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Real-time Motion Planning for Aerial Videography
with Dynamic Obstacle Avoidance and Viewpoint

Optimization
Tobias Nägeli1, Javier Alonso-Mora2,3, Alexander Domahidi4, Daniela Rus2, Otmar Hilliges1

Index Terms—Aerial Robotics, Motion and Path Planning,
Collision Avoidance.

Abstract— We propose a method for real-time motion planning
with applications in aerial videography. Taking framing objec-
tives, such as position of targets in the image plane as input,
our method solves for robot trajectories and gimbal controls
automatically and adapts plans in real-time due to changes in the
environment. We contribute a real-time receding horizon planner
that autonomously records scenes with moving targets, while
optimizing for visibility to targets and ensuring collision-free
trajectories. A modular cost function, based on the re-projection
error of targets is proposed that allows for flexibility and artistic
freedom and is well behaved under numerical optimization. We
formulate the minimization problem under constraints as a finite
horizon optimal control problem that fulfills aesthetic objectives,
adheres to non-linear model constraints of the filming robot and
collision constraints with static and dynamic obstacles and can be
solved in real-time. We demonstrate the robustness and efficiency
of the method with a number of challenging shots filmed in
dynamic environments including those with moving obstacles and
shots with multiple targets to be filmed simultaneously.

I. INTRODUCTION

ROBOTICS and micro-aerial vehicles in particular are
rapidly becoming an end-user facing technology. In par-

ticular, the application domain of filming with aerial vehicles
currently receives great interest from industry and consumers.
Professional camera teams leverage consumer-grade robots
to create stunning visuals that previously required a heli-
copter and expensive camera gear. However, manually flying
quadcopters remains a surprisingly hard task. Furthermore,
automated flight modes in current commercial offerings are
restricted to simple circling or target following.

Several algorithms have been proposed for the planning of
quadcopter trajectories [1, 2, 3], taking both aesthetic objec-
tives and the physical limits of the robot into consideration.
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Fig. 1: We propose a real-time method to film shots of dynamic
scenes automatically. The user specifies target positions on screen.
We solve for robot trajectories and gimbal controls, producing footage
that adheres to aesthetic constraints, minimizes visual occlusion and
produces collision-free trajectories in dynamic scenes.

These methods make the task of trajectory planning easier
for non-experts. However, current approaches employ global
optimization techniques, planning the entire trajectory a priori.
While [2] allows to adjust the velocity along the planned
trajectory at execution time, none of the existing methods are
capable of re-planning a suitable trajectory in real-time, for
example to avoid collisions with dynamic obstacles or to film
targets that move in unpredictable ways (e.g., human actors).

In this paper we propose an approach to the automatic gen-
eration of quadcopter and gimbal controls in real-time while
ensuring physical feasibility. In particular, we contribute a
fast receding horizon planner based on numerical optimization
for automatic aerial cinematography. The method takes high-
level aesthetic objectives given by a cameraman as input and
automatically records the scene while the targets move in an a
priori unknown way. The system fulfils the high-level framing
objective, in the least squares sense, while ensuring collision-
free paths. The resulting appearance of targets is specified via
set-points in screen space (extending ideas outlined in [4])
and the method minimizes the re-projection error alongside
the viewing direction and scale of the target projections in
real-time.

We formulate this cost minimization problem under con-
straints as a finite horizon model predictive control (MPC)
non-linear program with the following properties: (i) a main
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utility function to fulfill - as close as possible - the spec-
ifications from the user in a dynamic scene; (ii) input and
state constraints to respect the dynamics and model constraints
of the aerial vehicle; (iii) constraints for collision avoidance
with obstacles and the targets being recorded. The resulting
optimization problem can be solved numerically with state-of-
the-art solvers in real-time. The inputs computed are applied
for the first time step, and the optimization is repeated at the
next sampling instance with updated information about the
quadrotor state, obstacles and target positions. We believe that
the method is general enough and could be adapted to other
tasks for aerial vehicles which include collision avoidance with
respect to moving obstacles.

II. RELATED WORK

Quadrotor trajectory generation is a well studied problem
and various approaches have been proposed, including early
work on MPC for collision avoidance applied to aerial vehi-
cles [5, 6], global forward planning approaches to generate
minimum snap trajectories [7], for generating collision-free
trajectories via convex optimization [8] or for state interception
with a quadrotor [9] based on a convex MPC formulation.
Outside of the field of aerial vehicles, constrained optimization
methods have also been proven to be powerful tools for tra-
jectory generation [10]. We also formulate our problem in the
MPC framework to attain real-time performance, using the full
non-linear dynamics of the quadrotor and extending trajectory
generation to include collision avoidance with dynamic targets
and to respect cinematographic objectives.

Automatic camera control has been studied extensively in
the context of virtual environments in computer graphics. We
refer to the comprehensive review in [11], with the majority of
methods using discrete optimization formulations. Notably in
virtual environments it has become somewhat of a standard to
define viewing constraints in screen-space [4, 12, 13] However,
virtual environments are not limited by real-world physics
and robot constraints and hence can produce arbitrary camera
trajectories, velocities and viewpoints.

Extending the work on trajectory generation [7], several
algorithms for planning aerial video shots of (mostly) static
scenes [1, 2, 3] exist. Joubert et al.’s method [2] allows
an operator to adjust the velocity of the MAV at execution
time to keep moving targets in-frame. However, the method
cannot re-plan the trajectory in cases where the target does
deviate from an a-priori known path or in cases were dynamic
obstacles temporarily obstruct the original trajectory. Lino et
al. [14] propose a method to generate camera paths in virtual
environments that ensure visibility of the faces of two actors
in the image. This concept was later extended to quadrotors
[15], albeit limited to obstacle free environments. To record a
single moving target with multiple quadrotors, [16] introduced
a particle swarm method for formation control. The method
is again limited to obstacle-free environments and only tested
in simulation. We propose a general constrained optimization
approach for automatic viewpoint and trajectory computation
allowing for multiple moving targets and obstacles in the
environment. The approach can be solved in real-time.

Fig. 2: Illustration of cinematographic framing constraints: size,
viewing angle and position on screen (from left to right).

Our method also accounts for occlusions and loosely relates
to the fields of target tracking [17], visual servoing [18], active
vision [19] and persistent monitoring [20], where our focus is
on videographing a set of moving targets.

III. PRELIMINARIES

A. Cinematographic Objectives

While film making is a form of art and relies on human
creativity and intuition, many aspects of it have been studied
and categorized forming a ‘grammar’ of film [21]. Fig. 2
summarizes the most important aspects. We later formalize
these mathematically for use in a cost minimization algorithm.
In particular, we are interested in framing objectives – that
is formal rules that specify how objects should appear on
the screen. The first important notion is that of distance.
Shots can be categorized into five types of shots (close-up,
close-medium, full and long shots), see Fig. 2, left. A further
important aspect is that of the relative viewing angle, which
can also be categorized into ranges of pan- and tilt-angles),
see Fig. 2, middle. Finally, the screen position of a filmed
target is important in order to create aesthetically pleasing
footage. In particular the rule of thirds (cf. [22]) prescribes
the placement of significant vertical and horizontal elements
along the horizontal and vertical thirds (Fig. 2, right).

1) Shot Framing Requirements: From the above film gram-
mar we can extract objectives for an optimization method. In
particular, we consider (i) the screen position of targets, where
we seek to minimize the distance between the desired position
on screen and the projection of the actual (3D) target position
onto the screen. (ii) To relate shot distances to positions, we
seek to optimize the projected size of a given target. (iii)
Furthermore, we require the algorithm to consider the relative
viewing angle between target and camera center, for example
to keep the face of a person in view. (iv) Finally, we require
the algorithm to account for an externally set camera pose,
which could be specified directly by the user or a high-level
global planning algorithm.

B. Notation and Coordinate Frames

We denote the set of positive definite matrices of size n by
Sn++ and the set of positive semi-definite matrices of size n
by Sn+. Given a vector x ∈ Rn, we define the square of the
norm as ‖x‖P , xTPx for P ∈ Sn++. Vectors are denoted in
bold. If not indicated differently, vectors are expressed in the
standard Earth North Up (ENU) coordinate system. We denote
points in 3D as p with a name as subscript (e.g., ph for phead).
A relative vector between two points pa and pb is denoted as
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rab. A supperscript rcab indicates the vector rab is expressed
in frame C (without subscript the vector is expressed in the
inertial frame I . Pixel coordinates are denoted as µ. Desired
setpoints are indicated with a subscript (.)d.

Rotation matrices performing rotations from frame A to
frame B are denoted by RBA = R(q̄BA) ∈ SO(3), where
q̄BA is the corresponding quaternion. We adhere to the JPL
quaternion definition [23] and denote a quaternion by q̄ =
[qxi + qyj + qzk + qw] = [q, qw]

T . Quaternion multiplication
is denoted by ⊗. Orientation errors are described in so(3), the
tangent space of SO(3), and are written as δθ.

C. Robot and Camera Model

Our method is agnostic to the quadrotor hardware. However,
in our experimental setup we use a Parrot Bebop 2 and
therefore we will use its model in our derivations. In general,
the pose of a quadrotor can be described by its position
pq ∈ R3 and orientation q̄q ∈ SO(3). While the camera is not
directly attached to the center of the quadrotor, experimentally
we have found it to be sufficient to assume the camera position
pc and the quadrotor’s position pq to be identical. In the
following consider pc = pq . The set of feasible states is
denoted by X . The state of the system is defined by

x = [pc, vx, vy, q̄q]
T ∈ R5 × SO(3), (1)

where vx, vy are the velocities of the quadrotor along the x
and y axis.

The inputs accepted by Parrot’s SDK are roll angle φq ,
pitch angle θq , angular speed around the body-z axis ωqz and
velocity in the body-z axis vz = ṗqz . The camera is attached
to the robot via a pan-tilt gimbal (in case of the Bebop this is a
software gimbal) where in this paper only the tilt part is used.
Due to pre-stabilized gimbal dynamics, it can be modeled
using a separate pitch angle θg . The set of feasible inputs
is denoted by U . The inputs to the system are

u = [φq, θq, ωqz , vz, θg] ∈ R5. (2)

The sets X and U are given by the physical limits of the
environment (e.g. pz > 0) and by the internal constraints
of the Parrot Bebop 2 (e.g. maximal vertical and horizontal
velocities, maximal roll pitch angle). The limits are described
in the documentation of the Parrot SDK 1.

The full non-linear model and its states are not exposed via
the SDK, hence we use the following approximation for the
dynamics. The system model of the flying camera is given by
non-linear ordinary differential equations for the acceleration
in the x and y axis, p̈cx,y , and the velocity in body-z ṗcz .

p̈cx,y = Rψ(q̄q)

[
−tan(θq)
tan(φq)

]
g and ṗcz = vz, (3)

where g = 9.81ms2 is the earth’s gravity and Rψ(q̄q) ∈ SO(2)
is the rotation matrix of the quadrotor’s yaw only. The cam-
era’s attitude is given by the quaternion

˙̄qc = q̄g(θg)⊗ (q̄q ⊗ q̄(ωqz )) , (4)

1http://developer.parrot.com/

Fig. 3: Coordinate frames and physical quantities used in our
method, here shown on the example of a human actor. The
pose of the flying camera is given by its position pc, its
orientation q̄c and the orientation of the gimbal q̄g . The target is
modeled by an ellipsoid SΩs centered at pt. The flying camera
avoids collisions with this volume. In this case the objective
is to record the head of the target, modeled as an oriented
sphere with direction given by ψ, size hh and position ph.
The projection of the head onto the camera image space has
size σ and is centered at µx, µy .

where q̄g(θg) is the quaternion defined by the gimbal pitch
angle θg and q̄(ωqz ) is defined as

q̄(ωqz ) =
1

2ε


0
0

ωqzsin(ε)
2cos(ε)

 with ε = ‖ωqz‖. (5)

In the remainder of the paper the continuous non-linear
quadrotor model ẋ = f(x,u) is discretized using a standard
forward Euler approach: xk+1 = f(xk,uk) [24].

D. Target Model

We denote the position of each actor, or moving target, by
pt ∈ R3, with K the number of targets. We then assume
that the human motion is based on a constant velocity model
p̈t = qη where qη ∼ N (0, σt) is Gaussian noise. Given the
current observations, we predict future positions of the actor
with a standard linear Kalman filter [24].

IV. TRAJECTORY GENERATION FOR VIEWPOINT
OPTIMIZATION

The goal of our algorithm is to find a feasible and locally
optimal trajectory for the quadrotor and gimbal control inputs
in real-time. The method produces imagery that minimizes the
deviation with respect to the high-level image space specifica-
tions of Sec. III-A1 and generates trajectories that guarantee
collision-free motion with respect to dynamic obstacles.

A scene is formed by K targets to be filmed, e.g. the faces
of actors as seen in Fig. 3. Each target i ∈ {1, . . . ,K} is
modeled as a sphere at position ph ∈ R3, with orientation
ψ and of diameter hh. Note that for clarity we typically omit
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the additional subscript i unless explicitly dealing with several
targets. Without loss of generality, in the following we only
consider the orientation ψ around the z-axis, to model the
gaze direction of the face (see Fig. 3). For collision avoidance
and visibility, we consider that each target (not only the face)
occupies a physical space defined by an ellipsoid SΩs centered
at pt = ph+(hh2 −

h
2 )ez , where h denotes the physical height

of the target from the ground and ez the earth’s up vector,
illustrated in Fig. 3 for the case of a human actor.

A. Method Overview

We propose a receding horizon MPC formulation for tra-
jectory generation given by the following variables, cost terms
and constraints. Denote by ∆t the time step and by N the
time horizon of the MPC problem. At each time step a local
trajectory of duration N∆t is computed. The first input is
then applied. The optimization problem is re-solved at every
sampling instance, leading to closed loop performance. This
makes the approach robust against model uncertainties and
unpredictable disturbances. At the next timestep k+ 1 we use
the estimated states x̂0 of the quadrotor and all targets as the
initial state x0 and use the trajectory from timestep k as an
initialization for the solver.

1) Variables: The optimization variables are the following.
(a) The states x0:N , which include the initial state x0, the
state trajectory {x1, . . . ,xN−1} and the final state xN . (b)
The control inputs u0:N−1 = {u1, . . . ,uN−1}. And (c) the
additional slack variables s0:N = {s0, . . . , sN}, one for
each collision constraint and described in the forthcoming
Sec. IV-D. The set of optimization variables is denoted by

z = {x0:N ,u0:N−1, s0:N}. (6)

2) Cost terms: The final quantity we seek to minimize is
the weighted sum of cost terms consisting of image framing,
visibility and pose costs over all N stages of the planned
trajectory.

3) Constraints: We include constraints to avoid collisions
with moving obstacles and moving targets and to respect the
dynamic model of the quadrotor introduced in Sec. III-C.

B. Viewpoint Optimization Problem

At the core of our algorithm lie a number of cost terms
cimage(x), cangle(x) and csize(x) which describe the deviation
from the desired position of each target’s projection on the
image plane µ(x,y)d

, from the viewing angle ad and from the
projection size σd. Each of these cost terms is computed for
each state k ≤ N of the planning horizon and for each target
i ≤ K. For simplicity of exposition, the derivation of the costs
is described for a general target. We also define the vector rch
which is the relative vector between the target and the camera
as well as the rotation into the camera frame of rch which is
denoted as rcch:

rch = ph − pc and rcch = R(q̄c)rch,

1) Image Space Positions: Given the desired position of
each target’s projection on the image plane µ(x,y)d

, the pixel
coordinates md are computed via the camera intrinsics with
focal point Cx,y and focal length f = [fx, fy]:

md =

[
(µxd − Cx) fx
(µxd − Cy) fy

]
with µ(x,y)d

∈
{

0, 2C(x,y)

}
.

Consider the vector rcd = [md, 1]T ∈ R3 pointing from the
camera center through the desired pixel location md in the
image. We compute the quadratic image space location cost
cimage(x) using the residual given by the difference between
the ray rcch from the camera to the target and the desired
direction rcd,

cimage(x) = ‖ρm‖Qm with ρm =
rcch
‖rcch‖

− rcd
‖rcd‖

(7)

2) Projection Size: The size σ of the target in the image
plane is computed by projecting the 3D sphere of diameter hh
to a circle in the 2D image plane. The target-size cost csize(x)
is computed using the difference between the projected σ and
the desired size σd.

csize(x) = ‖σ − σd‖Qσ with σ =
hh‖f‖
‖rcch‖

. (8)

3) Relative Viewing Angle: Given the desired viewing an-
gles θd and ψd, and the current orientation ψ of the target, we
define the desired viewing orientation ad between the center
of the camera and the target:

ad =
[
sin θd cos (ψd + ψ) , sin θd sin (ψd + ψ) , cos θd

]T
Because the angle ψd is relative to the target we add the

current rotation of the target ψ to obtain the setpoint. The view
angle cost cangle(x) is computed using the error between the
desired (relative to the target’s normal) and the current viewing
angle:

cangle(x) = ‖ρa‖Qa with ρd = − rcch
‖rcch‖

− ad
‖ad‖

. (9)

4) Camera Pose: In addition to local viewpoint optimiza-
tion we can also consider the residual in the camera’s position
and orientation dynamics - although this is not a required cost.
Here we assume that either the user or a global path planning
algorithm can specify a desired pose pcd and q̄qd for the flying
camera, which is compared to the actual pose of the camera
given by pc and q̄c. The position residual is given by the
euclidean distance. The orientation residual ρθ is computed
building the error quaternion and projecting it into the tangent
space so(3) of the SO(3) manifold:

ρθ = δθ =
[
q̄ex q̄ey q̄ez

]
∈ so(3) with q̄e = q̄c ⊗ q̄−1

cd
.

This yields the camera pose cost cpose(x):

cpose(x) = ‖pcd − pc‖Qp + ‖ρθ‖Qθ . (10)
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Fig. 4: Schematic illustration of occlusion minimization based on
viewpoint dependent horizon culling.

C. Occlusion Minimization

To allow for scenes containing objects that can move into
the line-of-sight, we have to account for target visibility.
Dynamic objects are modelled as ellipsoids SΩs and we ob-
serve that point visibility can be decided by ‘horizon culling’,
illustrated in In Fig. 4. The lines from the camera center pc
to the ellipsoid’s tangent define the horizon plane Ho. All
points on the intersection of Ho and SΩs are on the horizon,
all points in the shaded region Co are below the horizon and
therefore not visible from the camera’s viewpoint. To this end
we adopt a fast visibility test [25], which can be summarized
as: (i) determine if a point is in front Ho (visible) and (ii) for
those behind Ho whether they are within the infinite cone
formed by the tangent lines (Co).

To determine if a target ti is in front of Ho, defined by tj ,
we compute:

rchi = phi − pc,
rctj = ptj − pc,
pproj = rTchirctj .

Where rchi is the vector to the target, rctj the vector to the
center of ellipsoid SΩs and pproj is the component of rchi in
the direction of rctj . If pproj > r

T
ctjrctj − 1 then the point is

behind the plane.
For these cases we can determine if the point falls into the

cone by comparing the opening angles α and β, see Fig. 4.
Avoiding costly trigonometric functions we use directly the
approach given in [25]. This gives us the visibility score:

dv =
pproj

rTchirchi
> rTctjrctj .

And we define the visibility cost cvis(x):

cvis(x) =

{
‖dv‖Qv if dv > 0 and pproj > r

T
ctjrctj − 1,

0 otherwise.
(11)

D. Collision Avoidance

A final concern of the planning algorithm is to generate
collision-free trajectories. Here we assume known geometry
of the scene and real-time position information of moving
obstacles (targets are also considered as moving obstacles). To
improve safety and at the same time guarantee performance
and responsiveness of the system we adopt a two layered
approach: (i) a potential field to repel the robot from obstacles
and (ii) a hard constraint to stay outside a smaller enclosing
ellipsoid SΩs to enforce collision-free motion. We denote the
relative vector between the center of the target and the camera
by rct = pt − pc.

1) Collision avoidance potential field: First, we employ a
potential field cost which becomes active as soon as the camera
enters an ellipsoid SΩl containing the target and with a buffer
zone. This term helps to maintain a safe distance from moving
obstacles and leaves some buffer for the un-modeled dynamics
of the quadrotor and human motion. Formally, the distance to
this ellipsoid is given by

dc = rTctΩlrct − 1.

Which produces the cost term:

ccoll(x) =

{
‖dc‖Qc if dc > 0

0 else
. (12)

2) Collision avoidance constraint: Second, we introduce a
non-linear constraint which becomes active within the collision
ellipsoid SΩs . This constraint guarantees collision-free motion,
i.e. the position of the quadrotor must remain outside of the
SΩs at all times. Formally,

rTctΩsrct > 1− sc, (13)

We introduce the slack variables sc and, therefore, we
adopt a soft-constrained approach for the collision-avoidance
constraints to ensure that the optimizer always returns an
answer in practice. It can be shown that under sufficiently high
penalization of (a linear norm of) the slack variables sc, the
solution of the hard-constrained problem is recovered when
it exists; otherwise, a plan with minimum deviation will be
computed by the optimizer [26].

E. MPC formulation

The locally optimal trajectory and inputs for the quadrotor
are then computed by solving a constrained optimization
problem, which consists of the cost terms introduced in Eq.
(7)-(12) and the constraints of Eq. (13), stacked together over
all targets, obstacles and time-steps of the controller. Without
loss of generality, we consider the obstacle set to be equal to
the set of targets, since an obstacle can be treated as a target
with only the collision avoidance constrained active - and no
other cost term. The full constrained optimization problem
solved as MPC non-linear program is then given by:
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min
x,u,s

wTNc(xN ,uN ) + ΣN−1
k=0 w

T c(xk,uk) + λ‖sk‖∞

x0 = x̂0 (Initial State)
s.t. xk+1 = f(xk,uk), (Dynamics)

rTctΩsrct > 1− sk, (Collision Avoidance)
rct = g(xk),

xk ∈ X , (State Constraints)
uk ∈ U , (Input Constraints)
sk ≥ 0, (Slack Constraints).

(14)
where the stage cost function c(xk,uk) is defined as:

c(xk,uk) =
[
cimage csize cangle ccoll cvis cpose

]T
(xk,uk)

Where w are weights that can be set interactively by the user
to control influence of the different framing constraints. This
problem can readily be formulated in standard software, e.g.
FORCES Pro [27, 28], and efficient code be generated to solve
it in real-time.

V. EXPERIMENTAL RESULTS

A. Hardware Setup

We use a Parrot Bebop2 with an integrated electronic
gimbal. Robot and targets are tracked with a Vicon motion
capturing system. Experiments were conducted on a standard
desktop PC (Quadcore Intel i7 CPU@3.5 GHz).

B. Experiments

We conducted five experiments to evaluate the performance
of our proposed method under dynamic conditions. In our
experiments we used a maximum number of three moving
targets, although this is not an inherent limitation of the
method. In the following results the boxes rendered on the
images represent the setpoints. The size of a box determines
the desired size of the projected target ellipse. The color coding
is: Target 1 (red), Target 2 (purple) and Target 3 (blue).

Experiment 1 (Setpoint Change): First, we illustrate the
effect of different framing objectives. A single target is filmed
with different setpoints, including transitions from sitting to
standing. Horizon length N = 25.

Experiment 2 (Single Target with Occlusion): Our first
experiment demonstrates effectivity of the framing objectives
(Eq. (7)-(9)) and occlusion handling (Eq. (11)). One face is set
as target and two further actors move in and out of the line-
of-sight. The goal is then to keep the main target always in
view while minimizing occlusions from the other two targets.
Horizon length N = 25.

Experiment 3 (Single target with collision avoidance):
In the second experiment we modify above setup so that the
two other targets walk randomly, including directly towards
the quadrotor. Again the algorithm will try to keep the target
in frame while avoiding collisions (Eq. (12)). Horizon length
N = 25.

Experiment 4 (Multi target framing objective): In our
final setup we declare all three actors to be targets and the
algorithm tries to keep all three faces appearing along a single
line in the image. Horizon length N = 25.

Experiment 5 (Execution time): To evaluate the real-
time performance we conducted two experiments. We mea-
sure the execution time per timestep along a full trajectory
(solving over the entire horizon per timestep). First, we use
a constant number of targets K = 2 and vary horizon length
(N = 25, N = 40, N = 55). Second, we keep the horizon
fixed N = 25 and vary the number of targets.

C. Results

Experiment 1: Fig. 5 shows the algorithm working with
a single target K = 1 and a horizon length of N = 25. With
a single target we change the setpoints to: 3/4 Frontal right,
3/4 frontal left, right screen position, left screen position. The
accompanying video also shows the target moving.

Experiment 2: The sequence in Fig. 6 illustrates how
at time t = 0s the initial condition is met and the face is
visible according to the framing objective. At time t = 1s
target 3 moves into the line-of-sight and occludes target 2.
The robot moves smoothly to the closest pose in terms of
framing objectives but restores line-of-sight t = 3s.

Experiment 3: Fig. 7 shows representative views with
the framing objective of creating a frontal shot of target 2.
Although the targets 1 and 3 force the robot to perform
multiple collision avoidance moves, the target remains in view
and its screen space position remains relatively stable. Due to
safety reasons collision avoidance takes the highest priority.
Furthermore, collision avoidance (hard constraint) restricts the
quadrotor motion stronger than the occlusion minimization
(soft constraint).

Experiment 4: Fig. 8 shows representative frames from a
shot with multi-target framing objective. Although there exists,
except of some degenerated cases, a camera position with
a zero re-projection error, the algorithm has to respect state
constraints. In this case the quadrotor has to stay inside the
physical room limits, reducing the range of motion drastically.
Nevertheless all targets remain in view and the framing
requirements are fulfilled as closely as possible.

Experiment 5: Fig. 9 plots the computation time for a
trajectory with 2000 timesteps at each of which we solve Eq.
(14) over the horizon length resulting in a total of 2000×N
calls to the solver. We randomly vary the setpoints, ensuring
that we don’t initialize with unrealistic values too close to the
solution. Furthermore, collision avoidance is turned on. The
two experiments are parametrized: (i) First, a constant target
number K = 2 and variable horizon length Fig. 9, top. The
mean solve-times are: 0.01s, 0.015s and 0.025s respectively.
(ii) Second, a constant horizon N = 25 and a variable
number of targets K Fig. 9, bottom. The mean solve-times
are: 0.009s, 0.011s and 0.011s. The computational time grows
approximately linear with the length of the horizon. This result
is expected according to the design of FORCES Pro. In general
we see that the computation time for longer horizons and more
targets also tend to have more variability in the solve-time.
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Fig. 5: Exp. 1: The effect of viewpoint optimization under varying setpoints: 3/4 Frontal right, 3/4 frontal left, right screen position, left
screen position (from left to right).

Fig. 6: Exp. 2: Effect of occlusion handling (onboard view). Entire duration is 3s. Inset shows robot position and non-visible areas.

Fig. 7: Exp. 3: Framing & collision avoidance. From left to right: Offboard view (robot in green). Onboard view (target in purple).
Visualization of collision ellipsoids. Target position residual, gimbal reduces error in x but yawing the robot is slow (large error in y).

Fig. 8: Exp. 4: The Camera tries to keep the three targets in view. Distribution of the re-projection is shown (right).

We think this is due to the existence of a unique solution
for a single target, while for multiple targets, depending on
the setpoints, the solution may only exist in the least squares
sense.

VI. CONCLUSION

In this paper we propose a novel trajectory generation
method that solves for trajectory parameters from set-points
defined in image space, and a formulation of this problem
that lends itself to an implementation as a receding horizon
optimal control program with non-linear constraints which can
be solved numerically with state-of-the art solvers in real-
time. We have demonstrated in experiments with an aerial

vehicle and multiple targets that the algorithm can satisfy
framing constraints, derived from cinematographic rules, con-
tinuously minimize occlusions from dynamic objects in the
environment and avoid collisions with these. Currently our
algorithm accepts position and framing setpoints from a user.
In future work this could be handled by a global planning
algorithm that generates inputs for entire scenes rather than
individual shots. We believe that the algorithm is general and
could be adapted to other tasks for aerial vehicles which
include collision avoidance with respect to moving obstacles.
We release our work as open-source code2.

2http://ait.ethz.ch/mpc/
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Fig. 9: Plots show solve time per evaluation of the MPC-problem
(Eq. (14)) as function of horizon length (N ) and number of targets
(K). Note that we solve over N stages for each timestep (y-axis). Top:
We change desired setpoints randomly throughout the trajectory but
keep number of targets fixed. Colors indicate different horizon length.
Bottom: Fixed horizon length, while changing number of targets.
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