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Abstract

Experimental grain boundary engineering studies have demonstrated the potential for materials prop-
erties enhancement via the modification of grain boundary network structure. These techniques apply to
materials that readily form annealing twins and are amenable to cyclic thermomechanical processing and
have resulted in dramatic property enhancement. In this work we present a theoretical framework that en-
ables the design of grain boundary networks in polycrystalline materials through an alternative approach:
exploitation of a relationship between crystallographic texture and grain boundary network structure. Be-
cause crystallographic texture is a universal characteristic of polycrystalline materials, this work has the
potential to significantly expand the class of materials whose grain boundary networks can be controlled.
We demonstrate the utility of the approach by application to a concrete design problem involving competing
design objectives for yield strength, elastic compliance, and resistance to electromigration. We construct
the first materials properties closure to comprise grain boundary network sensitive properties and identify
an optimal microstructure that is predicted to outperform an undesigned isotropic material.

Keywords: Grain Boundary Engineering, Grain Boundary Network, Crystallographic Texture,
Microstructure Design, Triple Junction

1. Introduction

Numerous experimental studies have demon-
strated the possibility of improving the perfor-
mance of materials by manipulating the structure
of the grain boundary network [1–5]. The modern
practice of grain boundary engineering (GBE) con-
sists of cyclic thermomechanical processing aimed
at increasing the population of coherent twins in
a material and has resulted in orders of magni-
tude improvements in properties. However, be-
cause these techniques exploit the ability of certain
materials to form annealing twins, traditional GBE
is limited in its application to those materials that
exhibit this behavior.

The present work attempts to build on prior GBE
research by developing a theoretical framework
that facilitates the design and optimization of GB
networks (GBNs). By taking a texture-mediated
approach—i.e. by leveraging a recently established
connection between crystallographic texture and
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GBN structure [6, 7]—we present methods applica-
ble to arbitrary crystalline materials including those
that do not readily form annealing twins or are not
amenable to cyclic thermomechanical processing.
The framework developed here allows one to de-
sign the GBN structure of a polycrystal, not just
to improve its performance with respect to a sin-
gle property; rather, it facilitates the optimization
of microstructure for complex multi-objective de-
sign problems. Our approach builds upon the gen-
eral spectral methodology that has been used in the
past for texture sensitive properties [8], expanding
it to comprise grain boundary networks and their
properties.

For the sake of clarity and to illustrate its util-
ity, we will develop the theory in the context of
a hypothetical design problem. First, we will de-
fine the design problem and specify the design con-
straints and objectives. We will then develop rele-
vant structure-property models. Using these mod-
els and microstructure hulls like those described
in [6], we will construct the envelope of all pos-
sible combinations of the properties relevant to the
design problem and identify the microstructure that
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optimally satisfies the design objectives.

2. Design Problem

As a purely hypothetical illustrative example,
consider microstructure sensitive design [8, 9] of
aluminum interconnects for flexible electronics.
Chemistry and geometry will be held constant and
we will seek to optimize the microstructure of a
polycrystalline Al sample in order to satisfy the fol-
lowing design constraints and objectives relevant to
the chosen application:

maxσy1 (1a)

S 1111 = S sub
1111 (1b)

min D (1c)

In Eq. 1, the overline denotes an effective prop-
erty of the polycrystalline aggregate. σy1 repre-
sents the effective yield strength of the polycrys-
talline sample when tension is applied along the
sample x-direction. Maximizing σy1 will reduce
the risk of plastic deformation under static load and
improve the fatigue properties of the interconnect
material [10]. Minimizing the effective diffusiv-
ity of the grain boundary network, D, will improve
resistance to electromigration as the mean time to
failure (MTF) via electromigration is inversely pro-
portional to D (see [11] and Section 7 of the present
work). S 1111 is the elastic compliance of the poly-
crystal in the sample x-direction, which we require
to match that of the substrate, S sub

1111, to which it is
applied.

Microstructure sensitive models for S 1111 and
σy1 are readily available. Below, we explain the ap-
plication of each of these structure-property models
to the present design problem. We also develop a
model for D that depends on the types and pop-
ulations of grain boundaries and triple junctions
present in the polycrystal.

3. Conventions

3.1. Orientations and Misorientations
In this work, a crystal orientation, q = [a, b, c, d],

is represented by a unit quaternion, whose elements
are related to the corresponding rotation angle, ω,
and spherical angles of the rotation axis, (θ, φ),
by [12, 13]:

a = cos(ω/2)
b = sin(ω/2) sin θ cos φ
c = sin(ω/2) sin θ sin φ
d = sin(ω/2) cos θ

(2)

with θ ∈ [0, π] describing the polar angle measured
from the positive z-axis, φ ∈ [0, 2π) the azimuthal
angle measured from the positive x-axis, and ω ∈
[0, 2π).

The orientation of the i-th grain in a polycrys-
tal is denoted by qi. The lattice misorientation be-
tween grains i and j is defined by:

qi j = q−1
i q j (3)

where the inverse operation for unit quaternions is
defined by [14]

q−1 = [a,−b,−c,−d] (4)

3.2. Statistical Descriptions of the Microstructure
An orientation distribution function (ODF) is de-

noted by f (q), where the quantity f (q) dq provides
the probability of observing a grain with orienta-
tion infinitesimally close to q. Central to the de-
sign methodology of this paper is the expression
of distribution functions and constitutive models in
spectral form. An ODF can be expanded as a linear
combination of hyperspherical harmonics accord-
ing to [6, 7, 15]:

f (q) =

∞∑
n=0,2,...

n∑
l=0

l∑
m=−l

cn
l,mZn

l,m(q) (5)

Our conventions regarding normalization, defini-
tions of the basis functions, computation of the co-
efficients, and the invariant measure for integration
are provided in [7]. Because the hyperspherical
harmonic basis functions employed in this expan-
sion may be viewed as a generalization of the well
known Fourier series, we refer to this as the Fourier
basis. We refer to the expression of functions in this
manner as their Fourier representation.

A second equivalent spectral representation of an
ODF may be given in the basis of generalized Dirac
delta functions and we refer to this as the Dirac rep-
resentation:

f (q) ≈
J∑

j=1

p′jδ
(
q, jq

)
(6)

where the approximation becomes exact as J → ∞.
In this expression, the coefficients p′j encode the
probability of observing an orientation jq, be-
longing to the set of fundamental orientations,{

1q, 2q, . . . , Jq
}
, which itself constitutes a dis-

cretization of the relevant orientation fundamental
zone.
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The statistical description of GBNs is compli-
cated by the fact that GB misorientations are not
independent (and cannot therefore be assigned ran-
domly from a known distribution). For example,
at a triple junction there are three grain orienta-
tions which can be assigned from an ODF and
are all three independent of one another, but the
three resulting GB misorientations coordinating the
triple junction are not independent of one another
since they derive from the grain orientations. In
fact only two misorientations are independent at
the triple junction, with the third being fully spec-
ified by the constraint of crystallographic consis-
tency [6, 7, 16, 17].

A statistical description of the GBN that satisfies
these crystallographic constraints is given by the
triple junction distribution function (TJDF) [6, 7],
which we denote by T (q12, q23). In this statistical
treatment, a triple junction is characterized by the
ordered pair of its independent grain boundary mis-
orientations (q12, q23). The TJDF admits a spectral
representation in the basis of bipolar hyperspheri-
cal harmonics according to [6, 7]:

T (q12, q23) =
∑

n1,λ12,µ12
n3,λ23,µ23

tn3,λ23,µ23
n1,λ12,µ12

Zn1
λ12,µ12

(q12) Zn3
λ23,µ23

(q23)

(7)

The Dirac basis representation of the TJDF is
given by [6]:

T (q12, q23) ≈
K∑

k=1

pkδ
[(

q12, q23

)
,
(

kq12,
kq23

)]
(8)

where pk provides the probability of observing a
triple junction associated with the k-th fundamental
triple junction:

(
kq12,

kq23

)
.

4. Microstructure Hulls

With the microstructures defined statistically by
the distribution functions f (q) and T (q12, q23), each
expressed in spectral form, it is possible to define
the corresponding microstructure hulls, which en-
compass all physically realizable ODFs and TJDFs,
respectively, and constitute our design spaces. The
set of coefficients for a given distribution function
can be thought of as coordinates, so that differ-
ent distributions having distinct values of their co-
efficients are represented by distinct points in the
corresponding space. Thus, the coefficient coordi-
nates of a given distribution function can be writ-
ten as a vector, which we denote in bold font, e.g.

c =
{
c0

0,0, c
2
0,0, c

2
1,−1, . . .

}
. The microstructure set, is

defined as the set of coefficient vectors for Dirac
delta distributions centered at each of the funda-
mental orientations or triple junctions, respectively.
We refer to the microstructure set for crystallo-
graphic textures as the texture set and denote its
Fourier basis representation by

m(1)
S =

{
jc

∣∣∣∣ jc =
(

jc0
0,0,

jc2
0,0,

jc2
1,−1, . . .

)
,

jcn
l,m = Zn∗

l,m

(
jq
)
, jq ∈ A (1), j ∈ [1, J]

}
(9)

where A (1) is the asymmetric region or fundamen-
tal zone for the relevant crystal symmetry point-
group. The Dirac basis representation of the texture
set is denoted

M(1)
S =

{
j p′

∣∣∣∣ j p′ =
(

j p′1,
j p′2, . . . ,

j p′J
)
,

j p′r = δr j, j ∈ [1, J]
}

(10)

We refer to the microstructure set for TJDFs as the
triple junction set and denote its Fourier and Dirac
basis representations by m(3)

S and M(3)
S , respectively.

Explicit mathematical definitions for m(3)
S and M(3)

S
are provided in [6], and are omitted here for brevity.

Our notation follows that of [6] and it will be ob-
served that this convention uses the parenthetical
superscript to denote the order of the microstruc-
ture set. Texture is a 1-point statistical description
of the microstructure, and thus the notation bears
a superscript of (1), while the TJDF is effectively
a type of 3-point statistical description of the mi-
crostructure and is therefore denoted by a super-
script of (3). As is evident from Eqs. 9–10 we de-
note the Fourier basis by a lower-case m and the
Dirac basis by an upper-case M. When referring
abstractly to a microstructure set or hull without
regard for a particular basis, we use a script font
M .

The microstructure hull is the convex hull of the
microstructure set and strictly bounds the space
of all possible distributions of the respective mi-
crostructural feature [8]. Following our previous
nomenclature, we refer to the microstructure hull
for crystallographic texture as the texture hull and
denote its Fourier basis representation by

m(1)
H =

c

∣∣∣∣∣∣∣ c ≈
J∑

j=1

p′j
jc, jc ∈ m(1)

S ,

0 ≤ p′j,
J∑

j=1

p′j = 1

 (11)

3



The Dirac basis representation of the texture hull is
denoted

M(1)
H =

p′
∣∣∣∣∣∣∣ p′ =

(
p′1, p′2, . . . , p′J

)
,

0 ≤ p′j,
J∑

j=1

p′j = 1

 (12)

Finally, we refer to the microstructure hull for
TJDFs as the triple junction hull and denote its
Fourier and Dirac basis representations by m(3)

H and
M(3)

H , respectively. Again, explicit mathematical
definitions for m(3)

S and M(3)
S are provided in [6].

The microstructure hull is a closed convex region
that constitutes the design space for microstruc-
ture design problems. For the present problem we
will employ the texture hull and a subspace of the
triple junction hull that contains microstructures for
which spatial correlations in grain orientation are
absent. The Fourier basis representation of this un-
correlated triple junction hull was defined in [6]
and is denoted m̃(3)

H . We will define the Dirac basis
representation, denoted M̃(3)

H , in Section 6.4.

5. Constitutive Models

Our objective is to develop the mathematical ap-
paratus whereby the structure of grain boundary
networks can be optimized for a given engineering
application. Our method employs spectral repre-
sentations of microstructural statistics, as already
described, in concert with spectral representations
of the relevant constitutive models. For elastic-
ity and initial plastic yield we employ constitu-
tive models that are sensitive to crystallographic
texture. For diffusivity we develop a constitutive
model that is sensitive to the structure of the grain
boundary network.

5.1. Yield
The effective macroscopic yield strength of our

polycrystalline material can be approximated using
the model developed by Sachs [18, 19], according
to:

σy1 ≈ τCRS S

 1
max
α

∣∣∣bα1 (q) nα1 (q)
∣∣∣
 (13)

where τCRS S is the critical resolved shear stress
(0.79 MPa for Al [20]), and bα1 (q) and nα1 (q) are the
x-components of the slip direction and slip plane

normal, respectively, of the α-th slip system—both
of which are functions of the crystallographic ori-
entation, q, in a given grain. The overbar in Eq. 13
indicates a volume average over all crystal orien-
tations in the polycrystal, which can be expressed
explicitly as

σy1 ≈ τCRS S

∫
S 3

f (q)

 1
max
α

∣∣∣bα1 (q) nα1 (q)
∣∣∣
 dq (14)

where f (q) is an ODF and the integration is per-
formed with respect to the appropriate invariant
measure: dq = 1

2 sin2 (ω/2) sin θdωdθdφ.
Substituting the Fourier representation of an

ODF (Eq. 5) into Eq.14 and integrating results in

σy1 ≈
∑
n,l,m

cn∗
l,m

[
σy1

]n

l,m
(15)

with

[
σy1

]n

l,m
= τCRS S

∫
S 3

Zn∗
l,m (q)

 1
max
α

∣∣∣bα1 (q) nα1 (q)
∣∣∣
 dq

(16)

In deriving Eq. 15 we have made use of the fact
that an ODF is a real-valued function and is there-
fore equal to its complex conjugate, which allows
us to exploit the orthogonality of the hyperspherical
harmonic basis functions.

The form of Eq. 15 is significant. In this expres-
sion the microstructural information, as encoded in
the ODF coefficients cn

l,m, has been decoupled from
the details of the physics, as encoded in the prop-
erties coefficients

[
σy1

]n

l,m
. The use of this spec-

tral framework permits such a decoupling and fa-
cilitates the fast computation of the effective prop-
erties [21], in this case σy1. This is because the
properties coefficients

[
σy1

]n

l,m
only have to be com-

puted once, and then σy1 may be evaluated for any
microstructure (cn

l,m) using the computationally ef-
ficient inner-product operation embodied in Eq. 15.

5.2. Elastic Compliance
The Voigt isostrain model [22, 23] for the ef-

fective elastic behavior of polycrystalline materi-
als does not satisfy equilibrium constraints, but per-
mits the derivation of a simple estimate for the rel-
evant constants of the elastic compliance tensor.
This estimate is an upper-bound and, for the spe-
cific case at hand, can be expressed as:

S 1111 =

∫
S 3

f (q) S 1111(q) dq (17)
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S 1111 S 1122 S 1212

15.851 −5.7285 35.286

Table 1: Numerical values of the independent elastic con-
stants for Al [24] appearing in Eq. 18. All values are in units
of 10−12 Pa−1.

where the orientation dependent function S 1111(q)
is defined by

S 1111(q) = Q1a(q) Q1b(q) Q1c(q) Q1d(q) S abcd (18)

with Qi j(q) being one of the components of a direc-
tion cosine matrix and the Einstein summation con-
vention implied for repeated indices. Eq. 18 may be
evaluated in closed form, but it is lengthy and will
be omitted here. Its evaluation requires the values
of the independent single crystal elastic constants,
which are provided in Table 1 for Al.

Again expressing the ODF appearing in Eq. 17 in
spectral form, and integrating we arrive at a spec-
tral expression for the Voigt estimate of the elastic
compliance of a polycrystal:

S 1111 =
∑
n,l,m

cn∗
l,m [s1111]n

l,m (19)

with

[s1111]n
l,m =

∫
S 3

Zn∗
l,m (q) S 1111(q) dq (20)

Formally, the Fourier representation consists of
an infinite series, but in all practical applications
truncation is applied. In this work we include all
terms through n = 20 for computation of both yield
strength and elastic compliance.

5.3. Grain Boundary Network Diffusivity
Equations 15 and 19 represent spectral ver-

sions of existing texture sensitive models for initial
plastic yield and elastic compliance, respectively.
While texture sensitive models for many material
properties exist, constitutive models that incorpo-
rate the influence of grain boundary network struc-
ture on the effective properties of polycrystalline
materials are far fewer. Building on the work of
Chen [25] and Frary [26] we construct a model for
the effective diffusivity of polycrystals that depends
on the structure of the grain boundary network and
demonstrate how it too may be expressed in spec-
tral form with the aid of the TJDF.

The diffusivities of individual grain boundaries
can differ by orders of magnitude, leading to a

sudden transition in the effective diffusivity of the
grain boundary network as the distribution of grain
boundary types changes, from a low-diffusivity
regime to a high-diffusivity regime. This strong
property contrast precludes the use of simple com-
posite averaging or effective medium theory (EMT)
models, which fail to capture this rapid “phase
change” behavior [27]. Such systems are often bet-
ter modeled using the tools of percolation theory.
McLachlan proposed a phenomenological percola-
tion theory based model for the effective electrical
conductivity of binary mixtures of insulating and
conducting phases [28, 29], which was adapted to
the analogous case of grain boundary network dif-
fusivity by Chen and Schuh [25]:

p1

D1/s
1 −

(
2D

)1/s

D1/s
1 +

(
p−1

c,2 − 1
) (

2D
)1/s +

p2

D1/t
2 −

(
2D

)1/t

D1/t
2 +

(
p−1

c,2 − 1
) (

2D
)1/t = 0 (21)

In this expression p1 and p2 are the fraction of low-
and high-angle grain boundaries, respectively, and
D1 ≤ D2 are the corresponding diffusivities. The
exponents are constants that depend only on the
dimensionality of the problem1 and in this work
are taken as s = 1.09 and t = 1.13. The spatial
distribution of low- and high-angle grain bound-
aries in real materials is manifestly non-random
and the percolation threshold for high-angle grain
boundaries, pc,2, is sensitive to these correlations
in the grain boundary network [30, 31], which re-
sult from crystallographic constraints, texture, etc.
These correlations have been observed to be short-
range [32] and can be quantified by the triple junc-
tion fractions, {Ji | i ∈ [0, 3]}, which measure the
fraction of triple junctions coordinated by i “spe-
cial” grain boundaries (low-angle in the present
context). Frary and Schuh found an empirical re-
lation that predicts the percolation threshold2 as a
function of the Ji [26], the details of which will
not be reproduced here for the sake of brevity, but
which allows us to write pc,2 = pc,2(J0, J1, J2, J3).

The Ji can be interpreted as the average proba-
bility of observing a triple junction coordinated by

1See [25] for a brief discussion of this “universality hy-
pothesis” for critical exponents in percolation theory.

2The expressions given in [26] were for pc,1, but can be
used to obtain pc,2 by simply replacing Eq. 7b of [26] with its
reciprocal.
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i “special” grain boundaries in a given microstruc-
ture. Considering low-angle grain boundaries as
“special”, this interpretation allows us to compute
the Ji by integration of the TJDF (Eqs. 7 or 8) ac-
cording to:

Ji =

∫
Ωi

T (q12, q23) dΩi (22)

In Eq. 22, the domain Ωi ⊂ S 3×S 3 is the respective
integration region defined by:

Ω0 = {(q12, q23) | ω̂12 > ωt, ω̂23 > ωt, ω̂31 > ωt}

(23a)

Ω1 = {(q12, q23) | ω̂12 ≤ ωt, ω̂23 > ωt, ω̂31 > ωt}

∪ {(q12, q23) | ω̂12 > ωt, ω̂23 ≤ ωt, ω̂31 > ωt}

∪ {(q12, q23) | ω̂12 > ωt, ω̂23 > ωt, ω̂31 ≤ ωt}

(23b)

Ω2 = {(q12, q23) | ω̂12 > ωt, ω̂23 ≤ ωt, ω̂31 ≤ ωt}

∪ {(q12, q23) | ω̂12 ≤ ωt, ω̂23 > ωt, ω̂31 ≤ ωt}

∪ {(q12, q23) | ω̂12 ≤ ωt, ω̂23 ≤ ωt, ω̂31 > ωt}

(23c)

Ω3 = {(q12, q23) | ω̂12 ≤ ωt, ω̂23 ≤ ωt, ω̂31 ≤ ωt}

(23d)

whereωt is the angular threshold between low- and
high-angle grain boundaries, which, based on dif-
fusivity data for Al [33, pg. 122], we estimate to
be ωt = 20◦. In Eq. 23, ω̂i j is the rotation angle of
the disorientation q̂i j

(
ω̂i j, θ̂i j, φ̂i j

)
corresponding to

the misorientation qi j

(
ωi j, θi j, φi j

)
. The disorienta-

tion, q̂i j, is the unique misorientation from among
all of those symmetrically equivalent to qi j that (1)
has the smallest rotation angle, ω12, and (2) has a
rotation axis lying in the standard stereographic tri-
angle. Uniqueness is guaranteed by enforcing the
supplementary conditions for “reduced rotations”
given by [34].

Introducing Eq. 7 into Eq. 22 and integrating we
obtain

Ji =
∑

n1,λ12,µ12
n3,λ23,µ23

tn3,λ23,µ23
n1,λ12,µ12

[Ji]
n3,λ23,µ23
n1,λ12,µ12

(24)

where the term [Ji]
n3,λ23,µ23
n1,λ12,µ12

may be pre-computed,
and is defined by

[Ji]
n3,λ23,µ23
n1,λ12,µ12

=

∫
Ωi

Zn1
λ12,µ12

(q12) Zn3
λ23,µ23

(q23) dΩi (25)

In all practical situations the infinite series in Eqs. 7
and 24 will be truncated to some finite number of

terms. Because of the harmonic nature of the basis
functions, this can result in non-negligible trunca-
tion error when employing Eqs. 24 and 25, even
giving non-physical negative values for the Ji on
occasion. This problem is resolved by instead em-
ploying the Dirac basis representation of the TJDF
(Eq. 8), which yields

Ji =

K∑
k=1

pk[Ji]k (26)

The coefficient [Ji]k in the Dirac basis repre-
sents the triple junction fraction corresponding to(

kq12,
kq23

)
, the k-th fundamental triple junction.

This observation facilitates the efficient computa-
tion of the Ji simply by characterizing the num-
ber of “special” boundaries coordinating each of
the fundamental triple junctions. To illustrate this
idea let

(
kq12,

kq23

)
be the k-th fundamental triple

junction. If kω̂12 < ωt, kω̂23 < ωt, and kω̂31 < ωt

then
(

kq12,
kq23

)
has all low-angle grain boundaries

and is a J3-type triple junction. We, therefore, have
[J0]k = 0, [J1]k = 0, [J2]k = 0, and [J3]k = 1.
Thus, the [Ji]k take the values 0 or 1 and may be
computed directly, without the aid of Eq. 25 and its
problematic integration, simply by characterizing
the triple junction types of the fundamental triple
junctions, which need only be performed once. The
Ji for any microstructure can then be computed us-
ing Eq. 26, which simply represents a weighted av-
erage of the [Ji]k with the TJDF coefficients, pk,
providing the weights.

Introducing Eq. 26 into Frary’s relation, pc,2 =

pc,2(J0, J1, J2, J3), and recalling that p2 ≈ 1− 1
3 J1 −

2
3 J2 − J3 (see [35]), allows us to express all of
the relevant microstructural parameters of our con-
stitutive model for effective grain boundary net-
work diffusivity (Eq. 21) in terms of the coefficients
of the TJDF. By numerically solving the implicit
equation represented by Eq. 21, we can express the
effective grain boundary network diffusivity in a
similar fashion to what we did for yield strength
(Eq. 15) and compliance (Eq. 19): in spectral form
as a function of the local properties (D1 and D2) and
the microstructure (the Dirac TJDF coefficients pk),
according to

D = D(pk,D1,D2) (27)

For pure Al, we use D2 = 10−12 m2/s, which we es-
timate from the maximum calculated grain bound-
ary diffusivity for 〈001〉 tilt grain boundaries at
250◦C with diffusion perpendicular to 〈001〉 [36].
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For the low-angle diffusivity we extrapolated the
data in [36] to a tilt angle of θ = 0◦ to find D1 ≈

4.6 × 10−20 m2/s.
We note that while this constitutive model em-

ploys the binary low-angle vs. high-angle grain
boundary taxonomy, this is not essential to the de-
sign framework presented here and, given a suit-
able constitutive model, the full spectrum of grain
boundary types can be considered.

6. Properties Closure

With constitutive models for the materials prop-
erties relevant to our design problem, expressed in
spectral form, we are now in a position to define the
properties closure [8]. Consider a space in which
a microstructure is represented by a point, whose
coordinates,

(
σy1, S 1111,D

)
, indicate its materials

properties. The properties closure is the closed re-
gion in this space containing all physically possible
combinations of these three properties. It can be
defined mathematically by

P =

 (
σy1, S 1111,D

) ∣∣∣∣∣∣∣ σy1 =
∑
n,l,m

cn∗
l,m

[
σy1

]n

l,m
,

S 1111 =
∑
n,l,m

cn∗
l,m [s1111]n

l,m, D = D(pk,D1,D2) ,

{
cn

l,m

}
∈ m(1)

H , {pk} ∈ M̃(3)
H ,

{
cn

l,m

}
→ {pk}


(28)

where m(1)
H and M̃(3)

H are microstructure hulls [6,
8]—specifically, the texture hull in the Fourier ba-
sis, and the uncorrelated triple junction hull in
the Dirac basis, respectively. The last expression,{
cn

l,m

}
→ {pk}, indicates a relationship between the

ODF and TJDF coefficients that is a result of a map-
ping from m(1)

H ← M(1)
H → M̃(3)

H , that will be defined
below. As the microstructure hull contains all pos-
sible microstructural configurations, the properties
closure is constructed by exercising our structure-
property models (Eqs. 15, 19, and 27) over the en-
tirety of the appropriate microstructure hull. While
this is conceptually straightforward—if you com-
pute the properties over the space of all possible
microstructures you will obtain the space of all pos-
sible properties—in practice it involves a number
of steps:

Step 1: Sample ODFs from M(1)
H

Step 2: Map from M(1)
H → m(1)

H

Step 3: Compute texture dependent properties:
σy1 and S 1111

Step 4: Map from M(1)
H → M̃(3)

H to obtain the TJDF
corresponding to each ODF

Step 5: Compute grain boundary network sensi-
tive properties: D

Step 6: Define the boundary of P

This process is graphically summarized in Fig. 1.
In what follows, each of these steps will be ex-
plained in detail.

Fig. 1: Graphical summary of the process of constructing the
properties closure.

6.1. Step 1: Sample ODFs from M(1)
H

To construct the properties closure, we take a
stochastic approach and sample many microstruc-
tures from the appropriate microstructure hull,
compute the relevant material properties of each,
and define P as the region in property space that
bounds all of the resulting points.

There are two microstructure hulls relevant to the
present design problem: M (1)

H and M̃ (3)
H . Johnson

& Schuh derived a formula that permits the compu-
tation of the TJDF coefficients in the Fourier basis
from those of an ODF when spatial correlations in
grain orientation are absent [6]. For reasons that
will be explained below, we require an equivalent
formula in the Dirac basis, which we will derive
in Section 6.4. These relationships effectively pro-
vide a mapping between M (1)

H and M̃ (3)
H . In light
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of this, we choose to sample from M (1)
H and subse-

quently map these points to M̃ (3)
H .

Because our texture dependent constitutive rela-
tions are formulated in the Fourier basis it seems
natural to sample ODFs from m(1)

H . The texture hull,
m(1)

H , is defined as the convex hull of the texture set,
m(1)

S . For all practical purposes m(1)
S will be finite,

consequently, m(1)
H will be a convex polytope, which

can be sampled uniformly using a hit-and-run al-
gorithm as discussed in [6]. However, there is a
major drawback to this method. To sample from
m(1)

H you must explicitly define its boundary, which
requires the computation of a convex hull. Consti-
tutive equations for all but the simplest properties
can require a large number of coefficients, cn

l,m, and
consequently m(1)

H will exist in a high-dimensional
space. The computational cost of constructing a
convex hull scales exponentially with the dimen-
sion [37], making this approach too computation-
ally expensive for practical use.

In the Dirac basis the texture hull, M(1)
H , has a

far simpler geometry: it is the standard (J − 1)-
simplex, where J is the cardinality of M(1)

S . This
fact obviates the need to explicitly compute a con-
vex hull, and also makes the procedure for sam-
pling far simpler. Sampling uniformly from a stan-
dard (J − 1)-simplex can be accomplished by stan-
dard methods; however, regardless of the basis,
uniform sampling of microstructure hulls is known
to result in poor sampling of the corresponding
properties closure [8], with all of the points clus-
tered near its center (see Fig. 2). The cause of
this phenomenon stems from the fact that extremal
properties are generally exhibited by extremal mi-
crostructures, which reside on the surface of the
microstructure hull. However, the dimensionality
of the surface of the microstructure hull is one less
than that of its volume and consequently it has mea-
sure 0 and is never sampled if uniform sampling is
employed.

We have recently devised an alternate method
called hierarchical simplex sampling (HSS) [38]
that leverages the geometric structure of mi-
crostructure hulls in the Dirac basis to efficiently
generate samples in both the interior and cover-
ing the surface of the microstructure hull in such
a way that the resulting points span the properties
closure. Figure 2 illustrates the improved perfor-
mance of HSS for a two-dimensional properties
closure consisting of the texture sensitive proper-
ties for the present design problem. For the present

design problem we use this HSS algorithm to sam-
ple NS = 108 textures from M(1)

S . We will denote
this set of sampled textures

S =
{
p′s

∣∣∣∣ p′s =
{
p′j

}
s
, j ∈ [1, J] , s ∈ [1,NS]

}
(29)

where p′s is the s-th sample, and can be interpreted
as a vector of coefficients

{
p′j

}
s

=
(
p′1, p′2, . . . , p′J

)T
.

In this way S, which is a set of sets, can be repre-
sented as a matrix where S js is the j-th coefficient
of the s-th sample.

 

 

Hierarchical Simplex Sampling

Standard Simplex Sampling
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Fig. 2: Comparison of microstructural sampling techniques
for NS = 103. Points resulting from uniform sampling of the
standard simplex are shown as red markers. Points resulting
from the hierarchical simplex sampling technique are shown
as green markers. The purple shaded region is the convex hull
of 105 samples taken using the hierarchical technique and is
shown for comparison, being a higher order approximation of
the true P

(
σy1, S 1111

)
, for the texture dependent properties

σy1, and S 1111.

6.2. Step 2: Map from M(1)
H → m(1)

H

Because we sampled texture coefficients, p′j, in
the Dirac basis and our models for σy1, and S 1111

are in the Fourier basis, we must perform a transfor-
mation M(1)

H → m(1)
H in order to obtain the Fourier

texture coefficients cn
l,m that our models require.

This transformation is accomplished by taking the
generalized Fourier transform of Eq. 6, yielding the
following formula:

cn
l,m =

J∑
j=1

p′j
jcn

l,m (30)
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which is the texture analog to Eq. 12 of [6],
originally developed for the TJDF coefficients. In
Eq. 30, the

j {
cn

l,m

}
∈ m(1)

S are the Fourier coefficients
of the j-th element of the texture set (see Eq. 9).

6.3. Step 3: Compute texture dependent properties

With Dirac ODF coefficients sampled and trans-
formed to the Fourier basis, the texture depen-
dent properties can now be directly evaluated for
each sampled texture by means of Eqs. 15 and 19.
For each texture we now have the two coordinates(
σy1, S 1111

)
in property space that are shown in

Fig. 2.

6.4. Step 4: Map from M(1)
H → M̃(3)

H

In the present design problem we are using
texture dependent constitutive equations for σy1

and S 1111, and a grain boundary network sensitive
model for D. To construct a properties closure that
is self-consistent, we must, therefore, be able to
identify the grain boundary network configuration
corresponding to a given texture.

In general the mapping between texture and
grain boundary network configuration, M (1)

H →

M (3)
H , is many-to-many. For a given texture, dif-

ferent spatial arrangements of the grains will re-
sult in distinct grain boundary network configura-
tions (TJDFs). Likewise, a given grain boundary
network configuration may be obtained from many
different textures. For example, all textures that dif-
fer only by a rotation, r, e.g. f (q) and f (qr), will
yield the same TJDF (this also implies that, given a
TJDF, it is only possible to recover the correspond-
ing ODF modulo a rotation operation) [39]. How-
ever, under the assumption that grain orientations
are spatially uncorrelated we obtain the mapping
M (1)

H → M̃ (3)
H , for which every ODF maps to only

one TJDF. Taking advantage of this fact, we can
take the texture coefficients, p′j, sampled from M(1)

H

and map them to M̃(3)
H to obtain the corresponding

TJDF coefficients, p̃k. A formula for this mapping,
developed in the context of the Fourier basis, was
given in [6]. In the Dirac basis, this mapping takes
a particularly simple form and is given by [39]:

p̃k =
∑

(a,b,c)∈Ek

p′a p′b p′c (31)

While simple in form, Eq. 31 deserves some ex-
planation. The triple junction set, M(3)

S , effectively
discretizes the triple junction space. The probabil-
ity of observing a triple junction associated with

the k-th fundamental triple junction in a given mi-
crostructure is given by pk. Eq. 31 says that, in
the absence of spatial correlations in grain orien-
tation, this probability is given by the joint prob-
ability of observing the triplet of grain orienta-
tions (qa, qb, qc) summed over all grain orienta-
tion triplets belonging to the equivalence class of(

kq12,
kq23

)
, denoted by Ek. The equivalence class

Ek is defined by the equivalence relations induced
by both crystallographic symmetry and triple junc-
tion symmetry. The equivalence relations for triple
junction symmetry were defined in [6], and are re-
produced here:

F =
{[

q12, q23
]
,
[
q23, q−1

23 q−1
12

]
,
[
q−1

23 q−1
12 , q12

]
,[

q−1
12 , q12q23

]
,
[
q12q23, q−1

23

]
,
[
q−1

23 , q
−1
12

]}
(32)

where [a, b] ≡ {(q12, q23) | (q12, q23) ∼ (a, b)}.
While, strictly speaking, M (1)

S and M (3)
S may be

defined independently of one another, the use of
Eq. 31 is computationally facilitated by construct-
ing them in such a way that they are related. Specif-
ically, we begin by defining M (1)

S by the crystal ori-
entations

{
1q, 2q, . . . , Jq

}
where J is the cardinality

of M (1)
S and defines its resolution. For the present

design problem we defined M (1)
S using a multilevel

pseudo-grid over the cubic fundamental zone com-
posed of 10 regularly spaced primary orientations
each with 6 secondary orientations being defined
as rotations of 9◦ along the six 〈100〉-type axes rel-
ative to the respective primary orientation. Thus,
for the present design problem we have J = 70.
Figure 3 shows the structure of this pseudo-grid in
the cubic fundamental zone. These same orienta-
tions are shown in their pole figure representation
in Fig. 4.

With the fundamental orientations defined, we
can identify all possible triple junctions that can be
constructed therefrom. A triple junction may be de-
fined by the ordered triplet of orientations coordi-
nating it:

(
aq1,

bq2,
cq3

)
, where the superscripts are

an index into the set of fundamental orientations,
and the subscripts denote the grain to which the
orientation belongs. The set of all possible triple
junctions that can be constructed from the set of
the fundamental orientations is given by{(

1q1,
1q2,

1q3

)
,
(

1q1,
1q2,

2q3

)
, . . . ,(

1q1,
2q2,

3q3

)
, . . . ,

(
Jq1,

Jq2,
Jq3

)}
(33)

which has cardinality J3. This can then be ex-
9



Fig. 3: Multilevel pseudo-grid over the cubic fundamental
zone (FZ) shown using the quaternion parameterization and
an isovolumetric projection [13] to three-dimensions. Blue
markers indicate the primary orientations and red markers
indicate the secondary orientations. Lines connecting sec-
ondary orientations to their respective primary orientations
are also shown. Several orientations are located outside of
the FZ and would normally be represented by their symmet-
ric image inside of the FZ, but they are plotted as shown to
highlight the structure of the pseudo-grid

Fig. 4: A {100} pole figure showing the orientations used to
define M (1)

S .

pressed in terms of misorientations according to{(
(1,1)q12,

(1,1)q23

)
,
(

(1,1)q12,
(1,2)q23

)
, . . . ,(

(1,2)q12,
(2,3)q23

)
, . . . ,

(
(J,J)q12,

(J,J)q23

)}
(34)

where (a,b)q12 denotes a misorientation between
the first and second grains coordinating a triple
junction, respectively possessing orientations cor-
responding to the a-th and b-th elements of the
set of fundamental orientations. Let C denote a
crystallographic point group, and ci ∈ C one of
the rotational symmetry operators belonging to C .
Crystallographic symmetry induces equivalence re-
lations on orientations according to q ∼ qci ∀ ci ∈

C . We denote the set of all such equivalence rela-
tions by C. In addition to crystallographic symme-
try there are distinct triple junction symmetries as
described in [6, 39], which induce triple junction
equivalence relations. The set of all triple junc-

tion equivalence relations was given explicitly by
Eq. 32 and is denoted by F. We next find the K
equivalence classes, {Ek | k ∈ [1,K]}, of Eq. 34 that
are induced by the combined application of C and
F. From each Ek we select one unique representa-
tive and denote it

(
kq12,

kq23

)
and this becomes the

k-th fundamental triple junction, which is subse-
quently used to define M (3)

S . In this way M (3)
S is

composed of the unique triple junctions that may
be constructed exclusively from the fundamental
orientations that define M (1)

S . Having constructed
M (3)

S in this way, we already have the Ek neces-
sary to evaluate Eq. 31, and thereby compute the
TJDF coefficients corresponding to a given ODF in
the Dirac basis. Employing this approach we ob-
tain 6, 411 fundamental triple junctions from the 70
fundamental orientations.

The motivation behind the multilevel pseudo-
grid used to construct the set of fundamental orien-
tations stems from the fact that the portions of the
triple junction character space belonging to each
triple junction type (J0, J1, J2, and J3) are not equal
in size, making certain types of triple junctions, J2

in particular, relatively rare as a result of crystal-
logrpahic constraints. At the same time, J2 type
triple junctions are experimentally observed [31],
and can play a critical role in determining GBN
connectivity as they are the only types of triple
junctions at which non-closed connected paths of
high-diffusivity GBs can terminate. Consequently,
a set of fundamental triple junctions that omits J2

type triple junctions would significantly and unnat-
urally restrict the GBN configurations that could
be considered. Since the fundamental triple junc-
tions were derived from the fundamental orienta-
tions, it was necessary to construct the set of fun-
damental orientations in such a way that each type
of triple junction appeared in the resulting set of
fundamental triple junctions (though, not neces-
sarily with equal frequency as shown in Table 2).
The resolution of a regular discretization of orien-
tation space necessary to produce triple junctions
of type 2 is prohibitively high; therefore, the multi-
level pseudo-grid approach was employed to pro-
vide representation of all 4 triple junction types
with fewer discretization points.

6.5. Step 5: Compute grain boundary network
properties

Using Eq. 31 we can now find the TJDF coef-
ficients in the Dirac basis for each of the textures
sampled from M(1)

H . Using Eq. 27 the grain bound-
10



J0 J1 J2 J3

0.7029 0.2884 0.0022 0.0066

Table 2: Fraction of each triple junction type appearing in the
set of fundamental triple junctions resulting from the multi-
level pseudo-grid discretization of orientation space. Only
four significant figures are shown here, but we verified that
using full precision

∑
i Ji = 1 to within machine epsilon.

ary network sensitive property D can then be de-
termined for each sampled point and we obtain the
triplet of property coordinates

(
σy1, S 1111,D

)
. The

property space coordinates of the sampled textures
are shown in Fig. 5.

Fig. 5: Properties space representation of each of the sampled
textures. Only 107 of the 108 points are shown.

6.6. Step 6: Define the boundary of P

We wish to define P , which is the envelope of
all physically possible properties combinations un-
der the assumptions of the constitutive models that
we used and the condition of uncorrelated grain
orientations. The convexity that is guaranteed for
microstructure hulls, such as M (1)

H and M (3)
H , does

not extend to properties closures [8]. This is par-
ticularly true for properties closures involving non-
linear constitutive relations.

The general problem of defining the non-convex
envelope of a set of points has no unique solution.
A number of methods have been developed (see
the review provided by [40] and references con-
tained therein), each making certain assumptions
that induce additional constraints necessary to de-
fine a solution. One method that is often employed,

and which we will use, is that of finding an α-
shape [41, 42]. Let S be a set of points in R3.
Consider a ball, B, of radius α ∈ [0,∞). When
α = 0, B is a point, and as α → ∞ it becomes
a half-space. The α-hull is defined as the region
of R3 through which B cannot be translated with-
out enclosing any of the points in S . To give a
more intuitive picture, consider a region R ⊆ R3.
Initially let R = R3 and imagine that B is trans-
lated throughout the entirety of R3. Anywhere that
B can be placed without enclosing any points in S
is removed from R. What remains of R after this
exercise will be a closed, but not-necessarily con-
vex or connected, region called the α-hull of S . By
replacing the curved boundaries of the α-hull with
flat planes, we recover the polytope referred to as
the α-shape. The α shape is a generalization of the
convex hull, and when α = ∞ the convex hull is re-
covered. Fig. 6 shows α-shapes with various values
of α for a two-dimensional point cloud.

Because the scales of σy1, S 1111, and D differ sig-
nificantly, choosing an appropriate value of α for
our design problem is difficult. To address this is-
sue, the property coordinates were normalized for
the purposes of the α-shape computation according
to the following transformations:

x =
2σy1 −

(
max

(
σy1

)
+ min

(
σy1

))
max

(
σy1

)
−min

(
σy1

) (35a)

y =
2S 1111 −

(
max

(
S 1111

)
+ min

(
S 1111

))
max

(
S 1111

)
−min

(
S 1111

)
(35b)

z =
2 ln D −

(
max

(
ln D

)
+ min

(
ln D

))
max

(
ln D

)
−min

(
ln D

) (35c)

where max
(
σy1

)
denotes the maximum observed

value of σy1 among all of the samples, and so on
for the other properties. In the space of (x, y, z) a
parameter value of α = 0.75 was employed. Apply-
ing the α-shape algorithm to the normalized coor-
dinates of the property space point cloud yields our
desired result: delineation of the properties closure,
P , which is shown in Fig. 7. Note the non-convex
regions of P , particularly evident near the bottom.
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α = ∞α = 10α = 5

Fig. 6: α-shapes for a point cloud with various values of the parameter α. The figure to the far right with α = ∞ shows the convex
hull of the point cloud.

Fig. 7: The properties closure, P , for the properties σy1,
S 1111, and D as approximated using the procedures outlined
in Section 6.

7. Solving the Design Problem

The objectives of the present design problem
were given in Eq. 1. The constraint S 1111 = S sub

1111
given in Eq. 1b may be represented in the property
space as a plane, as illustrated in Fig. 8, where we
take S sub

1111 = 2.5665 × 10−11 Pa−1. The feasible
region of our design problem lies on the intersec-
tion of this plane and P , and is shown in Fig. 9.
In order to satisfy Eqs. 1a and 1c, we can define a
composite objective function to minimize:

fob j =
z + 2 |zmin|

x + 2 |xmin|
(36)

where x and z are the normalized coordinates ofσy1

and D, respectively, as defined in Eq. 35. The theo-
retical minimum values of σy1 and D in the present
context and considering 2D honeycomb GBNs are,
respectively,

(
σy1

)
min

= 2τCRS S and
(
D
)

min
= D1/2.

The terms xmin and zmin, appearing in Eq. 36, are
the normalized coordinates of these values.

Fig. 8: Intersection of the design constraint S 1111 = S sub
1111

with P , for S sub
1111 = 2.5665 × 10−11 Pa−1. This design con-

straint is represented as the semi-transparent vertical plane.

In the context of texture sensitive microstructure
design, several methods have been used to search
P for an optimal design solution including both
gradient-based [43] and stochastic methods [44].
Since we have already sampled many microstruc-
tures to generate P we leverage this expended ef-
fort and take the solution to the design problem to
be

min
S∈R

fob j (37)

where

R =

(σy1, S 1111,D
) ∣∣∣∣∣∣∣∣

∣∣∣S 1111 − S sub
1111

∣∣∣(
S 1111

)
max
−

(
S 1111

)
min

< 10−6


(38)

is the region of properties space within some toler-
ance of the plane S 1111 = 2.5665 × 10−11 Pa−1.

In Fig. 9, the contours of fob j are plotted over
the feasible region. The optimal microstructure
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Fig. 9: The feasible region for the design problem. Contours
of the objective function, fob j, as defined in Eq. 36, are plotted
over the feasible region. The best performing design solution
is shown (black dot) along with the worst performing solution
(white dot) and the isotropic solution (blue dot). The isotropic
solution does not satisfy the design constraints and falls out-
side of the feasible region. The textures of the best and worst
solutions are also shown as {100} pole figures where the gray
discrete points are the fundamental orientations defining M(1)

S .
The color scale for the texture components is in multiples of
the random distribution (MRD).

(black dot) lies at the bottom tip of the feasible
region. The corresponding texture is composed
of a roughly 75%/25% mixture of two orienta-
tions, the majority orientation being one with a very
low yield strength (σy,1 = 1.8 MPa) and the mi-
nority orientation having the largest yield strength
from among the fundamental orientations (σy,1 =

2.5 MPa). The worst performing microstructure
has a texture that is reminiscent of a weak fiber
texture with the shared rotation axis parallel to the
loading direction. An isotropic microstructure pos-
sessing no texture (i.e. a uniform ODF) would not
satisfy the design constraint on S 1111, but it is also
plotted in Fig. 9 for comparison as it exhibits the
properties that might be expected for an “unde-
signed” microstructure.

The TJDF coefficients corresponding to the tex-
tures shown in Fig. 9 were also obtained; however,
since the TJDF is a six-dimensional function, its
direct visualization is difficult. Instead, we have re-
constructed simulated microstructures with hexag-
onal grains and assigned grain orientations in a spa-
tially uncorrelated fashion from each of the respec-

tive ODFs. In Fig. 10 the grain boundary networks
of each of these microstructures are shown with
grain boundaries colored according to their disori-
entation using the Patala coloring scheme [45, 46],
which encodes both the rotation angle and axis of
the disorientation.

The crystallographic structure of the grain
boundary networks is dramatically different. Most
notably, the grain boundary networks of the
isotropic and worst performing microstructures
both contain a large diversity of grain boundary
types, including many high-angle (D2-type) grain
boundaries. In contrast, the best performing mi-
crostructure is largely single crystal (GBs colored
white correspond to a misorientation of 0◦), and
where GBs do exist they are exclusively of one
type: a rotation of just over 50◦ about an axis close
to 〈110〉.

Fig. 10: The grain boundary networks corresponding to the
best, worst, and isotropic design solutions shown in Fig. 9.
Grain boundaries are colored by their disorientation angle and
axis according to the Patala coloring scheme [45, 46]. For a
given disorientation angle, the color code on the right indi-
cates the corresponding rotation axis by its position in the
relevant standard stereographic triangle.

The optimal microstructure outperforms the
worst performing microstructure and the isotropic
solution by over six orders of magnitude in terms of
D. Median time to failure (MTF) for electromigra-
tion is inversely proportional to an Arrhenius term
involving the activation energy for atomic migra-
tion [11]. Since diffusivity is directly proportional
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to this same Arrhenius term, we have that MT F ∝(
D
)−1

. Therefore, in terms of resistance to electro-
migration the optimal solution is expected to have
a MTF that is roughly 3.8 × 106 times longer than
that of an undesigned isotropic material. While
the isotropic solution is predicted to exhibit a yield
strength that is slightly higher than the optimal so-
lution (by about 0.3%), it has a much higher dif-
fusivity and therefore is significantly more vulner-
able to electromigration failure. The optimal so-
lution outperforms the yield strength of the worst
solution by 11.2%. Although compared to the im-
provement in MTF this enhancement seems mod-
est, the maximum possible yield strength in the fea-
sible region is only a roughly 11.9% improvement
over the worst solution, so the yield strength im-
provement of the best solution represents roughly
95% of what is theoretically possible.

Although the configuration of the optimal mi-
crostructure is consistent with one’s intuition—a
grain boundary network that maximizes the frac-
tion of J3-type triple junctions while maintain-
ing polycrystallinity for the purposes of yield
strength—further investigation reveals additional
insights. The competition between yield strength
and diffusivity leads to a microstructure consist-
ing exclusively of J1- and J3-type triple junctions
(See Fig. 11), which has important implications for
grain boundary network topology. For instance, be-
cause there are no J2-type triple junctions, all of the
connected paths of high-diffusivity grain bound-
aries are closed loops and therefore percolation is
avoided.

Frary showed that a pair of order parameters,
σ ∈ [−1, 1] and χ ∈ [−1, 1], can be defined for
grain boundary networks in terms of the triple junc-
tion fractions [26]. σ characterizes the tendency
for low-angle grain boundaries to mix (σ < 0)
or segregate (σ > 0), while χ characterizes the
tendency of low-angle grain boundaries to form
compact (χ < 0) or elongated (χ > 0) clus-
ters. Figure 12 presents the values of σ and χ
for all of the microstructures in the feasible re-
gion. Microstructures located in the interior of the
feasible region and near the optimal microstruc-
ture tend to have higher values of σ indicating that
low-angle grain boundaries in these microstruc-
tures are strongly segregated. Comparison with
Fig. 11 confirms that the optimal microstructure
exhibits highly segregated clusters of low-angle
grain boundaries, σbest = 0.46, whereas the worst-
performing microstructure exhibits a greater degree

Fig. 11: The grain boundary networks corresponding to the
best, worst, and isotropic design solutions shown in Fig. 9.
Low-angle grain boundaries are colored dark blue and high-
angle grain boundaries are colored light gray to highlight low-
angle grain boundary segregation and cluster topology. Note
that in this view the triple junction types are easily observed,
e.g. triple junctions coordinated by three dark blue bound-
aries are J3-type triple junctions.

of mixing σworst = 0.1. In contrast, there does
not appear to be any clear correlation between χ
and the performance of the microstructures—with
most of the microstructures having χ ≈ 1. Thus
it appears that, for the present design problem, the
degree of segregation may be more important (or
at least may more strongly differentiate the perfor-
mance of different microstructures) than the topol-
ogy of low-angle grain boundary clusters.

While the properties closure delineates the en-
velope of all theoretically possible properties com-
binations, it does not directly encode the like-
lihood of observing those microstructural states.
Frary showed that the configurational entropy of
a grain boundary network S config, which is related
to the likelihood of observing a particular con-
figuration, can also be computed from the triple
junction fractions [47]. A reference value, S 0

config,
can be set by the maximum entropy configuration,
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Fig. 12: Plots of the order parameters, σ (left) and χ (center),
and negative configurational entropy difference, −∆S config
(right) for all of the microstructures in the feasible region.
Each marker represents a microstructure, with marker color
indicating the corresponding value of the order parameter or
−∆S config as shown in the respective colorbars.

which can be determined by the method of La-
grange multipliers [47]. Thus, we follow the con-
vention of [47], and define the negative configura-
tional entropy difference for a grain boundary net-
work as −∆S config ≡ −

(
S config − S 0

config

)
. The larger

the value of −∆S config for a microstructure, the less
entropic is its configuration (i.e. the more infor-
mation it contains compared to the maximum en-
tropy configuration). Figure 12 shows that there is
a clear trend of decreasing entropy towards the bot-
tom of the feasible region, with the best performing
microstructure having −∆S config = 0.64 compared
to the worst performing microstructure which ex-
hibited −∆S config = 0.24. At the same time, there
appear to be microstructures whose performance is
nearly as good as that of the optimal microstruc-
ture, but with significantly higher entropy (note the
sharp transition from orange to green above the
optimal microstructure), suggesting that with mi-
nor sacrifices in performance it may be possible to
identify a less extreme microstructural configura-
tion that may be more likely to be observed experi-
mentally or may be more easily manufactured.

8. Conclusions

We have presented a texture-mediated approach
to grain boundary network design that facilitates
the optimization of microstructures for complex
multi-objective design problems. To illustrate its

utility we considered a concrete design problem in-
volving the optimization of an Al microstructure
intended to be used in a flexible electronics ap-
plication. In this context we sought to identify a
crystallographic texture (as quantified by the ODF)
and commensurate grain boundary network struc-
ture (as quantified by the TJDF) that would si-
multaneously maximize the effective yield strength
of the polycrystalline material, minimize the grain
boundary network diffusivity, and exhibit a speci-
fied elastic compliance.

We developed a model that predicts the effec-
tive diffusivity of a grain boundary network from
the coefficients of its TJDF. Using established tex-
ture dependent models for yield strength and elas-
tic compliance, together with our newly developed
model for grain boundary network diffusivity, and
the relationships between texture and grain bound-
ary network structure derived here and in [6], we
computed a properties closure, P , for σy1, S 1111,
and D. This is the first properties closure that has
ever been computed for grain boundary network
sensitive properties—or any defect sensitive prop-
erty for that matter—and represents the envelope of
all properties combinations ofσy1, S 1111, and D that
are predicted to be physically realizable under the
assumptions of our constitutive models and the ab-
sence of spatially correlated grain orientations. The
shape of P indicates that the properties of interest
vary in a complex way with one another, similar to
what has been observed in other contexts [43]. For
the present design problem, this resulted in com-
peting design objectives.

Using these tools we identified an optimal tex-
ture and its corresponding grain boundary network
and found that it significantly outperformed both
the worst case scenario as well as an “undesigned”
isotropic microstructure. This improvement con-
firms the significant potential for materials prop-
erties enhancement that is possible through grain
boundary network design.
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