
MIT Open Access Articles

A Fully Integrated Energy-Efficient H.265/HEVC
Decoder With eDRAM for Wearable Devices

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

As Published: 10.1109/JSSC.2018.2837124

Publisher: Institute of Electrical and Electronics Engineers (IEEE)

Persistent URL: https://hdl.handle.net/1721.1/135005

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/135005
http://creativecommons.org/licenses/by-nc-sa/4.0/

1

A Fully-Integrated Energy-Efficient H.265/HEVC
Decoder With eDRAM for Wearable Devices

Mehul Tikekar, Student Member, IEEE, Vivienne Sze, Member, IEEE, and Anantha Chandrakasan, Fellow, IEEE

Abstract—This paper proposes a fully-integrated H.265/HEVC
video decoder that supports real-time video playback within
the 50mW power budget of wearable devices such as smart
watches and virtual reality (VR) headsets. Specifically, this
work focuses on reducing data movement to and from off-chip
memory as it dominates energy consumption in most video
decoders, consuming 2.8 to 6× more energy than processing.
Embedded DRAM (eDRAM) is used for main memory and
several techniques are proposed to reduce the power consumption
of the eDRAM itself: 1) lossless compression is used to store
reference frames in 2× fewer eDRAM macros, reducing refresh
power by 33%; 2) eDRAM macros are powered up on-demand
to further reduce refresh power by 33%; 3) syntax elements are
distributed to four decoder cores in a partially compressed form
to reduce decoupling buffer power by 4×. These approaches
reduce eDRAM power by 2× in a fully-integrated H.265/HEVC
decoder with the lowest reported system power. The test-chip
containing 10.5 MB of eDRAM requires no external memory
and consumes 24.9–30.6mW for decoding 1920×1080 video at
24–50 fps.

Index Terms—H.265/HEVC, video coding, embedded DRAM,
reference frame compression, wearable devices

I. INTRODUCTION

Wearable devices are gaining popularity in the form of smart
watches and virtual reality (VR) headsets. These devices have
stringent power and footprint constraints that limit their ability
to support video playback. For instance, the power budget can
be as low as 50 mW [1], which makes it extremely challenging
to perform video coding, especially for state-of-the-art video
coding standards such as H.265/HEVC [2, 3]. Most of the
previous work on hardware video decoders has focused on
improving the energy efficiency of the decoder chip [4–6].
However, from a system perspective, the energy required for
video decoding is dominated by memory access to off-chip
DRAM. Some of the more recent work [7, 8] has demonstrated
techniques such as caching, reference frame compression and
DRAM-aware memory mapping to reduce off-chip memory
power. However, even with these techniques, memory accesses
require 2.8× to 6× as much energy as the video decoder, thus
remaining the main obstacle in the path of reducing energy
consumption.

In this paper, we propose techniques to effectively use
embedded DRAM (eDRAM) in a fully-integrated H.265/HEVC
decoder achieving 2× energy saving in eDRAM itself and 6×
energy savings compared to a decoder system using off-chip
DDR3 memory [9]. While eDRAM reduces system power and
physical footprint relative to traditional DRAM, it requires
more frequent refresh due to two factors. Firstly, DRAM uses

The authors would like to thank the TSMC University Shuttle Program for
chip fabrication and NSF for providing funding.

larger bit-cell capacitance and access transistors with lower
leakage than eDRAM. Hence, eDRAM bitcells need more
frequent refresh (on the order of microseconds) compared
to DRAM (on the order of milliseconds) [10]. Secondly, for
typical HEVC decoding workloads, tens of eDRAM macros
are needed to meet the storage requirement, but just 1 to 2
macros are sufficient to meet the bandwidth requirement. All
the macros need to be refreshed to retain stored data even
though only 1 to 2 macros are active. As a result of these two
factors, the number of refresh commands sent to the eDRAM
macros exceeds the number of read and write commands and
the energy cost of using eDRAM is dominated by refresh
energy. Accordingly, in this work we focus on techniques to
reduce eDRAM refresh energy by exploiting redundancy in
the data and the low latency and energy/access of eDRAM.
This work makes the following contributions:

• reduce energy per memory by using eDRAM to eliminate
off-chip memory

• reduce refresh power of eDRAM by reducing the num-
ber of enabled eDRAM macros using reference frame
compression and an on-demand power up scheme

• reduce number of memory accesses by using partial
compression in the decoupling buffer, and reference frame
compression and caching for the frame buffer

This paper is organized as follows: Section II gives an
overview of the system architecture describing its use of parallel
decoder cores and eDRAM macros. Section III focuses on
techniques to reduce the number of enabled eDRAM macros to
reduce refresh power, while Section IV discusses techniques to
reduce number of eDRAM accesses to reduce dynamic power.
Finally, Section V presents measured results from a test chip.

II. SYSTEM ARCHITECTURE

Fig. 1 shows the system block diagram of the H.265/HEVC
video decoder chip. The decoding process is separated into two
clock domains: (1) Frontend and memory domain contains the
CABAC entropy decoder [11] to generate the binary symbols
(bins) of the syntax elements (e.g., motion vectors, prediction
modes, transform coefficients) from the compressed bitstream,
and frame buffer plus associated logic to store the reference
frames for motion compensation. (2) Backend domain contains
the decoder cores that generate the pixels from bins of the
syntax elements. To balance the throughput, the frontend
operates at a higher clock frequency than the backend as the
bit-level decoding is serial, while the pixel-level decoding can
be parallelized using multiple cores.

2

Frontend
domain

bitstream (8b)

 binary symbols (bins)

RFC Compress

RFC
Decompress

Frame buffer data eDRAM 18x0.5 MB

CABAC entropy decoder

Row N bins

Row N

Address Buffer
eDRAM 0.5 MB

decoded
pixels (4x8b)

Cache SRAM 49 kB

pixels

bits bits addr

location addr

location pixels pixels

Decoupling buffer eDRAM 0.5 MB

Co-loc
MV

eDRAM
0.5 MB

mv,
location

Dec
core 4

Row N+3 Row N+2

Dec
core 3

Row N+1 bins

Dec
core 2

Row N+1

Dec
core 1

Backend
domain

(pixels, mv,
location)

Memory arbiter

Memory
domain

(same as
frontend)

Row N+2 bins Row N+3 bins

Line
buffer 2

Line
buffer 1

Line
buffer 3

Line
buffer 4

Fig. 1. High-level architecture of hardware HEVC decoder showing separate
clock domains and 4 parallel decoder cores

Debinarizer

Inverse
transform

Inter/intra
prediction

+ Loop
filters

Binary
symbols

Pixels

Dec
core N

Line buffer N

Line buffer N+1

MV, intra modes Neighboring pixels Neighboring pixels,
SAO parameters

MV, intra modes

coefficients
residues

prediction

Fig. 2. Pipelining of decoder core showing the four processing elements:
debinarizer, inverse transform, inter and intra prediction, and loop filters.
Pipeline FIFOs between the processing elements and line buffer connections
between decoder cores are also shown.

A. Fine Grained Pipelining of Decoder Core

Each decoder core consists of modules such as debinarizer,
inverse transform [12], inter and intra prediction and loop filters
as shown in Fig. 2. These modules are connected to each other
in a pipelined fashion with FIFOs. In previous work, these
pipeline FIFOs dominated the on-chip SRAM cache [7]; this
was due to the fact that the processing elements operated on
a coding tree unit (CTU) granularity. To reduce the SRAM
size, the processing elements in this chip were designed to
operate on a transform unit (TU) granularity. Table I shows the
difference in pipeline block size between this chip and to [7].

TABLE I
PIPELINE BLOCK SIZE FOR [7] AND CURRENT CHIP. PIPELINE BLOCK SIZE

IN CURRENT CHIP IS EQUAL TO LARGEST TU SIZE.

Coding Tree Pipeline block Pipeline block Reduction in FIFO
Unit (CTU) in [7] in this work element size
16×16 64×16 16×16 4×
32×32 64×32 32×32 2×
64×64 64×64 32×32 4×

B. Parallel Decoder Cores

The chip uses four decoder cores (Dec core 1-4 in Fig. 1),
where each Dec core processes a row of CTUs as shown in

Dec Core 1

Dec Core 2

Dec Core 3

Dec Core 4

Dec Core 1

Dec Core 2

64

64

Fig. 3. Parallel processing of video frame by 4 Dec Cores

Line buffer

N-pair dependency tracking

Dec
core 1

Dec
core 2

Dec
core N

Dec
core N

Dec
core 2

Dec
core 1

(a) (b)

Fig. 4. (a) Shared line buffer requires complex dependency tracking for all
pairs of adjacent decoders. (b) Designing the decoder cores to work with
FIFO-based line buffers results in a more scalable design.

Fig. 3. Using multiple decoder cores in parallel enables voltage
and frequency scaling, although this test chip demonstrates
frequency scaling only. In video decoding, each CTU has
dependencies on its top and left neighbors due to intra
prediction and in-loop filtering. In previous work, where a
single decoder core is used to decode the frame in horizontal
raster-scan order, the data dependencies between CTU rows
were managed by a single line buffer [7]. However, when
multiple decoders are used, using a single line buffer requires
tracking the dependencies for all decoder cores as follows:

1. Dec core N + 1 must read a pixel from the line buffer
only after Dec core N has written it.

2. Dec core N + 1 must not read stale pixels from older
CTU rows.

3. Dec core N must write new pixels to the line buffer only
after Dec core N + 1 is done with the old pixels in the
same location.

This chip uses a scalable multi-core design by using FIFOs
between Dec Cores instead of a common shared memory for
line-buffers as shown in Fig. 4. The Dec core is designed to
have a regular access pattern on the line buffer irrespective of
Coding Unit (CU), Prediction Unit (PU), or Transform Unit
(TU) partitioning within a CTU. This allows the shared line
buffer to be replaced by FIFOs between adjacent cores. The
FIFO empty/full logic guarantees that the three conditions for
dependency tracking are met. This design is easily scalable with
number of decoder cores as the arbitration logic for tracking
dependencies is effectively decentralized.

The depth of the individual line buffers FIFOs can be
designed to achieve appropriate scheduling of the decoder
cores. Previous work [13] uses unequal FIFO depths as shown
in Fig. 5(b). In this work, four equally size FIFOs with a
maximum depth of 8 is used between each row, which allows
for small variations in processing times for CTUs to be averaged
out. This results in a regular design and also provides a slight
improvement in throughput (about 5% on a test set of video
sequences).

3

core core core core
2 2 2 24

core core core core
8 8 8 8

decoded CTUs

(a)

(c)

(b)

(d)

CTUs being decoded currently

CTUs to be decodedpixels in
line buffers

Fig. 5. Relative sizes of line-buffer FIFOs affects processing schedule of
CTUs.(a) and (b) show the approach taken in [13], while (c) and (d) show
the approach taken in this work.

C. Embedded DRAM as Main Memory

Despite various techniques to reduce off-chip memory
power[7, 8], it continues to dominate system power consump-
tion. Most of the power consumption comes from driving
the large off-chip I/O capacitance. To address this, this work
uses embedded DRAM (eDRAM) as main memory. The chip
contains a total of 21 eDRAM macros, each 0.5 MB in size.
The macros are allocated as follows:

• Frame buffer: 18 eDRAM macros to store the two
previous and one current frame (6 macros per frame).

• Address buffer: One eDRAM macro to store the look up
table to translate pixel location in frames to byte address
in the frame buffer. This is necessary to support lossless
reference frame compression as discussed in Section III-A.

• Co-located motion vector (MV) buffer: One eDRAM
macro to store the co-located motion vectors from previous
frames to support motion vector parsing for the current
frame.

• Decoupling buffer: One eDRAM macro to distribute
data from the entropy decoder in the frontend to the four
parallel decoder cores in the backend.

One of the major drawbacks of using eDRAM is that it
requires more frequent refreshes compare to DRAM. Section III
will discuss techniques to address the eDRAM refresh power
in order to reduce the refresh power of the system. While
eDRAM consumes less energy per access compared to DRAM,
it still consumes more energy than standard on-chip SRAM.
Section IV will discuss methods to reduce the number of
accesses to these eDRAM macros in order to reduce the
dynamic energy of the system.

III. REDUCING REFRESH POWER OF EDRAM

In the hierarchy of memory technologies, eDRAM stands
between SRAM and DRAM in terms of energy/access and
density. For example, in 28 nm technology, eDRAM has 321×
lower energy/access than DRAM and 2.85× higher density
than SRAM [14]. The key challenge with eDRAM is that their
bit cells require frequent refresh to retain data. Due to higher

leakage and smaller bit-cell capacitance of the eDRAM process
technology as compared to DRAM process, refresh requests
need to be made more frequently and so, refresh power is more
significant on eDRAM than DRAM. SRAM does not need
to be refreshed as the data is actively maintained by cross-
coupled inverters. Further, for video decoding application, the
instantaneous read-write bandwidth requirement can be satisfied
by 2 to 3 eDRAM macros in the frame buffer, while the rest
of the macros remain in self-refresh to retain data. As a result,
the eDRAM energy is dominated by refresh power (80% of
total eDRAM power and 40% of total chip power1).

Accordingly, we focus on reducing refresh power as a means
to reduce energy consumption of eDRAM. eDRAM macros
can operate in three main modes:

1. Active mode: frequent read/write requests and regular
refresh requests are sent to the macro

2. Self-refresh mode: no read/write request is sent, but regular
refresh requests are sent to retain stored data

3. Deep power-down mode: the macro is power-gated and
all data is lost

The deep power-down mode is the only mode in which
refresh is disabled. Accordingly, we propose techniques to
keep as many macros as possible in the deep power-down
mode to minimize refresh power.

A. Reference Frame Compression

Reference frame compression (RFC) is a popular technique
used on video decoders with DRAM main memory to reduce
off-chip bandwidth [15–17]. Data compression for memory
savings has also been explored for processor caches [18–20]
but for specific applications like video coding, we can use prior
knowledge of structure in the data to design better compression
methods.

To maintain compliance with the video coding standard, RFC
must use lossless compression which makes the compressed
data variable length. In previous work [15, 16], the compressed
data is stored at fixed offsets as shown in Fig. 6(a) in order
to maintain random accessibility of data. The fixed offsets
correspond to the maximum size of the compressed data (which
is greater than or equal to the size of uncompressed data due to
lossless compression). The size of the compressed data to be
read is stored in a separate on-chip buffer, which is read before
the off-chip data is read. In this way, bandwidth reduction is
achieved, without storage size reduction. Hence, this method
is not useful for reducing eDRAM refresh power.

In this work, we store the compressed data in the memory
in a fully packed form as shown in Fig. 6(b). As a result, the
starting byte address must also be stored along with the size
of the compressed data in a separate address buffer. Reading
the pixel values at a given location in the image involves the
following steps (Fig. 7):

1. Convert pixel coordinates into an index of the address
buffer

1The refresh power reductions techniques proposed in this work becomes
even more critical as more frames are stored on chip. If the number of reference
frames is increased from 2 to 16, as allowed by the HEVC standard, the refresh
power would grow to 95% of total eDRAM power and increase the total chip
by 110%.

4

0 1 2 3

4 5 6 7

8 9 10 11

Fixed offset Compressed data Empty

0 1 2

2 3 4
5

(a) (b)

Fig. 6. (a) Traditional RFC using variable-length lossless compression stores
compressed data at fixed offsets to maintain random accessibility at the cost
of higher memory size and refresh power. (b) This work stores compressed
data in packed format to reduce eDRAM size and refresh power.

Data eDRAM (6 macros per frame)

eDRAM word
(128-bit)

Address
buffer

Address eDRAM
(0.25 macro per frame)

pixel coordinates of
4×4 block in frame

4addr ,

2

10 3 0 1

13 7 10 15

1 13 10 9

4 5 0 14

range

minimum

delta

read request

read response

12 5 2 3

15 9 12 17

3 15 12 11

6 7 2 16

pixel values
of 4x4 block

(1)

(2)

(3)

(4)

Fig. 7. Complete process of reading a 4×4 block

2. Read starting byte address and compressed size from the
address buffer. Use this to index into the data buffer.

3. Read compressed data from the data buffer.
4. Decompress the data.

1) Lightweight RFC Algorithm: A lightweight compression
technique is applied on 4×4 pixel blocks. Each 4×4 block is
compressed to three elements:

1. M: minimum of the 16 pixel values [8-bit: 0 to 255]
2. R: (log-range) number of bits required to represent the

delta above the minimum [4-bit: 0 to 8]
3. D: delta above M for 16 pixels using R bits (16R bits)

Fig. 8 shows an example of the proposed RFC algorithm. The
compressed size is 12+16R bits, for 128 bits of uncompressed
data. In the special case when R = 8, no bit reduction is
achieved by this algorithm. In this case, the minimum-delta
representation is not used and the pixels are stored as their
original 8-bit values. The R value, which determines the size
of the compressed data, is stored separately in the address
buffer and only M and D (or original values for R=8) are
stored in the data buffer. The data block is always byte-aligned
and its size in bytes is:

2

12 5 2 3

15 9 12 17

3 15 12 11

6 7 2 16

4 × 4 block of pixels
(16 × 8b)

10 3 0 1

13 7 10 15

1 13 10 9

4 5 0 14

=

minimum
(M : 8b)

range
(R : 4b)

delta
(D : 16 × 4b)

4-

floor(log
2
(x + 1))

Fig. 8. Example of lossless compression of 4×4 block

Range

Number of
4×4 blocks

0 1 2 3 4 5 6 7 8
0

5000

10000

15000

20000

25000

Fig. 9. Histogram of 4×4 blocks according to their R values for one
1920×1080 luma frame.

2×2 2×4 4×4 4×8 8×8 16×16
0

1

2

3

4

5

6

range

min

delta

bits/pixel

range

min

delta

Pixel block size

Fig. 10. Average bits/pixel achieved using various block sizes from 2×2 to
16×16 on one 1920×1080 frame shows the impact of pixel block size on
compression ratio.

byte-size(R) =

{
1 + 2R, for R < 8

2R, for R = 8

Fig. 9 show the distribution of R values for 4×4 blocks in
a 1920×1080 frame. Compression is achieved since the pixels
in a 4×4 block are typically correlated and R is around 3 to
4 (as opposed to 8 for uncompressed data).

The block size affects the compression efficiency as shown
in Fig. 10. For larger blocks sizes, there is more variation in
the pixels resulting in more bits required to represent the delta;
however, the fixed overhead of the range and minimum are
reduced per pixel due to amortization. For smaller block sizes,
there is less variation in pixels resulting in fewer bits required
to represent the delta; however, the fixed overhead is large per
pixel. A block size of 4×4 provides the best tradeoff with the
lowest bits/pixel.

The lightweight lossless RFC algorithm achieves a com-
pression of 1.2×-5× over 384 video sequences in the HEVC
common test conditions [21]. The compression depends on
factors such as level of detail in the video and quantization
level. Video content with small spatial gradients (background
sky, for example) and heavily compressed video with high
quantization achieves better RFC compression. The average
compression is 50%.

Implementing this algorithm in hardware takes up a total
of 8 kgates of logic area for compression and decompression
at a throughput of one 4×4 block per cycle at 100 MHz.
Table II shows a comparison of the lightweight RFC algorithm
with a state-of-the-art algorithm used for DRAM-based video
decoders [15]. We can see that the lightweight algorithm

5

R
(4bit)

addr
(22bit)

2 0

4 5

3 12

… …

4 145

7 154

R[23] R[22] R[1] R[0] addr[0]

… 3 4 2 0

7 4 145

…

24 entries

Fig. 11. Reducing the size of Address buffer

R[23] R[1] R[0] addr[0]

++

addr[0]addr[1]

size[0]size[1]

+

size[2]

addr[2]

size[i] =
1+2·R [i],

2·R[i],

R[i] < 8

R[i] = 8

Fig. 12. Computing starting addresses of all 4×4 blocks from compact
adddress entry

achieves a good cost-performance tradeoff. Overall, RFC has
< 1% power and area overhead but saves total power by 16%.

TABLE II
COMPARISON OF LIGHTWEIGHT RFC ALGORITHM WITH A

STATE-OF-THE-ART ALGORITHM.

Compression method minimum-delta intra-prediction
+ DPCM + coding [15]

Data savings 50% 60%
Logic Area 8 kgates 80 kgates
Throughput 32 pixel/cycle 32 pixel/cycle

2) Compact Address Format for Address Buffer Size and
Energy Savings: The data buffer is addressed by a 22-bit
address, so the entry in the address buffer is 26-bit (22-
bit address + 4-bit R). For 128-bit uncompressed data, this
overhead is 20%, requiring 5 eDRAM macros for the address.
To reduce the address buffer size and refresh power, the address
entries are stored in a compact format as shown in Fig. 11.

24 consecutive address entries are packed in a 128-bit
eDRAM word by storing the starting address of the first entry
and 24 R values. Since the compressed data byte-size is a
function of R, the starting addresses for the second to 24th

entries can be computed from all the R values as shown in
Fig. 12. This method reduces address storage for 24 addresses
from 624 bits (24 × 26) to 128 bits which enables the address
buffer to fit in a single 0.5MB eDRAM macro.

The loop filter is designed to output pixels in units of 24
4×4 blocks composed of 16 luma and 8 chroma blocks as
shown in Fig. 13. When writing pixels to the frame buffer, the
compressed data (minimum and deltas) is written to the frame
eDRAM after aligning to 128-bit eDRAM word. The starting
address of the first 4×4 block in the group of 24 blocks is
saved to an address entry register along with the 24 R values.
When all the 24 blocks are written to the frame eDRAM, the
address entry register is written to the address eDRAM at an
index computed from the pixel coordinates of the first 4×4
block. This process is shown in Fig. 14. The corresponding
read process is shown in Fig. 15.

eDRAM word

a b c d

e f g i

j k l m

n o p q

r s

t u

v w

x y

16 Luma and 8 Chroma 4x4 blocks

a b
b c

c d e
e f g

g

Minimum (M),
Delta (D)

Log-Range
 (R)

Packed storage in Frame Buffer

Compact address format for Address Buffer

128b

Original 24 4 × 4 blocks

128b

 32b 96b

24 × 4-bit log-ranges
Address of first 4×4

block

Fig. 13. Storing 24 4×4 blocks in consecutive positions in Frame buffer
eDRAM and address buffer eDRAM

Compressor eDRAM word
alignment

M, D

R

Frame
buffer

eDRAM

byte addr register

byte-size(R)

start addrR[0]R[23] R[1]

+

Address
buffer

eDRAM

address rasterizerpixel
coordinates

4×4 pixel
values

address entry register
data

word addr

data

word addr

Fig. 14. Write circuit for RFC showing data compressor and bookkeeping
circuits for address lookup

B. On-demand eDRAM Power-up

Due to data-dependent compression of RFC, the number
of eDRAM macros needed to store a frame cannot be known
a priori. Maximum number of macros is needed when no
compression is achieved (R = 8 for all 4×4 blocks). Frames
with a resolution of 1920×1080 pixels require 6 macros. In the
best case (R = 0 for all blocks), the compressed frame needs
less than one macro. In a simple scheme, the maximum number
of macros needed for a frame are powered up at the start of
decoding a new frame. When the frame is fully decoded, we
can determine how many macros were actually used, and place
the rest in deep power down mode.

To further reduce the number of macros used, we propose an
on-demand power-up scheme. At the start of decoding a new
frame, one eDRAM macros is powered up for writing. When

Decompressor

M, D

R

Frame
buffer

eDRAM

start addrR[0]R[23] R[1]
Address

buffer
eDRAM

address rasterizerpixel
coordinates

4×4 pixel
values

compact address entry

data

word addr

data

word addr

start address computation

eDRAM word
alignment

byte address,
data size in bytes

Fig. 15. Read circuit for RFC showing address lookup from compact address
format, start address computation and data decompressor

6

0 1 2 3 4 5
0

5

10

15

20

Always on
Power down unused
Power up on demand-33% -55%

Always on
Power down unused
Power up on demand

Frame count

N
um

be
r o

f e
DR

AM
 m

ac
ro

s

Fig. 16. Number of eDRAM macros powered up over the course of decoding
the first 5 frames

the storage utilization of the bank reaches a predetermined
threshold, a new bank is powered up. The threshold is designed
to take into account the eDRAM startup time. This on-demand
scheme for powering up macros reduces eDRAM refresh power
by 33% over the simple scheme and 55% over keeping all
macros powered up always. Fig. 16 shows the number of
eDRAM macros powered up over time for each scheme.

IV. REDUCING NUMBER OF ACCESSES TO EDRAM

While eDRAM consumes less energy per access than DRAM,
it still consumes more energy than on-chip SRAM. In this
section, we discuss methods to reduce access to these eDRAM
macros in order to reduce the dynamic energy of the system.

A. Decoupling Buffer

As explained in Section II, the chip uses two clock domains
for frontend and backend processing. The frontend consists of
the entropy decoder and the backend consists of 4 pixel decoder
cores (Dec core 1-4). The frontend and backend frequencies
can be configured to balance throughputs; nominally frontend
operates at 4 times the clock frequency as the backend. The
decoder cores process 4 consecutive rows of CTUs in the frame
as shown in Fig. 3.

To address the mismatch in processing order of entropy
decoder and the 4 Dec cores, a decoupling buffer is needed
between them. To keep all 4 Dec cores running, the buffer
needs to store entropy decoder output of 4 rows of CTUs. An
additional 4 rows of buffer is needed to allow the entropy
decoder to write its output.

The decoupling buffer is useful even when multiple cores
are not used, i.e. with 1 entropy decoder and 1 Dec core.
The bit-level throughput of entropy decoder varies widely
due to varying levels of quantization of transform coefficients.
Comparatively, the Dec cores have a more regular pixel
throughput. With a decoupling buffer capable of storing
multiple CTUs of entropy decoder output, the throughput
variation can be averaged out. Fig. 17 shows the variation
in the workload of entropy decoder as measured by number
of binary symbols (bins) per CTU for one intra frame in a
1920x1080 video sequence (ParkScene encoded at QP=27).
The workload varies considerably from as low as 30 bins per
CTU to as high as 8000 bins per CTU. The dotted line in
Fig. 17 shows the workload when averaged over one row of
CTUs (30 CTUs) in a moving average. We observe that the
variation is much more tolerable (1800 - 4000 bins per CTU).

0 50 100 150 200 250 300 350 400 450 500
0

1000
2000
3000
4000
5000
6000
7000
8000
9000

number
of bins

CTU index

Fig. 17. Variation in workload of entropy decoder over CTUs as measured by
number of binary symbols. Dotted line shows moving average over 30 CTUs.

Arithmetic
Decoder Dec Core

binary symbols

eDRAM
buffer

Arithmetic
Decoder Debinarizer

Dec Core
eDRAM
buffer

syntax elements

Debinarizer

Fig. 18. Decoupling buffer between CABAC and Dec Cores that stores binary
symbols instead of syntax elements

If syntax elements are stored in the decoupling buffer, most
of the buffer space is taken up by transform coefficients (16
bit/pixel) as the other syntax elements such as motion vectors
and intra modes are signaled at PU granularity. The buffer
size for storing 8 rows of 64×64 CTUs in a 1920×1080
frame is 3 MB, or 6 eDRAM macros. To reduce this size,
the entropy decoder is split into CABAC that outputs binary
symbols (0s and 1s) and a Debinarizer that parses the stream
of binary symbols for syntax elements as shown in Fig. 18.
The binary symbols are very compact representations of the
syntax elements using a variety of lossless coding techniques
(e.g., unary, truncated unary, kth-order ExpGolomb [22]). The
Debinarizer is moved into each Dec core so that the decoupling
buffer can store the binary symbols instead of syntax elements.

This reduces bandwidth to the decoupling buffer by 66×
and its power by 4×. Debinarizers are needed in each Dec
Core to decode the bins to syntax elements, which add an
overhead of 1mW power (4% of chip power), 102 kgates of
logic area (10% of chip logic area) and 16 kB of SRAM (10%
of chip SRAM bits).

B. Frame Buffer

To reduce access to the frame buffer, this work uses a
common cache for all inter-prediction requests coming from
all 4 decoder cores. Fig. 19 shows the architecture of the cache.
The cache is placed in the memory-clock domain which runs
at 4× the frequency of the decoder cores in the backend-clock
domain to ensure sufficient cache throughput.

Two parallel caches are used for increased throughput. The
caches store mutually exclusive regions in the main memory
such that adjacent 4×4 pixel blocks always go to separate
caches. Two 4×4 addresses are requested by inter-prediction
per cycle. If their target caches are different, the target cache

7

Tag SRAM
(512x39)

Logic
Registers

SRAM

Legend

Data SRAM
(1536x128)

hit/miss

read addr
(hit)

write addr
(miss)

to/from main memory

arbiter dispatch
source

Target
cache
arbiter

Crossbar

source

addr from
inter-prediction

data to
inter-prediction

addr data

hit data

miss data

Fig. 19. Architecture of 2× parallel cache

arbiter dispatches both addresses to their respective caches in
parallel. If the target caches are the same, the addresses are
dispatched sequentially.

The tag-file in each cache is made of a 20kbit SRAM along
with a hit/miss determination logic. The tag-file is 3-way set
associative with FIFO update method. The cache line in the
data SRAM is 128b corresponding to a 4×4 pixel block. A
total of 3072 cache lines are stored in the two parallel caches.

Bypass FIFOs are used to reduce the hit latency, which
ranges from 3 cycles to a maximum of 14 cycles with eDRAM
memory. However, the inter-prediction modules see at most
a 4 cycle latency on their read requests, as they run at 4×
lower clock frequency. Overall, this 3-way set-associative, 2×
parallel cache reduces the frame buffer bandwidth by 2.1×
while using 12.7 kgates of logic and 54 kB of SRAM.

V. TEST CHIP RESULTS

The test chip shown in Fig. 20 was fabricated in 40nm
CMOS process [9]. The chip was tested using four 1920×1080
video sequences (Kimono, ParkScene, Cactus, and BQTerrace)
that were encoded with 2 reference frames across various
quantization levels (22, 27, 32 and 37). The test chip can
operate from 0.8V to 1.1V (eDRAM fixed at 1.1V) with
the frontend/memory clock domain frequency ranging from
30.3MHz to 76.9MHz and a backend domain frequency ranging
from 7.6MHz to 19.2MHz.

At maximum frequency, the chip can decode 1920×1080
video at 24 to 50 frames per second depending on encod-
ing parameters. The chip consumes 30.6mW (0.35nJ/ pixel)
for I frames (only intra-prediction is used), and 24.9mW
(0.77nJ/pixel) for B frames (both intra and inter-prediction
is used). Table III summarizes the chip specifications.

Fig. 21 shows the voltage-frequency plot for the test chip.
The frontend frequency is kept at 4× the backend frequency
at all voltages. On the lowest voltage setting (0.8 V), the
frequency is sufficient to decode 640×480 at 60 fps while
consuming only 9.5 mW of power.

Fig. 22 and Fig. 23 show the reduction in number of active
eDRAM macros and resulting power reduction achieved using
reference frame compression, compact address buffer format
and on-demand power-up of macros. Together, the number of
powered down macros reduce refresh power by 50%.

5.
1m

m

5.8mm

eDRAM (2 × 4 banks)

eDRAM (3 × 4 banks)

eDRAM Core 1

Core 3

Core 2

Core 4 CA
BA

C

Fig. 20. Die micrograph of HEVC decoder test chip

0.8 0.9 1.0 1.1
0

20

40

60

80

100

Frontend frequency
Backend frequency

Core voltage (V)
Cl

oc
k

Fr
eq

ue
nc

y
(M

H
z)

Fig. 21. Measured voltage-frequency performance plot for test chip

Fig. 24 shows the reduction in eDRAM bandwidth due to
caching for the reference frame and using partial compression
format. Reference frame compression leads to a slight increase
in eDRAM bandwidth due to the use of the address buffer.
The overall eDRAM bandwidth is reduced by 2.7×.

A. Energy and Area Breakdown

Fig. 25 shows breakdown of energy consumed for decoding
1920×1080 frames. The power for eDRAM macros in the

0
2
4
6
8

10
12
14
16
18
20

Address
Data

Baseline RFC + Power down
 unused macros

RFC + Power down
 unused macros +

Compact address buffer

RFC + On-demand
power up of macros +

Compact address buffer

50% reduction in
number of active
eDRAM macros

Number of active eDRAM macros

Fig. 22. Reduction in number of active eDRAM macros through the use of
RFC, compact address buffer format and on-demand power up of macros

Fig. 23. Reduction in total chip power using proposed techniques. 2× savings
in eDRAM power is achieved.

8

TABLE III
SUMMARY OF CHIP SPECIFICATIONS

Technology TSMC 40nm LP
Supply voltage Core: 0.8 - 1.1V, eDRAM: 1.1V, IO: 2.5V
Video standard H.265/HEVC (Main profile with 2 reference frames)
Chip size 5.8mm × 5.1mm
Core size 5.1mm × 4.3mm
Gate count 1122 kgates (NAND2 logic area only)
On-chip SRAM 162.75 kB
On-chip eDRAM 21 × 0.5 MB
Max resolution 1920 × 1080
Max throughput 47.9 MPixel/s
Power at 1.1V 30.6 mW (I frame) and 24.9 mW (B frame)

Fig. 24. eDRAM bandwidth is reduced by 2.7× using a combination of RFC,
cache and partial compression of syntax elements

frame buffer accounts for only 33% of the total power after
applying the eDRAM optimizations in Section III and IV. The
portion marked Memory controller in the breakdown contains
the cache, RFC circuits and memory access arbiters.

Fig. 26 shows a breakdown of the 162.75 kB of on-chip
SRAM used by the chip. Memory controller consists of arbiter
for writing back the decoded pixels to the frame buffer and
a cache which uses SRAM for both data and tags. Pipelining
consists of buffers between: (1) debinarizer and prediction; (2)
inverse transform and prediction; (3) prediction and deblocking
filter. Across all four decoders, by using finer grained pipelining,
the pipeline buffer accounts for 273kbits (68kbits per decoder),
which is 6.4× smaller than the pipeline buffer in [7].

Finally, each decoder core require 235 kgates and 18.3kB
of on-chip SRAM. Fig. 27 and Fig. 28 shows the energy and
area breakdown for an individual decoder core. The energy
breakdown was obtained from post-synthesis analysis using
5 ms of switching activity. The decoder cores were designed
for a minimum throughput of 2 pixel/cycle and synthesized at
25MHz. More details on the design of the individual blocks
in the decoder are in [23].

5% 3%

42%

17%

33%

eDRAM

Memory
Controller

Decoder Cores

Decoupling Buffer
CABAC

Fig. 25. Energy breakdown of chip for decoding 1920×1080 frames

33%

21%

21%

13%
5%

1%3%2% Memory Controller
Line Buffers
Pipelining
Debinarizer
Inverse Transform
Intra Prediction
Deblocking Filter
Sample Adaptive Offset

Fig. 26. SRAM bits breakdown of chip

15%

1%
11%

5%

24%
9%

7%

20%

8% Debinarizer
Dequantization
Inverse Transform
Intra Prediction
Inter Prediction
Deblocking Filter
SAO
Pipeline Buffers
Line Buffers

Fig. 27. Energy breakdown for individual decoder core

B. Comparison With State-of-the-Art

Fig. 29 compares this chip against state-of-the-art
H.265/HEVC video decoders [5, 6, 24–26]. All the other
designs target higher resolutions for applications with > 50mW
power budgets. The use of eDRAM, along with the reduced
refresh power and memory access, allows this work to meet the
stringent power budgets for wearable devices. We also compare
this chip with our previous work [7] scaled to 1920×1080
resolution in Table IV. The frequency of the previous chip
is scaled down to 40 MHz to match the throughput of this
chip. Voltage and technology scaling is not applied. For energy
comparison, leakage power of the core and background power
of DRAM are kept constant and only the active components of
both are scaled down for the reduced throughput. The current
work has 6× lower energy/pixel than the previous work.

The current work uses 4 parallel decoder cores as compared

15%

5%

31%

6%

29%

11%
4%

Debinarizer

Dequantization

Inverse Transform

Intra Prediction

Inter Prediction

Deblocking Filter

Sample Adaptive Offset

Fig. 28. Logic area breakdown of pixel decoder core

9

This Work ISSCC 2013 A-SSCC 2013 ESSCIRC 2014 ISSCC 2016 ISSCC 2012

Standard
H.265/
HEVC

H.265/
HEVC WD4

H.265/
HEVC

H.265/HEVC,
multistandard

H.265/
HEVC

H.264/AVC
MP/MVC

Gate Count 1122K 715K 446K 3454K 2887K 1338K

SRAM 162.75kB 124kB 10.2kB 154kB 396kB 79.9kB

Technology 40nm/1.1V 40nm/0.9V 90nm/1V 28nm/0.9V 40nm/1V 65nm/1.2V

Max
Throughput

1920x1080
@24fps

3840x2160
@30fps

1920x1080
@35fps

3840x2160
@60fps

7640x4320
@120fps

7640x4320
@60fps

Frame buffer
Storage

128b
eDRAM

32b DDR3 n/a 32b LPDDR3 64b DDR3 64b DDR3

Core Power
[mW]

21.2 [I]
14.6 [B]

76 36.9 104 690 410

Frame buffer
Power [mW]

9.4 [I]
10.3 [B]

219 n/a n/a n/a 2520

Core energy
[nJ/pixel]

0.25 [I]
0.45 [B]

0.31 0.59 0.20 0.15 - 0.25 0.21

Frame buffer
energy

[nJ/pixel]

0.11 [I]
0.32 [B]

0.88 n/a n/a n/a 1.27

System
energy
[nJ/pixel]

0.35 [I]
0.77 [B]

1.19 n/a n/a n/a 1.48

Fig. 29. Comparison with the state-of-the-art [5, 6, 24–26]

to the single decoder core of the previous work. This enables
energy reduction using voltage and frequency scaling at the cost
of increased gate count and SRAM. The current test chip only
uses frequency scaling; future work can use voltage scaling
to achieve further reduction in energy/pixel. We note that the
current chip has lower gate count and SRAM per decoder core.
The SRAM reduction is achieved by efficient pipelining as
explained in Section II-A. The gate count reduction is due to
differences in the video coding standard (Working Draft 4 vs.
Final) and RTL-level improvements such as replacing large
register arrays with SRAM.

TABLE IV
COMPARISON WITH PREVIOUS WORK AT 1920×1080 24FPS. * POWER FOR

PREVIOUS WORK IS ESTIMATED BY SCALING THE FREQUENCY.

This work Previous Work [7, 24]
Standard H.265/HEVC H.265/HEVC

Working Draft 4
Logic gate count 1122 kgates 715 kgates
SRAM 162.75 kB 124 kB
Frame buffer 128b eDRAM 32b DDR3
Technology 40nm LP 40nm GP
Core voltage 1.1 V 0.9 V
Frequency 80 MHz/20 MHz 40 MHz
Core power 14.6 mW 36 mW *
Frame buffer power 10.3 mW 150 mW *
System power 24.9 mW 186 mW *

VI. CONCLUSIONS

In this work, we demonstrated several techniques that reduce
the energy consumption of data movement to improve the
energy-efficiency of a fully-integrated H.265/HEVC video
decoder targeted at wearable devices. eDRAM is used to
reduce the cost of off-chip memory access and overall system
footprint. We then reduce the energy of the eDRAM itself by
addressing both its refresh power and memory access. The
refresh power is reduce by 50% by reducing the number
of eDRAM macros that are enabled at a given time. The
number of accesses to the eDRAM is reduce by 2.7× by
using a compressed format to store data in the frame, address
and decoupling buffers. Together, these techniques reduce the
overall power consumption of eDRAM by 2×, which enable

the entire H.265/HEVC video decoder system to consume
between 24.9 mW to 30.6mW for real-time high definition
decoding, which is well within the 50mW power budget for
wearable devices.

REFERENCES

[1] M. Alexsic, “Deep learning for mobile and embedded devices,”
in 2017 Symposium on VLSI Circuits, 2017.

[2] G. Sullivan, J. Ohm, W.-J. Han, and T. Wiegand, “Overview
of the High Efficiency Video Coding (HEVC) Standard,” IEEE
Transactions on Circuits and Systems for Video Technology,
vol. 22, no. 12, pp. 1649–1668, 2012.

[3] V. Sze, M. Budagavi, and G. J. Sullivan, “High efficiency video
coding (HEVC),” Integrated Circuit and Systems, Algorithms
and Architectures, pp. 1–375, 2014.

[4] V. Sze, D. F. Finchelstein, M. E. Sinangil, and A. P. Chan-
drakasan, “A 0.7-V 1.8-mW H.264/AVC 720p Video Decoder,”
IEEE Journal of Solid-State Circuits, vol. 44, no. 11, pp. 2943–
2956, 2009.

[5] C.-H. Tsai, H.-T. Wang, C.-L. Liu, Y. Li, and C.-Y. Lee,
“A 446.6K-gates 0.55 - 1.2V H.265/HEVC decoder for next
generation video applications,” in Solid-State Circuits Conference
(A-SSCC), 2013 IEEE Asian, 2013, pp. 305–308.

[6] C.-C. Ju, T.-M. Liu, Y.-C. Chang, C.-M. Wang, H.-M. Lin, C.-Y.
Cheng, C.-C. Chen, M.-H. Chiu, S.-J. Wang, P. Chao, M.-J. Hu,
F.-C. Yeh, S.-H. Chuang, H.-Y. Lin, M.-L. Wu, C.-H. Chen, and
C.-H. Tsai, “A 0.2nJ/pixel 4K 60fps Main-10 HEVC decoder
with multi-format capabilities for UHD-TV applications,” in
European Solid State Circuits Conference (ESSCIRC), ESSCIRC
2014 - 40th, 2014, pp. 195–198.

[7] M. Tikekar, C. T. Huang, C. Juvekar, V. Sze, and A. P.
Chandrakasan, “A 249-Mpixel/s HEVC Video-Decoder Chip
for 4K Ultra-HD Applications,” IEEE Journal of Solid-State
Circuits, vol. 49, no. 1, pp. 61–72, 2014.

[8] D. Zhou, S. Wang, H. Sun, J. Zhou, J. Zhu, Y. Zhao, J. Zhou,
S. Zhang, S. Kimura, T. Yoshimura, and S. Goto, “An 8K
H.265/HEVC Video Decoder Chip With a New System Pipeline
Design,” IEEE Journal of Solid-State Circuits, vol. 52, no. 1,
pp. 113–126, 2017.

[9] M. Tikekar, V. Sze, and A. Chandrakasan, “A Fully-Integrated
Energy-Efficient H.265/HEVC Decoder with eDRAM for Wear-
able Devices,” in 2017 IEEE Symposium on VLSI Circuits (VLSI-
Circuits), June 2017, pp. 230–231.

[10] S. Ghosh, “Modeling of retention time for high-speed embedded
dynamic random access memories,” IEEE Transactions on
Circuits and Systems I: Regular Papers, vol. 61, no. 9, pp.
2596–2604, Sept 2014.

[11] Y. H. Chen and V. Sze, “A Deeply Pipelined CABAC Decoder
for HEVC Supporting Level 6.2 High-Tier Applications,” IEEE
Transactions on Circuits and Systems for Video Technology,
vol. 25, no. 5, pp. 856–868, 2015.

[12] M. Tikekar, C. T. Huang, V. Sze, and A. Chandrakasan, “Energy
and area-efficient hardware implementation of HEVC inverse
transform and dequantization,” in 2014 IEEE International
Conference on Image Processing (ICIP), 2014, pp. 2100–2104.

[13] D. Finchelstein, V. Sze, and A. Chandrakasan, “Multicore
Processing and Efficient On-Chip Caching for H.264 and Future
Video Decoders,” IEEE Transactions on Circuits and Systems
for Video Technology, vol. 19, no. 11, pp. 1704–1713, 2009.

[14] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li,
T. Chen, Z. Xu, N. Sun, and O. Temam, “DaDianNao: A
Machine-Learning Supercomputer,” in MICRO, 2014, pp. 609–
622.

[15] L. Guo, D. Zhou, and S. Goto, “A New Reference Frame
Recompression Algorithm and Its VLSI Architecture for UHDTV
Video Codec,” IEEE Transactions on Multimedia, vol. 16, no. 8,
pp. 2323–2332, Dec 2014.

10

[16] D. Zhou, L. Guo, J. Zhou, and S. Goto, “Reducing power
consumption of HEVC codec with lossless reference frame
recompression,” in 2014 IEEE International Conference on
Image Processing (ICIP), 2014, pp. 2120–2124.

[17] M. Budagavi and M. Zhou, “Video coding using compressed
reference frames,” in 2008 IEEE International Conference on
Acoustics, Speech and Signal Processing, 2008, pp. 1165–1168.

[18] A. R. Alameldeen and D. A. Wood, “Adaptive cache compression
for high-performance processors,” in Proceedings. 31st Annual
International Symposium on Computer Architecture, 2004., 2004,
pp. 212–223.

[19] S. Sardashti, A. Seznec, and D. A. Wood, “Skewed Compressed
Caches,” in Proceedings of the 47th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, ser. MICRO-47. IEEE
Computer Society, 2014, pp. 331–342.

[20] G. Pekhimenko, V. Seshadri, O. Mutlu, P. B. Gibbons, M. A.
Kozuch, and T. C. Mowry, “Base-delta-immediate Compression:
Practical Data Compression for On-chip Caches,” in Proceedings
of the 21st International Conference on Parallel Architectures
and Compilation Techniques, ser. PACT ’12. ACM, 2012, pp.
377–388.

[21] F. Bossen, “Common test conditions and software reference
configurations,” document JCTVC-H1100, Feb. 2012, 2012.

[22] V. Sze and M. Budagavi, “High Throughput CABAC Entropy
Coding in HEVC,” IEEE Transactions on Circuits and Systems
for Video Technology, vol. 22, no. 12, pp. 1778 –1791, 2012.

[23] M. Tikekar, “Energy-Efficient Video Decoding Using Data
Statistics,” Thesis, Massachusetts Institute of Technology, 2017.

[24] C.-T. Huang, M. Tikekar, C. Juvekar, V. Sze, and A. Chan-
drakasan, “A 249Mpixel/s HEVC video-decoder chip for Quad
Full HD applications,” in ISSCC, 2013, pp. 162–163.

[25] D. Zhou, S. Wang, H. Sun, J. Zhou, J. Zhu, Y. Zhao, J. Zhou,
S. Zhang, S. Kimura, T. Yoshimura et al., “A 4Gpixel/s
8/10b H. 265/HEVC video decoder chip for 8K Ultra HD
applications,” in Solid-State Circuits Conference (ISSCC), 2016
IEEE International. IEEE, 2016, pp. 266–268.

[26] D. Zhou, J. Zhou, J. Zhu, P. Liu, and S. Goto, “A 2Gpixel/s
H.264/AVC HP/MVC video decoder chip for Super Hi-Vision
and 3DTV/FTV applications,” in ISSCC, 2012, pp. 224–226.

View publication statsView publication stats

https://www.researchgate.net/publication/324971114

	Introduction
	System Architecture
	Fine Grained Pipelining of Decoder Core
	Parallel Decoder Cores
	Embedded DRAM as Main Memory

	Reducing Refresh Power of eDRAM
	Reference Frame Compression
	Lightweight RFC Algorithm
	Compact Address Format for Address Buffer Size and Energy Savings

	On-demand eDRAM Power-up

	Reducing Number of Accesses to eDRAM
	Decoupling Buffer
	Frame Buffer

	Test Chip Results
	Energy and Area Breakdown
	Comparison With State-of-the-Art

	Conclusions

