APR 28 1967
LIBRARY

SYMBOLIC MATHEMATICAL LABORATORY
by

TLLIAM ARTHUR MARTIN

B.S., Massachusetts Institute of Technology
1962

M.S., Massachusetts Institute of Technology
1962
SUBMITTED IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY
at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
January, 1967

Signature Of AULNOT . s orm-ummemrremy o e o 5 % g7 . . .
Department of Electrical Engineering, January 9, 1967

Certified by L] L] L) . o L] L] e L] . .
Thesis Supervisor

Accepted by . Y T T T PR R
Chairman, Departmental Committee on Graduate Students

SYMBOLIC MATHEMATICAL LABORATORY

3) by

r

WILLIAM ARTHUR MARTIN

Submitted to the Department of Electrical Engineering on
January 9, 1967 in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

ABSTRACT

A large computer program has been developed to aid applied
mathematicians in the solution of problems in non-numerical analysis
which involve tedious manipulations of mathematical expressions.

The mathematician uses typed commands and a light pen to direct the
computer in the application of mathematical transformations; the
intermediate results are displayed in standard text-book format so
that the system user can decide the next step in the problem solution.

Three problems selected from the literature have been solved to

illustrate the use of the system. A detailed analysis of the problems

of input, transformation, and display of mathematical expressions is
+.also presented. :

Thesis Supervisor: Marvin L. Minsky

Title: Professor of Electrical Engineering

o

o

ACKNOWLEDGEMENTS

The work herein was supported in part by the M.I.T. Computation
Center, and in part by Project MAC, an M.I.T. research program
sponsored by the Advanced Research Projects Agency, Department of
Defense, under Office of Naval Research Contract number Nonr-4102(01).
Reproduction in whole or in part is permitted for any purpose of the
United States Government.

The author expresses his gratitude to Marvin Minsky for his
supervision of this thesis and to the directors of Project MAC ifor
providing a sympathetic environment where the work could be carried
out. I also wish to thank Herbert Teager and Oliver Selfridge for
reading the manuscript and Tim Hart for his assistance when I first

joined the Artificial Intelligence Group.

TABLE OF CONTENTS

ABSTRACT ® @ @ o & o e © e & e @ © & 0 e * o o o e o o o .

AC- NOWLEDGEMNT ® e ® e o & 0 © 8 & e @ © & e O e e 9o e o

(Chapter Titles Are Followed by a Short Description of Their Contents)

CHAPTER 1. INTRODUCTION « ¢ o « o o o o o o o o o o 0 s o o o o 8
The purpose of the thesis is stated to be the

advancement of the computer programming technology

necessary for a useful symbolic mathematical

laboratory. Other relevant research work is then

briefly reviewed for the purpose of establishing

the strategy used in planning the work.

CHAPTER 1II. A STEP-BY-STEP SOLUTION OF THREE PROBLEMS IN 19
NON-NMRICAL AMLYS IS e & e o & & & o & o o & & O o

We describe how the programming system is used.

The form of the typed commands to the system is

specified, and a brief description is given of each .

of the available mathematical transformations. The ™

step-by-step solution of three problems of current

interest is then presented to demonstrate how the

system is actually used.
CHAPTER ITI. ADDITIONAL GENERAL FEATURES . . v 4 ¢ o o o o« o o o« o 16

Additional features are presented which would

make the system described in Chapter II more
convenient for the user. These features are divided
into three classes: methods for adding new
mathematical structures, algorithms, and notations;
methods for handling error conditions and helping
the user to understand the system; and methods for
helping the user with the bookkeeping involved in
the solution of his problem.

CHAPTER 1IV.

CHAPTER V.

CHAPTER VI.

CHAPTER VII,

TABLE OF CONTENTS (continued)

INTRODUCTION T THE REMAINING CHAPTERS . « ¢ 82

The remaining chapters analyze in greater
detail many aspects of the system presented in
Chapter II and Chapter III.

PROBLEM AR—EAS ® ® & s 0 e & © 6 © e ® e o 0 o e o e @ 83

A number of areas in mathematics should be
investigated in order to enlarge the mathematical
laboratory. They are classified according to the
degree to which they appear to require new
heuristic methods,

INTERNAL REPRESENTATION AND MANIPULATION OF 85
MATHEMATICAL EXPRESS IONS . L] L] e L] L] L . L] L] ° L d L] L]

The first part of this chapter contains a
description of the operations necessary for
manipulating mathematical expressions, and some
properties of the expressions which determine
the flow of program control. Operations on the
elementary functions are analyzed and then the
need for additional notation for structures
involving sets is discussed. The rest of the
chapter contains a detailed description of each
of the major LISP transformation routines used
in the system., This description would be good
preliminary reading for workers planning to
construct a similar system.

HASH-CODING FUNCTIONS OF A COMPLEX VARIABLE 189

A common operation in the routines described
in Chapter VI is the comparison of symbolic
mathematical expressions. This operation was
accomplished by "hash-coding" the expressions
using finite field arithmetic and then comparing
the resulting hash code numbers. The scheme for
generating the hash codes is explained in this
chapter. This scheme is the most unexpected
result of the thesis.

CHAPTER VIII.

CHAPTER XI.

CHAPTER X.

CHAPTER XI.

CHAPTER XII.

TABRLE OF CONTENTS (continued)

THE LANGUAGE OF MATHEMATICAL EXPRESSIONS 201

A system which mathematicians will accept
must have a convenient language., This chapter
discusses some possibilities for such a language
and introduces the discussion of several
languages found in the following chapters.

SYNTAX AND DISPLAY OF MATHEMATICAL EXPRESSIONS . . . 203

This chapter describes a program for
displaying mathematical expressions in standard
textbook notation., A complete set of syntax
rules for this complex textbook language is
given. A table driven picture compiler which
uses these syntax rules is then described.

LINEAR INPUT OF MATHEMATICAL EXPRESSIONS ., 225

The productions of an operator grammar,
which contains the system commands as a subset
of its terminal strings, are described., A
parsing algorithm for this grammar is then
described. -

TWO-DIMENSIONAL INPUT OF MATHEMATICAL EXPRESSIONS ., . 234

The problem of parsing a two-dimensional
array of characters into a mathematical
expression is discussed. Two methods of
converting the two-dimensional array into a
linear string are given. First, some
restrictions proposed by Klerer which give
the array a linear order are discussed. Then
a method of reversing the generation procedure
in the previous chapter is given. A method
for handling context dependent relationships
such as in (;) is still needed.

THE SYSTEM PROGRAMS - . L] L] L] L] L] . L] L] L] . - L] . o ° 238

The advantages of system programs are listed
and the use and acceptance of the system programs
described in the following two chapters is
discussed.

TABLE OF CONTENTS (continued)

Page
CHAPTER XIII. PDP-6 LISP INPUT-OUTPUT FOR THE DATAPHONE 241
The use of a routine which allows PDP-6
LISP to communicate with Project MAC time
sharing is described,
CHAPTER XIV. PDP-6 LISP INPUT-OUTPUT FOR THE DISPLAY . ., 246
The use and implementation of a display
language which has been embedded in a version
of PDP-6 LISP is described. This language makes
it possible to write LISP functions which

generate displays and analyze the motions of
the light pen.

APPENDIX A. LISTING OF THE LISP PROGRAMS ., . . v 4 o & o o o o . 267

BIBLIOGRAPHY e v e e o ® e o o o ® ® 02 o o & 0 @ e @ O© © o ® e e o o 331

BIOGRAPHICAL NOTE o @ & & o o o o o 0 e 0O 0 e 0 ®© O©O © 6 0 & ® e 336

Chapter I

INTRODUCTION

The purpose of this thesis is to advance the computer programming
technology required for the real time solution of non-numerical problems
in applied mathematics. Generally, the first use of computers in any
area has been the mechanization of the routine parts of tasks in
essentially the same manner as they were formerly done by hand. Later,
when the computer resources are better understood, the methods of doing
these tasks are altered to make better use of the computer. J. C. R.
Licklider(2) has described the "man-computer symbiosis" which would
result from the most economical utilization of the abilities of man
and currently available machines in a problem solving situation. ''Men
will make approximate and fallible, but leading contributions, and
they will define ciiteria and serve as evaluators, judging the
contributions of the equipment and gulding the general line of thought.
In addition, men will handle the very low probability situations when
such situations arise. ...The information-processing equipment, for
its part, will convert hypotheses into testable models and then test
the models against data." Licklider stated further that the equipment
will simulate, transform, lnterpolate, extrapolate, carry out
routinizable clerical operations, and remember precise values and

exact details,

This degree of man-machine cooperation has been and will continue
to be approached by stages. This is because it is very difficult to
determine the many small features necessary to make workable a system
that differs greatly from those currently 1n use, and because
mathematicians will not use a system which is not clearly more
convenient than their tried and true aids, such as pencil and paper.
Furthermore, considerable research will be required to determine just
how much of mathematics 1s routinizable. One might envision four roles
which the computer could take, each requiring increased responsibility,

The first step would be to help the mathematician overcome
straightforward drudgery. This is often done by programming the simple
lterative operations needed in straightforward problems in numerical

analysis. A second goal would be to help the mathematician work in

areas that he understands in principle, but where he doe$ not have the

technical facility, gained from long practice and accuracy, which frees

him to focus on the creative aspects of the problem. Such a skill is

required, for example, for the approximate solution of differential

equations using series expansion techniques; the programming system

constructed for this thesis operates at this level. A third goal would

be to help the mathematician in areas where he is only a beginner--
where he knows the names and purposes of the algorithms, but does not
know their details. The computer must know and apply criteria which
determine what methods should be used on a given example. Some current
research on symbolic integration seems to be a step toward systems of

(8)

this type. Research in computer problem-solving tactics for the use

of fixed resources on specific tasks would be useful for systems at this

10

level. A fourth goal would be the construction of an almost autonomous
problem solver; the macliine would help formulate the general strategy of
the problem solution. It is at this level that any productive research
in computer theorem-proving strategy would be most applicable to a
working system.

Of course, to build a working system which represents a significant
advance toward these goals requires a great deal of research in several
areas, often too much for any one project. It is difficult to work much
in advance of the general level of programming technology without having
to do a lot of ground work, which only builds tools for the project at
hand. To develop the system in this thesis, which realizes in the
laboratory the second of the above goals, it was necessary to set up
systems programs and a programming language environment for real-time
interaction with large symbolic programs. It required mew techniques
for input and output of mathematical expressions. Mathematical
expressions were represented as data in the computer, and we had to
investigate algorithms needed to transform them. Specific problem areas
where mathematicians could most benefit from such a system had to be
defined. Working in so many areas, only some of the possibilities could
be explored and a fixed strategy with respect to the trade-offs between
programmer effort, program efficiency and usefulnese, and the number of
new ideas had to be followed.

The particular emphasis of the thesis can best be understood through
a review of work developed concurrently with it. A bibliography of the
work in the field has been prepared by Sammet (1), and no attempt will
be made to mention every paper. In the sections to follow some research

areas will be listed. Then the different research projects carried out

11

by other people will be discussed, grouped according to their area of

emphasis.,

In conclusion, the choice of research for this thesis will

be stated.

To better use the computer as an aid to the mathematician, there

are several lines of research which can be pursued, each affording the

possibility of doing something new without overreaching for currently

unrealistic levels of overall performance. These are as follows:

1.

6.

The provision of computer capability for solving existing
problems in mathematics. Special programs might be written
for a particular problem. The programs would be simple, but

the problem solution would be new.

The development of complex programming structures and languages

suitable for more complex mathematical algorithms.

The development of input-output techniques to bring the

mathematician closer to the computer.

The discovery of procedures for mechanizing the more routine

mathematical transformations.

The development of methods for solving problems which are

feasible only with computer impiementation,

The extension of mathematical rigor to computer procedures and

languages in the context of mathematical procedures.

There is naturally some difference of opinion as to the usefulness,

significance, and feasibility of research in the different areas, and

over the past five years more than fifteen people and projects have taken

their stand.

12

Several programs have been written in the LISP 1.5 language, which
was developed by the M.I:T. Artificial Intelligence Group.(lg) LISP 1.5
provides both numerical and 1list structure data and automatic storage
allocation. In addition, the specification of algorithms as recursive

functions is particularly suitable for operating on the elementary functions

in analysis, which can be represented as a tree structure of subexpressions.
To demonstrate the capabilities of LISP, Hart(3) wrote a program to put
the elementary functions in a simplified form. He had to define a
canonical order for expressions representing the elementary functions

and he found that not only were some simplifications very hard to program,
but that the use of an expression determined its "simplest' form,

Carrying on this work, Russell and Wooldridge(4) at Stanfbrd, also
interested in complicated LISP programs, added new features to cope with
the inefficiencies and shortcomings of Hart's program, fhey introduced
user options, such as expansion of products, and special representation
for polynomials. They added routines for differentiation. They had

ideas for discovering subexpressions such as sin2x 4 coszx and methods

to avoid simplifying identical subexpressions more than once, but they
quit working and the program was not improved further, probably because
each change required many small revisions. A new simplification program
was written by Korsvold.(5) He reduced the amount of fixed program
structure and implemented a way for adding simplification rules 1in the
form of patterns containing a free variable. He had a complicated
strategy for applying the rules, but the matching of the rule to the

data only covered simple cases. At the same time, Fen:‘.chel(6) at

Harvard recognized the importance of an explicit body of rules; this

13

body of rules would provide program flexibility. 1In contrast to the
others, Fenichel emphasized the formal power and structure of his
program instead of showing how his implementation was an efficient

model for the data and algorithms. He emphasized the idea of computation
by local transformations.

There are two more examples of complex programs for mathematical
expression transformation. While Hart was writing the first of the
programs for algebraic simplification, Slagle(7) wrote a program which
solved freshman calculus integration problems. Although Slagle
primarily wanted to show how heuristics and a judicious choice of
subproblems could be used to soive examples in an area for which a
general algorithm was not known, he also had to find properties of
mathematical expressions which would be useful in selecting a trial
transformation. Thus, he wrote a complicated routine fof matching
mathematical expressions against a pattern. Slagle's program
demonstrated a working scheme for the heuristic selection of subgoals
and provided food for thought about executive structures, but it
misled some people to think that few integration problems could be
solved algorithmically, Recently Moses has increased the range of

(8)

examples which can be integrated with algorithms. Moses has
continued the work on pattern matching routines,

Concurrent with this work was the work of those who took a skeptical
view of the possibility of creating complex programs which were efficient
enough for immediate use. The ALPAK system(9), developed at Bell

Telephone Laboratories, is a polynomial manipulation package which has

been used to solve problems for the research workers there. It is so

14

much more efficient than the systems above, that it provides a definite
incentive to produce 0ptimum coding for common classes of problems., 1In
addition, it provides mathematicians with a useful facility, but it is
limited to problems which can be solved by polynomial manipulation. An
excellent polynomial manipulation package has also been developed by
Collins(lo) at I.B.M. 1In his paper, he gives a good discussion of the
relative efficiency of different systems. The FORMAC language(ll), also
developed at I.B.M., is intended for the efficient solution of problems
requiring algebraic manipulation. FORMAC programs are similar to
FORTRAN programs and require statements which are more familiar to
programmers than to mathematicians, such as the declaration of symbolic
variables and the direction of input-output. The language is not as
flexible as the LISP systems, but it is faster. Another language is
FORMULA ALGOL(IZ), which is being developed at Carnegie Tech. It is a
version of ALGOL which contains 1list Structure and mathematical
expression data types and a built-in pattern matching facility. It
contains numerous design decisions, such as the use of an addition
operator with only two arguments, which seem controversial.

During this same period, better man-machine commnication was
developed in certain systems for real-time interaction with programs
for numerical analysis. One of the first programs was the JOSS system,
developed at RAND in 1963.(13) The fact that it was implemented on a
small machine limited its capability to simple calculations, but it
stands as an example of the attention to details of "human engineering''
which makes a system pleasant to use, Culler(14) demonstrated the real-

time solution of numerical problems by methods which could not be used

15

in a closed shop computer facility, since they required frequent man-
machine interaction. Cufler introduced the graphical display of 127
points approximating a function to be transformed numerically. He
attempted to use special keys on a user console to simplify the input
of expressions and commands., The primatives of Culler's system are
very elementary; the user must first combine these operations into
programs which perform the transformation he needs.,

On-line numerical analysis is also performed by MAP(IS), which
operates at Project MAC, MAP contains error-checking and comments to
guide the user as he learms., It also establishes a set of conventions
for the addition of new subroutines, so that they can be used
conveniently., MATHLAB(16) is the first working program for on-line
non-numerical analysis. It is being developed at Project MAC. The
initial version contained the Russell-Wooldridge simplifi%ation
program. In addition to the routines for expression expansion and
differentiation, there were routines for factoring and integration.
There are many differences, but with the exception of the factoring
and integration routines, the initial version of MATHLAB is essentially
a subsystem of the system described here.

There has been only a little work on the mathematics associated
with algebraic symbol manipulation. Several programs have been written
to accomplish a specific task which requires mathematical manipulation,
but these are rather simple from a programming point of view, and there
have not been enough of them to change the applied mathematician's
concept of the resources available to him, Therefore, they have not

resulted in much new mathematics.

16

To improve the efficiency of his polynomial manipulation package,
Collins developed a new.greatest common divisor algorithm for polynomials
with integer coefficients. Moses has investigated algorithms for solving
systems of polynomial equations and for integration. Manove(17) has
mechanized the integration of rational functions and Engleman(17) is
seeking to expand his MATHLAB through inclusion of more procedures, such
as Laplace transforms. An interesting theoretical result was obtained
by Richardson(ls), who recently proved that the questions of whether (i)
an elementary function is identically zero or (ii) is integrable in
closed form, are recursively unsolvable,

The mathematical laboratory described in this thesis is very

complex and explores a number of new ideas about hash coding, descriptive

properties of mathematical expressions, and system organization. An

*

examination is made of the types of programming structures needed in
non-numerical analysis. Some very complicated routines for expression
analysis and display are explained, On the other hand, no new
mathematical algorithms are introduced and the programs are explained
without mathematicel formalism. As opposed to the other complex LISP
systems, the system was constructed to be immediately useful as an aid
to applied mathematicians in the solution of certain problems., As
opposed to some of the other problem solving Systems, it does not solve
these problems in an economical manner. Instead, attention has been
concentrated on providing a rich enough notation for input and display
and a great enough variety of mathematical transformations to achieve
better man-computer symbiosis during the problem solving procedure. As

a demonstration of this man-machine interaction, we will present "scripts"

17

showing the solution of some non-trivial problems in applied mathematics.
The current hardware configuration for the mathematical laboratory

is shown in Figure 1.

Disk
7094 PDP-6 Displa
dataphone play
7750
Plotter
i
Teletype
Figure 1

The system is quite inefficient, in terms of the amount of the
total computation time required by the slow transmission of information
over the dataphone, the frequent disk accesses necessitated by the
small 7094 core memory, and the fact that many of the routines run
interpretively. These inefficiencies could be eliminated by intwoducing
the entire system into the PDP-6, with the large core memory now
available:

The configuration in Figure 1 was used initially as it was the only
means then available for obtaining the minimum requirements for the
system: a time-shared machine with a large memory connected to a
display with fast light pen response. The use of a peripheral computer

for inmput has the disadvantage that the input signals cannot be

18

intrepreted by the peripheral computer in terms of the whole data base,
which is in the main machine. This limits the immediate feedback which
can be used to simplify the user's input task., In addition, the use of
two machines complicates the day-to-day routine required to develop a
system. The justification for two machines would be the more economical
assignment of the different types of computation to be done, or the need

to have the user located at a terminal remote from the main machine,

Chapter II

A STEP BY STEP SOLUTION OF
THREE PROBLEMS IN NON-NUMERICAL ANALYSIS

The mathematical laboratory consists of a PDP-6 computer linked by
dataphone with the Project MAC time sharing system. When the laboratory
is in operation, versions of the LISP programming language are running
in both the PDP-6 computer and the Project MAC 7094 computer, The user
communicates with the PDP-6, which is used only for input~output, by
means of a teletype, a DEC Type 30 display, a light pen, and a Calcomp
plotter. The PDP-6 relays messages to and from the Project MAC time
sharing system, where transformation routines written in the LISP
language are applied to the mathematical expressions. Mathematical
expressions can be displayed and plotted in standard texfbook format.
Input of expressions and commands is from the teletype, but subexpressions
of displayed expressions can be referenced during input. If the light
pen is pointed at the main connective of a subexpression, the
subexpression can now be referenced in the typed input string. The
exact format of the input commands and a brief description of the
available mathematical transformations will be presented 1n the next
section. This description is followed by the step~-by-step solution of
three problems in applied mathematics. The details of the programs will

be presented in later chapters.

19

20

The Mathematical Operators

The commands typed at the PDP-6 are similar to Algol statements,
The commands are typed and executed one at a time. More complex
operations involving che definition and alteration of commands and the
introduction of more pneumonics and man machine interaction will be
described later. The commands consist of infix operators, functions,
and variables. Functions and variables can be subscripted and any
subexpression can be quoted. A sample command which requires most of
the notation is:

#'El¢' (X + Y) * 'DRV(':T,1,DRV('U,2,E1)) + !E2,20 + '(F[I,J] (X,Y))42#

In words: the name El is assigned to the expression which is the
sum of three terms. The first term is the product of (X + Y) with the
unevaluated first derivative with respect to lower case T of the second
derivative with respect to U of the expression currently named El. The
second term is the 20th subexpression of a displayed expression currently
named E2; this subexpression has been indicated with the light pen. The
final term is the square of a subscripted function of X and Y. The
notation may seem somewhat complex, but as will be seen, a complex
notation is required to express in a compact way the many small steps

required to solve a particular problem.

21

The infix operators are:

A<B

‘AN

A=B

A+B

A*B
A/B

A*B

B ig given name A. As such it is written on the
disk. The value of < is B.

The Nth subexpression of A is the value of !
Intensify the desired subexpression of A by
pointing to its main connective with the light pen.
Then type !A, and the computer will type N. If the
expression has no main connective, point to one of
its arguments and type ;iA instead of !A. Consider
all minus signs to be unary.

Equate A and B

A plus B

A minus B

A times B

A divided by B A/B*C is equivalent to A/(B*C)

A to the power B

The functional, subscripting, and set notation is:

A(C,D,E)

Al1,J] (C,D,E)
Al1,J]

(A,B,0C)

A is a function with arguments C,D, and E.

AI 3 is a function with arguments C,D, and E.
2

AI is a variable.
5J

This is a set with three elements. By convention

(A) = A,

22

Either an expression or a variable name can be quoted.
A fﬁnction name always stands for itself., Quoting
a function name means that its arguments will be
evaluated but that the function will not be evaluated.
For example let F(X,Y) = X-Y be a function and let
X and Y be names for A; then

F(X,Y) evaluates to 0

'F(X,Y) evaluates to F(A,A)

F('X,Y) evaluates to X-A

'(F(X,Y)) evaluates to F(X,Y).
Quoting a function or variable name does not quote
its subscripts. Numbers are taken as quoted
automatically,

Causes the letters which follow it to be lower case

for purposes of display.

As in CISS, there are two editing characters:

-3

Deletes all the characters of a command back to the
initial #.

" Deletes only the immediately preceding character.

"#'" must be the first and last character of every command, n.n
causes the current intensified subexpression to be raised one level. TFor
example, if the A in AB4- C is intensified, then when ; is typed, AP will

be intensified.

23

Other available operators are:

ALLSUMEXPAND (EXP)

BRINGOVER (EXP, X)

Applies SUMEXPAND to every summation in expression
EXP.
Subexpression X, which has been indicated with the

light pen is brought to the other side of equation

EXP.

COLLECT (EXP,SET) Top level terms in EXP are collected on powers of
the expressions in set SET.

DEPENDENCE (EXP) Returns a set of the variable and function names
in EXP.

DELSUBST (EXP,OLDDEL, NEWDEL) dx - dx for each such

d OLDDEL d NEWDEL

subexpression in EXP.

DRV(X.,N., ..., X ,N , Y) Differentiate Y N. times with respect to
1°71 n’"'n i

DRVDO (EXP,X)

DRVFACTOR (EXP, X, N)

DRVZERO (EXP,X)

Xi’ for each i.

All indicated derivatives with respect to X in EXP

are carried out as far as possible.

dN+Mf dM de
2 () for each such subexpression in
N+M M N
dx dx dx
EXP.

All derivatives with respect to X in EXP are set

equal to zero.

24

EVALUATE (EXP,SET) SET is a set of equations; whenever the left side
of ohe of these equations can be matched to a
subexpression in EXP, the right hand side is
substituted. The left sides must be variables or
functions. A match occurs whenever a binding of the
function variables and subscripts can be made.

EXCHANGE (EXP) If the top level connective of EXP is binary, its
arguments are exchanged, right to left.

EXPAND (EXP) Multiplies out all expressions of the form a*(b+c)

in EXP. 1In addition,

4 (a-l'b)“’-c—lé +.‘l1?.
dx dx dx

FACTOROUT (EXP ,FACTOR, Y) The factor FACTOR is factored from each term of
EXP. The third argument Y is optiondal. If Y is
present, the factor FACTOR is renamed Y.

GROUP (SET) The set SET of terms which have been indicated by
the light pen in EXP are grouped within the associated
sum or product. The value of GROUP is the grouped
set of terms.

LEFT (EXP) Returns the left argument of the main binary
connective of EXP,

LIMIT (EXP,X,N) Determines the limiting value of EXP as X approaches
N.

MULTIPLYTHROUGH (EXP,X) Multiplies each top level term of EXP by X.

NEWNAME () Creates a name of the form Fn, where n is an integer.

NORMPOLY (EXP,X)

REPLACE (E, X, Y)

RIGHT (EXP)

SIMPLIFY (EXP)

SOLVE (EXP, X)

SPLIT(EXP)

SUBSTITUTE (EXP,X,Y)
SUMEACH (EXP)
SUMEXPAND (EXP)

TERM(EXP,N)

TRUNCATE (EXP, VAR, N)

SUM(I,N1,N2,Y)

25

Every sum in EXP is treated as a polynomial in X
and ; power of X is factored out so that the lowest
power of X in the polynomial will be zero.
Expression X replaces Y in the expression named E.
Y is a term indicated with the light pen or a group
of terms indicated with GROUP. If the light pen
has been used to construct X, the resulting
expression position is named HOLE. HOLE can then
be used for the third argument. If X is equal to
NIL, then the third argument is omitted from the
expression named E.

Returns the right argument of the maiﬁ binary
connective of EXP,

Simplifies expression EXP.

Solves equation EXP for variable X as far as
possible.

Subparts of EXP are named and replaced by their
names in EXP, so that EXP will contain less than
100 subexpressions.

Substitute X for each occurrence of Y in EXP.
E(atb) > sa + &b

Expands the finite summation EXP,.

Returns the Nth argument of the top level connective
of TXP, or NIL if there is no Nth argument.

Expands EXP up to power N in variable VAR,

Sum expression Y for values of I from N1 to N2.

26

ITG(X,L1,1.2,Y) Integrate Y with respect to X between limits L1
and L2.

Expressions which are assigned names are kept on the disk. The
expression most recently computed always has the name LAST. When A€B is
executed, if A is not "LAST" and is already the name of an expression,
then this old value of A is given the name OLD. Thus, if A€A+2 is
executed and then is found to be incorrect, the old value of A can be
retrieved.,

Operators used for input-output and disk storage are:

EDISPLAY (E) Displays the expression named E on the PDP-6 scope.

EPRINT(E) Prints out the internal form of the expression
named E with PLS, PRD, EQN, and PWR in infix form;
the other operators in prefix form.

EDELETE (E) Deletes expression named E from the disk.

This completes the description of the PDP-6 commands.

The Poincaré-Lighthill Procedure Applied to X + u?x = 8x3

The Poincaré-Lighthill procedure is typical of a number of procedures
used to find the first few terms in the asymptotic expansion of the
function which is the solution to a mildly non-linear differential equation,
The equation chosen here is that for a harmonic oscillator with a small

forcing function. These solution procedures involve assuming a series

-

\
expansion in powers of the small parameter £ for one or more of the

parameters and variables in the equation, substituting these series into
the differential equation, and thus obtaining a series of relat‘ons

between the coefficients of like powers of €. Each of these equations

27

1s then treated in turn by whatever methods seem appropriate. Thus it 1is
1n general necessary to see these equations before the next steps in the
solution process can be determined.

When a typed command has been completed, the machine makes a response
of acknowledgment. This standard response will be omitted in the dialogue
to follow; only the typed commands and the displayed equations will be
shown. A running discussion of the dialogue is included, and the displayed
equations are shown as plotted by the CALCOMP plotter on the pages following
their use. A photograph of the same equations displayed on the scope is
shown at the end of the section. The reader should be aware that in the
equation syntax used, more than one line of an expression can occur over
a divide bar or within brackets. This is illustrated by equation Q16 1in
the last section.

Enter the differential equation.
#'El¢' (DRV(:T,2,X(:T)) + OMEGAM2*X(:T) = EP*(X(:T))13)#
#EDISPLAY('EL1)#

A new independent variable 7~ is introduced in order to stretch the
time. Type 1n expressions for series expansions for X and t in terms of
functiomsof 7. That 1s, a solution for X(7) rather than for X(t) will
be found. Since t depends on7, equation El can be used to find an
equation in derivatives of X(r). As a final step the inverse relationship
7(t) will be found, so that X(7) will give X(t).

'E2¢<' (X(TAU) = SUM(I,0,INF,EPFI*X[I] (TAU)))#
#EDISPLAY ('E2)#
#'E3¢' (:T(TAU) = TAU + SUM(J,1,INF,EPrJ*:T[J] (TAU)))#

#EDISPLAY ('E3)#

28

In order to substitute d* for dt it is necessary to apply the

transformation

2

d
d ;Aa (dx)
dt

dt dt
to equation El.

#'E4<DRVFACTOR(EL, ' :T,1)#

Display E4 for comparison with the substituted result below.

#EDISPLAY ('E4)#

Now substitute d7 for dt, and X(7) for X(t)
#'E5¢SUBSTITUTE (DELSUBST (E4 ,' (DEL(:T)), '(DEL(TAU))/DRV('TAU,1,RIGHT(E3))),
"(X(TAU)), ' (X(:T)))#

#EDISPLAY ('E5)#

Now substitute the series for X(#) and perform the indicated differentiation

with respect to 7.

' E6<DRVDO (SUBSTITUTE (ES, RIGHT(E2),' (X(TAU))), 'TAU)#
#EDISPLAY('E6)#
Now expand both sides to first order in e.

##'E7<TRUNCATE (E6, 'EP,1)#

#EDISPLAY ('E7)#

29

m_\uﬂu .aw H\W.f\r.nm»\uu

®

m\vuux..w

-(*)x

N

ap

(3)x-2=(2)x- ()%

(€3)

(z3)

(13)

30

The zero order terms form.the harmonic oscillator equation; the solution
can be written down by inspection as Acos wT. Use the light pen to form

an equation of the first order terms.

#'E8«!E7,6=; !E7,88#

#EDISPLAY ('E8)#

Bring the terms in X1 (r) to the left side of the first order equation.

Substitute for XO (r) and carry out the indicated differentiation.

#'E9FSIMPLIFY(DRVDO(SUBSTITUTE(SOLVE(E8,'(X[l](TAU))),'CA*COS(OMEGA*TAU)),
(X[0] (TAU))), "TAU)) #

#EDISPLAY ('E9)#

It is now necessary to substitute an identity for cos3wr and to collect

terms on sinwr and coswT,

#'E10¢COLLECT (EXPAND (SUBSTITUTE (E9, ' { (COS (3*OMEGA*TAUN+ 3*COS (OMEGA*TAU)) /4) ,
' ((COS (OMEGA*TAU))43))) , ' ((SIN(OMEGA*TAU) , COS (OMEGA TAU))) #

#EDISPLAY('EL0)#

Theoretical considerations require that the coefficients of coswr and
sinwy must be zero if there is to be a periodic solution for Xl(r). From
the coefficient of sinwr it is apparent that ti(T) must be some constant C.

This constant is determined from the coefficient of coswr.

#'ElIFSIMPLIFY(SOLVE(SUBSTITUTE(!ElO,44,'C,'(DRV(TAU,l,:T[l](TAU))))=0,'C))#

#EDISPLAY ('E11)#

31

(s3)

(+3)

~ 4
L3

EN m.tuoX!

€

(+)° xl!t ﬁu«;.m»uﬂx%m»uaxwmﬂﬁ T\J gl

Z

. T\uax+

= |- ()RS

LIxn LY 0% L[e R [y] emed <5 |-(2)

Cl: (113)
b-(4-M-g)507- £ +(+- -M)S03 - Mq.i& m. TL 3= y (- L (4#-mNIs- ?& 1T __ J.q.a.:-un
] u«j.ﬁp.uﬁx.fm%uaxwwm z m&wwu

(*-m)sa)- i@ i

2

u%¢.3.T.BuEm.T:Yc.Na.T.BVmDU.T»%pMuJ.hmnuu

| (xR .

34

35

2

S0 Xy = A coswT and to first order t =7 +€3—Ai-7
8w
€3a° e 3a
Thus to first order T=»¢(1 - >) and X = A cos (1 - 7)t
8w 0 8w

One effect of the non-linear term is thus seen to be an alteration
in the frequency of the zero order term,

In conclusion, note the large number of small steps necessary to
solve this problem, These are the result of doing almost the entire
solution in the machine. In the case of a small problem such as this,
some of these steps could be done by hand, the object here is to
illustrate the steps which would be required for a larger problem.

This problem also illusctrates how rather lengthy intermediate
calculations can lead to some rather concise results. Thé perturbation
of the frequency in the zero order function is found to have a simple

expression.

Plasma Accelerator Electrode Boundary lLavers

The second problem is a duplication of the work in the first three
sections of Chapter Three of a 1963 Masters Thesis by J. S. Praper for
the M.I,T. Department of Aeronautics and Astronautics, This thesis
investigates the laminar compressible boundary layer on the electrode
walls of a direct-current crossed field plasma accelerator under very
special physical conditions. Many of the assumptions used under these

conditions are set forth in the paper "Electrode Boundary Layers in

36

Direct-Current Plasma Accelerators" by Jack L. Kerrebrock in the August

1961 Issue of the Journal of Aerospace Sciences. Kerrebrock's paper

investigates a solution involving less mathematical manipulation than
that undertaken by Masters Thesis student Draper.
In summary, the entire solution procedure is as follows:
1. Write down 5 non-linear partial differential equations:
Momentum
State
Continuity
Energy
Electron mobility as a function of temperature.
These equations relate U stream velocity
V lateral velocity
t temperature .
p density
p electron mobility
P pressure
in terms of the independent variables x and y. The constants are:
j current
B magnetic field
CP specific heat
K compressibility
G conductivity

R gas constant

37

The absence of variation in the y direction in the free stream is
used to find the momentum and state equations there. These two
reduced equations are solved for gf which is eliminated from
the five main equations, since P is not a function of y.

The relation H = Cpt + U2/2 is used to substitute derivatives of H
for those of t in the energy equation which then becomes an
enthalpy equation. ¢t is thus eliminated from this equation.
Simplification of the resulting expression requires introduction
of the momentum relation. This step is performed because the
enthalpy equation has a term proportional tc [1 - %] where Pr is
Cpht r

X and can be approximated as 1, thus eliminating this term.
Next; a change of independent and dependent variables is made.
The change of independent variables is such that it approximates
a similarity transformation for low Mach number, Thesé
transformations change x and y to¥ andn. 1In addition~%— is

<o

defined as f' , %: as 0, and %:, as g. The momentum and
enthalpy equations are transformed, using the continuity and

state equations as side conditions. ¥ is then changed to M_
There result two non-linear differential equations in f and g and
their derivatives with respect to N and M.

f and g are then approximated as £'(n, M) = b(M)n + c(Mc)nz,
gn,M)" = e(M In + f(M;)nz. These approximations are substituted
into the two non~linear differential equations. The equations are

then integrated with respect to n between the wall and the edge of

the velocity boundary layer 8u and the edge of the enthropy boundary

38

layer $e respectively. b(M_) and e(M) are eliminated from the
result by the relations £'(6u,M_) = 1 and g2(e,M) = 1. There
result two ordinary linear differential equations for the
derivatives of bu, ¢, e, and f with respect to M, -

6. Two more linear differential equations for bu, c, 8e, and f are
generated by choosing the coefficients of the approximations in
step 5 so as to satisfy the momentum and enthalpy equations
produced in step 4 exactly at the extremal points £f" = 0 and g' = 0.

7. The four resulting linear differential equations are solved for the

3u 3¢ 3be af

aMa’.Eﬁ:’ FT and 3&; by Gaussian reduction. These

four expressions are then numerically integrated with a Runge-Kutta

derivatives

method.

This problem has several interesting features. Tt is a demonstration
of the notation use by workers in this area. The algebraic expressions
are of a size difficult to manipulate by hand, but within the capabilities
of current machines. The final symbolic result is large; it is difficult
to write the corresponding numerical integration program correctly when
this result must be input by hand, but here it is developed in the machine
and could then be transformed into the required numerical program. Note
that the symbolic steps are needed in order to cast the problem in terms
of the independent and dependent variables of interest. The problem is
characterized by the application of simplifying side conditions and
physical assumptions. As such, it involves a number of manipulations
for the purpose of expression condensation. This will be apparent from
the following step by step reproduction of the first three sections of

Chapter III. These steps bring the described solution through the

39

application of the similarity transformation to the momentum equation.
Input the momentum equation:
#'Dlé’(RHO*(U*DRV(X,l,U) + V*DRV(Y,1,U)) = DRV(Y,1,MU*
DRV(Y,1,U)) - DRV(X,1,P) + 1 J*B)#
Input the energy equation:
#'D26J(RHO*C[P]*(U*DRV(X,I,:T) + V¥DRV(y,1,:T)) =
DRV(Y,1,K*DRV(Y,1,:T)) + MU*(DRV(Y,1,U0))42

+ U*DRV(X,1,P) + :J42/SIGMA#

The boundary layer solutions must match the free stream solution.
The free stream values are indicated by the subscripte, At the free
stream, there is no variation in the boundary layer with respect to y,.

To save rewriting, define sets containing the variables to be subscripted.

#'D3¢" (RHO,SIGMA, U, : T, H)#

#'D46'(RHO[INF],SIGMA[INF],U[INF],:T[INF],H[INF])#
Then in the free stream D1 and D2 become:

#'D56SIMPLIFY(SUBSTITUTE(DRVZERO(Dl,'Y),D4,D3))#
#'D6eSIMPLIFY(SUBSTITUTE(DRVZERO(DZ,'Y),D4,D3))#
#EDISPLAY ('D5)#

#EDISPLAY ('D6)#

D5 and D6 will now be used to express some of the expressions in D1 and
D2 in terms of the free stream quantities. In order to substitute for
some of the terms in a sum, the terms must be grouped using the light
pen. This is somewhat inconvenient.

#EDISPLAY (D1)#

40

ue g
? N
ls U|U

- il
*a f 1
Vd N\ / N
8 Dl)—
U|T
o5

~_)

. +
e VammmmaN
O Six
8 [oJ o)
(o} ~—

I .

xx D
—

(]

i

24

(08)
(D1)

41

Now the last two terms in D1 are replaced by the left side of D5.
#'D7¢REPLACE ('Dl,LEFT(DS),-GROUP((!D1,33,!D1,38)))#
#EDISPLAY ('D7)#
#'D8¢LEFT (D2) = EXPAND(SUBSTITUTE (
RIGHT (D2) , RIGHT (SOLVE(D6,'(DRV(X,1,P)))), '(DRV(X,1,P))))#

#EDISPLAY ('D8)#

The last two terms in D8 are now put in a factored form.
#'DB«REPLACE('D8,FACTOROUT(GROUP((!D8,62,!D8,78)),'(:J&Z/SIGMA[INF]))
' HOLE)#

#EDISPLAY ('D8)#

In order to effect a cancellation, equation D8 will now be
transformed by replacing the temperature, t, with the enthalpy, H,
using the definition

_ 2
H = CPt + U/2.

First H = CPt +U2/2 is solved for temperature t.
#'D9¢SOLVE (' (H(X,Y) = C[P]*:T(X,Y) + U(X,Y)*2/2),' (:T(X,Y)))#

Now the substitution is made for t and t_ .
#'DlOeEXPAND(SUBSTITUTE(D8,(DRV('X,l,RIGHT(D9)),SUBSTITUTE(DRV('X,l,RIGHT(D9)),
D4,D3) ,DRV('Y,1,RIGHT(D9))), '(DRV(X,1,:T), DRV(X,1,:T[INF]),

DRV(Y,1,:T))))#

XP | an @ AR AR AR [[AP XP .
2) oo (o (£ {)0] o

Ne——
'ﬂ
&)
8
@)
I
Y
+
D
o
N
_'Jl}
Ol D
\N——
+
v
N
P>
ol D
N~———
>
Olo
1
| S|
/N
P>
olT
e/
)
+
/TN
ulx
jo1Ke]
—
D
 __J
'ﬂ
Q
(@)
I
%

43

Now, there are a number of tedious grouping steps.

3

#EDISPLAY ('D10)#

First, factor RHO out of two of the terms on the left side of the equation,
#'Dlh“REPLACE('DlO,FACTOROUT(GROUP((!D10,48,1D10,21)),'RHO),'HOLE)#

#EDISPLAY ('D11)#

Now factor RHG*U from the other two terms and bring them to the right side.

#'DllPBRINGOVER('Dll,FACTOROUT(GROUP((!DII,5,!D11,45)),'(RHO*U(X,Y))))#

A machine matching operation would be better for the next factoring
step which must be done twice when light-pen pointing is used.

#EDISPLAY ('D11)#

The quantity K/CPu is factored out of two of the terms and set equal
to 1/Pr.
#'DIIFREPLACE('Dll,FACTOROUT(!Dll,Ba,'(K/(C[P]*MU)).'(1/P[R])),'HOLE)#
#EDISPLAY ('D11)#

#’DllﬁREPLACE(‘Dll,FACTOROUT(EDll,ZS,'(K/(C[P]*MU)),'(1/P[R])),'HOLE)#

CPu/K is the Prandtl number Pr' It is close to 1, and setting it to

1 will effect a simplification if the identity

dUp oy e pdUGEY)) dp
MG Tt DT I-v . Hheg!

is also substitued. This simplification means that the heat conduction
away from a point is just equal to the viscous dissipation at that point.
#'DllfSIMPLIFY(SUBSTITUTE(Dll,'(1,DRV(Y,1,MU*U(X,Y)*DRV(Y,1,

U(X,Y))) -U(X,Y)*DRV(Y,l,MU*DRV(Y,l,U))),'(P[R],MU*(DRV(Y,I,U))%Z)))#

#EDISPLAY ('D11)#

y

LU J D ‘ o _ XP ¢ o
T 41 “OHY - ?, X) anﬂL.? X)'Nn-n-

d

[&] © d
ozm.?ﬁxu Im%%?f ﬁ'}lo.u.s%, $ AL

3
© u?,xu g?xu:v_u

2

. 2 T\,.xuzo%%z

ozm.o.T}.qux%%oxm.:.?ﬁx?m%%?.xu:-ozm.?T} xJH L2 fozm n- T\,.xu:\,l%;.?.xu:-ﬁg&

I.D © o
J1|m %l OHY - T\,.xu :xﬂi.?.xu n-n-

4

d

3 soxy.T}.xuaIm%g ?%w w MU+ J g 2
P
?ﬁxu:o%fﬁxu:.y

2 T\,.xuzo%%v_

oxm.:.T ‘x)n 2 g (A“x)N- ﬁ .T>.xu_._w%f:.?,.xulemu:.o:mJ,orm.?T}.x?ﬂi.?.xu? (11a)

T.?.xwgml T x)n 22 @ W (Ax)n- ozm-%lb %1 OH - ?.xua?ﬂm%?.xusg.:;

O
<

d

sozm.T}) IIQ ﬁwm%gz%?.xuzu%%x }UU+T>.£:W%.?.£:.¥ E

4

'

~
~

[

T.?, ‘®)n %2 wu??, .xuao%g;.? .xua.oxm.:uw..]mo..%,,sozm.?} .xusgmui.? ‘x)°n-n-

z

d

"OH - T, K)HED Tr ?.m u N+ J ARy d AP
: . P P
T\, xuzoul%z JZ.T\,.&:D%%?.V%

-—

2

Z

T .T, ‘KIH D TJ .?, .xuxm%: - OHY

H

(110)

48

Next, the substitution in D11 of the right side of equation D7 for
its left side effects a nice cancellation.
#'DII*SIMPLIFY(REPLACE('D11,(-RIGHT(D?)),GROUP((!D11,117,!D11,122))))#
#'D11«LEFT(D11) = SIMPLIFY(EXPAND(SUBSTITUTE(RIGHT(Dll),'(U,U[INF]),'(U,(X,Y),
U[INF] (X,Y)))))#

#EDISPLAY ('D11)4#

The momentum equation D7 and the enthalpy equation D11 are now
ready for the similarity transformation.

The transformations of independent variables are:
#'D12¢" (XB(X) = ITG(X,0,X,P*U[INF]/(P[0]*U[0])))#
#'D13¢! (ETA(X,Y)==(U[INF]/U[O])*((U[O]/(2*NU[O]*XB(X))4(1/2))*

ITG(Y,O,Y,RHO/RHO[O]))#

Next, to compute the required differentials,

&

1

; =4dn 1 _ dX
First = an + ax =

#’Dlh*DRV('X,I,RIGHT(D13))*'(DEL(ETA))+DRV('X,1,RIGHT(D12))*'DEL(XB))#

#EDISPLAY ('D14)#

D14 now contains the expression for n as a factor.
#'D14fREPLACE('D14,FACTOROUT(!D14,4,RIGHT(D13),'(ETA(X,Y))),'HOLE)#

#EDISPLAY ('D14)#

Nis now substituted for its definition and ®. Um)/(PO- 0) is
factored out.
#'D14€SIMPLIFY(FACTOROUT(SUBSTITUTE(D14,DRV('X,l,RIGHT(DlZ)),

" (DRV(X,1,XB(X)))), 'P*ULINF]/ (P[0]*U[0]))))#

#EDISPLAY('D14)#

)
o

|W+3.T>.xufxﬂi. oxm%? XJH S g o= ﬁ .?.xuzo%f??.xuzm%“:.ozm (110)

49

T.T\,.xusm%TJ.T,.xuzh,ulu;-v.?.xu:.oxm-m%%nwu,
"M - T\, x)"n % g (4%X)°n-N-"0H - ?,xuf.xmm%?:mm%zz.\wmf}.xu?az.? X)H D Tﬂn

T.Tﬁxuzo%g T> xuzxoﬁ.ozm (11@)

50

°n-°4

+

Qjcaﬂ_

+

(x)ax

(8x)73a-"n-4

(v13)730- Txumxm% ; (A*x)pL3-2

n-z .N:xumx -°NN- 2]

(ax)13a-°n-d

2

EBU._.H_D.TUQ%.H g..sg. ﬁﬁxumx..a:z.m%,D.N.a:z._”ﬁxumxm%;

n

A T.w.

(b10)

(bta)

51

The differential for 1/dY is
#'D15¢DRV ('Y, 1,RIGHT (D13))*' (DEL (ETA))#

#EDISPLAY ('D15)#

Expressions D14 and D15 are the required differentials for é% and é%
respectively.

Now to transform the momentum equation D7. First, substitue for
the differentials of the independent variables and the new normalized
dependent variable f, defined by U/U_ = f'din).
#'D16¢SIMPLIFY(SUBSTITUTE(DELSUBST(DELSUBST(D7,'(DEL(X)),D14),

" (DEL(Y)),D15), " (U[INF] (XB)*DRV (ETA, 1,
:F(XB,ETA)),U[INF](XB),XB,ETA),'(U,U[INF],XB(X),

ETA(X,Y))))#
Now assume p = uot/to.
#'D17¢SIMPLIFY (SUBSTITUTE('D16,' (MU[O] *:T/:T[0], 'MU))#

Use the equation of state to recognize that

d _ dP -
dn (pT) = dn 0

since P is taken independent of Y. A substitution for P should therefore
be made.

#EDISPLAY ('D17)#

The machine responds with "EXPRESSION TOO LARGE"
Therefore, the left side of equation D17 will be treated first, the
substitution for P will be deferred.

#'D18<LEFT (D17)#

°n-°oHY

H¢Hmu4mo.aa.Nﬁhxummxﬂaz.mg.o:m
°n-°d
(x)ax .
ﬁﬁmquua+h¢Huu4ma.m>_xu¢»m.ﬁm|ug e

(st1a)

(b 10)

53

An expression for V will now be developed and substituted into D18.
It was shown in Chapter II of the thesis that the continuity equation
yields

fo

i
=_10.1 =2
V= - 7 X (20,7, %) £X,0)

Enter this expression.

#'D19¢' (- (RHO[O] /RHO) *DRV (X, 1, ((2*U[0]*NU[0]#XB)4(1/2) *:F (XB,ETA)))#

Now substitute the new independent variables:
#'D20¢SUBSTITUTE (DELSUBST (D19, ' (DEL(X)) ,D14), ' (U[INF] (XB),XB,ETA),

'(U[INF],XB(X) ,ETA(X,Y)))#

Now, substituting this expression for V into the partially transformed
left side of the momentum equation, D18, the entire expression is
differentiated as far as possible, expanded and simplified.

' D2 1«EXPAND (DRVDO (DRVDO (SUBSTITUTE (D18,D20,'V) , '"ETA) , 'XB))

Now some shorthand will be introduced to make D21 easier to read.

#'D22¢' (:F,U,F1,F2,F0L,F11,U[INF])

#'D23«" (:F (XB,ETA) ,U(XB) ,DRV(ETA, 1, :F) ,DRV(ETA, 2, :F) ,DRV(XB, 1, :F) ,DRV
(ETA,1,XB,1,:F),U[INF] (XB))#

#'D21<SUBSTITUTE (D21,D22,D23)#

#EDISPLAY ('D21)#

It is aow convenient to factor a large coefficient from each term
and set it equal to 1 since it will also be factored from the other side
and set to 1 there.

#' D24+ SIMPLIFY (FACTOROUT (D21, ' (RHO*U[INF]4 3%P/ (2*P[0] *U[0] *XB)) , 1)) #

#FEDISPLAY ('24)#

54

Returning to the right side of D17.
#'D25¢RIGHT (D17)#

f#EDISPLAY ('D25)#

The deferred substitution for P is now made.
#'D2 7 REPLACE (' D25 ,FACTOROUT (! D25 ,44, "' ((RHO*:T) /(RHO[O] *#:T[0])),

'(P/P[0])), 'HOLE)#

The expression is now differentiated as far as possible, as was the
left side.

' D28¢EXPAND (DRVDO (DRVDO (D27, 'ETA) , 'XB))

The simplifying notation is substituted.
#'D28«SUBSTITUTE (D28 ,D22 ,523)#

#EDISPLAY ('D28)#

Finally the large factor is removed from each term as it was from
the right side.

#'D29¢SIMPLIFY (FACTOROUT (D28, ' (RHO*U[INF]4 3%P/ (2*P[0] *U[0] *XB)) ,1))#

The two sides of the transformed momentum equation are now recombined.
#'D30¢SIMPLIFY (D24-D29) = O

#EDISPLAY (D'30)#

Using some more relations developed earlier in the thesis, a final

substitution will be made, from the equation of state at comnstant pressure.

gx-T14-113-2+

(2]

8

55

2 e
d-°n N

| en82R .
mxﬁ UQEN

+3-C4-8X-184-24-2-

z

] e
s d-°n-ax d-°n

°d-*n
OHY-T4-d-T13-°N ozw.w?a.ﬁe:mwu%

+ —_
4. .Z4-n-f2- . . 74"
14 aqczmmum:?uaﬁ@uozmmum:

z

56

n-'d

+

*OHY

M . ‘ o o
:quw ax) mmwm@ hmxu,qqkmuw.ﬁmxuﬁ4. ax- °NN- °N- Z-OHY-1-°Nu

walN
t

"OHa - %2 B13p w

(sza)

°NN - *OHY

- n
pul3P o_ GXP © n n. e
Twllu q.,gz mx.h imlg.Tu.:&zzq&.Nz.ﬁ.-f %Q.T,r de.:&:zq&.m:.m
€

57

e-= gx-14-114-2+ I +3-24-8X-104-24-2- (1€q)
o XD
th IUl.u.wﬂu.N
e a © ©
@= &Mrozm - OHy - N ~GX-T4-T14-2+ d +3-24-8%-184-24-2- (0€0)
£ 8 o e~ 8%RP | [=-8%P .
ﬁlwmlg. - 8x ozmﬁ 22z ax-| N2 |- 13-z
€
] 8] e e)
-0 » 8O- g Yok (820)
“OHN - o - "N - | °n 8XP e T a2
OHY-d ~D h n D Q DIN_.hllm.llU'u mD NW-d T
€

58

t t Py
o but rn e so;;- = 6, and from Chapter II,

2
0= (8, -0)g+86 - (8 - 1)f

8 =1+3f;—1-M2

S oo

The final transformed equation is:
'D31¢ SIMPLIFY (SUBSTITUTE (REPLACE (' D30,FACTOROUT (! D30,38, ' (RHO[INF] /RHO) ,
' ((THETA[S] - THETA[W])*G + THETA[W] - (THETA[S] - 1)*F112)) ,"HOLE) ,
"(1 + (GAMMA - 1)*M[INF]#2/2),"' (THETA[S])) W

EDISPLAY ('D3 1)

ke

In conclusion, since physical approximations are involved 1n the
expression condensation, close man-machine interaction is required. The
greatest draw backs to sufficient interaction are the input notation and

the Jack of sufficient facilities for abbreviation on output.

A Multiple Channel Queueing Problem

The third problem is taken from Interim Technical Report No. 13 of
the M.I.T. Center for Operations Research entitled "A Class of Queuelng
Problems'". This wor% 1s a 1955 Doctor's Thesis by H.N. Garber. The

queuelng situation shown by the example i1n Figure 1 1s treated.

-~

59

Figure 1
4 3 2 l @ Channel 1
arrivals N 4 3 2 1 Channel 2
7 @6 ®
SO R P Channel 3

Arrival times at the queueing complex are exponentially distributed with
mean A. Arrivals enter any channel which becomes vacant and progress
through several phases of service with exponentially distributed service
times with mean ku. There are M channels and k phases of service in the
general case. It is desired to find the probability distribution of the
number of units in the system. The solution can be carried a number of
steps for the general case. A set of equations relating the probabilities
of the states are written, where a state of the system is taken as a
certain number N in the system and a description of which phases of which
channels are occupied. Each equation is then multiplied by the
appropriate variables so that the summation of the equations will yield
an equation with the generating function for tie state probabilities as
its left side. Unfortunately, the generating function also appears in a
summation on the right side. The independent variables of the generating
function are constrained to make each term of this summation equal to
zero. This constraint is expressed in a change of independent variables,
It is then shown that a summation over values of the new independent

variables will yield the old generating function.

60

This generating function still involves the state probabilities for
a partially full system as constants to be determined. There are a number
of relations which can be used to determine these initial probabilities.
As the third problem this evaluation will be carried out for the case of
two channels with two phases of service.

The source of expressicu complexity is different in this problem.
In the first problem complexity arose because a small parameter allowed
an unsolvable problem to be split into a spectrum of solvable ones. In
the second problem complexity was the result of the number of important
phenomena in the physical process being described. Here, complexity is
the result of the number of states in the process being described, all
of which are very similar. In this problem there would be the best
chance for reduction in complexity through proper notation.

This problem has been included sco that the reader can better refine
his intuitive notion of the types of mathematical operations and notation
needed to solve problems in differenc areas of applied mathematics.
Summation expansion, function evaluation, limits, and some more grouping
operations are introduced.

The function in the transformed variahles is:

#'Ql<' (RK(Z,Q111,Q[2]) = ((Z24(2*:K + 1)) *SUM(R, 1, :K, (ZAR) *
A[R] * (:E4(2*%PI*I*Q[1]*R/:K)+:E4(2*PI*I*Q[2]1%R/:K))))/
(2% (Z%W(Z#:K) - ALPHAQQ[1],Q[21))))#
Where W, @, and Ar are defined by:

#'Q2«' (W(Z#:K) = 1 + THETA - THETA*Z4:K)#

61

#'Q3<' (ALPHA(Q[1],Q[2]) = (:EM(-2*%PI*I*Q[1]/:K)+
:EA(-2%PTI*I*Q[2]/ :K))/ 2)#
#'Q4<" (A[R] (2) = P(1,R+1,0) - (20 (Z#:K) - 1)*P(1,R,0))#

#EDISPLAY ('Q1)#

It is useful to have the denominator of Ql contain only powers of Zk.
This 1s done by using the identity (X-Y) (Xk-1 -»-Yk_l) = (Xk - Yk). At
present the system contains no operators for achieving this goal, so it
must be done by brute force.
#'Q5¢LEFT(Ql) = '(SUM(J,0,:K-1,(2*W(Z/:K))AJ*ALPHA(Q[1] ,QL2D4(:KR-1-T)))*
SUBSTITUTE (RIGHT(QLl), '((Z#4:K)*(W(Z#:K)*:K) - ALPHA(Q[1],
QL2]4:K), ' (z#W(zA:K) - ALPHA(QL1],Q[21)))#
#EDISPLAY ('Q5)#
Now substitute 2 for the number of phases of service, k. Then
expand the summations.

' Q6¢ SIMPLIFY (ALLSUMEXPAND (S IMPLIFY (SUBSTITUTE (Q5,2, " :K))))#

#EDISPLAY ('Q6)#

The substitution k = 2 is made 1n all the initial equations as well
since they will be used several times.
'Ql¢ SIMPLIFY (SUBSTITUTE(Q1,2," :K))#
'Q2¢SIMPLIFY(SUBSTITUTE(Q2,2, ' :K) M
'Q3¢SIMPLIFY (SUBSTITJTE(Q3,2, " :K))¢

'Q4¢SIMPLIFY (SUBSTITUTE (Q4,2, ' :K))}

Now write down an expression for the generating function as a

summation of Q6 over the transformed independent variables, the q's.

62

T+ N.m|®uﬁ Ngz
A A

Two :qum.&-ﬁxmwz : L -z

[

2001 lha2 aelge1-0.2

1=

k-]

=(*o ‘o2

(zo)

(10)

(o e (e

Z

S A . . . ¢l z
—Mﬁf&:—.u +~o.7u.w w v N+h~c~= Tg.q.a w v NH— mN ﬁh Nw—._ N+H 0 OHQI&J_GQ T

(3]
0

=(*o“'o 2 (90)

Two “'0)BHd 8- h..mwz .xL

! A

=3 asr
h 2 > 2 w - NN *?Tx OZOuGIn_I_G. ﬁﬁxNyz.Ng Nv.:,.NN. w

-
a-%ge1e8.2 a ‘peybez ,

=(*o ‘oz (so)

64

#Q7¢' (H(Zr2,V[1],v[2]) = (1/4)*sumM(Q[1] ,0,1,
SUM(QL2],0,1, ((V[1]/Z)*(-1)*qQ[1] + V{1]12/ (z42))*
((V[2]/z)*(-1)MQ[2] + VL2]#2/(2+2))*K(Z,Q[1],Q[2]))))¢

#EDISPLAY ('Q7)#

Now expanding the summations, substituting the appropriate values
of Q6, Q3, and k, and simplifying.
#'Q8¢SIMPLIFY(EVALUATE(ALLSUMEXPAND(Q7),(Q6,Q3)))#

#EDISPLAY ('Q8)#

To evaluate P(1,1,0) and P(1,2,0) certain known conditions are next
imposed. Q8 1s known to have a zero of order four in Z for all values
of Vl and V2, sO0 one would like to collect terms on 24. The simplest way
to explore this would be to expand Q8 and collect terms on ZA.
Unfortunately, this leads to roughly a sixteen-fold growth 1in expression
Size and to memory overflow.

Inspection of Q8 shows that it might be rearranged while 1in factored
form. As the first step, subexpressions which are polynomials in Z, Vl’
or V2, have factors of Z, Vl’ or V2 rercved so that their lowest order
term 1s of zero order in these.

#'Q81§SIMTLIFY(NORMPOLY(NORMPOLY(NORMPOLY(QS,'Z),'(V[l])),'(V[Z])))#

#EDISPLAY ('Q81)4#

Next the center two terms are combined.
#'Q826REPLACE('Q81,FACTOROUT(GROUP((!QSI,85,3Q81,108)),
'(A[2]/W(242))),'HOLE)#

#EDISPLAY ('Q82)#

H[Zz, J,, UZJ

65

—c"

-2-A+2-2 A,

.[_2

o8

Z -U

66

The resulting term 1s then expanded.
'Q83«REPLACE ('Q82, EXPAND(!Q82,90), 'HOLE)#

#EDISPLAY ('Q83)#

Now the other two terms are combined.
#'Q84*REPLACE('Q83,FACTOROUT(GROUP(('Q83,111,3Q83,30)),1/Q83f70),'HOLE)#

#EDISPLAY('Q84)# EXPRESSION TOO LARGE

Q84 will not display, so 1t 1s reduced in size by naming a subpart.
P
'Q85¢«SPLIT (Q84)4

#EDISPLAY (' Q85)#

Next the numerator of the larger term 1in Q85 1s arranged on powers of Z.
#'Q86+REPLACE('Q85,COLLECT(EXPAND(SUBSTITUTE('Q85,31,F2,'FZ)),'Z),'HOLE)#
#EDISPLAY('Q86)# EXPRESSTION TOO LARGE

'Q87+SPLIT(Q86)# ‘

#EDISPLAY ('Q87)#

Forming a term from the renamed parts of Q87 one has for the
coefficient of Z2 in Q87.
#'Q88+«SIMPLIFY(F2 + F3 + F4 + "(2%Al) + F5 + F6)#

#EDISPLAY (' Q88)4

Looking at equation Q87, one can see that in a double power series

2.2
1V2 does not have a

expansion 1n V1 and V2, only the coefficient of V
zero of order 4 at Z = 0. Setting this coefficient equal to zero one
obtains by inspection of Q87:

Ay, AL+ z% . W(ZZ)AZ
2W(Z%) Z(Z% - We(z4) -1)

= 0

o

[4

ﬁq.m.m+_¢.m;u.ﬁﬁuﬁmgz.m (*n+z-)-("n+z-)-

<+

~
\O

:N%Q%JrT_E
W-(Pnez)-("nez-) Te-(Cnez-)-(nez) ﬁq.m.mtq.S%ITL?L.Q?&.T?E.mE

Tﬁ N .NLI (180)

(e

14

(g-z-2+'9-2-)- TIPL:.LAN?NLAN?NL. z

T (e (]

ﬁ:N?ﬁ.d?N-EN?N;u.§+N:.Nq ' 3&N.th.mu.TA«L?L.q?Nu.ﬁ_?Nu. : T? 2

+

TJ “n .NNT (280)

8 (s

+ z -

:NN.N&?N?L.NQ T“_Aa..N.th.NU.T%N%.LAN?NH.@?NH.,L

2.6l P
ﬁ ne'n NLI (s80)

69

(]

Z

Tq.w._mtq.NL.T'TL:.N- (Crez-)-(Tnez-)-

-

o (e
|

+

+ z

NN.N-S.N:.&.Nq ﬂq.m.th.mu.T%Nuz.L.ﬁ?mu.m_?mu.w

70

Enter the equation into the machine.
#'Q9¢' (A[2]/ (2*W(Z42)) + (A1] + ZA2*W(Zr 2)*A[2]) /

(2% (20 2% (W(ZA2))A2 -1)) = 0)#

Evaluating W, A; and A, one obtains at Z =0
#'QlO*SIMPLIFY(SUBSTITUTE(EVALUATE(QQ,(Q4,Q2)),0,'Z))#

#EDISPLAY ('Q10)#

Recognizing that by definition P(1,3,0) = P(1,1,0)
this equation can be solved for P(1,2,0).
#'Q11- SIMPLIFY (SOLVE (SUBSTITUTE (Q10, ' (P(1, 0,0)),"' (P(1,3,0))), "' (P(1,2,0))))#

#EDISPLAY ('Ql1l)#

+

Qll can be simplified somewhat.
#'Q11¢LEFT(Q1l) = (-SIMPLIFY (FACTOROUT (!Q11,11,!Q11,29)/
FACTOROUT (.Q11,43,:Q11,49)))#

#EDISPLAY ('Ql1)#

2 . . L
Let u = z", the generating function for the unconditional state

probabilities G(u) =;{: unp(n) can now be written. There are special
n=0

case terms for n =1, and n = 2. The other terms are found from H(u,1,1).
The most compact formula for H is Q86.
#'Ql2<' (G(U)) = '(P(0,0,0)) + 2%'U%('"(P(1,1,0)) + RIGHT(Q1ll))
+ SIMPLIFY(SUBSTITUTE(EVALUATE(RIGHT(Q86), Q2, Q4)),
"(Ur(1/2), 1,1),'(zZ,
viil,vi2])))#
The original transition equations give P(1,1,0) = 8P(0,0,0), anticipating

that P(1,3,0) may also occur, substitute P(1,3,0) = P(1,1,0) = @P(0,0,0).

8 mlu !

14

i?mu T+8+m;

-=(@‘z*1)d

T@.mﬂ.ﬂmww. m +m.m®$.3a+m®; .Ca. L
(1+8)

=(8°2 1)a-(2-)+(a"1 .3%?&.3.T?&.N.:a.?&.ﬁum@.m.:&.m

ﬂq.ﬁwmwz.5.Nta.ﬁwwz.u?wtm.mtq.,D.ND.TNQ:.NKQ.5.N+~¢.~3.N
Twz T- TQ:.NL
z z zo 1 v _
ﬁ + w D DNN T=
FN.NH?N?&.& Tﬁ?ﬂq.N+,.N.~¢.Twuz.mww.ﬁm%mutq.N+E+mu+mug

? “'n° Nwz
z

3

(110)

(ato)

(88D)

(¢80)

72

Then use Qll to eliminate P(1,1,0).
#'QIB*SUBSTITUTE(QIZ, RIGH&(Qll), "(P(1,2,0)))#
#'Q14+SIMPLIFY(SUBSTITUTE(Q13, ' (THETA*P (0,0,0), THETA*P (0,0,0)),
"(P(1,3,0), P(1,1,0))))#
Q14 contains only the unknown P(0,0,0) which can be determined from
the condition G(1) = 1,

#'QlS*SIMPLIFY(SUBSTITUTE(RIGHT(Q14),l,'U) = 1)#

The machine types out INDETERMINATE, indicating that«* 0 has been
replaced by UNDEFINED.

#FEDISPLAY ('QL5)#

The operator LIMIT will be tried; this operator uses 1'Hopital's
Rule. It is slow, and so it should not be used when substitution will
suffice.

#'Q16?LIMIT(RIGHT(Q14), 'u,L)#

#EDISPLAY ('Q16)#

Qlé can be simplified by factorin and expansion.
'QL7<FACTOROUT (EXPAND (Q16) , ' (1 ((3*THETA + 2)*(1-2%THETA))))#
#'QL7<LEFT (Q17) *EXPAND (RIGHT (Q17))#

#EDISPLAY ('Ql7)#

Ql7 is equal to 1 and can be solved for P(0,0,0).
#'Q18<SOLVE (Q17=1, '(P(0,0,0)))+#

#EDISPLAY ('Q18)4#

The expression for P(0,0,0) shows that the SOLVE routine could be

improved. This expression is now substituted into Ql4 in order to produce

73

(s10)

(110)

74

the final expression for the generating function H.

#'Q19¢SIMPLIFY (EVALUATE (Q14, Q18))#

Taking a census of Q19 shows that it is probably too large to
display without being split.
#FCENSUS (Q18)#

#fEPRINT ("LAST)# 1438

In the thesis this expression was evaluated numerically to form a
table of values. This problem would provide a basis for further work
1n automatic simplification.

The preceding problem solutions show that the current system can
be used for work on existing problems. No one part of the system 1s
particularly weak, but there are many interesting possibilities for

improvement.

(1+6-2-)

&-(80°0)d-b+

-8-(0°0‘0)d-91+

z

(810)

(210)

(si0)

Chapter III

ADDITIONAL GENERAL FEATURES

In the preceding chapter a system for manipulating mathematical
expressions was introduced. In this chapter we discuss additonal
features which would make this system more convenient in a wider variety
of situations. Many of these would let the user tailor the program to
his particular needs.

Whenever a user 1s provided with means for expanding and modifying
a program, the question of efficiency becomes an important one.
Efficiency normally resulte from planning a program function as a unit;
building the function up bit by bit usually leads to waste. To an
extent, though, 1t may be possible to design the system to guide the
user, without unduely restricting him, into avoiding many serious
inefficiencies. A careful analysis of the users' needs 1s required 1n
order to determine what should be built into the program and what can be
added later. Some of the features which the user might want are
discussed 1in this chapter. They are divided into three classes: new
mathematical structures, algorithms, and notation; bookkeeping; and

"systems" instructions to the user and corrections of his mistakes.

Structures
There are many frequently-used mathematical structures: sets, rings,
groups, fields, vector spaces, matrices, and tensors, to name a few. It

might be possible to define some of these structures partly 1in terms of

76

77

the others, but each structure will probably need its own unique data
representation for really efficient computation. Some very good
polynomial manipulation programs have been written (as noted in Chapter I);

(4)

Maurer uses a special representation for finite groups, and Hearn (5)
has devised a data representation for tensors. Housekeeping programs
should be written to accept the wide variety of data forms which can be
expected. Specital mathematical structures can form an important part

of an 1nput language even 1f they are not manipulated, since they let

the mathematician state his problem in concise and familiar terms. TFor
example, the 1nitial steps in the solution of a set of equations can

sometimes be expressed concisely in vector notation. The machine can

perform the operations on the individual components.

Notation

Special mathematical structures will require symbols to represent
them. The user should be able to define new symbols, and new arrangements
of symbols. Hand-written input would make it easy to define new symbols,
they could also be assigned to blank buttons or keys. In the current
system, a string of input characters such as OMEGA can be assigned an
output symbol such as w. The system could be extended so that the user
could define a new output symboi by choosing points to be displayed from
a raster or by drawing a series of straight lines with the light pen.

The user should also be able to make abbreviations such as x' for %%.

C2
i
New combinations of symbols such as summation, %;é x , could be

described in the picture language given later, but a more inmteresting

possibility would be to genmeralize from hand drawn examples,

78

Algorithms

The user will want to add new mathematical functions and transforma-
tions in several ways. Special properties will be important for a given
operation. For example, a simplification routine needs to know that

sinzx + coszx = 1, while a differentiation routine needs to know that

d sinx

dx -~ cosx. A user may want to define a function only for certain

arguments and later expand his definition. All the machinery of the
"advice taker" programs, such as Teitleman's PILOT(1), could be used.
When a transformation reaches arguments for which it is undefined, it
can ask the user for advice. For example, in the current system the
power series expansion routine will query the user about the poles of
expressions, or simply ask for the expansion of a subexpression. It
would be better if the user could input a general method for handling
such expressions. However, in that case he must define the conditions
under which it applies, and this requires a language which deals with
concepts such as '"rational function". The problem of combining new
information with the old is an important one and should be pursued in
the future.

New transformations could also be defined as combinations of old
ones. If the string of user commands is remembered by the machine, the
user could repeat an operation by refering back to his earlier commands.
The string of commands could be displayed, so that the user could edit
it or add comments. He might assign a name to a substring of commands
and give it arguments to produce a function. These command strings
could form a programming language with the addition of conditional

expressions. Furthermore, the commands could be treated as mathematical

79

expressions and should be iegltlmate data for the system, so that they
could be simplified or otherwise transformed. The development of a
command language will require the introduction of properties useful for
describing mathematical expressions. For example, a method might apply
only to expressions rational in sines and cosines. A specification of
this method would require a check to see 1f the expression had this

form. Such a language would allow a mathematician to describe his

problem solution to the machine in the most general way, thereby
lncreasing the number of problems which could be solved with the same
string of commands. In applying the same commands to other problems,

the machine could remember certain characteristics of the original problem
and ask the user for help when new problems require further generalization

or new methods.

Numerical Algorithms and Notation

A mathematical laboratory also needs a strong numerical capability.
Even when symbolic manipulation 1s an essential part, most practical (and
probably most theoretical) problems will require numerical methods
somewhere in their solutions. Sometimes the equations describing a
numerical method must be tailored to suit each problem. For example,
an 1terative technique may have a starting procedure which depends on
the boundary conditions. This tailoring might be done with symbolic
routines. In other cases, the equations to be processed numerically
must be transformed symbolically before the numerical routines can be
applied. This was the case in the second problem solved in the previous

chapter.

80

Numerical evaluation can also be used 1n order to gain insight
regarding exact or approximate symbolic solutions. For numerical work,
mathematical structures must be represented as numerical arrays.
Methods are needed for converting expressions from symbolic form to
numerical form and the reverse. 1In addition, a method is needed to
link with the large store of existing numerical routines. Finally,
there must be input-output for numerical data in the form of tables
and graphs. The MAP system and the Culler system provide many of the
features needed, such as automatic scaling of graphs, formatting of
tables, and the use of the light pen and parameter knobs for describing

and altering numerical functions and constants.

Bookkeeping

Routine bookkeeping 1s often required for the solution of a large
problem. The machine should assume this function 1n an inobtrusive
manner. For example, the machine might keep a record of what expressions
had been combined to form other expressions and display this information
in the form of a graph. Touching some part of the graph with the light
pen would cause the machine to display that part in greater detail.

There might be a way for the user to name pages of expressions or to ask
for all of the expressions with a certain property.

The machine could find missing relations needed to solve a set of
equations. so that the user would not have to specify the arguments

completely.

81

There would probably be many questions which the machine could
answer about past inputs. Of course, the machine can also collect data
of interest to system designers, such as the distribution of properties

of expressions to which a given transformation 1s applied.

User Errors

Finally, the machine must help the user overcome his difficulties
in using the system. It might be possible to develop a systematic
method of rejecting inputs which are syntatically or semantically
meaningless. The formal structure of mathematics makes this easier
than 1t would be for some other real-time systems. The machine can use
heuristics to determine what the user might have meant. Optional
instructive comments like those in the MAP system would also be useful.

As can be seen from this chapter, the working mathematical
laboratory will be a very complicated system. Development of the
means necessary 1in order to create such a system will be one of the

important steps in the next generation of programming research.

Chapter IV

INTRODUCTION TO THE REMAINING CHAPTERS

The remaining chapters describe the system 1n great detail and
suggest possibilities for further work. These chapters are largely
independent of one another and can be read in any order. Each chapter
or section becomes more detailed toward the end. Therefore, one
strategy would be to read the first part of each chapter and then read
some of them to the end. Chapter VII, Chapter IX, and the first part

of Chapter VI contain the most significant results.

82

Chapter V

PROBELEM AREAS

In this short chapter we mention a number of classical mathematical
transformations for which it should be possible to write computer
programs. Some have already been investigated by others, but all of
them need more study. For some areas 1t seems possible to find an
algorithm which will handlée many of the expressions which arise in
practice. Examples of these are differentiation, solution of equations
by Gaussian reduction, and certain matrix and tensor operations. Even
though an algorithm may in theory handle all expressions of a given
class, it may in fact be limited by space or time considerations. Often,
however, it can be improved through use of the mathematical properties
of the transformation to be performed. For example, a sum with a positive
integer exponent can always be expanded by repeated multiplication
followed by collection of like terms. However, expansion of (A0 soe A.n)K
in this manner leads to (n+1)K terms, which combine to yield
4}+§) (n+K7 .

k n / different terms. The \ n / terms can be found directly by the
multinomial theorem; thus, in general, reducing the time and the maximum

storage required. In the case of Gaussian reduction, savings can be

made on the average through manipulation of zeros.

83

84

In other problem areas, algorithms can be used to transform only
some examples, but the range of examples which can be transformed can
probably be considerably extended with heuristic methods., Examples of
these areas are limits, Laplace transforms, expansion in a Laurent series,
integration of elementary functions in closed form, and solution of
some differential equationms.

Finally, in the case of non-linear differential equations, for
example, it seems that only isolated special cases could be solved by
the machine. It is, however, difficult to estimate & priori whether
further research will lead to useful methods. As stated in the
introduction, integration of the elementary functions in closed form
has been proved recursively unsclvable. Such a proof not only affirms
the futility of finding a general scheme but can also indicate which
subclasses may be impossible. Perhaps more such proofs can be found.
In the absence of such a proof, another measure of problem difficulty
is the extent to which the solution is a global function of the input
mathematical expressions making up the problem statement. When the
solution is not a global function, then local properties of the input
may give clues to local properties of the solution, thus making it
possible to guess at the form of the answer.

Mathematical transformations should be a good medium for the

investigation of computer problem solving.

Chapter VI

INTERNAL REPRESENTATION AND MANIPULATION
OF MATHEMATICAL EXPRESSIONS

Introduction

The main body of this long chapter contains detailed descriptions of
the effects of the LISP routines which have been written to manipulate
mathematical expressions. This detailed description is introduced by a
general discussion of the problems and possibilities involved in writing
such routines. As the structures to be manipulated become more complex,
the methods for representing them and for describing their transformation
become, 1n the current usage, more a matter of choice. This is because
the complex structures are described with a very general syntax, the
ambiguities being resolved through context, and because there are fewer
well established conventions for representing these structures.
Therefore, the problem of manipulating the elementary functions will be
discussed 1n some detail before more gemeral structures involving sets

are 1ntroduced.

85

86

The Elementary Functions

A. Introduction

The expressions for the elementary functions are defined
recursively as follows. All floating point numbers, integers, and
pairs of integers representing rational numbers are elementary"
functions. If u and v are elementary functions, then udv, u°v, uv, u/v,
log u, and -u are elementary functions. The trigonometric functions
may be represented explicitly. 1In addition, arbitrary functions will
be allowed. These functions are assumed only to be differentiable. It
is allowed to write a+b+c and a-bec; the program assumes association.

Normally, transformation of these expressions involves two
steps. Certain properties of the source expression are investigated
and then the results of this investigation control the flow of control
as the output expression 1s generated, often by combining parts of the
source expression. It is difficult to list the important properties of
expressions without examining actual problems. Some useful properties
are those used by Slagle's Integration program SAINT and the routines
described at the end of this chapter.

B. Properties of Elementary Functions

The properties can be classified according to their complexity
as follows. Those from SAINT are indicated by (8).
1. Tests involving no investigation of subparts of the expression.
a. Is the expression an integer. (8S)
b. 1Is the expression the variable of integratiom. (S)
c. Expression is 0.

d. Expression 1is 1.

87

Tests which are applied to the expression and its arguments

in a completely recursive manner; that is, the test which

is applied to the expression involves applying the identical

test to the arguments of the expression, unless a terminating

condition is met.

d.

Depth: the maximum number of arguments within arguments. (8S)
Length: the number of subexpressions in the expression. (S)
Algebraic function: the expression contains only the
algebraic operators and constant exponents. (S)

Dependent on a given variable. (S)

Tests which involve applying tests to the arguments of an

expression which are a function of the main connective of

the expression.

de.

Rational function: if the main connective 1s POWER,
then the exponent must not be a rational function, but
rather an integer. (S)

Rational function of sines and cosines: if the main
connective is a sine or cosine, then the argument must
be the variable of integration. (S)

Exponential: as in b., the expression contains a
subexpression of the form c'. €))

Integral with indefinite limits.

Integral with respect to a given variable.

Derivative operator applied to an arbitrary function.
Lowest power of a variable in power series expansion

of an expression,

5.

88

h. SUM with numerical lower limit.

i. SUM with numerical or infinite upper limit.

Tests which involve the comparison of certain subparts

of the expression.

a. Exponent base: there is some constant, b, and
variable, x, such that any subexpression which is
an exponential is of the form bnx’ where n is an
integer. (8S)

b. Comparison of arguments of a product or sum for
equality.

c. All terms of a sum contain a common factor.

Non-recursive structures made up of parts each of which

has certain properties.

a. The expression contains a non-constant sum raised
to an integer power. (S)

b. The expression contains a non-constaﬁf sum as a
factor of a product. (S)

c. There is a subexpression of the form

+cv+cv2; cl#O, CZ#O. (s)

3 2 1

d. The expression is the product of two factors with

Cc

certain properties. (S)
e, The expression is the product of a factor with given
. 2n+1 .
properties and the expression cos v, where v is
a variable. (8)
f. The expression is an exponential with comstant

exponent.

89

g- Is expression of the form x+n; n an integer.

6. Some transformations require arbitrarily complex
computations on the parts of the expression in order
to establish the flow of control.

a. Comparison of ranges of several summations and
grouping together of like segments of the ranges.,

b. Generations of the lower order terms of a
multinomial expansion.

C. Methods for Testing Properties of Elementary Functions

There are several mechanisms which can be used to determine 1f
a given expression lies in one of these classes. The best method depends
on which of the six named classes 1s involved as well as the associated
constructive operations and the nature of the expressions under
consideration.

Many transformations can be applied 1n turn to larger and larger
subparts of the expression. Others are applied to certain parts of the
expression as a whole. While those of the most compiex type must make
use of intermediate results as well as the initial expression.

It would be unlikely that any one scheme would be the most
efficient for every combination of analysis and construction. The various
transformations should be handled by methods appropriate to their complexity.

The efficiency of a transformation must be taken as an average
over the set of expressions to which it 1s applied. Very often a
transformation is applicable to only some of the expressions to which it
is applied. Since a great deal of time can be spent in attempting to

apply 1irrelevant transformations, the efficiency of a transformation might

90

be evaluated 1n two ways: the average time required for application to
a random expression, and the average time required for application to an
expression to which 1t 1s appropriate. As expressions are transformed,
more i1nformation about them will become known; it might be possible to
pass this information along so as to improve the efficiency of further
transformations. Furthermore, the physical situation which the
expressions represent may give clues to their properties. Freserving
such i1nformation involves trading space for time.

The expressions being considered form a tree structure; the
main comnective 1s considered to be at the top, with the branches
hanging down. Some methods typically come down from the top, others
come up from the bottom; some first go one way and then the other.
Class 1 tests are applied at the top.

Class 2 tests can be applied going either way. For 1instance,
1n the case of depth, one can come down the tree incrementing the depth
count at each node and then take the maximum of the counts at the ends
of the branches, or one can come up the tree, incrementing the maximum
branch count at each node. The number of incrementing and binary
maximum operations 1s the same 1in either case.

The situation 1s more interesting for class 3 tests. Since
the test to be applied to some of the subexpressions depends on the
main connective above, all possible tests must be applied if one comes
up from the bottom. Coming down from the top one can bring the
information about the main connective along and apply only the needed
test. If several tests are applied at once, then most of the tests will

probably be needed on a given subexpression and not so much 1s lost.,

91

An advantage of applying all tests to a subexpression is that identical
subexpressions can be treated in the same manner since they are not
distinguished by context. If several tests can be computed at once by
bit manipulations,then the extra cost would be less. It seems that the
great loss 1s probably that many of the tests, 1f applied from the top,
would fail or succeed before all of the subexpressions had been tested,
so that a saving would result from some subexpressions not being tested
at all. (This seems to be a weakness of K. Korsvold's program).

The tests 1n class 4 1involve the comparison of expressions for
equivalence. Because of the defining relations, equivalent eXpress1ons
can be written in several forms. For instance, the factors of sums and
products can be written in anv order. Some existing schemes impose some
additional constraints on the way expressions are written so that there
will be a cannonical form. Another possibility 1s to compute a hash code
number for each expression which 1s invariant under the alternate ways
of writing the expression. The method of doing this and the merits of
the scheme are discussed in the mnext chapter.

The exponent base operation 1s the first test which requires
comparison of subexpressions located at arbitrary nodes of the expression
tree. A program which goes up or down the expression tree must have some
way to communicate the infermation at one node to itself when 1t 1s
processing another node.

The tests in class 6 are those which do not fit into one of
the other classes. Their existence indicates that although programs
which move up and down the expression tree are useful in a large number

of cases, there will be tests for which this type of executive structure

92

is very inefficient. Programs which carry out complex algorithms
1nvolving many forms of intermediate results will be needed. To
introduce concepts which will be useful 1in such programs, operations
for constructing elementary functions will now be considered.

D. Constructing Elementary Functions

All constructions which form elementary functions from other
elementary functions must do so either by substitution or by combining
the input functions with the elementary operators. Useful intermediate
forms are a string of terms which are to be factors 1in a sum or product.
Keeping such a string removes the need to test each time before adding
new terms,

E. Specification of Algorithms for Manipulating Elementary Functions

No matter what level or flexibility a language for algorithm
specification is to have, to be convenient and efficient 1t must reflect
the structure of the algorithms to be specified. Based on the preceding
discussion the following types of operations are needed. One begins with
a basic program sequence that goes down and up the expression tree. When
this sequence is associated with a specific set of rules, it 1s given a
name by which 1t can be called. There are rules for the downward pass
and the upward pass. The rules for the downward pass consist of a
conditional specification of what is to be applied to the arguments, and
a method of reserving information for lower levels and also for any
following operation. The conditional 1s a match containing the operator
and functions or exact match on the arguments. The arguments and groups
of them can be given mnemonic names to be used in this match. There 1s

a way to name all arguments satisfying some match. Matched arguments can

93

be given special names to be used in the rest of the specifications.

There 1s a way to break out immediately with the answer on either the

upward or the downward pass. The upward pass consists of another match

and a construct. The construct employs a pattern but the operators 1in

the pattern which have variable arguments are simplified if possible.
(111-1

The construct pattern can contain functions. FLIP 1ght be useful

1n such a language

Representation of Sets

A set might be represented by giving i1ts name and some of 1ts
properties, or by giving a general member and directions on how to
specialize this general member to any particular member, or by giving
all of the members. Members of ordered sets can be 1ndexed to form
arrays. More than one of these representations could be used
simultaneously. Typical sets are an indexed summation of terms, or an
indexed set of equations. 1In collecting terms one might want to combine

I i
several summations of the form E ajx to form a new set of

i=m
summations, no two of which contain the same power of x. This amounts
to combining members of different sets; that is, the coefficients, which
members have the same value of a property, that is power of x. The
summation index makes 1t possible to carry out this operation without
explicitly testing each member of each set. This is a very general
form in which many algorithms dealing with sets can be expressed, but

greater computer efficiency and clarity of expression might result from

using special concepts.

9%

As another example of the use of a set concept, consider the
placement of the coefficients of a polynomial into an array, so that the
Routh test can be applied. A series of terms 1s generated by combining
these coefficients. The generation of these terms is best specified as
operations on an array of expressions. The requirement that the
resulting terms all have the same sign then leads to relations between
their parameters.

Two further examples are similar. Any particular term in a
multinomial expansion can be written down directly 1n terms of the base
and the exponent. This 1s done by forming all combinations of powers
of the variables which fulfill certain restrictions. Computation with
integers 1s used to determine the flow of control as the powers are
formed. A similar but more complex case is the formation of terms in
the power series of the multidimensional transformation of a non-linear
differential equation as described by Van Trees.(vz)

As a final example, consider the multiple channel, multiple phase

queuelng system described by Garber and discussed in Chapter II. The

basic equations describe a system such as the one shown below:

4 3 2 a Channel 1
arrivals s e

4; 3 2 1 Channel 2

4 3 2. 1 Channel 3

95

A system of m channels, each with k phases of service, is described by the
total number n of units i1n the system and the state rj of each channel.

The arrival rate is N and the service rate is p. The equations are

(n+m@) p (n;rl, r

22 b rn, 0, ««+ 0)
n
= :Z;; p(n;r1+J:1’1, r2+d3,2, seer 4+ <€’n, 0, 0 ¢+ 0)

m
+ Z P(n+1;r1’r2’ ee*, I _, J

e n’ Yj,n+l? JJ:,n-I-Z’ Tt j,m)

whenever n<m and subject to:

ku P(n;rl, ¢ty ri-l’ k+1, rl+1’ R rn’ 0, - 0)
- & Lir,, 0 0, 0 0
= mentl p(n- ’r].’ *t°y ri’ ’ ri+1’ ""*rn’ 5> 05 *++, 0)

+({m,n kl-lP (ﬂﬂ'l;rl, e, ri'l’ 1’ ri+1, ey, rm)

whenever rl=k. While if n)> m

m

1
(1+8)p (n,rl, s s rm) = JZ-_; p(n,r1 + dj‘i,l’ r, + Jj,z’ ees, r + d.)

+ 06 p (n-1; rl, Tys *°°s rm)

subject to

P(n;rls °T%y ri-l’ k+1, ri'l-].’ et rm) = p(ntl; rl’ ctty ri'l’ 1, ri+1’ see, T)

95

A system of m channels, each with k phases of service, is described by the
total number n of units in the system and the state rj of each channel,

The arrival rate 1s A and the service rate is pu., The equations are

(ntmB) p (n;rl, r2, oo rn, 0, <+« 0)
n

+ Z p(rH-l rlsrzs cee, T , d’- R J)

s n’ “j,n+l’ J_]:,n-I-Z’ j,m

whenever n<m and subject to:

ki p(n;rl, T ri-l’ ktl, ri—l—l’ Tt rn’ 0, ¢++ 0)

A
m=-n+1

p(n-l;r s, ¥, 0,

1° 1 Fip1? "o Tpe 0, 0, +==, 0)

+Jm,n kup (m+1;rl, Stts L. g 1, Tie Tt rm)

whenever ri=k. While if nd m

m
Zp(nr+d’,r+J, ...,r+c§:)

(1+8)p (n;rl, r Tt 2 j,2? m j,m

2’

BIH

23 %> rm)

+ 0 p (n-1; Ty, ¥
subject to

P(n;rls °%y ri'l’ kt+1, ri-l-l’ %y rm) = p(mtl; rl’ cety, T l, r

96

when ri=k. It is understood that although only those equations for which
the full channels have the lowest index have been written, there is in
fact an equation for each permutation.

Note that this representation involves the use of several external
conditionals, some written 1n English, as well as the internal conditional
d1j' In addition, it contains the inductive "...'" notation and the
English statement about permutationms.

Some of the external English conditional statements arise because
the J;j does not provide enough generality as an internal conditionalr
The "..." notation arises in part because there is no standard way to
mention a particular subscript of a quantity which is indexed by a
number of subscripts which is i1tself a variable. It 1s for this same
reason that the English statement about the permutations is made. The
syntax used has great flexibility, but does not contain concepts
appropriate to this statement. If the expression is represented
internally in the computer in this form, it will be difficult to write
algorithms to transform 1t.

An alternate form of notation would involve introducing a general
internal conditional, functional arguments, and some specific concepts
about sets. The function SETSUM [SET, FUNCTION] has as value the sum of
the quantities produced by applying the function FUNCTION to each element
of set SET. The function SETSUBST [X, Y, Z] substitutes element X for
element Y in set Z. The concept of bound variables is also used. The
current element to which SETSUM is applying FUNCTION is bound to the

name, element. In this manner, the expression can be written:

97

EQN (M,N,K,RSET,0)=

If N4M then (NHM©) P[N,RSET] = SETSUM (RSET,

1f element = O then P[M-1, SETSUBST (l+element, element, RSET)]

or if element = k then P[N-1, SETSUBST (0, element, RSET)]

A
M~N+1
+ if M=N then kH P[Mt+1, SETSUBST (1, element, RSET)]
else O
else P[N, SETSUBST (element + 1, element, RSET)]
else (1+8) P[N,RSET] = SETSUM (RSET,
if element = k then i P[M1, SETSUBST (1, element, RSET)]
+ 8 P[N-1, RSET]

else i P[N, SETSUBST (element + 1, element, RSET) + OP[N-1, RSET]

There are several alternative ways in which this expression could be
written. The choice would depend largely on the operations to be
performed. The typical procedure 1s to apply a number of steps and then
to generate a special case from the general expression.

In closing, another area where the problem solution goes from the

general to the particular is the area of vector spaces and matrices.

Methods of Specification

The amount of information about the input to be saved in the internal
representation depends on the range of tasks which the machine is to
perform in the man-machine interaction. One possible task is the
arrangement of statements input in any order into an order which allows
their sequential evaluation. In some cases missing steps or limits could
be pointed out. This requires some representation of what statements

belong together as well as properties of the statements such as the

98

information needed to evaluate them. With respect to evaluation, the
more problem oriented, rather than procedure oriented, the man-machine
discourse becomes, the more necessary it is to represent objects by a
set of properties which would allow generation of the object by an
appropriate routine. This is true, for example, of sets representing
permutations and combinations subject to certain restrictions.

Such properties are also needed 1f the machine is to perform
difficult problem solving tasks. Often, for example, the factors of a
polynomial can be found only if information about them is known from
physical considerations. This information must be stored as a property

~

of the polynomial.

The Experimental Routines

The mathematical expression transformation routines will now be
described in detail. Conclusions about the types of program
organization which were needed for these routines have already been
presented in the first part of the chapter. This detailed description
will be useful to those who want to write similar programs. The
transformation routines are written as a hierarchy of LISP functionms.
Some of the functions perform operations which are common to many of
the transformations. These functions comprise a low level programming
language. 1In addition, there are many functions which perform system
and bookkeeping operations. To see the purpose of each of the function
types, the processing of a sample command will now be traced through the
system. A knowledge of the LISP programming language will be assumed for

the remainder of the chapter.

99

Suppose the user were to type the command:
#'E<-SIMPLIFY(DRV('X,1, 'X#2 + "(X+1)42))#
the PDP-6 sends this command, as a list of characters, toc the 7094.
There, the LISP function APARSE, described in Chapter X, is used to
parse the string of characters into a LISP expression. The above
command becomes:

(EASSIGN (EQUOTE E) (SIMPLIFY (DRV (EQUOTE X) 1

(PLS (PWR (EQUOTE X) 2) (PWR (EQUOTE (PLS X 1)) 2)))))

This expression 1s then evaluated in the LISP system. All mathematical
expressions are kept on the disk. The function EASSIGN 1s one of

several system functions. It will write the mathematical expression

which 1s the value of its second argument on the disk as a file with
name E FORM. The first name E has been pseudo-quoted with EQUOTE.
EQUOTE transforms typed input expressions into internal form. It is

one of several functions for transforming expressions into equivalent

forms for input or output. Next, consider the evaluation of the

arguments of DRV, the derivative function. DRV will take the first
derivative with respect to X of its third argument. Evaluating the
third argument, X and 2 are given to the function PWR, which is one of

a group of functions for performing the algebraic operations.

PWR[X,2] = (PWR X 2 NIL) Similarly EQUOTE [(PLS X 1)] > (PLS X 1 NIL),
PWR[(PLS X 1 NIL), 2] — (PWR (PLS X 1 NIL) 2 NIL), and the final result
1s (PLS(PWR X 2 NIL) (PWR(PLS X 1 NIL) 2 NIL) NIL). The functions PLS and
PWR will perform certain simplifications, such as PLS [X, (PLS A B NIL)] —
(PLS X A B NIL) instead of (PLS X (PLS A B NIL) NIL). This reduces the

growth of expressions because of simple redundancies. Next, the

100

derivative function DRV is called. DRV issues a call to
DIFF[X, (PLS X 2 NIL)(PWR (PLS X 1 NIL) 2 NIL)NIL)]. The function

DIFF 1s one of several large routines for transforming the elementary

functions. It would take up too much space if it stayed in core
memory at all times. Therefore, DIFF is defined as a call to the

system function GETFILE. GETFILE[DIFF, (X EXP)] first reads in the

disk file DIFF LISP, which contains the DIFF routines. Then GETFILE
evaluates DIFF[X, EXP]. Finally, GETFILE reads the disk file DIFF
ERASE, which removes the DIFF routines from core memory. As stated
above, DIFF is given the expression:

(PLS (PWR X 2 NIL) (PWR (PLS X 1 NIL) 2 NIL) NIL).

Before differentiating this expression, DIFF gives it to MKP, the

function for putting the variables in all subexpressions on their

property lists. MKP returns (PLS(PWR X 2 (X)) (PWR (PLS X 1 (X)) 2

(X)) (X)). Now DIFF can look on the property list of an expression

in order to see if it depends on the variable of differentiation. If
it does not, DIFF will immediately return the answer, 0. For the
example above, DIFF returns:

(PLS (PRD 2 X NIL) (PRD 2 (PLS X 1 NIL) (PLS 1 O NIL) NIL) NIL).

This result is given to SIMPLIFY. This routine is used so often that
it has been chosen to reside permanently in core memory. Therefore, no
call to GETFILE is needed this time. SIMPLIFY finds that

(PLS 1 0 NIL)—> 1, then that (PRD 2 (PLS X 1 NIL) 1 NIL)=—>

(PRD 2 (PLS X 1 NIL) NIL). Since this later expression is the argument
of a PLS, it is expanded to (PLS (PRD 2 X NIL) 2 NIL). Thus, at the

top level SIMPLIFY finds:

101

(PLS (PRD 2 X NIL) (PRD 2 X NIL) 2 NIL), which can be simplified by
collecting terms. To do this, the routine must discover that two of
the terms have the same literal factor. To compare these factors,

SIMPLIFY uses the functions for computing the hash code number of a

symbolic expression. If the hash code numbers are the same, SIMPLIFY

assumes that the factors are equivalent. The final answer,
(PLS 2 (PRD 4 X NIL) NIL) 1s now written on the disk by EASSIGN.
In addition to the five classes of functions above, there are

also a few general purpose functions. The functions 1in each of these

si1x classes will now be explained. Then the functions which comprise
each of the transformation routines will be described. These
descriptions use several special terms.

The expressions are represented in LISP 1in operator prefix form.
The 1individual operators are:

(Note: most of the operators can take any number of arguments

in the obvious manner.)

1. (PLS A B C NIL) = A+B4C

2, (PRD A B C NIL) = A-B-C

3. (FRT I J NIL) = :TI-

4. (PWR A B NIL) = AP
dB+D
5. (DRVABCDENIL)E_E

aaBacP

B
6. (ITG D A B C NIL) EE.J;C db

C
7. (SUMABCDNIL)E.Z D
A=B

102

8. (@LaBcDENLD=E[SD

9. (NAM A B C NIL) = Cy.p

10. (F A B NIL) = F(A,B)

11. (NAM A B (F C D NIL) NIL) = F

A,B (CSD)

12, (FTL A NIL) = A'
13. (ABS A NIL) = A

14, (DEL A NIL) = —

15. INF = o©

16. IDF = i1ndefinite

17. PI =97
18. *E = e
19. *T =1

20. NIL = undefined

21. (XST I B C A NIL)=

22, (IMS I B C A NIL)=

23. (CND (A B NIL)(C D NIL) NIL)= ‘333

The last element of each list 1s the property list of the expression,

An empty property list 1s represented by NIL. When the operator is
removed from an expression, the argument list remains. For example, the
argument list of (PLS A B C NIL) is (A B C NIL). The body of an operator
is the last argument in the list. For example, the body of (NAM A B C NIL)

1s C. The expression (F A B NIL) 1s called an arbitrary function of A and

B. An expression such as

(PLS (PRD B C NIL) (PRD C (PWR D E NIL) NIL) NIL)

103

forms a tree of subexpression as shown below:

When a function 1s said to go down the expression tree, 1t processes the

nodes of this tree i1n the normal order for LISP.

Functions Which Put the Dependence Property onm the Property Lists of
All the Subexpressions

As was stated in the introduction, i1t is sometimes useful to put
the variables 1n a subexpression on its property list. This list of

variables will be called the dependence list of the subexpression.

Subscripted function names are distinguished from variables as can be

seen in the following examples:

(FXYNIL) - (FXY (XY))
(PLS A (F X Y NIL) NIL) — (PLS A (FX Y (X Y)((F A X Y))
(PLS A (NAM 1 (F X Y NIL) NIL)NIL) — (PLS A (NAM 1 (FX Y (X Y))
((NAM 1 F) X Y)) (A(NAM 1 F) X Y)).
The dependence lists are computed by MKP[X]. MKP goes down the
expression tree to the atoms, which are left unchanged. Coming back up
the expression tree, each argument list is given to MKPIL.
MKP1 [ARGLIST, EXP, PLIST] goes down the argument list making a dependence
list by taking the union of the variables on which each argument depends

with the accumulater result, PLIST. There are five cases necessary to

104

find the dependence of an argument. If the argument is a number, 1ts
cependence 1s NIL. For an atomic argument, the result is a list of

the atom. If the argument is an arbitrary function, the result is the
function name added to the argument property list. All other expressions
except NAM bodies yield their property lists. As shown in the examples,
NAM bodies yield the entire expression with the property list removed

by RPLST and with arbitrary functions replaced by their names, combined

with the dependencies of the NAM body function arguments.,

Functions Which Compute the Hash Code Number of an Expression

Chapter VII presents a scheme for assigning integers to expressions
in such a way that equivalent expressions will be assigned the same
integer. These 1integers are called hash code numbers because the
infinite set of mathematical expressions 1s mapped into a finite set
of integers by the assignment scheme. As explained in Chapter VII, 1f
aX+2 1s to have the same hash code number as ax-az, then a special hash
code scheme must be used for exponents. For want of a better solution,
exponents of expoments are treated with the base scheme. The current
depth of exponentiation module 2 1s assigned to the variable SIMPLEVEL.
SIMPLEVEL is O for the base arithmetic, which was called F arithmetic 1in
Chapter VII. SIMPLEVEL 1s 1 for the exponent or S arithmetic. The F
and S arithmetic 1s performed by the functions FPLS, FPRD, FDVD, FPWR,

SPLS, SPRD, SDVD, and SPWR. All of these functions except FDVD are

coded in LAP for greater efficiency; the functions perform the following

105

computations:

(Note:

7

FPLS:

FPRD:

FPWR:

A and B are arguments and p is the finite field prime,)

Answer = (A+B) mod p

(A*B) mod p

Answer

First a check is made to see if the base is equal to the integer
. . . nimw _ .
assigned to e. If so, special code is entered so that e will

often hash into -1", 1In any case, a check must be made for a
negative exponent which indicates that the finite field square
root of the base is to be taken. Finally, the base is multiplied

4

by itself in order to create the series base, basez, base ',
i n

base™ - base2 . The answer is the product of all the terms

in this sequence for which the corresponding bit of the

exponent is a 1. The flow chart is:

106

-
es Yes| base = ve
base = e | exp exp =
negative P |
" Jexp
No ‘NO J
»
— (
im divide |Yeg| base = +& [Yes| base = i
exp eéxp =
\ J J exp/ifr
No N No
4 Y A
No ify divide base = -1
p-exp eéxp = >
J exp/ifr
Yes
y
1 base = i
base = +& Ye'exp= N
- Py{p-exp)/
No
y
base = -1
exp =
p-(p-exp) /]
in
‘ Y
- . oxp =
exp es =
negative (exp-p)
mod (p-1)
— y
No |
Ans = 1
PR = base
|
=0 3] exp = (PR+PR)mod p
y, L J
No
y
ans =
(ans-PR)mo

SPLS:

SPRD:

SPWR:

107

Either argument can be positive or negative.

A> O B>O0 Answer = (A+B) mod (p-1)

A>O B<LO Answer = (-2A+B) mod (p-1)

ALO B>O0 Answer = (A-2B) mod (p-1)

AL O BLO If A+B 1s odd: Answer = (A+B) mod (p-1)

Otherwise: Answer = (IA+B//2) mod (p-1)

Either argument can be positive or negative.

A>O B> O Answer = (A+B) mod (p-1i)

A>O BO If A-B 1s even: Answer = |(A:B) mod (p-1)f/2
Otherwise: Answer = (A-B) mod (p-1)

A< 0 B> 0 If A-B 1s even: Answer = [(A*B) mod (p-1)]/2
Otherwise: Answer = (A-B) mod (p-1)

A<D BLO Answer = - p{[(A-B) mod (p-l)]} mod (p-1)

= 2n+2 where = l6n+13
p p

If the base 1s negative, then 1t 1s multiplied by (2n+2) mod (p-i).
It 1s then raised to the exponent in the same manner as for FPWR.
First, the series base, basez, e base2k +++ 18 formed, where
each term 1s the square of the preceding ome, taken mod (p-1).

Then the answer 1s formed by multiplying together mod (p-1) the

terms k for which the kth digit of the exponent 1s a one.

108

SDVD: A is the numerator and B is the denominator.

A>0 B0 A odd—> B odd -> Ansver = (A*B™ L) mod (p-1)

T —> Ansver [-A-(B/Z)-l] mod (p-1)

T — B odd —> Answer (A-B-l) mod (p-1)

T —> Answer = SDVD[A/2,B/2]
A>0 BLO Answer = (24-B" 1) mod (p-1)
A<O B>O0 A 0dd - Answer = (A-B"1) mod (p-1)
T — Answer = (IA/ZI-B-l) mod (p-1)
ALDO BKO Answer = ()Al°lBl-1) mod (p-1)

Where B"l 1s computed as SPWR(B, 8n+3), since 8nt+3 is @&(p-1), the

number of integers less than p and relatively prime to p-1.

FDVD is computed as FPRD[A, FPWR[B, p-2]]. Frequently, one wants to
perform an operation with either the S or the F functions depending on
the SIMPLEVEL. For this reason, the A functions have been defined.
These functions are APLS, APRD, ADVD, APWR, and ANEG. Their definitions
are similar. For example:
APLS[A,B] = (SIMPLEVEL = 0) - FPLS[A,B]
T > SPLS[A,B]
ANEG[A] calls either FPRD[A, p-1] or SPRD[A, p-2].
This completes the explanation of the algebraic operations used in the
hash code scheme. There are several functions which use these operations
to compute the hash code number of an arbitrary expression.
The hash code number of any expression, X, is computed by the

function ECODE[X, SIMPLEVEL]. ECODE goes down the expression tree until

109

1t reaches the individual variables and constants. It finds the hash
code numbers for these and then computes the hash code number of each
subexpression from the hash code numbers of 1ts arguments. In going
down the expression tree, the SIMPLEVEL 1s changed whenever the
exponent of a PWR 1s entered or whenever the main connective of a
subexpression is flagged with FCODE, indicating that 1t is a transcendental
function. The code numbers of the individual atoms and numbers are
computed by the function GETC[N]. GETC gives a floating point number
to MKCD. 1In the case of a positive integer, it is only necessary to
take APLS[integer, 0], or ANEG[-integer] for a negative integer. If N
1s a function, the answer 1s ADVD of GETC applied to the numerator and
denominator. The remaining possible argument for GETC is a literal
atom. GETC looks on the property list of the atom under the indicator
CODE. 1If the atom has been coded before, or if it is *E, *I, or PI,
its code number will be found. Otherwise, a random number is generated
by RANNO and taken modulo p-1 by SPLS[random number, 0], This code
number 1s put on the property list of the atom and also returned as the
answer. The floating point number hashing function, MKCD, hashes the
number in three steps. First, the absolute value of the number 1s taken.
Then the characteristic and fractiom are separated, and the fraction 1s
either multiplied or divided by 241 characteristicl, depending on the
sign of the characteristic. Finally, 1f the floating point number was
negative, ANEG of the answer 1s taken.

Returning to ECODE, the method of computing the code number of an
expression from the code numbers of its arguments, depends on the

operator of the expression. As stated above, 1f the operator symbol has

110

the property FCODE, this represents a function of one variable; the
functioas in this class which are presently coded are: FSIN, FCOS,
FTAN, FSEC, FCSC, FCCT, FSINH, FCOSH, FTANH, FCOTH, FSECH, and FCSCH.
These functions will be discussed individually later. They all compute
a hash number from the hash number of their argument. If the operator
symbol has the property NCODE, this property flags a function of one
argument which 1s a list of the hash code numbers of the arguments of
the operator, When a new operato~ is introduced, a function for computing
1ts hash code can be 1nvented and added to the system with NCODE. ECODE
applies this function to a list of the argument hash numbers. ECODE
calls APLS, APRD, and APWR for the operators PLS, PRD, and PWR
respectively. 1In the case of PLS and PRD, ECODE uses ECODEl to apply

the binary operators APLS and APRD to the indefinite number of arguments
of PLS and PRD. All other operators are handled by a cail to FGFN.

This function produces a result which depends on the hash numbers of

the arguments and theirorder, but which has no invariant propertuies.
Taking the hash number of the operator name as the initial accumulated
answer , the accumulated answer 1s added in F to the hash number of the
next argument, and this sum 1s raised i1n F to the arbitrary power
125786059 to form the new accumulated answer. This process 1s continued
until all of the arguments have been used. This completes the discussion
of ECODE. In conclusion, the formulas for the transcendental functions

are:

1
FSIN 21 (;1x_e-1x>

111

FCOS %"(;ix+e'ix)

2ix 1.1y
FTAN u=-e Answer = 1 itu
FSEC 1/Fcos
FCSC 1/FSIN
FCOT 1/FTAN

FSINH -1+ FSIN(1x)
FCOSH FCOS (ix)

FSINH
FTANH FCOSH

FCOTH 1/FTANH
FSECH 1/FCOSH
FCSCH 1/FSINH

The operations in transcendental functions are performed in S arithmetic.

Functions for Algebraic Operations

The functions which perform algebraic operations can be divided into
seven classes. Typically, the functions within a given class are defined
for the same arguments, such as integers, rational numbers, or general
expressions. Each class may also contain a few helping functions.

A. Integer Functions

Two functions accept integer arguments:
ABS[N] = |NI
FTLEXP[N] = N!

B. Rational Number Functions

The arguments for these functions can be either rational

numbers, represented by (FRT M N NIL), integers, or floating point

112

numbers. Since the functions for addition, multiplication, and division
take either fractions or LISP numbers as input, they first send their

arguments to DONUM for conversion to a standard form:

DONUM[A B] = (numerator of A, denominator of A, numerator of B,

denominator of B)
Using this list, the three functions form the following quotients.

PLSNUM: NUM1 - DENOM2 + DENOM1 - NUM2
DENOM1 - DENOM2

PRDNUM: NUM1 - NUM2
DENOM1 - DENOM2

DVDNUM: NUM1 - DENOM2
DENOML - NUM2

These results are then given to REDNUM to be reduced to lowest terms.
If one of the original arguments was a floating point number, then of
course, the answer will be a floating point number, If the denominator
is zero, then REDNUM returns INF, representing «, Otherwise, REDNUM
reduces the fraction to lowest terms by finding the g.c.d. of the
numerator and denominator with GCD. The final member of this class 1is
the exponentiation function PWRNUM. The exponent must be an integer.
The special case 0-'N results in INF. Any other negative exponent results
in the base being inverted with DVDNUM, and the expoment made positive.
The remaining possibilities have a non-zero base with a positive
exponent, If the base is negative, the sign of the answer is positive

or negative depending on whether the exponent is even or odd.

113

C. Functions for Arbitrary Expressions
These functions combine expressions under the elementary

operations. The expressions are not simplified, but simple redundancies
are eliminated. EPLS[X, Y] and EPRD[X, Y] both call EFUN with appropriate
functional arguments. EFUN performs the same operations for the additive
and multiplicative group. EPRD must make the check for a zero argument,
since a.o0=0 has no counterpart in the additive group. For INF:O EPRD
returns NIL and prints INDETERMINATE. EFUN[X, Y, W, NUFUN, Z, NUMP]

has six arguments which have the following uses and values:

Name Description Value for EPLS Value for EPRD
X first expression
Y second expression
W operation name PLS PRD
NUMFUN rational number function PLSNUM * PRDNUM
Z group;identity 0 1
NUMP group 1dentity predicate EZEROP EONEP

If either argument is undefined, EFUN just returns (W X Y NIL).
If either argument is the identity, EFUN returns the other argument., If
either argument is infinity, the answer is infinity. If none of these
conditions hold, then each of the two expressions is examined by EFUNI.
EFUN]l constructs a number, U, and a term list, V. U is initially the
identity and V is empty. If X is a number, it is combined with U. If
X has the operator W, then its terms are placed on V, except that if
the first term is a number, it is combined with U. Otherwise, X itself
is placed on V. Y is treated in the same manner. EFUN then looks at

this result. There are three possible cases. If the term list is empty,

114

EFUN returns the number. If the number 1s the 1dentity and there 1s only
one term on the term list, this term 1s the result. Otherwise, the
number 1s placed on the term list 1f i1t 1s not the identity, and the
operator name W is added to form the answer.

The next function in this group 1s EPWR[X, Y]. There are quite
a number of possible outcomes. If the exponent 1s one, the answer 1is
the base. If either argument 1s undefined, the answer 1s (PWR X Y NIL).
A zero exponent yields an answer of 1 unless the base 1s infinity. If
the base 1s a fraction, then 1t 1s inverted 1f necessary, so that the
numerator will be larger than the denominator. When the base 1s

inverted, the sign of the exponent 1s changed. This canonical ordering

of expomnentiated fractions allows the current simplification program to

L 1
reduce (%) 2-2+6 to 2. If the base 1s a number and the exponent 1s an

integer, then the result 1s computed by PWRNUM. If this is not so,
but the base 1s a positive LISP number and the exponent 1s also a LISP
number, then the result 1s computed by EXPT. Otherwise, the result 1s
(PWR X Y NIL).

EDVD[X, Y] 1s defined as EPRD[X, EPWR[X, -1]] and ENEG[X] 1s
defined as EPRD[X, -1]. EEQN[X, Y] 1s (EQN X Y NIL) and ESET[(X, neeX)]
1s (ESET X, <+-X, NIL). EMIN[X] returns the smallest number on argument
list X. 1t compares the arguments with the function LSSP described 1in
the section on predicates.

ENLOG[X] , the natural logarithm of X, can have several outcomes.
If X 15 one, the answer 1s zero. If X 1s zero, the answer 1s -, If
X 15 oo, the answer 1seo, and 1f X 1s eA, the answer 1s A. Otherwise,

the answer .s (NLOG X NIL).

115

There is one more function 1in this group; EDRV[XlN1 - XlNi
ces ann)’ Y] expresses the Nlth derivative of Y with respect to Xl for
each 1. If Y does not have main operator DRV, then the answer is
(DRV ... Xl,Nl, *++ Y NIL). Otherwise, EDRV gives the two arguments to
EDRV1. EDRVI gives Y, X1’ and Nl to EDRV2, for each 1. EDRV2 goes

through the list of differentiation variables on Y and adds Xi‘

D. Predicates

There are eight predicates.

EENUMBERP| X] Is X a LISP number, or (FRT N M NIL)?
ENUMBERP[X] Is X a LISP number, INF, or (FRT N M NIL)?
EZEROP[X] Is X a zero LISP number?
EONEP[X] Is X a LISP number equal to 1.0 or (FRT N N NIL)?
EMINUSP[X] Is X a negative LISP number or (FRT -N M NIL)?
EODDP[X] Is X an odd positive LISP number?
GRTP[X, Y] X = Y > NIL

X=wo 5 T

Y =« — NIL

Otherwise, there 1s an error unless X and Y are LISP numbers,
these are compared with GREATERP.

LSSP[X, Y] = GRTP[Y, X]

116

E. Functions Which Combine Expressions with Hash Code Numbers
On the Front

There are four functions which combine lists of the form
(hash number . expression) under addition, multiplication, and
exponentiation. These functions are used by the simplification program.
DPLS, DPRD, and DPWR all call DFUN with appropriate functional arguments.
DPWR first checks to see 1f the hash of the base is zero. In this case
the base and exponent are combined with EPWR and the result is prefaced
with 1ts hash code number. This special check is to avoid zero raised
to a negative power.

DFUN[X Y AFUN EEFUN] 1s a function of the two arguments and
the proper A and E functions for the gliven operation., DFUN combines
the hash code numbers with the A function and the expressions with the
E function. U 1s the new hash number and V the new expression. If
the expression 1s NIL, the 1t 1s undefined and the hash of NIL is

computed instead of U. The hash scheme breaks down for undefined

operations. Next a check 1s made to see 1f U 1s 1, 0, or =1, In this
case the expression 1s taken as equivalent to the hash number. (Note:
A hash number of -1 means that APLS[1, N] = 0). 1If none of these cases

apply, the result 1s (U.V).

F. Functions Which Make It Possible to Evaluate the Expressions
As LISP Functions

The operators have been given functional definitions so that

they can be evaluated.

PLS[X,
PRD[X,
NEG[X]
DVD[X,
EQN[X,

NAM[X,

FUN[X,

DRV[X,

G'

Y]

Y]

Y]

Y]

Y]

Y]

Y]

117

I

EPLS[X, Y]

EPRD[X, Y]

ENEG[X]

EDVD[X]

EEQN[X]

is an FEXPR. It evaluates its arguments and from the resulting
list, (Xi°" Xn), forms (NAM X1 cee Xn NIL).

is also an FEXPR. The first argument is the name of an
arbitrary function. FUN evaluates 1its arguments and adds

NIL to the end of the resulting list.

1s also an FEXPR. It evaluates its arguments and gives the
resulting list to DRV which carries out the indicated
differentiation. DRV1 gives each indicated variable of
differentiation to DRV2, which calls DIFF in o;der to

differentiateY the required number of times.

Remaining Function

There is one more function which 1s needed to implement the

convention that a set of one element and that element can be used

interchangeably in commands. SETTER[X] returns X if its main conmective

is ESET, and (ESET X NIL) otherwise.

118

Functions for Input-Output

There are five operations performed to facilitate input-output.

1. Transformation of expressions from internal form before they
are printed on the typewriter.

2. Transformation of typed input expressions into internal form.

3. Retrieval of the Nth subexpression of an expression which has
been pointed at with the light pen.

4. Retrieval of an expression with the Nth subexpression removed.

5. Conversion of an expression retrieved by operation 3. or 4.

into internal form.

Conversion of expressions for display is the subject of Chapter IX.

Expressions can be printed in a modified internal form with EPRINT.
EPRINI{X] reads X FORM from the disk and removes the property lists
from all subexpressions with RPLST. It gives the resulting expression
to EPRINT1. EPRINT1 goes through the expression and gives all PLS, PRD,
PWR, and EQN subexpressions which have more than one argument, to EPRINT2.
EPRINT converts the expressions to internal operator form. For example,
(PLS A B C) becomes (A PLS B PLS C).

If an input command contains a quoted expression such as '(A + B),
this will be parsed into (EQUOTE (PLS A B)). EQUOTE is an FEXPR which
returns its argument unevaluated, but transformed by EQUOTEL and EQUOTE2.
EQUOTEL puts a null property list on every subexpression. It also
transforms (NEG X) into (PRD -1 X NIL) and (DVD A B) into

(PRD A (PWR B -1 NIL) NIL). EQUOTE2 removes redundant levels of PLS and

119

PRD expressions. For example,
(PLS A (PLS C D NIL) NIL) becomes (PLS A B C NIL).

GETSUB[X, N] returns the Nth subexpression of X; the subexpressions
are numbered in the order they would normally be evaluated by LISP.
The subexpression 1s located by GETSUBl. GETSUBl returns NIL 1f the
count does not reach N, so it must list the answer to distinguish the
answer NIL from failure. Therefore, GETSUB takes CAR of the result of
GETSUBL. N is a free variable for GETSUBL; GETSUBL decrements N at each
new subexpression. When N 1s zero, GETSUBl returns a list of that
subexpression as the answer. If N 1s not yet zero and GETSUBL reaches
an atom or subexpression with operator ATOM, it returns NIL to indicate
failure. If an expression has several arguments, GETSUB2 applies
GETSUB1 to each argument 1n sequence, until N becomes zero or the
arguments are exhausted., GETSUB is used to find a subexfress1on which
is being pointed at by the light pen as described in Chapter IX. It
may also be necessary to use the expression which contains this
subexpression, perhaps replacing the subexpression with another one.
Therefore, when GETSUBl finds the Nth subexpression, the list
(SUBMARK M NIL) is put on the property list of the subexpression by
altering the list structure with RPLACA. More than one subexpression
may be marked by successive calls to GETSUB. The SUBMARK's will have
increasing integers M until the constant INPNUM is reset to 1. This
mechanism 1s used by the command REPLACE which 1s described in the
discussion of commands.

The function REPLACESUB will replace each subexpression which has

a SUBMARK structure on its property list, by that structure.

120

When a subexpression of expression E has been indicated with the
light pen, then the structure E PFORM, which 1s produced by the picture
compiler, 1s given to GETSUB. GETSUB finds the subexpression as
described above. The PFORM subexpression 1s then transformed into
internal form by APOFF. APOFF makes the following transforms on all
applicable subexpressions:

1. (DVD A B NIL) — (PRD A (PWR B -1 NIL) NIL)

2. (NEG A NIL) —> (PRD -1 A NIL)

3. (FUNCTION F B C NIL)— (F B C NIL)

4. (FUNCTION (NAM I F NIL) B C NIL) — (NAM I (F B C NIL) NIL)

5. (DRV 1 1 2 3 (F X Y N1L) NIL) —> (DRV X 1 Y 3 (F X Y NIL) NIL)

6. (PAREN A NIL) 2 A

7. (ATOM A NIL) — A

APOFFl and APOFF 2 perform transformation 5. APOFF3 performs

transformation 4.

System Functions

There are fourteen specialized functions which communicate with
the disk and the teletype. There are five types of disk files:
1. Files containing LISP functions which comprise a given
mathematical transformation. These files have second name
LISP.
2. Files containing LISP statements which delete from core the
functions in a given transformation file. These have second

name ERASE.

121

3. Files containing a single mathematical expression. These have

second mame FORM.

4. Files containing an intermediate form of a single displayed

expression. These files are generated by the picture compiler

to facilitate light pen reference to subexpressions. They
have second name PFORM.

5. Files which contain scope instructions to display an

expression., These files have second name DFORM.
There are functions which read, write and delete these files.

There 1s not enough space in core memory for all of the LISP
functions which execute the commands. Therefore, the functions for a
given operation, such as differentiation, are brought into core only
while that step 1s being performed. In the case of differentiation,
for example, the top level function DIFF[Y, X] 1s temporarily defined
as a call to GETFILE[DIFF, (Y X)]. GETFILE reads file DIFF LISP,
executes DIFF(Y, X), and then reads file DIFF ERASE which contains
LISP commands to remove the differentiation routines from core and
redefine DIFF as a call to GETFILE.

All mathematical expressions which have been defined in the

system are written on the disk with second name FORM by a call to

EASSIGN[Name, Expression]. The input command E<—X becomes EASSIGN[E, X].

EASSIGN also deletes any old files with name E DFORM or E PFORM. An
expressicn can be deleted by a call to EDELETE[E] which deletes E FORM,
as well as E PFORM and E DFORM. The FEXPR FORM[E] has as value the
expression in file E FORM. Unquoted names 1n input commands are given

to FORM.

122

When a light pen reference 1s made, the function PFORMREAD[Name, N]
1s called. This function reads file Name PFORM and uses GETSUB to find
the Nth subexpression. If an operation such as REPLACE is called, then
the expression Name PFORM must be saved, so that a new subexpression can
be substituted for the old ome. To do this the call to PFORMREAD 1s
replaced by a call to GETINSUB and the required PFORM is read into core
and saved on the LISP constant INPFORM. GETINSUB then uses the
expression on INPFORM instead of reading from the disk. When GETSUB
locates the Nth subexpression, 1t alters the list structure of
INPFORM to mark the place.

EDISPLAY[E] wi1ll type the display instructions for E. These
1nstructions are preceded by a dollar sign, so that the PDP-6 will
interpret them as a command, instead of typing them on the teletype.
EDISPLAY first checks to see 1f there 1s a file E PFORM, indicating
that the picture compiler has already been used to compute the displayed
form of expression E. 1In this case EDISPLAY chains to the CTSS system
command PRINT, printing file E DFORM. Otherwise, it 1s necessary to
chain first to the file LISPP SAVED, which contains the picture compiler.
This file reads E FORM and creates the corresponding PFORM and DFORM
files. The DFORM file originally has name LISP LSPOUT, but this is
changed to E DFORM with the CTSS RENAME command.

When a command 1s typed at the PDP-6, the string of symbols 1is
given to the LISP function COMMAND. This function calls APARSE to parse
the symbols into a LISP expression. It then evaluates this expression
for 1ts effect and returns an answer of NIL to indicate that the

evaluation 1s complete.

123

A method of questioning the user has been provided with the function
QUESTION[X, Y]. X 1s a list of expressions and Y 1s a question to be
typed out, which may contain some of the expressions in list X.
QUESTION first types the word QUESTION. Then, 1t generates a name for
each expression 1ipn list X and writes the expression on the disk with
this name. It also displays each expression. Next, it replaces the
expressions 1n question Y with their names. The question 1s then
typed. The user can make one of four responses. If he types GIVEUP,
QUESTION calls ERROR. I he types ANSWERQ X, LISP expression X 1s
returned as the answer. He may also type ANSWER X Y, 1in this case
X Y 1s taken as a pair for EVALQUOTE and the result 1s returned as the
answer. A special case check 1s made for ANSWER COMMAND (X). In this
case string X 1s parsed with APARSE and evaluated to produce the
answer, If the user dces not type GIVEUP, ANSWER, or ANSWERQ, then
his response 1s taken as a pair for EVALQUOTE and the result 1s typed
out. QUESTION then types, "THIS QUESTION TO YOU IS PENDING", repeats
the question and awaits a further user response.

There are three general purpose file reading functionms.

READF[X Y] opens file X Y, reads one list, then closes the file.
FILESEND[X Y] reads omne list from file X Y and prints the members of
this list one at a time. WHOLEFILERFAD[X Y] returns a list of all the

lists in file X Y.

124

General Purpose Functions

There are a number of functions which have proven useful in
transforming the mathematical expression representations used in this
thesis,

APND[X Y] forme an argument list from the argument lists X and Y.
For example, APND[(A B NIL) (C D E NIL)] is (ABC D E NIL).

ARGLIST[X] If the next to last element of list X is an arbitrary
function with arguments, or a subscripted arbitrary function with
arguments, then the list of arguments 1s returned. Otherwise, NIL 1s
returned.

DELETE[X Y] removes the first occurrence of Y from list X.

DEPEND[Y X] is true if expression Y depends on variable X.

Either Y is an atom and X is equal to Y, or X is a member of the property
list of Y. 1If X is a subscripted variable or function, then it will
appear on the property list of Y in a special format, without arguments
and with a null property list, In this case, X must be transformed into
this format before 1t can be compared against the property list of Y.

FLOAT[{X] X must be a LISP number or the form (FRT N M NIL). If
X is a LISP number, it 1s floated by adding it to floating zero.
Otherwise, the numerator and denominator are floated in this manner and
then the quotient 1s taken.

LAST[X] returns the last member of list X.

MAPL[X, FN] 1s like MAPLIST except that it applies FN to CAR of

the list X, and it does not apply FN to the last member of list X.

125

MATCH[EXP, PATT, COﬁST] is a very simple matching function. The
expression EXP is matched against the pattern PATT in a two step process.
If a match occurs, then the expression CONST is evaluated against a
special ALIST, MALIST which 1s used during the matching step. In the
matching step, MATCHZ compares EXP and PATT element by element, all
elements must be the same until the ends of both expressions are
reached or until the atom DOLLAR appears as an element on PATT. If
this match succeeds, then the second part of the match is attempted.
If PATT has a function on 1ts property list, then the value of this
function applied to EXP must be T. If both of these conditions are
met, the match succeeds.

MKCLEANP[X] sets to NIL all subexpression property lists of
expression X,

MKPLS[X] checks argument list ¥ For three conditions:

(NIL) — 0
(A NIL)— A

(A «++ B NIL)— (PLS A .-« B NIL).

MKPRD[X] checks argument list X for three conditions:
(NIL)—> 0
(A NIL) 2 A

(A *** B NIL) > (PLS A +++ B NIL).
NILON[X] adds the element NIL to the right end of list X.
NTOL{ X] returns the next to last element of list X.
NTOLSUBST[X, Y] substitutes Y for the next to last element of X.

NUMBER[X] is the same as LENGTH of X.

126

PUT[X Y Z] puts X on atom Y with indicator Z.

RANNO[] returns a random integer which is formed by multiplying the
previous random integer by 311. The previous random integer is kept as
the value of the constant RANDOMNUMBER. This random number generator is
based on a note by Martin Greenberger.

REMPROPS[LIST PROP] removes property PROP from each element of list
LIST.

RPLST[X] removes the property list from each subexpression of
expression X.

SIMP32[FN Y] evaluates (FN Y).

STRIKE[X Y] removes from list X any element for which the predicate
Y 1s true,

SUBSTA[CONST PATT EXP] applies MATCH to each subexpression of EXP.
SUBSTA starts at the ends of the branches of the expression tree and
works toward the top.

TWOOFF[X] removes the last two elements from list X.

UNIONLIST[X Y] adds to list Y any members of list X which are not

members of Y.

Transformations

The implementation of each of the transformations in Chapter II
will now be described. Conclusions about these transformations have
already been presented in the chapter introduction. The most informative
are SIMPLIFY and TRUNCATE. The use of light pen references is explained

1n the description of REPLACE.

127

ALLSUMEXPAND

ALLSUMEXPAND[X] uses SUBSTA to apply SUMEXPAND to each SUM

subexpression in X. Since SUBSTA comes up from the bottom,

1 .
E ? X3 would be expanded to

1=0 i=0

. 1 .
xJ o+ § xJ .

j= 3=0

128

BRINGOVER

BRINGOVER[NAME, TERM] brings term TERM to the other side of the
equation with name NAME. The term is indicated with the light pen.
BRINGOVER is not very clever; the term must be one or more factors in
a sum or product. In order to compute the answer, BRINGOVER needs both
the term and the equation with a hole where the term was removed.
Normally, the function PFORMREAD which evaluates a light pen reference
returns the subexpression referenced; the rest of the expression is lost.
To save the rest of the expression BRINGOVER has been defined as an
FEXPR. It has two arguments, the first will evaluate to the name of
the equation and the second to the term. First, BRINGOVER finds the
equation name and reads the PFORM with that name from the disk. The
constant INPFORM 1s assigned the PFORM as value. Now, before the
second argument is evaluated the function name PFORMREAD is replaced
with GETINSUB. Instead of reading the PFORM from the disk as PFORMREAD
would do, GETINSUB uses INPFORM. The hole where the light pen
reference was found 1s marked by altering the list structure of the
subexpression property list. If the term is constructed from several
light pen references, each will be marked. Having evaluated its second
argument to obtain the term, BRINGOVER next calls REPLACESUB to replace
the marked subexpressions in INPFORM with the lists (SUBMARK N NIL).

N numbers the marked subexpressions. INPFORM is converted to standard
internal form by APOFF and SUBMARK expressions with a number other than

1 are deleted from it by BRINGOL.

129

BRINGOVER now has the required term and equation with the hole
marked by (SUBMARK 1 NIL). It first checks to make sure that it was
really given an equation. If not, it just replaces the term.
Otherwise, it checks for each of the following legal possibilities.

Let X be the term to be moved.

X=v=1=vx"!

Y =3x8 ly=1

AX = Y—>A = yx !
A+X=Y>A=Y-X

Y=AX—>X Y =A

Y=A+X—Y

[
]
il
>

In each of these cases, 1t performs the required operation to produce
the answer. Otherwise, the unswer is produced by replacing the term in

the hole.

130

COLLECT

COLLECT[EXP, SET] collects terms in the top level of expression EXP
in powers of the variables in set SET. If the expression is an equation,
1t will collect terms on each side. When possible, COLLECT will combine

terms involving summation. For example,

10 1
ax? + Z:: bx' + d':Zf_ cxd*2 will be collected on powers of x to
i=1 j=5

yield:

6 . 10 . Zifr .
bx + (a+b)x2 + zzj bxt + E:: (b+dec)xt + d*cxt
i=3 i=7 i=11

This transformation is straightforward enough, but since there may be
several variables on which to collect terms, and several factors within
each term, as well as many 1ntersecting ranges of summation, an
inefficient algorithm could be very slow. Therefore, the data is
rearranged into a special form which makes it easy to sequence through
the collection variables, term factors, and summation ranges. Thus,
the LISP functions are specialized to this routine. The complex data
structures made the routine more difficult to debug.

The flow of control through the functions which comprise this
routine is shown in Figure 1. The key data structure 1s shown in

Figure 2,

131

COLLECT
CLCT3 Simplify input expression.

CLCT31 If expression is an equation,
do one side at a time.

CLDT32 Executive function.

Gnvert the CLCT6 \\\¥7CLCT8 Transform the
set of variables expression 1nto
to special format. the special format.

A
o CLCT5S Each term 1s a
product of factors.

Collect the CLCT? # X CLCT4 Convert each
terms on each factor to special
of the wvariables. format.

Convert the CLCT9 8' CLCT10 Collect terms on

answer back to one variable.

standard internal
form.

Figure 1

Flow of Program Control 1n COLLECT

132

The top level function COLLECT[EXP, SET] simply calls CLCT3[EXP, SET].
CLCT3 changes SET into a list of variables by removing the operator and
property list; 1f a set of one element has been represented by the
element 1tself, CLCI3 just lists the element. CLCT3 also simplifies
EXP. CLCT3 gives EXP and the list of variables Y to CLCT3l. CLCT31
checks EXP to see 1f 1ts main connective is EQN. If it is, then the
two sides are collected individually, otherwise, the entire expression
1s collected. The part to be collected 1s converted to a PLS term
list and given to CLCT32. CLCT32 1issues the function calls necessary
to complete the collection of terms. First, the PLS term list X is
converted by CLCT8. The conversion 1s shown by the example in Figure 2.
CLCT8 takes the PLS terms one at a time; each of the PLS terms is
converted to a PRD term list by CLCT5 and then given to CLCT4. The
PLS term itself 1s added to the front of the answer produced by CLCT4
to form the list structure shown in Figure 1. To produce 1its result,
CLCT4 checks each of the PRD terms to see if 1t has PWR or SUM for a
main connective., If the main connective 1s PWR, a term of the form:

(hash of base, exponent, remaining PRD terms, preceding PRD terms)
1s constructed. If the main conmnective 1s SUM, several siightly more
complex terms may be constructed. First, *I* is substituted for the
running variable in the body of the SUM and it 1s converted to a PRD
term list. The SUM body is then examined by CLCT4l. If a term of the
SUM body 1s a PWR and the base does not depend on *I* but the exponent
does, then the exponent 1s evaluated by CLCT411l. CLCT4ll returns NIL
unless the exponent 1s of the form *I*N or M*I*, N an integer, 1n

which case 1t returns N. If CLCT41l returns NIL, then the factor can-

133

not be collected and the machine asks the user if it should continue,
ignoring this factor. If CLCT41ll returns an integer, the terms in the
SUM body PRD list before and after the term in question are concatenated
together and made into a PRD. If the integer returned is not 0, that

*TH
is we have (base TN

), then a change of variables is made in the SUM
so that we have (base*I*) by substituting *I*-N for *I*, A term of
the forms

(hash of base, (lower limit + N, upper limit + N), remaining

PRD terms, preceding PRD terms including residue SUM body)
is then generated. If CLCT4l finds a term in the SUM body PRD list
which does not depend on the running variable *I*, then if the term is
a PWR a term of the form:

(hash of base, exponent, remaining PRD terms, preceding PRD terms

including SUM with term in question factored out and running

index changed to *J%)
1s generated. If the term is not a PWR, a term of the form:

(hash of term, 1, remaining PRD terms, preceding PRD terms

including SUM with term in question factored out and running

index changed to *J%)
is generated. That is, the term is factored out of the SUM. If a term
cannot be generated, then CLCT41 moves on to the next term in the SUM
body PRD list. Returning to CLCT4, if 1t does not find the main
connective to be PWR or SUM, then it forms a term:

(hash of term, 1, remaining terms in PRD, preceding terms in PRD)

When all terms have been examined, CLCT4 returns to CLCTS.

134

After the expression is transformed by CLCT8, the list of variables
to be collected on 1s transformed by CLCT6. CLCT6 generates a structure
of the form: ((hash of variable i) (hash of variable 2) ... (hash of

variable n)0), which will be called the collection list.

The transformed expression and list of variables are given to CLCT7.
The purpose of CLCT7 is just to give the terms of the top level PLS one
at a time to CLCT10, which puts them on the collection list in the
appropriate place. The PRD list of each of the terms in the top level
PLS has been converted by CLCT4 into a list of terms each of which
begins with a hash number of a variable or expression and contains the
information needed to rewrite the PRD with powers of that variable or
expression factored out. CLCT10 goes completely through these PRD
terms for each member of the collection list. If none of the PRD terms
has a base which matches one of the collection variables, then the PLS
term which these PRD terms make up is put at the end of the collection
list. 1If more than one of the terms match, then the user is asked if
it 1s OK to collect on the first variable or expression which matched.
A mechanism 1s provided which lets him answer this question once for all.
When the first match 1s found, the matching PRD list form and collection
list entry are given to CLCT1l. CLCT1ll removes the hash number from the
front of the collection list entry and then puts it back after the entry
has had the new term added to it by CLCT1ll.

After the hash number has been removed from the front, the collection
list is a list of the form

(X1 Y1 X2 Y2 ... Xn Yn) where

Xi 1s either an i1nteger exponent or a list (N1, N2) giving a range of

135

lnteger expoments, and Yi is the corresponding residue after factoring.
Since part of a range Xi may match part of the range of the PRD list
term, the remaining pieces must then be matched. CLCT11ll tries all the
current pieces against the current range Xi, adding the residue to Yi
for each piece that matches and splitting Xi 1f part of it matches.
CLCT11l then procedes to X(i+l) if any pieces of the range of the PRD
list term remain. When Xn has been reached, all remaining pieces are
put at the end by CLCT111l.

Once collection has been finished the collection list must be
converted back to standard form. This is accomplished by CLCT9, which
gives each term of the list to CLCT91 after removing the hash code
number, CLCT91 generates a top level term for each pair Xi, Yi; a PWR

1f X1 is a single variable and a SUM if Xi is a range.

136

(A (PRD B C D NIL) (SUM J 0 10 (PRD E (PWR G J NIL) NIL) NIL) NIL)

is the term list to be converted to special format. There are three

terms illustrating a single element, a product of factors, and a

summation. The special format is:

Term Decomposition of term into factors
First term (((A NIL) (#A 1 (NIL) NIL)))
Second term ((B C D NIL) (#B 1 (C p NIL) (NIL))
(#cC 1 (D NIL) (D NIL))
(#D 1 (NIL (C B NIL)))
Third term ((StM *I* 0 10 (PRD E (PWR G *I* NIL) NIL) NIL) NIL)
(#E 1 ((PWR G *I* NIL) NIL) NIL)

(¢ (0 10) (NIL) (E NIL)))

/

Hash code of factor base Range of Following and

exponent preceding cofactors

Figure 2

Conversion of terms for more efficient collection.

137

DEPENDENCE

DEPENDENCE[EXP] returns a set of the variables and arbitrary
function names i1n EXP. It does this by making a set out of the
property list of EXP, after MKP has been used to find the dependencies.

If EXP 1is a number, DEPENDENCE returns NIL.

138

DELSUBST

DELSUBST[EXP, OLDDEL, NEWDELFREE] uses SUBSTA tosearch for
subexpressions representing the first derivative with respect to the
OLDDEL variable. For example, OLDDEL might represent ':il—x. and SUBSTA
might find Ed;(a+b). Then 1f NEWDELFREE represented, for example,
c-a% + ead—z s SUBSTA would use DELSUBST1 to make the substitution

%{-(a+b)—% c-c-%;(a+b) + e-ad;(a+b). This 1s one of the few

uses of the DEL operator, (DEL X NIL) = dd_x

139

DRV

The operator DRV was described in the section on algebraic functions.
There it was explained that DRV[X, 2, Y, 1, Z] would use DIFF to
differentiate Z, first with respect to Y, and then twice with respect
to X. The function DIFF[EXP, VAR] will now be described; DIFF
differentiates EXP once with respect to VAR, The routine uses MKP to
compute the dependence of subexpressions. Then, as DIFF comes down
from the top, it can immediately replace a constant subexpression by
zero, This method is certainly faster than simplifying a completely
differentiated constant. However, it would be faster to work up from
the bottom without the call to MKP. Since, MKP can be used in several
routines, the method used here requires less program. It is very easy
to specify derivatives with patterns and so they have been used here
for the transcendental functions. The length of this roﬁtine 1s
primarily the result of checks to reduce generation of redundant
expressions,

DIFF differentiates an expression with respect to a given variable.
The top level function, DIFF(Y, X), gives the FORM Y and variable X to
DIFF2. DIFF2 makes one pass down to the ends of the branches of the
expression tree, rewriting the expression as 1t goes. The
transformation performed on each subexpression 1s a function of its
main conmective, the dependence of the subexpression and each of 1its
arguments on the variable of expansion, and in some cases, the main
connective of one of the arguments. However, the derivative of the
expression depends on the derivatives of its arguments only in the

sense that if some of the derivatives of the arguments are zero, the

140

result 1s collapsed to avoid an explosive growth of redundancies. The
various cases will now be discussed one at a time, in the order in
which the expression 1s tested.

The derivative of a constant 1s zero. At the end of a branch, the
expression must be the variable of expansion with derivative 1. 1If the
operator has property DIFF, this 1s a pattern into which single
argument of the function 1s substituted for *Y*, and which 1s then
multiplied by the derivative of the argument. For example, SIN has
the pattern (COS *Y* NIL), so that (PRD (COS X NIL) 1 NIL) would be
formed as the derivative of (SIN X NIL). An arbitrary function
initiates a call to DIFF8. DIFF8 forms a PLS term list. A term of
the PLS 1s formed for each dependent argument of the function.

DIFF8 forms the derivative of the function with respect to this
dependent argument and multiplies this result by the derivative of

the argument. The derivative of the body of a SUM or XST is taken,

and all other arguments of these operators are left unchanged. PLS
generates a call to DIFF3. DIFF3 forms a PLS term list of the
derivatives of all the dependent arguments of the PLS. PRD initiates

a call to DIFF4, DIFF4 also forms the term list of PLS. Each dependent
term of the PRD 1s differentiated and multiplied by 1ts cofactor to
form a term of the PLS. PWR changes ab into é-(b'ab-l) + abo(log a)~é.
The integral sign 1s removed from an indefinite 1ntegral with respect

to the variable of differentiation.

141

(A convention here). Otherwise, f:fdy becomes
a- (-£(a)) + BE(b) + jZf'(x)dx

where the third term is replaced by zero if f is independent of x. In
the case of DRV, if the DRV body is an arbitrary function or a
subscripted arbitrary function, then DIFF8 is used to apply the chain
rule as above. Otherwise, EDRV is used to add the new variable to

the DRV list. Both arguments of EQN are differentiated, as are all
the arguments of ESET. A DRV structure is set up around TMS. The
second argument of all pairs in a CND is differentiated by DIFF6. For
NAM, a check is first made to see if the expression is equal to the
variable of differentiation, If this is not the case, the expression
can be dependent only if it is a subscripted function. The expression
1s thus given to DIFF8 for expansion by the chain rule. ‘Any other
permanent main connective does not have a derivative defined and will

cause a call to ERROR.

142

DRVDO

DRVDO[EXP, VAR] carries out all indicated derivatives with respect
to VAR in EXP. It uses DIFFDOl to search out all DRV subexpressions.
Each of these is given to DIFFDO2, the innermost ones first. DIFFDO2
examines each variable of differentiation on the DRV subexpression to
see if any of them are VAR, If so, DIFFDO2 gives the DRV body, VAR,
and the number of times, N, the body is to be differentiated with
respect to VAR, to DIFFDC3. DIFFDO3 then issues N calls to DIFF. 1If
there are variables of differentiation other than VAR, then these

remain in a DRV subexpression.

143

DRVFACTOR

DRVFACTOR[EXP DRVFREE NFREE] uses SUBSTA to locate DRV subexpressions

which indicate differentiation with respect to DRVFREE. It applies

DRVFACTORL to each of these. DRVFACTORL searches down the list of

variables of differentiation for DRVFREE. Then if the number of

indicated derivatives with respect to DRVFREE 1s greater than NFREE

b

DRVFACTOR2 goes to the end of the argument list to form the new DRV

subexpression. The resulting transformation is:

(DRV «-- DRVFREE, (NFREE + M) .-+ Y NIL) -

(DRV ... DRVFREE, M ... (DRV DRVFREE NFREE Y NIL) NIL)

144

DRVZERO

DRVZERO[EXP, VAR] uses SUBSTA to substitute zero for each DRV

subexpression in EXP which indicates differentiation with respect to

VAR.

145

EVALUATE

EVALUATE[EXP, SET] searches expression EXP for variables and
functions which can be evaluated using the equations in set SET. Only
equations whose left hand side has one of the following forms are
acceptable,

1. F

2. Fi, s+ ,j

3. F(X, **- ,Y), matches F as well

4o Fr, =++ ,3 (X, *++ ,Y), matches F1, «++ »] as well

The subscripts and function arguments can be either numbers or
literals, 1f literals, they are taken as free variables to be bound.
EVALUATE4 checks the equations and throws out unacceptable ones.

Next, EVALUATEl searches EXP for instances of variables or functions
which can be evaluated with the equationms. Suppose, for example, that
EXP was atx and SET contained the equationms x=y and y=b, then the search
by EVALUATEL would locate x and substitute y, yielding at+y. But further
evaluation can now be done with the second equation. Therefore, whenever
an evaluation 1s made, the variable MARKFREE 1s set so that EVALUATE!
will make another pass through EXP. EVALUATEL gives EVALUATE2 EXP and
one equation at a time. EVALUATE2 goes through EXP, calling EVALUATES5
to match each subexpression with the left side of the equation.
EVALUATE5 checks for each of the four cases given above. It uses
EVALUATE6 to bind subscripts or arguments and substitute the values in
the right side of the equation. Of course, for a match to occur the

number of variables or subscripts must be equal,

146

EXCHANGE

EXCHANGE[EXP] w1ll interchange the arguments of the main connective

of EXP, 1f the main connective 1s binary.

147

EXPAND

EXPAND[EXP] goes through the expression EXP applying the
distributive law. It expands sums raised to a positive integer power
and distributes the derivative or integral of a sum. For historical
reasons, the functions are named MULT. EXPAND calls MULT2[EXP]. A
special data form has been used, the resulting gain in efficiency is
probably not worth the special programming required. If EXP is an
equation, MULT2 handles each side separately; otherwise, the entire
expression is handled. MULT2 gives the parts to be handled to MULT3,
which returns a PLS term list at the top level. MULT2 makes this list
of terms into a PLS and simplifies it. MULT3 recurs down the
expression tree if the expression has PLS, PRD, DRV, ITG, or PWR for
its main connective. All of the arguments of PLS, PRD, and PWR, and
the main expressions of DRV and ITG are treated in turn by MULT3.
Expressions with any other main connective are listed and returned as
the value of MULT3. Coming back up the expression tree each function
receives as arguments and returns for a value, a list of terms which
are arguments of a PLS. Thus, at the end of each branch of the
expression tree is a list with a single term. These lists are combined
1n a manner appropriate for the main connective which the function
represents; MULT3 gives PLS to MULT4, PRD to MULT5, DRV and ITG to
MULT6, and PWR to MULT7. In the case of DRV and ITG, MULT3 uses MULT31
to get a list of the arguments other than the main expression and passes

this list along to MULT6 as well.

148

MULT4 receives a list whose members are lists of PLS terms, with a
NIL at the right end. Since MULT4 represents PLS, it just appends these
lists together to form its answer.

MULT5 also receives a list whose members are lists of PLS terms
with a NIL at the right end. It has a second argument which 1s initially
NIL and 1s used to build up the answer. This second argument 1s a list
of PLS terms. MULT5 uses MULT51 to multiply each member of its first
argument by the partial answer represented by the second argument.

MULT51 multiplies each term of one of its arguments by all the terms

of the other. The resulting list of terms forms the answer for MULT51.

To do this, MULT51 uses MULT511 to multiply each member of a list of terms
by a single term. Each of these products 1is simplified to prevent
expression growth.

MULT6 makes an integral or derivative subexpression out of each
member of the list given it by replacing the member with the structure:

("first part of old list" "member' NIL).

MULT7 handles exponents; it distinguishes three cases.

If the list of terms which comprise the base argument has a single
member, this member 1s raised to the exponent by EPWR., If the exponent
is a positive integer, then the base is multiplied out, using MULT71.
Otherwise, a single term 1s formed which represents the terms in the
base as a PLS subexpression raised to the exponent. MULT71 multiplies
the base by 1tself by using MULT51. It builds up the answer as its
first argument., It decrements the exponent, which is the third argument,

to count the required number of multiplications.

149

FACTOROUT

FACTOROUT[EXP, X, Y] 1s defined as an FEXPR so that it can have an
optional third argument. The function will factor X from each term of
expression EXP, If the third argument Y is present, ¥ will be
substituted for the term factored out. For example, FACTOROUT[A + X, X, Y]
yields YoE%-+ ﬂ, while FACTOROUT[A + X, X] yields X -[%-+ ﬂ .

FACTOROUT supplies FACTOROUT! with X for a third argument 1f Y i1s not
given. FACTOROUT1 will do each side of an equation separately. To

factor X out, FACTOROUT1l just uses MAPL to divide each term by X and

siumplify 1t.

150

GROUP

GROUP is used for the light pen selection of certain arguments of
a commutative operator which are to be handled as a group. For example,
one might select the a and b from the expression atc+bte. These
expressions might be replaced by d to yield d+c+e. The first
argument of GROUP will evaluate to the name, X, of an expression, The
second argument will evaluate to a set of terms or factors in a
subexpression of X with a commutative operator. To determine what
operator has been grouped, GROUP uses GROUPL to search through the
entire expression for an expression which has been marked by GETSUB.
This marked expression will be an argument of the operator in
question. In order to do this, GROUP must save X PFORM for GROUPI.
It does this in the standard way. The first argument is evaluated to
find the name of the expression. Then, the constant INPFORM is set
equal to the corresponding PFORM. Next, the second argument is
evaluated to find the set of grouped terms; during the evaluation
GETSUB will mark INPFORM. INPFORM can then be given to GROUPL.

If INPFORM is not NIL when GROUP is entered, then some operation,
such as REPLACE, contains this call to GROUP in one of its arguments.,
This function will need the marked INPFORM generated by GROUP.

Otherwise, INPFORM is set to NIL 1in order to regain free storage.

151

LEFT

LEFT[EXP] returns the first argument of EXP.

152

LIMIT

LIMIT{EXP, X, N] substitutes N for X in EXP. However, if this

substitution in a subexpression such as a.b.c should result in 8002,

LIMIT[b', X, N]

then LIMIT will apply L'Hopital's Rule and evaluate a -« LIMIT[1/C) . X, W]
LIMIT simplifies EXP and calls LIMITL[EXP, X, N]. LIMITL goes down the
expression tree until 1t reaches the end of a branch, where 1t substitutes
N 1f the branch end 1s X, or until 1t reaches a PRD subexpression. The
factors of the PRD are then sorted on the program variables W, N, D,

depending on whether their limit 1s non-zero finite, zero, or infinity.

When all the factors have been sorted, LIMIT1 checks for the cases:

Wel-l1 — W
W-0+1 — 0
We loco—> =@
0o o g . LIMIT[N']

LIMIT[D']

153

MULTIPLYTHROUGH

MULTIPLYTHROUGH[EXP, X] will multiply an expression or each side
of an equation by X. If the expression or equation side to be multiplied
by X is a PLS, MULTIPLYTHROUGH will multiply each term by X. 1In all
other cases, 1t will just multiply EXP by X. The function uses EPRD

for multiplication.

153

MULTIPLYTHROUGH

MULTIPLYTHROUGH[EXP, X] will multiply an expression or each side
of an equation by X. If the expression or equation side to be multiplied
by X is a PLS, MULTIPLYTHROUGH will multiply each term by X. In all
other cases, it will just multiply EXP by X. The function uses EPRD

for multiplication,

154

NEWNAME

NEWNAME uses the LISP character handling functions to generate a
new atom of the form Fn, where n is an integer. The integer n is kept
as the value of the constant NAMENUMBER. NAMENUMBER 1s incremented

each time NEWNAME 1s called.

155

NORMPOLY

NORMPOLY[EXP, X] uses SUBSTA to search for all PLS subexpressions
of EXP. Then NORMPOLY2 factors a power of X out of each term in the
subexpression so that it will be a polynomial whose lowest power 1in X
1s zero. For example,

ax + bx2—> x(a + bx)

a 2 1 3
- +bx—>x(a+bx)

Since SUBSTA comes up from the bottom,
ax + c(dx + ex2)-—> x(a + c(d + ex)).

NORMPOLY1 finds the power of X to be factored out by taking the
minimum Of the lowest power of X in each term. The lowest power of X
1n each term is computed by NORMPOLY4., If the term is a PRD, NORMPOLY4
uses NORMPOLY3 to add the lowest powers of each factor. The lowest
power of X 1s of course 1, and the lowest power of X to a number is

the number. All other expressions are assigned a lowest power of zero.

156

REPLACE

REPLACE[X, Y, Z] replaces the subexpression Z, which has been
indicated with the light pen in the expression named X, by the
expression Y. If the evaluation of Y contains a light pen reference to
X, and Y 1s to be replaced at this same spot, then Z can be 'HOLE.
Furthermore, 1f Y 1s 'NIL, then Z will just be deleted from X.
Obviously, REPLACE must obtain the expression named X, with the
subexpression Z marked by a light pen reference. To do this REPLACE
uses a method common to all functions which need as an argument the
expression 1n which a light pen reference has been made. REPLACE is
defined as an FEXPR. It evaluates its first argument to get the name
X of the expression, Then it reads from the disk the expression X
PFORM. X PFORM 1s generated from X by the picture compiler, and it
has the same subexpression structure as the displayed form of X.

The constant INPFORM 1s assigned X PFORM as value. The light pen
reference count INPNUM 1s set to zero. Next, REPLACE evaluates 1its
second argument with the function PFORMREAD, which would read X PFORM
from the disk in order to return a subexpression indicated by the
light pen, replaced by GETINSUB, which w1ll use INPFORM instead. Each
light pen reference 1s marked in INPFORM by GETSUB, which 1s called by
GETINSUB. GETSUB alters the list structure to mark it and uses INPNUM
to count the subexpressions. When the second argument is evaluated,
REPLACE has the expression Y and on INPFORM the expression named X with
the references marked in 1t. If Z 1s HOLE, then REPLACE justs
substitutes Y into X at a subexpression reference. If Z 1s not HOLE,

then Z contains the light pen reference indicating where Y must be

157

substituted. A new X PFORM 1s read in and Z is evaluated.

Now X has the proper subexpressions marked. X 1s converted from
a PFORM to intermal form by APOFF; the Nth marked subexpression 1is
replaced by (SUBMARK N NIL). It remains to substitute Y. It 1is
assumed that 1f there 1s more than one SUBMARK expression, they are
all arguments of the same operator. REPLACE uses SUBSTA to locate
this operator. REPLACE2 checks each argument of an operator to see if
1t 1s a SUBMARK. When an operator containing a SUBMARK argument 1s
found, REPLACEL replaces the first SUBMARK with Y and then REPLACE3
deletes the remaining SUBMARKS. If Y 1s NIL, then all SUBMARKS are

deleted.

158

RIGHT

RIGHT[EXP] returns the second argument of EXP.

159

SIMPLIFY

SIMPLIFY starts at the ends of the branches of the expression tree

and works toward the top, performing the following simplifications:

0ea — 0
lea — a
0+a — a
a+ (b+c) — a+ b +c
a° (b°c)=>a-+b-c
g, g0y mn
ica + jea — (1+j)-2
1ea + je(at+b) —2 (i+j)+a + j*b
(ab)™ — 2" "
j-l°a > '1:{1‘&

d d
Ix "lta -~ =1- o @

where 1 and j are integers. Furthermore, all indicated arithmetic operations
involving integers, floating point numbers, and fractions are carried out.

The above operations require the comparison of expressions for equality.

This 1s accomplished by hash coding the expressions and comparing the
resulting hash code numbers. Additional simplification is also achieved
when an expression which 1s identically equal to zero or one 1s replaced

by 1ts hash code number.

160

Although the simplification program is not long, the use of the
hash code scheme and several other schemes to improve efficiency make
1t tedious to read. Therefore, the sources of difficulty in each
scheme will now be discussed.

Generation of a hash code number for a complex argument is moderately
expensive. Therefore, 1t would be desirable to generate each hash code
only once. However, the storage of a hash code for each subexpression
would take up a significant fraction of the available storage. A
decision was made to save the hash code numbers only at the current
level of simplification. The hash code number of a subexpression 1s
computed from the hash code numbers of its arguments. The hash code
numbers of the arguments are then discarded. 1In the expression
d + (b+c), 1t would be incorrect to compute the hash code of (b+c) and
discard those of b and c, since the next operation 1s also addition
and requires the comparison of d against b and c in an effort to collect
terms, To solve this problem, the next higher operator is made
available to the program. This is normally adequate, but in the
eXpression e. (b-b+d2), the next higher operator from d2 i1s +; therefore,
the hash code number of d will be discarded and the hash code of d2
computed. Then, when b-b+d2 simplifies to dz, the hash code number of
d must be recomputed for comparison with e. This 1s hopefully not a
frequent situation.

If an expression is 1dentical to zero or one, then it is probable
that 1ts hash code number will be zero or one. Therefore, whenever a
new subexpression is formed, 1ts hash code should be checked. If 1t 1s

zero or ome, the subexpression 1s taken as the same. The D functions

161

described earlier perform this operation. The hash code number for
é;cﬂ‘subexpre351on 1s kept on the front of it. The D functions

combine the hash code numbers and the expressions, perform the identity
checks, and then put the resulting hash code number on the front of

the resulting expression.

A further complication in the hash code comparison is that the
numbers must also be compared with the appropriate group inverse. For
example, the code of c.(a-b) 1s the negative of the code for c: (b-a).
But the expression c.(b-a) + c+(a-b) + d should be simplified to d.
Similarly, since coshzx - 81nh2x = 1, (coshx - sinhx) . (coshx + sinhx) . d
should be simplified to d. In fact, the only frequent comparison of
multiplicative inverses would be i1n expressions such as (%)+%- 2-%.

Since 1t 1s expensive to compute the multiplicative inverse, this has

been solved by representing exponentiated fractions with the larger
L

i -
integer as numerator. Thus, (%)+2 becomes 2 °.

Finally, two types of arithmetic are used 1n the hash code scheme;
the base arithmetic and the exponent arithmetic. This was explained in
the discussion of the functions which compute the hash code numbers.

For want of a better solution, exponents of exponents are coded 1in the
base arithmetic. Therefore, as SIMPLIFY goes through the expression
1t must keep track of the current level of exponentiation modulo 2.

In this sense, the addition of exponents of like factors in a product
1s not the dual of the addition of coefficients of like terms 1in a sum.

A mechanism has been added to insure that subexpressions represented
by the same list structure will be simplified only once. After a

subexpression 1s simplified, the list structure 1s altered so that other

162

references to the subexpression will encounter the simplified form.

The expression 1s marked "already simplified'". The mark also gives the
level of expomnentiation for which the hash code number of the simplified
expression has been computed. If the current reference has the other
level, a mew hash code number must be computed.

Combining terms or factors in a sum or product 1s a form of sorting
operation. However, only an exhaustive search 1s used here. 1In order
to speed up the search, the terms are combined in a special format.
Whenever the operator at the level above 1s PLS and the current level
15 PLS, or the operator above i1s PRD or PWR and the current operator
1s PRD or PWR, then the sort format 1s passed up without conversion to
standard internal form. During the combination of terms a numerical
term 1s kept separate, for any number can be combined with another
number, but only non-numerical terms with the same base can be combined.
Non-numerical terms are compared by the hash code numbers of their
bases. Unfortunately, 1t may result that the combination of two non-
numerical terms results 1in a numerical term. For example, i% 1s

B h
considered non-numerical, but 2°.2 ° results in 2. Numerical terms
generated in this manner are combined with the number which is kept

apart when the sort format 1s converted to standard internal form.

1
Conversely, 1in the expression (2a)*-b, the number 2 must be considered

a non-numerical term after 1t 1s exponentiated.
The functions which carry out these operations can now be
described. The top level function, SIMPLIFY, calls SIMPZ.
SIMP2[SX, Y, SIMPLEVEL] 1s a function of the expression to be simplified,

the operator of which this expression 1s an argument, and the

163

simplification level, that is, whether F or E arithmetic should be used
in computing the hash code number of the expression. Going down the
expression tree, SIMP2 must look for four conditions. The end of a
branch of the expression tree is reached whenever an FRT operator or an
atom 1s encountered. This expression is given to SIMP3, the function
which handles the upward pass. If a PWR operator 1is encount?red, then
the SIMPLEVEL 1s logically OR'ed with 1 when SIMP2 1s applied to the
exponent. There i1s a sumilar step for the arguments of transcendental
functions., It is also possible that the expression will have the form:
((hashe.expression)*N), where N s the simplevel. SIMP2 checks for this
structure by testing 1f CDR of the structure 1is atomic. This structure
1s set up whenever an expression 1s simplified, thus, if two
subexpressions are in fact the same list structure, then when the first
one has been simplified, SIMP2 will find the above structure when 1t
reaches the second. It 1s possible that the two expressions do not
occur at the same simplevel, therefore, the simplevel N at which the
hash number was computed 1is part of the structure. If N 1s equal to the
current simplevel, CAR of the structure 1s returned as the answer by
SIMP2. Otherwise, the hash number is first replaced by one calculated
for the current simplevel. In all other cases, SIMP2 goes on down the
expression tree without a change in simplevel.

Coming back up the expression tree, SIMP3 checks for nine
possibilities. SIMP3 has three arguments X, Y, and Z, the current
operator, the cxpression term list, and the operator of the expression
of which the current expression is an argument. If the current operator

1s flagged with FCODE, then 1t 1s a transcendental function. No

164

simplification is done on the expression. The hash number is computed
from the hash number of the argument by the FCODE function. If the
resulting hash number is zero or one, then the expression is replaced
with the hash number in the result by SIMP33. The result comnsists of
the expression with the hash number on the front of it. If the current
operator 1s flagged with NSIMP, then the list of arguments is given to
the NSIMP function and the list of corresponding argument hash code
numbers is given to the NCODE function. Since the input argument list
contains the arguments with the hash code number of each on the front
of 1t, the hash numbers and arguments are split into separate lists by
the functions SIMP34 and SIMP31l. The results of the NCODE and NSIMP
functions are given to SIMP33 as above. The operators PLS and PRD
cause SIMP3 to call SIMP5 with arguments appropriate to addition or
multiplication. The arguments of SIMP5 and their possible initial
values and purposes are:

X term list of expression to be simplified

Y operator above

SU 0.0 or 1-1, appropriate identity and hash code

\ NIL, list of collected terms

FNW DPLS or DPRD, appropriate group operator

FNZ DPRD or DPWR, appropriate group operator

R PLS or PRD, appropriate group operator

SIMP5 removes each term from list X and takes one of six courses of

action. The term may be:

164

sumplification is done on the expression. The hash number is computed
from the hash number of the argument by the FCODE function. If the
resulting hash number is zero or one, then the expression is replaced
with the hash number in the result by SIMP33. The result consists of
the expression with the hash number on the front of it. If the current
operator is flagged with NSIMP, then the list of arguments is given to
the NSTMP function and the list cf corresponding argument hash code
numbers is given to the NCODE function. Since the imput argument list
contains the arguments with the hash code number of each on the front
of 1t, the hash numbers and arguments are split into separate lists by
the functions SIMP34 and SIMP31l. The results of the NCODE and NSIMP
functions are given to SIMP33 as above. The operators PLS and PRD
cause SIMP3 to call SIMP5 with arguments appropriate to addition or
multiplication. The arguments of SIMP5 and their possible initial
values and purposes are:

X term list of expression to be simplified

Y operator above

SU 0.0 or 1.1, appropriate identity and hash code

\ NIL, list of collected terms

FNW DPLS or DPRD, appropriate group operator

FNZ DPRD or DPWR, appropriate group operator

R PLS or PRD, appropriate group operator

SIMP5 removes each term from list X and takes one of six courses of

action. The term may be:

165

1. A number. (M+N) The number is added to SU with FNW.

2. An expression having the same main commective as the current level
and left in special sorting format: ((sort format). (M. N))

(M-N) 1s combined with SU by FNW. (sort format) is combined with
V by SIMP51, using FNW, FNZ, and R.

3. An expression having the same main connective as the current level,
but 1n standard form. The term 1s converted to sort format by
SIMP54 and then given back to SIMP5, where it satisfies case 2.

4, A PWR and R 1s PRD. The term 1s converted to single term sort
format by SIMP55 and given back to SIMP5 where it satisfies case 6.

5. A PRD with a numerical coefficient when R 1s PLS. The term 1is
converted to single term sort format by SIMP55 and given back to
SIMP5 where 1t satisfies case 6.

6. Anything else. The term may be 1n single term sort format already
1f the level below 1s PWR or 1f the term has been converted by
SIMP55. Otherwise, it 1s listed with (l-1) to make a single sort

term with a coefficient of one.

A more detailed explanation of the data formats will now be given
along with a description of the functions auxiliary to SIMP5. Collecting
terms 1n a product or sum 1s carrled out using a special format. A list
of the terms is iormed; each member of the list has the form:

((code-base) (code-exponent))
Terms to be added to the list are put into this form; 1in the case of
addition, the exponent 1s the numerical coefficient of the term. The
code number of the base of a new term 1s then compared with the code

number of each of the old terms on the list. If a match 1s found, the

166

exponents are added. Otherwise, the new term is put at the end of the
list. Thus, functions are needed to convert expressions into sorting
format and from sorting format iﬁto normal form, and to add new terms to
the sorting list. The function SIMP51 adds a list of new terms in
sorting format to the sorting list. It gives each term to SIMP52.
SIMP52 makes the comparison of bases described above. SIMP53 transforms
terms from sort format into normal form., SIMP53 has as arguments the
sort expression, the group operator, and the exponent operator. The
base and exponent from the sort list are given to the exponent operator
which constructs a term in normal form with its hash number on the front.
If this term is a number, it is combined with SU in SORT5. If this is
the last term on the sort list, then SIMP53 returns a list of the hash
number, the converted term, and NIL. Otherwise, SIMP53 combines the
hash number with that on the front of the list for the rest of the
converted terms and adds the new term to this list, putting the new hash
number on after it. SIMP55 is used to convert a single term into sort
format., Given (code PWR base exponent NIL) and 1, SIMP55 creates

((((codesbase) (codecexponent))).(lel)) which is the sort structure
with one term, as 1t is passed up to SIMP5. 1In the case of PLS, the
simplevel 1s not raised for the calculation of the exponent hash code
number, as it is for PRD. SIMP54{X, Y, Z] converts a PLS or PRD
expression X, to a sort list. Y is the group identity, and Z is T if X
is a PRD expression, The conversion is straightforward, 1f a term has
an exponent in the group sense, then 1t 1s used, otherwise 1 1is used.
The structure shown for SIMP55 is created. If the expression has a

numerical coefficient, it is used rather than the identity. Returning

167

to SIMP5, when all terms have been sorted, a result is passed up which
depends both on the results of the sort and the level above. If there
is only a numerical term, this is passed up. If the current operator
is the same as the operator above, the sort format is passed up.
Otherwise, the sort format i1s converted to standard form by SIMP53. If
the expression part should reduce to a PLS when the current operation is
PRD and the numerical part is not 1 and the operation above is PLS, then
the distributive law is applied, the number is multiplied through the
expression with a MAPL and the result is converted to sort format by
SIMP54. Otherwise the number is just combined with the expression to
produce the result to be passed up.

Returning to SIMP3, PWR produces a call to SIMP7. If the base is
a PRD or PWR, then it may already be in sort format; if not, 1t 1s
converted to sort format by a call to SIMP54 or SIMP55. If the base
is not a PWR or PRD, the base and exponent are given to DPWR to produce
the result. Otherwise, the sort format 1is given to SIMP71, which
multiplies the exponent times each of the exponents on the sort format
and simplifies each result with SIMP5. The number is exponentiated with
DPWR. SIMP7 then checks to see how the result should be passed up. If
the operation above is PRD or PWR, then the sort format is passed up.
Since the result of DPWR applied to the number and the exponent may be
an expression rather than a number, it is necessary to add the result
to the sort list if it is not a number and take a dummy number of 1.
If the above level is not PRD or PWR, then the sort format is converted

to standard form by SIMP53 and then passed up.

168

Returning to SIMP3, an operation NIL indicates that the expression
1s an atom or FRT, and a hash code 1s generated by GETC and put on the
front of the atom or FRT. Otherwise the expression 1s treated as an
arbitrary function. The hash is computed by FGFN, and the hash numbers
are removed from the arguments of the expression by SIMP31 before the
operator and hash number are added to the front.

DRV and ITG are sent to SIMP8, which brings out a minus sign.

All expressions above the lowest level on the expression tree are
sent from SIMP3 to SIMP6 where the list structure is altered as

explained above.

169

SOLVE

SOLVE[EXP, X] applies the obvious transformations in order to
solve an equation for a specified variable or expression, X. When all
possibilities fail, it returns the equation in 1its partially solved
state. SOLVE first checks to see 1f the expression is an equation
and transfers to ERROR 1f it 1s not. Next, SOLVE substitutes the atom
"SOLVE" for the expression X. This allows the use of MKP to compute
dependence on X, no matter what the form of X. After the substitution,
SOLVEL calls EXPAND to multiply out both sides. SOLVE3 then sorts
both sides into terms which depend on "SOLVE" and those which do not,
SOLVEL moves the dependent terms to the left side and the others to
the right. The resulting terms are given to SOLVE2. The terms which
depend on "SOLVE" are the first argument, those terms which do not
are the second argument, and "SOLVE" is the third argument. SOLVE2
first checks to see if the dependent expression consists of only the
variable 1itself, in which case the solution 1s accomplished; otherwise,
1t examines the main connective 1in order to apply a simplifying
transformation.

If the comnective 1s PLS 1t tries to factor a dependent term out
of the left side, leaving only an 1independent term as a cofactor. The
right side can then be divided by the cofactor. This 1s done as
follows. SOLVE51 looks at the first term of the PLS, 1f 1t 1s a PRD,
1t checks to see if only one of the factors 1s dependent and returns
this one. 1If more than one 1s dependent, SOLVE51 fails by returning
NIL. 1If the first term of the PLS is not a PRD, SOLVE51 returns the

entire term. SOLVES5S then tries to factor this dependent term out of

170

each of the PLS terms, leaving an independent cofactor. It uses SOLVE52
to examine each term. SOLVE52 checks to see if the term to be factored
out is the whole term, or if the term to be factored out is a factor of
the whole term. In the case of a PRD 1t calls SOLVE521 to examine each
factor. 1If SOLVE5 is successful, the left side is divided by the cofactor.
Otherwise, the current state of the equation is the answer.

If the left side connective is PRD, SOLVE4 tries to remove exactly
one dependent factor and divide the right side by the independent
cofactor,

If the left side connective 1s PWR, one of two transformations 1s
done. If the exponent is independent, the right hand side is symbolically
taken to the converse of the exponent. Otherwise, the log of both sides
1s taken, the left side is given to SOLVE6 which multiplies it out and
simplifies it and then removes any independent terms of the top level
PLS to the right side.

If the main connective 1s NLOG, SIN, COS, TAN, ASIN, ACOS, or ATAN,
then an inverse of the right side 1s taken. SOLVE2l checks to see 1f
the left and right sides have the same one of these connectives, in

which case it can just be removed from both sides.

171

SPLIT

SPLIT[EXP] makes two passes through the expression. First,
SPLIT]1 replaces the property list of each subexpression with a count
of the number of subexpressions which that subexpression contains.
Then, SPLIT2 uses these counts to reduce the total number of
subexpressions in EXP to less than 100. It does this by naming parts
of EXP and substituting these names for the parts. The named
subexpressions are placed on the disk with EASS.

SPLIT1 uses several functions to count the subexpressions. It
goes down to the bottom of the expression tree, and SPLIT3 computes the
count on the way back up. To do this SPLIT3 adds the number of
subexpressions 1n each of the arguments. It adds 1 to this sum in
order to count the current subexpression. It adds 1 by considering
the operator to be an argument. The number of subexpressions in a
given argument 1s computed by SPLIT4. SPLIT4 counts an atom as 1;
other arguments have their count in place of a property list.

SPLITZ goes down the expression tree to prune it. If it reaches
an atom, 1t leaves it alone, as 1t would save nothing to rename an atom.
Also, 1f the expression size, M, 1s smaller than the allotred size N,
1t needs no pruning. Otherwise, the arguments are pruned 1n reverse
order to their size. SPLIT6 finds the size R of the largest argument.
If renaming only part of this argument will bring the total count
below N, then SPLIT2 1is applied to this argument With an allotment
equal to the difference between N and the sum of ?he count for the

other arguments. Otherwise, this argument has i1ts count reduced to

172

zero by SPLIT5 and SPLIT8, indicating that it is to be renamed. Then

the R 1s subtracted from M, and SPLIT6 finds the next largest argument.

173

SUBSTITUTE

SUBSTITUTE[X Y Z] substitutes each member of set Y for the
corresponding member of set Z in the expression X. It checks to see
1f Y and Z are sets and gives the arguments to SUBST1l. The property
lists are set to NIL so that expressions can be matched with EQUAL.
SUBST1 gives the members of sets Y and Z to SUBST2, a pair at a time.
SUBST2 substitutes the member of Y for each instance of the member of
Z, with the following exceptions. aj does not contain an instance of
a. SUBST2 uses SUBST3 to avoid testing the a in a; against the

member of Z. Furthermore, SUBST2 will substitute:

A for B in (B X Y NIL) and

A, for B in (B X Y NIL).

174

SUMEACH

If the argument of SUMEACH is of the form Za+ "t +b, it will

return Za+ et Z.bo

175

SUMEXPAND

m
If the argument of SUMEXPAND is of the form ;E: X, where m and n
i=n
are integers, then SUMEXPAND will return the expanded summation,

176

TERM

TERM[X, N] returns the Nth argument of X or NIL if X has less

than N arguments.

177

TRUNCATE

TRUNCATE[Y, X, N] finds terms to the Nth power 1n the expansion
about the origin of Y as a function of X. Y must have a finite number
of poles at the origin. Since Y 1s allowed to have poles at the point
of expansion, 1t cannot be expanded by just evaluating successive
derivatives at the origin. Furthermore, differentiation can often lead
to very large expressions. Therefore, the method used here 1s to
expand the smallest subexpressions i1n a power series, and then to
combine these series to form the expansion of successively larger
subexpressions. The 1nitial expansions must contain enough terms so
that the final combined result will be valid to power N. The required
number of terms 1s calculated by making two passes through the
expression. During the first pass, the minimum power of X 1in each
subexpression 1s placed on the subexpression's property list. Then,
the second pass uses these minimum powers as it goes down the
expression tree in order to calculate the maximum required power of
each subexpression expansion. The expansion of the individual atoms 1in
a power series 1s simple, but many functions were needed to efficiently
compute the expansion of each operator from the expansions of 1its
arguments. The program is further complicated by the expansion of
1ndexed summations. In only some cases can the program find the power
of the variable of expansion as an increasing function of the index of
summation. If this can be done and the summation has a finite lower
limit, then the lowest power can be found. The second pass then carries
out the expansion by repeated substitution. Arbitrary functions are

expanded by differentiation. The arguments are still expanded 1n the

178

normal manner before the differentiation, unless they also require
differentiation. In this case, the differentiation is performed only
once.

This routine 1is so large that it will not all fit in memory at
one time. It has been split into two parts. The first part finds the
minlmum powers, associates a minimum and maximum power with each atom
or constant subexpression and expands summations. The second part,
which 1s compiled in the file TRNK9 LISP, combines the subexpression
series 1n order to compute the final result. The most complicated part
1s the direct generation of given terms 1n a multinomial expansion.
Each of the functions will now be described in detail. TRNK first
defines MIN to have the NCODE function EMIN, It then defines MIN to
have an NSIMP function which leaves the expression unchanged unless all
of the arguments are numerical, in which case EMIN 1s used to find the
minimum argument as a result, TRNK next calls TRNKI1 to explore the
expression, storing information on the expression's property lists.
The expression 1s then passed to TRNK122 which chains to the second
half of the program TRNKO.

TRNK1l passes each side of an EQN or all of any other expression
to TRNK11l, which appliies TRNK7, then TRNK8, aund finally TRNK21.

A dependent expression is ome which contains the variable of
expansion. TRNK7 applies TRNK71 to all dependent PLS or PRD
subexpressions 1n the expressions. TRNK71 changes the PLS's or PRD's
1nto a series of binary ones, such that any dependent argument 1is 1n

a binary one, but the independent arguments are lumped together to

179

produce one of the forms.

PLS\ PLS\ PLS
depend PLS\ depend PLS depend PLS
depend 1ndep depend depend depend PLS

/TR

ind ind ind 1nd

The i1ndependent terms are collected on the last argument of TRNK71l. The
function TRNK72 is used to avoid a redundant level 1f no independent
terms have been collected.

The next step is to go down the expression tree in order to find the
lowest power of the variabie of expansion in each subexpression. The
function TRNK8 goes down the tree to the individual variables and constant
subexpressions. Coming back up the tree, the function TRNK82 dispatches
control to the several functions which compute the lowest power of an
expression from the lowest power of 1ts arguments. The progress of TRNKS8
down the expression tree 1s interrupted when a SUM subexpression 1s
encountered. The lowest power of the variable of expansion may be
expressed 1in terms of the variable of summation. TRNK8 calls TRNK83 to
explore the expression. If the lower limit of summation 1s a number
and the upper limit 1s a number or infinity, then the SUM body, B,
expansion variable, X, and summation variable, 1, are given to TRNK831l.
There are several cases where an expression for the lowest power can be
found. If B 1s independent of X, then B 1s a constant and the lowest
power 1s 0. If B is independent of 1, then the lowest power can be found

in the normal way, using TRNK8. Otherwise, the method used depends on

180

the main connective of B. For PRD 1t 1is the sum of the lowest power
of the arguments. For PLS 1t 1s the minimum lowest power of the
arguments. PWR is handled only 1f 1t is of the form f(X)g(l); in this
case the lowest power in £(X) 1s multiplied by g(1). If it 1s NAM,
the lowest power is 0. Otherwise, the user is asked to return an
expression for the lowest power as a function of 1. The expression
for the lowest power as a function of 1 which results from the above
procedure 1s next checked to see that 1t 1s only a function of i and
1n addition an increasing one.

If these conditions are met, then the lowest power is found by
plugging in the lower limit of summation and the exponent expression
1s saved by putting 1t on the property list of the SUM subexpression
undar the indicator SUM. Once again, 1f the exponent expression does
not meet these conditions, the user is asked for the lowest power.

Coming back up the expression tree, TRNK82 dispatches control to
the following functions. PLS and PRD are computed directly by taking
the minimum and the sum respectively of the lowest powers of the
arguments. PWR sends control to TRNK85. Only two cases can be handled;
a zero exponent reduces the whole expression to 1, and an intege:r
exponent can be multiplied by the lowest power of the base. 1In other
cases the user 1s asked for the lowest power. DRV sends comntrol to
TRNK86. This function checks to see if differentiation 1s performed
with respect to the variable of expansion. If so, the user must be
asked for the lowest power. Otherwise, the lowest power is the same
as that of the DRV body. ITG sends control to TRNK87. Here again,
the user must be asked 1f the limits are dependent and otherwise the

lowest power is the same as that of the ITG body. If the user is asked

181

for the lowest power in DRV or ITG, then he must later be asked for the
expansion. This 1s flagged by changing DRV and ITG to ASKDRV and ASKITG.
All other connectives send control to TRNK88. They are treated as
arbitrary functions which must be expanded by differentiation.
Consequently, 1f any of the arguments have poles at zero, the user 1is
asked, otherwise, the lowest power 1s taken as zero.

TRNK21 puts the highest needed power on the property list of the
whole expression and gives the expression to TRNK2 which goes down the
expression tree, When TRNK2 reaches an atom, it returns an ATOM
structure with a minimum power of 1 or O depending on whether or not
the atom 1s the variable of expansion. If the subexpression is
independent, the maximum power is put on 1ts property list and the
downward recursion of TRNK2 1is terminated. Otherwise, the maximum
power needed for each of the arguments of the subexpression depends on
1ts main connective. For PRD, the maximum power of each argument is the
maximum power for the PRD minus the minimum power for the other argument.
For PWR, i1t is now assumed that the exponent 1s an integer, the maximum
power for the base is the difference between the maximum power for the
PWR and (exponent-l) . (minimum power for base). SUM initiates a call to
TRNK24. TRNK24 forms a PLS through expanding the SUM by substituting
increasing integers starting with the lower limit of summation into the
SUM body until the SUM 1s fully expanded or until the evaluation of the
exponent function under the same substitution shows that the desired
maximum power has been reached. The resulting PLS expression is then
given to the top level function TRNK11l which applies both the minimum
and maximum power passes. For all other main comnectives, the maximum

power for the arguments 1is that for the subexpression.

182

After TRNK2 has finished, the expression is given to TRNK122. This
function creates a file LISPT LISP which contains the doublet TRNK123
(expression, max power, expansion variable), and then chains to the
SAVED file LISPT. When control comes back, the answer is in file LISPTR
LISP and this answer is read in and defined as a form to complete the
operation of TRNK. The operation of file LISPT SAVED will now be described.

The top level function of LISPT SAVED, TRNK123, writes the file
LISPTR LISP containing the result of applying TRNK12 to the expression
generated by the main system. TRNK12 operates on each side of an EQN
or the whole expression otherwise. TRNK9 1s applied by TRNK12 to the
expression and the resulting list of coefficients 1s given to TRNK121
which generates a PLS containing the terms of the desired expansion.
TRNK121 just recurs down the list of coefficients using EPWR and EPRD,
since the first coefficient is by definition that of the highest required
power and no coefficients are omitted.

For purposes of efficiency TRNK9 uses a special data form, coming up
the expression tree each function receives a list of coefficients, from
the highest required to the start of all zero coefficients, with none
omitted in between. TRNK9 goes down the expression tree to the individual
variables and constant expressions, where 1t sets up the coefficient lists.
It removes the ATOM level. TRNKS51 is used to generate leading zeros for
the coefficient lists. Downward recursion goes only through the body of
ITG and DRV. For ASKITG and ASKDRV the user is asked for the expansion.
For PWR, two cases are distinguished. If the exponent times the lowest
power of the base 1s greater than the highest power required, then the
coefficient list is NIL., Otherwise, TRNK9 1s applied only to the base.

In the case of NAM or am arbitrary function, a check is made to see if

183

any of the arguments have poles., If they do, then an effort is made to
remove them by applying TRNK9 to the arguments and then converting the
result back to normal form. The third argument of TRNK9 is set as a
flag, for the NAM or arbitrary function subexpression must be expanded
by differentiation, and this need not be repeated 1f the same situation
1s encountered at a level within the subexpression. If the arguments
do not have poles at zero, the differentiation step 1s applied to the
subexpression once the atom structure has been removed from it by
ATOMOFF.

Coming back up the expression tree, the coefficient lists are given
to functions associated with the main connective at the particular node.
PLS sends control to TRNK1. TRNK1l adds corresponding coefficients with
EPLS until one of the two coefficient lists is exhausted, the remaining
coefficients of the other list are then taken as is. PRD sends control
to TRNK5. TIf either argument list i1s NIL, all coefficients are zero on
that list so the result is NIL. Otherwise, the arguments are passed to
TRNK2222 1n a special form best illustrated: (000 ay 2, 2,

(b3 b, By By)
The number of leading zeros in the first list 1s one less than the number
of coefficients in the second list, and the coefficients in the first
list have been reversed, TRNK2222 removes the zeros from the first
list, one by one. Before removing each zero it sends both lists to
TRNK3, which generates one coefficient in the answer. This coefficient
is a sum of terms generated by multiplying by means of EPRD corresponding

terms in the above lists. This TRNK2222 process is terminated by a fimal

call to TRNK3 once all zeros have been removed.

184

For PWR, there are two possible calls. If the exponent is positive,
SRPWR is called and TRNK10 1s then used to remove trailing O's from the
coefficient list which SRPWR produces. SRPWR takes four arguments, the
coefficient list, the maximum power on this list, the maximum power
needed in the result, and the exponent to which the series represented
by the coefficient list 1s to be raised. If the coefficient list contains
coefficients of negative powers, the SRPWR2 1s called; otherwise, SRPWR3
1s called. The operation of SRPWR3 will be described first. The purpose
of this function 1s to generate the coefficients of the desired terms 1n
the multinomial expansion, without generating the entire expansion. For
each term, SRPWR3 1initiates a call to SRPWRl. The desired coefficient
could be written as a sum of all products of the coefficients of the

base series which have the form

where 1 + 1y o o o + i= N, the exponent, and 1'11 + 2-12 e e el = P,

the desired power. The desired coefficient 1s, however, in fact, written
with the above sum factored on the aj's, taken 1n the dictionary order.
The coefficient 1s built up in this manner by an exchange of calls by
SRPWRL and SRPWR1l. SRPWRl has as arguments the needed power, P, the

number of coefficients yet to be used M, the power R, which the next

coefficient i1n the dictionary order can be used to generate, the power,

3

V, of this coefficient in the base series, the minimum power, S2, in the

base series, and the list, A, of remaining coefficients. SRPWR! recurs

-

on the argument R. R is started off at the minimum value which will allow

185

generation of a term, it 1s then increased by 1 until R>M, in which
case more the N total base coefficients would be used, or until
P-(R+1)*V< S2% (M- (R+1)) which states that if the remaining M- (R+1)
powers were all used on the lowest coefficient S2, the total power
generated would sti1ll be greater than that required. The terms created
for each value of R are added with EPLS. Each of these terms is
created by a call to SRPWR1l. SRPWR1ll checks to see 1f the coefficient
list, A, has only one more member., In this case it creates the desired
term (coef)R/R!; otherwise, it constructs this term, but multiplies 1t
by the term created by giving the remaining coefficient list to SRPWRI,
along with the remaining number of powers needed, P-RV, the remaining
coefficients available, M-R, and the lowest value of R which you can
start with next, MAX[O, P-2R+M- (2-V)]. The expression P-2R+M: (2-V) 1is
best viewed as (P-RV)-(M-R*(V-2); P~RV, as given above, 1s the number
of powers still needed, (M-R)*(V-2) 1s the number of powers which would
be produced 1f none of the next coefficient were used. The difference
1s the number of powers which must be used on the next coefficient, for
using a coefficient on the next, rather than the one after next, will
increase the generated power by one.

SRPWR2 has six arguments., N is the maximum power needed, X 1s the
list of positive coefficients, Y 1s the list of negative coefficients 1in
ascending order. S2 15 the lowest negative coefficient and Sl 1s the
highest positive coefficient. S 1s the exponment to which the base series
1s raised. SRPWR2 uses four program variablies: J, U, M, and P. The
result 1s built up on U and 1s a sum of terms for each coefficient. The

current coefficient is J, which 1s indexed from the lowest which can be

186

made up to N, the highest needed. For each value of J, a coefficient is
built up which is a sum of terms. Each of these terms is of course a
product of negative and positive coefficients such that the sum of the
powers is J, and the number of coefficients 1s S. The terms can be
classified by the number, M, of negative coefficients and the number, P,
of negative powers which they contain. SRPWR generates all possible
values of M and P which will produce the given J; it then calls SRPWR1
for each pair of values of M and P, once to produce the negative part

of the coefficient, and once to produce the positive part. The positive
and negative parts are then multiplied together with EPRD. The values
of M and P are generated as follows. M is started off at 0 1f J is
positive, or so that M¥J<{ S2 if J is negative. M is then incremented
until M > S1%(S-M)-J. The meaning of this relation is as follows. Since
the highest value of negative base coefficient is -1, M negative
coefficients must create at least M negative powers. The maximum number
of positive powers which can be generated with the remaining S-M
coefficientsis S1%(S-M), but J of these are needed for the result, so
that S1*(S-M)=~J can be matched against negative ones and this number
must be greater than or equal to M. Now, for each feasible number of
negative coefficients, terms for corresponding possible negative powers
are generated. The number of negative powers 1s given by P, whic% is
started off at the minimum of ~-M*S2, the most negative you can make,

and S1*(S-M)-J, the most negative you can absorb with extra positive
powers. P is then decremented until it is less than M or until it 1is
less than =-J, which means that if J is negative, not enough negative

powers to produce it will be generated. Each completed coefficient 1s

187

multiplied by S!,

Returning to TRNK9, if the exponent of PWR is negative, then a call
to TRNK63 is given. TRNK63 inverts the series created by SRPWR as for a
positive exponent by a call to TRNK6. TRNK6 first checks for a null
series which would indicate division by zero is called for; in this case
it notifies the user. Otherwise, it sets up TRNK61, which does the
inversion. TRNK61 builds up the answer, term by term, on its first
argument W. It recurs on its last argument N which is a term counter,
incremented from 1 up to the number of coefficients on the list U, of
the series to be inverted. For each value of N a term computed by
TRNK62 is added to W. This term is - i; times the sum of the product
of corresponding terms of W and U.

Returning once again to TRNK9, ITG and DRV send control to TRNK93.
Since only the case where the integral or derivative do not involve the
variable of expansion is handled, TRNK93 goes through the coefficient
list putting the integral or derivative structure and ;rguments on each
coefficient. The only remaining cases for TRNK9 are NAM and an arvitrary
function; they are handled in the same manner. The arguments are treated
as explained on the downward pass and then the expression in standard
form is passed to TRNK95 for expansion by differentiation. It is at this
point that the check is made to see if the subexpression under consideration
is contained in a larger one which must also be expanded by differentiation,
in which case the expression is returned undifferentiated by TRNK9S5.
Otherwise, TRNK95 calls TRNK13 to expand the expression by differentiation,

TRNK13 uses DIFF2 to repeatedly differentiate the expression, which it

keeps on program variable U. Before each differentiation a term of the

188

expansion is set up by substituting zero for the variable of expansion
in the expression U, using TRNKI31l. TRNK131 substitutes zero for the

variable of exransion, except that 1f i1t comes to a DRV subexpression

1t creates an EVL level.

This completes the explanation of TRNK.

Chapter VII

HASH CODING FUNCTIONS OF A COMPLEX VARIABLE

Introduction

Several of the routines described in the preceding chapter require
the comparison of algebraic expressions for equivalence The comparison
1s made by hash coding the expressions and comparing the resulting hash
code numbers The formulas required for the hash coding scheme and the
functions which apply them were described in ihe last chapter The
mathematical considerations underlying these formulas will now be described

The elementary functions of a complex variable are those which can
be expressed by the following recursive scheme. Any complex constant
or variable will be called an expression, 1f u and v are expressions,
then so are u+ v, u . v, uV, ev, -u and-llI The trigonometric and hyper-
bolic functions may be expressed explicitly. Because of the defining
relations of the complex field and the trigonometric i1dentities, there are
infinitely many expressions for any given function. Two expressions will
be said to be equivalent 1f they represent the same function

Existing schemes for expression comparison use the defining relations
along with some additional conditions to put each expression in a canonical
form If the canonical forms of two expressions are identical, they must
represent the same function This method has certain drawbacks First,

putting the expression in a canonical form requires the comparison of many

subparts of the expression with each other In particular, the commutative

189

190

law requires that the terms 1n sums and products be sorted. Second,
discovery that two expressions are equivalent requires a comparison of
every subpart of one with the corresponding subpart of the other. Third,
the problem of reducing all eéquivalent expressions to one canonical form 1s
recursively unsolvable (7) and the existing schemes fail in many cases.

This chapter explores a probabilistic approach. Suppose F(z) #G(z)
(F and G are elementary functions), then F(z) -G(z) = 0 has, at most, a
countable number of solutions, while the complex numbers are uncountable.
Therefore, the probability that F(z) - G(z) = 0 for a point z chosen at
random 1s 0. Thus, 1t would be possible to test for equivalence of
expressions by comparing their values at a randomly selected point. It
1s possible to get some approximation to this fact with the finite arithmetic
of a computer.

One method would be to substitute a random floating point number for
each occurrence of each distinct variable and then evaluate the resulting
expression using floating point arithmetic. This method is limited by
overflow and roundoff error. For example, 1f x 15 a floating point number
chosen at random from a flat distribution, then with probability one half
x2 15 larger or smaller than all the floating point numbers; 1t does not
appear possible to find a rule for mapping %2 back into the floating point
numbers such that the code numbers of equivalent expressions will be very
nearly the same. This overflow 1s dafficult to avoid by restricting the
initial choice of floating point numbers since expressions of the form u’

are allowed. Furthermore, if two eéxpressions, x and y are of different

191

orders of magnitude, then, because of roundoff error, x + y may evaluate
to either x or y. This 1s a particularly serious disadvantage since it 1s
Iikely that an expression will be compared with subparts of itself. The
same problems arise with a floating point approximation to the complex
numbers.

Another strategy, which we investigate here, 1s to use a finite field,

instead of the infinmite field of real numbers.

Fimite Fields and the Exponent Arithmetic

a Finite Fhields

The use of floating point numbers in the code number scheme 1s
limited because the sum or product of two floating point numbers 1s not
necessarily a floating point number. This problem 1s avoided if a finite
field, F, 1s used, since the field can be chosen small enough so that every
element can be represented by a computer number. The task 1s to choose
F such that expressions which are equivalent in the complex numbers are
also equivalent in 1t. That 1s, we need a homomorphism from the complex
numbers onto F. We now develop a field which meets this requirement
in many. but not all, cases.

An abelian group G 1s a set of elements with an operation x and an
1dentity element e such that-

1 a€e€G, bc G thenaxbe G

2. ae Gthenae=ea= a

) -1 -
3. athnenaa e G sa,al =a a=e

192

4, ae€e G, b€ G then ab = ba

A finite field F 1s a finite set of elements with an operation + under
which the elements of F form a group with identity 0 (the additive group),
and an operation ° under which the elements of F' = F -0 form a group
with identity 1 (the multiplicative group). In addition the relations

a°(bt+tc)=a°b+a’°c anda®°®0=0
hold.

If m and n are integers and p 1s a prime integer then ¢ = (m + n) mod p
means that ¢ equals the remainder of (m + n)/n. Multiplication mod p 1s
defined simailarly. It can be verified that the integers less than a prime
form a finite field under the operations addition and multiplication mod p.
The additive inverse of 1, -11s seen to be p- 1 sincep -1+ 1=0 mod p.

b. The element 1

In the complex field there 1s an element 1 such that 1°1 = -1, so
such an element 1s also required in F. To see how this .restrlcts the
choice of p one needs the fact found in the references that the multiplicative
group F! of a finite field 1s cyclhic. This means that there 1s an element &
{called a generator) in F' such that every element in F' is some power of ¢ .

In fact, F' can be written 1,0, & 2, ceee P 2 gng AP-1 =1, Since p 18

a prime it 1s odd and so —E-Tl- 1s an integer. o((p—l)/z = -1 since m(p-l)lz £1
- - -1

and (o((p 1/ 2)2 =1 If p21 is even then r = EZ_ 1s an integer such that if

1= ofF, iz = -1. Note that either O(r or O(3r can be chosen as 1 and the other

becomes -1. We have thus shown that F will have an element i if and only

1f p 1s of the form 4q + 1.

193

c. The Exponent Arithmetic

In the complex numbers, one might have to test for the equivalence of

vl and u'- u, where the exponent arithmetic 1s

two expressions such as u
also performed 1n the complex numbers. However, since the multiplicative
group 1s a cyclic group with one less element than F, v + 1 must be
computed mod (p - 1). Since an i1somorphism does not exist between the
additive and multiplicative groups of F, the exponent operations cannot
be performed 1n 1t. This failure of the finite field evaluation to be recursive
in the exponent direction 1s a serious Iimitation. Furthermore, since
P - 1 1s not 2 prime the exponent operations will not form a field.
Fortunately, many expressions encountered in analysis have rather simple
exponents and so much can be saved by evaluating the exponents in the E
arithmetic which we now define
Let the basic elements of E be the integers less than p - 1. Addition

and multiplication are mod (p - 1). It 1s easy to see that all elements
have an additive inverse. No even integers have a multiplicative inverse,
however, for this would imply:

2«5 - (2 - s)_1:4-q-m+1

or

2+(s+ (2-8)F-2-q-m)=1

which 1s a contradiction since 1 has no divisors in the integers. If we take

q prime, then the odd integers other than q have a multiplicative inverse

as a consequence of the Euler theorem (see Ref., Albert, p.47):

194

Let § (m) be the number of integers g such that 0 < g { m and
g 1s prime to m. Then
a.(b(m) =1modm

for every a relatively prime to m.

The failure of the even integers to have a multiplicative inverse means
that ul/2 i 2wﬂl not evaluate to u. We therefore adjoin to the basic
elements of E the element § , where 2 =1. Closing E under multiplication
and addition would require that all the elements of the form le (b an
integer less than p - 1 and b odd) be in E. However, many cases can be

covered if we allow only elements a or b(

d. Square Roots in F

uQ should evaluate to be the square root of u in F, however, only
one half the elements 1n F have a square root, these are the even powers
of the generator, & , of F', Since (qn)r 1s even for even n and any r
only -i—l- of the elements could have a square root computable by raising the
element to some power, that 1s by assigning some integer to € . However
a method of finding the roots of this smaller set can be found, as will be
shown next, 1.e., there exists a € such that if u = u4n, then u®_ = OKZn.

If p 1s of the form 4q + 3, then since 4n(q + 1) = 2n mod (4q + 2) for
n < q one finds (q4n)q Tl S 2n q + 11s therefore the proper value for € .
The requirement that p be of the form 4q + 3 1s unfortunately in conflict
with the earlier requirement that p be of the form 4q + 1. By choosing
p = 8q' + 5 = 4 (2g' +1) +1 one obtains by a similar argument the square root

of 1/8 of the elements with @ = q' + L.

195

e. Trigonometric Identities

Define i1n the usual manner:

el® _ o160 eO _ e—O
sin 8 = % sinh § = >

10 N e—1G eO +e—9
cos B8 = 2 cosh 0 = >

where e 1s an element of F yet to be chosen. Note that 12 # -1 1n the

E arithmetic but this does not arise 1in taking sums and products of the

above functions. For instance:
2 2 el - e9 2 el® 1 710 2
sin 6 + cos 9=(————2—1———) +(—-—2——)
el® . 010 5 .10, 10,18 -10 o180, 610 | .10, RN e 19 10
= +
-4 4
-2-1 2+1
= +
-4 4
=1
If sin (8) 1s to equal cos (7w /2 - 0), then 1t 1s necessary that el = -1 and

el-”-/2 = 1. If e 1s to have a square root 1t must be an even power of <« ,

taking e = « 2n one obtains for p = 8q' + 5:

196

2nin = (4q' + 2) mod (8q' + 4)
mw = (29" + 1) mod (4q' + 2) 1)

For any choice of n, e 1s determined, providing equation (1) can
be solved for the element w . Some reflection will show that trigonometric
calculations may involve roots of e greater than 2. Suppose n 1s chosen odd,
then one square root of e, o\n, has no square root, nor does - o(n, the other
square root of e. That -* does not have a square root 1s a consequence
of the choice of -1 as a square. S qn = (square) (nonsquare) and a
square times a nonsquare must be a nonsquare. From this one can see

m

that if e 15 to have a thh root, 1t must be chosen of the form Q(C 2 .
Note that the choice of n divides the elements of F! between the roots and
powers of e

Returning to the solution of equation (1) for the case n = 1, we see that no
satisfactory solution 1s possible. For (1) implies that 1w. = 2°m°(2q' + 1)
+(2q' +1). 2q'+ 1 must be taken prime in order to reduce the number of
elements which map into the same element in the E arithematic. Therefore,
2q' + 1 must divide either 1 or W, but this 1s not acceptable. Suppose 2q' + 1
divides = v, then in the E arithematic 4« = 0. Since either 477 or 41 1is
a highly probable element, this relation 1s unacceptable. Once again, a

patch can be inserted so that erw/2

will equal 1 i1n the most frequent cases.
When an element 1s exponentiated in the F arithematic, special checks are
made. If the base 1s e and 1 w divides the exponent, then (_l)exp/m 1s

computed. 1w 1s chosen small enough so that small multiples of 1t wall

be less than the prime p.

197

f. Summary of the Requirements

1. p of the form 8q' + 5.
2. 2q'+ 1 prime
Machine Realization -- Finding a Prime

The requirements of section II are-

1.

2.

p=8q +5

2q' + 2 prime

Another requirement is:

3.

p less than 1/2 the largest machine integer.

This allows addition without overflow. The multiplicative inverse of an

element a 1n F 1s found by noting that a—l =aP"2 To raise an element a

to any power we begin by multiplying 1t by itself, creating the numbers

2

b, = a”, we then express the power as a binary number and add up the

appropriate b,. This leads to the requirement-

4.

p - 2 should be expressible as a few powers of 2.

To find a prime for the 7094 the following procedure was followed-

1.

9 test 1f p = 16bn + 13 1s prime by

Beginning with n = 22
dividing by every odd number up to Np.
Test 1f 4n + 3 1s prime.

Find a generator & , of F'. (If a 1s not a

2w

4=lora‘“‘=lora =],

generator then a=lora
Raise a to these four powers by the scheme above.)
Almost 1/2 of the elements are generators so one is

guickly found.

198

4. Compute 1 =<x4n t3

This procedure resulted in:
p =8, 589, 949, 373
o = 13, 560, 097
1= 5, 525, 736, 173

Some Example Problems

Ten trigonometry identity problems were selected from a textbook (8).
The scheme produced the same hash number for both sides in all but the

last. The identities are:

1. sin x tan x + cos x = sec x

2. (sin x cotx + cos x)/cot x = 2 sin x

3. csc? x + cot? x +1 = 2/smnx

4. cos x cot x + sin x = csc x

5. (1 - sin x) (sec x+ tan xX) = cos x .
6. sin x/(1 - cos x) = tan x/(sec x -1)

7. csc:4 x -cot4x = csc2 x + cotzx

8. (sin x/(sec x+ 1)) + (sin x /(sec x =1)) = 2 cot x

9. cos6x + smfx=1-3 51n2 x cos®x

10. "J (sec x -1)/(sec x+1) = (1 - cos x)/sin x

The probability of Error

Estimation of the probability of error is difficult. The average
probability of error for certain subsets of expressions will differ from that
for all expressions. No statistics are available on the expressions which

will be encountered in practice.

198

4. Compute =o(4n *3

This procedure resulted in:
p = 8, 589, 949, 373
o = 13, 560, 097
1= 5, 525, 736, 173

Some Example Problems

Ten trigonometry identity problems were selected from a textbook (8).
The scheme produced the same hash number for both sides in all but the

last. The identities are:

1. sin x tan x + cos x = sec x

2. (sin x cotx + cos x)/cot x = 2 sin x

3. csc? x + cot? x +1 = 2/sin?x

4. cos x cot x + s1n Xx = csc x

5. (1 - sin x) (sec x + tan x) = cos x ,
6. sin x/(1 - cos x) = tan x/(sec x -1)

7. csc4 X -cot4x = csc2 x + cotzx

8. (sin x/(sec x+ 1)) + (sin x /(sec x -1) }) = 2 cot x

9. cos6x + sinbx=1-3 31n2 x cos®x

0. (sec x -1)/(sec x+1) = (1 - cos x)/sin x

The probability of Error

Estimation of the probability of error is difficult. The average
probability of error for certain subsets of expressions will differ from that
for all expressions. No statistics are available on the expressions which

will be encountered in practice.

199

It 1s possible that two expressions which represent the same function
will receive different code numbers because some exponent operation does
not preserve the equivalence. Study of section II should make clear under
what circumstances this will happen.

In the simplification program described in the Chapter VI , expressicns
with the same code number are considered equivalent. Therefore, an
accidental match of non-equivalent expressions 1s very serious. If we
could show that the operations in the E and F arithmetic mapped their sets
of elements uniformly back onto themselves, then the probability of a
match between two expressions selected at random from the set of all
expressions would be 1/p. Unfortunately, this 1s not the case. Inthe F
arithmetic the operations of multiplication and addition and their inverses
do satisfy this criterion. Looking at the cyclic group F', however, one
sees that raising any element 1n F except a multiple of w to all powers will
produce either 1/4,1/2, or all the elements of F. Thus exponentiation
tends to map the elements into the 4th powers of a generator and so increase
the probability of random match.

The same bunching occurs in the E arithmetic. The distribution of
elements after n operations can only be found using a rathe~ complicated
two dimensional convolution. The distributions after one operation shown
in Figure 1 indicate that for moderately complicated exponents the

probability of error should remain in control.

200

1nitial

addition

————— multiplication

......... division

relative C .
frequency : '

odd integers even even p elements

integers integers
not divis- divisible

1ible by 4 by 4

Distribution of elements in E after one operation. Within each

classification, the elements are ordered in the normal manner.

Figure l

Chapter VIII

THE LANGUAGE OF MATHEMATICAL EXPRESSIONS

The introduction stated that man-computer symbiosis can bring
about an effective problem solving team by assigning to man and computer
those parts of a problem which they are best suited to solve. FEach s
much better than the other at certain jobs; therefore, the two together

can do the problem better than either alone, if the cost of breaking the

problem up 1s not too high. The task assignment may result in either

parallel or serial operation of man and computer. In a parallel operation,
each has continuous access to all important data generated by the other,
while 1n a serial operation, data exchanges occur only at significant points

in the problem. Sometimes, a task in a serial operation could be performed
by either man or computer, the one which has perforr-ed the previous step
often has the relevant information for the task. The savings in sending

the task to the best partner must be great enough to cover the cost of a
possible data exchange. In this case, the cost of data exchange is critical
to the balance between man and machine. This would not be so 1f most

tasks could only be performed by one or the other.

The solved problems presented in Chapter II require soms serial
operation with much data exchange. It 1s, therefore, important to investigate
the possibilities for man-machine communication in non-numerical analysis.
A language consists of a series of statements following certain syntatic

rules which the communicants map into their respective models of the world.

201

202

Often, the language can be divided into a central part, following a rather
small set of well defined rules, together with a series of succeedingly
complex exceptions to these rules and methods for continued discourse.

In the case at hand, the central part 1s the set of mathematical expressions
used 1n analysis. These expressions will be investigated in this chapter
and the following two chapters.

The available input-output devices for the language are the typewriter
and the display. Either a one-dimensional or a two-dimensional
mathematical expression syntax can be used with the typewriter or the
display The use of a one dimensional syntax for typewriter input 1s
discussed in chapter X. Chapter IX describes a two dimensional syntax
for display output. A two dimensional syntax for the typewriter is discussed
by Klerer, however, he has not stated any useful general ideas. The
preblems involved 1n constructing a two dimensional input syntax for the

display will be considered in Chapter XI.

Chapter IX

SYNTAX AND DISPLAY OF MATHEMATICAL EXPRESSIONS

Introduction

This chapter describes a LISP program which computes the pictorial
representation of a mathematical expression from a LISP S-expression
representation of the expression. Since the language of mathematics contains
a number of special cases, the computation will be introduced with a
summary of the results produced by each part of the program and the general
principles followed.

Because of the possible use of many transformations and identities,

a mathematical expression can be represented in many equivalent forms.
For instance a (b+c) could be represented as ab + ac. In certain contexts
the picture of one of these forms may be easier to read than the picture

of the others. For instance a - x might be preferred to a + (-1 + x).

On the other hand, the use of several equivalent internal forms complicates
the writing of routines needed to transform mathematical expressions.
Furthermore, the most convenient internal form might be difficult to read.
In the first pass of the picture compiler the internal form is transformed
into an equivalent form which 1s easy to read. In addition, parentheses
are added. The LISP expression resulting from this first pass has the
form of a tree of subexpressions. Each node of the tree 1s a mathematical
operation and the branches from that node are the argurnents of that

operation. At the end of the branches are the individual variables and

203

204

constants. The form of this internal tree is preserved throughout the

remaining steps of the picture compilation. For example, the expression

a=c -+ d+ e has the tree: +

5, d

Mathematical operations are represented in "pictures" by symbols
placed in special arrangements. A classification of the representations
will be given later. The situation is complicated by the fact that
sometimes the same symbols and positional notations are used in different
combinations to represent different mathematical operations. The second
pass of the picture compiler rewrites the internal tree in terms of these
common symbols and positions. The symbols and positions are expressed
in terms of a set of special forms. These forms are shown in Figure 1
through Figure 1. The compiler starts at the base of t;e internal tree and
works out to the ends of the branches, rewriting the tree at each node.
This rewriting introduces additional nodes into the internal tree, but these

new nodes are marked so that the old structure 1s preserved. The display

resulting from a node and 1ts branches 1s called a picture part. Sometimes

the form of a picture part depends on the dimensions of its arguments.
In this case the second and third pass must be applied to the arguments
before the second pass can be applied to this part.

In the third pass each picture part is inscribed in a rectangle.
The compiler starts at the ends of the branches of the internal tree and

works toward the base. The compiler first inscribes each individual

constant and variable in a rectangle, defined by its width, height, and

205

depth. A dimensioned rectangle is then chosen in turn for each larger
picture part; i.e. operator with arguments. The dimensions of each
rectangle depend on 1ts own operator and also on the dimensions of those
rectangles associated with the arguments of the picture part. In addition,
we compute the relative positions of the arguments of each picture part with
respect to the lower left hand corner of its circumscribed rectangle.

Once the entire expression has been dimensioned, 1t can be positioned

on the oscilloscope face. The final pass of the compiler then sends to the
display the name, size, and position of each symbol. These symbols

are interspersed with non-displaying left and right pseudo-parentheses.
These pseudo-parentheses group the picture symbols into a tree of sub-
expressions identical with the internal tree structure obtained from pass

one of the picture compiler. Thus, a light-pen reference to a picture symbol

&

can be 1dentified with the smallest subexpression in the picture tree which

contains 1t, and with the corresponding LISP subexpression in the internal

tree. This makes 1t possible easily to designate mathematically

meaningful picture-parts as arguments for other operations.

Transformations to Facilitate Semantic Interpretation

A method 1s needed for referencing meaningful subparts of the LISP
source expression by pointing with a light pen to symbols in the displayed
picture expression. Thus, before the picture 1s compiled, the source
expression 1s transformed using mathematical relations into a form which
makes 1t easy to establish a one-to-one mapping between subparts of the

picture expression and mathematically meaningful subparts of the LISP

206

source expression. Then, in addition to the picture symbols, the
compiler sends the display a series of left and right pseudo-parentheses
which parse the picture symbols into a tree identical with the tree formed
by the transformed source expression. When the light pen 1s pointed at
a picture symbol, the smallest picture sub-expression which contains 1t
1s 1intensified and the corresponding LISP expression may then be referenced.
The source expression is transformed in order to bring it into a better
pictorial form, for instance, the order of the product 1s reversed so that
(j: cdx) ¢d can be written d-j;lgdx .

Although the picture compiler 1s powerful enough to handle most all
of the notations which arise in mathematics, simple compiler rules have
only been written for the mathematical expressions listed below, which
arise in the solution of non-linear differential equations. These expressions
are represented by LISP S-expressions. In brief, S-expressions are
defined recursively as follows: Any number or string of alphanumeric
characters is an S-expression. One or more S-expressions separated by
spaces and surrounded by parentheses is an S-expression. Individual numbers
and alphanumeric strings are called atoms. Individual variables and
constants in the mathematical expressions are represented by atoms.
The mathematical operators are represented by S-expressions consisting
of the operator name, its arguments in some given order, and the atom NIL.

NIL denotes the null S-expression; it 1s replaced by temporary results

during the transformation of expressions and represents the property list

of the mathematical operator. The individual mathematical operators

207

currently in the program are:

(Note: most of the operators can take any number of arguments, in the

10.

11.

12.

13.

obvious manner,)
(PLSABCNIL) = A+B+C

(PRD A B C NIL)

m

A-B-C

(FRTIJ NIL) =

ol

(PWR A BNIL) = AB

4 B+D

(DRV ABCDENIL) = E

daBacP
B
(ITGD A B C NIL) = S cdaD
A

(SUM A B C DNIL) = 2 D
(EVLABCDE NIL) = E‘A:B
(NAM A B CNIL) = C

(F A B NIL) = F(A, B)

(NAM A B (F C D NIL) NIL) = FA B(C, D)

n

(FTL A NIL) = A!

i

(ABS ANIL) =|A|

Where A, B, C, D and E are arbitrary expressions, I and J are

integers, and F 1s any atomic symbol not recognized as an operator.

-X 1s represented by (PRD -1 X NIL) and é—{ 1s represented by (PWR X -1 NIL).

If one of the factors of a2 sum or product is a number, 1t 1s often the left-

most argument.

208

The first compiler pass performs the following transformations:
(PLS ANIL) — A
(PRD A NIL) - A
(PLS N A B NIL) - (PLS A B N NIL)
(DRV S 1(F S NIL)NIL) - (DRV11(F S NIL) NIL)

-N — (NEG N NIL)
(PRD -1 A NIL) = (NEG A NIL)
(PRD -2 A NIL)->(NEG(PRD 2 A NIL) NIL)
(PRD A (SUM A B CD NIL) E NIL)— (PRD A E (SUM A B C D NIL)NIL)
(PRD A (DEL B NIL) C NIL) —> (PRD A C (DEL B NIL) NIL)
(PRD A (PWR B -1 NIL)NIL) => (DVD A B NIL)
(PRD A (PWR B {PRD -1 C NIL)NIL)NIL) —> (DVD A (PWR B C NIL)NIL)
(F A B NIL)~> (FUNCTION F A B NIL) i
(PRD A (I TG AB CD NIL) E NIL)—>(PRD AE (ITGABC D NIL)NIL)
(FRT 1 -2 NIL)—> (NEG (FRT 1 2 NIL)NIL)

X —> (ATOM X NIL)
(NAM X Y (F A B NIL)NIL) —> (FUNCTION (NAM X Y F NIL) A B NIL)
Where N is a number, X is a number or variable symbol, and S 1s a non-
atomic subexpression.

In addition to these transformations, levels of parentheses are
inserted. For instance (PRD A (PLS B C NIL)NIL) —> (PRD A (PAREN(PLS
B C NIL)NIL)NIL). No parentheses are used around the arguments of

FUNCTION, PAREN, ABS, EVL or NAM. A size change always removes

the need for parentheses. In addition, the integration and summation

209

symbols stand in place of parentheses for operators on their left and a
transcendental function 1s parenthesized if it 1s raised to a power.
Otherwise, parentheses are placed around an argument of an operator 1f
the main operator of the argument has lower precedence. Precedence
15 determined from the following list: PAREN, NAM, =, FUNCTION,
FTL, PWR, FRT, PRD, =, DVD, ITG, DRV, NEG, =, PLS, =, SUM.
Operators separated by = have equal precedence.

The expression resulting from these transformations 1s saved as the

internal tree for the later analysis of light pen references. For example,

B
(EQN (ATOM Y NIL) (PLS(PWR (ATOM X NIL) (ATOM 2 NIL)NIL)

the expression Y - X2 + would be represented by the S-expression

(DVD (ATOM A NIL) (ATOM B NIL) NIL)NIL)NIL). It has the tree

structure

Transformations to Facilitate Syntactic Construction

To a very large extent, mathematical notation becomes, in the mind
of the individual, a model of the abstract concepts he is manipulating.
For instance, consider the operation of canceling terms from both sides
of an equation or from the numerator and denominator of an 1ndicated

division, or the operation of bringing a term to the other side of an equation,

210

or the operation of matrix multiplication. Therefore, the notation must
have properties which make 1t easy to visualize.

Lack of generality is thus introduced 1in the course of making mathematical
notation easier to read. Different mathematical operators should be
represented by different sorts of notation and the mathematical operator
with the highest precedence should be represented by the most compact
form. For example, compare the equivalent Boolean =xpressions
(({AUB)UC)U (DAE))and A+ B + C + DE. Furthermore, when
an operation -s applied to complex arguments, 1t should be possible to
visualize it 1n the same manner as when 1t 1s applied to s:mple ones. For
instance, the introduction of parentheses or other such fences allows
(A + B)C to be visualized in the same manner as DC, with the operation
expressed as concatenation. Sometimes a change of size is used to aid
1n visualizing a complex argument as a single unit. As a final example,
consider the choice of foto reoresent the derivative when it 1s to be
thought of as an operation of high precedence, but the choice of _dciff for
the derivative when 1ts properties as a ratio are to be used.

Although it 1s difficult to make strict classifications, 1t 1s useful to
distinguish seven distinct pictorial forms used 1n mathematical notation.
As stated above, the more compact forms are often used for operations of
higher precedence with the exception that fences and size changes permait
the use of complex arguments in the simpler forms; size changes allow

complex forms to have high precedence.

211

The forms in rough order of decreasing precedence, with some

examples of each are:

2 .2
1. supersub Ul’ 1 3 X ; T3
2. concatenation with
a
variable size fence fn(x,y); X ; (b")~; (a)

symbols and separation

symbols
3. concatenation 2X, XYZ
b 6
4. binding symbol ath ; g xdx ; _->: X
c
a x=3
a3
5. hybrid 2
d xdy
6. concatenation with x=y;atb+tc ; ANB; A- B - C
infix symbols
7. title (E1) X

Since the same mechanisms, such as concatenation, are used in more
than one of these seven forms, we will discuss the simpler ones first.

a. Concatenation

A rewrite rule may be associated with any operator. For example,
1f concatenation 1s used to represent multiplication then there might be a
rule:
(PRD A B NIL) —> (CONCAT A B NIL)
The computation 1s simplified 1f cancatenation 1s considered to be a binary
operator. It is therefore necessary to have recursive rules such as:
(PRD Xj X, --- Xn NIL)—> (CONCAT X, (CONCAT X, --- (CONCAT

Xp-1X, NIL) --- NIL)NIL).

212

This rule, however, makes a multiple level structure out of a single level

structure and thus destroys the form of the internal tree which 1s needed

to parse the symbols for the display. To remove this difficulty an

indicator 1s put on the property list of the CONCAT form to show that

1t 1s not to be considered a node 1n the internal tree when the symbols are

sent to the display by pass four. A pseudo-form, DELIMIT, 1s introduced

to correspond to the old PRD operator. The shape of DELIMIT 1s just

the shape of its argument. The rule above then becomes:
(PRD X X, --~ X, NIL)—> (DELIMIT(CONCAT X; (CONCAT X, ---
(CONCAT X, 1 X, (UNDELIMIT)) --- (UNDELIMIT)) (UNDELIMIT))NIL)

b. Concatenation with variable size fence symbols and separation symbols.

In the example fn(X, Y), the size of the comma does not depend on™

the size of the arguments X and Y so it can be handled by the form CONCAT.

On the other hand, the size of the parentheses depends on the dimensions of

the enclosed expression and so it 1s necessary to introduce a parenthesis

form. The rule for functions 1s
(FUNCTION X; X, --- X NIL)—>(DELIMIT(CONCAT Xl(PAREN(CONCAT
X, (CONCAT{(ATOM , (UNDELIMIT)) - --(CONCAT(ATOM , (UNDELIMIT))
X, (UNDELIMIT)) (UNDELIMIT)) (UNDELIMIT)) (UNDELIMIT))
(UNDELIMIT)) NIL).

The size of the parentheses 1s chosen during the dimension pass. They

are considered to be symbols introduced by the PAREN form, rather than

arguments of the form. The dimension pass also tells the PAREN operator

the depth of the parentheses contained in its argument. The PAREN

213

operator then chooses parentheses, brackets, or braces accordingly.

2)3
For example, the compiler would produce i a- [_c . (b+dﬂ I . In
the case of transendental functions, the parentheses are omatted if the

argument 1s a single variable, a product of two variables, or a division.

c. Bainding symbol

Often a size change 1s associated with a binding symbol. One might
want to make the size change recursive, however, 1t takes only a few
size changes to make the range of sizes too large. The current system
uses characters which differ in size by a factor of two and 1n this case more
than one size change 1s unsatisfactory. Fortunately, expressicns occurring
1n practice would rarely require more than one size change 1f the recursive
rule were to be used. The second pass carries the size with it as it goes
out the branches of the internal tree, the rewrite rule for the mathematical
operator of any node of the tree may specify that certain branches from
that node are to be rewritten using the smaller size. In order to present
the rewrite rules, the smaller size has been indicated by a 1 on the rewritten
expressions property list. In actual fact, the size 1s saved on a pushdown
list where 1t can be retrieved by the third pass. An example of a rule
involving a size change 1s the rule for integrals where the expressions for
the limits are rewritten using the smaller size-

(ITG X1 (ATOM A NIL) (ATOM B NIL) X2 NIL}>

(ITG (CONCAT (ATOM D (UNDELIMIT)) X1 (UNDELIMIT))

(ATOM A (1)) (ATOM B (1)) X2 NIL).

214

d. SuEersub

This notation 1s used for exponentiation and for subscripting. The
placement of subscripts is a property of the particular variable or function
name. The subscripts can be placed at any of the four corners, so that
there are 15 possible spatial arrangements. To avoid using 15 distinct
but similar operators, null arguments have been introduced. They are
treated as picture parts having zero dimensions. When the rewriting pass
discovers a NAM operator 1s picks up a subscript-placement-list associated
with the variable or function name 1n question. This 1s a list of the form
(X1 X2....Xn), where each X1 1s one of the symbols NE, NW, SE, SW.

The 1th argument of NAM 1s then placed at corner Xi. Two or more
arguments at the same corner are separated by commas. Placement of
arguments must start at the NE corner and proceed counter-clockwise.

When the subscript-placement-list 1s exhausted the remaining arguments are
placed at the SE corner. For example 1f H has the subscrmpt-placement-list
(NW SW SW) then

(NAM X1 X2 X3 X4 (ATOM H NIL) NIL—> (SUPERSUB NIL X1

(CONCAT X2 (CONCAT (ATOM , (UNDELIMIT)) X3 (UNDELIMIT))

(1l UNDELIMIT)) X4 (ATOM H NIL) NIL).

If a subscripted variable name 1s raised to a power the exponent takes the
NE position if there are no NE subscripts. The rewrite rule uses
SUPERSUB and the operator PWRUP which preserves the original tree by
removing the exponent from the SUPERSUB level during the dimension pass

and using it for its second argument.

215

For example

(PWR (NAM X1 X2 NIL) X3 NIL - (PWRUP (SUPERSUB X3 NIL NIL

X1 X2 NIL)NIL NIL)
Note that this combination of levels must be handled carefully if one desires
to use a scheme where duplicate subexpressions are rewritten and dimensioned
only once.

e. Concatenation with infix symbols

This form has two possible spatial representations. If it 1s too wide
for one line, then some of the arguments can be placed on additional lines.
In order to choose the correct form the arguments must be rewritten and
dimensioned and the available line width must be known. The arguments
and symbols are concatenated horizontally until a line 1s filled. Successive
lines are then concatenated vertically.

In the case A + - B the connecting symbol + can be omatted.

Similarly one might want to write A ¥ B, but A(B+C), omitting the ¥
when the parentheses remove the ambiguity. On the other hand, when the

’

expression 1s continued on the next line one would still wrate.

%(B+C) but éB . This problem 1s resolved by associating with each
connecting symbol lists of those operators which cause it to be suppressed.
There 1s a list of those operators which suppress it from the left, and a
list of those operators which suppress it from the right. In addition

there 1s a list of operators which replace the connecting symbol when a new

line 1s started. DBefore an argument 1s rewritten and dimensioned 1ts main

operator 1s checked against the above lists so that the connecting symbol may

be omitted 1f necessary.

216

f Tatle

The title operator takes as arguments an expression and its name
The name 1s rewritten, dimensioned, and positioned on the left edge of
the display, the expression must then fit into the remaining space.

g Hybrid

Some operators are simply combinations of the others.

In conclusion, rewriting 1s controlled by the available space, the
type of operator, and the size and type of its arguments The form 1s
dependent on the dimensions only 1f line wadth 1s applied as a constraint
Dimensions

The dimension pass starts at the ends of the branches of the internal
tree and works towards the base At the ends of the branches are the
individual variable names These are either the names of special characters
such as 9, or a sequence of characters to be displayed by the character
generator The names of special characters are marked with a flag
and have their dimensions associated with them The width of sequences
of generated characters must be computed using their size and the fact that
in the SAL language used for display ¥ and = are mapped 1nto character
generator case shifts and / 1s used as a quote character, and also the
fact that some generated characters are non-spacing

Five dimension functions must be written for each form There are
functions for the width, height, depth, symbols, and arguments The
compiler uses these functions to put the dimensions of each picture part

on 1ts property list The three functions for the width, height, and depth

217

have a list of the dimensioned arguments of the form as input. They
use helping functions to retrieve the dimensions from the property lhists
of the arguments. The positicn of an argument or symbol 1s specified
by the coordinates of the lower left hand corner of the rectangle containing
1it. The function for the arguments has as value an S-expression of the
form (O Xy VA Yl ---AX, AYn) where AXI s AYI 1s the position of the B
argument with respect to the lower left hand corner of the circumscribed
rectangle The function for the symbols has as output an S-expression
of the form (A X; AY; NAME; $) W ----AX, DY, NAME, S, W)
where the 1th symbol which 1s added to the display by this form has name
NAMEI, size S;, width W,, and relative position AXI AYl. The functions
for the symbols and arguments have as input the width, height, and depth,
as well as a list of the dimensioncd arguments. The computation of the
dimensions and relative positions by independent functions breaks down
when symbols such as parentheses must be chosen, as it 1s not desirable
to repeat this choice for each of the five functions. To solve this problem
a mechanism 1s set up by which the width function, whach 1s executed first,
can communicate its choice to the others.

Each of the forms currently in the system 1s pictured in the following
figures. Dotted lines have been drawn to indicate how the arguments and
center lines are placed. It might be well to note that the human eye 1s

seansitive to even the smallest misalignments.

218

————— e — ——
_________________ p—
[
e e — -
Figure 1 CONCAT
;'_ ________ T
I |
i !
{ 1
| |
I |
e ——— - — = - ——— - - -
i |
I (
0 1
—————— - I
t
!
________________ -
Figure 2: SUPSUB
——— === - - e — - 1

Figure 3-

. — ——— —— —— — -—

EVL

219

—— -
. —— - = e

[P —
W _ N
_ ! _
I
|
|
I Z
| K
| o
I <
| o}
| .
i w
| (0]
— r
! 5
eT)]
! o
]
|
_ i
N
I

e e

-—— v~ —

LVCONCAT

Figure 6:

I i |
| “ |
| i i
_ ! |
| ! I
_ _ |
I | I
: _ |
_ _ !

]

|

!

|

|

]

i
“ _
)
_ “ _
| |]
} i]
I , _
) 1 _
!] |
I ! i
_ !]

TITLE

Figure 7:

220

-——— - —’ Illt"!—
) ! _
i " "
| _ _ _
| | 1 | “
| \ M 1 ” . |
1 e ey ——
“ ﬁNv ' " | | } __
{ | bt
! S a __ “) “ M i
_ S 2 , _ r B 1] |
i ‘ _ IR
{ .
| b & g]
! o © , A ! _ |
I ~ o o _ _ !
} 3 3 5 !]
_ > = E i —
i ' 9 | _ 5 i — T 1
e e

-7

T

- - {

ABS

Figure 1l:

221

Output to the Display

The LISP picture compiler program runs in Project MAC time sharing.
After an expression has been dimensioned, the compiler outputs a
description of the picture to be displayed over the dataphone to PDP-6 LISP.
The picture is displayed on the PDP-6 scope using the SAL and MACROSAL
languages. Each expression picture is set up as a single MACROSAL
object with the picture tree marked by left and right pseudo-parentheses.
The compaler starts at the base of the tree and goes out the branches, taking
them 1in left to right order. The compiler sends each symbol to the display
as 1t 1s encountered. If two successive symbols are not adjacent, then
the compiler links them with a non-displaying relative vector. Whenever
the compiler encounters a new node of the internal tree it follows the last
symbol sent with a left pseudo-parenthesis. After the compiler has
finished this node and all branches extending from it the corresponding right
pseudo-parenthesis is sent. This information 1s also sent to the disk so

that the picture can be reconstructed without being recompiled.

222

ExamEIe

The following figure 1s a photograph of two displayed expressions.
The source expression for El 1s:
(EQN(PWR(NAM O(R OMEGA NIL)NIL)¥A NIL)
(PLS(PRD(PRD 2 #L(PWR PI -1 i\IIL)NIL) ‘
(PRD(*LLOG OMEGA NIL) (PWR(PLS %A 1 NIL)-1 NIL)NIL)NIL)
(PRD(PRD 2 ¥*A OMEGA (PWR PI -1 NIL) (PWR{#LOG OMEGA NIL) (PRD -1 #A
NIL)NIL)NIL)
(ITG ¥T O PY (PRD(NAM I{THETA ¥T NIL)NIL)

(NAM(PLS #A -1NIL) (M(PRD OMEGA +T NIL)NIL)NIL)NIL)NIL)NIL)NIL)NIL)
The source expression for EZ2 is:

(O(SUM *V(PRD ¥N(PWR 2 -1 NIL)NIL)

(PLS &N -2 NIL) (PRD(ABS(NAM{PLS ¥V 1 NIL)B NIL)NJIL)
(PRD(PLS(PRD(PLS ¥N(PRD -1 ¥V NIL)N1L)

(PLS(NAM(PLS #N(PRD -1 ¥V NIL)-1NIL)P NIL)

(PRD -1(NAM(PLS ¥#N(PRD -1 %V NIL)-2 NIL)P NIL)NIL)NIL)
NIL) (NAM(PLS #N(PRD -1 #V NIL) -2 NIL)P NIL)NIL)

(¥ LOG(PLS #V 2 NIL)NIL) (NAM(PLS ¥V 1NIL)

THETA NIL) (PWR(PLS ¥V 1NIL)-2 NIL)

(PWR(PLS 3N(PRD -1 %V NIL)NIL)-1 NIL)NIL)NIL)NIL)NIL)

223

224

Conclusion

One measure of program complexity 1s the extent and predictability
of the combinations of independent parts of the input data which must be
made 1n order to determine the flow of program control. In this respect
the display of mathematical expressions seems to hhe midway in difficulty
between the display of lines of English text and the display of arbitrary
graphs. In the display of English text, the data i1s organized in a string,
the only global property required is a character count. Hyphenation
decisions are based on the word at the end of the line. On the other hand,
the display of graphs seems to require the simultaneous positioning of
several nodes, and might require a character algebra or an iterative approach.
In the display of mathematical expressions, decisions can be made at each
node of the expression tree, based on information collected from above and
below The central importance of this tree structure makes LISP a

convenient language for the program.

Chapter X

LINEAR INPUT OF MATHEMATICAL EXPRESSIONS

R.W. Floyd describes an algorithm for parsing a language with a
precedence grammar. Floyd defines an operator grammar as one with
no productions containing adjacent non-terminal symbols. A precedence
grammar 1s then an operator grammar in which given two ordered terminal
symbols, one either appears before, at the same time, or after the other,
1n all series of productions leading to a string in the language. The
productions shown in Figure 1 will, with three exceptions, produce the
desired input strings as a subset of all the strings which they produce.
With the exception of N, which stands for any digit, and L, which stands
for any letter of the alphabet, the letters are the non-terminal symbols.
The 1nmitial non-terminal symbol 1s V. The productions iO, 12, 29 and 42
all represent classes of productions formed by taking any number of S's
or P's, separated by commas.

To verify that these productions form a precedence grammar, the table
shown in Figure 2 1s formed. For any two terminal symbols T, and T,,
Tl 1s >,< , or = Ty, 1f it appears before, after, or at the same time as
T

o 1n a series of productions leading to a string of terminal characters,

and in which Ty and T_ are at some point in the series, either adjacent or

2
separated only by non-terminal characters. Floyd gives a systematic way of

checking a proposed set of productions for these relations. In Figure 21t

can be seen that only one of these relations holds for each ordered pair of

225

226

terminal symbols, and so the productions do form a precedence grammar and
a string formed by these productions can be parsed using Floyd's algorithm.
These productions produce strings which differ from the strings to be
input 1n three ways, and so the input strings must be preprocessed. In
the 1nput strings, the unary minus is written the same as the binary one,
the preprocessor recognizes it by the immediately preceding left parenthesis
and changes 1t to theta, in order to conform with productions 20 and 43. Similarly,
the quotes, ', which precede a left parenthesis are changed to double quotes, ",
to agree with productions 3, 7, 42,43 and 24. Finally the string ! B, N typed at
the PDP-6 1s changed to B!N by the PDP-6 as 1t picks up the subexpression
address integer N from displayed expression B.
To the parsing algorithm must be added a description of how meaning

15 assigned to the parsed expression. As the input string i1s parsed, the non-
terminal symbol on the left side of each production discovered 1s represented
by the LISP expression which 1s the meaning of that production. For
example X + Y would be identified as an instance of production 13 and
changed to (PLS X Y) The steps 1n parsing X + C ¥ D would be

X+C=x=D

X + (PRD C D)

(PLS X (PRD C D))
The function which forms the LISP expression associated with each produc-
tion 1s found on the property list of the left most terminal symbol of the
right side of the production. Sometimes, the same terminal symbol 1s

left-most in several productions, but the production in which the symbol hies

227

can then be determined from the other terminal symbols in the production
or the total number of symbols in it, Productions 33 through 4l are
tested for separately, so that a function will not have to be placed on the
property list of each letter and digit. The method of assigning meaning to
these productions 1s also different, for they must be transformed into LISP
atoms and numbers. Corresponding to the meaning assignments are the
rules:
L =» (ATOM L)
N - (ATOM N)
L(ATOM...) - (ATOM L....)
N(ATOM...) - (ATOMN.....).
Then, a post-processing function is applied to the final parsed expression
and the subexpressions starting with ATOM are replaced by the LISP atom
or number made from the characters in the subexpression. The remaining
meaning assignments are shown in Figure 3.

A flow chart of Floyd's parsing algorithm is shown in Figure 4. Thas
chapter will be concluded with a description of the LISP program to perform
this algorithm. The top level function APARSE accepts the list of input
symbols, which 1s in reverse order, reverses it, and gives it to APARSE1
for the preprocessing step. APARSE then parses this preprocessed string,
using the PROG variables U, V, P, R, and S for temporary results. U
1s the list of symbols to be parsed. The answer 1s built up on P. NIL is
used for the left and right end terminal symbol. In brief, terminal symbols

on P are combined into phrases, i.e. non-terminal symbols, and these

228

phrases are combined with other terminal symbols into larger phrases

until there 15 only one phrase, the result, between the two terminal NIL's.
The first step 1s to put the right terminal NIL on P. Then, the next symbol,
R, 1s taken from the input list U. When U 1s empty, the left terminal NIL

1s taken. The next step is to look down the list of phrases and terminal
symbols on P, calling the terminal symbol under consideration S, until one

1s found with higher precedence than R. This means that S belongs to a
non-terminal phrase which came down after the phrase containing R. Control
is sent to B, where all terminal symbols in this phrase which have equal
precedence with S, and the intervening phrases are determined. These
symbols and phrases are placed on V, where they are combined into a phrase
by a function associated with S. This phrase replaces its parts on P and

the comparison of symbols on P with R 1s resumed. If S is not greater than
R, then a check 1s made to see 1f R 1s NIL, 1n which case the process 1s
complete. If R 1s not NIL, then R 1s added to P and control goes to A,

where a new 1nput symbol R 1s taken and the old R becomes S, since 1t is now
at the front of P. When this process 1s finished, the final phrase 1s operated
on by APARSE?2 which combines the ATOM phrases into LISP atoms and
numbers. Description of APARSE2 will be deferred until the functions which
create the phrases have been described. As stated above, a function is
associated with each terminal symbol. Numbers, POINT, and literals use
the function PFN5. If the number or literal has no phrase immediately to

its right, then the structure (ATOM N) 1s created by PFN5. Otherwise

the phrase will be of this form and the new symbol 1s added to it.

(N (ATOM X ...)) becomes (ATOM N X). Most of the other

229

operators use the function BPFN which creates a binary prefix structure
from a binary infix one. (X, op, Y) becomes (op X Y). The exceptions
are (X NEG Y) which becomes (PLS X (PRD -1Y)), (XLBK Y, Z, ...RBK)
which becomes (NAM Y Z ...X), and LLP. For LP there are three cases.
(LP THETA X) becomes (PRD -1X). ((ATOM...)LPX,Y....RP)
becomes ((ATOM...) X Y ...). Finally, the subscripted function case,
((NAM ...F) LPX, Y ...RP) becores (NAM ... (FX Y ...)). The
function PFN1 is used tc remove the commas 1n case two, and the function
PFN2 1s used to remove the commas in case three, placing the function
structure at the end as the NAM body.

In conclusion, APARSE2 will be described. APARSE?2 looks for the
structures (ATOM A ...) which 1t changes into a LISP number if the first
character A 1s an integer or a LISP atom if A is a literal. Lateral atoms
are formed by PFN6 which uses the LISP character handling functions.
Numbers are formed by PFN4, the number 1s built up as the first member
of the list of digits, the second member being combined with 1t until all
digits have been used or until POINT 1s reached, indicating that the number
1s floating point. The digits to the right of POINT are combined into a

floating point fraciion by PFN41 and then added to the integer part.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

V> C

V>R ¢ C
C-»"(S)
C»S
S»sP=P
S>> P

P» '"(D)
P->D

D> E

D (S, S) etc

D3 X(S)

D3 X (S, S)etc.

EyE+F
Es E-F
EsF
F>G
F>oFXG
F>F/G
G»>H

G» (GH)

H»> HI

230

22.

23.

24.

25,

26.

27.

28.

29.

30.

32.

33.

34.

35,

36.

37.

38.

39.

40.
41.
42.
43.

Figure 1

H

»>1

IsX

I+ '"(D)

I3 (D)

I5Y

I s>R!'Y

X

X

oo X

<

e

s> R[P]
-)RE—",la etc.
» R
»'B
>B
.Y
+ N

> NY
> L

> LA
-+ L

- N

> LA

5> NA

I -™S,S) etc.

I »"{0H)

Productions for the Input Grammar

231

TZ

R () , =+ -0 x L N/ [117 "o
LP (< =]=(<]<|<[=]<|<]<|<|<i< < <|<
RP) 21212172 > > >1>
CMA , S1=]= << << << <= < <|<
EQN = <|s]> <|< O KON RN G R ¢ < <<
PLS + SI>I>>(>1» (O RS R R R R 2 ¢ <<
NEG - {2121 >1>1> S R R Kal Rl K4 I 2 K¢ <<
THETA © <l= <] << < < <|<
PRD «x Sl >(>]> Y[Y<IY]X <<
L SH2I>>]>1> yI< <>
POINT . YIy[>]>]> > << [> Y
N SHI>I>12 (>]2 Y[< <EYEy (2]
DVD / N B RA R RA B I < < Y]]« <[«
LBK [< = << 1<K]L]kI=]|< <1<
RBK 1] U2 I>1212 (> > > > >
PWR t N R4 RA R4 RE R dl < << >1<>] > <<
| EASSIGN <« < < << < <1< << < <l<
PFORMREAD ! 2I>1>1>1 2 > << > bl 4
DEQUOTE " = <
EQUOTE ! YI> (> (>]> > bs 12(> >

Figure 2

Precedence Table for the Grammar

3,7, 24

10
11

12
13
14
17

18

20
21
25
26
27
28
31

42

43

X& Y
" (X)
X=Y
(X, Y)
X(Y)
X(Y, 2)
X+Y
X-Y
X * Y
X/Y
(6X)
HT 1
(X)
X!y

x [yl

x [y, Z]

'X
"(X, Y)

"e X)

232

¢$¢¢L\LL\L\L¢¢¢¢L¢¢»"¢¢

Fig.3

(EASSIGN X Y)
(EQUOTE X)

(EQN X Y)

(ESET X Y)

(X' Y)

(XY 2)

(PLS X Y)

(PLS X (PRD -1Y))
(PRD X Y)

(PRD X (PWR Y -1))
(PRD -1 X)

(PWR H I)

X

(PFORMREAD X Y)
(NAM Y X)

(NAM Y Z X)
(EQUOTE X)
(EQUOTE (ESET X Y))

(EQUOTE (PRD -1X))

Assignment of Meaning to the Productions

233

R = next input character

(Y Yes
End of File?

Y
)

No

/

Yes

4 No
Is S, a terminal character? l >

J=1-1

~
"

n =

s

(=)

Yes

No
s SJ a terminal character?

J=3-1

[S_] = Q° JYes

No

>

Assign meamng to
phrase S_+1 ... S1 and

call 1t Nk

Figure 4

Floyd's Parsing Algorithm

Chapter XI

TWO DIMENSIONAL INPUT OF MATHEMATICAL EXPRESSIONS

In the preceding chapter, a mathematical expression represented in
List structure form was changed into a text book style expression through
the application of a series of rules. First, the order of arguments was
rearranged and prefix operators became infix operators. Then, the
expression was expressed in terms of two dimensional forms. Finally,
the exact size and position of these forms and their corresponding symbols
was determined. In this chapter, a method by which this process could
be reversed will be suggested. Conditions under which the size and position
of individual symbols can be used to parse an array of symbols will be given.

Klerer (4) has developed a special typewriter Wthl’; allows the carriage
to be spaced up and down as well as left and right. Characters typed on
this machine are placed in a two dimensional array in core memory.
Klerer has an algorithm for translating this array into a linear string. It
would also be possible to generate characters on the display face. Teitleman
(1) has demonstrated a program which recognizes individual hand printed
characters. This program could be used to recognize a string of printed
characters by assuming that all overlapping strokes form a single character.
The program would remain several strokes behind the user, assuming that
no character has more than say five strokes and that all of the strokes for
a given character are made in sequence. Characters consisting of
disconnected parts will be parsed together in the parsing program.

234

235

When the character i1s recognized, it will be replaced by a standard
character 1n one of several standard sizes and moved into the nearest cell
of an array on the display face. The user can erase and correct any false
characters. The order in which the characters are generated can be
saved as an heuristic aid in parsing. The characters are positioned in

a matrix on the display face for two reasons. Positions such as AP must
be interpreted either as AB or AB, the user can correct a false interpretation
before parsing begins, furthermore, if characters are allowed to have any
coordinates on the scope face, then the parsing program 1s given redundant
information. The parsing program would have to consider many character
positions as equivalent. This means that it does not have the possibility
of termanating a string by finding no character in a given position.

The first step 1n parsing 1s to transform the two dimensional array of
characters into a one dimensional string. To do this, information about the
relative positions of the characters must be used. Since adjacent characters
are often grouped together, it 1s efficient to sort the characters into a two
dimensional array. Klerer uses an array with one cell for every possible
typewriter position. Another possibility i1s to use a list structure array,
with the coordinates of each character as its properties. This would
take less storage 1f Klerer's array 1s nearly empty. To get the characters
into a one dimensional string, it is necessary to map groups of characters
with a given vertical relationship into a given horizontal relationship.

For instance, the characters comprising the numerator of a division will

occur before the characters comprising the denominator. Klerer identifies

236

these groups of characters in expressions containing subscript, superscript,
and binding symbol forms by imposing some constraints. First, the
symbols which lie 1n a given area with respect to a binding symbol are
taken to comprise an argument of that symbol. For example, the symbols
in the numerator of a division must lie over the division bar. Second, the
allowed position of input symbols 1s constrained so that a top to bottom,
left to right scan will encounter the symbols 1n a cannonical order, so
that every binding symbol can be found before the symbols in 1ts arguments.
Finally, superscripts and subscripts must occur in a given position with
respect to the base, and occur on the right only, so that the base will be
scanned first by the left to right scan.
These are not very severe constraints, but it would be possible to relax
atb+t+c

them so that the case d could be handled. To do this, note that
the forms can be ordered

CONCAT

SUPSUB

LVCONCAT

VCONCAT

BINDING SYMBOL

TITLE
In addition, the binding symbols can be partially ordered. For example, 1f
two division bars occupy the same horizontal space, the longer dominates

the smaller. Once this 1s accomplished the one dimensional string 1s formed.

First, all symbols related by CONCAT are found and replaced by a string with

237

the corresponding position and dimensions. The position and dimensions are
found from the definition of the CONCAT form 1in the last chapter. Next,
all SUPSUB's are formed in the same way. If no SUPSUB's are found

then all LVCONCAT's are formed. However, if some SUPSUB's are found,
then CONCAT's are considered again. In this manner, each higher level
form 1s considered. When binding symbols are considered, the form for
each lowest ranking member 1n each group of ordered binding symbols 1s
constructed. This process is continued until all the symbols have been
converted into one linear string. Any form which can be defined for the
previous chapter can be treated in this manner. Of course size must be
used to distinguish ABfrom aB. Context dependent forms, however, cannot
be handled. For example, 1n (:) the a and b would not be recognized to

be 1n the VCONCAT relationship unless the vertical separation was near
that specified in the last chapter. However, this relationship 1s implied

by the large parentheses.

As stated, the above parsing scheme could be quite inefficient, since
some forms might be considered several times before they were combined.
It should be possible, however, to consider the expression in a systematic
way, following the tree structure in most cases.

Once the expression has been converted to a linear string, 1t can be
parsed by the algorithm given earlier for the typewriter.

Robert Anderson at Harvard i1s working on both a formal definition of the
two dimensional syntax and a parsing scheme. He has independently
suggested 1deas similar to those in this chapter which he hopes to carry much

farther.

Chapter XII

THE SYSTEM PROGRAMS

Three system programs were constructed as a basis for the mathematical
laboratory: Time Sharing LISP, the PDP-6 LISP dataphone link, and the
PDP-6 LISP display language. The development of these systems required
an additional expenditure of programming effort and their use 1n the finished
system results in some loss in both space and speed. Therefore, the
description of these systems 1in the following chapters will be introduced by
a discussion of the purpose they serve in the research and some of the
factors which guided the many decisions, large and small, required for their
construction.

In brief, the purpose of programmaing research 1s to investigate the
structure and behavior of complex systems. Legitimate results of this
research are working programs which demonstrate the realization of
certain levels of technology in a given area, or program concepts which
have been found useful for system description or for programmaing certain
processes.

In practice, the development of working programs has often hinged
largely on whether sufficient high calibre effort, properly organized, could
be expended, rather than on the discovery of major ideas. System programs
allow workers in related areas to help each other by working together to
develop a system which will be used by all. Working alone results not

only 1n the duplication of effort in writing programs to perform certain basic

238

239

functions, but results in a myriad of programs which are completely
incompatable because of numerous trivial differences. Voluntary
collaboration may be imtiated by writing a system program and offering

1t to the public. If this 1s done, then 1t 1s necessary to give the public
what 1t wants. This 1s borne out by the acceptance of these systems to date.
The potential users of time-sha ring LISP had goals similar to the writer.
The system had only one objectionable new feature, the method of writing
files, while providing many new conveniences. Several people contributed
additional improvements and after two years Moses and Fenichel rewrote
1t completely to form an excellent system which was used in this thesis.
Three people have used the dataphone program, they felt the LISP system
took up too much space in the PDP-6, so they expended considerable effort
to provide a new environment for the program and then never did anything
with it. They never got around to improving the reliability of the data-
phone program, which would have benefitted the authoAr. Occasional mal-
function of the dataphone program reduced acceptance by potential casual
users. Acceptance of the display language at Project MAC among the more
recreational programmers was retarded when a version of PDP-6 LISP
with many small improvements superceded the version in which the display
language was originally imbedded. Not enough care was taken in clearly
delineating the steps required to move the embedded language to a new
version. Also, some of the conventions, although useful, were too
controversial. Considerable interest has been shown by owners of other

PDP-6 machines, who would like some display facility. Also, the

240

embedding of I-O routines in LISP has become more popular.

System programs can also be an aid to the individual programmer.
Important research programs can take a long time to construct. This
leads programmers to plan far more than they can accomplish, to do work
which has an incorrect emphasis in the light of the state of the art when
the work 1s finished, and to lose time moving from one machine to
another. If a programmer builds a system program as he builds his
basic routines, then he 1s less likely to make the careless decisions which
leave him 1inflexible with respect to the above difficulties. The important
thing 1s not to undertake much more work because you are building a
system, but to do what you do 1n a form suitable for a public system.

System programs are also useful 1n the discovery and communication
of important concepts. In his recent thesis, Teitelman describes the
PILOT system, which lets the programmer alter the effect of his procedures
by inserting methods for handling special cases which arise as the program
1s used. In handling each case separately, the programmer must be
careful, or he will neglect to search for a general concept which will
appropriately describe all of the cases and which can be commumcated to
others. A programmuing language 1s a good method of communicating the

many useful 1deas needed to treat a new problem area.

Chapter XIil

PDP-6 LISP INPUT-OUTPUT FOR THE DATAPHONE

This chapter describes the PDP-6 LISP interface with the routine
which sends and receives characters over the dataphone.

The dataphone operates in sequence break mode, requesting service
each millisecond. It must be turned on and off with the LISP function dp;
however, when 1t 1s running, input and output to it are handled 1n the same
manner as to the teletype, paper tape reader, and paper tape punch. The

dataphone 1s controlled by the control characters

A Write on dataphone.

C Do not write on dataphone.
D Read from dataphone.

E Do not read from dataphone.

Control characters can be typed from the teletype or executed with the
function cchar. Since CTSS truncates lines longer than 72 characters,

@ carriage return is inserted whenever 72 characters have been output

to the dataphone since the last carriage return. If the user sends the
ASCII character % through the dataphone program, it will be sent as the
CTSS quit character, similarly ASCII & 1s interpreted as the CTSS interrupt
character. There are several LISP functions written 1n machine language
which are useful for dataphone programming.

dp (x) If x 1s NIL the dataphone 1s turned off,

otherwise it 1s turned on and initialized,

241

242

dpd (x) The value of dpd (x) 1s a flag for
characters in the dataphone input buffer.
If x1s NIL, gﬂ returns NII. i1f there are
no characters; otherwise, 1t waits until
some arrive. When characters are
received this function returns a list of
the mode of the characters and the number
of characters. The mode 1s a number
determined by the sender. Characters
sent from CTSS 1n the same manner as to

a normal console are assigned mode 1.

ttyd () Returns the number of characters in the
teletype input buffer or NIL if there are

none.

cchar (x) Executes the lower case ASCII character

x as a control character.

To establish communication with CTSS, turn on the dataphone by
executing dp (T). Then execute ctss () and type S followed by a space.
The teletype can now be used as a CTSS console. Several useful features

of the LISP functions ctss, dpwrite, and dpread are described below.

LISP expressions for these functions are at the end of the chapter.

243

dpread () This function waits until there 1s input
from the dataphone. It then prints the
characters on the teletype one by one.
If 1t receives $, 1t does not print this,
put 1nstead evaluates the S-expression

which follows.

dpwrite (x,y) dpwrite takes two forms of input. If
y 1s NIL dpwrite assumes that x 1s
a list of atoms and sends over the data-
phone the characters in the PNAMES of
these atoms, with a space between
each PNAME. Otherwise 1t sends x

as an S-expression.

ctss () ctss allows the user to operate the
PDP-6 as a CTSS console. There are two
modes, local and send. ctss 1s imtially
in local mode. In this mode it accepts

S-expressions for eval but watches for

the single atom S-expressions S, STOP,

and L. If it finds S 1t goes into send mode.
If 1t finds STOP it terminates returning NIL.
If 1t finds L 1t sends over the dataphone the

two S-expressions which are typed next,

244

but stays in local mode.

In send mode 1t sends characters one
by one while watching for @ and #.
@ returns it to local mode. If it sees
1t sends the evaluation of the S-

expression which follows and then types

#.

245

(DEFLIST ((CTSS (LAMBDA NIL (PROG (U V) A (COND ((TTYD NIL) (GO

B)) ((DPD NIL) (DPREAD))) (GO A) B (SETQ U (READ)) (TERPRI) (COND

((EQUAL U (QUOTE S)) (GO C)) ((EQUAL U (QUOTE STOP)) (RETURN NIL))
((EQUAL U (QUOTE L)) (PROG2 (DPWRITE (READ) T) (DPWRITE (READ)

T))) (T (PRINT (EVAL U NIL)))) E (TERPRI) (GO A) C (COND ((DPD NIL)
(DPREAD)) ((TTYD NIL) (GO D))) (GO C) D (SETQ U (READCH)) (COND

((EQUAL Ug) (GO E)) ((EQUAL U #) (GO G))) (CCHAR (QUOTE A))

(CCHAR (QUOTE W)) (PRIN1 U) (CCHAR (QUOTE C)) (CCHAR (QUOTE V))

(GO C) G (DPWRITE (EVAL (READ) (CDR ALIST)) T) (PRIN1 #) (GO C)))))
EXPR)

(DEFLIST ((DPWRITE (LAMBDA (X Y) (PROG (U) (CCHAR (QUOTE A)) (CCHAR
(QUOTE W)) (COND (Y (GO C))) (SETQ U X) A (COND ((NULL U) (GO B)))
(PRIN1 (CAR U)) (PRIN1 BLANK) (SETQ U (CDR U)) (GO A) C (PRINT X)

B (TERPRI) (CCHAR (QUOTE C)) (CCHAR (QUOTE V)) (RETURN NIL)))))
EXPR)

(DEFLIST ((DPREAD (LAMBDA NIL (PROG (U V) (SETQ U (DPD T)) (CCHAR
(QUOTE D)) A (SETQ U (CADR U)) B (COND ((ZEROP U) (GG C))) (SETQ V
(READCH)) (COND ((EQUAL V S) (GO D))) (PRIN1 V) (SETQ U (PLUS U
68719476735)) (GO B) D (TERPRI) (FVAL (READ) NIL) C (CCHAR (QUOTE E))
(RETURN NIL))))) EXPR)

3

Chapter XIV

PDP-6 LISP INPUT-OUTPUT FOR THE DISPLAY

A System for Display Language Construction

The system provides a language macrosal for the generation of
picture parts called objects. An object can be any combination of points,
lines and characters. An object 1s generated by calling the function
macrosal [NAME, DESCRIPTIOl\ﬂ described in the second section. The
most common way to describe an object 1s to establish a set point. The
set point 1s established utilizing PARAMETER, LOCY, and LOCX state-
ments. The exact format of these statements 1s discussed below. An
object description 1s terminated with a STOP statement. If NAME is T,
the current description will be appended to the description of the last
object generated. The first example, disp, generates a large object in
this manner.

The user communicates with a display through a laight pen. As the
light pen sweeps across the screen, its trajectory can be used in many
different ways. For example, it may be used to determine a point, a set
of points, or a line. Or if a subpart of the display has been defined as an
object, the trajectory may be simply interpreted as a pointer to this object
or a point on the object. The LISP functions embedded in the display language
facilitate acquiring the data needed to make these different levels of
interpretation.

One problem 1in utilizing the light pen is to determine when it 1s near

the screen and not just being moved into place. This is solved by using the

246

247

width of the field of view of the pen as measured by a tracking cross.
This width decreases as the pen approaches the screen and a center dot
1s displayed whenever the field of view 1s less than a certain prescribable
limit. This pen distance 1s available to LISP.

The approach of the pen to an object 1s considered significant. Just
how close the pen must come before being noticed 1s a program variable.
Its most recent position within this distance i1s recorded; 1in addition, so
are the last 5 such positions, each at least a prescribed distance from the
preceding one. This represents a crude way of gradually forgetting the
details of the past. It is also possible to get the current coordinates of the
pen, obtain a list of all objects currently seen by the pen, to report when
the pen sees-an object with a name other than a given name, or to require
an object to move with the pen.

The example function sketch 1s a LISP function using several of these
features. The function uses a subroutine to display five different Light
buttons. If the light pen is held near one of these buttons, the tracking
cross will be centered about the point where the pen 1s seen. The program
interprets pointing at these buttons to mean 1) draw a line, 2) move a line,
3) delete a line, 4) suppress the cross and 5) return control to the teletype.
To draw lines touch the first button, a new line will then be drawn whenever
the pen leaves the screen and then returns. This process 1s terminated
whenever the pen returns near one of the light buttons. Additional LISP

functions could be written to expand sketch into a program similar to SKETCH PAD.

248

Often one wants to communicate to the display certain basic forms
which are to be used in constructing larger units. These inputs maght be
a set of letters which are to be parsed into a sentence; or they might be
a set of circuit elements or music symbols. In SKETCH PAD this 1s
done by indicating the type of form and then moving the light pen so that
the parameters of the form, the end points of a line segment for instance,
can be abstracted from the trajectory. Alternatively, one could abstract
both the type and the parameters from the trajectory. The example program
argus uses a method developed by Teitelman which enables the user to
teach the machine to replace a single line by a known form. A lineis a
single movement (however complex) on the surface of the display without
lifting the pen. The LISP data structure is convenient for storing properties
of the forms to be recognized.

The parsing of very large displayed expressions, such as LISP
S-expressions for example, can be difficult for people. Furthermore,
there may be alternative parsings. People can be aided by intensifying,
upon request, grammatical subexpressions or sub-objects containing
referenced segments or by providing additional displays meaningfully relatead
to the first display. These might be rotated views of an object or shaded
objects. Further development of the system 1s needed in this area.

it 1s the task of the programmer to organize a program and data base
in such a way that the most needed i1nputs to a machine will have short
representations and the most needed computations will be efficient. The

combinatorial aspects are such that this must be done through a series of

249

levels of concepts. An imporiant point 1s that 1t 1s not possible to complete
an entire level at a time. The most useful concepts at a given level only
become clear with the exploration of higher levels. The exploration of
higher levels without intermediate concepts 1s, however, almost impossibly
tedious. It 1s important in an experimental situation to have a system where
one can make changes to any desired depth and provide for the irregular
growth and reorganization of the data base.

In the present display system, experimentation will probably indicate
that new statements for macrosal are needed, or that certain objects occur
so often that more programmuing effort could well be spent in generating
them efficiently. To provide for these possibilities macrosal has been
programmed as a syntactic extension of the scope assembly language, sal.
Sal 1s a LISP function which creates objects from lists of octal numbers. It
1s described 1n detail in part II. Provision has also been made for the
addition of machine language subroutines which alter the objects as they
are displayed. Furthermore, the system 1s organized so that no statements
need be made about features of the display language which are not needed.

By embedding these display facilities in LISP one makes available a
wealth of mechanisms which have proved useful 1in the analysis and generation

of language and 1in the development of systems which can be increased

incrementally in complexaty.

250

Implementation

The use of LISP in this system has two distinct disadvantages. First,
1t is not possible to interrupt the LISP system at any point 1n time and
immediately employ its full power. It may be in the midst of garbage
collection. Garbage collection with the current version of PDP-6 LISP
requires a noticable time. Second, the data types are too limited. It is
not convenient to set up the type of list structure used in SKETCH PAD, but
this can be approximated. A serious problem 1is the inability to set aside
blocks of registers to contain display instructions and to store information
about light pen actions.

To get around these problems a fixed buffer of 2048 words has been
set aside for description of the display. All communication between LISP
and the display goes through this buffer. This buffer contains two kinds
of data structures; display lists and headers. One header is associated
with each display list, which 1s a list of half word commands for the display.
The headers build down from the top of the buffer and the display lists build
up from the bottom.

During display an interrupt routine cycles through a dispatch table.
Dispatches can occur to a pen track routine, a routine which displays the
contents of the display buffer, a line drawing routine, and a routine which
terminates the dasplay.

The pen track routine displays a cross as was described earlier. In
a crude effort to give the routine enough display time each cycle, it is called

between display of each object in the display buffer. Use of the clock would

251

be better.

The format of the headers in the display buffer 1s as follows:

NAME (Pointer to an atom)

A = ON-OFF bit - (display list length pointer to start
of display list
-1
B = Tracking Cross jump bit
Pen hit distance Pen hit count
C = Move with pen bit
Subr address ABC
Most recent Y Most recent X
Y X
Y X
Y X
Y X
Y X
Figure 1 Header Format

Each display list has a name which 1s kept as the first word of its
header. When an object 1s referenced by a LISP function, the headers are
searched for one with the name mentioned.

The interrupt program cycles through the headers. It picks up a
pointer for a BLKO instruction from the right half of the second word of

each header. This BLKO is terminated by a STOP instruction at the end of

252

each display list. If the subr address 1s not 0, then the subI: at this
address will be executed when the STOP 1s reached.

If the light pen 1s seen during display of some display list, control
goes immediately to an interrupt program. Several conditional branchings
can occur within this program. The interrupt program first re-displays
the display list as a check against light pen noise. If the pen is seen a
second time the pen cross movable bit 15 checked. If this bit 1s a 1 the
pen tracking cross 1s centered about the point where the light pen was seen
and the rest of the display list 1s displayed. Otherwise, a check 1s made
to see 1f the center of the pen cross 1s within a specified minimum distance
of the point seen. If not, the display list 1s continued with the light pen
reenabled. If the pen 1s close enough, the coordinates of the point seen
are stored in the fifth word of the header. The last five words of the header
contain the coordinates of points seen by the pen in the past. Each of these

history points 1s at least a specified distance from the preceding one.

This distance 1s in the left half of the third word of the header. When a
new point 1s seen, it 1s added to the history points if 1t 1s far enough away
from the one most recently stored or if there are none. The number of
history points 1s kept in the right half of the third word of the header. This
number can be set to zero by LISP. Whenever there are more than five
history points the oldest one 1s lost. After the point seen has been
appropriately stored, a check is made to see 1f the object should move with
the pen. If bit C 1s set, a pointer to the display list 1s transmitted to the

pen track routine. The display list 1s then finished.

253

Display lists are put into the buffer by the sal language. If a line
1s to be drawn with the pen. A set point for the line 1s created wath the
sal language. Its display list 1s then incremented by the line drawing
routine. This incrementing 1s terminated when the pen leaves the screen.

Display Functions

macrosal [_X,Y] macrosal interprets its arguments and
then calls sal on the result X 1s the
first argument for sal. Y 1s a description
of a display list for sal. Y 1s a list of
lists, each of which 1s a macro. The
first word of each macro 1s an atom which
has under the property MACROSAL a
function of one argument macrosal
gets this function and applies it to the
remainder of the macro list. The result
of this function 1s a list for sal beginming
and ending 1n mode 1. This list is prefaced
by two integers which give respectively
the mode that the display will end up in
and the mode in which 1t must begin, if
1t 1s to interpret this list correctly.
macrosal appends the successive macro
expansions, using the prefacing integers

to create the proper linking of modes.

254

The following macro word formats
are in the system:

(PARAMETER penenable scale intensity)

Normally the first word in a set point,
this statement creates a parameter word.
If penenable, scale, or intensity 1s NIL,
the corresponding field of the parameter
word 1s not enabled.

(LOCY n)

Creates a non-displaying Y point word
which sets the scope Y coordinate to n.
This 1s normally the second statement 1n
a set point.

(LOCX n)

Creates a non-displaying X point word
which sets the scope X coordinate to N.
This 1s normally the third and last state-
ment 1n a set point.

(STOP)

Creates a parameter word with stop

enabled. This 1s normally the last

statement in a display list.

255

(ISTOP)

Creates a parameter word with stop
enabled and a flag that the previous word
ha;s a breakout bit. The use of ISTOP :s
explained in the description of sal which
follows.

(LOCYD n)

Creates a displaying Y point word which
sets the display Y coordinates to n and
displays a point.

(LOCXD n)

Creates a displaying X point word which
sets the display X coordinate to n and
displays a point.

(LINE X; Y --- X, Y

Creates a sequence of non-displaying
line segments from vector words. The
display starts at the last point displayed or
set by LOCX, LOCY. Each increment has
s1ze X=X1+1—X1; Y=Y1+1-Y1.
(LINED Xl Yy --- X, Y,)

Creates a line like LINE, but displays

it.

sal [X;Y;Z]

10.

11.

12.

256

(LONGLINE X1 Y; X2 Y5)

Creates a non-displaying vector
continue word. A line will be drawn from
the current display coordinates to the edge
of the display. The slope of the line 1s
(Y2 - Yl)/(X2 - X;).

(LONGLINED X, Y. X_ Y

11 %, Y

Creates a line like LONGLINE, but
displays it.
(CHAR X ----Xn)

Creates a display of character made
words which are the PNAME's of the atoms

X No spaces are inserted between the

1
PNAME's,

X 1s the name of the display list to be
created or T. 1If X 1s T, then this list 1s
appended to the last one created. If the
previous list ends in STOP (300008), the
STOP 1s removed. If it ends 1n ISTOP
(40300008), it not only removes this but
zeros the breakout bit (4000008) in the
previous half word. Y is a description of

the list to be created. There are two forms

for the elements of Y corresponding to two

257

modes for the assembly function sal.

The function 1s initially 1n mode 1.

In mode 1 sal removes lists of atoms, two
at a time, from Y. Each atom 1s a number
or 1s bound to one on the dotted pair list

Z. For each pair of lists sal forms one
display half word instruction by shifting

the numbers on the second list the number
of places specified by the corresponding
number on the first list. When 1t encounters
NIL on Y, 1t goes into mode 2. In mode

2 sal takes numbers or non-numerical
atoms one at a time from Y. Each number
1s a display half word. If a non-numerical
atom 1s encountered, sal looks at the
previous number to see if 1t puts the display
into increment or character mode. If in
character mode, sal assembles the PNAME
of the atom as characters. If in increment
mode, sal gets a list of full words off the
atom's property list with the indicator SCHAR.
It assembles these as increment mode half
words. Consecutive non-numerical atoms

are assembled together in the same mode.

More Functions

258

When sal finds NIL, 1t returns to mode 1.
Mode 1 1s more flexible and mode 2 1s
more economical. NIL is not a legal

object name.

In the description below S stands for the name of an object with a set

point. W stands for the name of an object with or without a set point.

sxX [S]
sy [s]
smv [_S]

sunmv [S_]

sSXyinc [__S;X;Y]

sclr [7]

sdit [w]

ptrk [X,Y]

puntrk L]

pxL 1
py L 3

Returns the current x coordinate of S.

Returns the current y coordinate of S.

Makes object S follow the light pen whenever

S sees 1it. Returns S

Negates smv. Returns S

Increments the set point coordinates of S
by X, Y Returns S

Clears the display buffer. Returns NiL.
Deletes object W from the display buffer
and returns W.

Starts the pen tracking cross at X, Y and
returns NIL

Stops the display of the pen track cross.

Returns NIL.

Returns the x coordinate of the pen.

Returns the y coordinate of the pen.

ptchp []

srnl]

sunrn []

pldw [X,Y]

phclr [W]

ph (W]

phel [w, x)

phe2 [X]

259

Returns NIL if the pen is far from the screen.
Starts the display build up in the buffer.
Display will continue until sunrnl J 1s
called.

Stops the display and returns NIL.

To use this command, use macrosal to set
up a set point at the current pen position
followed by a zero length relative line and
terminated with ISTOP. Then call pldw.
Increments of length at least X and scale Y
will be added to this object until the pen
leaves the screen. Returns NIL.

Clears the pen approach history points of
object W and returns W.

Returns a list of the pen approach history
points for object W.

Sets to X the mimimum distance between pen
approach history points for object W.

X is an integer between 0 and 1024.

Sets to X the minmimum distance between pen
approach history points which is assumed for

newly created objects.

phc3 [X]

sint [W; Y:|

scopy [Wl, WZ}

plsh[1

sscl LW;Y]

plhw w]

ptchw []

puntchw L1

pip W]

punjp [WJ

260

Sets to X the maximum distance on the
screen at which the pen can see an object.

X 1s an integer between 0 and 40.

Sets to Y the intensity of object W. Returns
W. W is an integer between 0 and 7.
Copies object W1 and names the copy W2.
Returns W1

Returns a list of all objects currently being
seen by the pen.

Sets the scale of object W to Y. Returns W.
Y 1s an integer between 0 and 3.

Returns the name of the first object other
than W seen by the pen.

Waits until the pen 1s near the screen and
then returns NIL,

Waits until the pen 1s not near the screen
and then returns NIL.

If the tracking cross 1s not following the pen
and pjp LW]has been executed, then when
the pen sees object W, the tracking cross
will be centered about the point of W seen.
Returns W.

Negates pjp and returns NIL.

pch[_]

pohc L]

sline [S]

ssubr [W;Y]

sloc [W]

sadd [W]

261

Returns the name of the most recent object

to be seen by the pen or NIL if none have

been seen since pohc was executed.

Sets the last object seen by the pen to NIL.
Returns NIL.

Returns a list of the coordinates of the end
points of the line segments which make up
object S.

Causes the subroutine beginning at location Y
to be executed each time object W 1s displayed.
Intensifies a subexpression of object W which
1s 1indicated by the light pen. Subexpressions
are marked in the object by pseudo parentheses
which are not displayed. A pseudo left

paren 1s i1ndicated by the parameter word
6000018 and a pseudo right paren by the
parameter word 6000028.
Counts the number of pseudo left parens

to the intensified subpart of W.

262

(PRINDEF DISP MV EXPOND)
(DEFLIST ((DISP (LAMBDA (N) (PROG (U V)(MACROSAL (QUOTE DISP)
(QUOTE ((PARAMETER 1 2 3) (LOCY 1) (LOCX 1) (LINED 0 0 0 0)

(ISTOP)))) (SETQ U (EXPAND N NIL)),A (COND ((NULL U) (RETURN NIL)))
(MACROSAL T (LIST (COND ((EQUAL (CAR U) (QUOTE U)) (QUOTE (LINED

0 004)))((EQUAL (CAR U) (QUOTE D)) (QUOTE (LINED 0 0 0 777777777774)))
((EQUAL (CAR U) (QUOTE L)) (QUOTE (LINED 0 0 777777777774 0)))

(T (QUOTE (LINED 0 0 40)))) (QUOTE (ISTOP)))) (SETQ U (CDR U))

(GO A))))) EXPR)

(DEFLIST ((MV (LAMBDA (X) (COND ((EQ X (QUOTE U)) (QUOTE D))
((EQ X (QUOTE D)) (QUOTE U)) ((EQ X (QUOTE L)) (QUOTE R))
(T (QUOTE L)))))) EXPR)

3
(PRINDEF EXPAND)

(DEFLIST ((EXPAND (LAMBDA (N EXP) (PROG (A B C D E) (SETQ EXP
(QUOTE (U R D R))) START (COND ((ZEROP N) (RETURN EXP))) (SETQ N
(PLUS N -1.0)) LOOP (SETQ A (CAR EXP)) (SETQ EXP (CDR EXP)) SETOB
(CAR EXP)) (SETQ EXP (CDR EXP)) (SETQ C (CAR EXP)) (SETQ E
(NCONC E (LISTB A (MVB)AABCB (MVC)BCC (MVB)CBD)))
(COND (EXP (GO LOOP))) (SETQ EXP E) (SETQ E NIL) (GO START)))))
EXPR)

3

263

(PRINDEF SKETCH)
(DEFLIST ((SKETCH (LAMBDA (N X) (PROG (U W) (COND (X (GO A))) (PJP
(BUTTON (QUOTE S) 106 1799)) (PJP (BUTTON (QUOTE D) 3¢9 1709))

(PJP (BUTTON (QUOTE M) 5¢¢ 17¢9)) (BUTTON (QUOTE P) 799 1749)

(PJP (BUTTON (QUOTE R) 1169 17¢9)) A (POHC) (SETQ W (PLHW NIL))

B (COND ((MEMBER W (QUOTE (D M))) (GO C)) ((EQUAL W (QUOTE S))
(GO G)) ((EQUAL W (QUOTE R)) (GO H)) ((EQUAL W (QUOTE P)) (GO 1))
((EQUAL U (QUOTE M)) (GO E)) ((EQUAL U (QUOTE D)) (SDLT W)))

(GO A) C (SDLT U) (SETQ U W) (BUTTONON W) (SETQ W (PLHW W)) (GO B)

E (SMV W) (PUNTCHW) (SUNMV W) (GO A) G (SDLT U) (BUTTONON W)

(SETQ U W) D (PUNTCHW) (PTCHW) (COND ((GREATERP (PY) 168¢) (GO A)))
(LINEDRAW (GENSYM) N 1) (GO D) H (SDLT U) (RETURN NIL) I (SDLT U)

(SETQ U W) (BUTTONON W) (PUNTRK) (GO A))))) EXPR)

3
(PRINDEF LINEDRAW BUTTON BUTTONCN BUTTONONI)

(DEFLIST ((LINEDRAW (LAMBDA (NAME QUALITY SCALE) (PROG NIL(PTCHW)
(SAL NAME (APPEND (QUOTE ((#) (§) (§ 4))) (CONS (LIST 34114 SCALE)

(CONS (LIST ¢) (APPEND (CONS (LIST (PLUS 220909 (PY))) (CONS

(QUOTE () (LIST (LIST (PLUS 114099 (PX)))))) (QUOTE ((§) (49 6 ¢ 9 9)

(#) (30090))))))) NIL) (PLDW QUALITY SCALE) (RETURN NAME))))) EXPR)

(DEFLIST ((BUTTON (LAMBDA (NAME X Y) (SXYING (SAL NAME (QUOTE ((

264

BY (D) () (34114) (B) (220000) (B) (114000) (9) (200019) () (3
p4ppP) (9) (200210) (9) (694PPP) (9) (3090))) NIL) X Y)))) EXPR)

(DEFLIST ((BUTTONON (LAMBDA (NAME) (BUTTONONI NAME (SX NAME) (SY

NAME))))) EXPR)

(DEFLIST ((BUTTONONIL (LAMBDA (NAME X Y) (SXYINC (SAL NAME (QUOTE
((9) (D) (P) (34114) (D) (220000) (9) (114PPB) (9) (704018) (P)
(3900))) NIL) X Y)))) EXPR)

3

265

(PRINDEF ARGUS MAKSTRING MAKSTRING] MAKSTRING 2
MAKSTRING3)

DEFLIST ((ARGUS (LAMBDA NIL (PROG (U V R Q MERGELIST NQ) (SETQ U
(LINEDRAW (QUOTE ARGUS) 21)) (PUNTCHW) (SETQ V (MAKSTRING

(SLINE U))) (SETQ R (MAP2 V ATREES (QUOTE GETC))) (MAP2 AWEIGHTS R
(FUNCTION (LAMBDA (WEIGHT LIST) (MAP LIST (FUNCTION (LAMBDA
(CANDIDATE) (SETQ MERGELIST (MERGE3 MERGELIST)))))))) (COND

((NULL MERGELIST) (GO A))) (SETQ NQ (CDAR MERGELIST)) (SETQ Q

(CAAR MERGELIST)) (MAP MERGELIST (FUNCTION MERGE])) A (SDLT U)
(MACROSAL (QUOTE LAST) (LIST (QUOTE (PARAMETER 13 3)) (LIST

(QUOTE LOCY) AYMIN) (LIST (QUOTE LOCX) AXMIN) (LIST (COND ((GET Q
(QUOTE SCHAR)) (QUOTE SCHAR)) (T(QUOTE CHAR))) (COND ((NULL Q)
(QUOTE ?)) (T Q))) {QUOTE (STOP)))) (COND ((NOT (EQUAL AMODE

(QUOTE TRAIN))) (RETURN Q))) (PRINT R) (SETQ U (READ)) (COND

((NOT (EQUAL Q U)) (GO B))) (CSETQ AWEIGHTS (MAP2 AWEIGHTS R
(FUNCTION (LAMBDA (X Y) (COND ((MEMBER U Y) (PLUS X 1)) (TX))))))

B (CSETQ ATREES (MAP2 V ATREES (QUOTE PUTC))) (RETURN U))))) EXPR)

(DEFLIST ((MAKSTRING (LAMBDA (LINE) (PROG (U V MIN MAX V1 V2)
(MAKSTRING2 (EVERYOTHER LINE)) (CSETQ AXMIN MIN(#MAKSTRING2
(EVERYOTHER (CDR LINE))) (CSETQ AYMIN MIN) (RETURN U))))) EXPR)

(DEFLIST ((MAKSTRINGI (LAMBDA (X) (COND { (GREATER P (CAR X) V2)
(LIST NIL (MAKSTRING3 X NIL))) (T (LIST (MAKSTRING3 X NIL) NIL))))))
EXPR)

(DEFLIST ((MAKSTRING2 (LAMBDA (X) (PRCG NIL (SETQ MIN(CAR X))
(SETQ MAX (CAR X)) (MAP X (QUOTE MINMAX)) (SETQ V (QUOTIENT (PLUS
MAX (MINUS MIN)) 3)) (SETQ V1 (PLUS MIN V)) (SETQ V2 (PLUS V1
(QUOTIENT V 6))) (SETQ U (APPEND (MAKSTRING1 X) U)) (SETQ V1 (PLUS
V1V)) (SETQ V2 (PLUS V2 V)) (SETQ U (APPEND (MAKSTRINGI1 X) U))
(RETURN NIL))))) EXPR)

(DEFLIST ((MAKSTRING3 (LAMBDA (X LEFT) (COND ((NULL X) 1) ((OR

(AND LEFT (GREATERP (CAR X) V2)) (AND (NOT LEFT) (GREATERP V1

(CAR X)))) (PLUS 1 (MAKSTRING3 (CDR X) (NULL LEFT)))) (T MAKSTRINGS3
(CDR X) LEFT)))))) EXPR)

3

266

(PRINDEF MAP MAP2 SUBI EVERYOTHER MINMAX MERGE]1
(MERGES GETC PUTC)
(DEFLIST ((MAP (LAMBDA (X FN) (COND ((NUL X) NIL) (T (CONS (FN
(CAR X)) (MAP (CDR X) FN))))))) EXPR)

(DEFLIST ((MAP2 (LAMBDA (X Y GN) (COND ((NULL X) NIL) (T (CONS
(FN (CAR X) (CAR Y)) (MAP2 (CDR X) (CDR Y) FN))))))) EXPR)

(DEFLIST ((SUB1 (LAMBDA (X) (PLUS 68719476735 X)))) EXPR)

(DEFLIST ((EVERYOTHER (LAMBDA (X) (COND ((OR (NULL (CDR X))
(NULL (CDDR X))) (LIST (CAR X))}) (T (CONS (CAR X) (EVERYOTHER
(CDDR X)))))))) EXPR)

(DEFLIST ((MINMAX (LAMBDA (X) (COND ((GREATERP X MAX) (SETQ MAX X))
((GREATERP MIN X) (SETQ MIN X)) (T NIL))))) EXPR)

(DEFLIST ((MERGEl (LAMBDA (LIST) (COND ((GREATERP (CDR LIST) NO)
(PROG2 (SETQ NO (CDR LIST)) (SETQ) (CAR LIST)))) (T NIL))))) EXPR)

(DEFLIST ((MERGE3 (LAMBDA (MERGELIST) (COND ((NULL MERGELIST)

(LIST (CONS CANDIDATE WEIGHT))) ((EQUAL CANDIDATE (CAAR MERGELIST))
(CONS (CONS CANDIDATE (PLUS WEIGHT (CDAR MERGELIST))) (CDR
MERGELIST))) (T {(CONS (CAR MERGELIST) (MERGE3 (CDR MERGELIST)))))))
) EXPR)

(DEFLIST ((GETC (LAMBDA (PSTRING TREE) (COND ((NULL PSTRING) TREE)
((NULL TREE) (COND ((ZEROP PSTRING) (LIST (LIST U))) (T (CONS NIL
(PUTC (SUB1 PSTRING) NIL))))) { (ZEROP PSTRING) (COND ((MEMBER U
(CAR TREE)) TREE) (T (RPLACA TREE (CONS U (CAR TREE))))))

(T (CONS (CAR TREE) (PUTC (SUB1 PSTRING) (CDR TREE))))))))) EXPR)

APPENDIX A.

LISTING OF THE LISP PROGRAMS

267

DFFINF

(C(APARSE {(LAMBDA (X) (PROG (U V P R S) (SETQ U (APARSE1 (REVERSE X))) (
SETQ P (LIST NIL)) A (COND ((NULL U) (SETQ R NIL)) (T (SETQ R (CAR Uy

(SETQ U (CDR U)) D (COND ((ATOM (CAR P)) (GO C))) (SETQ V {(LIST (CAR P)
i) (SETQ P (CDR P)) C (SETQ S (CAR P)) (COND ((PGRT S R) (GO B)) ((NULL
R)(RETURNCAPARSE3 (APARSE2(CAR V)))))) (SETG P(CONS R(APPEND V P)))

{SETQ V NIL)

(GO A) B (SETQ V (CONS (CAR P) V)) (SETQ P (CDR P))

(COND((NOT(ATOM(CAR P))) (GO B))

((NOT(PEQ{CAR P)S)) (GO BB)))

(SETQ S(CAR P))

(GO B)
BB (SETQ P(CONS (APPLY (PFNGET V
) (LIST V) (ALIST)) P)) (SETQ V NIL) (GO D)))) (PFNGET (LAMBDA (X) (COND
(CATOM(CAR X)) (COND((OR(NUMBERP (CAR X)) (LITER(CAR X))
(OPCHAR(CAR X)))(QUOTE PFNS5))
(T (GET (CAR X) (QUOTE PFN))))) (T (PFNGET (CDR X)))))) (
PGRT (LAMBDA (X Y) (AND (NOT (NULL X)) (OR (NULL Y} (AND (NUMBERP X} (ME
MBER Y (QUOTE (LP PFORMREAD EASSIGN RP CMA EQN PLS NEG PRD DVD LBK
REK PWR)))) (ANDIOR(LITER X)(OPCHAR X)) '

(MEMBER Y (QUOTE (LP RP CMA EQN PLS NEG PRD DVD LBK RBK PWR

PFORMREAD FASSIGN)))) (MEMBER

Y (GET X (QUCTE PGRT))))))) (PEQ (LAMBDA (X Y) (MEMBER Y (GET X (QuO
TE PEQ)) 1)) (APARSE1 (LAMBDA (X) (COND ({NULL X) NIL) ’
(CAND(EQ(CAR X)(QUOTE EQUOTE))(EQ(CADR X) (QUOTE LP)))
(CONS(QUOTE DEQUOTE) (APARSEL(CDR XJ1)))
{(AND(FQUAL (CAR
X) (QUOTE LP)) (EQUAL (CADR X) {QUOTE NEG))) (CONS (CAR X) (CONS (QUOTE
THETA) (APARSE1 (CDDR X))))) (T (CONS (CAR X) (APARSEL1 (CDR X))))))) (AP
ARSE2 (LAMBDA (X) (COND ((EQUAL (CAR X) (QUOTE AJTOM)) (COND ({NUMBFRP (C
ADR X)) {PFN& (CDR X))) (T (PFN& (CDR X))))) (LATOM X)X) (T(MAPLIST
X (FUNCTION (LAMBDA (U) (APARSE, (CAR Uryiirryiy (PFN1 (LAMBDA (X)

(COND C(NULL (CDDR X)) (LIST (CAR X))) (T (CONS (CAR X) (PFN1' (CDDR X))
}))y) (PFN2 (LAMBDA (X Y) (COND ((NULL (CDDR X)) (LIST (CAR X) Y))y (T (C
UNS (CAR X) (PFN2 (CDDR X) Y)))))) (PFN& (LAMBDA (X) (COND ((NULL (CDR X
1) (CAR X)) ((EQUAL (CADR X) (QUOTE POINT)) (PLUS (CAR X) (PFN41 (REVERS
© (CDDR X))))) (T (PFN&4 (CONS (PLUS (TIMES 10 (CAR X)) (CADR X)) (CDDR X
F1))y)) (PFN5 (LAMBDA (X) (COND ((NULL (CDR X)) (LIST (QUOTE ATOM) (CAR
1)) (T (CONS (QUOTE ATOM) (CONS (CAR X) (CDADR X))1))))) (PFNé6 (LAMBDA (
X) (PROG (U) (SETQ U X) (CLEARBUFF) A (COND ((NULL U) (GO B))) (PACK (CA
R U)) (SETQ U (CDR U)) (GO A) B (RETURN (INTERN (MKNAM)))))))

DEFLIST((

(RP(RP CMA EQN PLS NEG PRD DVD F.BK PWR))
(PLS(RP CMA EQN PLS NEG RBK))

(EQN(RP CMA))

(NEGIRP CMA EQN PLS NEG RBK))

(PRD(RP CMA EQN PLS NEG PRD DVD RBK))

(POINT(RP CMA EQN PLS NEG PRD D\D RBK PWR)
(DVD(RP CMA EQN PLS NEG PRD DVD RBKY))

(RBK(LP RP CMA EQN PLS NEG PRD DVD RBK PWR))
(PWR(RP CMA EQN RBK PWR PLS PRD DVD NEG))
(PFORMREAD(RP CMA EQM} PLS NEG PRD DVD RBK PWR))
(SQUOTE(LP RP CMA EQN PLS NEG PRD DVD LBK RBK PWR EASSIGN PFORMREAD))
JPGRT)

DEFLIST((

(LP(RP CMA THFTA))

(CMA(RP CMA RBK))

(THETA(RP))

(LBK(CMA RBK))

(DEQUOTE(LP))

VPEQ)

LS

259

NEFLLTST(L

(FQMN BPFN)

(PI.S RPFN) :

(PWR BPFN)

(OPRD RPFN)

(PFORMREAD BPFN)

(FASSIGN BPFN)

(NEG(LAMBDA(X) (LIST(QUOTE PLS){CAR X)(LIST(QUUTE PRD)=1(CADDR X)))}))
1DYN RPFN)

(LP(LAMRDA (X) (CCND

((EQUAL(CADR X)(QUOTE IHETA))Y(LIST(QUOTE PRD)=-1(CADDR X))
((EQUAL(CAAR X)(QUOTE ATOM))(CONS{CAR X)(PFN1(CDDR X))))
((EQ(CAAR X)(QUOTE EQUOTE)) (CONL{QUOTE FUN)

{CONS(CAR X)(PFN1(CDDR X)) M)

({EQUAL(CADR X)(QUOTE P))
(APPEND(REVERSE(CDR(REVERSE(CAR X3 ¥))Y(LIST

({LAMBDA(U)Y (COND

((FQ(CAR(LAST(CAR X)))(QUOTE EQULOTE)) {CONSIQUQCTE FUNIUY)
(T U)))(CONS(LAST

(CAR X))Y(PFN1(CDDR X)1))))))

((CDDDR X) (CONS(QUOTE ESET)(PFN1(CDR X))))

(T(CADR X)¥)))

(LBK(LAMBDA(X) (CONS(QUOTE NAM)(PFN2(CDDR X)(CAR X)))))
(PCINT PFN5)

(DFRAUOTF(LAMBDA(X)

(COND

(CEQUCADDR X)(QUOTF THFTA)) (LIST(QUOTE EQUOTE)
(LIST(QUOTE PRD)=1(CADDDR X))))

(LEQ(CADDDR X)(QUOTE CMA))Y(LIST(QUOTE EQUOTE)
(CONS(QUOTE ESET)(PFN1(CDDR X))) 1))

(T(LTST(QUOTE FQUOTE) (CADDR X)))

)

{EQUOTE(LAMBDA (X)) X))

YPFEN)

DEFINFE ((

(LAST(LAMRDA(X) {COND

((NULL(CDR X))ICAR X))

(TILAST(CDR X))))))

(RPFN(LAMBNDA(X)(LIST(CADR X)(CAR X)(CADDR X))))))
NEFTNFE (¢

(ADARSFI(LAMRDA(X) (COND

(INUMBERP X)X)

(CATOM X)(LIST(QUOTE FORM)X))

((EQ{CAR X)(QUOTE FQUOTE))X)

(TCCONS(CAR X) (MAPLIST{(CDR X)(FUNCTIGCN

(LAMBDA(U) (APARSE3(CAR U))))))))))

))

248312

‘ BRSO T e
TR R

270

DEFINE((
{APARSE (LAMBDA(X) (GETFILE(QUOTE APARSE)N(LIST X))))

))

REMPROPS((PFN41 PFNGET PGRT PEQ APARSE1l APARSE3
APARSE2 PFN1 PFN2 PFN4 PFNS5 PFN6& BPFN)EXPR)
REMPROPS((RP PLS EQN NEG PRD POINT BAR RBK PWR
PFORMREAD EQUOTE)PGRT)

REMPROPS((LP CMA THETA LBK DEQUOTE}PEQ)
REMPROPS{(EQN PLS PWR PRD PFORMREAD EASSIGN NEG
DVD LP LBK POINT DEQUOTE EQUOTE)PFN)

38054

.

271

DEFINE ((
(APOFF3 (LAMBDA (X Y) (COND ((NULL (CDDR X)) (CONS Y (CDR X))) (T (CONS

(CAR X) (APOFF3 (CDR X) Y))))))

(WHOLEFILEREAD (LAMBDA (X Y) (PROG (U V) (FILESEEK X Y) A (SETQ U (READ)
) (COND ((EQUAL U (QUOTE 3$EOFS$)Y(RETURN (PROG2 (FILEENDRD X Y) (REVERSE
VI))Y)) (SETQ V (CONS (WFR1 U) Vi) (GO A))))

(FILESEND (LAMBDA (X Y) (PROG (U) (SETQ U (READF X Y)) A (COND ((NULL U)

(RETURN NIL))) (PRINT (CAR U)) (SETQ@ U (CDR U)) (GO A))))
(EDISPLAY(LAMBDA(X) (COND

((FILEGONE X(QUOTE PFORM))

(CHAIN(SUBST X(QUOTE NAME) {QUOTE((SAVE GOO1l T)(RESUME
LISPP $3A$SA EDPY $SA(A NAME $3SA)A STOP)

(RENAME LISP LSPOUT NAME DFORM) (PRINT NAME DFORM)

(RESUME GOO1))))))

(T(CHAIN(SUBST X(QUOTF NAME) (QUOTE((SAVE GO0l T)

(PRINT NAME DFORM)(RESUME GOO0O1)))))))))

(ARGLIST (LAMBDA (Y) (COND ((ATOM (NTOL Y)) NIL) ((NOT (MEMBER (QUOTE PE
RM) (CAR (NTOL Y)))) (CDR (NTOL Y))) ((AND (EQUAL (CAR (NTOL Y)) (QUOTE
NAM)) (NOT (ATOM (NTOL (NTOL Y)))) (NOT (MEMBER (QUOTE PERM) (CAR (NTOL
(NTOL Y1)1)))) (CER (NTOL (NTOL Y)))) (T NIL)I)I))

(APOFF1 (LAMBDA (X Y) (COND ((NULL (CDDR X)) X) (T (CONS (COND ((NUMBERP

(CADAR X)) (APOFFz Y (CADAR X))) (T (CAR X))) (CONS (CADR X) (APOFF1 (C
DDR X) Y))1))))) .

(APOFF2 (LAMBDA (Y N) (COND ((OMEP N) {(CAR Y)) (T (APOFF2 (CDR Y) (SUBL
NI

(READF (LAMBDA(Y X)(PROG(U)
(COND((FILEGONE Y X)(ERROR(LIST Y X(QUOTE UNDEFINED)))))

(FILESEEK Y X)(SETQ U(READ))(FILEFNDRD

Y X) (RETURN U))))

(APOFF (LAMBDA (X) (COND ((ATOM X) X) ((EQ (CAR X) (QUOTE DVD)) (EPRD (A

-

POFF (CADR X)) (EPWR (APOFF (CADDR X)) =1)1)) ({EQ (CAR X) (QUOTE NEG)) (
EPRD =1 (APOFF (CADR X)))) ((EQUAL (CAR X) (QUOTE FUNCTION)) (COND ((EQU
AL (CAADR X) (QUOTE NAM)) (APOFF (APOFF3 {(CADR X) (CONS (CAR X) (CONS (N
TOL (CADR X)) (CDDR X)))))) (T (APOFF (CONS (CADADR X) (CDDR X)))))) ((E
QUAL (CAR X) (QUOTE TITLE}) (APUFF (CADDR X))) ((AND (EQUAL (CAR X) (QUO
TE DRV)) (ARGLIST X)) !(CONS (CAR X) (MAPL (APOFF1l (CDR X) (CDR (ARGLIST

X))) (FUNCTION APOFF)))) ((OR (EQUAL (CAR X) (QUOTE ATOM)) (EQUAL (CAR X
) (QUOTE PAREN))) (APOFF (CADR X))) (T (CONS (CAR Xj) (MAPL (CDR X) (FUNC

TION APOFF)))))))
(EDELETE(LAMBDA(X) (PROG NIL
(FILEDELETE X(QUOTE FORM))

(FILEDELETE X(QUOTE PFORM))

(FILEDELETE X (QUOTE DFORM))

1))

(GETSUB (LAMBDA (EXP N) (CAR (GLTSUB1 EXP))))

(GETSUBL(LAMBDA(EXP) (COND((ZEROP N)(PROG2(GETSUB3 EXP)(LIST EXP)))
({OR(ATOM EXP) (EQUAL

(CAR EXP) (QUOTE ATOM))) (PROG2 (SETQ N (SUB1 Nj)) NIL)) (T (GETSUB2 I
PROG2 (SETQ N (SUB1 N)) (CDR EXP1))))))

(GETSUB2 (LAMBDA (EXP) (PROG (U) (COND ((NULL (CDR EXP)) (RETURN NIL))
(SFTQ U (GETSUR1 (CAR EXP))) (RETURN U)) (T {RETURN (GETSUB2 (CDR FXP)))
1))

(EPRINT(LAMBDA (X) (EPRINT1(RPLST (READF X(QUOTE FORM))))))

(EMIN (LAMBDA (Y) (COND ((NULL (CDDR Y)) (CAR Y)) ((LSSP (CAR Y) (CADR Y
}) (EMIN (CONS (CAR Y) (CDDR Y)))) (T (EMIN (CDR Y))))))

(LSSP (LAMBDA (X Y) (GRTP Y X)))

(GRTP (LAMBDA (X Y) (COND ((EQUAL X Y) NIL) ((AND (EQUAL X (QUOTE INF))
(NOT (EQUAL Y (QUOTE INF)))) T) ((EQUAL Y (QUOTE INF}) NIL) ((AND (NUMBE
TEMﬁéuégUMzigP Y)) (GREATERP X Y)) (T (ERROR (QUOTE GRTP))))))m

{ FREE ‘ " 1

)muorgﬂl % gﬁ

25 2,

272

(PWRNUM (LAMBDA (X Y) (COND

((AND(EZEROP X){(MINUSP Y))(QUOTE INF))

((MINUSP Y)(PWRNUM(DVDNUM 1 X){(MINUS Y)))

((EQUAL (CAR X) (QUOTE FRT)) (DVDNUM (PWRNUM

(CADR X) Y) (PWRNUM (CADDR X) Y))) ((MINUSP X) (COND ({EODDP Y) (MINUS
(EXPT (MINUS X) Y))) (7 (EXPT (MINUS X) Y)))) (T (EXPT X Y))))}

(EODDP (LAMBDA (X) (AND (NUMBERP X) (ONEP (REMAINDER X 2)))))

(QUESTION (LAMBDA (X Y) (PROG (U V W) (SETQ V X) (SETQ W Y) (PRINT (QUOT
E QUESTION)) B (COND ((NULL V) (GO A))) (SETQ U (INTERN (GET (GENSYM) (Q
UOTE PNAME)))) (EASSIGN U(CAR V)) (EDISPLAY

U) (SFTQ W (SUBST U (CAR V) W)) (SETQ V (DR V)) (GO B) A (PRINT W) ¢ (S

ETQ U (ERSETQ (RDFLX))) (COND ((NULL U) (GO C)) ((EQUAL (CAR U) (QUOTF 6

IVEUP)) (ERROR (QUOTE (RETURNING UPWARD)))) ((EQUAL (CAR U) (QUOTE ANSKE

RW)) (GO D)) ((EQUAL (CAR U) (QUOTE ANSWER)) (GO E))) (SETG V (FRSETQ (R

DFLX))) (COND ((NULL V) (GO C))) (ERSETQ (PRINT (EVALQUOTE (CAR U) (CAR

V)i)) (PRINT (QUOTE (THIS QUESTION TO YOU IS PENDING))) (PRINT W) (GO C)
D (SETQ V (ERSETWY (RDFLX))) (COND ((NULL V) (GO C))) (RETURN (CAR V)) E
(SETQ U (ERSETQ (RDFLX))) (COND ((NULL U) (GO C))) (SE1Q V (ERSETQ (RDF

LX))) (COND C(NULL V) (GO C))) (SETQ W (ERSETQ (EVALQUOTE (CAR U) (CAR V
)))) (COND ((NULL W) (GO C))) (RETURN W)))) '

(NUMBER (LAMBDA (X) (LENGTH X))

1) .

PEFINE ((

(WFR1(LAMBDA(X) (COND

(CNULL X)INIL)

((ATOM X)(PRINT(LIST X))) #

(CATOM(CAR X)) (CONS(CAR X) (WFRI(CDR X1)))

(T{ERROR X))))

]

305061

273

SPECIAL((N))
COMMON ((DOLLARY)
COMMON ((RANDOMNUMBER))
COMPILE((WHOLEFILEREAD FILESEND
PAGEUPDATE EDISPLAY ARGLIST APOFF1 APOFF2 READF APOFF
EDELETE GETSUB GETSUB1 GETSUB2

EPRINT EMIN LSSP GRTP EMINUSP
PWRNUM EODDP QUESTION NUMBER))

6620

|
l

274
DEFINE
(({ENLOG (LAMBDA(X) (COND
({EONEP X)0)
((EZEROP X)(QUOTE(PRD ~1 INF NIL)))
((EQUAL A(QUOTE INF)y ©
(QUOTE INF)) ((AND (EQUAL (CAR X) (QUOTE PWR)) (EQUAL (CADR X) ({
QUOTE E))) (CADDR X)) (T (LIST (QUOTE NLOG) X NILJ)))) (ENEG (LAMBDA (X)
(EPRD X =~1))) (EDVD (LAMBOA (X Y) (EPRD X (EPWR Y =1)))) (DEPEND (LAMBD
A (Y X) (COND ((ATOM Y) (EQUAL X Y))
(T(MEMBER(COND((EQ(CAR X) (QUOTE NAM)) (RPLST
(COND((ATOM(NTOL X))X)
({AND(NULL(GET(CAR Y)(QUOTE PERM)))(EQG X(CAR Y)))T)
(TINTOLSUBST X(CAR(NTOL X)))))))

(T X)) (LAST Yy)y))y
(EURVILAMBDA(X Y)(COND((EQUALI(CAR
Y) (QUOTE DRV)) (CONS (CAR Y) (EDRVL1 X (CDR Y)))) (T (APPEND (CONS (Q

vOTE DRV) X) (LICH Y NIL)))))) (EDRV1 (LAMBDA (X Y) (COND ((NULL (CDDR X
)) (EDRV2 (CAR X) (CADR X) Y)) (T (EDRV1 (CDDR X) {(EDRV2 (CAR X) (CADR X

) Y)))))) (EDRV2 (LAMBDA (X Y Z) (COND ((NULL (CDDR Z)) (CONS X (CONS Y
£))) ((EQUAL (CAR Z) X) (CONS X (CONS (PLUS Y (CADR 2)) (CDDR Z)))y) (T «
CTONS (CAR Z) (CONS (CADR Z) (EDFPV2 X Y (CDDR Z)))))))) (NTOL (LAMBDA (X)

{COND ((NULL (CDDR X)) (CAR X), (T (NTOL (CDR X)))))) fFLOAT (LAMBDA (X
) (CCND ((NUMBERP X) (PLUS X 040!) (T (QUOTIENT (PLUS (CADR X) 0e0) (P
LUS (CADDR X) 0e0))1))) (EPWR (LAMBDA (X Y) (COND ((EONEP Y) Xy ((OR (
NULL X)) (NULL Y))(LIST(QUOTE PwR X Y NIL)))

CCAND (NOT (EQUAL X (QUOTE INF'); (EZEROP Y)) 1) (

(EQUAL X(QUOTE INF)) (QUOTE INF)
(CAND(EQUCAR X) (QUOTE FRT))(LESSP(ABS(CADR X)) (ABS(CADDR X))

(EPWR(DVDNUM 1 X)(EPRD =1 Y))) e

(CAND (EENUMBERP X) (NUMBERP Y) (FIXP Y))

PWRNUM X Y)) ((AND (NUMBERP X) (NUMBERP Y) (NOT (MINUSP X))) (EXPT X Y
1) (T (LIST (QUOTE PAR) X Y NIL))))) (APND (LAMBDA (X Y) (COND ((NULL (C
CROX)) Y)Y (T (CONS (CAT X) (APND (CDR X) Y)))))) (MAPL (LAMBDA (X Y) (CO

LDOCONJLL (CDR X)) X) (T (CUNS (Y (CAR X)) (MAPL (CDR X) Y))r)1i)) (PLSNUM
(LAMBDA (X Y) (PROG (U) (SETG U (DONUM X Y)) (RETURN (REDNUM (PLUS (TIM

> (CAR U) (CADDDR U)) (TIMES (CADR U) (CADDR U))) (TIMES (CADR U) (CADD
D2 U))))))) (PRDNUM (LAMBDA (X V) (PROG (U) (SETG U (DONUM X Y)) (RETURN
(REDNUM (TIMES (CAR U) (CADDR l'y) (TIMES (CADR U) (CADDOR U))))))) (DVD

MIM CLAMBDA (X Y) (PROG (U) (SETQ U (DONuUM X Y)} (RETURN (REDNUM (TIMES
(CTAR U) (CADDDR U)) (TIMES (CADR U) (CADDR Uil)ir)) (DONUM (LAMBDA (X Y)

(PROG (U) (COND ((ATOM Y) (SET(U (CONS Y (CONS 1 Uuyyy)y (T (SETQ U (CON
v (CADR Y) (CONS (CADDR Y) U))1),) (COND ((ATOM X) (SETQ U (CONS X (CONS
Ty (T (SETQ U (CONS (CADR X) (CONS (CADDR XYy Ly)))y) (RETURN U))yy
"CO (LAMBDA (X Y) (COND ((ZEROP (REMAINDER X Y)) Y) (T (GCD Y (REMAINDER
X Y)))))) (REDNUM (LAMBDA (X Y) (COND

((ZEROP Y) (QUOTE INF))
(LOR (FLOATP X)(FLOATP Y)) (QUOTIENT
X Y)) ((ZEROP (REMAINDER X Y)) (QUOTIENT X Y)) (T (LIST (QUOTE FRT)
(WUOTIENT X (GCD X Y)) (QUOTIENT Y (GCD X Y)) NIL))))) (EENUMBERP (LAMB
A (X) (OR (NUMBERP X) (EQUAL (CAR X) (GUOTE FRTY)))) (STRIKE (LAMBDA (X
¥) (COND ((NULL X) NIL) ((Y (CAR X)) (STRIKE (CDR X) Y)) (T (CONS (CAR
K) LSTRIKE (CDR X) Y)))))) (EZEROP (LAMBDA (X) (AND (NUMBERP X) (ZEROP X
710 (EONEP (LAMBDA (X) (CR (AND (NUMBERP X) (EQUAL OelE1 (FLOAT X)))
AND CFQUAL (CAR X) (QUOTE FRT)) (EQUAL (CADR X) (CADDR X))1)))) (FTLEXP ¢
CAMBDA (X) (COND ((ZEROP X) 1) (T (TIMES X (FTLEXP (SUB1 X))))1)) (UNION
LIST (LAMBDA (X Y) (COND ((NULL X) Yy ((MEMBER (CAR X) Y) (UNIONLIST (CD
X)) YY) (T (CONS (CAR X) (UNIONLIST (CDR X) Y)))))) (MKPRD (LAMBDA (X)

(COND ((NULL (CDR X)) 1) ({NULL (CODR X)) (CAR X)) (T (CONS (QUOTE PRD)
A))1))) (MKPLS (LAMBDA (X) (COND ((NULL (CDR X)) 0) ((NULL (CDDR X)) (CAR
X)) (T (CONS (QUOTE PLS) X)))) Y (FSIN (LAMBDA (X) (FPRD 153210660C (FRL

S (FPWR @ag&;;gg SBRD 552573bl73:X)) -PRD .
'.‘xf.’f, wu‘?ﬁ?ﬁ&ﬁw%ﬁﬁﬂﬁ&lﬁﬁéﬁ %ﬁé“%’ I~ Mr s

275
1
4 (SPRD 3064213199 X)1))))) (FCOS (LAMBDA (X) (FPRD 4294974687 (FPLS (FP

WR 8364320344 (SPRD 5525736173 X)) (FPWR 8364320344 (SPRD 3064213199 X))
)))) (FTAN (LAMBDA (X) (PROG (U) (SETQ U (FPWR 8364320344 (SPRD 61284263

98 X))) (RETURN (FPRD 3064213200 (FDVD (FPLS 1 (FPRD 8589949372 Uy)y (FPL
S 1 U)oy (FSEC (LAMBDA (X) (FDVD 1 (FCOS X)))) (FCSC (LAMBDA (X) (FD
VD 1 (FSIN X)))) (FCOT (LAMBDA (X) (FDVD 1 (FTAN X)))) (FSINH (LAMBDA (X
) (FPRD 3064213200 (FSIN (SPRD £525736173 X))))) (FCOSH ULAMBDA (X) (FCO

> (SPRD 5525736173 X)))) (FTANH (LAMBDA (X) (FDVD (FSINH X) (FCOSH X))
(FCOTH (LAMBDA (X) (FDVD 1 (FTANH X)))) (FSECH (LAMBDA (X) (FDVD 1 (FCO
SH X)))) (FCSCH (LAMBDA (X) (FDVD 1 (FSINH X)))) (FDVD (LAMBDA (X Yy (FP
RD X (FPWR Y 8589949371)))) (GETC (LAMBDA (X) (PROG {(U) (COND { (NUMBERP
A} (GO A)) ((EQUAL (CAR X) (QUOYE FRT)) (RETURN (ADVD (GETC (CADR X))
(GETC (CADDR X) 1)))) (SETQ U (GET X (QUOTE CODE))) (COND ((NULL Uy (GO
B))) (RETURN U) B (SETQ U (SPLS 0 (RANNO))) (DEFLIST (LIST (LIST X U))
(QUOTE CODE)) (RETURN U) A (COND ((FLOATP X) (RETURN (MKCD X))) ((MINUSP
X) (RETURN “ANEG (MINUS X)))3) (RETURN (APLS 0 X}))}))) (FGFN (LAMBDA (X
YY) (PROG (U V) (SETQ U (CDR Y)) (SETQ V (FPWR (FPLS X (CAAR Y)) 12578605
9y3 A (COND C((NULL (CDR U)) (RETURN V))) (SETQ V (FPWR (FPLS V (CAAR U))
125786059)) (SETQ U (CDR U)) (GO A)))) (MKCD (LAMBDA (X) (PROG (U V W)
(SETQ w (COND ((MINUSP X) (MINUS X)) (T X))) (SETQ U (LEFTSHIFT {(LEFTSHI
FT W 8) =8)) (SETQ V (PLUS (LEFTSHIFT W =27) -155)) (COND ((MINUSP V) (S
ETQ W (ADVD U (APWR 2 (MINUS V))))) (T (SETQ W (APRD U LAPWR 2 V))))) (C

COND ((MINUSP X) (RETURN (ANEG W))) (T (RETURN WY))))) (RANNO (LAMBDA NIL

(PROG NIL (CSETG RANDUMNUMBER (TIMES 2187 RANDOMNUMBER)) (RETURN RANDOM
NUMBER)))) (ECODE (LAMBDA (X SIMPLEVEL) (COND ((OR (ATOM X) (EENUMBERP X
1) (GETC X)) ((NGCT (NULL (GET (CAR X) (QUOTE NCODE)))) (SIMP32 (GET (CAR

X) (QUOTE NCODE)) (MAPL (CDR X) (FUNCTION (LAMBDA (U) (ECODE U SIMPLEVE
L)1)) ((NOT (NULL (GET (CAR X) (QUOTE FCODE)))) (SIMP32 (GET (CAR X)
JUOTE FCODE)) (ECODE (CADR X) (LOGXOR SIMPLEVEL 1))y ((EQUAL (CAR X) (Q
wTE PLS)) (ECODELl (FUNCTION APLS) (MAPL (CDR X) (FUNCTION (LAMBDA (X) (
ECODE X SIMPLEVEL))))I) ((EWQUAL (CAR X) (QUOTE PRD)) (ECODE1 (FUNCTION A
PRD) (MAPL (CDR X) (FUNCTION (LAMBDA (X) (ECUDE X SIMPLEVEL)))))) ((EQUA
L {CAR X) (QJUOTE PWR)) (APWR (ECODE (CADR X) SIMPLEVEL) (EZCODE (CADDR Xx)

(LOGXOR SIMPLEVEL 1)))) (T (FGFN (GETC (CAR X)) (MAPL (CDR X) (FUNCTION

(LAMBDA (U) (CONS (ECODE U SIMPLEVEL) Ui)i)lriyy (SIMP32 (LAMBDA (GARG
YD) (GARG Y))) (ANEG (LAMBDA (X) (COND ((ZEROP SIMPLEVEL) (FPRD X 8589949
272)) (T (SPRD X 8589949371))))" (APRD (LAMBDA (X Y) (COND ({ZEROP SIMPL
SVEL) (FPRD X Y)) (T (SPRD X Y))))) (APLS (LAMBDA (X Y) (COND ((ZEROP 51
MPLEVFL) (FPLS X Y)) (T (SPLS X Y))))) (APWR (LAMBDA (X Y) (COND ((AND ¢
FQUAL SIMPLEVEL 1) (SQUAL Y 8589949372)) (SDVD 1 X)) ((ZEROP SIMPLEVEL)
(FPWR X Y)) (T (SPWR X Y))))) {(ADVD (LAMBDA (X Y) (COND ((ZEROP SIMPLEVE
L) (FDVD X Y)) (T (SDVHY X Y))))) (DPLS (LAMBDA (X Y) (DFUN X Y (FUNCTION

APLS) (FUNCTION EPLS)))) (DFUN (LAMBDA (X Y AFUN EEFUN) (PROG(U V) (SETQ

JOAFUN (CAR X) (CAR Y)))

(oETQ V (EEFUN(CDR X)(CDR Y)))

(COND ((NULL V) (RETURN(CONS(ECODE V SIMPLEVEL)V)))

({OR(ZEROP U) (ONEP U)) (RETURN (CONS
Y U)))) (RETURN (CONS U V))))) (DPRD (LAMBDA (X Y)

(DFUN X Y (FUNCTION APRD) (FUNCTION EPRD))Y)) (DPWR (LAMBDA (X Y)

(COND((ZERCP(CAR %)) (CONS(ECODE(EPWR(CDR X)(CDR Y)))

(EPWR(CDR X)(CDR Y))))(T (DFUN
XY (FUNCTION APWR) (FUNCTION EPWR))))))(ECODE1 (LAMBDA (FN X) (COND({NU
LL (CDDR X)) (CAR X)) (T (FN (CAR X) (ECODELI FN (CDR X))))))) (EFUN (LAM
BDA (X Y W NUMFUN Z NUMP) (PROG (U) (COND ((OR (NULL X) (NULL Y)) (RETUR
iN (LIST W X Y NIL)

[) CONUMP X3 (RETURN Y}) ((NUMP Y) (RETURN X)) ((OR (EQUAL X (QUOTE
- INF)Y) (EQUAL Y (QUOTE INF))) (RETURN (QUOTE INF)j)) (SETQ U (EFUNI X (E
FUN1 Y (CONS Z (LIST NIL)))

(COND ({NULL (CDDR U})

(RETURN (CAR U)

Mot

e

b »

vt ko

le

-
3 St g
S R

e 5 T B
—Ae&mfﬁsiﬁﬁmﬁ% '5‘

276

2
(NUMP (CAR U)) (COND ((NULL (CDDDR U)) (RETURN (CADR Uj))) (T (RETURN (CO
NS W (CDR U)1)))) (T (RETURN (CONS W U))))))) (EFUN1 (LAMBDA (X Y) (PROG
(U V) (SETQ U (CAR Y)) (SETQ V (CDR Y)) (COND ({EENUMBERP X) (SETQ U (N
UMFUN U X))) ((EQUAL (CAR X) W) (GO A)) (T (SETQ V (CONS X V)))) C (RETU
RN (CONS U V)) A (COND ((EENUMBERP (CADR X)) (GO B))) (SETQ V (APND (CDR
X) V)) (GO C) B (SETQ U (NUMFUN U (CADR X))) (SETQ V (APND (CDDR X) V))
(GO C))))y (EPLS (LAMBDA (X Y) (EFUN X Y (QUOTE PLS) (FUNCTION PLSNUM) O
(FUNCTION EZEROP)))) (EPRD (LAMBDA (X Y) (COND ((OR (EZEROP X) (EZEROP
Y))(COND((OR(EQ X(QUOTE INF))(E« Y(QUOTE INF)))
(PROG2 (PRINT(QUOTE INDETERMINATFE))INIL))(T 0))

) (T (EFUN X Y (QUOTE PRD) (FUNCTION PRDNUM) 1 (FUNCTION EONEP)))))
)y (RPLST (LAMBDA (X) (COND ((EQUAL (CAR X) (QUOTE ATOM)) (CADR X)) ((ATO

M Xy Xy (INULL (CDR X))y NIL) (T (CONS (RPLST (CAR X)) (RPLST (CDR X))) 1))
M)
(EQUOTE1 (LAMBDA (X) (COND ((NULL X) (LIST NIL)) ((ATOM X
) X) ((EQUAL (CAR X) (OUOTE NEG)) (LIST (QUOTE PRD) -1 (EQUOTEl (CADR X
)) NIL)) ((EQUAL (CAR Xx) (QUOTE DVD)) (LIST (QUOTE PRD) (EQUOTE1l (CADR
X)) (LIST (QUOTE PWR) (EQUOTE1 (CADDR X)) =1 NIL) NIL)) (T(CONS(EQUOTE1l
(CAR X)) (EQUOTEL (CDR X)1))))))
(LAST (LAMBDA (X) (COND ((NULL (CDR X)) (CAR X)) (T (LAST (CDR X))))
)3))
DEFLISTI((
(EQUOTE(LAMBDA(X Y)(EQUOTEZ2(EQUCTEL(CAR X)))))
)yFEXPR)
NEFINF((
(FQUOTEZ2 (LAMBRDA(X) (COND N
((ATOM X)X)
((OR(EQUCAR X) (QUOTE PLS)) (EQ(CAR X)(QUOTE PRD)))(EQUOTE3 X(CAR X)))
(T(MAPL X(FUNCTION EQUOTEZ2))))))
(EQUOTE3 (LAMBDA(X Y)(COND &

(C(NULL (CDR X)) X)

((EQCCAAR X)Y) (APND(CDR(EWUOTEZ2 (CAR X))) {(EQUOTE3(CDR X)Y)))
(TCCONS(EQUOTE2(CAR X)) (EQUOTE3(CDR X)Y))))1

(MKP (LAMBDA (X)) (COND

{{ATOM X1} X)

(TCCONS(CAR X)(MKP1(MAPL(CDR X) (FUNCTION MKP))X NIL))))))
(MKP1(LAMBDA(ARGLIST EXP PLIST) (COND

((NULL(CDR ARGLIST))(LIST PLIST))

(TCCONS(CAR ARGLIST)(MKP1(CDR ARGLIST)EXP

(UNIONLIST PLIST(COND

((AND(EQ(CAR EXP){QUOTE NAM))(NULL(CDDR ARGLIST)))

(COND((ATOM(CAR ARGLIST))(LIST(PPLST EXP)))
(T{CUNS(RPLST(NTOLSUBST EXP(CAAl ARGLIST)))(LAST(CAR ARGLIST))))))
((NUMBERP(CAR ARGLIST))INIL)

(CATOM(CAR ARGLIST))(LIST(CAR ARGLIST)))

((GET(CAAR ARGLIST)(QUOTE PERM))(LAST(CAR ARGLIST)))
(TCCONS(CAAR ARGLIST)(LAST{CAR FRGLIST))))) 1)))))
))

DEFINE ((

(ABSCLAMBDA (N) (MAX N(MINUS N))))

))

DEFINE ((

(ENUMBERP (LAMBDA(X) (OR(EQ X{(QUOTE INF))(EENUMBERP X))))
M)

- . Wy T e ANEYIR O st ST PR s e Sty B ot L Aﬁ&gﬁﬁgﬁg@ R T o s 1 £ g R N AR S AR

277

COMMON ((Y))

COMPILE((MAPL STRIKE))

UNCOMMON((Y))

COMMON ((RANDOMNUMBER))

SPECTAL((W))

COMPILE((EFUN EFUN13)

UNSPECTAL((W))

COMPILE((ENLOG ENEG EDVD DEPEND EDRV EDRV1 EDRV2

NTUL FLOAT EPWR APND PLSNUM PRDNUM DVDNUM DONUM GCD REDNUM
EENUMBERP EZEROP EONEP FTLEXP UNIONLIST

MKPRD MKPLS FSIN FCOS FTAN FSEC FCSC FCOT FSINH FCOSH
FTANH FCOTH FSECH FCSCH FDVD GETC FGFN

MKCD RANNO ECODE SIMP32 ANEG APRD APLS APWR ADVD

OPLS DFUN DPRD DFWR ECODEl EPLS EPRD RPLST EGUOTE EQUOTE1
MKP MXP1 LAST))

30264

278

DEFINF
(C(MKPRD (LAMBDA (X) (COND ((NULL (CDR X)) 1) ((NULL (CDDR X)) (CAR X))

(T (CONS (QUOTE PRD) XY)))) (EFUN1 (LAMBDA (X Y) (PROG (U V) (SETQ U (CA
R Y)) (SETQ V (CDR Y)) (COND ((EFNUMBERP X) (SETQ U (NUMFUN U X))) ((EQU
AL (CAR X) W) (GO A)) (T (SETQ V (CONS X V)1}) C (RETURN (CONS U V)) A (
COND ((EENUMBERP (CADR X)) (GO R))) (SETQ V (APND (CDR X) V)) (GO ¢C) B
SETQ U (NUMFUN U (CADR X))) (SEW'Q V (APND (CDDR X) Vi (GO C)))) (APND (
LAMBDA (X Y) (COND €(NULL (CDR X)) Y) (T (CONS (CAR X) (APND (CDR X) Y))
)1y (EMINUSP (LAMBDA (X) (OR (AND {NUMBERP X) (MINUSP X)) (AND (EQUAL (
CAR X) (QUOTE FRT)) (MINUSP (CADDR X)))))) (NTOL (LAMBDA (X) (COND ((NUL
L (CDDR X)) {CAR X)) (T (NTOL (¢(DR X)))))) (FLOAT (LAMBDA (X) (COND ((NU
MBERP X) (PLUS X 040)) (T (QUOVIENT (PLUS (CADR X) 0e0) (PLUS (CADDR X

) 0.0)))))) (EDRV (LAMBDA (X Y) (COND ((EQUAL (CAR Y) (QUOTE DRV)) (CON
> (CAR Y) (EDRVL X (CDR Y)))) (T (APPEND (CONS (QUOTE DRV) X) (LIST Y NI
L)))) L(EDRVI (LAMBDA (X Y) (COND ((NULL (CDDR X)) (EDRV2 (CAR X) (CADR
X) Y)r (T (EDRV1 (CDDR X) (EDRV2 (CAR X) (CADR X) Y)))))) (EDRV2 (LAMBD

A XY Z) (COND ((NULL (CDDR Z)) (CONS X (CONS Y £))) ((EQUAL (CAR Z) X)
(CON> A (CONS (PLUS Y (CADR Z)) (CDDR Z)))) (T (CONS (CAR Z) (CONS (CaD
R Z) (EDRV2 X Y (CDDR Z2)))))))) (EENUMBERP (LAMSDA (X) (OR (NUMBERP X) (
EWYUAL (CAR X) (WQUOTE FRT))))) (UNIONLIST (LAMBDA (X Y) (COND ((NULL X) Y
) COAEMBER (CAR X) Y) (UNIONLIST (CDR X) Y)) (T (CONS (CAR X) (IUNIONLIST
(COR A) Y)))))) (MRPL1 (LAMBDA (X) (CUNS (CAR X) (MKP2 (MKF3 (CAR X)) (C

DROXD)D)) (MKP2 (LAMBDA (X Y) (COND ((NULL (CDR Y)) (LIST X)) (T (CONS (
CAR Y) (MKP2 (UNIONLIST X (COND ((EENUMBERP (CAR Y)) NIL) ((ATOM (CAR Y)
) LLIST (CAR Y))) (T (LAST (CAR Y), 1)) (CDR Y)1)1)))) (MKPLS (LAMBDA (X)
(COND ((NULL (CDR X)) 0) ((NULL (CDDR X)) (CAR X)) (T (CONS (QUOTE PLS)

X))))) (EPRD (LAMBDA (X Y) (COND ((QR (EZERUP X) {(EZEROP Y)) 0) (T (EFUN
A Y (QUOTE PRD) (FUNCTION PRDNUM) 1 (FUNCTION EONEP))))) (EDVD (LAMBDA
(X Y) (EPRD X (EPWR Y =1)))) (ENEG (LAMBDA (X) "(ePRD X =1))) (EPLS (LAM

dDA (X Y) (EFUN X Y (QUOTE PLS}) (FUNCTIUN PLSNUM) O (FUNCTION EZEROP))))
(GRTP (LAMBUA (X Y) (CUND ((EQLAL X Y) NIL) ((AND (EWUAL X (WUOTE INF))
(NOT (EQJAL Y {(QUOTE INF)))) T) ((EQUAL Y (GUOTE INF)) NIL) ((AND (NUMB

eRP X)) (NUMBERP Y)) (GReATERP X Y)) (1 (ERROR fQUOTE GRTP))Y)))) (LSSP (L
= iBDA (X Y) (GRTP Y X))) (FTLEXP (LAMBDA {X) (COND ((ZEROP X) 1) (T (TIM
S X (FTLEXP (SUBL X))))))) (EPV'R (LAMBDA (X Y) (COND ((EONEP Y) X) ((OR

(NoLL X) (NULL Y)) NIL) ((AND «NCT (EWQUAL X (QUOTE INF1))) (EZEROP Y)) 1
) (LEQUAL X (QUCTE INF)) (QUOTE INF)) ((AND (EENUMBERP X) (EMINUSP Y))
FPWUR (DVDNUM 1 X) (PRDNUM =1 Y))) ((AND (EENUMBERP X) (NUMBERP Y) (FIXP
YO (PWRNUM X Y)) ((AND (NUMBERP X) (NUMBERP Y) (NOT (MINUSP X))) (EXPT
AYY)Y LT (LIST (QUOTE PWR) X Y NIL))))) (MKP (LAMBDA (X) (COND ((ATOM X)

A) CLEQUAL (CAR X) (WUCTE WAM)) (CONS (CAR X) (MKP5 (CDR X) NIL))) (T
ACPTO(MAPL X (FUNCTION miKF))))))) (mKP3 (LAMBDA (X) (COND ((EENUMBERP X)
NIL) (CATOR X) «COND ((NULL (GET X (QUOTE PERM))) (LIST (LIST XJ))) (T N
L))y 0T (LAST X))))) (MKP5 (LAMBDA (X Y) (CUND ((NULL (CDDR X)) (COND (
(ATOM (CAR X)) (LIST (CAR X) (CONS (CAR X) Y))) (T (LIST (CONS (CAAR X)
(MKP2 NIL (MAPL (CDAR X) (FUNCT.ON MKP)))) (UNIONLIST (LAST (MKP2 NIL (M

APL (CDAR X) (FUNCTION wKP)))) (LIST (CUNS (CAAR X) Y)))1))) (T (CONS (C
AR X) (MKP5 (CDR X); (CONS (CAR X) Y))))))) (DEPEND (LAMBDA (Y X) (OR (EQ
VAL Y X) (MEMBER X (LAST Y)) (MEMBER (LIST X) (LAST Y))))) (EZEROP (LAMB
QA LX) (AND (NUMBERP X) (ZEROP :)))) (LAST {LAMBDA (X) (COND ((NULL (CDR
A)) LCAR X)) (T (LAST (CDR X)),))) (MAPL (LAMBDA (X Y) (CORKD ((NULL (CD
ROXYY X) (T (CONS (Y (CAR A)) (MAPL (CDR X) Y)))))) (EFUN (LAMBDA (X Y W
NUMFUN Z NUMP) (PROG (U) (COND ((OR (NULL X) (NULL Y)) (RETURW NIL)) ({
nImP X)) (RETURN Y)) ((NUMP Y) (RETURN X)) ((OR (EQUAL X (QJUOTE INF)) (CQ

VAL Y {QUOTE INF))) {RETURN (QUOTE INF)))) (SETQ U (EFUN1 X (EFUN1 Y (CO
No Z (LIST WNIL))))) (COND ({(NULL (CDDR U)) (RETURN (CAR U)}) ((NUMP (CAR
Y1) {COND ((NULL (CDDDR U)) (RETURN (CADR U))) (T (RETURN (CONS W (CDR
J11)) 1) (T (RETURN {(CONS W U))))))) (EONEP (LAMBDA (X) (OR (AND (NUMBERP
A) (EQUAL OCelE1 (FLOAT X))) (AND (EQUAL (CAR X) (QUOTE FRT)Y) (EQUAL (C
AU X) (CADDR X))1)))) (PRDNUM (LAMBDA (X Y) (PROG (U) (SETQG U (DONUM X Y
1) (RETURN (REDNUM (TIMES (CAR U) (CADDR U)) (TIMES (CADR U) (CADDDR J))

e gk 0y oS R o e T S IS e o TS i T o ;

e A

o WA ot ot i

279

1

))1)) (PLSNUM (LAMBDA (X Y) (PROUG (U) (SETQ U (DONUM X Yj1 (RETURN (REDN

UM (PLUS (TIMES (CAR U) (CADDDR U)) (TIMES (CADR U) (CADDR U))) (TIMES (
CADR U) (CADDDR U))1))))) (DVDNUM (LAMBDA (X Y) (PROG (U) (SETQ U (DONUM
A Y)) (RETURN (REDNUM (TIMES (CAR U) (CADDDR U)) (TIMES (CADR U) (CADDR
J)11))))) (PWRNUM (LAMBDA (X Y) fCOND ((EQUAL (CAR X) (QUCTE FRT)) (DVDNU
M (PWRNUM (CADR X) Y) (PWRNUM (CADDR X) Y))) ((MINUSP X) (COND ((ECDDP Y
) (MINUS (FXPT (MINUS X) Y))) (T (EXPT (MINUS X) Y)))) (T (EXP1 X Y)))))

(DONUM (LAMBDA (X Y) (PROG (U) (COND ((ATOM Y) (SETQ U (CONS Y (CONS 1
J3)y) (T (SETQ U (CONS (CADR Y) (CONS (CADDR Y) U))))) (COND ((ATOM X) (
SETQ J (CONS X (CONS 1 Uj))) (T (SETQ U (CONS (CADR X) (CONS (CADDR X) U
)1))) (RETURN U}))) (REDNUM (LAMBDA (X Y) (COND ((OR (FLOATP X) (FLOATP

v)) (QUOTIENT X Y)) ((TEROP (REMAINDER X Y)) (QUOTIENT X Y)) (T (LIST (Q
JUlE FRT) (QUOTIENT X (GCD X Y)) (QUOTIENT Y (GCD X Y)) NIL))))) (GCD (L
AMBDA (X Y) (COND ((ZEROP (REMAINDER X Y)) Y) (T (GCD Y (REMAINDER X Y))
)))) (BILL NIL)Y))

386232

1 280

COMMON((Y W NUMFUN NUMP))
COMPILE((MAPL EFUN EFUN1))
UNCOMMON ((Y W NUMFUN NUMP))
COMPILE((MKPLS MKPRD EPRD EDVD ENEG EPLS GRTP EMINUSP APND
LSSP FTLEXP EPWR MKP MKP1 MKP2 MKP3 MKP5 DEPEND
FZEROP LAST NTOL EONEP PRDNUM PLSNUM DVDNUM
DONUM REDNUM GCD EENUMBERP UNIONLIST FLOAT EDRV EDRV1 EDRVZ2))
sTOP .

*EOF #

14982

281
NEFINE
(((COLLECT(LAMBDA(X Y)(CLCT3 X Y)))
(RGCP (LAMBDA (X2 X1 Y2 Y1) (RGCP2 (ERSETQ (LIST (
RGCP1 X2 X1 Y2 Y1) (COND ((GRTP X1 Y1) (COND ((GRTP X2 Y1) NIL) ((LSSP X
2 Y2) (LIST Y2 Y1)) (T (LIST X2 Y1)})) ((LSSP X1 Y2) NIL) ((GRTP X2 Y2)
(LIST X2 X1)) (T (LIST Y2 X11)) (RGCP1 Y2 Y1 X2 X1)))))) (RGCP1 (LAMBDA
(X2 X1 Y2 Y1) (COND ((GRTP X1 Y1) (LIST (LIST (COND ((GRTP X2 Y1) X2) (T
(EPLS 1 Y11)) X1) (COND ((LSSP X2 Y2) (LIST X2 (EPLS -1 Y2))) (T NIL)))
((LSSP X2 Y2) (LIST (LIST X2 +COND ({(LSSP X1 Y2) X1) (T (EPLS Y2 -1}))

)
) NIL)) (T NIL)))) (RGCP2 (LAMBDA (X) (COND ((NULL X) NIL}) (T tCAR X))))
) (GRTP (LAMBDA (X Y) (COND ((AND (EQUAL X (QUOTE INF)) (NOT (EQUAL Y (Q
JOTE INF3))) T) ((EQUAL Y (GUOTE INF)) NIL) ((AND {NUMBERP X) (NUMBERP Y
}) (GREATERP X Y)} (T (ERROR (QUOTE GRTP)))))) (LSSP (LAMBDA (X Y) (GRTP
Y X))y) (CLCT&411 (LAMBDA (X) (COND ((EQUAL X (QUOTE #1#)) 0) ((AND (EQUA
L (CAR X) (GJOTE PLS)) (NULL (CDDDLR X))) (COND ((AND (EQUAL (CADR X) (Q
UOTE *I%)) (NUMBERP (CADDR X})) (CARDR X)) ((AND (EQUAL (CADDR X) (QUOTE
#1%)) (NUMBERP (CADR X))) (CADR X)) (T NIL)Y)) (T NIL)))) {(CLCT31 (LAMBD
A (X Y) (COND ((FQUAL (CAR X) (QUOTE EQN)) (LIST (QUOTE EQN) (CLCT31 (CA
MR X) Y) (CLCT31 {(CADDR X) Y) NIL)) ((EQUAL (CAR X) (QUOTE PLS)) (CLCT32

(CDR A) Y)) (T {(CLCT32 (LIST X NIL) Y))))y (CLCT3 (LAMBDA (X Y) (CLCT31
(MKP{SIMPLIFY X))
(COND((EQ(CAR Y)(QUOTE ESET))

(REVERSE(CDR(REVTRSE{(CDR Y)))))
(TILIST Y)y
(CLCT32(LAMBDA(X Y)(CDR(SIMP2(MKP i}
(MKPLS (CLCT9 (CLCT7 (CLCT8 X) (CLCT6& Y)) Y))) NIL 0)))) (CLCT6 (LAMBDA
(Y) (COND ((NULL Y) (LIST 0)) /T (CONS (LIST (ECODE (CAR Y) 0)) (CLCT®
(CDR Y))1)))) (CLCT7 (LAMBDA (X Y) (COND ((NULL =) Y) (T (CLCT7 (CDR X)
(CLCT1v (CAAR X) (CDAR X) Y (CDAR X) NIL)))))) (CLIT10 (LAMBDA (U X Y R
1) (COND ((NULL R) (COND ((NULL (CDDR Y)) (COND ((NULL M) (LIST (CAR Y)
(EPLS U (CADR Y)))) (T Y))) (T (CONS (CAR Y) (CLCT10 U X (CDR Y) X M))))
) ((EQUAL (CAAR Y) (CAAR R)) (COCND ((NOT (NULL #)) (COND ((NULL (GET (QU

OTFE CLCTVECTCR) (QUOTE TWOF))) «CLCT101 (QUESTION (LIST U) (CONS U (QUOT
S (CUNTAINS MURE THAN ONE FACTCP RETURN YES IF YOU WISH TO COLLECT ON TH
SOFIRSTY)IN)Y Y)) (T Y))y)y (T (CLCt10 U X (CONS (CLCT11 (CAR R) (CAR Y)) (C
DR YY) (CDR R) T)))) (T (CLCT10 U X Y (CDR R) M))))) (CLCT11 (LAMBDA (X
v¥) (CONS (CAR Y) (CLCT111 NIL (CDR Y) (MKPRD (APND (CADDR X) (CADDDR X))
) (LIST (CADR X)))))) (CLCT111 (LAMBDA (X Y U Z) (PROG (V R) (COND ((NUL
L Y) (RETURN (CLCT1111 U Z))) ((NULL Z) (COND ((NULL X) (RETURN Y)) (T (
. RETURN (CONS (CAR Y) (CONS (CADR Y) (CLCTI111 NIL (CDDR Y) U X))))r))) (A
ND (NOT (ATOM (CAR Z)3)) (NULL (CDDAR Z))) (GO A)) ((AND (NOT (ATOM (CAR
Y))) (NULL (CDDAR Y))) (GO B)) ((EQUAL (ECODE (CAR Y) 0) (ECODE (CAR Z)
v)) (RETURN (CLCT111 X (CONS (CAR Y) (CONS (EPLS (CADR Y) U) (CDDR Y)))
JOLCDR Z)))) (T (RFTURN (CLCT11' (CONS (CAR Z) X) Y U (CDR Z))))) A (SET
UV (CAR Z)) (COND ((AND (NOT (ATOM (CAR Y))) (NULL (CDDAR Y))) (SETQ R
(CAR Y))) (T (SETQ R (LIST (CAR Y) (CAR Y))))) (GO C) B (SETQ R (CAR Y))
(COND ((AND (NOT (ATOM (CAR Z)') (NULL (CDDAR Z))) (SETQ V (CAR 2))) (T
(SETQ R (LIST (CZAR V) (CAR V));)) (GO C) C (SETQ V (RGCP (CAR V) (CADR
V) (CAR R) (CADR R))) (SETG R (CADR Y)) (COND ((OR (NULL (CADR V)) (NULL
Vy) (GO E)) ((NULL (CAR V)) (GO D)) ((NOT (NULL (CAAR V))) (SETG X (CON
S (CAAR V) X)))) (COND ((NOT (NULL {CADAR V))) (SETQ@ X (CONS (CADAR Vi) X
1))} D (COND ((NOT (NULL (CADR V))) (SETQ Y (CONS (CADR V) (CONS (EPLS (
CAUR Y) U) (CDDR Y)})))) (COND ((NULL (CADDR V)) (GO G))) (COND ((NOT (N
sLL (CAADDR V))) (SETQ Y (CONS (CAADDR V) (CONS R Y))))) (COND ((NOT (NU
LL (CADADR (CDR V)))) (SETG Y (CONS (CADADR (CDR V)) (CONS R Y))))) G (R
FTURN (CLCT111 X Y U (CDR Z))) E (SETQ@ X (CONS (CAR Z) X)) (GO Gy (CL
CT1111 (LAMBDA (U Z) (COND ((NULL Z) NIL) (T (CONS (CAR Z) (CONS U (CLCT

1111 U (CDR Z)))))))) (CLCT101 (LAMBDA (V Y) (PROG NIL (COND ((EWUAL V {

JUOTE AYES); (GO A)) ((EQUAL V (QUUTE YES)) (RETURN Y))) (ERROR (QUOTE H

ELP)) A (DEFLIST (LIST (LIST (QUOTE CLCTVECTOR) (QUOTE A))) (QUOTE TWOF)

) (Rr_TURN YU’% ffLCT% u,,. B4) e L Y{ K(LI%J;;J? ;
3 4 aas b«» ~ 3 SAUIEN

i

: ' 282
1

(T (APPEND (CLCT91 (CDAR X) (CAR Y)) (CLCT9 (CDR X) (CDR Y))))))) (CLCT
91 (LAMBDA (X Y) (COND ((NULL X' NIL) ({AND (NOT (ATOM (CAR X))) (NULL (
CDDAR X))) (CONS (COND ((EQUAL «CAAR X) (CADAR X)) (EPRD (CADR X) {(EPWR
Y (CAAR X)))) (T (LIST (QUOTE SUM) (QUOTE #I%) (CAAR X) (CADAR X) (EPRD
(CADR X) (EPWR Y (QUOTE *I%))) NIL))) (CLCT91 (CDDR X) Y))) (T (CONS (EP
RD (CADR X) (EPWR Y (CAR X))) (CLCT91 (CDDR X) Y)))))) (CLCT4 (LAMBDA (Y

V) (COND ((NULL (CDR Y)) NIL) ((EQUAL (CAAR Y) (QUOTE PWR)) (CONS {LIST

(ECODE (CADAR Y) 0) (CADDAR Y) (CDR Y) V) (CLCT4 (CDR Y) (CONS (CAR Y)
Vy))) ((EQUAL (CAAR Y) (QUOTE SUM)) (APPEND (CLCT41 (LIST NIL) (CADDAR Y
) (CADDDR (CAR Y)) (CLCTS (SUBST (QUOTE #1%) (CADAR Y) (NTOL (CAR Y))))
(COR Y) V) (CLCT4 (CDR Y) (CONS (CAR Y) V)))) (T (CONS (LIST (ECODE (CAR

Y) J) 1 (CDR Y) V) (CLCT4 (CDR Y) (CONS (CAR Y) V)y)))))) (CLCT41 (LAMBD
A (P R MUY V) (COND ((NULL ¢CLR Uy) NIL) ((AND (DEPEND (CAR U) (QUOTE
A1#)) (EQUAL (CAAR U) (QUOTE PwP)) (NOT (DEPEND (CADAR U) (QUOTE *I%*))))

(PROG (S Q) (SETQ S (CLCT411 (CADDAR U))Y) (COND ((NULL S) (SETQ Q (QUES
JTON (LIST (CAR U)) (QUOTE (THE EXPONENT OF THIS FACTOR CAN NOT BE HANDL
ED RETURN YES IF YOU WISH TO COf TINUE WITHOUT COLLECTING IT)))))) (COND
((FQUAL W (QUOTE YFS)) (RETURN CLCT41 (CONS (CAR U) P} R ™M (CDR Uy Y V)
))) (SETQ Q (MKPRD (APND P (CDR U)))) (COND ((NOT (ZEROP S)) (SETQ Q (SU
85T (LI>T (QUOTE PLS) (QUUTE *I%) (MINUS S) NIL) (QUOTE *I%) Q)))) (RETU
AN (CONS (LIST (ECODE (CADAR U) 0) (LIST (EPLS R S) (EPLS M S)) Y (CONS

4 V)) (CLCT41 (CONS (CAR uU) P) R M (CDR U) Y V))))) ((NOT (DEPEND (CAR U
) (QUOTE *1I%))) (CONS (LIST (ECODE (COND ((EWUAL (CAAR U) (QUOTE PWR)) |
TADAR U)) (T (CAR U))) 0) (COND ((EQUAL (CAAR U) (QWUOTE PWR)) (CADDAR U)

) (T 1)) Y (CONS (LIST (QUOTE SUM) (QUOTE *J%) R M (SUBST (QUOTE *J¥*) (Q
JUTE *1%) (MKPRD (APND P (CDR U)))) NIL) V)) (CLCT41 (CONS (CAR U) P) R

4 {CDR U) Y V))) (T (CLCT4&1 (CONS (CAR Uy P) R M (CDR U) Y V))))) (CLCT8
(LAMBDA (X) (COND ((NJLL (CDR X)) NIL) (T (CONS (CONS (CAR Xx) (CLCT4 (C

(TS (CAR X)) (LIST NIL))) (CLCT8 (CDR X))))))y (CLCT5 (LAMBDA (X) (COND
{(EQUAL (CAR X) (QUOTE PRD)) (CDR X)) (T (LIST X NIL)Y))))))

420103

283

DEFINE ((

(DELSUBST(LAMBDA(EXP OLDDEL NEWDELFREE) (SUBSTA
(QUOTE (DELSUBST1 EXP NEWDELFREE))

(LIST(GQUOTE DRV)(CADR OLDDEL) 1(QUOTE DOLLAR)NIL)
EXP)))

(DELSUBST1 (LAMBDA(WFREFR DEL) (SUBSTA
(QUOTE(LIST(QUOTE DRV) (CADR EXP)1{NTOL WFREE)INIL))
(QUOTE (DEL DOLLAR NIL))IDEL)))

1)

9526

k 284
NFFINE
{((DIFF (LAMBDA(Y X)(DIFF2 _MKP Y} X))
(DIFF2(LAMBDA(Y X){COND((NOT(

DEPEND Y X)) 0) ((ATOM Y) (COND ((EQUAL X Y) 1y (T 0))) ((NOT (NULL (GET
(CAR Y) (QUOTE DIFF)))) (EPRD (SUBST (CADR Y) (QUOTE #Y¥*) (GET (CAR Y)
(QUOTE DIFF))) (DIFF2 {CADR Y) 2))) ((NULL (GET (CAR Y) (QUOTE PERM)))

COND ({EQUAL (CAR YJ) X) 1) (T (MKPLS (DIFF8 (CDR Y) Y X))))) ((MEMBER (C
AR Y) (QUOTE (XST SUM))) (LIST (CAR Y) (CADR Y) (CADDR Y) (CADDDR Y) (DI
FF2 (CADR (CDDDR Y)) X) NILJ}) (T (SELECT (CAR Y) ((QUOTE PLS) (MKPLS (DI
FF3 (CDR Y) X))) ((QUOTE PRD) (MKPLS (DIFF4 (CDR Y) X NIL))) ((QUOTE PWR
) (EPLS (EPRD (DIFF2 (CADR Y) X) (EPRD (CADDR Y) (EPWR (CADR Y) (EPLS (C
ADDR Y) =11))) (EPRD Y (EPRD (ENLOG (CADR Y)) (DIFF2 (CADDR Y) X))))) ((
JJOTE ITG) (CCOND ((AND (EQUAL (CADR Y) X) (EQUAL (CADDR Y) (QUOTE IDF)))
(CADR (CDDDR Y))) (T (EPLS (EPLS (EPRD (DIFF2 (CADDR Y) X) (ENEG (SUBST
(CADDR Y) (CADR Y) (CADR (CDDDR Y))))) (EPRD (DIFF2 (CADDDR Y) X) (SUBS
T (CADDDR Y) (CADR Y) (CADR (CDDDR Y))))) (COND ((DEPEND (CADR (CDDDR Y)
) X) (LIST (CAR Y) (CADR Y) (CADDR Y) (CADDDR Y) (DIFF2 (CADR (CDDDR Y))
Xy NILY) (T 0)1)))) ((QUOTE DRV) (COND ((AND (EQUAL {(CAR (NTOL <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>