multikey fully homomorphic family of encryption schemes E ′.

Unfortunately, the somewhat homomorphic scheme described in section 3.3 is not
bootstrappable. Recall that the scheme can only evaluate circuits of depth less than
ε log(n), where ε < 1. However, the shallowest implementation of the decryption
circuit we are aware of has depth c log N · log n for some constant c > 1. We therefore
turn to modulus reduction, a technique introduced by [29] and refined by [27], to
convert our somewhat homomorphic scheme into a bootstrappable scheme.

3.4.1. Modulus reduction. Modulus reduction [29, 27] is a noise-management
technique that provides an exponential gain on the depth of the circuits that can be
evaluated, while keeping the depth of the decryption circuit unchanged. Informally,
if Ddec is the depth of the decryption circuit of the multikey scheme described in

11We point out that these are not true encryptions of the “message” 2τ f since 2τ f is not a binary
polynomial, whereas our scheme is only equipped to correctly encrypt polynomials m ∈ R2.

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MULTIKEY FHE AND APPLICATIONS 1863

section 3.3.1, then we modify the scheme so that its decryption circuit is unchanged
but the scheme can now evaluate circuits of depth Ddec. Hence, the new scheme can
evaluate its own decryption circuit, making it bootstrappable. Details follow.

Let (h, f) be a key pair, and let c be a ciphertext under public key h. Recall
that for decryption to be successful, we need the error [fc]q to be equal to fc ∈ R.
However, each homomorphic operation increases this error. Modulus reduction allows
us to keep the error magnitude small by simply scaling the ciphertext after each
operation. The key idea is to exploit the difference in how the error affects security
and homomorphism:

• The growth of error upon homomorphic multiplication is governed by the
magnitude of the noise.
• Security is governed by the ratio between the magnitude of the error and the

modulus q.
This suggests a method of reducing the magnitude of the error and the modulus

by roughly the same factor, thus preserving security while at the same time making
homomorphic multiplications “easier.” In particular, modulus reduction gives us a
way to transform a ciphertext c ∈ Rq into a different ciphertext c′ ∈ Rp (for p < q)
while preserving correctness: for joint secret key f =

∏N
i=1 fi,

[fc]p = [fc′]q (mod 2).

The transformation from c to c′ involves simply scaling by (p/q) and rounding appro-
priately.

Lemma 3.5 (see [27]). Let p and q be two odd moduli, and let c ∈ Rq. Define
c′ to be the polynomial in Rp closest to (p/q) · c such that c′ ≡ c (mod 2). Then, for
any f with ‖[fc]q‖∞ < q/2− (q/p) · ‖f‖1, we have

[fc′]p = [fc]q (mod 2) and ‖[fc′]p‖∞ < (p/q) · ‖[fc]q‖∞ + ‖f‖1 ,

where ‖·‖∞ and ‖·‖1 are the �∞ and �1, respectively.

Proof. Let fc =
∑n−1

i=0 dix
i, and consider a coefficient di. We know that there

exists k ∈ Z such that

[di]q = di − kq ∈
[
− q

2
+

q

p
‖f‖1 ,

q

2
− q

p
‖f‖1

]
,

so that
(p/q) · di − kp ∈

[
−p

2
+ ‖f‖1 ,

p

2
− ‖f‖1

]
.

Let fc′ =
∑n−1

i=0 eix
i. Then −‖f‖1 ≤ (p/q) · ei − di ≤ ‖f‖1. Therefore,

ei − kp ∈
[
−p

2
,
p

2

]
and [ei]p = ei − kp.

This proves the second part of the lemma. To prove the first part, notice that
since p and q are both odd, we know kp ≡ kq (mod 2). Moreover, we chose c′ such
that c ≡ c′ (mod 2). We thus have

ei − kp ≡ di − kq (mod 2),
[ei]p ≡ [di]q (mod 2),

[fc′]p ≡ [fc]q (mod 2).

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1864 LÓPEZ-ALT, TROMER, AND VAIKUNTANATHAN

The beauty of Lemma 3.5 is that if we know the depth D of the circuit we want to
evaluate, then we can construct a ladder of decreasing moduli q0, . . . , qD and perform
modulus reduction after each operation so that at level i all ciphertexts reside in Rqi

and the magnitude of the noise at each level is small. In particular, this is true at
level D so that once the evaluation is complete, it is possible to decrypt the resulting
ciphertext without decryption errors. This yields a leveled homomorphic encryption
scheme. A bootstrappable scheme can then be obtained by setting D = Ddec, the
depth of the augmented decryption circuit.

3.4.2. Obtaining a leveled homomorphic scheme. We change the some-
what homomorphic scheme from section 3.3 to use modulus reduction during the
evaluation. The main changes to the scheme are as follows:

• The scheme is now additionally parametrized by an integer D, which is the
maximum circuit depth that it can homomorphically evaluate, and a ladder
of decreasing moduli q0, . . . qD.
• We cannot use a single key f for all levels (at the expense of assuming the

circular security), as in section 3.3. This is because the public key h depends
on the modulus q. (Recall that h = 2gf−1, where f−1 is the inverse of f in
Rq.) With the new ladder of moduli, this would require that the following
two conditions be met simultaneously: first, that f−1 is the inverse of f in
RqD (to guarantee correctness of decryption) and second, that h = 2gf−1

is (indistinguishable from) uniformly random in Rq0 (to guarantee semantic
security). This would require making a much stronger (and perhaps false)
hardness assumption.
Instead, key generation computes a different key pair (h(d), f (d)) for each level
d ∈ {0, . . . , D}. Encryption uses pk def= h(0) as the public key, and decryption
uses sk(d) def= f (d) to decrypt a “level-d” ciphertext, i.e., a ciphertext that is
the output of a depth-d circuit evaluation. Without loss of generality (w.l.o.g.)
we assume any ciphertext to be decrypted is a level-D ciphertext and set the
secret key to be sk = f (D).
Homomorphic operations will ensure that if c, c′ are level-(d− 1) ciphertexts
in Rqd−1 decryptable with f (d−1), then cadd and cmult are level-d ciphertexts
in Rqd

decryptable with f (d).
• Relinearization will now serve two purposes: it will ensure that only linear

terms of keys are needed to decrypt the resulting ciphertext, but it will also
switch the level-(d− 1) key to the corresponding level-(d) key. (Indeed, relin-
earization is also known as key-switching in the literature). Moreover, note
that we must perform the key-switching step not only for quadratic terms but
also for linear terms. Thus, we now perform relinearization/key-switching
after every homomorphic operation, both addition and multiplication, and
furthermore, we relinearize/key-switch every key in K ∪K ′, instead of only
those in K ∩K ′.
• To perform the relinearization/key-switching step described above, the eval-

uation key consists of pseudoencryptions of f (d−1) and (f (d−1))2 under the
public key h(d) for all d ∈ [D].
Note in particular that we now need pseudoencryptions of the quadratic terms
of the key. In the scheme from section 3.3, relinearization only required
pseudoencryptions of (multiples of) f because the term 〈Bit (c) , Pow (f)〉 only
performed “partial decryption” of the ciphertext c; it computes fc but f2 is

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MULTIKEY FHE AND APPLICATIONS 1865

required to decrypt c. Decryption of c was completed at decryption time
when the ciphertext was multiplied by f once more, obtaining f2c.
In our new setting, because decryption is performed using a different key, re-
linearization needs to “completely decrypt” c with the original key. For a key
in K ∩K ′, this means computing [〈Bit (c) , Pow((f (d−1))2)〉]q = [(f (d−1))2c]q.
Since Pow((f (d−1))2) is encrypted under h(d), the new ciphertext can be de-
crypted using f (d).
Pseudoencryptions of the linear terms of the keys are also required in order
to relinearize/key-switch keys in K�K ′, the symmetric difference of K, K ′.

3.4.3. Formal description. We now give a formal description of the leveled
homomorphic encryption scheme resulting from applying the changes described above
to the somewhat homomorphic scheme ESH described in section 3.3.

• LH.Keygen(1κ): For every i ∈ {0, . . . , D}, sample g(i), u(i) ← χ and set
f (i) := 2u(i) + 1 so that f (i) ≡ 1 (mod 2). If f (i) is not invertible in
Rqi , resample u(i); otherwise, let

(
f (i)

)−1
be the inverse of f (i) in Rq. Let

h(i) def=
[
2g(i)(f (i))−1

]
qi
∈ Rqi , and set

pk def= h(0) ∈ Rq0 , sk def= f (D) ∈ RqD .

For all i ∈ [D], sample s̃(i)
γ , ẽ(i)

γ , s̃(i)
ζ , ẽ(i)

ζ ← χ
log q� and compute

γ(i) :=
[
h(i)s̃(i)

γ + 2ẽ(i)
γ + Pow

(
f (i−1)

)]
qi

∈ R
log qi�
qi

,

ζ(i) :=
[
h(i)s̃(i)

ζ + 2ẽ(i)
ζ + Pow

((
f (i−1)

)2
)]

qi

∈ R
log qi�
qi

.

Set ek def= {γ(i), ζ(i)}i∈[D], and output the key tuple (pk, sk, ek).
• LH.Enc(pk, m): Sample s, e← χ. Output the ciphertext c := [hs + 2e + m]q0∈ Rq0 .
• LH.Dec(sk1, . . . , skN , c): Assume without loss of generality that c ∈ RqD .

Parse ski = fi for i ∈ [N]. Let μ := [f1 · · · fN · c]qD
∈ RqD . Output m′ := μ

(mod 2).
• LH.Eval(C, (c1, pk1, ek1), . . . , (c�, pk�, ek�)): We show how to evaluate an �-

variate boolean circuit C : {0, 1}� → {0, 1} of depth D. To this end, we show
how to homomorphically add and multiply two elements in {0, 1}. As before,
given two ciphertexts c, c′, we assume that we also have a set of distinct
public keys associated with each ciphertext and denote these lists by K, K ′,
respectively. The public-key set of a fresh encryption is simply the set {pk}
containing the public key under which it was encrypted. For convenience,
in our analysis we sometimes assume that the set contains the indices of the
public keys instead of the keys themselves.

– Given two ciphertexts c, c ∈ Rqd
with corresponding public-key sets

K, K ′, compute c0 = [c + c′]qd
∈ Rqd

; let K ∪K ′ = {pki1 , . . . , pkit
}. For

j = 1, . . . , r, parse ekij = {γ(δ)
ij

, ζ
(δ)
ij
}δ∈[D] and compute

cj =
[〈

Bit (cj−1) , γ
(d)
ij

〉]
q
∈ Rqd

.

Finally, reduce the modulus: let cadd be the integer vector closest to
(qd+1/qd) · ct such that cadd ≡ ct (mod 2). Output cadd ∈ Rqd+1 as

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1866 LÓPEZ-ALT, TROMER, AND VAIKUNTANATHAN

an encryption of the sum of the underlying messages. Output the set
Kadd

def= K ∪K ′ as its corresponding public-key set.
– Given two ciphertexts c, c ∈ Rqd

with corresponding public-key sets
K, K ′, compute c0 = [c · c′]qd

∈ Rqd
and let K ∪K ′ = {pki1 , . . . , pkit

}.
For j = 1, . . . , r, parse ekij = {γ(δ)

ij
, ζ

(δ)
ij
}δ∈[D] and compute cj as follows:

∗ If pkij
∈ K ∩K ′, let

cj =
[〈

Bit (cj−1) , ζ
(d)
ij

〉]
q
∈ Rqd

.

∗ Otherwise, let

cj =
[〈

Bit (cj−1) , γ
(d)
ij

〉]
q
∈ Rqd

.

Finally, reduce the modulus: let cmult be the integer vector closest to
(qd+1/qd) · ct such that cmult ≡ ct (mod 2). Output cmult ∈ Rqd+1 as an
encryption of the product of the underlying messages. Output the set
Kmult

def= K ∪K ′ as its corresponding public-key set.
Leveled homomorphism. We can now show the following lemma, characterizing

the circuits and number of keys that the scheme can handle in evaluation.

Lemma 3.6. Let χ be a B-bounded distribution for B = poly(n), let q0 = 2nε

for ε ∈ (0, 1) and for d ∈ [D], and let qd−1/qd = 8n(nB)2N+2. Then the encryp-
tion scheme ELH = (LH.Keygen, LH.Enc, LH.Dec, LH.Eval) described above is multikey
homomorphic for N keys and circuits of depth D as long as ND = O (nε/ log n).

Proof. We claim that for all d ∈ {0, . . . , D}, the error of a level-d ciphertext is
bounded by E

def= (1/2n) · (qd−1/qd) = 4(nB)2N+2, and we prove it by induction.
The base case follows immediately since the error of a freshly encrypted ciphertext is
bounded by 3(nB)2 < 4(nB)2N+2.

We now turn to the inductive step. Let c, c′ be level-(d − 1) ciphertexts with
corresponding public key sets K, K ′. The inductive hypothesis tells us the error in
c and c′ is bounded by E. Using the same analysis as in the proof of Lemma 3.2,
we can show that relinearizing all keys in K ∪ K ′ generates an additive error less
than 8�log qd�(nB)2N+1 < (nB)2N+2, where we used the fact that qd < q0 = 2nε

for
ε < 1. Recall that ct is the ciphertext obtained in a homomorphic operation after
relinearization has been completed but before modulus reduction is performed. Then
the following hold:

• In a homomorphic addition, the error of ct is bounded by 2(nB)NE+(nB)2N+2.
By Lemma 3.5, the error of cadd is bounded by

qd

qd−1
· (2(nB)NE + (nB)2N+2)+ ‖f‖1 ≤

2(nB)NE + (nB)2N+2

2nE
+ nB

≤ 2(nB)NE

2nE
+ (nB)2N+2 + nB

≤ (nB)N

n
+ (nB)2N+2 + nB

≤ 4(nB)2N+2 = E.

• In a homomorphic multiplication, the error of ct is bounded by nE2+(nB)2N+2.

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MULTIKEY FHE AND APPLICATIONS 1867

By Lemma 3.5, the error of cmult is bounded by

qd

qd−1
· (nE2 + (nB)2N+2)+ ‖f‖1 ≤

nE2 + (nB)2N+2

2nE
+ nB

≤ nE2

2nE
+ 2(nB)2N+2

≤ E

2
+

E

2
= E.

This concludes the inductive step and the proof that ciphertexts of all levels have
error at most E.

To correctly decrypt a level-D ciphertext, we must have that

(nB)2N+2 = E <
qD

2
<

q0

2(8n(nB)2N+2)D
=

2nε

2(8n(nB)2N+2)D
,

which yields the theorem statement: ND = O(nε/ logn).

Security. As in section 3.3, the security of the scheme ELH can be based in the
DSPRφ,q,χ and RLWEφ,q,χ assumptions. However, unlike in section 3.3, we do not
need to assume circular security of the encryption scheme. This is due to the fact
that the evaluation key consists of pseudoencryptions of (multiples of) f (d−1) and
(f (d−1))2 under a different public key h(d) for all d ∈ [D]. Semantic security even
given the evaluation key can then be established by a hybrid argument that converts
all pseudoencryptions in the evaluation key, one-by-one, to uniform elements in Rq.

Lemma 3.7. Let n be a power of 2, let φ(x) = xn+1, and let q = 2nε

for ε ∈ (0, 1)
and χ = DZn,r with r = poly(n). Then the multikey leveled homomorphic encryption
scheme ELH = (LH.Keygen, LH.Enc, LH.Dec, LH.Eval) described above is secure under
the DSPRφ,q,χ and RLWEφ,q,χ assumptions.

3.4.4. Multikey fully homomorphic encryption. To convert the leveled ho-
momorphic encryption scheme described in section 3.4.2 into a fully homomorphic
scheme, we use the multikey bootstrapping theorem (Theorem 3.4). First, we show
an upper bound on the depth of the decryption circuit and show that the scheme is
bootstrappable.

Lemma 3.8. The N -key decryption circuit of the leveled homomorphic encryption
scheme described above can be implemented as a polynomial-size arithmetic circuit
over GF (2) of depth O(log N · (log log qD + log n)).

Proof. The decryption circuit for a ciphertext encrypted under N keys can be
written as

Dec(f1, . . . , fN , c) = c ·
N∏

i=1

fi.

Multiplying two polynomials over RqD can be done using a polynomial-size boolean
circuit of depth O(log log qD + log n) (see, e.g., [29, Lemma 4.5] for a proof). Using
a binary tree of polynomial multiplications, the decryption operation above can then
be done in depth O(log N · (log log qD + log n)), as claimed.

This means that the modified scheme is bootstrappable, and therefore applying
the bootstrapping theorem gives us the following.

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1868 LÓPEZ-ALT, TROMER, AND VAIKUNTANATHAN

Theorem 3.9. Let χ is a B-bounded distribution for B = poly(n), let q0 = 2nε

for ε ∈ (0, 1) and for d ∈ [D], and let qd−1/qd = 8n(nB)2N+2. Then, there exists
a multikey fully homomorphic encryption scheme for N = O(nε/ log3 n) keys, se-
cure under the DSPRφ,q,χ and RLWEφ,q,χ assumptions, and the assumption that the
leveled homomorphic encryption scheme ELH = (LH.Keygen, LH.Enc, LH.Dec, LH.Eval)
described above is weakly circular secure.

Proof. To apply the multikey bootstrapping theorem (Theorem 3.4), we require
that the depth of the decryption circuit is smaller than the depth of the circuits that
the scheme can evaluate. That is, we require that

log N · (log log qD + log n) < C · log q0

N · log n

for some universal constant C > 0. For N ≤√C/2 · (nε/2/ logn), we have,

N · log n · log N · (log log qD + log n) ≤ N2 · log n · ·(log log q0 + log n)

≤ C

2
· nε

log2 n
· (1 + ε) · log2 n

≤ C · nε = C · log q0,

as required.

Remark 1. Theorem 3.9 implies that for any N ∈ N, there exists a multikey fully
homomorphic encryption scheme for N keys. This is achieved by choosing ε′ such
that nε′ ≤√C/2 · (nε/2/ log n) and setting n ≥ N1/ε′

.

We emphasize the fact that bootstrapping (and therefore assuming weak circular
security) can be avoided at the cost of obtaining a leveled homomorphic encryption
scheme.

4. On-the-fly MPC from multikey FHE. We now show how to construct
on-the-fly MPC from multikey FHE. We first construct a basic protocol that is secure
against semimalicious adversaries and then describe how to modify the protocol to
obtain security against malicious adversaries. As mentioned earlier, the main build-
ing block of our construction is multikey fully homomorphic encryption, defined and
constructed in section 3.

4.1. The basic protocol. Let {E(N) = (Keygen, Enc, Dec, Eval)}N>0 be a mul-
tikey fully homomorphic family of encryption schemes. The following construction is
an on-the-fly MPC protocol secure against semimalicious adversaries. The protocol
is defined as follows:
Step 1: For i ∈ [U], party Pi samples a key tuple (pki, ski, eki) ← Keygen(1κ) and

encrypts its input xi under pki: ci ← Enc(pki, xi). It sends (pki, eki, ci) to
the server S.

At this point a function F , represented as a circuit C, has been selected on inputs
{xi}i∈V for some V ⊆ U . Let N = |V |. For ease of notation, assume w.l.o.g. that
V = [N]. The parties proceed as follows.
Step 2: The server S computes c := Eval(C, (c1, pk1, ek1), . . . , (cN , pkN , ekN)) and

broadcasts c to parties P1, . . . , PN .
Step 3: The parties P1, . . . , PN run a secure MPC protocol Πdec

sm to compute the
function gc(sk1, . . . , skN) def= Dec(sk1, . . . , skN , c).

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MULTIKEY FHE AND APPLICATIONS 1869

We remark that an upper bound on the number of computing parties must be
known in advance. This is a direct consequence of the “leveled” nature of our multikey
FHE construction with respect to the number of keys.

4.1.1. Security against semimalicious adversaries.

Theorem 4.1. Let {E(N) = (Keygen, Enc, Dec, Eval)}N>0 be a multikey fully ho-
momorphic encryption scheme, and let Πdec

sm be an N -party MPC protocol for com-
puting the decryption function gc(sk1, . . . , skN) def= Dec(sk1, . . . , skN , c). If E is se-
mantically secure and Πdec

sm is secure against semihonest adversaries corrupting t <
N parties, then the above construction is an on-the-fly MPC protocol secure against
(static) semimalicious adversaries corrupting t parties and possibly the server S.

Proof. We prove that the protocol is correct and secure and that it satisfies the
performance requirements of an on-the-fly protocol.
Correctness: Correctness follows directly from the correctness properties of homomor-

phic evaluation and the MPC protocol Πdec

sm for decryption.
Performance: By compactness of evaluation, we know that c is independent of |C|.

This means that the communication complexity and the computation time of
the parties is independent of |C|.

Security: We show security for the case when the server is corrupted; the case when the
server is honest is analogous. Let Asm be a real-world semimalicious adversary
corrupting t clients and the server. Recall that for security, we only need to
consider adversaries corrupting a subset T of the parties P1, . . . , PN involved
in the computation. Thus, we assume t < N , let T � [N] be the set of
corrupted clients and let T = [N]\T .
We construct a simulator Ssm as follows. The simulator receives the inputs
of the corrupted parties {xi}i∈T and runs Asm on these inputs {xi}i∈T . It
simulates the messages for all honest parties in the protocol execution with
Asm by sampling all key tuples correctly but encrypting 0 instead of the honest
input xi (which it doesn’t know). In Step 3, it runs the simulator Ssm

Πdec

for
the protocol Πdec

sm.
Step 1: For noncomputing parties i ∈ {N + 1, . . . , U} and for honest parties

i ∈ T , Ssm computes (pki, ·, eki) ← Keygen(1κ) honestly and computes
ci ← Enc(pki, 0). For each party Pi, the simulator sends (ci, pki, eki) to
Asm on behalf of Pi.
At the end of this round, it reads from Asm’s witness tape the secret keys
{ski}i∈T and the inputs {x̃i}i∈T . The simulator sends these inputs to
the trusted functionality F and receives the output ỹ = f(x̃1, . . . , x̃N),
where x̃i = xi for honest inputs i ∈ T .

Step 2: The simulator receives c from Asm as the server’s broadcast message.
Step 3: The simulator Ssm runs the simulator Ssm

Πdec

for the decryption pro-
tocol (interacting with Asm). When Ssm

Πdec

queries the ideal decryption
functionality with secret keys {s̃ki}i∈T , Ssm returns ỹ.

Output: The simulator receives the output of the corrupted parties from Asm

and returns these as its output.
We prove that IDEALF ,Ssm(�x)

c≈ REALΠsm,Asm(�x) via a series of hybrids.
Hybrid 0: This is the real-world execution of the protocol.
Hybrid 1: We change how Step 3 is performed. Instead of executing the

protocol Πdec

sm, where honest parties use their individual secret keys,
we run the simulator Ssm

Πdec

(interacting with Asm). When Ssm

Πdec

queries

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1870 LÓPEZ-ALT, TROMER, AND VAIKUNTANATHAN

the ideal decryption functionality with secret keys {s̃ki}i∈T , we return

ỹ = gc(s̃k1, . . . , s̃kN) = Dec(s̃k1, . . . , s̃kN , c),

where s̃ki = ski for honest secret keys i ∈ T . The output of the corrupted
parties is defined to be the output of Ssm

Πdec

, and the output of the honest
parties is defined to be ỹ.
We claim that Hybrid 0 is computationally indistinguishable from Hy-
brid 1 by the security of Πdec

sm. Indeed, the security of the decryption
protocol Πdec

sm guarantees that as long as we correctly emulate the
ideal decryption functionality, the joint output of all parties is computa-
tionally indistinguishable in a real-world execution of the protocol with
adversary Asm (Hybrid 0) and in an ideal-world execution of the pro-
tocol with adversary Ssm

Πdec

(Hybrid 1). We correctly emulate the ideal
decryption functionality, by definition.

Hybrid 2: We now change how we compute ỹ, the value returned to the sim-
ulator Ssm

Πdec

when it queries the decryption ideal functionality. Instead
of computing ỹ = gc(s̃k1, . . . , s̃kN) = Dec(s̃k1, . . . , s̃kN , c), we instead
compute

ỹ = f(x̃1, . . . , x̃N),

where x̃i = xi for honest inputs i ∈ T , and where for corrupt parties
i ∈ T , we recover x̃i by reading Asm’s witness tape at the end of Step 1.
We claim that Hybrid 1 and Hybrid 2 are identically distributed. The
adversary Asm follows the protocol as specified, so in particular, it per-
forms the homomorphic evaluation correctly. By correctness of mul-
tikey evaluation we know that c decrypts to f(x̃1, . . . , x̃N) when de-
crypted using the secret keys it computed in Step 1, {ski}i∈[N]; that is,
Dec(sk1, . . . , skN , c) = f(x̃1, . . . , x̃N).
Furthermore, because the adversaryAsm follows the protocol as specified,
we know that the secret keys it uses in Step 3 are the same as the ones
it computed in Step 1, i.e., ski = s̃ki for all i ∈ T . We conclude that
Dec(s̃k1, . . . , s̃kN , c) = f(x̃1, . . . , x̃N).

Hybrids 3.k for k = 1, . . . , N − t: Let T = {i1, . . . , iN−t}. In Hybrid 3.k we
change cik

so that instead of encrypting xik
it now encrypts 0. More

formally, in Hybrid 3.k we have{
cij ← Enc(pkij

, 0)
}

j≤k
,

{
cij ← Enc(pkij

, xij)
}

j>k
.

For ease of notation we let Hybrid 2 be Hybrid 3.0. We claim that
the view of Asm in Hybrid 3.k is indistinguishable from its view in Hy-
brid 3.(k−1) by the semantic security of E under public key pkik

. Indeed,
now that we run the simulator Ssm

Πdec

in Step 3 instead of the real de-
cryption protocol, the secret key skik

is only used to encrypt cik
. So

suppose, for the sake of contradiction, that there exists an algorithm
D that distinguishes between hybrids 3.k and 3.(k − 1). We construct
an adversary B that breaks the semantic security of E under public key
pkik

. The reduction B works as follows:
1. The reduction chooses arbitrary {xi}.
2. It receives (pk, ek) from the semantic security challenger and sets

pkik
= pk and ekik

= ek; gives m0 = 0 and m1 = xik
to the

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MULTIKEY FHE AND APPLICATIONS 1871

challenger and receives c = Enc(pk, mb); and sets cik
= c. For all

i ∈ T , i �= ik, it computes (pki, ·, eki) ← Keygen(1κ) honestly. For
j < k, it computes cij ← Enc(pkij

, 0), and for j > k, it computes
cij ← Enc(pkij

, xij).
3. The reduction runs Asm: for all i ∈ T gives (pki, eki, ci) to Asm on

behalf of Pi and receives c from Asm.
4. It reads from Asm’s witness tape the inputs {x̃i}i∈T and runs the

simulator Ssm

Πdec

(interacting with Asm). When Ssm

Πdec

queries the ideal
decryption functionality, it returns ỹ = f(x̃1, . . . , x̃N), where x̃i = xi

for inputs i ∈ T .
5. The reduction then gives D ỹ as the output of all honest parties, as

well as the output of Ssm

Πdec

.
6. Finally, B outputs the bit output by D.

When b = 0, B perfectly emulates Hybrid 3.k, whereas if b = 1, B
perfectly emulates Hybrid 3.(k − 1). Therefore, if D can distinguish
between Hybrids 3.k and 3.(k − 1), then B can distinguish between an
encryption of m0 and an encryption of m1, contradicting the semantic
security of E .

We have proved that the joint output in Hybrid 0 is computationally in-
distinguishable from the joint output in Hybrid 3.(N − t). But notice that
the joint output in Hybrid 3.(N − t) is precisely IDEALF ,Ssm(�x), and the
joint output in Hybrid 0 is defined to be REALΠsm,Asm(�x). We conclude that
IDEALF ,Ssm(�x)

c≈ REALΠsm,Asm(�x), as desired.

4.2. Achieving security against malicious adversaries. The protocol de-
scribed in section 4.1, though secure against semimalicious adversaries, is not secure
against fully malicious adversaries. We transform the protocol into one that is secure
against malicious corruptions in three steps:

1. First, we replace the decryption protocol in Step 3 with one that is secure
against malicious corruptions. More importantly, we change the function it
computes to ensure that the secret key used in this protocol is consistent with
the public and evaluation keys that the parties computed in Step 1.

2. Second, we add zero-knowledge proofs at each step in the protocol, following
the AJW compiler [7, 6] (which is based on the GMW compiler [84]).

3. Finally, in order to maintain the performance guarantees of the scheme, in
Step 2 we replace the server’s proof with a succinct argument (not necessarily
ZK). This allows the server to prove that it correctly performed the homo-
morphic evaluation and the clients to verify the validity of the proof in time
that is significantly less than the size of the circuit.

The new decryption protocol. Our first step in handling malicious attacks is to
replace the decryption protocol Πdec

sm with one that is secure against malicious ad-
versaries; we will denote it by Πdec

mal. The function being computed by this protocol
also needs to change in order to guarantee that the secret key used by each party is
consistent with its public and evaluation keys:

gc,pk1,ek1,...,pkN ,ekN ((sk1, r1) . . . , (skN , rN))

def=
{

Dec(sk1, . . . , skN , c) if (pki, ski, eki) = Keygen(1κ; ri) ∀i ∈ [N],
⊥ otherwise.

Intuitively, if the protocol outputs something other than ⊥, then in particular
every corrupt party Pi “knows” a secret key s̃ki that is consistent with its public and

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1872 LÓPEZ-ALT, TROMER, AND VAIKUNTANATHAN

evaluation keys (pki, eki). By correctness of decryption, this binds Pi to the input
x̃i = Dec(s̃ki, c̃i), which by semantic security of the FHE must be independent of the
honest party’s inputs.

We remark that the proceedings version of this work [106] does not change the
decryption function but instead adds to Step 1 a zero-knowledge proof πgen

i for the
relation

Rgen = { ((pki, eki) , (ski, ri)) | (pki, ski, eki) := Keygen(1κ ; ri) } .

While this guarantees that the public and evaluation keys are well-formed, it does not
guarantee that the secret key used in the decryption protocol in Step 3 is consistent
with the public and evaluation keys (pki, eki) created and used in Step 1. This allows
a corrupt party to use a different secret key sk∗i in Step 3 and potentially change the
outcome of the decryption. We are therefore unable to prove security of that construc-
tion. However, the zero-knowledge proofs πgen

i can be required as an optimization to
guarantee that an honest server does not accept, store, or compute on ciphertexts
that are encrypted under malformed keys (even though the outcome of any joint
computation on such a ciphetext would not be decryptable using protocol Πdec

mal).
Finally, we highlight the fact that if the protocol Πdec

mal can implemented us-
ing the cloud-assisted protocol of Asharov et al. [7, 6]. Jumping ahead, this yields a
5-round on-the-fly MPC protocol in the CRS-model, secure against malicious corrup-
tions of any t < N parties and possibly the server.

Adding zero-knowledge proofs. The second step in our transformation is to apply
the AJW compiler [7, 6] (based on the GMW compiler [84]) to the rest of the protocol
(Steps 1 and 2) in order to ensure that parties do not deviate from the protocol
specifications. This entails having each party and the server compute a zero-knowledge
proof at every round, proving that their message in that round is well-formed and
consistent with the protocol transcript.

Because the well-formedness of the public and evaluation keys (pki, eki) is checked
in the decryption protocol Πdec

mal, the parties do not need to compute a separate
zero-knowledge proof for this statement (unless required for the optimization described
above). Therefore, each party only needs to prove that their ciphertext ci is well-
formed by providing NIZK proof for the NP relation:

Renc = { ((pki, ci) , (xi, si)) | ci = Enc(pki, xi ; si) } .

Note that the proof πenc

i must indeed be noninteractive, for reasons that will
become apparent shortly. Informally, this proof will either be broadcast by the server
in Step 2 for all parties to verify, or it will be used as a witness in the proof of another
NP relation. An interactive zero-knowledge proof would not be convincing in either
of these cases, since a valid transcript of the interaction may be simulated without
knowing a witness and without the use of any trapdoors.

Maintaining performance guarantees. Verifying a standard zero-knowledge proof
for the server’s computation in Step 2 requires time proportional to the size of the
circuit. However, this computation is deterministic and public; indeed, anyone can
have verified the validity of the server’s broadcast message by performing the homo-
morphic evaluation themselves (in time proportional to the size of the circuit). Thus,
we replace the server’s proof with a succinct argument (not necessarily ZK), which
allows the server to prove that it correctly performed the homomorphic evaluation,

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MULTIKEY FHE AND APPLICATIONS 1873

so that the clients can verify the validity of the proof in time that is significantly less
than the size of the circuit. We offer several solutions, each with its own benefits and
drawbacks.
Verification for small inputs: We first consider the case where the ciphertexts

(c1, . . . , cN) are small enough to be broadcast to the N parties in V , allow-
ing communication complexity in the online phase to be linear in the total
input size of the participating parties. In this case, the server will broadcast
all ciphertexts and proofs {ci, π

enc

i }i∈[N], the evaluated ciphertext c, and a
succinct argument ϕ showing that it performed the homomorphic evaluation
correctly. The server needs to convince the participating parties that “c =
Eval(C, (c1, pk1, ek1), . . . , (cN , pkN , ekN)),” i.e., that a deterministic circuit of
size poly(|C|, κ) accepts. For any uniform circuit C (i.e., locally computable
by some Turing machine in time polynomial in their input and κ), the fol-
lowing offer poly(κ, log(|C|)) communication and verification efficiency.12

1. Use the argument system of Kilian [99, 100], yielding interactive 4-round
verification. It relies on expensive PCPs but has been implemented in
practice [15].

2. Use the succinct noninteractive arguments (SNARGs and SNARKs) of
Micali [108], Bitansky et al. [19], or Goldwasser, Lin, and Rubinstein [89]
(see section 2.3). These are noninteractive13 but are secure only in the
random oracle model [13] (in the case of CS proofs) or hold in the stan-
dard model but require a nonfalsifiable assumption [112, 80, 19]. Some
variants rely on PCPs, PIR, or FHE.

3. Use SNARKs built via the bootstrapping technique of Bitansky et al. [20]
applied to a suitable preprocessing SNARK (e.g., [69, 115, 21]). Such
boostrapped SNARKs have been implemented in practice [16].14

Note that we cannot directly use verifiable computation protocols in the pre-
processing model (e.g., [68, 40, 5]) or SNARGs/SNARKs where the CRS de-
pends on the circuit to be computed or where its size is at least as big as the
computation, e.g., [90, 103, 69, 115, 104, 21]. These have two problems. First,
they require the clients to participate in a preprocessing phase where their
computation is proportional to the size of the circuit, violating the perfor-
mance requirements of on-the-fly MPC. Second, with this preprocessing step
the model loses its dynamic nature, where users can compute many different
functions on their inputs and can choose these functions dynamically, on-the-
fly. Indeed, using these solutions would limit the parties to only compute
functions for which they have already performed the corresponding prepro-
cessing work or computed the corresponding CRS. (The second problem can
be remedied by using a SNARK with universal preprocessing, as implemented
by Ben-Sasson et al. [17].)
In the case that the evaluation circuit of C is in logspace-uniform NC, we
have another alternative:

12For any given family of C, |C| = poly(κ), and thus, poly(κ, log(|C|)) = poly(κ); but the degree
of this polynomial depends on the circuit family.

13In our protocol, each party can run Gen in Step 1 and send the vrs to the server in that step. Or
in the case of CS proofs, where only a description of a hash function is required, this can be added
to the CRS of the protocol.

14The boostrapping is phrased in terms of Turing machines (or RAM machines). Since C is
assumed to be a uniform circuit, we can consider the Turing machine that computes the gates of C
and evaluates them, whose running time is polynomial in |C| and κ.

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1874 LÓPEZ-ALT, TROMER, AND VAIKUNTANATHAN

4. Use the argument system of Goldwasser, Kalai, and Rothblum [88] for
a 1-round solution.15 It relies on PIR.

Verification for large inputs: We can make the communication and verification com-
plexities depend merely polylogarithmically on the size of the relevant inputs
x1, . . . , xN . This requires a succint argument system that is a proof of knowl-
edge. This is satisfied by Micali’s construction of CS proofs under Valiant’s
analysis [108, 131] and by SNARKs [19, 20]. The complexity of these argu-
ments depends polynomially on the size of the statement being proven but
merely polylogarithmically on the size of the witness for the statement. We
thus move ci from the instance into the witness. To recognize the correct
ci, each party Pi remembers the digest of ci under a collision-resistant hash
function family H = {Hhk : {0, 1}∗ → {0, 1}κ}.
In the offline stage, every party Pi samples a hash key hki and computes the
digest di = Hhki

(ci). Party Pi then sends (ci, π
enc

i , hki, di) to the cloud. Each
party Pi remembers its own (hki, di) pair but can forget the potentially long
xi, ci, π

enc

i . In the online stage, the server broadcasts (hk1, d1), . . . , (hkN , dN)
and proves the following NP statement: “there exist c̃1, π̃

enc

1 , . . . , c̃N , π̃enc

N

such that di = Hhki(c̃i) and c = Eval(C, (c̃1, pk1, ek1), . . . , (c̃N , pkN , ekN))
and π̃enc

i is a valid proof.”
The construction is secure, since whenever the server convinces the clients, it
actually “knows” such c̃1, π̃

enc

1 , . . . , c̃N , π̃enc

N which can be efficiently extracted
from the server (by the arguments’ proof of knowledge property). For an
honest party, the extracted c̃i must be the one originally sent by the party (by
the collision-resistance of H). For a corrupt party, the extracted c̃i must be a
valid ciphertext (by the soundness of π̃enc

i) and its plaintext can be efficiently
extracted using the secret key used by Pi in the decryption protocol in Step 3.

4.2.1. Formal protocol. We now write a formal description of our construc-
tion of on-the-fly MPC, secure against malicious adversaries, and providing correct
verification for large inputs. Our construction requires the following building blocks:

• A semantically secure multikey fully homomorphic family of encryption
schemes E =

{E(N) = (Keygen, Enc, Dec, Eval)
}

N>0.
• A family of collision-resistant hash functionsH = {Hhk : {0, 1}∗ → {0, 1}κ}hk.
• A NIZK argument system Πenc = (Setupenc, Proveenc, Verifyenc, Simenc) for

the NP relation Renc = { ((pk, c) , (x, s)) | c = Enc(pk, x ; s) }.
• An adaptively extractable SNARK system Φ = (SetupΦ, ProveΦ, VerifyΦ, ExtΦ)

for all of NP.
• An N -party MPC protocol, secure against malicious adversaries corrupting

t < N parties, for computing the family of decryption functions

gc,pk1,ek1,...,pkN ,ekN ((sk1, r1) . . . , (skN , rN))

def=
{

Dec(sk1, . . . , skN , c) if (pki, ski, eki) = Keygen(1κ; ri) ∀i ∈ [N],
⊥ otherwise.

The protocol is defined as follows:
Input: All parties and the server receive as input the common reference string crsenc

for the NIZK proof system Πenc. If CS proofs are used as the SNARK system,

15The protocol has two rounds, but (as in the case of SNARGs and SNARKs) the first round is a
challenge that is independent of the language and the statement and can therefore be precomputed
by the clients in Step 1 of our protocol. Each challenge can only be used for one proof, so the client
must refresh the challenge after each computation.

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MULTIKEY FHE AND APPLICATIONS 1875

the (description) of the random-oracle hash function is also given to all parties
and the server.

Step 1: For i ∈ [U], party Pi samples a key tuple (pki, ski, eki), encrypts its input xi,
and computes a NIZK showing that the ciphertext is well-formed:

(pki, ski, eki) := Keygen(1κ ; ri) , ci := Enc(pki, xi ; si)

πenc

i ← Proveenc((pki, ci) , (xi, si)).

It also samples a hash key hki and computes the digest of the ciphertext: di =
Hhki

(ci). It additionally creates a verification reference string and private
verification key: (vrsi, privi)← SetupΦ(1κ).
Party Pi sends the tuple (pki, eki, ci, π

enc

i , hki, di, vrsi) to the server, which
verifies all proofs {πenc

i }i∈[U].
From this point forward, party Pi can forget its (potentially long) input xi,
ciphertext ci, and proof πenc

i . It need only remember its secret key and
key-generation randomness (ski, ri), the hash key and digest (hki, di), and its
private verification key privi.

A function F , represented as a uniform circuit C, is now selected on inputs {xi}i∈V

for some V ⊆ U . Let N = |V |. For ease of notation, we assume w.l.o.g. that V = [N].
Step 2: The server S computes c := Eval(C, (c1, pk1, ek1), . . . , (cN , pkN , ekN)) and cre-

ates succinct NIZK arguments {ϕi}i∈[N] for the NP language

L = { {(pki, eki, hki, di)}i∈[N] |
∃ (c̃1, π̃

enc

1) , . . . , (c̃N , π̃enc

N) such that
di = Hhki(c̃i) and
Verifyenc((pki, c̃i) , π̃enc

i) = 1 and
c = Eval(C, (c̃1, pk1, ek1), . . . , (c̃N , pkN , ekN)) } ,

where C is given in its succinct uniform representation.
To compute ϕi, the server uses the verification reference string vrsi. If CS
proofs are used as the SNARK system, the server need only compute a single
proof ϕ that can be verified by all.
The server broadcasts (c, ϕ1, . . . , ϕN) to all parties P1, . . . , PN , together with
the tuple {(pki, eki, hki, di)}i∈[N].

Step 3: Party Pi runs VerifyΦ({(pki, eki, hki, di)}i∈[N], ϕi) to verify the argument ϕi.
If verification is successful for all partiers, they run an MPC protocol Πdec

mal

to compute the function

gc,pk1,ek1,...,pkN ,ekN ((sk1, r1) . . . , (skN , rN))

def=
{

Dec(sk1, . . . , skN , c) if (pki, ski, eki) = Keygen(1κ; ri) ∀i ∈ [N],
⊥ otherwise.

4.2.2. Proof of security.

Theorem 4.2. Let E , Πdec

mal,H, Πenc, Φ be as described in section 4.2.1. Then
the above construction is an on-the-fly MPC protocol secure against malicious adver-
saries corrupting t < N parties and possibly the server S.

Proof. We prove that the protocol is correct and secure and that it satisfies the
performance requirements of an on-the-fly protocol.

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1876 LÓPEZ-ALT, TROMER, AND VAIKUNTANATHAN

Correctness: Correctness follows directly from the correctness properties of homomor-
phic evaluation and the decryption MPC protocol Πdec

mal.
Performance: The zero-knowledge proofs πenc

i are independent of C (which is chosen
only at a later step). The size of c is independent of |C|, by the compactness of
the homomorphic evaluation. Moreover, by the succinctness of the SNARK
and uniformity of C, the proof ϕ has size polylogarithmic in |C|, and its
verification depends only polylogarithmically on the size of the ciphertexts ci

(and therefore polylogarithmically on the size of the inputs xi as well). Thus,
the communication complexity of the protocol is polylogarithmic in |C|, and
the computation time of each party Pi is at most polylogarithmic in |C| and
the total size of the inputs, and polynomial in y and its input xi.

Security: We show security for the case when the server is corrupted; the case when
the server is honest is analogous. Let Amal be a real-world semimalicious
adversary corrupting t clients and the server. Recall that for security, we only
need to consider adversaries corrupting a subset T of the parties P1, . . . , PN

involved in the computation. Thus, we assume t < N , let T � [N] be the set
of corrupted clients, and let T = [N]\T .
We construct a simulator Smal as follows. The simulator receives the inputs
of the corrupted parties {xi}i∈T and runs Amal on these inputs {xi}i∈T .
It simulates the messages for all honest parties in the protocol execution
with Amal. In Step 1, it samples all key tuples correctly but encrypts 0
instead of the honest input xi (which it doesn’t know) and computes simulated
proofs πenc

i . In Step 2, it fixes an honest party h and extracts the witness
{c̃i, π̃

enc

i }i∈[N] of the argument ϕh. For all corrupted parties i ∈ T , the
simulator extracts the corrupted input x̃i from the proof π̃enc

i , submits these
to the ideal functionality F , and obtains an output ỹ. In Step 3, it runs the
simulator Smal

Πdec

for the protocol Πdec

mal, returning ỹ when it calls the ideal
decryption functionality. More formally the following occurs:
Step 1: The simulator creates the CRS for the NIZK Πenc, together with a

trapdoor key and an extraction key:(
crsenc, tkenc, extkenc

)← Setupenc(1κ).

For noncomputing parties i ∈ {N + 1, . . . , U} and for honest parties
i ∈ T , the simulator computes (pki, ·, eki) ← Keygen(1κ) and samples
hki honestly. The simulator also runs the verification setup honestly:
(vrsi, privi)← SetupΦ(1κ).
The simulator computes an encryption of 0 and simulated zero-knowledge
proofs:

ci ← Enc(pki, 0) , πenc

i ← Sim(tkenc , (pki, ci)).

It computes the digest di = Hhki
(ci) honestly. For each party Pi, Smal

sends (pki, eki, ci, π
enc

i , hki, di, vrsi) to Amal on behalf of Pi.
Step 2: The simulator receives (c, ϕ1, . . . , ϕN) from Amal, together with the

tuples {(pki, eki, hki, di)}i∈[N]. The simulator verifies ϕi for all honest
parties i ∈ T and for a fixed honest party h ∈ T uses the SNARG
extractor to extract witness {c̃i, π̃

enc

i }i∈[N] from ϕh:

{c̃i, π̃
enc

i }i∈[N] ← ExtΦ
(
{(pki, eki, hki, di)}i∈[N] , ϕh

)
.

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MULTIKEY FHE AND APPLICATIONS 1877

It outputs ⊥ if for any i ∈ [N], verification fails for ϕi or π̃enc

i or
if di �= Hhki(c̃i). It also outputs ⊥ if c �= Eval(C, (c̃1, pk1, ek1), . . . ,
(c̃N , pkN , ekN)), or if c̃i �= ci for some honest i ∈ T .

Step 3: The simulator runs the decryption simulator Smal

Πdec

for protocol Πdec

mal

(interacting with Amal). When Smal

Πdec

queries the ideal decryption func-
tionality with secret key and randomness pairs {s̃ki, r̃i}i∈T , the simulator
checks that Keygen(1κ ; r̃i) = (pki, s̃ki, eki) for all i ∈ T . If the check
fails, it outputs ⊥. Otherwise, it decrypts c̃i with the secret key s̃ki to
obtain the corrupted input x̃i (if Dec(s̃ki, c̃j) = ⊥, it returns ⊥):

x̃i := Dec
(
s̃ki, c̃j

)
.

Finally, it submits inputs {x̃i}i∈T to the ideal functionality F and ob-
tains output ỹ = f(x̃1, . . . , x̃N), where x̃i = xi for honest parties i ∈ T .
It returns ỹ to the simulator Smal

Πdec

.
Output: The simulator receives the output of the corrupted parties from Smal

Πdec

and
returns these as its output.

We prove that IDEALF ,Smal(�x)
c≈ REALΠmal,Amal(�x) via a hybrid argument.

Hybrid 0: This is a real-world execution of the protocol.
Hybrid 1: We change how Step 3 is performed. Instead of executing the protocol

Πdec

mal, where honest parties use their individual secret keys, we run the sim-
ulator Smal

Πdec

(interacting with Amal). When Smal

Πdec

queries the ideal decryption
functionality with secret keys and randomness {s̃ki, r̃i}i∈T , we return

ỹ = gc,pk1,ek1,...,pkN ,ekN

((
s̃k1, r̃1) . . . , (s̃kN , r̃N

))
,

where s̃ki = ski and r̃i = ri for honest parties i ∈ T . We define the output of
the corrupted parties to be the output of Smal

Πdec

and the output of the honest
parties to be ỹ.
We claim that Hybrid 0 is computationally indistinguishable from Hybrid 1
by the security of Πdec

mal. Indeed, the security of the decryption protocol
Πdec

mal guarantees that as long as we correctly emulate the ideal decryption
functionality, the joint output of all parties is computationally indistinguish-
able in a real-world execution of the protocol with adversary Amal (Hybrid
0) and in an ideal-world execution of the protocol with adversary Smal

Πdec

(Hy-
brid 1). We correctly emulate the ideal decryption functionality, by definition.

Hybrid 2: Hybrid 2 is the same as Hybrid 1 except that we use the extractor ExtΦ to
extract a witness {(c̃i, π̃

enc

i)}i∈[N] from ϕh:

{c̃i, π̃
enc

i }i∈[N] ← ExtΦ
(
{(pki, eki, hki, di)}i∈[N] , ϕh

)
.

We define the output of the protocol to be⊥ if for any i ∈ [N], verification fails
for π̃enc

i or di �= Hhki
(c̃i). We also output ⊥ if c �= Eval(C, (c̃1, pk1, ek1), . . . ,

(c̃N , pkN , ekN)), where c is the ciphertext returned by Amal in Step 2. By
the adaptive extractability property of Φ, we know that this event happens
with negligible probability. Therefore, Hybrid 1 and Hybrid 2 are statistically
close.
Note that we require Φ to satisfy adaptive extractability because the adver-
sary is free to choose the statement of the proof after it sees vrsh.

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1878 LÓPEZ-ALT, TROMER, AND VAIKUNTANATHAN

Hybrid 3: In Hybrid 3, we additionally let the output of the protocol be ⊥ if c̃i �= ci

for any honest i ∈ T .
We claim that Hybrids 2 and 3 are statistically close by the collision-resistance
of H. Indeed, Hybrids 2 and 3 are identical except in the case when all
previous checks pass but there exists j ∈ T such that c̃j �= cj . Let ε be the
probability, conditioned on all other checks passing, that there exists such a
j ∈ T . Suppose, for the sake of contradiction, that ε is nonnegligible. Then
we construct an adversary B that breaks the collision-resistance of H. The
reduction B works as follows:

1. The reduction chooses arbitrary inputs {xi}.
2. It creates the NIZK CRS honestly, (crsenc, ·) ← Setupenc(1κ), and runs
Amal on inputs {xi}i∈T and crsenc as the CRS.

3. For all noncomputing parties and honest parties, it samples key tu-
ples (pki, ski, eki)← Keygen(1κ) and encrypts the input correctly: ci ←
Enc(pki, xi ; si). It creates honest proofs πenc

i ← Proveenc((pki, ci) ,
(xi, si)). It also runs the verification setup honestly to generate a veri-
fication reference string (vrsi, ·)← SetupΦ(1κ).

4. When it receives a hash key hk from the collision-resistance challenger,
the reduction guesses an honest index i∗ ← T uniformly at random and
sets hki∗ = hk. For all other i �= i∗, it samples hki honestly. Finally,
for all noncomputing and honest parties, it computes the digest di =
Hhki

(ci).
5. It sends {pki, eki, ci, π

enc

i , hki, di}i∈T to Amal.
6. When it receives a ciphertext c and proofs ϕ1, . . . , ϕN from Amal, along

with the set {pki, eki, hki, di}, it runs the extractor

{c̃i, π̃
enc

i }i∈[N] ← ExtΦ
(
{(pki, eki, hki, di)}i∈[N] , ϕh

)
.

7. Finally, it submits ci∗ and c̃i∗ to the collision-resistance challenger as its
collision.

If all previous checks pass, then in both hybrids we have that H(cj) = H(c̃j) =
dj . Therefore the probability that B submits a valid collision to the collision
challenger is ε/|T |. If ε is nonnegligible, then B breaks the collision-resistance
property of the hash family H.

Hybrid 4: In Hybrid 4, we additionally let the output of the protocol be⊥ if Dec(s̃ki, c̃i)
= ⊥ for any corrupt i ∈ T , where s̃ki is the secret key output by the decryp-
tion protocol simulator Smal

Πdec

and c̃i is extracted from the succinct argument
ϕh, as in Hybrids 2 and 3.
We claim that Hybrid 3 and Hybrid 4 are statistically close by the soundness
of the NIZK Πenc. Indeed, Hybrids 3 and 4 are identical except in the case
when all previous checks pass but there exists j ∈ T such that Dec(s̃kj , c̃j) =
⊥. By correctness of decryption, this happens if and only if � (x̃j , s̃j) such
that Enc(pkj , x̃j ; s̃j) = c̃j , or in other words, if (pkj , c̃j) /∈ Lenc. Let ε be
the probability, conditioned on all other checks passing, that there exists an
index j ∈ T such that (pkj , c̃j) /∈ Lenc. Suppose, for the sake of contradiction,
that ε is nonnegligible. Then we construct an adversary B that breaks the
soundness of Πenc. The reduction B works as follows:

1. The reduction chooses arbitrary inputs {xi}.
2. It receives the CRS from the soundness challenger and runs Amal on

inputs {xi}i∈T and the CRS.

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MULTIKEY FHE AND APPLICATIONS 1879

3. For all noncomputing parties and honest parties, it samples keys
(pki, ski, eki) ← Keygen(1κ) and encrypts the input correctly: ci ←
Enc(pki, xi ; si). It creates honest proofs πenc

i ← Proveenc((pki, ci) ,
(xi, si)). It also runs the verification setup honestly to generate a veri-
fication reference string (vrsi, ·)← SetupΦ(1κ).

4. It samples hki honestly and computes the digest di = Hhki
(ci).

5. It sends {pki, eki, ci, π
enc

i , hki, di}i∈T to Amal.
6. When it receives a ciphertext c and proofs ϕ1, . . . , ϕN from Amal, along

with the set {pki, eki, hki, di}, it runs the extractor

{c̃i, π̃
enc

i }i∈[N] ← ExtΦ
(
{(pki, eki, hki, di)}i∈[N] , ϕh

)
.

7. It runs the simulator Smal

Πdec

(interacting with Amal). When Smal

Πdec

queries
the ideal decryption functionality with secret key and randomness pairs
{s̃ki, r̃i}i∈T , it checks that (pki, s̃ki, eki) = Keygen(1κ ; r̃i) for all i ∈ [N].
If this check fails, it returns ⊥. Otherwise, it chooses a corrupt i∗ ← T
uniformly at random and submits π̃enc

i∗ as its proof forgery.
If all previous checks pass, then in both hybrids we have that Verify((pki, c̃i) ,
π̃enc

i) = 1 for all i ∈ [N] (see Hybrid 2). Therefore, the probability that B
submits a valid forgery to the soundness challenger is ε/ |T |. If ε is nonnegli-
gible, then B breaks the soundness property of the NIZK Πenc.

Hybrid 5: We now change how we compute ỹ, the value returned to the simulator Smal

Πdec

when it queries the decryption ideal functionality. Instead of computing ỹ =
gc,pk1,ek1,...,pkN ,ekN ((s̃k1, r̃1) . . . , (s̃kN , r̃N)), we first check if (pki, s̃ki, eki) =
Keygen(1κ ; r̃i) for all i ∈ T . If this check fails, we return ⊥; otherwise
we decrypt each malicious c̃i and evaluate f on the resulting inputs:

ỹ =
{

f(x̃1, . . . , x̃N) if (pki, s̃ki, eki) = Keygen(1κ ; r̃i) ∀i ∈ T,
⊥ otherwise,

where x̃i := Dec(s̃ki, c̃i) for i ∈ T and x̃i = xi for i ∈ T .
We claim that Hybrid 5 and Hybrid 4 are statistically close. In the case
when (pki, s̃ki, eki) �= Keygen(1κ ; r̃i) for some i ∈ T , both hybrids output
⊥. We focus on the case when this check passes for all parties, so that
s̃ki is guaranteed to be a valid secret key for its corresponding public and
evaluation keys. In both hybrids, we know that c = Eval(C, (c̃1, pk1, ek1), . . . ,
(c̃N , pkN , ekN)) (see Hybrid 2). By soundness of Πenc, we know that all c̃i’s
are fresh encryptions, so by correctness of multikey evaluation we know that
Dec(s̃k1, . . . , s̃kN , c) = f(x̃1, . . . , x̃N), where we define s̃ki = ski for all honest
i ∈ T and x̃i := Dec(s̃ki, c̃i) for all i ∈ [N]. Furthermore, since c̃i = ci for all
honest i ∈ T (see Hybrid 3), we know that x̃i = xi for all i ∈ T by correctness
of decryption.

Hybrid 6: In Hybrid 6, we change how we compute the proofs πenc

i . Instead of com-
puting real proofs, we use the NIZK simulator to create simulated proofs:{

πenc

i ← Sim(tkenc , (pki, ci))
}

i∈T
.

We claim that Hybrid 6 is computationally indistinguishable from Hybrid 5 by
the unbounded zero-knowledge property of the proof system Πenc. Suppose, for
the sake of contradiction, that there exists an algorithm D that distinguishes

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1880 LÓPEZ-ALT, TROMER, AND VAIKUNTANATHAN

between Hybrids 5 and 6. We construct an adversary B that breaks zero-
knowledge of Πenc. The reduction B works as follows:

1. The reduction chooses arbitrary inputs {xi}.
2. It receives the CRS from the zero-knowledge challenger and runs Amal

on inputs {xi}i∈T and the CRS.
3. For all noncomputing parties and honest parties, it samples keys (pki, ski,

eki)← Keygen(1κ) and encrypts the input correctly: ci ← Enc(pki, xi ; si).
It creates proofs πenc

i by calling its oracle with statement (pki, ci) and
witness (xi, si). It also runs the verification setup honestly to generate
a verification reference string (vrsi, ·)← SetupΦ(1κ).

4. It samples hki honestly and computes the digest di = Hhki
(ci).

5. It sends {pki, eki, ci, π
enc

i , hki, di}i∈T to Amal.
6. When it receives a ciphertext c and proofs ϕ1, . . . , ϕN from Amal, along

with the set {pki, eki, hki, di}, it runs the extractor

{c̃i, π̃
enc

i }i∈[N] ← ExtΦ
(
{(pki, eki, hki, di)}i∈[N] , ϕh

)
.

7. It runs the simulator Smal

Πdec

(interacting with Amal). When Smal

Πdec

queries
the ideal decryption functionality with secret key and randomness pairs
{s̃ki, r̃i}i∈T , it checks that (pki, s̃ki, eki) �= Keygen(1κ ; r̃i). If this
check fails, it returns ⊥; otherwise it returns ỹ = f(x̃1, . . . , x̃N), where
x̃i := Dec(s̃ki, c̃i) for i ∈ T and x̃i = xi for i ∈ T .

8. At the end of the protocol, it forwards Amal’s output to D as the output
of the corrupt parties and gives ỹ to D as the output of the honest
parties.

When B’s oracle is the prover oracle P(·), B perfectly emulates Hybrid 5,
whereas if the oracle is the simulation oracle SIMtk(·), B perfectly emulates
Hybrid 6. Therefore, if D can distinguish between Hybrids 5 and 6, then B
breaks the zero-knowledge property of Πenc.

Hybrids 7.k for k = 1, . . . , N − t: Let T = {i1, . . . , iN−t}. In Hybrid 7.k we change
cik

so that instead of encrypting xik
it now encrypts 0. More formally, in

Hybrid 7.k we have{
cij ← Enc(pkij

, 0)
}

j≤k
,

{
cij ← Enc(pkij

, xij)
}

j>k
.

For ease of notation we let Hybrid 6 be Hybrid 7.0. We claim that the view
of Amal in Hybrid 7.k is indistinguishable from its view in Hybrid 7.(k−1) by
the semantic security of E under public key pkik

. Indeed, now that we run the
simulator Smal

Πdec

in Step 3 instead of the real decryption protocol, the secret
key skik

is only used to encrypt cik
. So suppose, for the sake of contradiction,

that there exists an algorithm D that distinguishes between hybrids 7.k and
7.(k − 1). We construct an adversary B that breaks the semantic security of
E under public key pkik

. The reduction B works as follows:
1. The reduction chooses arbitrary {xi}.
2. It creates the NIZK CRS honestly, (crsenc, tkenc) ← Setupenc(1κ), and

runs Amal on inputs {xi}i∈T and crsenc as the CRS.
3. It receives (pk, ek) from the semantic security challenger and sets pkik

=
pk and ekik

= ek, gives m0 = 0 and m1 = xik
to the challenger, and

receives c = Enc(pk, mb). It sets cik
= c. For all i ∈ T , i �= ik, it

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MULTIKEY FHE AND APPLICATIONS 1881

computes (pki, ·, eki) ← Keygen(1κ) honestly. For j < k, it computes
cij ← Enc(pkij

, 0), and for j > k, and it computes cij ← Enc(pkij
, xij).

4. For all noncomputing and honest parties, it creates simulated proofs
πenc

i ← Sim(tkenc , (pki, ci)) using the trapdoor tkenc. It also runs
the verification setup honestly to generate a verification reference string
(vrsi, ·)← SetupΦ(1κ).

5. It samples hki honestly and computes the digest di = Hhki
(ci).

6. It sends {pki, eki, ci, π
enc

i , hki, di}i∈T to Amal.
7. When it receives a ciphertext c and proofs ϕ1, . . . , ϕN from Amal, along

with the set {pki, eki, hki, di}, it runs the extractor

{c̃i, π̃
enc

i }i∈[N] ← ExtΦ
(
{(pki, eki, hki, di)}i∈[N] , ϕh

)
.

8. It runs the simulator Smal

Πdec

(interacting with Amal). When Smal

Πdec

queries
the ideal decryption functionality with secret key and randomness pairs
{s̃ki, r̃i}i∈T , it checks that (pki, s̃ki, eki) �= Keygen(1κ ; r̃i). If this
check fails, it returns ⊥; otherwise it returns ỹ = f(x̃1, . . . , x̃N), where
x̃i := Dec(s̃ki, c̃i) for i ∈ T and x̃i = xi for i ∈ T .

9. At the end of the protocol, it forwards Amal’s output to D as the output
of the corrupt parties and gives ỹ to D as the output of the honest
parties.

When b = 0, B perfectly emulates Hybrid 7.k, whereas if b = 1, B perfectly
emulates Hybrid 7.(k−1). Therefore, ifD can distinguish between Hybrids 7.k
and 7.(k − 1), then B can distinguish between an encryption of m0 and an
encryption of m1, contradicting the semantic security of E .

We have proved that the joint output in Hybrid 0 is computationally indistin-
guishable from the joint output in Hybrid 7.(N − t). Notice that the joint output in
Hybrid 7.(N − t) is precisely IDEALF ,Smal(�x), and the joint output in Hybrid 0 is de-
fined to be REALΠsm,Amal(�x). We conclude that IDEALF ,Smal(�x)

c≈ REALΠmal,Amal(�x),
as desired.

4.2.3. Efficient NIZKs to prove plaintext knowledge. The protocol de-
scribed in section 4.2.1 requires a NIZK argument system for the NP relation Renc =
{ ((pk, c) , (x, s)) | c = Enc(pk, x ; s) }. While it is known how to construct NIZK
argument systems for all of NP [92, 93], using this construction requires expensive
NP reductions. In this section, we show how to construct an efficient gap Σ-protocol
for Renc when the encryption scheme is the NTRU-based multikey FHE scheme from
section 3.4. By Theorem 2.2 this suffices to construct an efficient NIZK argument
system for Renc in the random oracle model. Our construction follows the ideas of
Asharov and co-authors [7, 6].

Recall that in the aforementioned FHE scheme, a ciphertext has the form c =
[hs + 2e + m]q for public key h, message m ∈ {0, 1}, and ring elements s, e, sampled
from B-bounded distribution χ. We construct a gap Σ-protocol for proving that “c
encrypts 0 under h.” That is, we show a protocol for relation

Renc

0 =
{

((h, c) , (s, e)) | c = [hs + 2e]q ∧ ‖s‖∞ , ‖e‖∞ ≤ B
}

with corresponding language Lenc

0 . By Theorem 2.1, we can then construct a gap
Σ-protocol for Renc using an OR protocol to prove that “c ∈ Lenc

0 or c− 1 ∈ Lenc

0 .”
Gap Σ-protocol for encryptions of 0. Our construction of a gap Σ-protocol for

Renc

0 uses the same parameters as the encryption scheme: degree n, polynomial φ(x) =

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1882 LÓPEZ-ALT, TROMER, AND VAIKUNTANATHAN

xn + 1, modulus q, and distribution χ = DZn,r over the ring R = Z[x]/〈φ(x)〉. It is
additionally parametrized by a distribution χ̃ = DZn,r̃ over R, such that 2ω(log κ)r ≤
r̃ ≤ q/4

√
n− r. To simplify notation, we recall from Lemma 2.7 that χ is B-bounded

and χ̃ is B̃-bounded for B = r
√

n and B̃ = r̃
√

n. By our choice of r̃, this means that
B̃ + B ≤ q/4.

To formally describe our protocol, we must first define relations Rzk and Rsound.
We set Bzk = Renc

0 and set Bsound to be essentially the same as Renc

0 , differing only in
the requirement set for ‖s‖∞ and ‖e‖∞:

Rsound =
{

((h, c) , (s, e)) | c = [hs + 2e]q ∧ ‖s‖∞ , ‖e‖∞ ≤ 4
(
B̃ + B

) }
.

Note that since B̃ ≥ B, we have Rzk ⊆ Rsound. We can now describe our construction:
• P1((h, c), (s, e)): Samples s̃, ẽ← χ̃ and outputs a = [hs̃ + 2ẽ]q and st = (s̃, s).
• V1((h, c)): Outputs a random bit b← {0, 1}.
• P2(st, b): Parses st = (s̃, s) and outputs z = [s̃ + bs]q.
• V2((h, c), a, b, z): Computes ε = [(a + bc)− hz]q and outputs 1 if and only if
‖z‖∞ ≤ B̃ + B, ‖ε‖∞ ≤ 2(B + B̃), and ε is even.

Theorem 4.3. Let Rzk, Rsound be the NP relations described above. The construc-
tion 〈P, V 〉 with P = (P1, P2) and V = (V1, V2) is a gap Σ-protocol for (Rzk, Rsound).

Proof. We show that the above construction satisfies the completeness, special
soundness, and HVZK properties.
Completeness: Let ((h, c), (s, e)) ∈ Lzk, and let (a, b, z) be a transcript for protocol

〈P, V 〉. Then

ε = [(a + bc)− hz]q = [hs̃ + 2ẽ + bhs + 2be− hs̃− hbs]q
= [2(ẽ + be)]q = 2(ẽ + be),

where the last inequality holds by the fact that B̃ + B ≤ q/4. It is clear
that ε is even and its coefficients are bounded by 2(B̃ + B). Furthermore,
z = s̃ + bs, so ‖z‖∞ ≤ B̃ + B, as required.

Special soundness: Let (h, c) be a public key and ciphertext pair, and let (a, 0, z0) and
(a, 1, z1) be two accepting transcripts. The extractor Ext outputs (s∗, e∗),
where s∗ = z1 − z0 and e∗ = [c− hs∗]q.
We now argue that ((h, c), (s∗, e∗)) ∈ Rsound. By construction, we have that
c = [hs∗ + 2e∗]q. It remains to show the bound on the size of the coefficients
of s∗ and e∗. Since (a, 0, z0) and (a, 1, z1) are accepting transcripts, we know
that ‖z0‖∞ , ‖z1‖∞ ≤ B̃ + B, so that ‖s∗‖∞ ≤ 2(B̃ + B).
We now bound e∗. Let ε0 = [a−hz0]q and ε1 = [(a+c)−hz1]q. Since (a, 0, z0)
and (a, 1, z1) are accepting transcripts, we know that ‖ε0‖∞ , ‖ε1‖∞ ≤ 2(B̃ +
B) and both ε0 and ε1 are even. Furthermore, ε1− ε0 = [(a + c)− hz1− (a−
hz0)]q = [c− h(z1 − z0)]q = e∗. This means that e∗ is even since both ε0 and
ε1 are even, and we also have that ‖e∗‖∞ ≤ ‖ε0‖∞ + ‖ε1‖∞ ≤ 4(B̃ + B), as
desired.

Honest-verifier zero-knowledge: Let ((h, c), (s, e)) ∈ Lzk and let b ∈ {0, 1}. The simu-
lator Sim chooses z′, e′ ← χ̃, sets a′ = hz′+2e′+bc, and outputs (a′, b, z′). We
argue that the output of Sim is statistically close to the transcript (a, b, z) of
an execution of the protocol 〈P, V 〉. In a real transcript, we have a = hs̃ + 2ẽ
and z = s̃+σs. In the simulated transcript, we have a′ = h(z′+bs)+2(e′+be).

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MULTIKEY FHE AND APPLICATIONS 1883

If b = 0, then the distributions are identical because s̃, ẽ, z′, e′ are all sam-
pled from the same distribution χ̃. On the other hand, if b = 1, then the
distributions are statistically close by Corollary 2.9.

We remark that the gap between Rzk and Rsound is superpolynomial due to our
use of Corollary 2.9. We leave a better analysis, potentially resulting in a small
polynomial gap between Rzk and Rsound, as an open problem.

Consequences of having a gap. We have shown how to construct efficient NIZK
arguments for the relation Renc for the NTRU-based multikey FHE scheme from
section 3.4. However, there is a gap in the relations for which soundness and zero-
knowledge hold: zero-knowledge holds for an honest prover with a statement in Rzk,
but an honest verifier is only convinced that the statement is in Rsound ⊇ Rzk. We
must show that this gap does not affect the correctness of our protocol. It suffices
to prove that the scheme is fully homomorphic when the error in fresh ciphertexts is
bounded by B∗ def= 4(B̃ + B).

Our analysis in section 3.4 does not immediately guarantee this, as it sets B =
poly(n). Since we must have n = poly(κ) for efficiency of the scheme, this means
B = poly(κ). However B∗ is superpolynomial in κ. Nevertheless, we can easily modify
our parameters and analysis to guarantee that the scheme remains fully homomorphic
with ciphertext noise that is superpolynomial in κ.

The proof of Lemma 3.6 shows that the leveled homomorphic scheme ELH de-
scribed in section 3.4.2 is multikey homomorphic for N keys and circuits of depth D
as long as

(nB∗)2N+2 <
2nε

2(8n(nB∗)2N+2)D
,

which yields the requirement ND = O(nε/(log n + log B∗)). We follow the proof of
Theorem 3.9 and show that there exists a multikey fully homomorphic encryption
scheme for N = O(

√
(nε/ logn(log n + log B∗))). If we set B̃ = 2log2 κ · B for B =

poly(n) and n ≥ κ, this is guaranteed if N = O(
√

(nε/ log3 n)) since

nε/(log3 n) = O(nε/(log n · (log n + log2 κ))) = O(nε/(logn · (log n + log B∗))).

(In)security in the standard model. We have shown a NIZK argument for relation
Renc. Though secure in the random oracle model, we remark that care must be taken if
we want to hope for security in the standard model. More specifically, since our gap Σ-
protocol has only constant soundness, we need to use parallel repetition for soundness
amplification. For efficiency, we would like to repeat the protocol only polylog(κ)
many times as this already achieves negligible soundness. However, Dachman, Soled,
and co-authors [49, 22] have shown that if we use such a small number of repetitions,
the resulting NIZK cannot be proved sound (in the standard model) via a black-box
reduction to a (superpolynomially hard) falsifiable assumption. Also see the remarks
after Theorem 2.2.

4.3. Impossibility of a 2-round protocol. We have shown that there exists
an on-the-fly MPC protocol with a 5-round online phase. We now ask whether we can
achieve the optimal solution of having a completely noninteractive online phase. In
this section we answer this question negatively: we show that the existence of such a
protocol (secure against semihonest adversaries)16 implies general circuit obfuscation

16Considering semihonest adversaries instead of semimalicious or malicious adversaries only makes
our result stronger.

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1884 LÓPEZ-ALT, TROMER, AND VAIKUNTANATHAN

as a virtual black-box with single-bit output, which we know to be impossible [10].
Our techniques are inspired by those of van Dijk and Juels [133].

We begin by reviewing the definition of general circuit obfuscation [10].

Definition 4.1 (circuit obfuscation [10]). A probabilistic algorithm O is a cir-
cuit obfuscator if the following three conditions hold:
Functionality: For every circuit C, the string O(C) describes a circuit that computes

the same function as C.
Polynomial slowdown: There is a polynomial p such that for every circuit C, |O(C)| ≤

p(|C|).
“Virtual black-box” property: For any PPT adversary A, there is a PPT simulator

S such that for all circuits C∣∣∣Pr[A(O(C)) = 1]− Pr[SC(1|C|) = 1]
∣∣∣ ≤ negl(|C|).

Barak et al. [10] show that assuming one-way functions exist, there does not exist
any algorithm O satisfying Definition 4.1, even if we do not require that O run in
polynomial time. Thus, our results imply that assuming one-way functions exist,
there does not exist any on-the-fly MPC protocol with a noninteractive online phase.

We now show the connection between on-the-fly MPC and obfuscation. We con-
sider an on-the-fly MPC protocol with a noninteractive online phase and assume that
only one function is evaluated and the function is chosen a priori, before the start
of the protocol (i.e., it does not depend on the offline stage messages). Let N be
the number of inputs of the circuit; without loss of generality, we assume that the
computing parties are P1, . . . , PN . Note that considering such a restricted protocol
only makes our impossibility result stronger. A protocol like this can be modeled by
efficient and possibly randomized algorithms: In1, . . . , InU , Compute, Out1, . . . , OutN ,
where the following hold:

• (di, ci)← Ini(xi): On input xi, the algorithm Ini outputs two elements, ci to
be sent to the server S and di to be kept by party Pi.
• (z1, . . . , zN)← Compute(C, c1, . . . , cN): On input a circuit C and c1, . . . , cN ,

which are the messages the server received from parties P1, . . . , PN , Compute
outputs N elements z1, . . . , zN . The server sends back zi to party Pi.
• y ← Outi(zi, di): On input zi which was received from the server, and the

auxiliary information di output by Ini, Outi computes the output y.
We know from the work of Halevi, Lindell, and Pinkas [95] that in the nonin-

teractive setting, the server can always evaluate the circuit multiple times, keeping
some parties inputs but plugging in fake inputs of its choosing for the other parties.
Thus we must relax the definition of security so that when the server is corrupted,
the simulator is allowed to submit queries of the form (S, �x), where S is a nonempty
subset of the honest parties and �x is any input vector of size n − |S|. The trusted
functionality evaluates the function on �x and the honest inputs in S. Furthermore,
our result holds even when the real-world adversary is only allowed to output 1 bit.17

Theorem 4.4. If there exists an on-the-fly MPC protocol with a noninteractive
online phase that computes all efficiently computable functions with two inputs and is
secure against semihonest adversaries (with the relaxed definition of security), then
there exists a circuit obfuscator O satisfying Definition 4.1.

17Considering a restricted class of adversaries for the on-the-fly MPC protocol only makes our
impossibility result stronger.

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MULTIKEY FHE AND APPLICATIONS 1885

Proof. We start by defining a family of “meta-circuits” {F (m)}m∈N. For a fixed
m ∈ N, F (m) is such that given a circuit C of size m and bit-string x, it evaluates C
on x and outputs C(x), i.e., F (m)(C, x) = C(x). van Dijk and Juels [133] show how
to construct a family of meta-circuits such that for all m ∈ N, |F (m)| = O(m2).

We now show how to construct a circuit obfuscator O using an on-the-fly MPC
protocol Π = (In1, . . . , InU , Compute, Out1, Out2) with the properties described in the
theorem statement. Given a circuit C of size m, O computes (·, c1)← In1(C), samples
random coins ρ, σ, τ , and outputs a circuit G that on input x:

• Computes (c2, d2) := In2(x ; ρ).
• Computes (·, z2) := Compute(F (m), c1, c2 ; σ).
• Computes and outputs y := Out2(z2, d2 ; τ).

We now show that this obfuscator satisfies the functionality, polynomial slow-
down, and virtual black-box properties from Definition 4.1.
Functionality: The correctness property of the on-the-fly MPC protocol guarantees

that for all x, G(x) = F (m)(C, x) = C(x).
Polynomial slowdown: Using van Dijk and Juels’s construction [133], we have that

|F (m)| = O(m2). Since all algorithms of the on-the-fly MPC protocol run in
polynomial time, we have that there exists a polynomial p such that |G| =
p(|C|).

Virtual black-box: To prove the virtual black-box property, we observe that given an
attacker A trying to break the obfuscation, we can construct a real-world
semihonest adversary B attacking the on-the-fly MPC protocol, corrupting
the server and party P2. The honest party receives input C and B receives
a dummy value x̃ for P2, which it ignores. Instead it receives c1 from the
honest party, builds G as specified, and runs A on G. When A outputs a bit
b, B completes Steps 2 and 3 in the protocol as specified and outputs b. We
emphasize that any action taken by A is valid for a semihonest adversary, so
B is semihonest.
Security of Π implies that there exists simulator S such that for all inputs C, x̃,
we have IDEALF ,S(C, x̃)

c≈ REALΠ,B(C, x̃), where in the ideal world, S is
given access to an oracle as described above. In the setting we are considering,
the only valid subset that S can provide in a query to this oracle is {1}. Thus,
S has oracle access to F (m)(C, ·) = C(·). We can build a simulator S′ with
oracle access to C(·) that on input |C|,18 chooses an arbitrary x̃ and runs
S(x̃) (which runs B, which runs A), anwers S’s queries with its own oracle,
and outputs S’s output.
Since B outputs whatever A outputs and S′ outputs whatever S outputs, the
fact that IDEALF ,S(C, x̃)

c≈ REALΠ,B(C, x̃) implies that S′(|C|) c≈ A(G).
The theorem statement follows.

REFERENCES

[1] W. Aiello, S. N. Bhatt, R. Ostrovsky, and S. Rajagopalan, Fast verification of any
remote procedure call: Short witness-indistinguishable one-round proofs for NP, in Pro-
ceedings of the 27th International Colloquium on Automata, Languages and Programming
(ICALP), 2000, Geneva, Switzerland, 2000, pp. 463–474.

[2] M. Ajtai and C. Dwork, A public-key cryptosystem with worst-case/average-case equiva-
lence, in Proceedings of STOC, 1997, pp. 284–293.

18In most applications it is okay to leak the size of the honest input. Indeed this is implied in
most constructions, including our construction from section 4.1.

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1886 LÓPEZ-ALT, TROMER, AND VAIKUNTANATHAN

[3] M. R. Albrecht, S. Bai, and L. Ducas, A subfield lattice attack on overstretched NTRU
assumptions—Cryptanalysis of some FHE and graded encoding schemes, in Proceedings
of CRYPTO, 2016, pp. 153–178.

[4] B. Applebaum, D. Cash, C. Peikert, and A. Sahai, Fast cryptographic primitives and
circular-secure encryption based on hard learning problems, in Proceedings of CRYPTO,
S. Halevi, ed., Lecture Notes in Computer Sci. 5677, Springer, New York, 2009, pp. 595–
618.

[5] B. Applebaum, Y. Ishai, and E. Kushilevitz, From secrecy to soundness: Efficient ver-
ification via secure computation, in Proceedings of ICALP, S. Abramsky, C. Gavoille,
C. Kirchner, F. Meyer auf der Heide, and P. G. Spirakis, eds., Lecture Notes in Comput.
Sci. 6198, Springer, New York, 2010, pp. 152–163.

[6] G. Asharov, A. Jain, A. López-Alt, E. Tromer, V. Vaikuntanathan, and D. Wichs, Mul-
tiparty computation with low communication, computation and interaction via threshold
FHE, in Proceedings of EUROCRYPT, 2012, pp. 483–501.

[7] G. Asharov, A. Jain, and D. Wichs, Multiparty computation with low communication,
computation and interaction via threshold FHE, in Proceedings of EUROCRYPT, 2012,
pp. 483–501.

[8] M. Backes, M. Barbosa, D. Fiore, and R. M. Reischuk, ADSNARK: Nearly practical and
privacy-preserving proofs on authenticated data, in Proceedings of the 2015 IEEE Sympo-
sium on Security and Privacy, San Jose, CA, 2015, IEEE Computer Society, pp. 271–286,
https://doi.org/10.1109/SP.2015.24.

[9] B. Barak, How to go beyond the black-box simulation barrier, in Proceedings of FOCS, IEEE
Computer Society, 2001, pp. 106–115.

[10] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. P. Vadhan, and

K. Yang, On the (im)possibility of obfuscating programs, in CRYPTO, 2001, pp. 1–18.
[11] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. P. Vadhan, and

K. Yang, On the (im)possibility of obfuscating programs, J. ACM, 59 (2012), p. 6.
[12] B. Barak, Y. Lindell, and S. P. Vadhan, Lower bounds for black-box zero knowledge, J.

Comput. System Sci., 72 (2006), pp. 321–391.
[13] M. Bellare and P. Rogaway, Random oracles are practical: A paradigm for designing

efficient protocols, in Proceedings of the ACM Conference on Computer and Communi-
cations Security, D. E. Denning, R. Pyle, R. Ganesan, R. S. Sandhu, and V. Ashby, eds.,
ACM, 1993, pp. 62–73.

[14] M. Ben-Or, S. Goldwasser, and A. Wigderson, Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract), in Proceedings
of STOC, 1988, pp. 1–10.

[15] E. Ben-Sasson, I. Bentov, A. Chiesa, A. Gabizon, D. Genkin, M. Hamilis, E. Perga-

ment, M. Riabzev, M. Silberstein, E. Tromer, and M. Virza, Computational integrity
with a public random string from quasi-linear PCPs, in Proceedings of the 36th Annual
International Conference on the Theory and Applications of Cryptographic Techniques
Advances in Cryptology, EUROCRYPT 2017, Paris, France, J. Coron and J. B. Nielsen,
eds., Lecture Notes in Comput. Sci. 10212, 2017, pp. 551–579, https://doi.org/10.1007/
978-3-319-56617-7 19.

[16] E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza, Scalable zero knowledge via cycles
of elliptic curves, in Proceedings of the 34th Annual Cryptology Conference on Advances
in Cryptology, CRYPTO 2014, Santa Barbara, CA, J. A. Garay and R. Gennaro, eds.,
Lecture Notes in Comput. Sci. 8617, Springer, New York, 2014, pp. 276–294, https://doi.
org/10.1007/978-3-662-44381-1 16.

[17] E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza, Succinct non-interactive zero
knowledge for a von neumann architecture, in Proceedings of USENIX, pp. 781–
796; also available online from https://www.usenix.org/conference/usenixsecurity14/
technical-sessions/presentation/ben-sasson.

[18] R. Bendlin, I. Damg̊ard, C. Orlandi, and S. Zakarias, Semi-homomorphic encryption
and multiparty computation, in Proceedings of EUROCRYPT, 2011, pp. 169–188.

[19] N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer, From extractable collision resistance
to succinct non-interactive arguments of knowledge, and back again, in Proceedings of
ITCS, 2012.

[20] N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer, Recursive composition and boot-
strapping for SNARKS and proof-carrying data, in Proceedings of STOC, D. Boneh,
T. Roughgarden, and J. Feigenbaum, eds., ACM, 2013, pp. 111–120.

[21] N. Bitansky, A. Chiesa, Y. Ishai, R. Ostrovsky, and O. Paneth, Succinct non-interactive
arguments via linear interactive proofs, in Proceedings of the 10th Theory of Cryptogra-

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

https://doi.org/10.1109/SP.2015.24
https://doi.org/10.1007/978-3-319-56617-7_19
https://doi.org/10.1007/978-3-319-56617-7_19
https://doi.org/10.1007/978-3-662-44381-1_16
https://doi.org/10.1007/978-3-662-44381-1_16
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/ben-sasson
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/ben-sasson

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MULTIKEY FHE AND APPLICATIONS 1887

phy Conference of Cryptography, TCC 2013, Tokyo, Japan, 2013, A. Sahai, ed., Lecture
Notes in Comput. Sci. 7785, Springer, New York, 2013, pp. 315–333, https://doi.org/10.
1007/978-3-642-36594-2 18.

[22] N. Bitansky, D. Dachman-Soled, S. Garg, A. Jain, Y. T. Kalai, A. López-Alt, and

D. Wichs, Why “Fiat–Shamir for proofs” lacks a proof, in Proceedings of TCC, 2013,
pp. 182–201.

[23] A. Blum, M. L. Furst, M. J. Kearns, and R. J. Lipton, Cryptographic primitives based on
hard learning problems, in Proceedings of CRYPTO, D. R. Stinson, ed., Lecture Notes in
Comput. Sci. 773, Springer, New York, 1993, pp. 278–291.

[24] M. Blum, P. Feldman, and S. Micali, Non-interactive zero-knowledge and its applications
(extended abstract), in Proceedings of STOC, J. Simon, ed., ACM, 1988, pp. 103–112.

[25] J. W. Bos, K. Lauter, J. Loftus, and M. Naehrig, Improved security for a ring-based fully
homomorphic encryption scheme, in Proceedings of the IMA International Conference,
M. Stam, ed., Lecture Notes in Comput. Sci. 8308, Springer, New York, 2013, pp. 45–64.

[26] Z. Brakerski, Fully homomorphic encryption without modulus switching from classical
GapSVP, in Proceedings of CRYPTO, 2012, pp. 868–886.

[27] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, Fully homomorphic encryption without
bootstrapping, in Proceedings of ITCS, 2012.

[28] Z. Brakerski and R. Perlman, Lattice-based fully dynamic multi-key FHE with short ci-
phertexts, in Proceedings of CRYPTO, 2016, pp. 190–213.

[29] Z. Brakerski and V. Vaikuntanathan, Efficient fully homomorphic encryption from (stan-
dard) LWE, in Proceedings of FOCS, 2011, pp. 97–106.

[30] Z. Brakerski and V. Vaikuntanathan, Fully homomorphic encryption from ring-LWE and
security for key dependent messages, in Proceedings of CRYPTO, 2011, pp. 505–524.

[31] Z. Brakerski and V. Vaikuntanathan, Lattice-based FHE as secure as PKE, in Proceedings
of ITCS, M. Naor, ed., ACM, 2014, pp. 1–12.

[32] R. Canetti, U. Feige, O. Goldreich, and M. Naor, Adaptively secure multi-party compu-
tation, in Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of
Computing, Philadelphia, 1996, pp. 639–648.

[33] R. Canetti, O. Goldreich, and S. Halevi, The random oracle methodology, revisited, J.
ACM, 51 (2004), pp. 557–594.

[34] R. Canetti, H. Lin, S. Tessaro, and V. Vaikuntanathan, Obfuscation of probabilistic
circuits and applications, in Proceedings of the 12th Theory of Cryptography Confer-
ence, TCC 2015, Y. Dodis and J. B. Nielsen, eds., Warsaw, Poland, Lecture Notes
in Comput. Sci. 9015, Springer, New York, 2015, pp. 468–497, http://doi.org/10.1007/
978-3-662-46497-7 19.

[35] D. Chaum, C. Crépeau, and I. Damg̊ard, Multiparty unconditionally secure protocols (ex-
tended abstract), in Proceedings of STOC, 1988, pp. 11–19.

[36] J. H. Cheon, J.-S. Coron, J. Kim, M. S. Lee, T. Lepoint, M. Tibouchi, and A. Yun,
Batch fully homomorphic encryption over the integers, in Proceedings of EUROCRYPT,
2013, pp. 315–335.

[37] J. H. Cheon, J. Jeong, and C. Lee, An Algorithm for NTRU Problems and Cryptanalysis
of the GGH Multilinear Map Without an Encoding of Zero, IACR Cryptology ePrint
Archive, 2016, 139, http://eprint.iacr.org/2016/139.

[38] J. H. Cheon and D. Stehlé, Fully homomophic encryption over the integers revisited,
in Proceedings of EUROCRYPT, E. Oswald and M. Fischlin, eds., Lecture Notes in
Comput. Sci. 9056, Springer, New York, 2015, pp. 513–536, https://doi.org/10.1007/
978-3-662-46800-5 20.

[39] A. Choudhury, J. Loftus, E. Orsini, A. Patra, and N. P. Smart, Between a rock and
a hard place: Interpolating between MPC and FHE, in Proceedings of ASIACRYPT,
K. Sako and P. Sarkar, eds., Lecture Notes in Comput. Sci. 8270, Springer, New York,
2013, pp. 221–240.

[40] K.-M. Chung, Y. T. Kalai, and S. P. Vadhan, Improved delegation of computation using
fully homomorphic encryption, in Proceedings of CRYPTO, 2010, pp. 483–501.

[41] M. Clear and C. McGoldrick, Multi-identity and multi-key leveled FHE from learning
with errors, in Proceedings of the 35th Annual Cryptology Conference on Advances in
Cryptology, CRYPTO 2015, Santa Barbara, CA, R. Gennaro and M. Robshaw, eds.,
Lecture Notes in Comput. Sci. 9216, Springer, New York, 2015, pp. 630–656, http://doi.
org/10.1007/978-3-662-48000-7 31.

[42] J.-S. Coron, T. Lepoint, and M. Tibouchi, Scale-invariant fully homomorphic encryption
over the integers, in Proceedings of the International Workshop on Public Key Cryptog-

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

https://doi.org/10.1007/978-3-642-36594-2_18
https://doi.org/10.1007/978-3-642-36594-2_18
http://doi.org/10.1007/978-3-662-46497-7_19
http://doi.org/10.1007/978-3-662-46497-7_19
http://eprint.iacr.org/2016/139
https://doi.org/10.1007/978-3-662-46800-5_20
https://doi.org/10.1007/978-3-662-46800-5_20
http://doi.org/10.1007/978-3-662-48000-7_31
http://doi.org/10.1007/978-3-662-48000-7_31

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1888 LÓPEZ-ALT, TROMER, AND VAIKUNTANATHAN

raphy, H. Krawczyk, ed., Lecture Notes in Comput. Sci. 8383, Springer, New York, 2014,
pp. 311–328.

[43] J.-S. Coron, A. Mandal, D. Naccache, and M. Tibouchi, Fully homomorphic encryption
over the integers with shorter public keys, in Proceedings of CRYPTO, 2011, pp. 487–504.

[44] J.-S. Coron, D. Naccache, and M. Tibouchi, Public key compression and modulus switch-
ing for fully homomorphic encryption over the integers, in Proceedings of EUROCRYPT,
2012, pp. 446–464.

[45] R. Cramer, ed., Theory of Cryptography, in Proceedings of the 9th Theory of Cryptography
Conference, TCC 2012, Taormina, Sicily, Italy, 2012, Lecture Notes in Comput. Sci. 7194,
Springer, New York, 2012.

[46] R. Cramer, I. Damg̊ard, and J. B. Nielsen, Multiparty computation from threshold homo-
morphic encryption, in Proceedings of EUROCRYPT, 2001, pp. 280–299.

[47] R. Cramer, I. Damg̊ard, and B. Schoenmakers, Proofs of partial knowledge and simplified
design of witness hiding protocols, in Proceedings of CRYPTO, Y. Desmedt, ed., Lecture
Notes in Comput. Sci. 839, Springer, New York, 1994, pp. 174–187.

[48] G. Di Crescenzo and H. Lipmaa, Succinct NP proofs from an extractability assumption, in
Proceedings of CiE, A. Beckmann, C. Dimitracopoulos, and B. Löwe, eds., Lecture Notes
in Comput. Sci. 5028, Springer, New York, 2008, pp. 175–185.

[49] D. Dachman-Soled, A. Jain, Y. T. Kalai, and A. López-Alt, On the (In)security of the
Fiat-Shamir Paradigm, Revisited, IACR Cryptology ePrint Archive, 2012, 706.

[50] I. Damg̊ard, Y. Ishai, and M. Krøigaard, Perfectly secure multiparty computation and the
computational overhead of cryptography, in Proceedings of EUROCRYPT, 2010, pp. 445–
465.

[51] I. Damg̊ard, Y. Ishai, M. Krøigaard, J. B. Nielsen, and A. Smith, Scalable multi-
party computation with nearly optimal work and resilience, in Proceedings of CRYPTO,
D. Wagner, ed., Lecture Notes in Comput. Sci. 5157, Springer, New York, 2008, pp. 241–
261.

[52] I. Damg̊ard, M. Keller, E. Larraia, V. Pastro, P. Scholl, and N. P. Smart, Practical
covertly secure MPC for dishonest majority—or: Breaking the SPDZ limits, in Proceed-
ings of ESORICS, J. Crampton, S. Jajodia, and K. Mayes, eds., Lecture Notes in Comput.
Sci. 8134, Springer, New York, 2013, pp. 1–18.

[53] I. Damg̊ard, V. Pastro, N. P. Smart, and S. Zakarias, Multiparty computation from
somewhat homomorphic encryption, in Proceedings of CRYPTO, 2012, pp. 643–662.

[54] G. Danezis, C. Fournet, J. Groth, and M. Kohlweiss, Square span programs with applica-
tions to succinct NIZK arguments, Part I, in Proceedings of the 20th International Con-
ference on the Theory and Application of Cryptology and Information Security Advances
in Cryptology, ASIACRYPT 2014, Kaoshiung, Taiwan, 2014, P. Sarkar and T. Iwata, eds.,
Lecture Notes in Comput. Sci. 8873, Springer, New York, 2014, pp. 532–550, https://doi.
org/10.1007/978-3-662-45611-8 28.

[55] Y. Dodis, S. Halevi, R. D. Rothblum, and D. Wichs, Spooky encryption and its ap-
plications, in Proceedings of the 36th Annual International Cryptology Conference on
Advances in Cryptology, CRYPTO 2016, Santa Barbara, CA, M. Robshaw and J. Katz,
eds., Lecture Notes in Comput. Sci. 9816, Springer, New York, 2016, pp. 93–122, http://
doi.org/10.1007/978-3-662-53015-3 4.

[56] Y. Dodis, T. Ristenpart, and S. P. Vadhan, Randomness condensers for efficiently sam-
plable, seed-dependent sources, in Proceedings of TCC, 2012, pp. 618–635.

[57] L. Ducas and A. Durmus, Ring-LWE in polynomial rings, in Proceedings of the International
Workshop on Public Key Cryptography, 2012, pp. 34–51.

[58] C. Dwork, M. Naor, O. Reingold, and L. J. Stockmeyer, Magic functions, J. ACM, 50
(2003), pp. 852–921.

[59] P. Fauzi, H. Lipmaa, and B. Zhang, Efficient modular NIZK arguments from shift and
product, in Proceedings of the 12th International Conference on Cryptology and Network
Security, CANS 2013, Paraty, Brazil, 2013, M. Abdalla, C. Nita-Rotaru, and R. Dahab,
eds., Lecture Notes in Comput. Sci. 8257, Springer, New York, 2013, pp. 92–121, https://
doi.org/10.1007/978-3-319-02937-5 6.

[60] A. Fiat and A. Shamir, How to prove yourself: Practical solutions to identification and
signature problems, in Proceedings of CRYPTO, A. M. Odlyzko, ed., Lecture Notes in
Comput. Sci. 263, Springer, New York, 1986, pp. 186–194.

[61] M. Fischlin and J. Coron, eds., Advances in Cryptology—EUROCRYPT Part II, in Pro-
ceedings of the 35th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Vienna, Austria, 2016, Lecture Notes in Comput. Sci. 9666,
Springer, New York, 2016, https://doi.org/10.1007/978-3-662-49896-5.

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

https://doi.org/10.1007/978-3-662-45611-8_28
https://doi.org/10.1007/978-3-662-45611-8_28
http://doi.org/10.1007/978-3-662-53015-3_4
http://doi.org/10.1007/978-3-662-53015-3_4
https://doi.org/10.1007/978-3-319-02937-5_6
https://doi.org/10.1007/978-3-319-02937-5_6
https://doi.org/10.1007/978-3-662-49896-5

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MULTIKEY FHE AND APPLICATIONS 1889

[62] K. Fu and J. Jung, eds., Proceedings of the 23rd USENIX Security Symposium, San Diego,
CA, 2014, USENIX, 2014; also available online from https://www.usenix.org/conference/
usenixsecurity14.

[63] T. Elgamal, A public key cryptosystem and a signature scheme based on discrete logarithms,
in Proceedings of CRYPTO, G. R. Blakley and D. Chaum, eds., Lecture Notes in Comput.
Sci. 196, Springer, New York, 1984, pp. 10–18.

[64] S. Garg, C. Gentry, and S. Halevi, Candidate multilinear maps from ideal lattices, in
EUROCRYPT 2013, pp. 1–17.

[65] S. Garg, C. Gentry, S. Halevi, and M. Raykova, Two-round secure MPC from indistin-
guishability obfuscation, in Proceedings of TCC, Y. Lindell, ed., Lecture Notes in Comput.
Sci. 8349, Springer, New York, 2014, pp. 74–94.

[66] S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, and B. Waters, Candidate
indistinguishability obfuscation and functional encryption for all circuits, in Proceedings
of FOCS, IEEE Computer Society, 2013, pp. 40–49.

[67] S. Garg and A. Polychroniadou, Two-round adaptively secure MPC from indistinguisha-
bility obfuscation, in Proceedings of TCC, 2015, pp. 614–637.

[68] R. Gennaro, C. Gentry, and B. Parno, Non-interactive verifiable computing: Outsourcing
computation to untrusted workers, in CRYPTO 2010, pp. 465–482.

[69] R. Gennaro, C. Gentry, B. Parno, and M. Raykova, Quadratic span programs and suc-
cinct NIZKs without PCPs, in EUROCRYPT 2013, pp. 626–645.

[70] C. Gentry, A Fully Homomorphic Encryption Scheme, Ph.D. thesis, Stanford University,
2009; also available online from https://crypto.stanford.edu/craig.

[71] C. Gentry, Fully homomorphic encryption using ideal lattices, in Proceedings of STOC,
M. Mitzenmacher, ed., ACM, 2009, pp. 169–178.

[72] C. Gentry and S. Halevi, Fully homomorphic encryption without squashing using depth-3
arithmetic circuits, in FOCS 2011, pp. 107–109.

[73] C. Gentry and S. Halevi, Implementing gentry’s fully-homomorphic encryption scheme, in
EUROCRYPT 2011, pp. 129–148.

[74] C. Gentry, S. Halevi, V. Lyubashevsky, C. Peikert, J. Silverman, and N. Smart, private
communication, 2011.

[75] C. Gentry, S. Halevi, C. Peikert, and N. P. Smart, Ring switching in BGV-style homo-
morphic encryption, in Proceedings of SCN, I. Visconti and R. D. Prisco, eds., Lecture
Notes in Comput. Sci. 7485, Springer, New York, 2012, pp. 19–37.

[76] C. Gentry, S. Halevi, and N. P. Smart, Better bootstrapping in fully homomorphic en-
cryption, in Proceedings of the International Workshop on Public Key Cryptography,
M. Fischlin, J. Buchmann, and M. Manulis, eds., Lecture Notes in Comput. Sci. 7293,
Springer, New York, 2012, pp. 1–16.

[77] C. Gentry, S. Halevi, and N. P. Smart, Fully homomorphic encryption with polylog over-
head, in Proceedings of EUROCRYPT, 2012, pp. 465–482.

[78] C. Gentry, S. Halevi, and N. P. Smart, Homomorphic evaluation of the AES circuit, in
Proceedings of CRYPTO, 2012, pp. 850–867.

[79] C. Gentry, A. Sahai, and B. Waters, Homomorphic encryption from learning with errors:
Conceptually-simpler, asymptotically-faster, attribute-based, in Proceedings of CRYPTO
(1), R. Canetti and J. A. Garay, eds., Lecture Notes in Comput. Sci. 8042, Springer, New
York, 2013, pp. 75–92.

[80] C. Gentry and D. Wichs, Separating succinct non-interactive arguments from all falsifiable
assumptions, in Proceedings of STOC, L. Fortnow and S. P. Vadhan, eds., ACM, 2011,
pp. 99–108.

[81] H. Gilbert, ed., in Proceedings of the 29th Annual International Conference on the Theory
and Applications of Cryptographic Techniques Advances in Cryptology—EUROCRYPT
2010, French Riviera, 2010, Lecture Notes in Comput. Sci. 6110, Springer, New York,
2010.

[82] O. Goldreich, Foundations of Cryptography: Volume 2, Basic Applications, Cambridge
University Press, New York, 2004.

[83] O. Goldreich, S. Goldwasser, and S. Halevi, Public-key cryptosystems from lattice reduc-
tion problems, in Proceedings of CRYPTO, B. S. K., Jr., ed., Lecture Notes in Comput.
Sci. 1294, Springer, New York, 1997, pp. 112–131.

[84] O. Goldreich, S. Micali, and A. Wigderson, How to play any mental game or a com-
pleteness theorem for protocols with honest majority, in Proceedings of STOC, 1987,
pp. 218–229.

[85] O. Goldreich and Y. Oren, Definitions and properties of zero-knowledge proof systems, J.
Cryptology, 7 (1994), pp. 1–32.

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

https://www.usenix.org/conference/usenixsecurity14
https://www.usenix.org/conference/usenixsecurity14
https://crypto.stanford.edu/craig

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1890 LÓPEZ-ALT, TROMER, AND VAIKUNTANATHAN

[86] S. Goldwasser and Y. T. Kalai, On the (in)security of the fiat-shamir paradigm, in Pro-
ceedings of FOCS, IEEE Computer Society, 2003, pp. 102–113.

[87] S. Goldwasser, Y. T. Kalai, C. Peikert, and V. Vaikuntanathan, Robustness of the
learning with errors assumption, in Proceedings of Innovations in Computer Science—
ICS 2010, Tsinghua University, Beijing, China, 2010, A. C. Yao, ed., Tsinghua University
Press, 2010, pp. 230–240; also available online from https://dspace.mit.edu/handle/1721.
1/73191.

[88] S. Goldwasser, Y. T. Kalai, and G. N. Rothblum, Delegating computation: Interactive
proofs for muggles, in Proceedings of STOC, C. Dwork, ed., ACM, 2008, pp. 113–122.

[89] S. Goldwasser, H. Lin, and A. Rubinstein, Delegation of Computation Without Rejec-
tion Problem from Designated Verifier CS-proofs, Cryptology ePrint Archive: Report
2011/456, 2011.

[90] J. Groth, Short pairing-based non-interactive zero-knowledge arguments, in Proceedings of
ASIACRYPT, M. Abe, ed., Lecture Notes in Comput. Sci. 6477, Springer, New York,
2010, pp. 321–340.

[91] J. Groth, On the size of pairing-based non-interactive arguments, in EUROCRYPT, 2016,
pp. 305–326, https://doi.org/10.1007/978-3-662-49896-5 11.

[92] J. Groth, R. Ostrovsky, and A. Sahai, Perfect non-interactive zero knowledge for NP,
in Proceedings of EUROCRYPT, S. Vaudenay, ed., Lecture Notes in Comput. Sci. 4004,
Springer, New York, 2006, pp. 339–358.

[93] J. Groth, R. Ostrovsky, and A. Sahai, New techniques for noninteractive zero-knowledge,
J. ACM, 59 (2012), 11.

[94] S. Hada and T. Tanaka, On the existence of 3-round zero-knowledge protocols, in Proceed-
ings of CRYPTO, H. Krawczyk, ed., Lecture Notes in Comput. Sci. 1462, Springer, New
York, 1998, pp. 408–423.

[95] S. Halevi, Y. Lindell, and B. Pinkas, Secure computation on the web: Computing without
simultaneous interaction, in CRYPTO, 2011, pp. 132–150.

[96] J. Hoffstein, J. Pipher, and J. H. Silverman, NTRU: A ring-based public key cryptosystem,
in Proceedings of ANTS, J. Buhler, ed., Lecture Notes in Comput. Sci. 1423, Springer,
New York, 1998, pp. 267–288.

[97] T. Johansson and P. Q. Nguyen, eds., Advances in Cryptology—EUROCRYPT 2013, in
Proceedings of the 32nd Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Athens, Greece, 2013, Lecture Notes in Comput. Sci. 7881,
Springer, New York, 2013.

[98] S. Kamara, P. Mohassel, and M. Raykova, Outsourcing Multi-Party Computation, Cryp-
tology ePrint Archive: Report 2011/272, 2011.

[99] J. Kilian, A note on efficient zero-knowledge proofs and arguments (extended abstract), in
Proceedings of STOC, ACM, 1992, pp. 723–732.

[100] J. Kilian, Improved efficient arguments (preliminary version), in Proceedings of CRYPTO,
D. Coppersmith, ed., Lecture Notes in Comput. Sci. 963, Springer, New York, 1995,
pp. 311–324.

[101] J. Kilian, ed., Proceedings of the 21st Annual International Cryptology Conference on Ad-
vances in Cryptology—CRYPTO 2001, Santa Barbara, CA, 2001, Lecture Notes in Com-
put. Sci. 23139, Springer, New York, 2001.

[102] A. E. Kosba, D. Papadopoulos, C. Papamanthou, M. F. Sayed, E. Shi, and N. Trian-

dopoulos, TRUESET: Faster verifiable set computations, in Proceedings of USENIX
2014, pp. 765–780; also available online from https://www.usenix.org/conference/
usenixsecurity14/technical-sessions/presentation/kosba.

[103] H. Lipmaa, Progression-free sets and sublinear pairing-based non-interactive zero-knowledge
arguments, in Proceedings of TCC, 2012, pp. 169–189.

[104] H. Lipmaa, Succinct non-interactive zero knowledge arguments from span programs and lin-
ear error-correcting codes, in Proceedings of ASIACRYPT, K. Sako and P. Sarkar, eds.,
Lecture Notes in Comput. Sci. 8269, Springer, New York, 2013, pp. 41–60.

[105] H. Lipmaa, Efficient NIZK arguments via parallel verification of benes networks, in Proceed-
ings of the 9th International Conference on Security and Cryptography for Networks,
SCN 2014, Amalfi, Italy, 2014, M. Abdalla and R. D. Prisco, eds., Lecture Notes in
Comput. Sci. 8642, Springer, New York, 2014, pp. 416–434, https://doi.org/10.1007/
978-3-319-10879-7 24.

[106] A. López-Alt, E. Tromer, and V. Vaikuntanathan, On-the-fly multiparty computation
on the cloud via multikey fully homomorphic encryption, in Proceedings of STOC, H. J.
Karloff and T. Pitassi, eds., ACM, 2012, pp. 1219–1234.

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

https://dspace.mit.edu/handle/1721.1/73191
https://dspace.mit.edu/handle/1721.1/73191
https://doi.org/10.1007/978-3-662-49896-5_11
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/kosba
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/kosba
https://doi.org/10.1007/978-3-319-10879-7_24
https://doi.org/10.1007/978-3-319-10879-7_24

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MULTIKEY FHE AND APPLICATIONS 1891

[107] V. Lyubashevsky, C. Peikert, and O. Regev, On ideal lattices and learning with errors
over rings, in Proceedings of EUROCRYPT, 2010, pp. 1–23.

[108] S. Micali, CS proofs (extended abstracts), in Proceedings of FOCS, IEEE, 1994, pp. 436–453.
[109] D. Micciancio and O. Regev, Worst-case to average-case reductions based on Gaussian

measures, SIAM J. Comput., 37 (2007), pp. 267–302.
[110] P. Mukherjee and D. Wichs, Two round multiparty computation via multi-key

FHE, in Proceedings of EUROCRYPT, 2016, pp. 735–763, http://doi.org/10.1007/
978-3-662-49896-5 26.

[111] S. Myers, M. Sergi, and A. Shelat, Black-box proof of knowledge of plaintext and multiparty
computation with low communication overhead, in Proceedings of TCC, 2013, pp. 397–
417.

[112] M. Naor, On cryptographic assumptions and challenges, in Proceedings of CRYPTO,
D. Boneh, ed., Lecture Notes in Comput. Sci. 2729, Springer, New York, 2003, pp. 96–109.

[113] R. Ostrovsky, ed., IEEE 52nd Annual Symposium on Foundations of Computer Science,
Proceedings of FOCS 2011, Palm Springs, CA, 2011, IEEE, 2011.

[114] P. Paillier, Public-key cryptosystems based on composite degree residuosity classes, in Pro-
ceedings of EUROCRYPT, J. Stern, ed., Lecture Notes in Comput. Sci. 1592, Springer,
New York, 1999, pp. 223–238.

[115] B. Parno, J. Howell, C. Gentry, and M. Raykova, Pinocchio: Nearly practical verifiable
computation, in Proceedings of the IEEE Symposium on Security and Privacy, IEEE
Computer Society, 2013, pp. 238–252.

[116] K. G. Paterson, ed., Advances in Cryptology—EUROCRYPT 2011, in Proceedings of the
30th Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Tallinn, Estonia, 2011, Lecture Notes in Comput. Sci. 6632, Springer, New
York, 2011.

[117] C. Peikert and S. Shiehian, Multi-key FHE from LWE, revisited, in Proceedings of TCC,
2016, pp. 217–238.

[118] D. Pointcheval and T. Johansson, eds., Advances in Cryptology—EUROCRYPT 2012, in
Proceedings of the 31st Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Cambridge, 2012, Lecture Notes in Comput. Sci. 7237,
Springer, New York, 2012.

[119] T. Rabin, ed., Proceedings of the 30th Annual Cryptology Conference on Advances in
Cryptology—CRYPTO 2010, Santa Barbara, CA, 2010, Lecture Notes in Comput. Sci.
6223, Springer, New York, 2010.

[120] O. Regev, On lattices, learning with errors, random linear codes, and cryptography, in Pro-
ceedings of STOC, H. N. Gabow and R. Fagin, eds., ACM, 2005, pp. 84–93.

[121] O. Regev, On lattices, learning with errors, random linear codes, and cryptography, J. ACM,
56 (2009).

[122] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, Hey, you, get off of my cloud:
Exploring information leakage in third-party compute clouds, in Proceedings of the ACM
Conference on Computer and Communications Security, 2009, pp. 199–212.

[123] R. L. Rivest, L. Adleman, and M. L. Dertouzos, On data banks and privacy homomor-
phisms, Foundations of Secure Computation, Academia Press, Ghent, Belgium, 1978,
pp. 169–179.

[124] P. Rogaway, ed., Proceedings of the 31st Annual Cryptology Conference on Advances in
Cryptology—CRYPTO 2011, Santa Barbara, CA, 2011, Lecture Notes in Comput. Sci.
6841, Springer, New York, 2011.

[125] R. Safavi-Naini and R. Canetti, eds., Proceedings of the 32nd Annual Cryptology Con-
ference on Advances in Cryptology—CRYPTO 2012, Santa Barbara, CA, 2012, Lecture
Notes in Comput. Sci. 7417, Springer, New York, 2012.

[126] A. D. Santis, G. D. Crescenzo, R. Ostrovsky, G. Persiano, and A. Sahai, Robust non-
interactive zero knowledge, in CRYPTO, 2001, pp. 566–598.

[127] P. Scholl and N. P. Smart, Improved key generation for Gentry’s fully homomorphic en-
cryption scheme, in Proceedings of the IMA International Conference, L. Chen, ed.,
Lecture Notes in Comput. Sci. 7089, Springer, New York, 2011, pp. 10–22.

[128] N. P. Smart and F. Vercauteren, Fully homomorphic encryption with relatively small
key and ciphertext sizes, in Proceedings of the Internatonal Workship on Public Key
Cryptography, P. Q. Nguyen and D. Pointcheval, eds., Lecture Notes in Comput. Sci.
6056, Springer, New York, 2010, pp. 420–443.

[129] N. P. Smart and F. Vercauteren, Fully homomorphic SIMD operations, Des. Codes Cryp-
togr., 71 (2014), pp. 57–81.

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

http://doi.org/10.1007/978-3-662-49896-5_26
http://doi.org/10.1007/978-3-662-49896-5_26

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1892 LÓPEZ-ALT, TROMER, AND VAIKUNTANATHAN

[130] D. Stehlé and R. Steinfeld, Making NTRU as secure as worst-case problems over ideal
lattices, in Proceedings of EURCRYPT, 2011, pp. 27–47.

[131] P. Valiant, Incrementally verifiable computation or proofs of knowledge imply time/space
efficiency, in Proceedings of TCC, R. Canetti, ed., Lecture Notes in Comput. Sci. 4948,
Springer, New York, 2008, pp. 1–18.

[132] M. van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan, Fully homomorphic encryp-
tion over the integers, in Proceedings of EUROCRYPT, 2010, pp. 24–43.

[133] M. van Dijk and A. Juels, On the impossibility of cryptography alone for privacy-preserving
cloud computing, in Proceedings of the 5th USENIX Conference on Hot Topics in Security,
HotSec’10, Berkeley, CA, 2010, USENIX, pp. 1–8; also available online from http://portal.
acm.org/citation.cfm?id=1924931.1924934.

[134] R. S. Wahby, S. T. V. Setty, Z. Ren, A. J. Blumberg, and M. Walfish, Efficient RAM
and control flow in verifiable outsourced computation, in Proceedings of the 22nd Annual
Network and Distributed System Security Symposium, NDSS 2015, San Diego, CA, 2015,
The Internet Society, 2015; also available online from http://internetsociety.ong/doc/
efficient-ram-and-control-flow-verifiable-outsourced-computation.

[135] A. C.-C. Yao, Protocols for secure computations (extended abstract), in Proceedings of FOCS,
1982, pp. 160–164.

[136] Y. Zhang, C. Papamanthou, and J. Katz, ALITHEIA: Towards practical verifiable graph
processing, in Proceedings of the 2014 ACM SIGSAC Conference on Computer and Com-
munications Security, Scottsdale, AZ, 2014, G. Ahn, M. Yung, and N. Li, eds., ACM,
2014, pp. 856–867, http://doi.acm.org/10.1145/2660267.2660354.

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

http://portal.acm.org/citation.cfm?id=1924931.1924934
http://portal.acm.org/citation.cfm?id=1924931.1924934
http://internetsociety.ong/doc/efficient-ram-and-control-flow-verifiable-outsourced-computation
http://internetsociety.ong/doc/efficient-ram-and-control-flow-verifiable-outsourced-computation
http://doi.acm.org/10.1145/2660267.2660354

	Introduction
	Our results and techniques
	(Multikey) fully homomorphic encryption from NTRU
	On-the-fly MPC from multikey FHE
	Protocol security

	Related work
	Subsequent work
	Roadmap

	Definitions and preliminaries
	Notation
	-protocols and zero-knowledge proofs
	Succinct noninteractive arguments: SNARGs and SNARKs
	Delegation of computation from SNARGs
	Constructions

	Secure multiparty computation
	Security in the ideal/real paradigm
	Types of adversaries

	Fully homomorphic encryption
	Bootstrapping

	Rings
	Discrete Gaussians
	The ring-LWE and polynomial LWE assumptions
	Choice of parameters
	The worst-case to average-case connection

	NTRU encryption
	Security

	Multikey FHE
	Definition
	Multikey FHE for a small number of keys
	O(1)-multikey FHE from any FHE
	O(log)-multikey FHE from ring-LWE

	Multikey somewhat homomorphic encryption for any number of keys
	Multikey homomorphism
	Formal description
	Security

	From somewhat to fully homomorphic encryption
	Modulus reduction
	Obtaining a leveled homomorphic scheme
	Formal description
	Multikey fully homomorphic encryption

	On-the-fly MPC from multikey FHE
	The basic protocol
	Security against semimalicious adversaries

	Achieving security against malicious adversaries
	Formal protocol
	Proof of security
	Efficient NIZKs to prove plaintext knowledge

	Impossibility of a 2-round protocol

	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

