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14 In this work, a Kalman filtering algorithm is proposed that estimates the spacecraft
16 attitude and attitude parameters without gyroscope measurements for nanosatellites.
18 The attitude parameters include sensor and actuator alignment, spacecraft body mo-
20 ment of inertia, reaction wheel moment of inertia, reaction wheel speed, and the dipole
22 moment of the spacecraft. The new filtering formulation is based on the differential
24 form of the rigid-body rotational dynamics, so the body rate and the other attitude
26 parameters can be updated directly by attitude measurements such that the gyroscope
28 reading is not required. The new filter is derived in a closed form for implementation,
and physical and mathematical approaches toward achieving convergence and stability
with this filter are discussed. (A detailed simulation is presented that demonstrates the
utility of the proposed algorithm for three different types of unmodeled disturbance

torques.

43 1 Doctor of Philosophy Candidate, MIT Department of Aeronautics and Astronautics, 77 Massachusetts Avenue,

44 ATAA Student Member

45 2 Doctor of Philosophy Candidate, MIT Department of Aeronautics and Astronautics, 77 Massachusetts Avenue,
ATAA Student Member

3 Associate Professor, MIT Department of Aeronautics and Astronautics, 77 Massachusetts Avenue

Review copy- Do not distribute


Hyosang
강조

Hyosang
강조


©CoO~NOUTA,WNPE

Submitted to Journal of Guidance, Control, and Dynamics for Review

Nomenclature
J = moment of inertia of a satellite (3x3 matrix)
T = Ves Jyy Joz Joy Juz Jya]T
@ = body rotation rate of a satellite in body frame (3x1 vector)
n = the number of reaction wheels
Ji — moment of inertia of the i-th reaction wheel
Jrw = L1 da o gnl”
wj = rotation speed of the i-th reaction wheel
G = Wi wy oo+ wp]T
q = attitude quaternion from an inertial frame to body frame
At = time step
(T) = estimates of (+)
) = measurements of ()

D7) = diag(?)
vec(q) = [q1 g2 qs], the vector part of a quaternion ¢ = [q1 g2 q3 qa]”

I = identity matrix

I. Introduction

In spacecraft attitude determination (AD), the Kalman filtering (KF) approach has been used
for decades to fuse different types of sensor data and calculate the optimal attitude estimates. Most
prior art is based on the 6-state multiplicative extended Kalman filter (MEKF) formulation that
was proposed by Lefferts et al. [1]. One key attribute of the 6-state MEKF is that it substitutes
gyroscope measurements in place of the rotational dynamics. Instead of augmenting the body rates
in the KF state and propagating it with the rotational dynamics, the 6-state MEKF uses gyroscope
measurement models to determine the body rates and to propagate the attitude. This approach has
been widely used in real-time onboard spacecraft AD because it is not subject to the uncertainties in
attitude dynamic parameters, actuator models, and external disturbances. While the 6-state MEKF

does not outperform an attitude estimation KF using rotational dynamics in terms of optimality
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in theory, in practice reducing the number of the unknown parameters in the system equations
is preferable to make the estimator robust and stable. Additionally, modern gyroscopes such as
the fiber optic gyroscope (FOG) and the hemispherical resonator gyroscope (HRG) show good
performances in small form factors, so there has been little need to incorporate the rotational
dynamics in the filtering formulation and to deal with the uncertainties in the dynamic parameters
for traditional spacecraft.

However, the emergence of nanosatellites has motivated new filtering approaches such as that
presented here, since they differ from larger satellites in some important respects. Since 2000, Cube-
Sats have emerged as a standard form of a small satellite with widespread adoption partially due
to the low-cost access to space via rideshare launch opportunities. One Unit (U) of a CubeSat is
defined by 10 x 10 x 10 cm?® with mass of less than 1.33 kg per 1U [2]. CubeSats have become a stan-
dard for university-level research as well as small satellite constellations [3, 4]. Compared to larger
satellites, AD is challenging for nanosatellites due to small size and sensor availability. One of the
most accurate sensors for spacecraft attitude is the star tracker. Star tracker performance depends
on the aperture area and the detector size. On larger spacecraft, star trackers and gyroscopes are
the core AD sensors. FOGs are widely used in commercial satellites due to their high performance
and compact size. However, in spite of their compact size, FOG are still too big and expensive for
nanosatellite platforms. Therefore, a CubeSat normally utilizes small micro-electro-mechanical sys-
tems (MEMS) gyroscope to measure its rotation rates. The MEMS gyroscopes are 10-100x worse
than the FOGs in terms of the angular random walk noise and their bias drifts much more due to
temperature [5]. For this reason, precision pointing CubeSats tend not to use MEMS gyroscope
measurements and solely rely on star trackers for both attitude and rate estimation when high at-
titude control accuracy is needed [6-8]. In this case, the 6-state MEKF based filtering formulation
cannot be used and the rotational dynamics should be incorporated into the filtering formulation.
This means that we must extend the filtering formulation to handle the uncertainties of the unknown
attitude and actuator parameters as well.

The unknown parameters that need to be estimated include sensor and actuator alignment,

spacecraft moment of inertia (MOI), spacecraft residual dipole moments, and actuator MOI if
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momentum-conserving actuators are used. For the on-orbit sensor alignment calibration, both least
squares (LS), or batch, estimation techniques and KF approaches are proposed in the literature [9—
13]. LS techniques assume that all the data are downloaded to the ground and processed at once,
while the KF approaches inherently process the data sequentially, which is more suitable for on-
board processor implementations. In the KF approaches, the 6-state MEKF formulation gives
the base platform of the estimator, and the misalignment parameters are augmented as additional
states [11, 12].

For MOI and other attitude parameter calibration, there are two general approaches in the
literature. The first approach is adaptive control. The goal of parameter calibration is to improve
attitude control (AC) accuracy. Adaptive control approaches can compensate for the effect of
control errors from the parameter uncertainty [14-17]. The other general approach uses estimation
techniques such as LS and Kalman filtering to estimate the MOI directly, along with the actuator
parameters such as misalignments and scale error [18-23|. Psiaki uses the extended Kalman filter
(EKF) and nonlinear smoother in Ref. [19, 20| with only magnetometers to estimate the MOI
and the other attitude parameters (excluding actuator parameters). Psiaki develops an attitude
dynamics parameter estimator that includes actuator parameters with LS approaches [21]. Fosbury
and Nebelecky derived an EKF formulation to estimate the actuator alignment [22], and Norman
et al. developed a momentum-based estimation scheme for MOI and actuator alignments [23].
However, the three studies assume the use of gyroscope measurements, and accurate gyroscope
measurements are generally not available for nanosatellites.

In this study, we propose a Kalman filtering approach to estimate the spacecraft attitude and
body rate, as well as other parameters including spacecraft body MOI, actuator MOI, actuator and
sensor misalignments, and residual dipole moment. The proposed Kalman filter, called the Atti-
tude Parameter calibration Kalman Filter (APKF), is not a momentum-based attitude parameter
estimation and only uses star tracker measurements and reaction wheel speed readings. Since the
APKF does not require gyroscope measurements and is based on the EKF, it is easily applicable to
nanosatellite attitude determination even for real-time onboard AD.

The outline of this paper is as follows: Section II defines the notation and framework used in this
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paper. Section III discusses the attitude dynamics combined with the reaction wheels. Section IV
presents our mathematical models of reaction wheels and star trackers, and Section V derives the
APKEF. Section VI introduces the physical and mathematical approaches for the implementation of

the APKF that help keep the filter stable and converging. Section VII demonstrates the APKF’s

©CoO~NOUTA,WNPE

10 performance using simulations, and Section VIII captures conclusions.

II. Notation
16 The section briefly defines the mathematical notations for quaternion and vector operations
18 that are used to describe attitude kinematics and attitude dynamics in the following sections. A 3

20 dimensional vector 7 is defined as

T
22 U= [’Ul V2 1}3] (1)

25 and a quaternion g is defined as

T q
28 q= {(h Q2 q3 (J4] = (2)
29 q4

31 where ¢'is called the vector part and g, is called scalar term. In this study, the attitude is represented

33 by the quaternion defined as (2) where
36 g = ésin(0/2), g4 = cos(0/2) (3)

38 The unit vector é is the axis of rotation and 6 is the angle of rotation. So, the attitude quaternion

always satisfies the unity norm constraint

(4)

N
w
Q)
S]]
Il
—

Vectors will be denoted by an arrow, and quaternions by an overbar in this paper. Let p, ¢, and
7 be quaternions and let T}, Ty, and T, be corresponding direction cosine matrices (DCM). The

50 quaternion product operator ® is defined such that

52 P4 P3 —p2 D1 q1
54 —pP3 P4 pP1 DP2| |Q2
56 P2 —p1 pPsa P3| |G3

58 —p1 —P2 —pP3 pa| |qa
59 - -7
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Thus, ¥ = p ® g corresponds to the product 7). = T,,T,.

The skew symmetric matrix that satisfies the cross product @ x b = [#x]b is given as

for a given 3 dimensional vector ¢. Using the notations defined above, a DCM corresponding to an

attitude quaternion ¢ can be calculated as

A@) = (Jga)® = |q)) Iaxs + 243" — 2qu[gx] (7)

A(q) denotes the DCM corresponding to ¢ in this document. From (7), it can be inferred that both
g and —q represent a same DCM. This means § = —¢ in the sense of rotation.

The inverse quaternion ¢! of a quaternion § is defined as a quaternion that satisfies

~—

T
67_1®(7=ci®6_1={0001] (8

1

From (2), (7), and (8), the inverse quaternion g~ ' can be obtained as

III. System Dynamics

The time derivative of the attitude quaternion is given as:
®q (10)

and it is the system dynamics for the attitude quaternion in the APKF, similar to the basic six-state
attitude estimation filter (BAKF) [1, 11]. Regarding the angular rates of the spacecraft body, unlike
the BAKF that uses the gyroscope model as a part of the system dynamics, the APKF needs to
estimate the angular rate as one of its states. This study assumes the spacecraft as a rigid body, so
the rigid body dynamics, which is often referred to as Euler’s rotation equations or Fuler’s equation,

should be used as the system dynamics.
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Let us consider reaction wheels (RWs) as the primary attitude actuators and divide the space-
craft into two parts: RWs and the rest of the body. The total angular momentum of the spacecraft

can be written as:
H=H,+ H, (11)

where H , ﬁa, and H, are the total, actuator and body angular momentum, respectively, in the

body frame, and they are given as:

Hy = Hyp+ Jo3 (12)
H, = Jy& (13)

where H,,, is the RW angular momentum from spinning about their axes, J, is the 3x3 MOI matrix
of the RWs in the body frame, and J;, is the MOI of the spacecraft body except for the RWs. The

rotational dynamics of the spacecraft body only can be written as
Hb‘Inertial = Ta2b + Text
= Hy|poay +& x Hy
= Jbti" + @ x Jpid (14)

where fagb is the internal torque form RWs to the body and fewt models the external torques such

as gravity gradient torque and aerodynamic drag torque. The rotational dynamics for the RWs is

given as:
ﬁahnertial = Thoa = ﬁa|Body +& x H,
= Hyp + JuG 43 X (Hyop + Jui)
= Ty A+ Jal + G X (Hyy + Jo) (15)
where fagb is the reaction torque form the body to RWs, fbga = — _‘agb and T;w = —ﬁm is the

reaction torque due to change in speed of the RWs. Combining (14) and (15),
J& = =@ X (J&+ Hy) + Ty + Tons (16)

where J = J, + Jp. Eq. (16) is the time derivative equation of the body rate & and will be used as

the system dynamics equation for the propagation of state and covariance.
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IV. Actuator and Sensor Models

A. Reaction Wheels
The reaction wheel model is important because of ﬁrw and frw in Eq. (16). Let us consider the
RW model whose rotation axis is fixed in the body frame with a constant rotor MOI. The angular

momentum of RWs in body frame is given as:

C11 C12 Cin
Hiw = J1 |cop | W1t 72 [ego| W2t Fn |eg, | Wn
C31 C32 C3n
= ji1C1wi + JaCawa + -+ + JnCpwn (17)

where j;, ¢;, and w; are the MOI, the rotation axis vector, and the rotation speed of the i-th reaction
wheel respectively, and n is the number of the reaction wheels in the reaction wheel assembly (RWA).

Since the rotation axis only contains directional information, it has the unity norm constraint as:

Gl =1 (18)
Eq. (17) can be expressed in a matrix form as:
i 0 - 0] w1
€11 Ci2 -+ Cipn
. 0 Jo wa
Hyw C21 C22 -+ Cop
0
€31 C32 "+ C3n
0 - 0 Jn| [wn
Crw L 1L
|
Jrw
- Crerwajrw (19)

By definition, the reaction torque of the RWA is given as:

— —

Trw - _Hrw = _Crerw&rw (20)

where @/, = Wyy. In actual reaction wheel hardware, ., is directly measured by Hall-effect sensors
or optical encoders and @, is obtained by numerical differentiation of &J.,,. Assuming a Gaussian

RW speed read-out noise 7., ~ N(0, R,,), the RW speed measurement (jﬁrw can be modeled as:

‘f;rw = ('UT"LU + ﬁrw (21)
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Unlike the RW speed, there is no method to measure the RWA alignment matrix C.,, and the RWA
MOIs J,., directly on orbit. These are the parameters that need to be estimated in the APKF. The
rotation axis vector Cy,, has the unity constraint (18), so it needs careful consideration. Pittelkau
has shown that the measurement vector of a gyroscope has two degrees of freedom in terms of
misalignment, and derived a general gyroscope misalignment model in Ref. [24]. Reaction wheel

misalignments can be modeled and linearly approximated in the same manner as:

Ci ™~ Cio + Ci,103,1 + Ci.20;.2 (22)

where ¢; ¢ is the initial guess for the i-th RW, ¢; 1 and ¢; 2 are the two unit vectors that are orthogonal
to C;0, and d;; and J; o are the small misalignment angles. ¢; ; and ¢; » can be any two vectors that

satisfy

Gio LGl G (23)

Strictly speaking, Eq. (22) does not exactly satisfy the unity norm constraint (18), but it is a
good approximation for linear filtering approaches such as the Kalman filter. Using Eq. (22), the

alignment matrix C.,, can be approximated as:

(51,1 0
Crw = [51,0 5n,o] + [01 1 Cn 1]
Crw,0 Crw,1 0 Sn1
(5172 0
+ [51’2 5n72]
—_——
Crw,Z 0 5’!L,2
= rw,0 + Cru;,lD(grw,l) + Crw,ZD(grw,Q) (24)
where
. T
Orw,1 = {51,1 5n71}
. T
5rw,2 = |:51,2 5“’2:| (25)
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We make an assumption for the RW acceleration that @, is constant during At between two time

steps of the filter as:

. 1

_ st e
Oy = At(w Br) (26)

W Tw

where the superscript — and + means the beginning and the end of each propagation step in the

Kalman filter.

B. Star Tracker Model
The APKF is assumed to use a star tracker that measures a attitude quaternion from a reference
inertial frame to its sensor frame, whose mathematical model is given as
I ="0G=0:® BRq (27)

where °q, is the attitude quaternion from the body frame to the sensor frame (sensor alignment)

and @, is a noise quaternion, approximately given as:

1 —
p 2
Gn =~ (28)
1
where
vy ~ N(0,Ry) (29)
R, = diag(a§170327033) (30)

Note that the units of o, are radians. Since the sensor alignment quaternion g, should be estimated

along with the attitude quaternion g, it also needs to be augmented in the state vector afterwards.

V. APKF

A. Error State Dynamics

The APKF is basically an attitude estimation Kalman filter that estimates the attitude g.
Unlike BAKF, APKF does not use a gyroscope model to determine the body rate and to propagate
its attitude. Therefore, the APKF needs to estimate the body rates & explicitly as a part of its

state vector. The dynamics for the body rate is given by Eq. (16), and we can combine it with the

10
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reaction wheel models Eq. (17)-Eq. (26) as:

. 1 N
(A_j == J_l[_(j X (Joj + Crerwa}rw) - KtCTwJTw((“_jjw - Qa"_w) + Tezt] (31)

where C., is function of the reaction wheels’ misalignment angles (gm,l and gm,g) with respect to
its initial value Cyy, 0 as Eq. (24). The external torque fwt consists of the gravity-gradient torque,
magnetic torque due to body’s residual dipole moment, aerodynamic torque, solar radiation torque,

etc. as:

—

Tewt = 7?9 + 7?m + 7_—;1 + 7_:5 + 7__‘etc (32)

The gravity-gradient torque and the magnetic torque is given as:
Gras(Jyy — J=2) + (Grsz — Goaz) Jy- + Gpi3Jzy — Gpi2Js2

7__’9 = GblS(Jzz - Jacac) + (Gbll - Gb33)sz + GleJyz - Gb23ny (33)

Gle(sz - Jyy) + (Gb22 - Gbll)J:ry + Gb23<]zz - GblSJyz

U(Gy)J = =W ()G (34)

T = 1 X by (35)
where m = [mg, My, m.]T is the residual dipole moment of the spacecraft,

Gy = A(Q)GiAQ)" (36)

— —

bb = A(Qb; (37)

and ¥(G) is defined for a 3 by 3 symmetric matrix G as:

0 Gaz —Gas Gis -Gz (G33 — Ga2)
V(G)= |-Gz 0 Gis —Gos (G11 — G33) G2 (38)
Giz —Giz2 0  (Go2—Gn1) Gas —G13

G, is the gravity-gradient tensor in inertial coordinates given by:

=, =7
1% r-r

where 7 is the satellite’s position in inertial frames, and l_); is the geomagnetic field in inertial

coordinates. Both are assumed to be known in this study. From this point, we regard the other

11
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external torques except 7, and 7, as contributors to the disturbance torque 7; which is a bias
driven by a second Gaussian white-noise process, similar to the gyro bias in Ref. [1]. It is possible to
explicitly model the disturbance torques such as the aerodynamic torque and solar radiation torque
in theory, but it is difficult to have consistent mathematical models for aerodynamic torque and
solar radiation torque in practice since they heavily depend on a satellite’s shape and solar activity
level. Also, their magnitudes can be assumed to be smaller than reaction wheel control torques
and the other external torques [25]. Therefore, we will use the simple bias model for the residual

disturbance torques as:
F1 = 4 (40)

where F [ﬁdﬁg ] = Qu4, and set Qg big enough to cover the un-modeled disturbance torque. This
approach will be verified by numerical simulations in Sec. VII.

In Eq. (31), every term except At is actually unknown beyond an initial guess. The unknown
parameters to be estimated along with & are the reaction wheel speed ., the disturbance torque

7y, the MOI of the spacecraft J = [Jezs Jyys Jazs Juys Juzs Jyz]T, the MOI of the reaction wheels

tfrw:[jlaj%"' ajn}T gT

rw,2]T'

, and the reaction wheel misalignment angles 8., = [E;Tw)l,

To apply the extended Kalman filter (EKF), it is important to obtain the linearized dynamics
of the error states. For the attitude quaternion, the time derivative of the vector part of the error

quaternion 6§ =G ® ¢~ *

is given in Ref. [1] as:

6G = —[Bx]0q + %&v (41)

for body rates, with the error states defined as:

665 = d—d
67y = Ty— T4
5T = J—T
S o= m—m
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&Urw = Wrw — Wrw
0, =

s&t = @t — &t (42)

©CoO~NOUTA,WNPE

and the RW speed measurement model (21), Eq. (31) can be written as:
G o= (I—J76D) (G + 6&) x {(J +6)(G + 63)

14 +(Crw 4 0Cr0) (Jrw + 6T o) (@ + 0B ) } (43)

1

(Crws + 6Cr0) (T + 8T (G, + 63,) = (G +657,)) (44)
17 At

21 where

23 Crw = Cruwo + Crw,1D(§rw,1) + Crw,2D(§;‘w,2) (45)
26 and

29 0Cry = Cry — Cry

31 = Crw,lD(Agm,l) + Crw,QD(Agrw,Q) (46)
34 Note that we used the approximation of the MOI matrix inverse as:

36 JV = (J+é) Tt =[JUI+J )T

12
=
|
5
<
>
K‘u
=
3

41 The estimate of Eq. (43) is given as:

5= TG % (S 1 Cradratin) — = Crado (G — G) 4 W(G) T+ x by + 7] (48)

N
N
g

46 where
49 Gy = A(Q)GiAQ)T (49)

51 by = A(q)bi (50)

54 With Eq. (43) and Eq. (48), we can derive the linearized equation for the error body rates as (see

56 Appendix A):
58 55 = 25 HW(I)Y(Gy) + x| byx]}6q+ J {—[Gx) + [H,x]}oi + J 167

13
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—J G X]Crp T 0B + 7jflémjm5@;w — EJflchmmjw (51)
where
Eru; = jrwcarw (52)
Ja 1 S o
Qry = E(w'r'w wrw) (53)
g;'w = - TwO:Zr'w (54)
ﬁt S j(f; + Arwf"rw (55)
7, = _o:jxﬁt+érw1fi;w+\ll(éb)j+7%bxgb+%d (56)
matrix C(¥) and Q(¥) are defined for a vector ¥ as:
CW) = 51,11)1 52,1112 57L,1Un 51,21)1 52,2112 En,Qvn (57)
(%1 0 0 Vg VU3 0
Q(U) = 0 vo 0 v1 0 w3 (58)
0 0 vg 0 v1 vy
and matrix T(G) is defined for a 3 by 3 symmetric matrix as:
0 2@13 —2é12
—2Ga3 0 2G12
. 2Ga3 —2G13 0
T(G) = (59)
—G13 Gas (G11 — Ga2)
e (éss - Gu) ~Gos
(GQQ - é33) e Gis

-

J, m, &W and J_;w are assumed to be constant, but we add small process noises (77, Fm, Tsrw
and 7, respectively) to deal with a small change in the values due to thermal distortion and to
prevent the APKF from becoming closed.

The reaction wheel speeds, with the assumption of constant acceleration with Eq. (26), &, can

14
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be written as:

Gy = Dy + Gy (E — 1) (60)

Wrw = Oy

o = B8, +68E, — (G, + 637, (61)

©CoO~NOUTA,WNPE

12 Since the estimate of Eq. (61) is given as Eq. (53),

15 0ry = Wrw — Gry

17 — i =+ _i ni 2
18 = Atéw,.w At6w"w (62)

21 B. Relative Calibration for MOIs and Alignments

23 The error states in Eq. (42) include both the MOI of the spacecraft body and the MOIs of
25 the RWs, which means there is no absolute reference we can rely on for the MOI calibration.
27 Conceptually speaking, the attitude sensors such as star trackers measure the body rates (though
29 it is an indirect measurement), the reaction wheels measure their rotation speed, and the filter
compares those two measurements and extracts the relative ratio between the body MOI and the
RW MOIs. For a simple example, consider a RW on a frictionless turntable and assume it is initially
stationary. If the RW starts to rotate, the turntable will rotate in the opposite direction. Although
we assume perfect measurements of the RW speed and the turntable rotation rate, the only thing we
can calculate is the ratio between the MOIs of the RW and the turntable unless we know one of them
42 a priori. This means that both MOIs are not observable from the two rotation rate measurements.
44 To resolve this observability issue, we assume J,, as the reference MOI and estimate the re-
46 maining five terms Js = (Jyys Jzzs Joys Juzy Jyz) T, similar to Ref. [19]. The estimation results of Js
48 and J_;,w will be scaled to the ratio of the nominal and actual value of J,,. The estimates of jg; and
50 fm will not converge on the actual MOI values, but this does not matter for attitude determination
52 and control because they only use the relative ratios between the MOIs. For attitude filtering, the
54 multiplication of J=1 in Eq. (31) erases the scaling error of J and J,,,. For attitude control, since
56 the reaction wheel torque is typically generated by its rotation speed control, the same scaling error

58 in the MOIs will not produce any undesired torque error.

15
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For alignment calibration, if N sensors are used, only N — 1 alignments can be estimated by
the sensor measurements as discussed by Pittelkau [12]. This means that the misalignments of the
RW axis C;.,, and the star tracker ®*@, are not fully observable at the same time with only one
star tracker. Therefore, we set the star tracker’s sensor frame as the reference frame, and the RWs
rotation axes are estimated with respect to the star tracker frame. The misalignment of the star
tracker is blended into the RW rotation axis and the body MOI. It is possible to use RWs rotation
axes as the reference as Pittelkau did in Ref. [24] using gyroscopes’ measurements axes, but it is not

covered in this paper.

C. State Transition Matrix
With Eq. (41) and Eq. (51), the linearized time derivative equations for the error states, 6§ and

Eq. (42), can be written in matrix form as:

5 —[@Gx] 05 0 0 0O O O 0 0 0 67

0 Fy1  Fyy Foy Foy Fos Fog Fop Fag Fog Iy, 0

0Ty 0 0Ty

0Js 0 0Js

4 | om 0 51t

a =

Abyy 0 AN
5T 0 8T
5‘*77"11) 0 F89 F8a 5‘*77"111
555, 0 5655,
5t 0| |éat
L i L 1L i

r AT
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and, Q5(%) and U5(Q) are defined for the 5-element MOI error state vector 6.J5 as:
0 0 vo w3 O
95(6) = lva 0 v1 0 w3 (76)

01}301)1112

Gas —Gas Gis —Gi2 (Ga3 — Ga22)
U5(G) = 0 Gi3 —Gla3 (G11 — Gs3) G2 (77)
—Giz2 0 (Ga2—Gn) Gas -G
The process noise has diagonal covariances E[i775] = Qu = diag(qa,qa,qa), Elisme] =

QJ = diag(QJmaQJm7QJpaQJpaQJp)7 E[ﬁmﬁ?n] = Qm = diag(Qmanva)v E[ﬁérwﬁg;w] = Qérw =
diag((ﬁrwa ce aQ6rw)a and E[ﬁerﬁ?Tw] = Qer = diag(Qer, to anrw)~

The state transition matrix ® can be obtained by integrating Eq. (63) either numerically or
with an analytical approximation. For the numerical method, ® can be approximated using a

Taylor series simply as:

1 1
@k’k,1:eFAt:I+FAt+§F2At2+§F3At3+... (78)

where At is the time step between &k — 1 and k. This numerical method is simple and easy to
implement, but computationally burdensome especially when the number of states is large. It is

preferable to use a closed-form approximation of @, as derived in Appendix B,

$11 012 P13 P14 P15 P16 P17 D18 P19 Pia
G21 P22 Pz Paa Qo5 Pos Par Do P9 Pa2a

o 0 I o0 o o0 0 0 0 o0
o o o I o 0O 0 0 0 o0
o o 0 o I O O 0 0 O
o 0 0 o o I 0 O 0 O

o o 0 o0 o 0 I 0 0 O

o
o
o
o
o
o
o
~

89 P8a
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where

P12
b1
1
b1
P22
P2i
P2;

¢8j

I — [@x]At
1

SR11
2

1
55121721

1 1
5512F2j + §H13F28F8j

1 N 1 -
FglAt + §(F22F21 — FQl[(DX])AtQ — éFggFgl[QX]AtB

1.1
I+ Foo At + §(§F21 + Fag Fag) At?

ko1 F;
ko1 Foj 4 Koo Fog Fyj

ngAt

fori=3,4,--- ,8 and j = 9,a where

D. Process Noise

In the EKF, the covariance propagation can be calculated by:

K11

K12

K13

K21

K22

= JIAt + %(FQQ — [(fj)(])Atz — %[dX]FggAts

1

1

= —IAE + i(FQQ — [Gx])At* — i[@x}FggAtE’

6 24
1
= JAt+ 5FQQAt?

1 1
= ZTA#? + ZFy A8
2 T2

Pti q)tl,topttq)tql,to + Qt

L=

where (), is the process noise matrix given by:

With the approximated state transition matrix as:

Q= / " 0(ty, 1)G(N)QNGT ()BT (11, 7)dr

to

o1 ~ I
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P12 %mt (96)
$1; ~ 0 (97)
¢22 ~ I (98)

(;ng ~ ngAt (99)

for j =3,4,---,8, Eq. (94) can be integrated as:

_0 0 0 0 0 0 0 00 0_
Q22 3F23QaA” FFuQ A FFosQumAt® 1F6Qsr A 1F2rQurAt* 0 0 0
QaAt 0 0 0 0 000
0, At 0 0 0 000
0 N 0 0 000
. N 0 000
Qrwlt 000
000
00
0
i (100)
where
Q20 = %[FQ?)QdFQT;; + FPouQ Py + FosQuFas + FasQsrwFag + ForQ g Far] AL (101)

Note that only the elements in the upper triangular part is displayed here. Since @Q; is symmetric,

the lower triangular part is same as the transpose of the upper triangular part.

E. Update
With the same approach to substitute a quaternion by the product of an error quaternion and

its estimate § = 0 ® ¢, Eq. (27) can be written as:

Gm = Gn @ 8°0 © G ®0G® (102)

20

Review copy- Do not distribute

Page 20 of 45



Page 21 of 45

©CoO~NOUTA,WNPE

Submitted to Journal of Guidance, Control, and Dynamics for Review

Using the same approaches described in Ref. [11], the vector part of the error measurement quater-

nion 8¢, = Gm ® ¢, can be approximated in a linearized form as:
pvd S = S~ — 1 —
0Gm = 6°Gp + A("qp)0q + Y (103)

As discussed in Sec. VB, the APKF does not estimate the misalignment of the star tracker 6°g,
by assuming that only one star tracker is used, which means 6°g, = 0 and °@, remains the same as
the initial value *@p . If more than one star tracker is used, §°q, for the extra star trackers should
be augmented in the state vector and needs to be estimated. For the APKF in this paper, the

linearized measurement equation is given as:

8Gm = {A(S(}b) 0 --- 0] AZ + -1, (104)

H

H in Eq. (104) is the measurement sensitivity matrix of the star tracker for the APKF update given

as:

K = P H"(HP H' + MRM™)™* (105)
ATt = KéGn (106)
Pt = I-KH)P (I -KH)" + KMRMTK™ (107)

VI. Implementation Notes

A. Calibration Maneuver

For complete observability of both MOI and alignment calibration, a set of calibration maneuvers
that generates control torques and angular momentum in all directions is required, similar to the
discussion for gyroscope alignment calibration in Ref. [11]. In the APKF case, all directions should
include not only the three X, Y, and Z directions of the body frame, but also the null vector
directions of the RW alignment matrix C},,. If no torques are applied in the null vector directions,
it is not possible to update the misalignments on the null vector of C.,,. In this study, we use three
consecutive rotations in each X, Y, and Z axis as one set of the calibration maneuver. It is possible
to use the other types of maneuvers such as the sinusoidal maneuver with different frequency as in

Ref. [11]. However, star trackers for nanosatellites perform worse under rotation than star trackers

21

Review copy- Do not distribute



©CoO~NOUTA,WNPE

Submitted to Journal of Guidance, Control, and Dynamics for Review

for bigger satellites due to their smaller aperture sizes, and even for bigger satellites, star trackers
usually give their best performance when the spacecraft is not rotating. To be more applicable
to real nanosatellite systems, we use three stop-and-go consecutive rotations for the calibration
maneuvers. Figure 1 shows the attitude commands in terms of Euler angle for a set of calibration

maneuvers.

w
o
|

—Roll
--Pitch
--Yaw

Angle (deg)
= N N
[&)] o [é)]

-
o
T

[¢)]
T

0 50 100 150 200 250
Time (sec)

Fig. 1: A set of calibration maneuver angle commands

B. RW Torque Command
In this study, we assume the use of a quaternion feedback control law with proportional-
derivative (PD) gain [26]. This PD control law gives the desired control torque, T, in body frame.

To calculate the RW torque command 7,.,, that satisfies

— —

T. = Crwtrwy (108)

the following pseudo-inverse is usually used when the RWs are identical:

—

trw,net = OZ;;(OTwOij)ilfc (109)

Eq. (109) is the efficient solution of Eq. (108) that minimizes the norm of the RW torque vector by
eliminating the torque in the direction of the null space of C..,, which does not affect the effective
control torque in the body frame. This RW torque command is good for spacecraft attitude control,
but we need the RW torque in the null space of C,,, for the RW alignment calibration. So we add

the RW torque in the null space into Eq. (109) as:

n—3
t_;"w = CTTw(Cm;CZU)*ch + Z aiNrw,i (110)
=1

22

Review copy- Do not distribute

Page 22 of 45


Hyosang
강조


Page 23 of 45

©CoO~NOUTA,WNPE

Submitted to Journal of Guidance, Control, and Dynamics for Review

where ]\Hfmﬁi is the i-th null vector of C,,, which satisfies C’Tw]\ﬂfrwﬁi = 0 and a; is the magnitude of
the null torque for the i-th null vector. a; should be determined to be small enough to avoid RW

speed saturation.

C. Angular Momentum Bias

The spacecraft needs angular momentum bias to ensure complete observability of the relative
MOTI calibration. Let us consider a sample case where J = diag(Jgs, Jyy, Jz-) and there are only
three reaction wheels that are aligned to the X, Y, and Z axes. If we assume zero total angular
momentum (J& + CrayJrw@ry = 0) and ignore the external torque femh the equation of motion

given by Eq. (31) becomes:

J1
T Q1

&1
Il

o (111)

22
Jyy rw,2

T.x Clryw,3

In Eq. (111), each axis is uncoupled with the other axes, so the relative MOI calibration to Jy, is not
feasible. Therefore, non-zero angular momentum bias is required for the relative MOI calibration.

The magnitude of the bias should be determined to be small enough to avoid RW speed saturation.

D. Variable Fictitious Noise

The APKF applies the EKF, which is a linearized estimator, to the nonlinear system. The
APKF uses Eq. (63) as the system dynamics, but it is just a linearized equation, not the exact
system dynamics. The discrepancy between the exact system and the linearized model may be large
and may cause instability of the APKF, especially when the estimation error is large and complete
observability is not obtained. In the calibration maneuver, full observability is not ensured before
completing one set of the maneuvers. Once the error of the estimate becomes large compared to
its estimated covariance, the error may not converge even after completing the set of calibration
maneuvers. Fig. 2 shows a typical non-converging estimation result. This is the estimation result
of Jy, of the APKF. The first set of the calibration maneuver ends at 210 sec. The estimation error
becomes larger then 30 around 140 sec and it does not converge into the 30 boundary even after a

couple of sets of the calibration maneuvers. The fundamental solution for this problem would be to
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Fig. 2: Sample non-converging APKF result for J,, estimates

change the filtering approach from the EKF to other nonlinear estimation techniques such as the
unscented Kalman filter [27, 28] and particle filter, but they normally require intensive calculations
especially when the number of states is large [29]. The APKF’s state has 41 components for n = 4,
so nonlinear filtering techniques may be too burdensome. Instead of utilizing nonlinear filters, we
propose a simple strategy to mitigate this problem by varying the process and measurement noise
covariances. There are five process noise vectors and one measurement noise vector, g, 7.7, Tm, Norw,
Trrw, and vy, and the six corresponding covariance matrices, Qq, QJ, Q@m, Qsrw, QJirw, and Ry.
The nominal values of the process noise covariances are set to be small, such as 0.1% MOI variation
over one hour, since the MOIs and the alignments are assumed to be constant. On initializeing
the filter, we set (the @’s and (R, 100 times bigger than their nominal values to prevent the filter
from becoming closed before full observability is acquired. After the first set of the calibration
maneuvers, the covariance values are set to 10 times the nominal for gradual convergence, and they
return to their nominal values after the second set of the calibration maneuver. With this numerical
approach, the APKF gives the converging result as shown in Fig. 3 with the same inputs as used
in Fig. 2. This approach does not guarantee the optimal estimation results during the transient

period, but when it converges to the steady state, the non-optimality becomes negligible.

VII. Simulation Results
The following parameters for a satellite system are used to verify the APKF’s performance

by simulation. A typical 3U rectangular-prism CubeSat (30 x 10 x 10 cm?®) was assumed as the
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Fig. 3: Sample converging APKF result for .J,, estimates with variable fictitious noise

spacecraft. The nominal body MOI is Jy = [12,47,45,1,2,3]7 x 1073 kg- m? and the nominal MOI
of each RW is 3 x 1076 kg - m?. We assume that 4 RWs are used and the nominal RW rotation

matrix is given as:

(112)

which is a symmetric pyramid configuration. (The MOI errors are set to be 6% to E12%
of its nominal value as AJ = [-1.2,3.29,3.6,0.1,—0.12,0.21]7 x 1073 kg - m? and AJ., =
[07570:367=0175)=0:60] " 10 % kg - m?. Regarding the RW misalignment, the two misalignment

direction vectors ¢; ; and ¢; o are calculated as:

Ci,0 X Ci+1,0

Gi1 = = —
\Ci,o X Ci+1,0|
Cio X G
Go = oo (113)
\Cz‘,o X Ci,1|
fori =1,2,--- ,n and G410 = Cn,o. The RW alignment error angles are assumed to be grml =
[11=7=1178]" deg and gm’g = ([=1271279;10]7 deg, so that the actual RW rotation matrix is

given as:

—0.76820 —0.72728 0.36636 0.70252
Crw = | —0.39087 0.39403 0.68484 —0.59026 (114)

0.50703 0.56195 0.62988 0.39755

25

Review copy- Do not distribute


Hyosang
강조

Hyosang
강조

Hyosang
강조

Hyosang
강조

Hyosang
강조


©CoO~NOUTA,WNPE

Submitted to Journal of Guidance, Control, and Dynamics for Review

The RW speed read-out noise is assumed to be 10 rpm (1o). The star tracker accuracy is assumed
to be 20 arcsec (1o) in the cross boresight axes, which are x and y axis of the body frame, and 60
arcsec (1o) in the boresight axis, which is the z axis of the body frame. The star tracker is assumed
to give output only when the magnitude of the body rate is less than 0.1 deg/sec. The residual
dipole moment is assumed to be = [—0.11,0.15,0.20]TAH12.

Regarding the attitude maneuvers, we use 5 sets of the calibration maneuver as proposed in
Section VI A in this simulation. The maneuver angle and the duration for each rotation are 30 deg
and 30 sec respectively, and we put 30 sec attitude-hold time before of the first set of the calibration
maneuvers for the filter initialization as shown in Fig. 1. The total simulation period is 930 sec
and the step time is 1 sec. The attitude, body rates, and the reaction wheel speeds are numerically
integrated by the 4th order Runge-Kutta method. The magnitude of the null torque a; in Eq. (110)
is set to be £10% of max(#,.,). The initial body rate is set to be &y = [1,0,0]7deg/sec to give the
momentum bias for complete observability.

The nominal process noise for the MOIs, the dipole moment, and the misalignments is set
to be qrm = (4.7 -107° kgm?/v/hr)?, q;, = (4.7 - 1076 kgm?/vhr)?, ¢, = (1 - 1073Am?/v/hr)?,
Gsrw = (0.01 deg/v/hr)?, and g = (3- 1072 kgm?/v/hr)?2.

Regarding the initialization of the APKF, the initial attitude quaternion determined by one
star tracker output and the initial body rate are estimated by numerical differentiation of two star
tracker outputs at the first two steps. The initial covariances (Pp) for attitude and the body rate
are set to be large enough to fully cover the expected initial errors as (10 deg)? and (10 deg/sec)?
respectively. The initial RW speed is determined by the RW speed reading and its Py is the same
as the covariance of the read-out noise R,.,,. The initial values for the other states are set to be
zero. The Py is (51001072 kgm?)? for J,, and J.. is which is[10:6% of the largest nominal body
MOI value, (2002072 kgm?)? for Joys Jzz, and Jy,, (033 Am?)? for the residual dipole moment,
(10 deg)? for RW misalignments, and (181076 kgm?)?> for RW MOIs.

We present three sets of simulation results with different unmodeled disturbance torques. The
first simulation is performed with zero disturbance torques to verify the convergence of the APKF

itself (Case 1), and the second simulation is performed with sinusoidal disturbance torques to ex-
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amine its stability for unmodeled disturbances (Case 2). The comparison of the results of Case 1
to Case 2 shows performance degradation due to the unmodeled disturbance torques. In the third
simulation, we assume a simple disturbance torque model which only depends on the satellite’s at-
titude quaternion (Case 3) to suggest a mitigation plan when the disturbance torques are partially

predictable.

A. Case 1: Zero Disturbance Torque

In this case, the nominal process noise for the disturbance torque is set to be small as ¢4 =
(0 10~7 Nm/v/hr)? in order to just prevent the filter from closing. Fig. 4 shows the estimation
errors (solid line) and the @&3@ bounds (dashed lines) estimated from the covariance matrix of the
APKF. Note that most of the errors are within #3a bounds, which represents that the APKF is
working as expected.

The final 1o is((9.81, 8.01, 19.70) arcsec for attitude and (49.08, 11.72, 15.89) arcsec/sec for
body rate. The relative differences between the 1o’s on each axis are qualitatively to be expected
from the asymmetric body MOI, the asymmetric star tracker’s accuracy, and the RW read-out noise.
The 1o is{(0:078;0:079) 103 kgm? for (J,,, J..), which is less than 0.17 % of their nominal values,
and 0.002 Am? for m. The largest 1o is(0.061 deg for gm and 0610108 kgm2 for J_;w which is
0.2% of its nominal value. Note that the 1o of &, remains almost same as R,.,, which implies that
the RW speed read-out noise is the dominant noise that determines the filtering performance in the

current system specification. (In this case, it is worth considering removing @,.,, @), and @, from

TWw?

the state vector to reduce state dimension and numerical burden.

B. Case 2: Sinusoidal Disturbance Torque

The most dominant unmodeled disturbance torque is the aerodynamic torque in low-earth
orbit (LEO) [25]. The aerodynamic torque depends on the satellite’s shape, attitude, altitude, and
velocity. If we assume no other information on the aerodynamic torque other than its maximum
magnitude, one approach is to set g4 large enough to prevent the 8@ of 7; from 3@ converging below
the maximum disturbance. There are several studies about the order of magnitude of aerodynamic

torques of a CubeSat in LEO: Gerhardt and Palo reported 8 - 1078 Nm for a 3U CubeSat at
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Fig. 4: Case 1 simulation results

600 km altitude [30], Rawashdeh and Lumpp reported 6 - 1077 Nm for a 3U CubeSat at 400 km
altitude [31|, and Franquiz et al. reported 1-107% Nm for a 6U CubeSat at 500 km altitude [32].

To be conservative, we run the simulation with a nonharmonic sinusoidal disturbance torque model
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Fig. 4: Case 1 simulation results (continued)

whose magnitude is Tpqy = 11076 Nm as:

sin(F¢ + 6,,)
Ta(t) = Timag sin(%t +46,) (115)
sin(F7t +6.)
where ¢ is time, (T,,Ty,T.) = (80,72.7,82.47) sec, and (0,,0,,6.) = (90,0,135)deg. Note that
this disturbance model does not represent the actual aerodynamic torque which is a function of the
altitude, the velocity, and the attitude. Eq. (115) is just used to show the behavior of the APKF to
the varying disturbance torques whose maximum magnitude is 1-10~% Nm. The covariance of the

process noise is set to (gg=1(4:02107° Nm/v/hr)?, which is 20 times greater than Case 1, to prevent

the estimated covariance from becoming too small. This approach will degrade the performance of
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the filter in terms of minimum covariance, but will help to keep the filter stable.
Fig. 5 shows the estimation errors and the#8a bounds for Case 2. As intended, the 7; estimation

errors are mostly kept inside of the #83@ bounds as Fig. 5 (c), so does the other state errors. (Thel
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36 Fig. 5: Case 2 simulation results (continued)

39 deg for S;w and 0.93 - 108 kgm? for Jr. Compared to Case 1, the 1o of attitude and body rate
41 estimation is not much worse, but the 1o for the other parameter estimates are 2 to 10 times bigger
43 than Case 1’s result. The effect of the degraded attitude parameter estimation is distinctly shown
in the attitude and the rate estimation when the star tracker is not available for filter update.
Comparing Fig. 5 (a) and (b) to Fig. 4 (a) and (b), the 3¢ bounds of Case 2 increase much faster
than Case 1 during the attitude maneuver. However, the APKF is still stable enough with this

approach to deal with the unmodeled disturbance torque.
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C. Case 3: Partially Predictable Disturbance Torque

Though the aerodynamic torque is also a function of the altitude and the velocity, the attitude in
local vertical, local horizontal (LVLH) frame is the dominant factor that determines the disturbance
torque in near-circular LEO. This means the variation of the aerodynamic torque depends on the
body rates in the LVLH frame. Though it is difficult to represent this with an exact mathematical
model, it is possible to adjust ¢4 to mitigate the filter performance degradation caused by large ¢4 in
Case 2. In Case 3, a disturbance torque model given by Eq. (116) is used to simulate this property

of the aerodynamic torque, and Fig. 6 shows the profile of the 74 in Case 3.

I—q
Tq4 = Tmag |1 — qs (116)
I—gs3

where Tppg =1+ 1076 Nm.

x107®

0 200 400 600 800 1000
Time (sec)

Fig. 6: Simplified disturbance torque model for Case 3

On the APKF side, qq = diag(qa,z, ¢d,y: 9a,-) is tuned as follows:
Qdi = qdo + qa1 * Wi + qq2 - |C35| (117)

where i = z,y,2z. qqo is for preventing the filter from closing as in Case 1, q41 is for the linear
variation of 74, and g2 is for the variation coupled with the rotation in other directions, which
is not included in Eq. (116). (Ggp EN(2:02207 Nm/v/hr)%) Gay =1(2:00107° Nm/\/rad)?; and
qd2 = 0.1:qqp are used in this simulation.

Fig. 7 shows the estimation errors and the @#8a bounds for Case 3. The final 1o is((9.82, 8.10,
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a7 Fig. 7: Case 3 simulation results

a7

48

49

50 20.88) arcsec for attitude and (49.37, 11.76, 17.01) arcsec/sec for body rate. The 1o is (0.091,
52 0.095)x107% kgm? for (Jyy, Jz=), and 0.0056 Am? for 7. The largest 1o is 0.072 deg for &, and
54 "-- Compared to Case 1, the 1o for the attitude parameter estimates are

56 20% to 40% bigger than Case 1’s result except . Note that this result is just for a hypothetical
57
58 disturbance torque model given by Eq. (116), not for the actual aerodynamic torques, so we cannot
59
60
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Fig. 7: Case 3 simulation results (continued)

guarantee the APKF’s performance in a real system. However, this result shows that it is possible

to mitigate the effect of the unmodeled disturbance torque by tuning the process noise covariance

qq even if we only have a partial and qualitative knowledge of it.

VIII.

Conclusions

An attitude parameter calibration Kalman filter (APKF) that estimates attitude and body rate

as well as the attitude parameters, which include spacecraft body moment of inertia (MOI), resid-

ual dipole moments, reaction wheel (RW) misalignments, and RW MOIs, was derived for gyro-less

nanosatellites. Unlike the traditional onboard 6-state attitude determination Kalman filter, the

APKF does not use gyroscope measurements in its system dynamics and uses the rigid-body dy-
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namics to propagate its states. The partial-differential equation for error body rate was linearized
with respect to the attitude parameters, and the state transition matrix was derived in a closed
form for ease of implementation. To improve the filter’s convergence, several physical and numer-
ical approaches involving tuning the process noise covariance were proposed and the stability and
performance of the APKF were demonstrated by simulations. We introduced two approaches to
manage unmodeled disturbance torques, and demonstrated their utility in mitigating the effect of
the unmodeled disturbance torques in simulation. These results are particularly useful for nanosatel-
lite applications in which high accuracy gyroscopes are unavailable due to volume constraints. By
incorporating rigid body dynamics into the Kalman filter, precision attitude determination can be

achieved with only attitude sensors.

APPENDIX A: DERIVATION OF ERROR RATE DIFFERENTIAL EQUATION
This section describes the derivation of (51). With Eq. (43) and Eq. (48), the derivative of the

error angular rate is written as:

0% = d—-&
= (I —=J7'60)J (& +6&) x {(J +6.J)(3 + 6)

+(Crw + 6C0) (Jrws + 6T rs) (B + 0r) }

1

At (érw + 5crw>(jrw + (5er)(§3:;” + 5(1}';"“)) - ((‘37"_11) + 5"3r_w))

FU(Gy) T + 11 x AG)bi + 74 (A1)
Regarding the gravity-gradient torque term, consider the following;:

A(q) = A(Bg® q) = A(69)A(q)
~ (I —2[5Gx])A(q) (A2)
Gy = A(6q® q)GiA(6g® q)"

= A0 A(§)GiA@)T A(sg)"
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~

(I —2[64x])Go(I + 2[6G%])

Gy — 2[67%]| Gy + 2G4 [6q%] — 4[6q%] Gy [67%]

(A3)

By ignoring the second order term [67x]Gy[67%], Gp can be expressed in a vector form of G, =

T .
[Go11, G22, Gp33, Gri2, Gois, Gpas|” as:

2
|

0 2Gh13 —2Gh12
—2Ghas 0 2G 12
2G)23 —2G13 0
—Ghs Ghos (Go11 — Gizz)
Ghio (Guss — Gi1) —Ghos
_(Gwz — G3s) —Ghio Ghis

— Gy — 20(Gy)67

(A4)

By expanding and ignoring the second or higher order terms with Eq. (A2) and Eq. (A4), (A1)

becomes

05 = JTY =& x (0J@ 4 JOG + 6C iy drwirw + CrwdTrwirw + CruwJruwdrw )

+5Crwt:;”w - érwéjrwoizrw -

1o o o
A Crudru (651, — 657,)

6@ x Hy + W(Gy)6 T + 20(J)Y(Gy)5q

+6mm X by — 1 x (2[67x]by) + 67y — 0JJ 7]

where

erajrw
1 - ~
S i
E (wrw wrw)
—Jrw O_er

—& % Hy 4 Crutyw + U(Gy) T + 10 x by + 74
diag (V)

> >

Crw,O + Crw,lD((Srw,l) + Crw,QD((Srw,Q)
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and

(;Crw = C’r‘w - Crw

- Crw,lD(Agrw,l) + Crw,ZD(Agrw,Q) (A]-?))

Note that dd,, and 6@, are not the same. §id,,, is iy, at the measurement time of 0., and it
remains constant. 3., represents the uncertainty of the RW speed through time, so its uncertainty
changes through time. In order to apply the Kalman filter approach, (A5) should be expressed in

I = FZ + Gij form. Since (A5) contains so many terms, let us consider the terms related each error

state one by one. Regarding 44,

85y = JTHRU(I)T(Gy)oq — i x (2[6Gx]by)}

I
<
L
—~
[\]
S
<
—’
|_§
—~
Q
o
N—
(o9
2y
+
i)
3
X
=
o
X,
(o9
=)
—

— 2 YW T(Gy) + [Fix] By x]}67 (A14)
Regarding 6,

06los = JTH—& x J6@ — 6@ x Hy}

= J Y& x Jé& + Hy x 63}

— JY S]] 4 [Hox])os (A15)

Regarding 674,
0|52, = J 17 (A16)

Regarding (Sf,
05| 5= J U ~G % 6.5 + U(Gy)oT — 67717} (A17)

Since d.J is a symmetric 3 by 3 matrix as:

8 Jw 0Juy 0T
0J = |6Jpy 0y, 6J,- (A18)

0Tps 61y 0.
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and 6.J is a 6 by 1 vector as:

T
0T = 1600w 0Jyy 0Juz 0Juy 0Ju 0Jy.
the following identity holds for any 3 by 1 vector @ = [vy, va, v3]7.
8JT = QD)6
where
U1 0 0 Vo U3 0
Q)= |0 vo 0 v1 0 ws
0 0 V3 0 V1 V2
Therefore, (A17) can be written as:
86| 5= T HW(Gy) — [GX]QP) — T ' 7)}0T
Regarding ém,
0|5 = J 1 (8 X by) = —J by x]0mm

Regarding 6C,., or Agm,

>

8|sc.. = JH=[EX]6Crwhrw — 0Crupbrw}

(A19)

(A20)

(A21)

(A22)

(A23)

(A24)

In order to make (A24) in vector form, let us consider the following identity for any n by 1 vector .

8CypT = Crup1 D(A8rip1)T + Crap 2 D(Ab oy 2)T
= Crw,lD(ﬁ)Agrw,l + Crw72D(6)Agrw72

— {51’11]1 gn’lvn] Abpw,1 + {51’27]1 gn’wn} Al 2

A57‘74),1
C1,1V1 -+ Cp,1Up C12V1 ' Cp2Un .
A(Srw,Q
= C(7)Adpy
where C(?) is defined as:
C) = C1,1V1 C2,1V2 *** Cp,1Vp C1,2V1 C22V2 - Cp2Up
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Using (A25), (A24) becomes
63150, = JTH=BXIC irn) + Clir) Y ATy
Regarding 5f,,w,
65157 = JTHAEX)Crw8 v — Cruwb i}

Since 0.J, = D(6Jy,) and D(a@)b = D(b)a@, (A28) can be written as:

0|57 = J = [@X]CruwD(@rw) = CriwD () 1T

Regarding 8., 0., and 4@,
83155, = —J Y BX]Cru 0
Bln] = Ll dia
88w At rwJrw rw
85| Ly S A
sat, T At rw 9%y

Combining (A14)-(A16), (A22), (A23), (A27), (A29), and (A30)-(A32),

=

65 = 20 H{U()T(Gy) + [Fix][byx]}07+ JH{—[Gx]J + [H,x]}o@ + J-167,

HITHW(Gy) — [BX]QS) — QIS — by X6

1>

HJ T BX]C ) + O

(A27)

(A28)

(A29)

(A30)
(A31)

(A32)

trw)}Agrw + jil{*[wx]cer((ﬁrw) - Cer(&rw)}dj;"w
A A A A 1 -~ ;- A 1 -~ ;- A
N ] - 71 -+ -1 -4
J T BX]Crp Sy 0By + A7 J T Cry Jry 0@, A7 J 7 Crp Iy 00,1,

APPENDIX B: DERIVATION OF STATE TRANSITION MATRIX

The state transition matrix ® satisfies:

where F is given in Eq. (63). Let us consider ® partitioned into block matrices as:

d11 P12 - Pla
P21 P22 - Pa2q
b =
_¢a1 ¢a2 ¢aa_
39
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Eq. (B1) can be written as:

_—[ij] ir o o_
P11 b2 - dia Fo1 Fap Foz -+ Foo| |11 012 -+ ¢1a
$o1 baz v P2 B 0 $21 P22+ P24
. Fyg Fya
9a1 daz b 0 Ga1 Ga2 o G
0

The j-th column of & can be expanded as:

. . 1
$1j = —[@x]o1j + 502
Goj = Y Faty

=1
bsj = Fzodoj + Feataj

¢ = 0
with the boundary condition:

I, ifi=j
$ij(0) =

0, otherwise

forl=3,---,7,9,a.

For j = 1: It is obvious that ¢;; = 0 from Eq. (B7) and Eq. (B8) for i = 3,--- ,a.

Eq. (B5) and Eq. (B6) becomes:

b1 = —[&7><]¢11 + %@1

ba1 = Forpn + Froghm

Since ¢921(0) = 0 and Fo < I,
€i711 =~ *[U:)'XM)M
d)ll ~ I* [(.:_.)'X}At
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Useful approximation: the definite integral solution of ¢(t) = A¢(t)+ B(t), where A is constant,
B(t) is a function of ¢, and ¢(ty) = 0, is known as:

fttol el _Adt/lTB(T)dT
¢(tl) = ef —Adt/|t1

t tq ’
:/ el=" A B(1)dr

to

R

/ Ut Al — ) B(r)dr (B13)

to
This approximation will be repeatedly used in the following derivations. From Eq. (B11), Eq. (B12),

and Eq. (B13), ¢2; is approximated as:

1 N 1 .
(,2521 = FglAt + §(F22F21 — Fgl[wX])At2 — EFQQFgl[wX]AtS (B14)

For j = 2: Similar to above, it is possible to derive the following:

p12 = %(IAt - %[(va]mz + %FQQM - %[va]FﬂAtB) (B15)
1

pa2 = I+ FooAt + §F§2At2 (B16)

¢iz = 0 (B17)

fori=3,-- ,a.

For j=3,---,8: From Eq. (B7), Eq. (B8), and Eq. (B9),

I, ifi=j
¢ij(t) = (B18)

0, otherwise

for i = 3,4,--- ,a. From Eq. (B5), Eq. (B6), Eq. (B18), and the fact that 5 < I and ¢1;(0) =0,

pr1j = 7[5X}¢1j + %%j (B19)

d)2j = Fy101; + Faspo; + Fyj

~ o + Iy (B20)
Applying Eq. (B13) to Eq. (B20),
b2 ~ FyjAt+ %F22F2jAt2 (B21)
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With Eq. (B21), Eq. (B19) becomes
. . 1 1 2
¢15(t) = —[@x]ou; + 5 [F2j(t = to) + S Faa b (t — t0)7]

Applying Eq. (B13),

1

1 2

. 1 Lo~
x| Foj At + EF22F2jAt3 - @[WX}F%F%A#

For j =9,a: From Eq. (B7), Eq. (B8), and Eq. (B9),

I, ifi=j
$ij(t) =

0, otherwise

fori=3,---,7,9,a. Then, Egs. (B5)- (B7) become

by = —[03><]¢1j + %¢2j

baj = Faooj + Fagpss + Fj

¢s; = F;
Since ¢g;(0) =0,
¢gj = Fg; At
So,
qB?j = F22¢2j + FQSngAt —+ FQj
1 2 1 2 1 3
P2j = FyAt+ §F22F2jAt + §F28F8jAt + 6F22F28F8jAt
and

. A 1 1 1 1
¢1j = —[wx}qﬁlj + §[F2jAt + iFQQFQjAtQ + §F28F8jAt2 + 6F22F28F8jAt3]

1 1 .
b1 = ZFQjAt2 + E(FQQFQJ- + FogFyj — [0x]Fyy) At?

1

T 240

ACKNOWLEDGMENTS

Hyosang Yoon acknowledges support from Samsung Scholarship.

42

Review copy- Do not distribute

Jan ]. 2, 5
[F22F28F8j — [WX](FQQFQJ' —+ Fggng)}AtZL — 7[WX]F22F28F8J'A1Z

(B22)

(B23)

(B24)

(B25)
(B26)

(B27)

(B28)

(B29)

(B30)

(B31)

Page 42 of 45



Page 43 of 45

©CoO~NOUTA,WNPE

e
[Ny

U OO A DMBEBRAMDIMBAEDIAMDIMNDMOWWWWWWWWWWNDNNDNNNNNNNRPRPRERREREREPR
QOO NOUPRRWNRPOOO~NOURARWNPRPOOONOUOPRARWNRPOOONOODURAWNRPOOO~NOOOMWN

Submitted to Journal of Guidance, Control, and Dynamics for Review

REFERENCES

[1] Lefferts, E. E., Markley, F. L., and Shuster, M. D., “Kalman Filtering for Spacecraft Attitude
Estimation,” Journal of Guidance, Control, and Dynamics, Vol. 5, No. 5, 1982, pp. 417-429.
doi:10.2514/3.56190

[2] Mehrparvar, A., “Cubesat Design Specification Rev. 13,” Cal Poly, California Polytechnic State Univ.,
San Luis Obispo, CA, February. 2014, http://www.cubesat.org/s/cds_revi3_final2.pdf, [retrieved
December 1, 2016].

[3] Hand, E., “Startup liftoff,”, Science, Vol. 348, No. 6231, 2015, pp. 172-177.

doi:10.1126 /science.348.6231.172

[4] Knapp, A., “Spire to Launch Constellation Of Cubesats For Weather Fore-
casting,” Forbes, 2015, http://wuw.forbes.com/sites/alexknapp/2015/01/29/
spire-to-launch-constellation-of-cubesats-for-weather-forecasting/#7bd3cbdade9a [re-

trieved February 1 2017].

[6] Guide to Comparing Gyro and IMU Technologies - Micro-Electro-Mechanical Systems and Fiber Optic
Gyros, KVH Industries, Inc. Report, Middletown, Rhode Island, 2014.

[6] Rawashdeh, S. A., Lumpp, J. E. J., Barrington-Brown, J., and Pastena, M., “A Stellar Gyroscope for
Small Satellite Attitude Determination,” Proceedings of the AIAA/USU Conference on Small Satellites,
Advanced Technologies II, SSC12-I1X-7, 2012.

[7] Johnston-Lemke, B., Sarda, K., Grant, C. C., and Zee, R. E., “Arc-Minute Attitude Stability on a
Nanosatellite: Enabling Stellar Photometry on the Smallest Scale,” Proceedings of the AIAA/USU
Conference on Small Satellites, Mission Enabling Technologies II, SSC11-X-7, 2011.

[8] Sarda, K., Grant, C. C., Chaumont, M., Choi, S. Y., Johnston-Lemke, B., and Zee, R. E., “On-
Orbit Performance of the Bright Target Explorer (BRITE) Nanosatellite Astronomy Constellation,”
Proceedings of the AIAA/USU Conference on Small Satellites, Year in Review, SSC14-XII-6, 2014.

[9] Shuster, M. D., Pitone, D. S., and Bierman, G. J., “Batch Estimation of Spacecraft Sensor Alignments
I. Relative Alignment Estimation,” Journal of Astronautical Sciences, Vol. 39, No. 4, 1991, pp. 519-546.

[10] Shuster, M. D. and Pitone, D. S., “Batch Estimation of Spacecraft Sensor Alignments II. Absolute
Alignment Estimation,” Journal of Astronautical Sciences, Vol. 39, No. 4, 1991, pp. 547-571.

[11] Pittelkau, M. E., “Kalman Filtering for Spacecraft System Alignment Calibration,” Journal of Guidance,
Control, and Dynamics, Vol. 24, No. 6, 2001, pp. 1187-1195. do0i:10.2514/2.4834

[12] Pittelkau, M. E., “Everything Is Relative in Spacecraft System Alignment Calibration,” Journal of

Spacecraft and Rockets, Vol. 39, No. 3, 2002, pp. 460-466. do0i:10.2514/2.3830

43

Review copy- Do not distribute



©CoO~NOUTA,WNPE

e
[Ny

U OO A DMBEBRAMDIMBAEDIAMDIMNDMOWWWWWWWWWWNDNNDNNNNNNNRPRPRERREREREPR
QOO NOUPRRWNRPOOO~NOURARWNPRPOOONOUOPRARWNRPOOONOODURAWNRPOOO~NOOOMWN

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

21]

22]

23]

[24]

Submitted to Journal of Guidance, Control, and Dynamics for Review

Zanardi, M. C. and Shuster, M. D., “Batch, Sequential and Hybrid Approaches to Spacecraft Sensor
Alignment Estimation,” Journal of Astronautical Sciences, Vol. 51, No. 3, 2003, pp. 279-290.

Ahmed, J., Coppola, V., and Bernstein, D., “Adaptive Asymptotic Tracking of Spacecraft Attitude
Motion with Inertia Matrix Identification,” Journal of Guidance, Control, and Dynamics, Vol. 21, No.
5, 1998, pp. 684-691. doi:10.2514/2.4310

Chaturvedi, N. A., Bernstein, D. S.;, Ahmed, J., Bacconi, F., and McClamroch, N. H., “Globally
Convergent Adaptive Tracking of Angular Velocity and Inertia Identification for a 3-DOF Rigid
Body,” IEEE Transactions on Control Systems Technology, Vol. 14, No. 5, 2006, pp. 841-853.
doi:10.1109/TCST.2006.876908

Thienel, J., Luquette, R., and Sanner, R., “Estimation of Spacecraft Inertia Parameters,” ATAA Guid-
ance, Navigation and Control Conference and Exhibit, Honolulu, HI, ATAA Paper 2008-6454, Aug.
2008. pp. 1-8. doi:10.2514/6.2008-6454

Leve, F. and Jah, M., “Spacecraft actuator alignment determination through null-motion excita-
tion,” IEEE Transactions on Aerospace and Electronic Systems, Vol. 50, No. 3, 2014, pp. 2336-2342.
doi:10.1109/TAES.2013.120187

Bergmann, E. V., Walker, B. K., and Levy, D. R., “Mass Property Estimation for Control of Asymmet-
rical Satellites,” Journal of Guidance, Control, and Dynamics, Vol. 10, No. 5, 1987, pp. 483-491. doi:
10.2514/3.20243

Psiaki, M. L., Klatt, E. M., Kintner Jr., P. M., and Powell, S. P., “Attitude Estimation for a Flexible
Spacecraft in an Unstable Spin,” Journal of Guidance, Control, and Dynamics, Vol. 25, No. 1, 2002,
pp. 88-95. doi:10.2514/2.4853

Psiaki, M. L., “Global Magnetometer-Based Spacecraft Attitude and Rate Estimation,” Journal of
Guidance, Control, and Dynamics, Vol. 27, No. 2, 2004, pp. 240-250. doi:10.2514/1.1039

Psiaki, M. L., “Estimation of a SpacecraftaAZs Attitude Dynamics Parameters by Using Flight Data,”
Journal of Guidance, Control, and Dynamics, Vol. 28, No. 4, 2005, pp. 594-603. doi:10.2514/1.7362
Fosbury, A. M. and Nebelecky, C. K., “Spacecraft Actuator Alignment Estimation,” AIAA Guid-
ance, Navigation, and Control Conference, Chicago, IL, ATAA Paper 2009-6316, Aug. 2009, pp. 1-18.
doi:10.2514/6.2009-6316

Norman, M. C., Peck, M. A., and OaAZShaughnessy, D. J., “In-orbit estimation of inertia and mo-
mentum actuator alignment parameters,” Journal of Guidance, Control, and Dynamics, Vol. 34, No. 6,
2011, pp. 1798-1814. doi:10.2514/1.53692

Pittelkau, M., “RIMU Misalignment Vector Decomposition,” AIAA/AAS Astrodynamics Spe-

44

Review copy- Do not distribute

Page 44 of 45



Page 45 of 45

©CoO~NOUTA,WNPE

e
[Ny

U OO A DMBEBRAMDIMBAEDIAMDIMNDMOWWWWWWWWWWNDNNDNNNNNNNRPRPRERREREREPR
QOO NOUPRRWNRPOOO~NOURARWNPRPOOONOUOPRARWNRPOOONOODURAWNRPOOO~NOOOMWN

[25]

[26]

[27]

(28]

[29]

[30]

31]

32]

Submitted to Journal of Guidance, Control, and Dynamics for Review

cialist Conference and Exhibit, Providence, RI, AIAA Paper 2004-4856, Aug. 2004, pp. 1-9.
doi:10.2514/6.2004-4856

Schrello, D. M., “Passive aerodynamic attitude stabilization of near Earth satellites. volume I. Libra-
tions due to combined aerodynamic and gravitational torques,” No. WADD-TR-61-133. North America
Aviation Inc., Columbus, Ohio, 1961.

Wie, B., Weiss, H., and Arapostathis, A., “Quartenion Feedback Regulator for Spacecraft Eige-
naxis Rotations,” Journal of Guidance, Control, and Dynamics, Vol. 12, No. 3, 1989, pp. 375-380.
doi:10.2514/3.20418

Julier, S., Uhlmann, J., and Durrant-Whyte, H. F., “A New Method for the Nonlinear Transformation
of Means and Covariances in Filters and Estimators,” IEEE Transactions on Automatic Control, Vol.
45, No. 3, 2000, pp. 477-482. doi:10.1109/9.847726

Crassidis, J. and Markley, F. L., “Unscented Filtering for Spacecraft Attitude Estimation,” Journal of
Guidance, Control, and Dynamics, Vol. 26, No. 4, 2003, pp. 536-542. doi:10.2514,/2.5102

Marlow, W. A. N., “Improving attitude determination and control of resource-constrained CubeSats
using unscented Kalman filtering,” S.M. Thesis, Massachusetts Institute of Technology, 2016.
Gerhardt, D. T. and Palo, S. E., “Passive Magnetic Attitude Control for CubeSat Spacecraft,” Proceed-
ings of the ATAA/USU Conference on Small Satellites, Student Competition, SSC10-VII-5, 2010.
Rawashdeh, S. A. and Lumpp, J. E., “Aerodynamic Stability for CubeSats at ISS Orbit,” Journal of
Small Satellites, Vol. 2, No. 1, 2013, pp. 85-104.

Franquiz, F. J., Edwards, P., Udrea, B., Nayak, M. V., and Pueschl, T., “Attitude Determination
and Control System Design for a 6U CubeSat for Proximity Operations and Rendezvous,” ATAA/AAS
Astrodynamics Specialist Conference, San Diego, CA, ATAA Paper 2014-4421, Aug. 2014, pp. 1-19.

doi:10.2514/6.2014-4421

45

Review copy- Do not distribute



