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Kalman Filtering for Attitude and Parameter

Estimation of Nanosatellites without Gyroscopes

Hyosang Yoon1, Kathleen M. Riesing2 and Kerri Cahoy3

Massachusetts Institute of Technology, Cambridge, MA, 02139

In this work, a Kalman filtering algorithm is proposed that estimates the spacecraft

attitude and attitude parameters without gyroscope measurements for nanosatellites.

The attitude parameters include sensor and actuator alignment, spacecraft body mo-

ment of inertia, reaction wheel moment of inertia, reaction wheel speed, and the dipole

moment of the spacecraft. The new filtering formulation is based on the differential

form of the rigid-body rotational dynamics, so the body rate and the other attitude

parameters can be updated directly by attitude measurements such that the gyroscope

reading is not required. The new filter is derived in a closed form for implementation,

and physical and mathematical approaches toward achieving convergence and stability

with this filter are discussed. A detailed simulation is presented that demonstrates the

utility of the proposed algorithm for three different types of unmodeled disturbance

torques.
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Nomenclature

J = moment of inertia of a satellite (3×3 matrix)

~J = [Jxx Jyy Jzz Jxy Jxz Jyz]
T

~ω = body rotation rate of a satellite in body frame (3×1 vector)

n = the number of reaction wheels

ji = moment of inertia of the i-th reaction wheel

~Jrw = [j1 j2 · · · jn]T

ωi = rotation speed of the i-th reaction wheel

~ωrw = [ω1 ω2 · · · ωn]T

q̄ = attitude quaternion from an inertial frame to body frame

∆t = time step

(̂·) = estimates of (·)

(̃·) = measurements of (·)

D(~v) = diag(~v)

vec(q̄) = [q1 q2 q3], the vector part of a quaternion q̄ = [q1 q2 q3 q4]T

I = identity matrix

I. Introduction

In spacecraft attitude determination (AD), the Kalman filtering (KF) approach has been used

for decades to fuse different types of sensor data and calculate the optimal attitude estimates. Most

prior art is based on the 6-state multiplicative extended Kalman filter (MEKF) formulation that

was proposed by Lefferts et al. [1]. One key attribute of the 6-state MEKF is that it substitutes

gyroscope measurements in place of the rotational dynamics. Instead of augmenting the body rates

in the KF state and propagating it with the rotational dynamics, the 6-state MEKF uses gyroscope

measurement models to determine the body rates and to propagate the attitude. This approach has

been widely used in real-time onboard spacecraft AD because it is not subject to the uncertainties in

attitude dynamic parameters, actuator models, and external disturbances. While the 6-state MEKF

does not outperform an attitude estimation KF using rotational dynamics in terms of optimality
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in theory, in practice reducing the number of the unknown parameters in the system equations

is preferable to make the estimator robust and stable. Additionally, modern gyroscopes such as

the fiber optic gyroscope (FOG) and the hemispherical resonator gyroscope (HRG) show good

performances in small form factors, so there has been little need to incorporate the rotational

dynamics in the filtering formulation and to deal with the uncertainties in the dynamic parameters

for traditional spacecraft.

However, the emergence of nanosatellites has motivated new filtering approaches such as that

presented here, since they differ from larger satellites in some important respects. Since 2000, Cube-

Sats have emerged as a standard form of a small satellite with widespread adoption partially due

to the low-cost access to space via rideshare launch opportunities. One Unit (U) of a CubeSat is

defined by 10×10×10 cm3 with mass of less than 1.33 kg per 1U [2]. CubeSats have become a stan-

dard for university-level research as well as small satellite constellations [3, 4]. Compared to larger

satellites, AD is challenging for nanosatellites due to small size and sensor availability. One of the

most accurate sensors for spacecraft attitude is the star tracker. Star tracker performance depends

on the aperture area and the detector size. On larger spacecraft, star trackers and gyroscopes are

the core AD sensors. FOGs are widely used in commercial satellites due to their high performance

and compact size. However, in spite of their compact size, FOG are still too big and expensive for

nanosatellite platforms. Therefore, a CubeSat normally utilizes small micro-electro-mechanical sys-

tems (MEMS) gyroscope to measure its rotation rates. The MEMS gyroscopes are 10-100× worse

than the FOGs in terms of the angular random walk noise and their bias drifts much more due to

temperature [5]. For this reason, precision pointing CubeSats tend not to use MEMS gyroscope

measurements and solely rely on star trackers for both attitude and rate estimation when high at-

titude control accuracy is needed [6–8]. In this case, the 6-state MEKF based filtering formulation

cannot be used and the rotational dynamics should be incorporated into the filtering formulation.

This means that we must extend the filtering formulation to handle the uncertainties of the unknown

attitude and actuator parameters as well.

The unknown parameters that need to be estimated include sensor and actuator alignment,

spacecraft moment of inertia (MOI), spacecraft residual dipole moments, and actuator MOI if

3
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momentum-conserving actuators are used. For the on-orbit sensor alignment calibration, both least

squares (LS), or batch, estimation techniques and KF approaches are proposed in the literature [9–

13]. LS techniques assume that all the data are downloaded to the ground and processed at once,

while the KF approaches inherently process the data sequentially, which is more suitable for on-

board processor implementations. In the KF approaches, the 6-state MEKF formulation gives

the base platform of the estimator, and the misalignment parameters are augmented as additional

states [11, 12].

For MOI and other attitude parameter calibration, there are two general approaches in the

literature. The first approach is adaptive control. The goal of parameter calibration is to improve

attitude control (AC) accuracy. Adaptive control approaches can compensate for the effect of

control errors from the parameter uncertainty [14–17]. The other general approach uses estimation

techniques such as LS and Kalman filtering to estimate the MOI directly, along with the actuator

parameters such as misalignments and scale error [18–23]. Psiaki uses the extended Kalman filter

(EKF) and nonlinear smoother in Ref. [19, 20] with only magnetometers to estimate the MOI

and the other attitude parameters (excluding actuator parameters). Psiaki develops an attitude

dynamics parameter estimator that includes actuator parameters with LS approaches [21]. Fosbury

and Nebelecky derived an EKF formulation to estimate the actuator alignment [22], and Norman

et al. developed a momentum-based estimation scheme for MOI and actuator alignments [23].

However, the three studies assume the use of gyroscope measurements, and accurate gyroscope

measurements are generally not available for nanosatellites.

In this study, we propose a Kalman filtering approach to estimate the spacecraft attitude and

body rate, as well as other parameters including spacecraft body MOI, actuator MOI, actuator and

sensor misalignments, and residual dipole moment. The proposed Kalman filter, called the Atti-

tude Parameter calibration Kalman Filter (APKF), is not a momentum-based attitude parameter

estimation and only uses star tracker measurements and reaction wheel speed readings. Since the

APKF does not require gyroscope measurements and is based on the EKF, it is easily applicable to

nanosatellite attitude determination even for real-time onboard AD.

The outline of this paper is as follows: Section II defines the notation and framework used in this

4
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paper. Section III discusses the attitude dynamics combined with the reaction wheels. Section IV

presents our mathematical models of reaction wheels and star trackers, and Section V derives the

APKF. Section VI introduces the physical and mathematical approaches for the implementation of

the APKF that help keep the filter stable and converging. Section VII demonstrates the APKF’s

performance using simulations, and Section VIII captures conclusions.

II. Notation

The section briefly defines the mathematical notations for quaternion and vector operations

that are used to describe attitude kinematics and attitude dynamics in the following sections. A 3

dimensional vector ~v is defined as

~v =

[
v1 v2 v3

]T
(1)

and a quaternion q̄ is defined as

q̄ =

[
q1 q2 q3 q4

]T
=

 ~q
q4

 (2)

where ~q is called the vector part and q4 is called scalar term. In this study, the attitude is represented

by the quaternion defined as (2) where

~q = ê sin(θ/2), q4 = cos(θ/2) (3)

The unit vector ê is the axis of rotation and θ is the angle of rotation. So, the attitude quaternion

always satisfies the unity norm constraint

q̄T q̄ = 1 (4)

Vectors will be denoted by an arrow, and quaternions by an overbar in this paper. Let p̄, q̄, and

r̄ be quaternions and let Tp, Tq, and Tr be corresponding direction cosine matrices (DCM). The

quaternion product operator ⊗ is defined such that

r̄ = p̄⊗ q̄ = [p̄⊗]q̄ =



p4 p3 −p2 p1

−p3 p4 p1 p2

p2 −p1 p4 p3

−p1 −p2 −p3 p4





q1

q2

q3

q4


(5)
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Thus, r̄ = p̄⊗ q̄ corresponds to the product Tr = TpTq.

The skew symmetric matrix that satisfies the cross product ~v ×~b = [~v×]~b is given as

[~v×] =


0 −v3 v2

v3 0 −v1

−v2 v1 0

 (6)

for a given 3 dimensional vector ~v. Using the notations defined above, a DCM corresponding to an

attitude quaternion q̄ can be calculated as

A(q̄) = (|q4|2 − |~q|)I3×3 + 2~q~qT − 2q4[~q×] (7)

A(q̄) denotes the DCM corresponding to q̄ in this document. From (7), it can be inferred that both

q̄ and −q̄ represent a same DCM. This means q̄ = −q̄ in the sense of rotation.

The inverse quaternion q̄−1 of a quaternion q̄ is defined as a quaternion that satisfies

q̄−1 ⊗ q̄ = q̄ ⊗ q̄−1 =

[
0 0 0 1

]T
(8)

From (2), (7), and (8), the inverse quaternion q̄−1 can be obtained as

q̄−1 =

−~q
q4

 or

 ~q

−q4

 (9)

III. System Dynamics

The time derivative of the attitude quaternion is given as:

˙̄q =
1

2

~ω
0

⊗ q̄ (10)

and it is the system dynamics for the attitude quaternion in the APKF, similar to the basic six-state

attitude estimation filter (BAKF) [1, 11]. Regarding the angular rates of the spacecraft body, unlike

the BAKF that uses the gyroscope model as a part of the system dynamics, the APKF needs to

estimate the angular rate as one of its states. This study assumes the spacecraft as a rigid body, so

the rigid body dynamics, which is often referred to as Euler’s rotation equations or Euler’s equation,

should be used as the system dynamics.

6
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Let us consider reaction wheels (RWs) as the primary attitude actuators and divide the space-

craft into two parts: RWs and the rest of the body. The total angular momentum of the spacecraft

can be written as:

~H = ~Ha + ~Hb (11)

where ~H, ~Ha, and ~Hb are the total, actuator and body angular momentum, respectively, in the

body frame, and they are given as:

~Ha = ~Hrw + Ja~ω (12)

~Hb = Jb~ω (13)

where ~Hrw is the RW angular momentum from spinning about their axes, Ja is the 3×3 MOI matrix

of the RWs in the body frame, and Jb is the MOI of the spacecraft body except for the RWs. The

rotational dynamics of the spacecraft body only can be written as

~̇Hb|Inertial = ~Ta2b + ~Text

= ~̇Hb|Body + ~ω × ~Hb

= Jb~̇ω + ~ω × Jb~ω (14)

where ~Ta2b is the internal torque form RWs to the body and ~Text models the external torques such

as gravity gradient torque and aerodynamic drag torque. The rotational dynamics for the RWs is

given as:

~̇Ha|Inertial = ~Tb2a = ~̇Ha|Body + ~ω × ~Ha

= ~̇Hrw + Ja~̇ω + ~ω × ( ~Hrw + Ja~ω)

= −~Trw + Ja~̇ω + ~ω × ( ~Hrw + Ja~ω) (15)

where ~Ta2b is the reaction torque form the body to RWs, ~Tb2a = −~Ta2b and ~Trw = − ~̇Hrw is the

reaction torque due to change in speed of the RWs. Combining (14) and (15),

J~̇ω = −~ω × (J~ω + ~Hrw) + ~Trw + ~Text (16)

where J = Ja + Jb. Eq. (16) is the time derivative equation of the body rate ~ω and will be used as

the system dynamics equation for the propagation of state and covariance.

7
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IV. Actuator and Sensor Models

A. Reaction Wheels

The reaction wheel model is important because of ~Hrw and ~Trw in Eq. (16). Let us consider the

RW model whose rotation axis is fixed in the body frame with a constant rotor MOI. The angular

momentum of RWs in body frame is given as:

~Hrw = j1


c11

c21

c31

ω1 + j2


c12

c22

c32

ω2 + · · ·+ jn


c1n

c2n

c3n

ωn
= j1~c1ω1 + j2~c2ω2 + · · ·+ jn~cnωn (17)

where ji, ~ci, and ωi are the MOI, the rotation axis vector, and the rotation speed of the i-th reaction

wheel respectively, and n is the number of the reaction wheels in the reaction wheel assembly (RWA).

Since the rotation axis only contains directional information, it has the unity norm constraint as:

|~ci| = 1 (18)

Eq. (17) can be expressed in a matrix form as:

~Hrw =


c11 c12 · · · c1n

c21 c22 · · · c2n

c31 c32 · · · c3n


︸ ︷︷ ︸

Crw



j1 0 · · · 0

0 j2
. . .

...

...
. . . . . . 0

0 · · · 0 jn


︸ ︷︷ ︸

Jrw



ω1

ω2

...

ωn


= CrwJrw~ωrw (19)

By definition, the reaction torque of the RWA is given as:

~Trw = − ~̇Hrw = −CrwJrw~αrw (20)

where ~αrw = ~̇ωrw. In actual reaction wheel hardware, ~ωrw is directly measured by Hall-effect sensors

or optical encoders and ~αrw is obtained by numerical differentiation of ~ωrw. Assuming a Gaussian

RW speed read-out noise ~nrw ∼ N(0, Rrw), the RW speed measurement ~̃ωrw can be modeled as:

~̃ωrw = ~ωrw + ~nrw (21)

8

Page 8 of 45

Review copy- Do not distribute

Submitted to Journal of Guidance, Control, and Dynamics for Review

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Unlike the RW speed, there is no method to measure the RWA alignment matrix Crw and the RWA

MOIs Jrw directly on orbit. These are the parameters that need to be estimated in the APKF. The

rotation axis vector Crw has the unity constraint (18), so it needs careful consideration. Pittelkau

has shown that the measurement vector of a gyroscope has two degrees of freedom in terms of

misalignment, and derived a general gyroscope misalignment model in Ref. [24]. Reaction wheel

misalignments can be modeled and linearly approximated in the same manner as:

~ci ' ~ci,0 + ~ci,1δi,1 + ~ci,2δi,2 (22)

where ~ci,0 is the initial guess for the i-th RW, ~ci,1 and ~ci,2 are the two unit vectors that are orthogonal

to ~ci,0, and δi,1 and δi,2 are the small misalignment angles. ~ci,1 and ~ci,2 can be any two vectors that

satisfy

~ci,0 ⊥ ~ci,1 ⊥ ~ci,2. (23)

Strictly speaking, Eq. (22) does not exactly satisfy the unity norm constraint (18), but it is a

good approximation for linear filtering approaches such as the Kalman filter. Using Eq. (22), the

alignment matrix Crw can be approximated as:

Crw '
[
~c1,0 · · · ~cn,0

]
︸ ︷︷ ︸

Crw,0

+

[
~c1,1 · · · ~cn,1

]
︸ ︷︷ ︸

Crw,1


δ1,1 0

. . .

0 δn,1



+

[
~c1,2 · · · ~cn,2

]
︸ ︷︷ ︸

Crw,2


δ1,2 0

. . .

0 δn,2


= Crw,0 + Crw,1D(~δrw,1) + Crw,2D(~δrw,2) (24)

where

~δrw,1 =

[
δ1,1 · · · δn,1

]T
~δrw,2 =

[
δ1,2 · · · δn,2

]T
(25)

9
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We make an assumption for the RW acceleration that ~αrw is constant during ∆t between two time

steps of the filter as:

~αrw =
1

∆t
(~ω+
rw − ~ω−rw) (26)

where the superscript − and + means the beginning and the end of each propagation step in the

Kalman filter.

B. Star Tracker Model

The APKF is assumed to use a star tracker that measures a attitude quaternion from a reference

inertial frame to its sensor frame, whose mathematical model is given as

q̄m = sq̄i = q̄n ⊗ sq̄b ⊗ q̄ (27)

where sq̄b is the attitude quaternion from the body frame to the sensor frame (sensor alignment)

and q̄n is a noise quaternion, approximately given as:

q̄n '

 1
2~vq

1

 (28)

where

~vq ∼ N(0, Rq) (29)

Rq = diag(σ2
q1, σ

2
q2, σ

2
q3) (30)

Note that the units of σq are radians. Since the sensor alignment quaternion sq̄b should be estimated

along with the attitude quaternion q̄, it also needs to be augmented in the state vector afterwards.

V. APKF

A. Error State Dynamics

The APKF is basically an attitude estimation Kalman filter that estimates the attitude q̄.

Unlike BAKF, APKF does not use a gyroscope model to determine the body rate and to propagate

its attitude. Therefore, the APKF needs to estimate the body rates ~ω explicitly as a part of its

state vector. The dynamics for the body rate is given by Eq. (16), and we can combine it with the

10
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reaction wheel models Eq. (17)-Eq. (26) as:

~̇ω = J−1[−~ω × (J~ω + CrwJrw~ωrw)− 1

∆t
CrwJrw(~ω+

rw − ~ω−rw) + ~Text] (31)

where Crw is function of the reaction wheels’ misalignment angles (~δrw,1 and ~δrw,2) with respect to

its initial value Crw,0 as Eq. (24). The external torque ~Text consists of the gravity-gradient torque,

magnetic torque due to body’s residual dipole moment, aerodynamic torque, solar radiation torque,

etc. as:

~Text = ~τg + ~τm + ~τa + ~τs + ~τetc (32)

The gravity-gradient torque and the magnetic torque is given as:

~τg =


Gb23(Jyy − Jzz) + (Gb33 −Gb22)Jyz +Gb13Jxy −Gb12Jxz

Gb13(Jzz − Jxx) + (Gb11 −Gb33)Jxz +Gb12Jyz −Gb23Jxy

Gb12(Jxx − Jyy) + (Gb22 −Gb11)Jxy +Gb23Jxz −Gb13Jyz

 (33)

= Ψ(Gb) ~J = −Ψ(J)~Gb (34)

~τm = ~m×~bb (35)

where ~m = [mx,my,mz]
T is the residual dipole moment of the spacecraft,

Gb = A(q̄)GiA(q̄)T (36)

~bb = A(q̄)~bi (37)

and Ψ(G) is defined for a 3 by 3 symmetric matrix G as:

Ψ(G) =


0 G23 −G23 G13 −G12 (G33 −G22)

−G13 0 G13 −G23 (G11 −G33) G12

G12 −G12 0 (G22 −G11) G23 −G13

 (38)

Gi is the gravity-gradient tensor in inertial coordinates given by:

Gi = − µ
r3

(
I − 3

~r · ~rT

r2

)
(39)

where ~r is the satellite’s position in inertial frames, and ~bi is the geomagnetic field in inertial

coordinates. Both are assumed to be known in this study. From this point, we regard the other

11
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external torques except ~τg and ~τm as contributors to the disturbance torque ~τd which is a bias

driven by a second Gaussian white-noise process, similar to the gyro bias in Ref. [1]. It is possible to

explicitly model the disturbance torques such as the aerodynamic torque and solar radiation torque

in theory, but it is difficult to have consistent mathematical models for aerodynamic torque and

solar radiation torque in practice since they heavily depend on a satellite’s shape and solar activity

level. Also, their magnitudes can be assumed to be smaller than reaction wheel control torques

and the other external torques [25]. Therefore, we will use the simple bias model for the residual

disturbance torques as:

~̇τd = ~ηd (40)

where E[~ηd~η
T
d ] = Qd, and set Qd big enough to cover the un-modeled disturbance torque. This

approach will be verified by numerical simulations in Sec. VII.

In Eq. (31), every term except ∆t is actually unknown beyond an initial guess. The unknown

parameters to be estimated along with ~ω are the reaction wheel speed ~ωrw, the disturbance torque

~τd, the MOI of the spacecraft ~J = [Jxx, Jyy, Jzz, Jxy, Jxz, Jyz]
T , the MOI of the reaction wheels

~Jrw = [j1, j2, · · · , jn]T , and the reaction wheel misalignment angles ~δrw = [~δTrw,1,
~δTrw,2]T .

To apply the extended Kalman filter (EKF), it is important to obtain the linearized dynamics

of the error states. For the attitude quaternion, the time derivative of the vector part of the error

quaternion δq̄ = q̄ ⊗ ˆ̄q−1 is given in Ref. [1] as:

δ~̇q = −[~̂ω×]δ~q +
1

2
δ~ω (41)

for body rates, with the error states defined as:

δ~ω = ~ω − ~̂ω

δ~τd = ~τd − ~̂τd

δ ~J = ~J − ~̂J

δ ~m = ~m− ~̂m

∆~δrw = ~δrw − ~̂δrw

δ ~Jrw = ~Jrw − ~̂Jrw

12
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δ~ωrw = ~ωrw − ~̂ωrw

δ~ω−rw = ~ω−rw − ~̂ω−rw

δ~ω+
rw = ~ω+

rw − ~̂ω+
rw (42)

and the RW speed measurement model (21), Eq. (31) can be written as:

~̇ω = (I − Ĵ−1δJ)Ĵ−1[−(~̂ω + δ~ω)× {(Ĵ + δJ)(~̂ω + δ~ω)

+(Ĉrw + δCrw)(Ĵrw + δJrw)(~̂ωrw + δ~ωrw)} (43)

− 1

∆t
(Ĉrw + δCrw)(Ĵrw + δJrw)((~̂ω+

rw + δ~ω+
rw)− (~̂ω−rw + δ~ω−rw)) (44)

+Ψ(Gb)( ~̂J + δ ~J) + ~m×~bb + ~̂τd + δ~τd]

where

Ĉrw = Crw,0 + Crw,1D(~̂δrw,1) + Crw,2D(~̂δrw,2) (45)

and

δCrw = Crw − Ĉrw

= Crw,1D(∆~δrw,1) + Crw,2D(∆~δrw,2) (46)

Note that we used the approximation of the MOI matrix inverse as:

J−1 = (Ĵ + δJ)−1 = [Ĵ(I + Ĵ−1δJ)]−1

' (I − Ĵ−1δJ)Ĵ−1 (47)

The estimate of Eq. (43) is given as:

˙̂
~ω = Ĵ−1[−~̂ω × (Ĵ ~̂ω + ĈrwĴrw~̂ωrw)− 1

∆t
ĈrwĴrw(~̂ω+

rw − ~̂ω−rw) + Ψ(Ĝb) ~̂J + ~̂m× ~̂bb + ~̂τd] (48)

where

Ĝb = A(ˆ̄q)GiA(ˆ̄q)T (49)

~̂bb = A(ˆ̄q)~bi (50)

With Eq. (43) and Eq. (48), we can derive the linearized equation for the error body rates as (see

Appendix A):

δ~̇ω = 2Ĵ−1{Ψ( ~̂J)Υ( ~̂Gb) + [ ~̂m×][~̂bb×]}δ~q + Ĵ−1{−[~̂ω×]Ĵ + [ ~̂Ht×]}δ~ω + Ĵ−1δ~τd
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+Ĵ−1{Ψ( ~̂Gb)− [~̂ω×]Ω(~̂ω)− Ω(Ĵ−1~̂τt)}δ ~J − Ĵ−1[~̂bb×]δ ~m

+Ĵ−1{−[~̂ω×]C(~̂hrw) + C(~̂trw)}∆~δrw + Ĵ−1{−[~̂ω×]ĈrwD(~̂ωrw)− ĈrwD(~̂αrw)}δ ~Jrw

−Ĵ−1[~̂ω×]ĈrwĴrwδ~ωrw +
1

∆t
Ĵ−1ĈrwĴrwδ~ω

−
rw −

1

∆t
Ĵ−1ĈrwĴrwδ~ω

+
rw (51)

where

~̂hrw = Ĵrw~̂ωrw (52)

~̂αrw =
1

∆t
(~̂ω+
rw − ~̂ω−rw) (53)

~̂trw = −Ĵrw ~̂αrw (54)

~̂Ht = Ĵ ~̂ω + Ĉrw~̂hrw (55)

~̂τt = −~̂ω × ~̂Ht + Ĉrw~̂trw + Ψ(Ĝb) ~̂J + ~̂m× ~̂bb + ~̂τd (56)

matrix C(~v) and Ω(~v) are defined for a vector ~v as:

C(~v) =

[
~c1,1v1 ~c2,1v2 · · · ~cn,1vn ~c1,2v1 ~c2,2v2 · · · ~cn,2vn

]
(57)

Ω(~v) =


v1 0 0 v2 v3 0

0 v2 0 v1 0 v3

0 0 v3 0 v1 v2

 (58)

and matrix Υ(G) is defined for a 3 by 3 symmetric matrix as:

Υ(~G) =



0 2Ĝ13 −2Ĝ12

−2Ĝ23 0 2Ĝ12

2Ĝ23 −2Ĝ13 0

−Ĝ13 Ĝ23 (Ĝ11 − Ĝ22)

Ĝ12 (Ĝ33 − Ĝ11) −Ĝ23

(Ĝ22 − Ĝ33) −Ĝ12 Ĝ13



(59)

~J , ~m, ~δrw, and ~Jrw are assumed to be constant, but we add small process noises (~ηJ , ~ηm, ~ηδrw

and ~ηJrw, respectively) to deal with a small change in the values due to thermal distortion and to

prevent the APKF from becoming closed.

The reaction wheel speeds, with the assumption of constant acceleration with Eq. (26), ~ωrw can
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be written as:

~ωrw = ~ω−rw + ~αrw(t− t0) (60)

~̇ωrw = ~αrw

=
1

∆t
[~̂ω+
rw + δ~ω+

rw − (~̂ω−rw + δ~ω−rw)] (61)

Since the estimate of Eq. (61) is given as Eq. (53),

δ~̇ωrw = ~̇ωrw −
˙̂
~ωrw

=
1

∆t
δ~ω+

rw −
1

∆t
δ~ω−rw (62)

B. Relative Calibration for MOIs and Alignments

The error states in Eq. (42) include both the MOI of the spacecraft body and the MOIs of

the RWs, which means there is no absolute reference we can rely on for the MOI calibration.

Conceptually speaking, the attitude sensors such as star trackers measure the body rates (though

it is an indirect measurement), the reaction wheels measure their rotation speed, and the filter

compares those two measurements and extracts the relative ratio between the body MOI and the

RW MOIs. For a simple example, consider a RW on a frictionless turntable and assume it is initially

stationary. If the RW starts to rotate, the turntable will rotate in the opposite direction. Although

we assume perfect measurements of the RW speed and the turntable rotation rate, the only thing we

can calculate is the ratio between the MOIs of the RW and the turntable unless we know one of them

a priori. This means that both MOIs are not observable from the two rotation rate measurements.

To resolve this observability issue, we assume Jxx as the reference MOI and estimate the re-

maining five terms ~J5 = [Jyy, Jzz, Jxy, Jxz, Jyz]
T , similar to Ref. [19]. The estimation results of ~J5

and ~Jrw will be scaled to the ratio of the nominal and actual value of Jxx. The estimates of ~J5 and

~Jrw will not converge on the actual MOI values, but this does not matter for attitude determination

and control because they only use the relative ratios between the MOIs. For attitude filtering, the

multiplication of J−1 in Eq. (31) erases the scaling error of J and Jrw. For attitude control, since

the reaction wheel torque is typically generated by its rotation speed control, the same scaling error

in the MOIs will not produce any undesired torque error.
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For alignment calibration, if N sensors are used, only N − 1 alignments can be estimated by

the sensor measurements as discussed by Pittelkau [12]. This means that the misalignments of the

RW axis Crw and the star tracker sq̄b are not fully observable at the same time with only one

star tracker. Therefore, we set the star tracker’s sensor frame as the reference frame, and the RWs

rotation axes are estimated with respect to the star tracker frame. The misalignment of the star

tracker is blended into the RW rotation axis and the body MOI. It is possible to use RWs rotation

axes as the reference as Pittelkau did in Ref. [24] using gyroscopes’ measurements axes, but it is not

covered in this paper.

C. State Transition Matrix

With Eq. (41) and Eq. (51), the linearized time derivative equations for the error states, δq̄ and

Eq. (42), can be written in matrix form as:

d

dt



δ~q

δ~ω

δ~τd

δ ~J5

δ ~m

∆~δrw

δ ~Jrw

δ~ωrw

δ~ω−rw

δ~ω+
rw



=



−[~̂ω×] 0.5I 0 0 0 0 0 0 0 0

F21 F22 F23 F24 F25 F26 F27 F28 F29 F2a

0

0

0

0

0

0 F89 F8a

0

0


︸ ︷︷ ︸

F



δ~q

δ~ω

δ~τd

δ ~J5

δ ~m

∆~δrw

δ ~Jrw

δ~ωrw

δ~ω−rw

δ~ω+
rw


︸ ︷︷ ︸

∆~x
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+



0

0

I

I

I

I

I

0

0

0


︸ ︷︷ ︸

G



~ηd

~ηJ

~ηm

~ηδrw

~ηJrw


(63)

where

F21 = 2Ĵ−1{Ψ(Ĵ)Υ(Ĝb) + [ ~̂m×][~̂bb×]} (64)

F22 = Ĵ−1{−[~̂ω×]Ĵ + [ ~̂Ht×]} (65)

F23 = Ĵ−1 (66)

F24 = Ĵ−1{Ψ5(Ĝb)− [~̂ω×]Ω5(~̂ω)− Ω5(Ĵ−1~̂τt)} (67)

F25 = −Ĵ−1[~̂bb×] (68)

F26 = Ĵ−1{−[~̂ω×]C(~̂hrw) + C(~̂trw)} (69)

F27 = Ĵ−1{−[~̂ω×]ĈrwD(~̂ωrw)− ĈrwD(~̂αrw)} (70)

F28 = −Ĵ−1[~̂ω×]ĈrwĴrw (71)

F29 =
1

∆t
Ĵ−1ĈrwĴrw (72)

F2a = − 1

∆t
Ĵ−1ĈrwĴrw (73)

F89 = − 1

∆t
I (74)

F8a =
1

∆t
I (75)
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and, Ω5(~v) and Ψ5(G) are defined for the 5-element MOI error state vector δ ~J5 as:

Ω5(~v) =


0 0 v2 v3 0

v2 0 v1 0 v3

0 v3 0 v1 v2

 (76)

Ψ5(G) =


G23 −G23 G13 −G12 (G33 −G22)

0 G13 −G23 (G11 −G33) G12

−G12 0 (G22 −G11) G23 −G13

 (77)

The process noise has diagonal covariances E[~ηd~η
T
d ] = Qd = diag(qd, qd, qd), E[~ηJ~η

T
J ] =

QJ = diag(qJm, qJm, qJp, qJp, qJp), E[~ηm~η
T
m] = Qm = diag(qm, qm, qm), E[~ηδrw~η

T
δrw] = Qδrw =

diag(qδrw, · · · , qδrw), and E[~ηJrw~η
T
Jrw] = QJrw = diag(qJrw, · · · , qJrw).

The state transition matrix Φ can be obtained by integrating Eq. (63) either numerically or

with an analytical approximation. For the numerical method, Φ can be approximated using a

Taylor series simply as:

Φk,k−1 = eF∆t = I + F∆t+
1

2!
F 2∆t2 +

1

3!
F 3∆t3 + · · · (78)

where ∆t is the time step between k − 1 and k. This numerical method is simple and easy to

implement, but computationally burdensome especially when the number of states is large. It is

preferable to use a closed-form approximation of Φ, as derived in Appendix B,

Φ =



φ11 φ12 φ13 φ14 φ15 φ16 φ17 φ18 φ19 φ1a

φ21 φ22 φ23 φ24 φ25 φ26 φ27 φ28 φ29 φ2a

0 0 I 0 0 0 0 0 0 0

0 0 0 I 0 0 0 0 0 0

0 0 0 0 I 0 0 0 0 0

0 0 0 0 0 I 0 0 0 0

0 0 0 0 0 0 I 0 0 0

0 0 0 0 0 0 0 I φ89 φ8a

0 0 0 0 0 0 0 0 I 0

0 0 0 0 0 0 0 0 0 I


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where

φ11 = I − [~̂ω×]∆t (79)

φ12 =
1

2
κ11 (80)

φ1i =
1

2
κ12F2i (81)

φ1j =
1

2
κ12F2j +

1

2
κ13F28F8j (82)

φ21 = F21∆t+
1

2
(F22F21 − F21[~̂ω×])∆t2 − 1

6
F22F21[~̂ω×]∆t3 (83)

φ22 = I + F22∆t+
1

2
(
1

2
F21 + F22F22)∆t2 (84)

φ2i = κ21F2i (85)

φ2j = κ21F2j + κ22F28F8j (86)

φ8j = F8j∆t (87)

for i = 3, 4, · · · , 8 and j = 9, a where

κ11 = I∆t+
1

2
(F22 − [~̂ω×])∆t2 − 1

6
[~̂ω×]F22∆t3 (88)

κ12 =
1

2
I∆t2 +

1

6
(F22 − [~̂ω×])∆t3 − 1

24
[~̂ω×]F22∆t4 (89)

κ13 =
1

6
I∆t3 +

1

24
(F22 − [~̂ω×])∆t4 − 1

120
[~̂ω×]F22∆t5 (90)

κ21 = I∆t+
1

2
F22∆t2 (91)

κ22 =
1

2
I∆t2 +

1

6
F22∆t3 (92)

D. Process Noise

In the EKF, the covariance propagation can be calculated by:

P−t1 = Φt1,t0P
+
t0 ΦTt1,t0 +Qt (93)

where Qt is the process noise matrix given by:

Qt =

∫ t1

t0

Φ(t1, τ)G(τ)Q(τ)GT (τ)ΦT (t1, τ)dτ (94)

With the approximated state transition matrix as:

φ11 ' I (95)
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φ12 '
1

2
I∆t (96)

φ1j ' 0 (97)

φ22 ' I (98)

φ2j ' F2j∆t (99)

for j = 3, 4, · · · , 8, Eq. (94) can be integrated as:

Qt =



0 0 0 0 0 0 0 0 0 0

Qt,22
1
2F23Qd∆t

2 1
2F24QJ∆t2 1

2F25Qm∆t2 1
2F26Qδrw∆t2 1

2F27QJrw∆t2 0 0 0

Qd∆t 0 0 0 0 0 0 0

QJ∆t 0 0 0 0 0 0

Qm∆t 0 0 0 0 0

Qδrw∆t 0 0 0 0

QJrw∆t 0 0 0

0 0 0

0 0

0


(100)

where

Qt,22 =
1

3
[F23QdF

T
23 + F24QJF

T
24 + F25QmF

T
25 + F26QδrwF

T
26 + F27QJrwF

T
27]∆t3 (101)

Note that only the elements in the upper triangular part is displayed here. Since Qt is symmetric,

the lower triangular part is same as the transpose of the upper triangular part.

E. Update

With the same approach to substitute a quaternion by the product of an error quaternion and

its estimate q̄ = δq̄ ⊗ ˆ̄q, Eq. (27) can be written as:

q̄m = q̄n ⊗ δsq̄b ⊗
s ˆ̄qb ⊗ δq̄ ⊗ ˆ̄q (102)
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Using the same approaches described in Ref. [11], the vector part of the error measurement quater-

nion δq̄m = q̄m ⊗ ˆ̄q−1
m can be approximated in a linearized form as:

δ~qm ' δs~qb +A(
s ˆ̄qb)δ~q +

1

2
~vq (103)

As discussed in Sec. VB, the APKF does not estimate the misalignment of the star tracker δsq̄b

by assuming that only one star tracker is used, which means δs~qb = 0 and s ˆ̄qb remains the same as

the initial value sq̄b,0. If more than one star tracker is used, δs~qb for the extra star trackers should

be augmented in the state vector and needs to be estimated. For the APKF in this paper, the

linearized measurement equation is given as:

δ~qm =

[
A(

s ˆ̄qb) 0 · · · 0

]
︸ ︷︷ ︸

H

∆~x+
1

2
~vq (104)

H in Eq. (104) is the measurement sensitivity matrix of the star tracker for the APKF update given

as:

K = P−HT (HP−HT +MRMT )−1 (105)

∆~x+ = Kδ~qm (106)

P+ = (I −KH)P−(I −KH)T +KMRMTKT (107)

VI. Implementation Notes

A. Calibration Maneuver

For complete observability of both MOI and alignment calibration, a set of calibration maneuvers

that generates control torques and angular momentum in all directions is required, similar to the

discussion for gyroscope alignment calibration in Ref. [11]. In the APKF case, all directions should

include not only the three X, Y, and Z directions of the body frame, but also the null vector

directions of the RW alignment matrix Crw. If no torques are applied in the null vector directions,

it is not possible to update the misalignments on the null vector of Crw. In this study, we use three

consecutive rotations in each X, Y, and Z axis as one set of the calibration maneuver. It is possible

to use the other types of maneuvers such as the sinusoidal maneuver with different frequency as in

Ref. [11]. However, star trackers for nanosatellites perform worse under rotation than star trackers
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for bigger satellites due to their smaller aperture sizes, and even for bigger satellites, star trackers

usually give their best performance when the spacecraft is not rotating. To be more applicable

to real nanosatellite systems, we use three stop-and-go consecutive rotations for the calibration

maneuvers. Figure 1 shows the attitude commands in terms of Euler angle for a set of calibration

maneuvers.

Fig. 1: A set of calibration maneuver angle commands

B. RW Torque Command

In this study, we assume the use of a quaternion feedback control law with proportional-

derivative (PD) gain [26]. This PD control law gives the desired control torque, ~Tc, in body frame.

To calculate the RW torque command ~trw that satisfies

~Tc = Crw~trw, (108)

the following pseudo-inverse is usually used when the RWs are identical:

~trw,net = CTrw(CrwC
T
rw)−1 ~Tc (109)

Eq. (109) is the efficient solution of Eq. (108) that minimizes the norm of the RW torque vector by

eliminating the torque in the direction of the null space of Crw which does not affect the effective

control torque in the body frame. This RW torque command is good for spacecraft attitude control,

but we need the RW torque in the null space of Crw for the RW alignment calibration. So we add

the RW torque in the null space into Eq. (109) as:

~trw = CTrw(CrwC
T
rw)−1 ~Tc +

n−3∑
i=1

ai ~Nrw,i (110)
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where ~Nrw,i is the i-th null vector of Crw which satisfies Crw ~Nrw,i = 0 and ai is the magnitude of

the null torque for the i-th null vector. ai should be determined to be small enough to avoid RW

speed saturation.

C. Angular Momentum Bias

The spacecraft needs angular momentum bias to ensure complete observability of the relative

MOI calibration. Let us consider a sample case where J = diag(Jxx, Jyy, Jzz) and there are only

three reaction wheels that are aligned to the X, Y, and Z axes. If we assume zero total angular

momentum (J~ω + CrwJrw~ωrw = 0) and ignore the external torque ~Text, the equation of motion

given by Eq. (31) becomes:

~̇ω =


j1
Jxx

αrw,1

j2
Jyy

αrw,2

j3
Jzz

αrw,3

 (111)

In Eq. (111), each axis is uncoupled with the other axes, so the relative MOI calibration to Jxx is not

feasible. Therefore, non-zero angular momentum bias is required for the relative MOI calibration.

The magnitude of the bias should be determined to be small enough to avoid RW speed saturation.

D. Variable Fictitious Noise

The APKF applies the EKF, which is a linearized estimator, to the nonlinear system. The

APKF uses Eq. (63) as the system dynamics, but it is just a linearized equation, not the exact

system dynamics. The discrepancy between the exact system and the linearized model may be large

and may cause instability of the APKF, especially when the estimation error is large and complete

observability is not obtained. In the calibration maneuver, full observability is not ensured before

completing one set of the maneuvers. Once the error of the estimate becomes large compared to

its estimated covariance, the error may not converge even after completing the set of calibration

maneuvers. Fig. 2 shows a typical non-converging estimation result. This is the estimation result

of Jyy of the APKF. The first set of the calibration maneuver ends at 210 sec. The estimation error

becomes larger then 3σ around 140 sec and it does not converge into the 3σ boundary even after a

couple of sets of the calibration maneuvers. The fundamental solution for this problem would be to
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Fig. 2: Sample non-converging APKF result for Jyy estimates

change the filtering approach from the EKF to other nonlinear estimation techniques such as the

unscented Kalman filter [27, 28] and particle filter, but they normally require intensive calculations

especially when the number of states is large [29]. The APKF’s state has 41 components for n = 4,

so nonlinear filtering techniques may be too burdensome. Instead of utilizing nonlinear filters, we

propose a simple strategy to mitigate this problem by varying the process and measurement noise

covariances. There are five process noise vectors and one measurement noise vector, ~ηd, ~ηJ , ~ηm, ~ηδrw,

~ηJrw, and ~vq, and the six corresponding covariance matrices, Qd, QJ , Qm, Qδrw, QJrw, and Rq.

The nominal values of the process noise covariances are set to be small, such as 0.1% MOI variation

over one hour, since the MOIs and the alignments are assumed to be constant. On initializeing

the filter, we set the Q’s and Rq 100 times bigger than their nominal values to prevent the filter

from becoming closed before full observability is acquired. After the first set of the calibration

maneuvers, the covariance values are set to 10 times the nominal for gradual convergence, and they

return to their nominal values after the second set of the calibration maneuver. With this numerical

approach, the APKF gives the converging result as shown in Fig. 3 with the same inputs as used

in Fig. 2. This approach does not guarantee the optimal estimation results during the transient

period, but when it converges to the steady state, the non-optimality becomes negligible.

VII. Simulation Results

The following parameters for a satellite system are used to verify the APKF’s performance

by simulation. A typical 3U rectangular-prism CubeSat (30 × 10 × 10 cm3) was assumed as the
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Fig. 3: Sample converging APKF result for Jyy estimates with variable fictitious noise

spacecraft. The nominal body MOI is ~J0 = [12, 47, 45, 1, 2, 3]T × 10−3 kg ·m2 and the nominal MOI

of each RW is 3 × 10−6 kg · m2. We assume that 4 RWs are used and the nominal RW rotation

matrix is given as:

Crw,0 =
1√
3


−1 −1 1 1

−1 1 1 −1

1 1 1 1

 (112)

which is a symmetric pyramid configuration. The MOI errors are set to be ±6% to ±12%

of its nominal value as ∆ ~J = [−1.2, 3.29, 3.6, 0.1,−0.12, 0.21]T × 10−3 kg · m2 and ∆ ~Jrw =

[0.45, 0.36,−0.75,−0.60]T × 10−6 kg ·m2. Regarding the RW misalignment, the two misalignment

direction vectors ~ci,1 and ~ci,2 are calculated as:

~ci,1 =
~ci,0 × ~ci+1,0

|~ci,0 × ~ci+1,0|

~ci,2 =
~ci,0 × ~ci,1
|~ci,0 × ~ci,1|

(113)

for i = 1, 2, · · · , n and ~cn+1,0 = ~cn,0. The RW alignment error angles are assumed to be ~δrw,1 =

[11,−7,−11, 8]T deg and ~δrw,2 = [−12, 12, 9, 10]T deg, so that the actual RW rotation matrix is

given as:

Crw =


−0.76820 −0.72728 0.36636 0.70252

−0.39087 0.39403 0.68484 −0.59026

0.50703 0.56195 0.62988 0.39755

 (114)

25

Page 25 of 45

Review copy- Do not distribute

Submitted to Journal of Guidance, Control, and Dynamics for Review

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Hyosang
강조

Hyosang
강조

Hyosang
강조

Hyosang
강조

Hyosang
강조



For Peer Review

The RW speed read-out noise is assumed to be 10 rpm (1σ). The star tracker accuracy is assumed

to be 20 arcsec (1σ) in the cross boresight axes, which are x and y axis of the body frame, and 60

arcsec (1σ) in the boresight axis, which is the z axis of the body frame. The star tracker is assumed

to give output only when the magnitude of the body rate is less than 0.1 deg/sec. The residual

dipole moment is assumed to be ~m = [−0.11, 0.15, 0.20]TAm2.

Regarding the attitude maneuvers, we use 5 sets of the calibration maneuver as proposed in

Section VIA in this simulation. The maneuver angle and the duration for each rotation are 30 deg

and 30 sec respectively, and we put 30 sec attitude-hold time before of the first set of the calibration

maneuvers for the filter initialization as shown in Fig. 1. The total simulation period is 930 sec

and the step time is 1 sec. The attitude, body rates, and the reaction wheel speeds are numerically

integrated by the 4th order Runge-Kutta method. The magnitude of the null torque ai in Eq. (110)

is set to be ±10% of max(~trw). The initial body rate is set to be ~ω0 = [1, 0, 0]Tdeg/sec to give the

momentum bias for complete observability.

The nominal process noise for the MOIs, the dipole moment, and the misalignments is set

to be qJm = (4.7 · 10−5 kgm2/
√
hr)2, qJp = (4.7 · 10−6 kgm2/

√
hr)2, qm = (1 · 10−3Am2/

√
hr)2,

qδrw = (0.01 deg/
√
hr)2, and qJrw = (3 · 10−9 kgm2/

√
hr)2.

Regarding the initialization of the APKF, the initial attitude quaternion determined by one

star tracker output and the initial body rate are estimated by numerical differentiation of two star

tracker outputs at the first two steps. The initial covariances (P0) for attitude and the body rate

are set to be large enough to fully cover the expected initial errors as (10 deg)2 and (10 deg/sec)2

respectively. The initial RW speed is determined by the RW speed reading and its P0 is the same

as the covariance of the read-out noise Rrw. The initial values for the other states are set to be

zero. The P0 is (5.0 · 10−3 kgm2)2 for Jyy and Jzz is which is 10.6% of the largest nominal body

MOI value, (2.0 · 10−3 kgm2)2 for Jxy, Jxz, and Jyz, (0.3 Am2)2 for the residual dipole moment,

(10 deg)2 for RW misalignments, and (1 · 10−6 kgm2)2 for RW MOIs.

We present three sets of simulation results with different unmodeled disturbance torques. The

first simulation is performed with zero disturbance torques to verify the convergence of the APKF

itself (Case 1), and the second simulation is performed with sinusoidal disturbance torques to ex-
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amine its stability for unmodeled disturbances (Case 2). The comparison of the results of Case 1

to Case 2 shows performance degradation due to the unmodeled disturbance torques. In the third

simulation, we assume a simple disturbance torque model which only depends on the satellite’s at-

titude quaternion (Case 3) to suggest a mitigation plan when the disturbance torques are partially

predictable.

A. Case 1: Zero Disturbance Torque

In this case, the nominal process noise for the disturbance torque is set to be small as qd =

(2.0 · 10−7 Nm/
√
hr)2 in order to just prevent the filter from closing. Fig. 4 shows the estimation

errors (solid line) and the ±3σ bounds (dashed lines) estimated from the covariance matrix of the

APKF. Note that most of the errors are within ±3σ bounds, which represents that the APKF is

working as expected.

The final 1σ is (9.81, 8.01, 19.70) arcsec for attitude and (49.08, 11.72, 15.89) arcsec/sec for

body rate. The relative differences between the 1σ’s on each axis are qualitatively to be expected

from the asymmetric body MOI, the asymmetric star tracker’s accuracy, and the RW read-out noise.

The 1σ is (0.078, 0.079)×10−3 kgm2 for (Jyy, Jzz), which is less than 0.17 % of their nominal values,

and 0.002 Am2 for ~m. The largest 1σ is 0.061 deg for ~δrw and 0.61 · 10−8 kgm2 for ~Jrw which is

0.2% of its nominal value. Note that the 1σ of ~ωrw remains almost same as Rrw, which implies that

the RW speed read-out noise is the dominant noise that determines the filtering performance in the

current system specification. In this case, it is worth considering removing ~ωrw, ~ω+
rw, and ~ω−rw from

the state vector to reduce state dimension and numerical burden.

B. Case 2: Sinusoidal Disturbance Torque

The most dominant unmodeled disturbance torque is the aerodynamic torque in low-earth

orbit (LEO) [25]. The aerodynamic torque depends on the satellite’s shape, attitude, altitude, and

velocity. If we assume no other information on the aerodynamic torque other than its maximum

magnitude, one approach is to set qd large enough to prevent the 3σ of ~τd from 3σ converging below

the maximum disturbance. There are several studies about the order of magnitude of aerodynamic

torques of a CubeSat in LEO: Gerhardt and Palo reported 8 · 10−8 Nm for a 3U CubeSat at
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(a) Attitude estimation error (arcsec) (b) ~ω estimation error (deg/sec)

(c) ~τd estimation error (10−6 kgm2) (d) ~m estimation error (Am2)

(e) Jyy , Jzz estimation error (10−3 kgm2) (f) Jxy , Jxz , Jyz estimation error (10−3 kgm2)

Fig. 4: Case 1 simulation results

600 km altitude [30], Rawashdeh and Lumpp reported 6 · 10−7 Nm for a 3U CubeSat at 400 km

altitude [31], and Franquiz et al. reported 1 · 10−6 Nm for a 6U CubeSat at 500 km altitude [32].

To be conservative, we run the simulation with a nonharmonic sinusoidal disturbance torque model
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(g) ~δrw,1 estimation error (deg) (h) ~δrw,2 estimation error (deg)

(i) ~Jrw estimation error (10−8 kgm2) (j) ~ωrw estimation error (rpm)

Fig. 4: Case 1 simulation results (continued)

whose magnitude is τmag = 1 · 10−6 Nm as:

~τd(t) = τmag


sin( 2π

Tx
t+ θx)

sin( 2π
Ty
t+ θy)

sin( 2π
Tz
t+ θz)

 (115)

where t is time, (Tx, Ty, Tz) = (80, 72.7, 82.47) sec, and (θx, θy, θz) = (90, 0, 135) deg. Note that

this disturbance model does not represent the actual aerodynamic torque which is a function of the

altitude, the velocity, and the attitude. Eq. (115) is just used to show the behavior of the APKF to

the varying disturbance torques whose maximum magnitude is 1 · 10−6 Nm. The covariance of the

process noise is set to qd = (4.0 · 10−6 Nm/
√
hr)2, which is 20 times greater than Case 1, to prevent

the estimated covariance from becoming too small. This approach will degrade the performance of
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(a) Attitude estimation error (arcsec) (b) ~ω estimation error (deg/sec)

(c) ~τd estimation error (10−6 kgm2) (d) ~m estimation error (Am2)

(e) Jyy , Jzz estimation error (10−3 kgm2) (f) Jxy , Jxz , Jyz estimation error (10−3 kgm2)

Fig. 5: Case 2 simulation results

the filter in terms of minimum covariance, but will help to keep the filter stable.

Fig. 5 shows the estimation errors and the±3σ bounds for Case 2. As intended, the ~τd estimation

errors are mostly kept inside of the ±3σ bounds as Fig. 5 (c), so does the other state errors. The

final 1σ is (9.83, 8.32, 21.19) arcsec for attitude and (49.33, 12.19, 17.13) arcsec/sec for body rate.

The 1σ is (0.109, 0.123)×10−3 kgm2 for (Jyy, Jzz), and 0.011 Am2 for ~m. The largest 1σ is 0.13
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(g) ~δrw,1 estimation error (deg) (h) ~δrw,2 estimation error (deg)

(i) ~Jrw estimation error (10−8 kgm2) (j) ~ωrw estimation error (rpm)

Fig. 5: Case 2 simulation results (continued)

deg for ~δrw and 0.93 · 10−8 kgm2 for ~Jrw. Compared to Case 1, the 1σ of attitude and body rate

estimation is not much worse, but the 1σ for the other parameter estimates are 2 to 10 times bigger

than Case 1’s result. The effect of the degraded attitude parameter estimation is distinctly shown

in the attitude and the rate estimation when the star tracker is not available for filter update.

Comparing Fig. 5 (a) and (b) to Fig. 4 (a) and (b), the 3σ bounds of Case 2 increase much faster

than Case 1 during the attitude maneuver. However, the APKF is still stable enough with this

approach to deal with the unmodeled disturbance torque.
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C. Case 3: Partially Predictable Disturbance Torque

Though the aerodynamic torque is also a function of the altitude and the velocity, the attitude in

local vertical, local horizontal (LVLH) frame is the dominant factor that determines the disturbance

torque in near-circular LEO. This means the variation of the aerodynamic torque depends on the

body rates in the LVLH frame. Though it is difficult to represent this with an exact mathematical

model, it is possible to adjust qd to mitigate the filter performance degradation caused by large qd in

Case 2. In Case 3, a disturbance torque model given by Eq. (116) is used to simulate this property

of the aerodynamic torque, and Fig. 6 shows the profile of the τd in Case 3.

~τd = τmag


1− q1

1− q2

1− q3

 (116)

where τmag = 1 · 10−6 Nm.

Fig. 6: Simplified disturbance torque model for Case 3

On the APKF side, qd = diag(qd,x, qd,y, qd,z) is tuned as follows:

qd,i = qd0 + qd1 · ω̂i + qd2 · |~̂ω| (117)

where i = x, y, z. qd0 is for preventing the filter from closing as in Case 1, qd1 is for the linear

variation of τd, and qd2 is for the variation coupled with the rotation in other directions, which

is not included in Eq. (116). qd0 = (2.0 · 10−7 Nm/
√
hr)2, qd1 = (2.0 · 10−5 Nm/

√
rad)2, and

qd2 = 0.1 · qd1 are used in this simulation.

Fig. 7 shows the estimation errors and the ±3σ bounds for Case 3. The final 1σ is (9.82, 8.10,
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(a) Attitude estimation error (arcsec) (b) ~ω estimation error (deg/sec)

(c) ~τd estimation error (10−6 kgm2) (d) ~m estimation error (Am2)

(e) Jyy , Jzz estimation error (10−3 kgm2) (f) Jxy , Jxz , Jyz estimation error (10−3 kgm2)

Fig. 7: Case 3 simulation results

20.88) arcsec for attitude and (49.37, 11.76, 17.01) arcsec/sec for body rate. The 1σ is (0.091,

0.095)×10−3 kgm2 for (Jyy, Jzz), and 0.0056 Am2 for ~m. The largest 1σ is 0.072 deg for ~δrw and

0.71 · 10−8 kgm2 for ~Jrw. Compared to Case 1, the 1σ for the attitude parameter estimates are

20% to 40% bigger than Case 1’s result except ~m. Note that this result is just for a hypothetical

disturbance torque model given by Eq. (116), not for the actual aerodynamic torques, so we cannot
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(g) ~δrw,1 estimation error (deg) (h) ~δrw,2 estimation error (deg)

(i) ~Jrw estimation error (10−8 kgm2) (j) ~ωrw estimation error (rpm)

Fig. 7: Case 3 simulation results (continued)

guarantee the APKF’s performance in a real system. However, this result shows that it is possible

to mitigate the effect of the unmodeled disturbance torque by tuning the process noise covariance

qd even if we only have a partial and qualitative knowledge of it.

VIII. Conclusions

An attitude parameter calibration Kalman filter (APKF) that estimates attitude and body rate

as well as the attitude parameters, which include spacecraft body moment of inertia (MOI), resid-

ual dipole moments, reaction wheel (RW) misalignments, and RW MOIs, was derived for gyro-less

nanosatellites. Unlike the traditional onboard 6-state attitude determination Kalman filter, the

APKF does not use gyroscope measurements in its system dynamics and uses the rigid-body dy-
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namics to propagate its states. The partial-differential equation for error body rate was linearized

with respect to the attitude parameters, and the state transition matrix was derived in a closed

form for ease of implementation. To improve the filter’s convergence, several physical and numer-

ical approaches involving tuning the process noise covariance were proposed and the stability and

performance of the APKF were demonstrated by simulations. We introduced two approaches to

manage unmodeled disturbance torques, and demonstrated their utility in mitigating the effect of

the unmodeled disturbance torques in simulation. These results are particularly useful for nanosatel-

lite applications in which high accuracy gyroscopes are unavailable due to volume constraints. By

incorporating rigid body dynamics into the Kalman filter, precision attitude determination can be

achieved with only attitude sensors.

APPENDIX A: DERIVATION OF ERROR RATE DIFFERENTIAL EQUATION

This section describes the derivation of (51). With Eq. (43) and Eq. (48), the derivative of the

error angular rate is written as:

δ~̇ω = ~̇ω − ˙̂
~ω

= (I − Ĵ−1δJ)Ĵ−1[−(~̂ω + δ~ω)× {(Ĵ + δJ)(~̂ω + δ~ω)

+(Ĉrw + δCrw)(Ĵrw + δJrw)(~̂ωrw + δ~ωrw)}

− 1

∆t
(Ĉrw + δCrw)(Ĵrw + δJrw)(~̂ω+

rw + δ~ω+
rw)− (~̂ω−rw + δ~ω−rw))

+Ψ(~Gb)( ~̂J + δ ~J) + ( ~̂m+ δ ~m)×A(q̄)~bi + ~̂τd + δ~τd]

−Ĵ−1[−~̂ω × (Ĵ ~̂ω + ĈrwĴrw~̂ωrw)− 1

∆t
ĈrwĴrw(~̂ω+

rw − ~̂ω−rw)

+Ψ( ~̂Gb) ~̂J + ~̂m×A(ˆ̄q)~bi + ~̂τd] (A1)

Regarding the gravity-gradient torque term, consider the following:

A(q̄) = A(δq̄ ⊗ ˆ̄q) = A(δq̄)A(ˆ̄q)

' (I − 2[δ~q×])A(ˆ̄q) (A2)

Gb = A(δq̄ ⊗ ˆ̄q)GiA(δq̄ ⊗ ˆ̄q)T

= A(δq̄)A(ˆ̄q)GiA(ˆ̄q)TA(δq̄)T
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' (I − 2[δ~q×])Ĝb(I + 2[δ~q×])

= Ĝb − 2[δ~q×]Ĝb + 2Ĝb[δ~q×]− 4[δ~q×]Ĝb[δ~q×] (A3)

By ignoring the second order term [δ~q×]Ĝb[δ~q×], Gb can be expressed in a vector form of ~Gb =

[Gb11, Gb22, Gb33, Gb12, Gb13, Gb23]T as:

~Gb = ~̂Gb − 2



0 2Ĝb13 −2Ĝb12

−2Ĝb23 0 2Ĝb12

2Ĝb23 −2Ĝb13 0

−Ĝb13 Ĝb23 (Ĝb11 − Ĝb22)

Ĝb12 (Ĝb33 − Ĝb11) −Ĝb23

(Ĝb22 − Ĝb33) −Ĝb12 Ĝb13



δ~q

= ~̂Gb − 2Υ( ~̂Gb)δ~q (A4)

By expanding and ignoring the second or higher order terms with Eq. (A2) and Eq. (A4), (A1)

becomes

δ~̇ω = Ĵ−1[−~̂ω × (δJ~̂ω + Ĵδ~ω + δCrwĴrw~̂ωrw + ĈrwδJrw~̂ωrw + ĈrwĴrwδ~ωrw)

+δCrw~̂trw − ĈrwδJrw ~̂αrw −
1

∆t
ĈrwĴrw(δ~ω+

rw − δ~ω−rw)

−δ~ω × ~̂Ht + Ψ( ~̂Gb)δ ~J + 2Ψ( ~̂J)Υ( ~̂Gb)δ~q

+δ ~m× ~̂bb − ~̂m× (2[δ~q×]~̂bb) + δ~τd − δJĴ−1~̂τt] (A5)

where

~̂hrw = Ĵrw~̂ωrw (A6)

~̂αrw =
1

∆t
(~̂ω+
rw − ~̂ω−rw) (A7)

~̂trw = −Ĵrw ~̂αrw (A8)

~̂Ht = Ĵ ~̂ω + Ĉrw~̂hrw (A9)

~̂τt = −~̂ω × ~̂Ht + Ĉrw~̂trw + Ψ( ~̂Gb) ~̂J + ~̂m×~bb + ~̂τd (A10)

D(~v) = diag(~v) (A11)

Ĉrw = Crw,0 + Crw,1D(~̂δrw,1) + Crw,2D(~̂δrw,2) (A12)
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and

δCrw = Crw − Ĉrw

= Crw,1D(∆~δrw,1) + Crw,2D(∆~δrw,2) (A13)

Note that δ~ωrw and δ~ω−rw are not the same. δ~ω−rw is δ~ωrw at the measurement time of δ~ω−rw, and it

remains constant. δ~ωrw represents the uncertainty of the RW speed through time, so its uncertainty

changes through time. In order to apply the Kalman filter approach, (A5) should be expressed in

~̇x = F~x+G~η form. Since (A5) contains so many terms, let us consider the terms related each error

state one by one. Regarding δ~q,

δ~̇ω|δ~q = Ĵ−1{2Ψ( ~̂J)Υ( ~̂Gb)δ~q − ~̂m× (2[δ~q×]~̂bb)}

= Ĵ−1{2Ψ( ~̂J)Υ( ~̂Gb)δ~q + 2[ ~̂m×][~̂bb×]δ~q}

= 2Ĵ−1{Ψ( ~̂J)Υ( ~̂Gb) + [ ~̂m×][~̂bb×]}δ~q (A14)

Regarding δ~ω,

δ~̇ω|δ~ω = Ĵ−1{−~̂ω × Ĵδ~ω − δ~ω × ~̂Ht}

= Ĵ−1{−~̂ω × Ĵδ~ω + ~̂Ht × δ~ω}

= Ĵ−1{−[~̂ω×]Ĵ + [ ~̂Ht×]}δ~ω (A15)

Regarding δ~τd,

δ~̇ω|δ~τd = Ĵ−1δ~τd (A16)

Regarding δ ~J ,

δ~̇ω|δ ~J = Ĵ−1{−~̂ω × δJ~̂ω + Ψ( ~̂Gb)δ ~J − δJĴ−1~̂τt} (A17)

Since δJ is a symmetric 3 by 3 matrix as:

δJ =


δJxx δJxy δJxz

δJxy δJyy δJyz

δJxz δJyz δJzz

 (A18)
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and δ ~J is a 6 by 1 vector as:

δ ~J =

[
δJxx δJyy δJzz δJxy δJxz δJyz

]T
(A19)

the following identity holds for any 3 by 1 vector ~v = [v1, v2, v3]T .

δJ~v = Ω(~v)δ ~J (A20)

where

Ω(~v) =


v1 0 0 v2 v3 0

0 v2 0 v1 0 v3

0 0 v3 0 v1 v2

 (A21)

Therefore, (A17) can be written as:

δ~̇ω|δ ~J = Ĵ−1{Ψ( ~̂Gb)− [~̂ω×]Ω(~̂ω)− Ω(Ĵ−1~̂τt)}δ ~J (A22)

Regarding δ ~m,

δ~̇ω|δ ~m = Ĵ−1(δ ~m× ~̂bb) = −Ĵ−1[~̂bb×]δ ~m (A23)

Regarding δCrw or ∆~δrw,

δ~̇ω|δCrw = Ĵ−1{−[~̂ω×]δCrw~̂hrw − δCrw~̂trw} (A24)

In order to make (A24) in vector form, let us consider the following identity for any n by 1 vector ~v.

δCrw~v = Crw,1D(∆~δrw,1)~v + Crw,2D(∆~δrw,2)~v

= Crw,1D(~v)∆~δrw,1 + Crw,2D(~v)∆~δrw,2

=

[
~c1,1v1 · · · ~cn,1vn

]
∆~δrw,1 +

[
~c1,2v1 · · · ~cn,2vn

]
∆~δrw,2

=

[
~c1,1v1 · · · ~cn,1vn ~c1,2v1 · · · ~cn,2vn

]∆~δrw,1

∆~δrw,2


= C(~v)∆~δrw (A25)

where C(~v) is defined as:

C(~v) =

[
~c1,1v1 ~c2,1v2 · · · ~cn,1vn ~c1,2v1 ~c2,2v2 · · · ~cn,2vn

]
(A26)
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Using (A25), (A24) becomes

δ~̇ω|δCrw = Ĵ−1{−[~̂ω×]C(~̂hrw) + C(~̂trw)}∆~δrw (A27)

Regarding δ ~Jrw,

δ~̇ω|δ ~Jrw = Ĵ−1{−[~̂ω×]ĈrwδJrw~̂ωrw − ĈrwδJrw ~̂αrw} (A28)

Since δJrw = D(δ ~Jrw) and D(~a)~b = D(~b)~a, (A28) can be written as:

δ~̇ω|δ ~Jrw = Ĵ−1{−[~̂ω×]ĈrwD(~̂ωrw)− ĈrwD(~̂αrw)}δ ~Jrw (A29)

Regarding δ~ωrw, δ~ω−rw, and δ~ω+
rw,

δ~̇ω|δ~ωrw = −Ĵ−1[~̂ω×]ĈrwĴrwδ~ωrw (A30)

δ~̇ω|δ~ω−rw =
1

∆t
Ĵ−1ĈrwĴrwδ~ω

−
rw (A31)

δ~̇ω|δ~ω+
rw

= − 1

∆t
Ĵ−1ĈrwĴrwδ~ω

+
rw (A32)

Combining (A14)-(A16), (A22), (A23), (A27), (A29), and (A30)-(A32),

δ~̇ω = 2Ĵ−1{Ψ( ~̂J)Υ( ~̂Gb) + [ ~̂m×][~̂bb×]}δ~q + Ĵ−1{−[~̂ω×]Ĵ + [ ~̂Ht×]}δ~ω + Ĵ−1δ~τd

+Ĵ−1{Ψ( ~̂Gb)− [~̂ω×]Ω(~̂ω)− Ω(Ĵ−1~̂τt)}δ ~J − Ĵ−1[~̂bb×]δ ~m

+Ĵ−1{−[~̂ω×]C(~̂hrw) + C(~̂trw)}∆~δrw + Ĵ−1{−[~̂ω×]ĈrwD(~̂ωrw)− ĈrwD(~̂αrw)}δ ~Jrw

−Ĵ−1[~̂ω×]ĈrwĴrwδ~ωrw +
1

∆t
Ĵ−1ĈrwĴrwδ~ω

−
rw −

1

∆t
Ĵ−1ĈrwĴrwδ~ω

+
rw (A33)

APPENDIX B: DERIVATION OF STATE TRANSITION MATRIX

The state transition matrix Φ satisfies:

Φ̇(t) = FΦ(t) (B1)

Φ(0) = I (B2)

where F is given in Eq. (63). Let us consider Φ partitioned into block matrices as:

Φ =



φ11 φ12 · · · φ1a

φ21 φ22 · · · φ2a

...
...

. . .
...

φa1 φa2 · · · φaa


(B3)
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Eq. (B1) can be written as:



φ̇11 φ̇12 · · · φ̇1a

φ̇21 φ̇22 · · · φ̇2a

...
...

. . .
...

φ̇a1 φ̇a2 · · · φ̇aa


=



−[~̂ω×] 1
2I 0 · · · 0

F21 F22 F23 · · · F2a

0

. . . F89 F8a

0

0





φ11 φ12 · · · φ1a

φ21 φ22 · · · φ2a

...
...

. . .
...

φa1 φa2 · · · φaa


(B4)

The j-th column of Φ̇ can be expanded as:

φ̇1j = −[~̂ω×]φ1j +
1

2
φ2j (B5)

φ̇2j =

a∑
k=1

F2kφkj (B6)

φ̇8j = F89φ9j + F8aφaj (B7)

φ̇lj = 0 (B8)

with the boundary condition:

φij(0) =


I, if i = j

0, otherwise

(B9)

for l = 3, · · · , 7, 9, a.

For j = 1: It is obvious that φi1 = 0 from Eq. (B7) and Eq. (B8) for i = 3, · · · , a. Then,

Eq. (B5) and Eq. (B6) becomes:

φ̇11 = −[~̂ω×]φ11 +
1

2
φ21 (B10)

φ̇21 = F21φ11 + F22φ21 (B11)

Since φ21(0) = 0 and F21 � I,

φ̇11 ' −[~̂ω×]φ11

φ11 ' I − [~̂ω×]∆t (B12)
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Useful approximation : the definite integral solution of φ̇(t) = Aφ(t)+B(t), where A is constant,

B(t) is a function of t, and φ(t0) = 0, is known as:

φ(t1) =

∫ t1
t0
e
∫
−Adt′|τB(τ)dτ

e
∫
−Adt′|t1

=

∫ t1

t0

e
∫ t1
τ
Adt′B(τ)dτ

'
∫ t1

t0

[I +A(t1 − τ)]B(τ)dτ (B13)

This approximation will be repeatedly used in the following derivations. From Eq. (B11), Eq. (B12),

and Eq. (B13), φ21 is approximated as:

φ21 = F21∆t+
1

2
(F22F21 − F21[~̂ω×])∆t2 − 1

6
F22F21[~̂ω×]∆t3 (B14)

For j = 2: Similar to above, it is possible to derive the following:

φ12 =
1

2
(I∆t− 1

2
[~̂ω×]∆t2 +

1

2
F22∆t2 − 1

6
[~̂ω×]F22∆t3) (B15)

φ22 = I + F22∆t+
1

2
F 2

22∆t2 (B16)

φi2 = 0 (B17)

for i = 3, · · · , a.

For j = 3, · · · , 8: From Eq. (B7), Eq. (B8), and Eq. (B9),

φij(t) =


I, if i = j

0, otherwise

(B18)

for i = 3, 4, · · · , a. From Eq. (B5), Eq. (B6), Eq. (B18), and the fact that F21 � I and φ1j(0) = 0,

φ̇1j = −[~̂ω×]φ1j +
1

2
φ2j (B19)

φ̇2j = F21φ1j + F22φ2j + F2j

' F22φ2j + F2j (B20)

Applying Eq. (B13) to Eq. (B20),

φ2j ' F2j∆t+
1

2
F22F2j∆t

2 (B21)
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With Eq. (B21), Eq. (B19) becomes

φ̇1j(t) = −[~̂ω×]φ1j +
1

2
[F2j(t− t0) +

1

2
F22F2j(t− t0)2] (B22)

Applying Eq. (B13),

φ1j '
1

4
F2j∆t

2 − 1

12
[~̂ω×]F2j∆t

3 +
1

12
F22F2j∆t

3 − 1

48
[~̂ω×]F22F2j∆t

4 (B23)

For j = 9, a: From Eq. (B7), Eq. (B8), and Eq. (B9),

φij(t) =


I, if i = j

0, otherwise

(B24)

for i = 3, · · · , 7, 9, a. Then, Eqs. (B5)- (B7) become

φ̇1j = −[~̂ω×]φ1j +
1

2
φ2j (B25)

φ̇2j ' F22φ2j + F28φ8j + F2j (B26)

φ̇8j = F8j (B27)

Since φ8j(0) = 0,

φ8j = F8j∆t (B28)

So,

φ̇2j = F22φ2j + F28F8j∆t+ F2j (B29)

φ2j ' F2j∆t+
1

2
F22F2j∆t

2 +
1

2
F28F8j∆t

2 +
1

6
F22F28F8j∆t

3 (B30)

and

φ̇1j = −[~̂ω×]φ1j +
1

2
[F2j∆t+

1

2
F22F2j∆t

2 +
1

2
F28F8j∆t

2 +
1

6
F22F28F8j∆t

3]

φ1j =
1

4
F2j∆t

2 +
1

12
(F22F2j + F28F8j − [~̂ω×]F2j)∆t

3

+
1

48
[F22F28F8j − [~̂ω×](F22F2j + F28F8j)]∆t

4 − 1

240
[~̂ω×]F22F28F8j∆t

5 (B31)
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