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FROM PROBABILISTIC GRAPHICAL MODELS∗
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Abstract. A graphical model encodes conditional independence relations via the Markov prop-
erties. For an undirected graph these conditional independence relations can be represented by a
simple polytope known as the graph associahedron, which can be constructed as a Minkowski sum
of standard simplices. There is an analogous polytope for conditional independence relations coming
from a regular Gaussian model, and it can be defined using multiinformation or relative entropy.
For directed acyclic graphical models and also for mixed graphical models containing undirected,
directed, and bidirected edges, we give a construction of this polytope, up to equivalence of normal
fans, as a Minkowski sum of matroid polytopes. Finally, we apply this geometric insight to construct
a new ordering-based search algorithm for causal inference via directed acyclic graphical models.
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1. Introduction. A graphical model encodes conditional independence (CI) re-
lations via the Markov properties. Our main goal is to understand the polyhedral
geometry and combinatorics of the collection of CI relations encoded by a directed
acyclic graph (DAG), a directed graph without directed cycles. It is natural, especially
in view of causal inference, to associate to each conditional independence statement a
collection of pairs of adjacent permutations of random variables that are compatible
with that statement. Each of these pairs can be viewed as an edge of a permutohedron
or a wall in the Sn fan, which is the normal fan of the permutohedron. Removing
these walls gives a coarsening of the fan, and a natural question is whether this fan is
the normal fan of a polytope.

For undirected graphical models, the theory is well understood. The coarsening
of the Sn fan corresponding to the CI relations encoded by an undirected graph is the
normal fan of a polytope called a graph associahedron [MPS+09]. These polytopes
are Minkowski sums of standard simplices (MSSs), and their facial structure has a
nice description via tubings [CD06, PRW08].

In this paper we will show that the coarsened Sn fan arising from any DAG model
is the normal fan of a polytope, which we call a DAG associahedron. We give two
concrete constructions of DAG associahedra, one using multiinformation or relative
entropy, and another using matroids. While in this paper we mainly concentrate on
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DAG models, we also show that these two constructions can be extended to more
general graphical models that have been studied in the literature containing a mix of
undirected, directed, and bidirected edges. In contrast to graph associahedra, we show
that DAG associahedra are in general not simple polytopes and cannot be realized
as an MSS. Our main motivation for studying DAG associahedra is causal inference:
Given a set of CI relations that are inferred from data, the goal is to estimate the
underlying DAG model, also known as a Bayesian network. A DAG is defined by an
ordering of the nodes and an undirected graph. We show how our geometric insight on
DAG associahedra can be applied to construct a new ordering-based search algorithm
for causal inference.

Other polyhedral approaches for learning Bayesian networks have been described
in the literature [CHS17, HLS12, JSGM10, SVH10, SHHL12]. These approaches are
based on using integer programming or linear programming relaxations to maximize
a score function over a polytope—most notably, the Family Variable Polytope (FVP)
and the Characteristic Imset Polytope (CIP), whose vertices correspond to all possible
DAGs on n nodes, up to Markov equivalence, respectively. While the FVP and the
CIP are high-dimensional (n(2n−1−1) and (2n−n−1), respectively) and very complex
polytopes (facet description only known for n ≤ 4), we here present a new polyhedral
approach for learning Bayesian networks that is based on DAG associahedra, (n− 1)-
dimensional polytopes for which we give a concrete construction.

2. Notation and background. In this section, we discuss the relationship be-
tween CI relations, the Sn fan, and generalized permutohedra. We refer the reader to
Appendix A for basic definitions concerning polytopes and fans and to Appendix C
for a “dictionary” of concepts.

Let [n] = {1, . . . , n}, and let P be a joint distribution on the random variables Xi

for i ∈ [n]. For notational simplicity we often write I for {Xi : i ∈ I} where I ⊆ [n].
For pairwise disjoint subsets I, J,K ⊂ [n] we say that I is conditionally independent
of J given K under P if the conditional probability P(A | J,K) does not depend on
J for any measurable set A in the sample space of XI . This statement is denoted
by I ⊥⊥ PJ | K or simply I ⊥⊥ J | K. If K = ∅, we write I ⊥⊥ J . The set of CI
relations arising from a distribution satisfies the following basic implications, known
as the semigraphoid properties [Pea88]:
(SG1’) if I ⊥⊥ J | L, then J ⊥⊥ I | L;
(SG2’) if I ⊥⊥ J | L and U ⊆ I, then U ⊥⊥ J | L;
(SG3’) if I ⊥⊥ J | L and U ⊆ I, then I \ U ⊥⊥ J | (U ∪ L);
(SG4’) if I ⊥⊥ J | L and I ⊥⊥ K | J ∪ L, then I ⊥⊥ (J ∪K) | L.

In this paper, CI relations can be considered as formal constructs and do not
necessarily have probabilistic interpretation. In addition, we will only work with
relations in which I and J are both singletons, denoted by lowercase letters i, j;
see [Mat92]. To simplify notation, we use concatenation to denote union among
subsets and elements of [n]; e.g., Lij means L ∪ {i, j}. Then a semigraphoid can be
identified with a set of elementary CI relations:
(SG1) if i ⊥⊥ j | L, then j ⊥⊥ i | L;
(SG2) if i ⊥⊥ j | L and i ⊥⊥ k | jL, then i ⊥⊥ k | L and i ⊥⊥ j | kL

for distinct i, j, k ∈ [n] and L ⊆ [n] \ {i, j, k}.
For distributions with strictly positive densities such as regular Gaussian distri-

butions, the intersection axiom holds in addition to the semigraphoid axioms, namely
(INT) if i ⊥⊥ j | kL and i ⊥⊥ k | jL, then i ⊥⊥ j | L and i ⊥⊥ k | L.

The implications (SG1), (SG2), and (INT) together are known as the graphoid prop-
erties. Note that these implications are not a complete list of CI implications that
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hold for distributions. In fact, Studený [Stu92] proved that there exists no finite such
characterization.

In [LM07], Lněnička and Matúš defined gaussoids as the graphoids satisfying the
following additional axioms:

(G1) if i ⊥⊥ j | L and i ⊥⊥ k | L, then i ⊥⊥ j | kL and i ⊥⊥ k | jL;
(G2) if i ⊥⊥ j | L and i ⊥⊥ j | kL, then i ⊥⊥ k | L or j ⊥⊥ k | L.

The property (G1) is the converse of the intersection axiom, and (G2) is known
as weak transitivity. The CI relations of any regular Gaussian distribution form a
gaussoid, but not all gaussoids arise this way. The set of CI relations coming from
any undirected graphical model or a DAG model can be faithfully represented by a
regular Gaussian distribution, hence forming a gaussoid.

We will associate a geometric object to a collection of CI relations as follows:
Consider the hyperplanes in Rn defined by equations of the form xi = xj for all 1 ≤
i < j ≤ n. The complement of these hyperplanes consists of points in Rn with distinct
coordinates, and they are partitioned into n! connected components corresponding to
the permutations of [n] as follows: We identify a permutation (bijection) π : [n]→ [n]
with the linear order π(1) � π(2) � · · · � π(n). To every vector u ∈ Rn with distinct
coordinates, we associate a linear order� on [n] by defining i � j if and only if ui > uj .
For example, the vector u = (25, 4, 16, 9) gives the linear order 1 � 3 � 4 � 2, which
we denote using its descent vector of the form (1|3|4|2). Two points in the complement
of the hyperplanes xi = xj in Rn are in the same connected component if and only if
they have the same descent vector.

The closures of the n! cones and all their faces form a fan, which we will call
the Sn fan. It is also known as the permutohedral fan or the An−1 fan or the braid
arrangement fan. Each cone in the fan contains the line in direction (1, 1, . . . , 1) and
is generated by a collection of 0/1 vectors, every pair of which is nested (when each
0/1 vector is identified with its set of nonzero coordinates).

To each CI relation i ⊥⊥ j | K, where i, j ∈ [n] distinct and K ⊆ [n] \ {i, j}, we
associate pairs of adjacent permutations of the form

(1) (a1| · · · |ak|i|j|b1| · · · |bn−k−2) and (a1| · · · |ak|j|i|b1| · · · |bn−k−2),

where {a1, . . . , ak} = K and {b1, . . . , bn−k−2} = [n]\(K ∪ {i, j}). We will denote
such a pair by (a1| · · · |ak|i j|b1| · · · |bn−k−2). For each relation i ⊥⊥ j | K there are
|K|! (n− |K| − 2)! such pairs.

A fan F in Rn is said to be a coarsening of the Sn fan if every cone in the Sn fan is
contained in a cone of F or, equivalently, if every cone of F is a union of some cones of
the Sn fan. In particular, maximal cones of F are unions of maximal cones of the Sn
fan, and F can be constructed from the Sn fan by removing certain walls (codimension
one cones). This gives an equivalence relation on Sn—two permutations are equivalent
if and only if their corresponding cones in the Sn fan are contained in the same cone
in F . Such an equivalence relation coming from a fan is called a convex rank test
in [MPS+09]. We will see in section 8 that for DAG models this equivalence relation
coincides with that coming from the sparsest permutation algorithm of Raskutti and
Uhler [RU14].

We identify a coarsening of the Sn fan with the collection of walls which are
removed. Each wall corresponds to an adjacent pair of permutations as in (1), which
gives a CI relation i ⊥⊥ j | {a1, . . . , ak}. It was shown in [MPS+09, Theorem 6] that
a set of walls forms the missing walls in a fan that coarsens the Sn fan if and only if
the corresponding set of CI relations forms a semigraphoid. In particular, if the wall
associated to the pair (1) is not a wall in a coarsened Sn fan F , then any pair obtained
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1 ⊥⊥ 3 | 2

1 ⊥⊥ 3

1 ⊥⊥ 2

2 ⊥⊥ 3 | 1

2 ⊥⊥ 3

1 ⊥⊥ 2 | 3

(2|1|3)(2|3|1)

(1|2|3)(3|2|1)

(1|3|2)(3|1|2)

(a) The S3 fan modulo the line (1, 1, 1). Max-
imal cones are labeled with permutations
and the walls are labeled with CI relations.

(0, 1, 0)

(1, 0, 1)

(1, 1, 0)

(1, 0, 0)

(0, 1, 1)

(0, 0, 1)

(b) Permutohedron P3 with outer normals of
its facets.

Figure 1. The permutohedron P3 and its normal S3-fan. Only the descent vectors,
not coordinate vectors, of the vertices of P3 are shown in (a).

A generalized permutohedron (see [PRW08]) is a polytope whose normal fan is a coarsening of
the Sn fan. See Figures 1 and 2 for some examples. These polytopes have other equivalent defini-
tions, and are also called M -convex polyhedra or base polyhedra [Mur03, (4.43)]. Their projections
along a coordinate direction give generalized polymatroids [Fuj05, Theorem 3.58]. We use the term
generalized permutohedron to highlight the connection to permutations.

Example 2.1 (Undirected graphical models and graph associahedra). Let G be an undirected
graph with node set [n]. We associate a random variable Xi to each node i of the graph. The
joint distribution P of the random vector X = (X1, . . . , Xn) satisfies the undirected (global) Markov
property with respect to G if I ⊥⊥ J | K for all disjoint subsets I, J,K ⊆ [n] such that K separates
I and J in G, i.e. every path between nodes i ∈ I and j ∈ J passes through a node k ∈ K. If a
distribution P satisfies exactly the CI relations corresponding to separations in the graph G, then
P is called faithful or perfectly Markovian with respect to G.

For any undirected graph there exist faithful regular Gaussian distributions; see [Lau96, Chap-
ter 3] for more details. Hence for any undirected graph G the corresponding CI relations defined by
the Markov property satisfy the gaussoid axioms. The coarsened Sn fan associated to the gaussoid
of an undirected graph is the normal fan of a polytope, which can be realized as the Minkowski sum
of standard simplices ∆I = conv{ei : i ∈ I} where I runs over all sets of nodes that induce con-
nected subgraphs of G [MPS+09]. These polytopes are called graph associahedra and were studied
in [Dev09,CD06,PRW08]. �

We will now summarize a characterization of coarsened Sn fans that are polytopal, based
on [MPS+09] and [HMS+08]. Let 2[n] denote the power set of [n], the set of all subsets of [n].
A function ω : 2[n] → R is called submodular if

(2) ω(Ki) + ω(Kj) ≥ ω(Kij) + ω(K)

for all K ⊆ [n] and i, j ∈ [n]\K. A submodular function also satisfies ω(A) + ω(B) ≥ ω(A ∪ B) +
ω(A ∩ B) for all A,B ⊆ [n]. Note that a submodular function on 2[n] is an L-convex function on
the unit cube {0, 1}n [Mur03].

Definition 2.2. A semigraphoid on [n] is called submodular if there is a submodular function ω on
2[n] with ω(∅) = 0 such that ω(Ki) +ω(Kj) = ω(Kij) +ω(K) if and only if the relation i ⊥⊥ j | K
is in the semigraphoid.

(a) The S3 fan modulo the line
(1, 1, 1). Maximal cones are labeled
with permutations and the walls are
labeled with CI relations.
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joint distribution P of the random vector X = (X1, . . . , Xn) satisfies the undirected (global) Markov
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I and J in G, i.e. every path between nodes i ∈ I and j ∈ J passes through a node k ∈ K. If a
distribution P satisfies exactly the CI relations corresponding to separations in the graph G, then
P is called faithful or perfectly Markovian with respect to G.

For any undirected graph there exist faithful regular Gaussian distributions; see [Lau96, Chap-
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We will now summarize a characterization of coarsened Sn fans that are polytopal, based
on [MPS+09] and [HMS+08]. Let 2[n] denote the power set of [n], the set of all subsets of [n].
A function ω : 2[n] → R is called submodular if

(2) ω(Ki) + ω(Kj) ≥ ω(Kij) + ω(K)

for all K ⊆ [n] and i, j ∈ [n]\K. A submodular function also satisfies ω(A) + ω(B) ≥ ω(A ∪ B) +
ω(A ∩ B) for all A,B ⊆ [n]. Note that a submodular function on 2[n] is an L-convex function on
the unit cube {0, 1}n [Mur03].

Definition 2.2. A semigraphoid on [n] is called submodular if there is a submodular function ω on
2[n] with ω(∅) = 0 such that ω(Ki) +ω(Kj) = ω(Kij) +ω(K) if and only if the relation i ⊥⊥ j | K
is in the semigraphoid.

(b) Permutohedron P3 with outer normals
of its facets.

Fig. 1. The permutohedron P3 and its normal S3-fan. Only the descent vectors, not coordinate
vectors, of the vertices of P3 are shown in (a).

by permuting the a’s among themselves and the b’s among themselves is also not a
wall in F .

A complete fan F in Rn is called polytopal if it is the normal fan of a polytope.
The Sn fan itself is polytopal since it is the normal fan of a permutohedron Pn defined
as follows. Let a1 < a2 < · · · < an be real numbers. Let

Pn = conv{(aσ(1), aσ(2), . . . , aσ(n)) : σ ∈ Sn} ⊆ Rn.

Different choices of ai’s give different polytopes but with the same normal fan. We
associate to each vertex of Pn a permutation given by its descent vector as explained
above; e.g., a point with coordinates (2, 3, 4, 1) ∈ R4 is associated with its descent
vector (3|2|1|4), which is a permutation and not a point in R4. Two vertices of Pn
are connected by an edge if and only if their descent vectors differ by an adjacent
transposition as in (1). Thus each CI relation corresponds to a certain set of edges
of Pn.

A generalized permutohedron (see [PRW08]) is a polytope whose normal fan is a
coarsening of the Sn fan. See Figures 1 and 2 for some examples. These polytopes
have other equivalent definitions and are also called M -convex polyhedra or base poly-
hedra [Mur03, (4.43)]. Their projections along a coordinate direction give generalized
polymatroids [Fuj05, Theorem 3.58]. We use the term “generalized permutohedron”
to highlight the connection to permutations.

Example 2.1 (undirected graphical models and graph associahedra). Let G be
an undirected graph with node set [n]. We associate a random variable Xi to each
node i of the graph. The joint distribution P of the random vector X = (X1, . . . , Xn)
satisfies the undirected (global) Markov property with respect to G if I ⊥⊥ J | K for
all disjoint subsets I, J,K ⊆ [n] such that K separates I and J in G, i.e., every path
between nodes i ∈ I and j ∈ J passes through a node k ∈ K. If a distribution P
satisfies exactly the CI relations corresponding to separations in the graph G, then P
is called faithful or perfectly Markovian with respect to G.

For any undirected graph there exist faithful regular Gaussian distributions;
see [Lau96, Chapter 3] for more details. Hence for any undirected graph G the cor-
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(a) The standard sim-
plex conv{e1, e2, e3}.

(b) The matroid poly-
tope of U2,3, conv{e1 +
e2, e1 + e3, e2 + e3}.

(c) The DAG associahedron of
1 → 3 ← 2 with CI relation
1 ⊥⊥ 2. This polytope is not a
Minkowski sum of scaled stan-
dard simplices.

Figure 2. Some generalized permutohedra. Compare with the fan in Figure 1.

Submodular semigraphoids correspond to structural independence models [Stu05, §5.4.2], which
can be viewed as semigraphoids obtained from supermodular functions, whose negatives are sub-
modular functions.

The following result shows that every submodular function determines a semigraphoid, and the
semigraphoids arise this way are precisely those corresponding to polytopal coarsenings of the Sn
fan.

Lemma 2.3. A polytope P ⊆ Rn is a generalized permutohedron if and only if there exists a
submodular function ω : 2[n] → R with ω(∅) = 0 such that

(3) P = {x ∈ Rn :
∑

i∈I
xi ≤ ω(I) for each non-empty I ⊆ [n], and

∑

i∈[n]

xi = ω([n])}.

A wall in the Sn fan corresponding to i ⊥⊥ j | K is missing in the normal fan of P defined by ω as
above if and only if ω(Ki)+ω(Kj) = ω(Kij)+ω(K). In particular, a coarsened Sn fan is polytopal
if and only if the corresponding semigraphoid is submodular.

The lemma follows from the conjugacy between L- andM - convex functions and also from [Mur03,
Theorem 4.15]. A part of it appeared in [MPS+09, Proposition 12 and Theorem 14]. We provide
a proof in Appendix B, as it is difficult to find a complete proof in the literature.

Remark 2.4. If ω is a submodular function on 2[n] with ω(∅) = 0, then ω′ : 2[n] → R defined as
ω′(S) = ω([n]\S)− ω([n]) is also submodular with ω′(∅) = 0. The polytopes P and P ′, defined by
ω and ω′ as in (3), are related by −P = P ′. �

Example 2.5. Consider the submodular function ω on 2[n] whose value is 1 on all non-empty sets
and 0 on the empty set. This function is known as the rank function of the uniform rank one
matriod on [n]. The generalized permutohedron defined by this submodular function is a standard
simplex of dimension n− 1 whose outer normal vectors are eI for subsets I of size n− 1. Any set
of n − 2 facet normals spans a wall in the normal fan, with pairs of the form (1), where K = ∅,
corresponding to relations of the form i⊥6⊥j | ∅. See Figures 1 and 2. �

This characterization leads to the following questions for any given semigraphoid:

Question A. Is a given semigraphoid submodular? And if so, can we construct a submodular
function with the desired equalities as in Definition 2.2?

In the following sections we will give a positive answer to these questions for semigraphoids
coming from DAG models.

(a) The standard sim-
plex conv{e1, e2, e3}.
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(a) The standard sim-
plex conv{e1, e2, e3}.

(b) The matroid poly-
tope of U2,3, conv{e1 +
e2, e1 + e3, e2 + e3}.

(c) The DAG associahedron of
1 → 3 ← 2 with CI relation
1 ⊥⊥ 2. This polytope is not a
Minkowski sum of scaled stan-
dard simplices.

Figure 2. Some generalized permutohedra. Compare with the fan in Figure 1.

Submodular semigraphoids correspond to structural independence models [Stu05, §5.4.2], which
can be viewed as semigraphoids obtained from supermodular functions, whose negatives are sub-
modular functions.

The following result shows that every submodular function determines a semigraphoid, and the
semigraphoids arise this way are precisely those corresponding to polytopal coarsenings of the Sn
fan.

Lemma 2.3. A polytope P ⊆ Rn is a generalized permutohedron if and only if there exists a
submodular function ω : 2[n] → R with ω(∅) = 0 such that

(3) P = {x ∈ Rn :
∑

i∈I
xi ≤ ω(I) for each non-empty I ⊆ [n], and

∑

i∈[n]

xi = ω([n])}.

A wall in the Sn fan corresponding to i ⊥⊥ j | K is missing in the normal fan of P defined by ω as
above if and only if ω(Ki)+ω(Kj) = ω(Kij)+ω(K). In particular, a coarsened Sn fan is polytopal
if and only if the corresponding semigraphoid is submodular.

The lemma follows from the conjugacy between L- andM - convex functions and also from [Mur03,
Theorem 4.15]. A part of it appeared in [MPS+09, Proposition 12 and Theorem 14]. We provide
a proof in Appendix B, as it is difficult to find a complete proof in the literature.

Remark 2.4. If ω is a submodular function on 2[n] with ω(∅) = 0, then ω′ : 2[n] → R defined as
ω′(S) = ω([n]\S)− ω([n]) is also submodular with ω′(∅) = 0. The polytopes P and P ′, defined by
ω and ω′ as in (3), are related by −P = P ′. �

Example 2.5. Consider the submodular function ω on 2[n] whose value is 1 on all non-empty sets
and 0 on the empty set. This function is known as the rank function of the uniform rank one
matriod on [n]. The generalized permutohedron defined by this submodular function is a standard
simplex of dimension n− 1 whose outer normal vectors are eI for subsets I of size n− 1. Any set
of n − 2 facet normals spans a wall in the normal fan, with pairs of the form (1), where K = ∅,
corresponding to relations of the form i⊥6⊥j | ∅. See Figures 1 and 2. �

This characterization leads to the following questions for any given semigraphoid:

Question A. Is a given semigraphoid submodular? And if so, can we construct a submodular
function with the desired equalities as in Definition 2.2?

In the following sections we will give a positive answer to these questions for semigraphoids
coming from DAG models.
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Figure 2. Some generalized permutohedra. Compare with the fan in Figure 1.

Submodular semigraphoids correspond to structural independence models [Stu05, §5.4.2], which
can be viewed as semigraphoids obtained from supermodular functions, whose negatives are sub-
modular functions.

The following result shows that every submodular function determines a semigraphoid, and the
semigraphoids arise this way are precisely those corresponding to polytopal coarsenings of the Sn
fan.

Lemma 2.3. A polytope P ⊆ Rn is a generalized permutohedron if and only if there exists a
submodular function ω : 2[n] → R with ω(∅) = 0 such that

(3) P = {x ∈ Rn :
∑

i∈I
xi ≤ ω(I) for each non-empty I ⊆ [n], and

∑

i∈[n]

xi = ω([n])}.

A wall in the Sn fan corresponding to i ⊥⊥ j | K is missing in the normal fan of P defined by ω as
above if and only if ω(Ki)+ω(Kj) = ω(Kij)+ω(K). In particular, a coarsened Sn fan is polytopal
if and only if the corresponding semigraphoid is submodular.

The lemma follows from the conjugacy between L- andM - convex functions and also from [Mur03,
Theorem 4.15]. A part of it appeared in [MPS+09, Proposition 12 and Theorem 14]. We provide
a proof in Appendix B, as it is difficult to find a complete proof in the literature.

Remark 2.4. If ω is a submodular function on 2[n] with ω(∅) = 0, then ω′ : 2[n] → R defined as
ω′(S) = ω([n]\S)− ω([n]) is also submodular with ω′(∅) = 0. The polytopes P and P ′, defined by
ω and ω′ as in (3), are related by −P = P ′. �

Example 2.5. Consider the submodular function ω on 2[n] whose value is 1 on all non-empty sets
and 0 on the empty set. This function is known as the rank function of the uniform rank one
matriod on [n]. The generalized permutohedron defined by this submodular function is a standard
simplex of dimension n− 1 whose outer normal vectors are eI for subsets I of size n− 1. Any set
of n − 2 facet normals spans a wall in the normal fan, with pairs of the form (1), where K = ∅,
corresponding to relations of the form i⊥6⊥j | ∅. See Figures 1 and 2. �

This characterization leads to the following questions for any given semigraphoid:

Question A. Is a given semigraphoid submodular? And if so, can we construct a submodular
function with the desired equalities as in Definition 2.2?

In the following sections we will give a positive answer to these questions for semigraphoids
coming from DAG models.

(c) The DAG associahedron
of 1 → 3 ← 2 with CI rela-
tion 1 ⊥⊥ 2. This polytope
is not a Minkowski sum of
scaled standard simplices.

Fig. 2. Some generalized permutohedra. Compare with the fan in Figure 1.

responding CI relations defined by the Markov property satisfy the gaussoid axioms.
The coarsened Sn fan associated to the gaussoid of an undirected graph is the normal
fan of a polytope, which can be realized as the MSS ∆I = conv{ei : i ∈ I} where I
runs over all sets of nodes that induce connected subgraphs of G [MPS+09]. These
polytopes are called graph associahedra and were studied in [Dev09, CD06, PRW08].

We will now summarize a characterization of coarsened Sn fans that are polytopal,
based on [MPS+09] and [HMS+08]. Let 2[n] denote the power set of [n], the set of all
subsets of [n]. A function ω : 2[n] → R is called submodular if

(2) ω(Ki) + ω(Kj) ≥ ω(Kij) + ω(K)

for all K ⊆ [n] and i, j ∈ [n]\K. A submodular function also satisfies ω(A) + ω(B) ≥
ω(A ∪ B) + ω(A ∩ B) for all A,B ⊆ [n]. Note that a submodular function on 2[n] is
an L-convex function on the unit cube {0, 1}n [Mur03].

Definition 2.2. A semigraphoid on [n] is called submodular if there is a sub-
modular function ω on 2[n] with ω(∅) = 0 such that ω(Ki)+ω(Kj) = ω(Kij)+ω(K)
if and only if the relation i ⊥⊥ j | K is in the semigraphoid.

Submodular semigraphoids correspond to structural independence models [Stu05,
section 5.4.2], which can be viewed as semigraphoids obtained from supermodular
functions, whose negatives are submodular functions.

The following result shows that every submodular function determines a semi-
graphoid, and the semigraphoids that arise this way are precisely those corresponding
to polytopal coarsenings of the Sn fan.

Lemma 2.3. A polytope P ⊆ Rn is a generalized permutohedron if and only if
there exists a submodular function ω : 2[n] → R with ω(∅) = 0 such that
(3)

P =
{
x ∈ Rn :

∑

i∈I
xi ≤ ω(I) for each nonempty I ⊆ [n], and

∑

i∈[n]

xi = ω([n])
}
.

A wall in the Sn fan corresponding to i ⊥⊥ j | K is missing in the normal fan of P
defined by ω as above if and only if ω(Ki) + ω(Kj) = ω(Kij) + ω(K). In particu-
lar, a coarsened Sn fan is polytopal if and only if the corresponding semigraphoid is
submodular.

D
ow

nl
oa

de
d 

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

GENERALIZED PERMUTOHEDRA FROM GRAPHICAL MODELS 69

The lemma follows from the conjugacy between L- and M - convex functions and
also from [Mur03, Theorem 4.15]. A part of it appeared in [MPS+09, Proposition 12
and Theorem 14]. We provide a proof in Appendix B, as it is difficult to find a
complete proof in the literature.

Remark 2.4. If ω is a submodular function on 2[n] with ω(∅) = 0, then ω′ :
2[n] → R defined as ω′(S) = ω([n]\S) − ω([n]) is also submodular with ω′(∅) = 0.
The polytopes P and P ′, defined by ω and ω′ as in (3), are related by −P = P ′.

Example 2.5. Consider the submodular function ω on 2[n] whose value is 1 on all
nonempty sets and 0 on the empty set. This function is known as the rank function
of the uniform rank 1 matroid on [n]. The generalized permutohedron defined by this
submodular function is a standard simplex of dimension n − 1 whose outer normal
vectors are eI for subsets I of size n−1. Any set of n−2 facet normals spans a wall in
the normal fan, with pairs of the form (1), where K = ∅, corresponding to relations
of the form i⊥6⊥j | ∅. See Figures 1 and 2.

This characterization leads to the following questions for any given semigraphoid.
Question A. Is a given semigraphoid submodular? And if so, can we construct

a submodular function with the desired equalities as in Definition 2.2?
In the following sections we will give a positive answer to these questions for

semigraphoids coming from DAG models.
Rank functions of matroids are submodular functions, so every matroid M on the

ground set [n] gives a semigraphoid on [n] as follows:

i⊥6⊥j | K ⇐⇒ rank(Ki) + rank(Kj) > rank(Kij) + rank(K).

Note that since a matroid rank function takes integer values and rank(Aa) ≤ rank(A)+
1 for any A ⊆ [n] and a ∈ [n], we obtain

i⊥6⊥j | K ⇐⇒ rank(K) + 1 = rank(Ki) = rank(Kj) = rank(Kij).(4)

In this case, the coarsening of the Sn fan is the outer normal fan of the matroid
polytope, which is defined as the convex hull of the indicator functions of the bases
of the matroid. For example, the standard simplex ∆I = conv{ei : i ∈ I} is the
matroid polytope of the rank 1 matroid in which each element of I forms a base. The
intersection of two semigraphoids (as sets of conditional independence relations) is
again a semigraphoid. This intersection operation corresponds to common refinement,
Minkowski sum, and sum, respectively, for fans, polytopes, and submodular functions.

Question B. Which submodular semigraphoids can be obtained from the sums
of rank functions of matroids (as in Definition 2.2)? Which fans arising from semi-
graphoids are normal fans of Minkowski sums of matroid polytopes (MSMPs)?

For example, the Minkowski sum of all standard simplices ∆I , for all nonempty
subsets I ⊆ [n], is affinely equivalent to the permutohedron Pn; i.e., they have the
same normal fan, which is the entire Sn fan. This decomposition is not unique,
however; e.g., P3 is a hexagon and can be decomposed as the Minkowski sum of either
two triangles or three line segments, all of which are matroid polytopes.

Example 2.6. Let G be the following DAG:

1

3

2
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We will see in the next section that the Markov property on G defines a single CI
relation, namely 1 ⊥⊥ 2. Removing the corresponding wall in the S3 fan gives a fan
with five maximal cones. Figure 2(c) depicts a polytope with this normal fan. It is
straightforward to check that this fan is not the normal fan of an MSS, but it is the
normal fan of the Minkowski sum of the simplex in Figure 2(b) together with two line
segments, which are all matroid polytopes.

3. Bayesian networks. Similarly to undirected graphs, we can define proba-
bilistic models on DAGs. Such graphical models are also known as Bayesian networks.

Let G be a DAG with nodes [n]. If there is a directed edge from i to j in G, which
we denote by i→ j in G or (i, j) ∈ G, the node i is called a parent of the node j. The
set of all parent nodes of j is denoted by pa(j).

We now review the concept of separation for DAGs. A path in G is an alternating
sequence of nodes and edges, starting and ending at nodes, in which each edge is
adjacent in the sequence to its two endpoints.1 The path may contain repeated edges
and nodes. We do not assume that the direction of the edges is compatible with the
ordering of the nodes in the path.

Definition 3.1. Let G be a DAG on [n], and let i, j ∈ [n] and K ⊆ [n] \ {i, j}.
A Bayes ball path from i to j given K in G is a path from i to j in G such that

1. if a→ b→ c or a← b→ c or a← b← c is on the path, then b /∈ K;
2. if a→ b← c is on the path, then b ∈ K (where a and c need not be distinct).

In this case the node b is called a collider along the path.

See Figures 3 and 5 for examples. Informally we think of a directed edge i→ j as
pointing down from i to j. A “Bayes ball” rolls along edges of the DAG. It cannot roll
through nodes that are in K, but it can “bounce off” them by going down, touching
K, then going back up along either the same or a different edge.

For subsets of nodes I, J,K ⊆ [n], we say that I and J are directionally separated
or d-separated by K in G if there is no Bayes-ball path from any element of I to
any element of J given K [VP90]. This led to the construction of the Bayes-Ball
algorithm [Sha98], an algorithm for determining d-separation statements. Similarly
as for undirected graphs, we can also associate a random vector with joint distribution
P to the nodes of a DAG G. Then P satisfies the directed (global) Markov property
with respect to G if I ⊥⊥ J | K for all disjoint subsets I, J,K ⊂ V such that K d-
separates I and J in G. A faithful distribution to G, i.e., a distribution that satisfies
exactly the CI relations corresponding to d-separation in G, can be realized by regular
Gaussian distributions (see section 4). Hence, for any DAG G the CI relations of the
form i ⊥⊥ j | K, where i and j are d-separated given K in G, form a gaussoid, which
we call a DAG gaussoid.

It is important to note that while the set of separation statements uniquely deter-
mines an undirected graph, this is not the case for d-separation statements for DAGs.
Two DAGs are called Markov equivalent if they imply the same d-separation state-
ments. The Markov equivalence class is determined by the skeleton of a DAG and
its V-structures—triples of nodes (i, j, k) such that i → k ← j and i, j are not adja-
cent [AMP97]. An essential graph [AMP97] (also called a completed partially directed
acyclic graph or CPDAG in [Chi02a] and a maximally oriented graph in [Mee95]) is a
graph with undirected and directed edges that uniquely represents a Markov equiva-
lence class of DAGs. It has the same skeleton as the DAGs in the Markov equivalence

1This is often called a “walk,” but we prefer to use “path” in order to be consistent with the
notion of a “Bayes ball path.”
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class and contains a directed edge i → j if and only if each DAG in the Markov
equivalence class contains the directed edge i→ j.

The following is our main result and answers Questions A and B for DAG gaus-
soids.

Theorem 3.2 (main theorem). Every DAG gaussoid is submodular. Equiva-
lently, the associated coarsening of the Sn fan is the normal fan of a polytope. More-
over, there is a realization of this polytope as an MSMP.

The equivalence of the first two statements follows from Lemma 2.3 above. We
call any such polytope resulting from a DAG gaussoid a DAG associahedron. DAG
associahedra are uniquely defined up to equivalence of normal fans, and they only
depend on the DAG up to Markov equivalence.

Remark 3.3. Let G be a DAG. The normal fan of the DAG associahedron corre-
sponding to G can be obtained by coarsening the normal fan of the graph associahe-
dron corresponding to the moral graph of G—the undirected graph with edges (i, j)
if i→ j in G, j → i in G, or i→ k ← j for some k in G; see Figure 3.

In the next two sections, we will give two independent proofs for the submodu-
larity of DAG gaussoids. In the first proof, in section 4, we use multiinformation, or
relative entropy, to give a formula for the submodular function and hence a realization
of DAG associahedra. However, in general the constant terms of the inequalities in
this construction are not rational. We will discuss some heuristic methods for finding
exact combinatorial information from approximate inequalities. In the second proof,
in section 5, we give a realization of DAG associahedra as MSMPs, which are integral
polytopes. The submodularity of a semigraphoid can be tested using linear program-
ming [HMS+08]. So our theorem states that the linear programs coming from DAG
gaussoids are always feasible, and our proofs give an explicit construction of a feasible
solution.

We illustrate the concepts introduced so far with an example of a DAG model on
four nodes and describe the corresponding DAG associahedron.

Example 3.4. Consider the DAG G shown in Figure 3. An example of a Bayes-
ball path in G is the path from node 1 to 2 given K = {4}, since on the path
1 → 3 → 4 ← 3 ← 2 the node 3 /∈ K but 4 ∈ K. The DAG gaussoid corresponding
to G consists of the CI relations

1 ⊥⊥ 2, 1 ⊥⊥ 4 | 3, 2 ⊥⊥ 4 | 3, 1 ⊥⊥ 4 | {2, 3}, 2 ⊥⊥ 4 | {1, 3}.

The corresponding edges of the permutohedron are shown in green and blue in Fig-
ure 4(a). Since these CI relations form a semigraphoid, we obtain a coarsening of the
Sn fan by removing the edges (12|3|4), (12|4|3), (3|14|2), (3|24|1), (2|3|14), (3|2|14),
(1|3|24), and (3|1|24). The resulting coarsening of the Sn fan obtained by contracting
the colored edges in the permutohedron is polytopal. The convex polytope corre-
sponding to this DAG associahedron is shown in Figure 4(c).

The moral graph G of G is shown in Figure 3 (right). The gaussoid corresponding
to G consists of the CI relations

1 ⊥⊥ 4 | 3, 2 ⊥⊥ 4 | 3, 1 ⊥⊥ 4 | {2, 3}, 2 ⊥⊥ 4 | {1, 3}.

In general, any DAG gaussoid contains the gaussoid of its moral graph. The edges
corresponding to the CI relations for the moral graph are shown in green in Fig-
ure 4(a). By contracting the green edges in the permutohedron we obtain the graph
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Figure 3. The DAG G (left) and its moral graph G (right) discussed in Example 3.4.

the second proof, in §5, we give a realization of DAG associahedra as Minkowski sums of matroid
polytopes, which are integral polytopes. The submodularity of a semigraphoid can be tested using
linear programming [HMS+08]. So our theorem states that the linear programs coming from DAG
gaussoids are always feasible, and our proofs give an explicit construction of a feasible solution.

We illustrate the concepts introduced so far by an example of a DAG model on 4 nodes and
describe the corresponding DAG associahedron.

Example 3.4. Consider the DAG G shown in Figure 3. An example of a Bayes ball path in G is
the path from node 1 to 2 given K = {4}, since on the path 1→ 3→ 4← 3← 2 the node 3 /∈ K
but 4 ∈ K. The DAG gaussoid corresponding to G consists of the CI relations

1 ⊥⊥ 2, 1 ⊥⊥ 4 | 3, 2 ⊥⊥ 4 | 3, 1 ⊥⊥ 4 | {2, 3}, 2 ⊥⊥ 4 | {1, 3}.

The corresponding edges of the permutohedron are shown in green and blue in Figure 4(a). Since
these CI relations form a semigraphoid, we obtain a coarsening of the Sn fan by removing the edges
(12|3|4), (12|4|3), (3|14|2), (3|24|1), (2|3|14), (3|2|14), (1|3|24) and (3|1|24). The resulting coars-
ening of the Sn fan obtained by contracting the colored edges in the permutohedron is polytopal.
The convex polytope corresponding to this DAG associahedron is shown in Figure 4(c).

(a) Permutohedron P4. The
green edges correspond to CI
relations in the moral graph
G in Example 3.4. The blue
edges correspond to the addi-
tional CI relations in G.

(b) The graph associahedron
of the moral graph G ob-
tained by contracting the
green edges.

(c) DAG associahedron for G
obtained by contracting both,
green and blue edges.

Figure 4. The vertices are labeled by descent vectors of permutations, with “|”s
removed. The figures show how the combinatorics of the polytope changes as edges
are contracted, but the polytopes are not drawn to be geometrically correct.
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the second proof, in §5, we give a realization of DAG associahedra as Minkowski sums of matroid
polytopes, which are integral polytopes. The submodularity of a semigraphoid can be tested using
linear programming [HMS+08]. So our theorem states that the linear programs coming from DAG
gaussoids are always feasible, and our proofs give an explicit construction of a feasible solution.

We illustrate the concepts introduced so far by an example of a DAG model on 4 nodes and
describe the corresponding DAG associahedron.

Example 3.4. Consider the DAG G shown in Figure 3. An example of a Bayes ball path in G is
the path from node 1 to 2 given K = {4}, since on the path 1→ 3→ 4← 3← 2 the node 3 /∈ K
but 4 ∈ K. The DAG gaussoid corresponding to G consists of the CI relations

1 ⊥⊥ 2, 1 ⊥⊥ 4 | 3, 2 ⊥⊥ 4 | 3, 1 ⊥⊥ 4 | {2, 3}, 2 ⊥⊥ 4 | {1, 3}.

The corresponding edges of the permutohedron are shown in green and blue in Figure 4(a). Since
these CI relations form a semigraphoid, we obtain a coarsening of the Sn fan by removing the edges
(12|3|4), (12|4|3), (3|14|2), (3|24|1), (2|3|14), (3|2|14), (1|3|24) and (3|1|24). The resulting coars-
ening of the Sn fan obtained by contracting the colored edges in the permutohedron is polytopal.
The convex polytope corresponding to this DAG associahedron is shown in Figure 4(c).
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gaussoids are always feasible, and our proofs give an explicit construction of a feasible solution.

We illustrate the concepts introduced so far by an example of a DAG model on 4 nodes and
describe the corresponding DAG associahedron.
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the path from node 1 to 2 given K = {4}, since on the path 1→ 3→ 4← 3← 2 the node 3 /∈ K
but 4 ∈ K. The DAG gaussoid corresponding to G consists of the CI relations
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(b) The graph associahedron of the
moral graph G obtained by con-
tracting the green edges.
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Fig. 4. The vertices are labeled by descent vectors of permutations, with “|”s removed. The
figures show how the combinatorics of the polytope changes as edges are contracted, but the polytopes
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associahedron corresponding to G shown in Figure 4(b). By further contracting the
blue edges also, we obtain the DAG associahedron corresponding to G.

As we will see in Proposition 3.6, the DAG associahedron in this example cannot
be realized as a Minkowski sum of simplices. However, we will show in section 5 that
it can be realized as the following MSMP:

∆13 + ∆23 + ∆34 + ∆134 + ∆234 + conv{e12, e13, e23}+ conv{e12, e13, e23, e14, e24}.
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As we will see in section 5, the first three polytopes in the sum correspond to the
three edges in the DAG, the next two correspond to the paths 1 3 4 and 2 3 4, which
have no colliders, and the last two correspond to the paths 1 3 2 (given 3) and 1 3 4 3 2
(given 4), respectively. See Example 5.4.

We end this section with two observations about DAG associahedra. In the
following example we show that unlike graph associahedra, DAG associahedra need
not be simple.

Example 3.5 (a nonsimple DAG associahedron). Let G be the following DAG:

1 2

34

The corresponding DAG gaussoid consists only of the CI relation 1 ⊥⊥ 3 | 2, which
corresponds to a single edge 2|13|4 on the permutohedron P4. Contracting this edge
gives a vertex adjacent to four edges on a 3-dimensional polyhedron, so the resulting
polytope is not simple. In this case, the combinatorial operation of contracting the
edge can be realized geometrically by pushing the two neighboring square facets to-
ward each other until they meet at a vertex. In other words, the edge shared by two
hexagonal faces contracts to a single vertex.

Furthermore, as already mentioned in Example 3.4, unlike graph associahedra,
DAG associahedra need not be MSSs in the sense of [MPS+09]. In fact, the following
result shows that a DAG associahedron can be realized as an MSS if and only if the
DAG gaussoid equals the gaussoid of its moral graph, or in other words, if and only
if the DAG model coincides with an undirected graphical model.

Proposition 3.6. The DAG associahedron associated to a DAG G is an MSS if
and only if G does not contain any V-structures, i.e., the DAG model coincides with
an undirected graphical model.

We saw in Example 2.6 that a V-structure cannot be an MSS. We can generalize
this example to the following lemma of [MPS+09, Proposition 20].

Lemma 3.7. If a semigraphoid arises from an MSS, then for any i, j ∈ [n] distinct
and K ⊆ K ′ ⊆ [n] \ {i, j}, we have

i ⊥⊥ j | K =⇒ i ⊥⊥ j | K ′.

Proof. For I ⊆ [n], the standard simplex ∆I is the matroid polytope of the rank
1 matroid on [n] whose loops are [n]\I. By (4) the semigraphoid corresponding to ∆I

contains i⊥6⊥ j | K where i, j ∈ I and K ∩ I = ∅. Taking a Minkowski sum of such
simplices corresponds to taking the union of the associated conditional dependence
statements. It follows that i⊥6⊥j | K ′ =⇒ i⊥6⊥j | K for all K ⊆ K ′ ⊆ [n] \ {i, j}.

Using Lemma 3.7, we can now easily prove Proposition 3.6.

Proof of Proposition 3.6. If G does not contain any V-structures, then the cor-
responding DAG gaussoid is equivalent to the gaussoid obtained from an undirected
graph, namely the skeleton of G, so it is an MSS.

Conversely, suppose that G contains a V-structure i→ `← j. Let K ⊂ [n] be the
set of nondescendants of i and j in G, i.e., the set of k ∈ [n] \ {i, j} such that there
is no directed path from i to k or from j to k in G. Then the CI relation i ⊥⊥ j | K
is contained in the gaussoid corresponding to G. However, the CI relation i ⊥⊥ j | K`
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is not in the gaussoid of G, since there is a Bayes-ball path from i to j given K` in
G. Hence by Lemma 3.7 above, the DAG associahedron corresponding to G is not an
MSS.

4. A construction of DAG associahedra from multiinformation. The
multiinformation of a probability measure P on [n] is a function mP : 2[n] → [0,∞]
defined by

mP(S) = H(P|Πi∈SP{i}),

where H denotes the relative entropy with respect to a product of one-dimensional
marginals P{i}. For the case of most interest to us, when P is a regular Gaussian,
there is a simpler formula as follows. Let P be a regular Gaussian measure on [n]
with covariance matrix Σ. Let Γ be the correlation matrix of P—a symmetric positive
definite matrix obtained from Σ by simultaneously rescaling the rows and columns
so that all the diagonal entries are equal to one. In other words, Γ = D−1/2ΣD−1/2,
where D = diag(Σ). Then we have

(5) i ⊥⊥ j | K ⇐⇒ rank(ΓKi,Kj) ≤ |K|,

where ΓA,B denotes the submatrix of Γ with rows and columns indexed by A and
B, respectively [Sul09]. By [Stu05, Corollary 2.6] the multiinformation mP(A) for
A ⊆ [n] is

mP(A) = −1
2

log det(ΓA,A).

Since Γ is positive definite, all its principal minors det(ΓA,A) are nonzero. We define
det(Γ∅,∅) to be 1. By [Stu05, Corollary 2.2] we have

mP(A) = 0 for all A ⊆ [n], |A| ≤ 1, and

mP(ABC) +mP(C) ≥ mP(AC) +mP(BC) for all A,B,C ⊂ [n]

with equality if and only if A ⊥⊥ B | C under P.
We summarize this discussion in the following lemma.

Lemma 4.1. If P is a regular Gaussian distribution with correlation matrix Γ,
then its semigraphoid is submodular, with submodular function given by

A 7→ log det(ΓA,A).

The submodularity of DAG gaussoids (i.e., the first part of Theorem 3.2) follows
from the lemma above and the fact that any DAG gaussoid has a faithful regular
Gaussian realization. See, for example, [DSS09, section 3.3], where the following
construction is described.

Let G be a DAG on the nodes [n]. Assume that the nodes are labeled so that if
i→ j is an edge in G, then i < j. Let Λ be an upper-triangular matrix whose entries
have the form

Λi,j =





1 if i = j,
−`ij if i→ j is an edge in G,
0 otherwise,

where `ij are real numbers. Let K = ΛΛT and Σ = K−1. Then K is symmetric
positive definite by construction, and so is Σ. For almost all choices of real numbers
`ij (apart from an algebraic hypersurface), a Gaussian distribution P with covariance
matrix Σ is faithful to the DAG gaussoid of G [URBY13].

D
ow

nl
oa

de
d 

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

GENERALIZED PERMUTOHEDRA FROM GRAPHICAL MODELS 75

In fact, as explained in the following lemma, the inequalities for the desired gener-
alized permutohedron can also be computed directly from minors of K = ΛΛT instead
of from the correlation matrix Γ = D−1/2Λ−TΛ−1D−1/2, where D = diag(Λ−TΛ−1).
This result simplifies computation considerably since we do not need to perform any
matrix inversion on ΛΛT .

Lemma 4.2. Let K be a positive definite matrix, and let ω be the submodular
function on 2[n] given by ω(A) = log det(KA,A). Let P be the polytope defined as
in (3). Then −P is the generalized permutohedron corresponding to the semigraphoid
of a regular Gaussian distribution P with covariance matrix Σ = K−1.

Proof. The polytope defined by the submodular function A 7→ log det(ΓA,A) is
obtained from the polytope defined by the submodular function A 7→ log det(ΣA,A)
by translation in each coordinate direction i by − log Σi,i. Thus these two polytopes
have the same normal fans and encode the same semigraphoids.

For A ⊆ [n] and B = [n]\A, we have (ΣA,A)−1 = KA,A −KA,B(KB,B)−1KB,A,
the Schur complement. Using the equality

det(K) = det(KB,B) · det(KA,A −KA,B(KB,B)−1KB,A),

we obtain

log det(ΣA,A) = − log det(ΣA,A)−1

= − log det(KA,A −KA,B(KB,B)−1KB,A)
= log det(KB,B)− log det(K).

Combining this with Remark 2.4, it follows that the polytopes given by A 7→
log det(ΣA,A) and by A 7→ log det(KA,A) are negatives of each other.

In other words, by using K instead of Σ we obtain the dual semigraphoid de-
fined in [MPS+09]. In particular, if a semigraphoid has a faithful regular Gaussian
distribution, then so does its dual.

Example 4.3 (multiinformation of the 4-node DAG in Example 3.4). We start by
constructing Λ from G using edge weights 1 (i.e., `ij = 1 if i → j is an edge in G).
This choice of edge weights is sufficiently generic, since it results in a distribution that
is faithful to G. We then compute ΛΛT :

Λ =




1 0 −1 0
0 1 −1 0
0 0 1 −1
0 0 0 1


 , K = ΛΛT =




2 1 −1 0
1 2 −1 0
−1 −1 2 −1
0 0 −1 1


.

Taking the log of the principal minors, we arrive at the system of inequalities:

x1 ≤ log 2,
x2 ≤ log 2,
x3 ≤ log 2,
x4 ≤ 0,

x1 + x2 ≤ log 3,

x1 + x3 ≤ log 3,
x1 + x4 ≤ log 2,
x2 + x3 ≤ log 3,
x2 + x4 ≤ log 2,
x3 + x4 ≤ 0,

x1 + x2 + x3 ≤ log 4,
x1 + x2 + x4 ≤ log 3,
x1 + x3 + x4 ≤ 0,
x2 + x3 + x4 ≤ 0,

x1 + x2 + x3 + x4 = 0.

For instance, the submatrix K{1,3},{1,3} is ( 2 −1
−1 2 ), whose determinant is 3, giving

the inequality x1 + x3 ≤ log 3. These inequalities give a realization of the DAG
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associahedron in Example 3.4. This realization is geometrically different from but has
the same normal fan as the rational realization obtained by matroid polytopes that
we will present in section 5.

As seen in the example above, there is a problem with this construction: The
constant terms in the inequalities will almost never be all rational numbers, making it
difficult to obtain exact combinatorial information such as the f -vector and the nor-
mal fan. We found that the following heuristic works well in practice to obtain exact
combinatorial information from this polytope description: First, round off the real
numbers in the inequalities to nearby rational numbers (e.g., using 52 bit precision).
Then use exact arithmetic to compute the vertices of the polytope defined by these
approximate inequalities. This results in approximations of the true vertices. Then
form an approximate slack matrix by evaluating each approximate inequality at each
approximate vertex and replace the entries in the slack matrix by 0 or 1 depending
on whether the entry is approximately zero or not (e.g., by rounding off to 35 bit
precision) to obtain an incidence matrix between the vertices and facets. By elimi-
nating duplicate rows and columns from this matrix we obtain the incidence matrix of
a new polytope, from which its face lattice can be computed. In our simulations, the
incidence matrix obtained this way gives the correct number of vertices and facets of
the DAG associahedron, at least in small dimensions. However, this does not imme-
diately lead to a rational realization of the polytope. Our code is available on Github
at https://github.com/foxflo/DAG-associahedra.

It is possible that in some (or even all) instances we may be able to choose the
parameters `ij ’s in such a way that the logarithms of the principal minors are all
rational. However, we do not know of any systematic way to do this, nor do we know
of a systematic way to transform a nonrational realization into a rational realization.
We leave this as an open problem for future work. However, it is clear that if there is a
nonrational realization, then there is also a rational realization, since a realization is a
submodular function that satisfies some of the inequalities in (2) (those corresponding
to the CI relations) as equalities and the rest as strict inequalities, and these linear
constraints have rational coefficients.

To end this section, note that although for this paper it is sufficient to study
the Gaussian setting, submodularity of the multiinformation holds for any probabil-
ity distribution with finite multiinformation, which includes, for example, marginally
continuous measures [Stu05]. Hence any set of CI relations that has a faithful real-
ization by a distribution with finite multiinformation gives rise to a polytope similar
to a DAG associahedron when contracting the edges corresponding to CI relations in
the permutohedron.

5. A construction of DAG associahedra as Minkowski sums of ma-
troid polytopes. In the following, we obtain a construction of DAG associahedra as
MSMPs, resulting in a rational realization of these polytopes. Until now we viewed a
semigraphoid as defined by CI relations. However, we can equivalently define a semi-
graphoid by its complementary conditional dependence relations. Minkowski addition
of generalized permutohedra translates to taking the union of the corresponding con-
ditional dependence relations, since the union of normal cones to the edges of the
Minkowski sum is the union of normal cones to the edges in the summand polytopes.2

2In other words, the tropical hypersurface of a Minkowski sum of polytopes is the union of the
tropical hypersurfaces of individual polytopes.
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For every dependence relation i⊥6⊥j | K in the semigraphoid defined by a DAG G, we wish to find
a matroid whose semigraphoid, defined by its rank function as in (4), contains the given relation
and whose dependence relations are all valid for the semigraphoid of the DAG.

We now describe how to construct these matroids. For any conditional dependence relation
i⊥6⊥j | K in the semigraphoid defined by a DAG G, there is a Bayes ball path from i to j given K.
We first partition the Bayes ball path into canyons and treks as follows.

Definition 5.1. A trek along a path is a consecutive subpath that does not contain any colliders.
A canyon along a path is a consecutive subpath that is palindromic with exactly one collider in the
middle such that all edges are directed toward the collider. A Bayes ball path is called simple if no
node is repeated except in the same canyon and the maximal canyons are pairwise disjoint.

If we think of the arrows as always pointing down, then a canyon is a path that first goes down
and then backtracks up the same edges to the first node. See Figure 5 for an example. A single
collider is a canyon by itself but not necessarily a maximal one.

The active paths in [Sha98] can be obtained from simple Bayes ball paths by replacing each
canyon with only the top of the canyon, e.g. for the Bayes ball path 1 4 8 4 3 (given {8}) we get an
active path 1 4 3. We prefer to keep the canyons in the path because we will need them for our
matroid construction below.

Lemma 5.2. If there is a Bayes ball path from i to j given K, then there is a simple one that is
an alternating sequence of disjoint treks and canyons, starting and ending with treks.

Proof. Suppose there is a repeated node a. Then we can take the first edge into a and the last edge
out of a. This is allowed except when a would become a collider on the new path and a is not in
the conditioned set K. In this case there must be a descendant of a that is a collider, hence in K,
so we can make a canyon between a and this collider. The same argument shows that we can make
the maximal canyons to be pairwise disjoint and that the end nodes i and j are not in any canyons.

On the simple path, each connected component of the maximal canyons and their adjacent edges
is a trek by definition, since it does not contain any colliders. Note that a single collider is considered
a canyon. There must be at least one collider, hence a canyon, between any two such treks. For
every canyon, we may assume that the node at the top must have two arrows pointing into it on
the path; otherwise we can replace the canyon with just the top of the canyon to get another simple
Bayes Ball path. If there are two consecutive canyons, then the edge between them cannot have
an arrowhead at both canyons, so we can shortcut at least one of them. Thus we may assume that
canyons do not occur next to each other, i.e. any two canyons are separated by a trek. �

1

2

3

4

5

8

6

7

Figure 5. In the DAG, 1 → 4 ← 3← 2 → 6→ 7← 6 ← 5→ 8 is a Bayes ball
path from 1 to 8 given {4, 7}. The treks and canyons along the path are overlined
and underlined respectively.

Fig. 5. In the DAG, 1 → 4 ← 3← 2 → 6→ 7← 6 ← 5→ 8 is a Bayes-ball path from 1 to 8
given {4, 7}. The treks and canyons along the path are overlined and underlined, respectively.

For every dependence relation i⊥6⊥ j | K in the semigraphoid defined by a DAG
G, we wish to find a matroid whose semigraphoid, defined by its rank function as in
(4), contains the given relation and whose dependence relations are all valid for the
semigraphoid of the DAG.

We now describe how to construct these matroids. For any conditional depen-
dence relation i⊥6⊥j | K in the semigraphoid defined by a DAG G, there is a Bayes-ball
path from i to j given K. We first partition the Bayes-ball path into canyons and
treks as follows.

Definition 5.1. A trek along a path is a consecutive subpath that does not con-
tain any colliders. A canyon along a path is a consecutive subpath that is palindromic
with exactly one collider in the middle such that all edges are directed toward the
collider. A Bayes-ball path is called simple if no node is repeated except in the same
canyon and the maximal canyons are pairwise disjoint.

If we think of the arrows as always pointing down, then a canyon is a path that first
goes down and then backtracks up the same edges to the first node. See Figure 5 for
an example. A single collider is a canyon by itself but not necessarily a maximal one.

The active paths in [Sha98] can be obtained from simple Bayes-ball paths by
replacing each canyon with only the top of the canyon; e.g., for the Bayes-ball path
1 4 8 4 3 (given {8}) we get an active path 1 4 3. We prefer to keep the canyons in the
path because we will need them for our matroid construction below.

Lemma 5.2. If there is a Bayes-ball path from i to j given K, then there is a
simple one that is an alternating sequence of disjoint treks and canyons, starting and
ending with treks.

Proof. Suppose there is a repeated node a. Then we can take the first edge into
a and the last edge out of a. This is allowed except when a would become a collider
on the new path and a is not in the conditioned set K. In this case there must be a
descendant of a that is a collider, and hence in K, so we can make a canyon between a
and this collider. The same argument shows that we can make the maximal canyons
pairwise disjoint and that the end nodes i and j are not in any canyons.

On the simple path, each connected component of the maximal canyons and their
adjacent edges is a trek by definition, since it does not contain any colliders. Note that
a single collider is considered a canyon. There must be at least one collider, and hence
a canyon, between any two such treks. For every canyon, we may assume that the
node at the top must have two arrows pointing into it on the path; otherwise we can
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For example, in Figure 5 the Bayes ball path 1 4 8 7 4 3 from 1 to 3 given {8} has a repeated
node 4, and simply removing the path between the two occurrences of 4 would give 1 4 3, which is
not a Bayes ball path given {8} since the collider 4 is not in the conditioned set {8}. However, 4
has a descendant, 8, which is a collider in the original Bayes Ball path, so we can create a canyon
4→ 8← 4 and take the path 1 4 8 4 3 instead.

Construction of a matroid from a simple Bayes ball path.

Let α be a simple Bayes ball path from i to j given K which is an alternating sequence of
treks and canyons as in Lemma 5.2. Suppose we have d + 1 treks t1, . . . , td+1 and d canyons
c1, . . . , cd, in the order t1c1t2c2 · · · cdtd+1. For k = 1, . . . , d, let Mi be the rank 2 uniform matroid
on {tk, ck, tk+1}, i.e. a subset is independent if and only if it has size ≤ 2. It can be represented by
affine independence among three distinct points on an affine line or as linear independence among
three non-parallel vectors in a 2-dimensional vector space or as edges of a triangle.

Let TCα be the matroid on the set of treks and canyons {t1, c1, . . . , td, cd, td+1}, defined as the
parallel connection or (free and proper) amalgam of these k matroids along the treks [Oxl11, §7,
§11]. The parallel connection of two graphic matroids is obtained by gluing two graphs along an
edge, which corresponds to a trek in our case. The parallel connection of two affine independence
matroids is obtained by placing the affine spaces in a common ambient affine space in such a way
that they only intersect at one point, which corresponds to a trek in our case. The matroid TCα
is constructed by repeating this operation, which is clearly associative.

Finally the matroid Mα on the node set [n] of the DAG, is defined as follows. Let TC ′α be the
matroid TCα with an additional loop element `. Let f : [n]→ TC ′α be a function that sends each
element on the path α to the trek or canyon containing it and all other elements to the loop `.
We say that a subset S ⊆ [n] is independent in the matroid Mα if {f(a) : a ∈ S} is independent
in TC ′α. In particular, elements in the same trek or the same canyon become parallel elements
(two-element circuits). Two examples of such matroids for different Bayes ball paths are shown in
Figure 6.

A subset S of a matroid is called a flat if rank(S ∪ {a}) > rank(S) for every a /∈ S. The
intersection of two flats is a flat. The span or the closure of a set is the smallest flat containing it.
More precisely

span(S) = {a : rank(S ∪ {a}) = rank(S)}.
A subset A ⊆ {t1, c1, . . . , td, cd, td+1} is a flat in TCα if and only if A∩{tk, ck, tk+1} is a flat for each
k = 1, . . . , d [Oxl11, Proposition 11.4.13]. This can also be checked directly from the realization of
TCα using affine/linear independence or graphs. Note that a subset of {tk, ck, tk+1} is a flat if and
only if it has size 6= 2. Flats of Mα are inverse images under f of flats in TC ′α.

•

•

• •

•
1

2,3

4 6,7

5,8

(a) The matroid corresponding to the Bayes ball
path 1 4 3 2 6 7 6 5 8, which goes from 1 to 8 given
{4, 7}.

•

•

• •

•
1

3

4 7

5,6,8

(b) The matroid corresponding to the Bayes
ball path 1 4 3 7 6 5 8, which goes from 1 to 8
given {4, 7}. The element 2 is a loop in the
matroid, i.e. {2} is dependent.

Figure 6. Two matroids that are compatible with the DAG in Figure 5.

(a) The matroid corresponding to the
Bayes-ball path 1 4 3 2 6 7 6 5 8, which
goes from 1 to 8 given {4, 7}.
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node 4, and simply removing the path between the two occurrences of 4 would give 1 4 3, which is
not a Bayes ball path given {8} since the collider 4 is not in the conditioned set {8}. However, 4
has a descendant, 8, which is a collider in the original Bayes Ball path, so we can create a canyon
4→ 8← 4 and take the path 1 4 8 4 3 instead.
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treks and canyons as in Lemma 5.2. Suppose we have d + 1 treks t1, . . . , td+1 and d canyons
c1, . . . , cd, in the order t1c1t2c2 · · · cdtd+1. For k = 1, . . . , d, let Mi be the rank 2 uniform matroid
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affine independence among three distinct points on an affine line or as linear independence among
three non-parallel vectors in a 2-dimensional vector space or as edges of a triangle.

Let TCα be the matroid on the set of treks and canyons {t1, c1, . . . , td, cd, td+1}, defined as the
parallel connection or (free and proper) amalgam of these k matroids along the treks [Oxl11, §7,
§11]. The parallel connection of two graphic matroids is obtained by gluing two graphs along an
edge, which corresponds to a trek in our case. The parallel connection of two affine independence
matroids is obtained by placing the affine spaces in a common ambient affine space in such a way
that they only intersect at one point, which corresponds to a trek in our case. The matroid TCα
is constructed by repeating this operation, which is clearly associative.

Finally the matroid Mα on the node set [n] of the DAG, is defined as follows. Let TC ′α be the
matroid TCα with an additional loop element `. Let f : [n]→ TC ′α be a function that sends each
element on the path α to the trek or canyon containing it and all other elements to the loop `.
We say that a subset S ⊆ [n] is independent in the matroid Mα if {f(a) : a ∈ S} is independent
in TC ′α. In particular, elements in the same trek or the same canyon become parallel elements
(two-element circuits). Two examples of such matroids for different Bayes ball paths are shown in
Figure 6.

A subset S of a matroid is called a flat if rank(S ∪ {a}) > rank(S) for every a /∈ S. The
intersection of two flats is a flat. The span or the closure of a set is the smallest flat containing it.
More precisely

span(S) = {a : rank(S ∪ {a}) = rank(S)}.
A subset A ⊆ {t1, c1, . . . , td, cd, td+1} is a flat in TCα if and only if A∩{tk, ck, tk+1} is a flat for each
k = 1, . . . , d [Oxl11, Proposition 11.4.13]. This can also be checked directly from the realization of
TCα using affine/linear independence or graphs. Note that a subset of {tk, ck, tk+1} is a flat if and
only if it has size 6= 2. Flats of Mα are inverse images under f of flats in TC ′α.
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(b) The matroid corresponding to the
Bayes-ball path 1 4 3 7 6 5 8, which goes
from 1 to 8 given {4, 7}. The element
2 is a loop in the matroid; i.e., {2} is
dependent.

Fig. 6. Two matroids that are compatible with the DAG in Figure 5.

replace the canyon with just the top of the canyon to get another simple Bayes-ball
path. If there are two consecutive canyons, then the edge between them cannot have
an arrowhead at both canyons, so we can cut at least one of them short. Thus we
may assume that canyons do not occur next to each other, i.e., that any two canyons
are separated by a trek.

For example, in Figure 5 the Bayes-ball path 1 4 8 7 4 3 from 1 to 3 given {8} has
a repeated node 4, and simply removing the path between the two occurrences of 4
would give 1 4 3, which is not a Bayes-ball path given {8} since the collider 4 is not
in the conditioned set {8}. However, 4 has a descendant, 8, which is a collider in the
original Bayes-ball path, so we can create a canyon 4 → 8 ← 4 and take the path
1 4 8 4 3 instead.

Construction of a matroid from a simple Bayes-ball path. Let α be
a simple Bayes-ball path from i to j given K which is an alternating sequence of
treks and canyons as in Lemma 5.2. Suppose we have d + 1 treks t1, . . . , td+1 and
d canyons c1, . . . , cd, in the order t1c1t2c2 · · · cdtd+1. For k = 1, . . . , d, let Mi be the
rank 2 uniform matroid on {tk, ck, tk+1}; i.e., a subset is independent if and only if
it has size ≤ 2. It can be represented by affine independence among three distinct
points on an affine line or as linear independence among three nonparallel vectors in
a two-dimensional vector space or as edges of a triangle.

Let TCα be the matroid on the set of treks and canyons {t1, c1, . . . , td, cd, td+1},
defined as the parallel connection or (free and proper) amalgam of these k matroids
along the treks [Oxl11, sections 7 and 11]. The parallel connection of two graphic
matroids is obtained by gluing two graphs along an edge, which corresponds to a trek
in our case. The parallel connection of two affine independence matroids is obtained
by placing the affine spaces in a common ambient affine space in such a way that they
only intersect at one point, which corresponds to a trek in our case. The matroid
TCα is constructed by repeating this operation, which is clearly associative.

Finally, the matroid Mα on the node set [n] of the DAG is defined as follows. Let
TC ′α be the matroid TCα with an additional loop element `. Let f : [n] → TC ′α be
a function that sends each element on the path α to the trek or canyon containing
it and all other elements to the loop `. We say that a subset S ⊆ [n] is independent
in the matroid Mα if {f(a) : a ∈ S} is independent in TC ′α. In particular, elements
in the same trek or the same canyon become parallel elements (two-element circuits).
Two examples of such matroids for different Bayes-ball paths are shown in Figure 6.
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A subset S of a matroid is called a flat if rank(S∪{a}) > rank(S) for every a /∈ S.
The intersection of two flats is a flat. The span or the closure of a set is the smallest
flat containing it. More precisely,

span(S) = {a : rank(S ∪ {a}) = rank(S)}.
A subset A ⊆ {t1, c1, . . . , td, cd, td+1} is a flat in TCα if and only if A ∩ {tk, ck, tk+1}
is a flat for each k = 1, . . . , d [Oxl11, Proposition 11.4.13]. This can also be checked
directly from the realization of TCα using affine/linear independence or graphs. Note
that a subset of {tk, ck, tk+1} is a flat if and only if it has size 6= 2. Flats of Mα are
inverse images under f of flats in TC ′α.

It follows that a subset S ⊆Mα is a flat if and only if it satisfies all of the following
conditions:

(F0) S contains all the loops (the nodes that are not on α).
(F1) If an element of a trek or a canyon is in S, then all the other nodes in the

same trek or canyon are also in S.
(F2) For each k = 1, . . . , d, if S intersects (thus contains) two out of three treks/

canyons in {tk, ck, tk+1}, then it also intersects (thus contains) the third.
Recall from section 2 that the rank function of a matroid gives a collection of

conditional dependence relations of the form a ⊥6⊥ b | C, where a, b ∈ [n] and C ⊆
[n] \ {a, b} satisfy the condition (4), namely

(6) rank(C) + 1 = rank(Ca) = rank(Cab) = rank(Cb).

Lemma 5.3. Let G be a DAG, and let α be a simple Bayes-ball path from i to j
given K in G. Then the conditional dependence relations of the matroid Mα form
a subset of the set of conditional dependence relations defined by the semigraphoid
corresponding to G.

Proof. Suppose the relation a⊥6⊥ b | C comes from the matroid Mα. We wish to
show that there is a Bayes-ball path in G between a and b given C. The condition (6)
can be translated as

(7) span(C) ( span(Ca) = span(Cab) = span(Cb).

Let us first consider the case when a and b are in the same trek or in the same
canyon. Then C cannot contain any element from the same trek/canyon; otherwise
both a and b would be in span(C), contradicting (7). Any two nodes in the same
trek or the same canyon are connected by a Bayes-ball path if no node is conditioned.
Thus there is a Bayes-ball path between a and b given C, along α.

Now suppose that a and b are in different treks/canyons. Then condition (7)
implies that span(C), and hence C, cannot contain any element in the treks/canyons
containing a or b.

We claim that C does not intersect any trek that lies strictly between a and b
along α. Otherwise, if we compute span(Ca) by adding to span(C) nodes along the
path starting at a, then the process would terminate (i.e., the conditions (F0), (F1),
(F2) would be satisfied) at or before the trek that intersects C, before it reaches b.
Thus b /∈ span(Ca), contradicting the condition span(Ca) = span(Cb) in (7).

Next we claim that C intersects every canyon that lies strictly between a and b
along α. Suppose C does not intersect a canyon. But we have already shown that C
does not intersect the next trek (which may contain b) after the canyon, on the path
from a to b along α. Then, as before, the computation of span(Ca) stops before it
reaches b; so again b /∈ span(Ca).
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Putting everything together, we conclude that C intersects all the canyons and
none of the treks that lie strictly between a and b along α. This means that the
subpath between a and b along α forms a Bayes-ball path given C in G, and the
relation a⊥6⊥b | C is valid for the semigraphoid of G.

A proof of our main result now follows.

Proof of Theorem 3.2. For every conditional dependence relation i⊥6⊥j | K in the
semigraphoid corresponding to a DAG G, we find a simple Bayes-ball path α from i to
j given K and construct a matroid Mα. By Lemma 5.3, all the conditional dependence
relations coming from Mα are among those in the semigraphoid corresponding to G.
By taking all the matroids of the form Mα where α runs over all simple Bayes-ball
paths in G, we obtain exactly all the conditional dependence relations that are valid in
the semigraphoid of G. Taking the union of all these dependence relations translates
into taking the Minkowski sum of all the corresponding matroid polytopes. Hence,
DAG associahedra are obtained as MSMPs.

Example 5.4 (Example 3.4, continued). Consider the DAG with four nodes from
Example 3.4. The path 1 3 4 3 2 is a Bayes-ball path from 1 to 2 given {4}. The
corresponding rank 2 matroid is realized by affine dependence among three distinct
points in R. For example, we can take the matroid on the points v1 = 1, v2 = 2,
v3 = v4 = 3 on the real line R under affine independence. Equivalently, the matroid
is given by columns of the matrix ( 1 1 1 1

1 2 3 3 ) under linear independence. The bases are
all pairs {vi, vj} where i 6= j, except the pair {v3, v4}. The matroid polytope is a
square-based pyramid, with e1 + e2 as the top of the pyramid.

6. Generalizing to mixed graphs. The MSMP construction generalizes to
a much more general setting of semigraphoids arising from loopless mixed graphs
(LMGs) introduced by Sadeghi and Lauritzen in [SL14]. We first recall the definitions.
A mixed graph is a graph with three possible types of edges: undirected (i—j), directed
(i ←− j or i −→ j), or bidirected (i ←→ j), which are also called lines, arrows, and
arcs, respectively. Multiple types of edges are allowed between any two nodes. An
LMG is a mixed graph without a loop, or an edge between a node and itself.

A node j is called an ancestor of a node i, and i is called a descendant of j, if
there is a path i = i0, i1, . . . , in = j from i to j in which the edges (ik, ik+1) are arrows
(directed edges) pointing from ik to ik+1 for all k = 0, . . . , n−1. Note that undirected
and bidirected edges are not used in the definition of ancestors. The set of ancestors
of a node i is denoted by an(i). For any set of nodes K, let an(K) =

⋃
k∈K an(k).

For the path ijk (where we may have i = k) the node j is called a collider if the
path is one of i −→ j ←− k, i ←→ j ←− k, or i −→ j ←→ k. Otherwise k is a
noncollider.

Let K be a subset of the node set of an LMG. A path is called a Bayes-ball path
given K (called an m-connecting path given K in [SL14]) if all its collider nodes are in
K ∪ an(K) and all its noncollider nodes are outside K. We say that i 6⊥⊥ j | K if there
exists a Bayes-ball path from i to j given K. This collection of CI relations forms a
graphoid [SL14].

We define treks, canyons, and simple Bayes-ball paths in an LMG in exactly the
same way as in Definition 5.1. Only directed edges (arrows) can appear in a canyon,
but all three types of edges are allowed on a trek. A trek or a canyon may consist of
only one node, but it may not be empty.

Lemma 6.1. Let i, j be nodes in an LMG and K be a set of nodes such that
{i, j} ∩ K = ∅. If there is a Bayes-ball path from i to j given K, then there is a
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simple one that is a sequence of treks and canyons, starting and ending with treks,
such that

1. between any two treks there is at least one canyon,
2. on the edge between a trek and a canyon, there must be an arrowhead at the

canyon, and
3. two consecutive canyons can only be connected by a bidirected edge.

Proof. The existence of a simple path follows from the same argument as in
the proof of Lemma 5.2. On the simple path, each connected component of the
complement of maximal canyons (and adjacent edges) is a trek, since it does not
contain any collider. Note that a single collider is considered a canyon. The property
1 follows from the construction of treks as connected components. Consider an edge
connecting a trek and a canyon. If there is no arrowhead at the canyon, then the
top of the canyon does not have two arrowheads pointing into it. We can then cut
the canyon short, replacing the canyon with only the top of it, to get another simple
Bayes-ball path. Thus property 2 is satisfied. An analogous argument shows that an
edge between two canyons must have arrowheads at both canyons; otherwise we can
cut the canyons short. Thus property 3 is also satisfied.

Now we can describe a generalization of the matroid construction from the pre-
vious section.

Construction of a matroid from a Bayes-ball path in an LMG. Let
α be a simple Bayes-ball path from i to j given K satisfying the conditions from
Lemma 6.1. Suppose there are d + 1 treks t1, . . . , td+1 on α, in this order. For
k = 1, . . . , d, let mk denote the number of canyons between tk and tk+1. For each
subpath tkck,1 · · · ck,mk

tk+1 of two treks separated by canyons, consider the uniform
matroid Umk+1,mk+2 on {tk, ck,1, . . . , ck,mk

, tk+1}, which can be represented by affine
independence among mk + 2 general points in Rmk . We then take the parallel con-
nection of these uniform matroids along the treks. In other words, we place the affine
spaces, one for each pair of treks separated by a sequence of canyons, in a common
ambient space so that any two consecutive ones only meet at one point and they
affinely span maximum possible dimension. As before, a subset is a flat if and only if
its intersection with each of the uniform matroids is also a flat.

The matroid Mα on the node set [n] of the LMG is defined as before by replacing
each trek (resp., canyon) with parallel elements corresponding to the nodes in the trek
(resp., canyon) and considering nodes not on α as loops.

A subset S of the node set [n] is a flat in Mα if and only if it satisfies (F0), (F1),
and

(F2′) For each k = 1, . . . , d, if S intersects (thus contains) mk + 1 out of mk + 2
treks/canyons in {tk, ck,1, . . . , ck,mk

, tk+1}, then it also intersects (thus con-
tains) the remaining one.

For example, for the Bayes-ball path t1 ←→ c1,1 ←→ c1,2 ←− t2 ←→ c2,1 ←→
c2,2 ←− t3, we can take the following representation via affine independence in R4:

Trek or canyon t1 c1,1 c1,2 t2 c2,1 c2,2 t3
0 1 2 3 3 3 3

representation 0 1 4 9 9 9 9
as points in R4 0 0 0 0 1 2 3

0 0 0 0 1 4 9

We have a rank 3 uniform matroid on the first four elements and another rank 3
uniform matroid on the last four elements, meeting at a point t2.

D
ow

nl
oa

de
d 

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

82 F. MOHAMMADI, C. UHLER, C. WANG, AND J. YU

Theorem 6.2 (generalization of main theorem). The semigraphoid of any LMG
is submodular. The associated coarsening of the Sn fan is the normal fan of the MSMP
corresponding to simple Bayes-ball paths satisfying the conditions in Lemma 6.1.

Proof. The result and the proof of Lemma 5.3 and the proof of Theorem 3.2 in
section 5 can be repeated word for word, with the word “DAG” replaced by “LMG”
and the condition (F2) replaced by (F2′).

7. Relationship among families of semigraphoids. Recall from Lemma 2.3
that submodular functions on 2[n] correspond to polytopal coarsenings of the Sn fan,
and these are exactly the normal fans of generalized permutohedra.

Graph associahedra and DAG associahedra are special classes of generalized per-
mutohedra that are defined up to equivalence of normal fans. The former can be
realized as MSSs and the latter can be realized as MSMPs. What additional classes
of generalized permutohedra can be realized in this way? Since the standard simplices
are matroid polytopes, MSS polytopes are also MSMP.

Unfortunately, this question seems difficult to answer in general. For n = 3, 4, 5,
respectively, the cone of submodular functions has 5, 37, and 117978 extreme rays
of which only 5, 23, and 149, respectively, correspond to (connected) matroid poly-
topes. It suffices to consider connected matroids because the direct sum of matroids
corresponds to the Minkowski sum of the corresponding matroid polytopes. Thus the
matroid polytope of a disconnected matroid, which is the direct sum of nontrivial
matroids, is the Minkowski sum of the matroid polytopes of these direct summands.
Although the structure of these extreme rays is unclear, it seems unlikely due to their
sparsity that many submodular semigraphoids will arise in this way.

Another interesting class of semigraphoids are gaussoids [LM07], an abstraction
of regular Gaussian distributions in the language of CI relations; see section 2. Since
we have seen that probabilistic graphical models can be faithfully realized by regu-
lar Gaussian distributions, another natural question is whether all regular Gaussian
models (also called representable gaussoids) or even all gaussoids are MSMPs. Our
interest in gaussoids stems from Theorem 8.3, where gaussoids are natural.

Gaussoids appear to be incompatible with the MSMP construction. We have
computationally verified that for 3 ≤ n ≤ 8 no submodular semigraphoid correspond-
ing to a connected matroid on [n] is a gaussoid. Thus, none of the extreme matroidal
rays of the submodular cone are gaussoids.

Conversely, not all gaussoids, in fact not even all representable gaussoids, can be
obtained via MSMP. For example, [DX10, Table A.1] lists all Gaussian CI models on
four variables (up to equivalence) and examples 19, 20, 34, 50, 51 are not MSMP.
On the other hand, the CI relations corresponding to graphical models in this list all
correspond to generalized permutohedra arising as MSMPs.

In Figure 7 we illustrate the relationship of all the different coarsenings of the
Sn fan discussed in this paper by a Venn diagram. We have seen that undirected
graphical models give rise to MSSs, while DAG models can be realized by MSMPs.
In Proposition 3.6 we showed that a DAG model is an MSS if and only if it coincides
with an undirected graphical model, i.e., if and only if it is a decomposable model. As
we have discussed above, gaussoids are incompatible with the MSMP construction.
In fact, gaussoids are also incompatible with the MSS construction. For example, it
is easy to check that the standard simplex in Figure 2(a) is not a gaussoid. While
every representable gaussoid is a submodular gaussoid as shown in Lemma 4.1, this
is not the case for gaussoids. The semigraphoid studied in [HMS+08, section 3] is a
gaussoid that is not submodular.
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Figure 7. Venn diagram representing the relationship of all the different coarsen-
ings of the Sn fan discussed in this paper.

Unfortunately, this question seems difficult to answer in general. For n = 3, 4, 5 respectively,
the cone of submodular functions has 5, 37, and 117978 extreme rays of which only 5, 23, and
149 respectively correspond to (connected) matroid polytopes. It suffices to consider connected
matroids because the direct sum of matroids corresponds to the Minkowski sum of the corresponding
matroid polytopes. Thus the matroid polytope of a disconnected matroid, which is the direct sum
of non-trivial matroids, is the Minkowski sum of the matroid polytopes of these direct summands.
Although the structure of these extreme rays is unclear, it seems unlikely due to their sparsity that
many submodular semigraphoids will arise in this way.

Another interesting class of semigraphoids are gaussoids [LM07], an abstraction of regular Gauss-
ian distributions in the language of CI relations; see §2. Since we have seen that probabilistic graph-
ical models can be faithfully realized by regular Gaussian distributions, another natural question is
whether all regular Gaussian models (also called representable gaussoids) or even all gaussoids are
MSMP. Our interest in gaussoids stems from Theorem 8.3, where gaussoids give a natural setting.

Gaussoids appear to be incompatible with the MSMP construction. We have computationally
verified that for 3 ≤ n ≤ 8 no submodular semigraphoid corresponding to a connected matroid on
[n] is a gaussoid. Thus, none of the extreme matroidal rays of the submodular cone are gaussoids.

Conversely, not all gaussoids, in fact not even all representable gaussoids, can be obtained via
MSMP. For example, [DX10, table A.1] lists all Gaussian CI models on four variables (up to
equivalence) and examples 19, 20, 34, 50, 51 are not MSMP. On the other hand, the CI relations
corresponding to graphical models in this list all correspond to generalized permutohedra arising
as MSMP.

In Figure 7 we illustrate the relationship of all the different coarsenings of the Sn fan discussed
in this paper by a Venn diagram. We have seen that undirected graphical models give rise to MSSs,
while DAG models can be realized by MSMPs. In Proposition 3.6 we showed that a DAG model is
MSS if and only if it coincides with an undirected graphical model, i.e. if and if it is a decomposable
model. As we have discussed above, gaussoids are incompatible with the MSMP construction. In
fact, gaussoids are also incompatible with the MSS construction. For example, it is easy to check
that the standard simplex in Figure 2(a) is not a gaussoid. While every representable gaussoid is a
submodular gaussoid as shown in Lemma 4.1, this is not the case for gaussoids. The semigraphoid
studied in [HMS+08, Section 3] is a gaussoid that is not submodular.

Fig. 7. Venn diagram representing the relationship of all the different coarsenings of the Sn

fan discussed in this paper.

8. Causal inference. In this section, we describe how DAG associahedra can
be used to perform causal inference. The main problem in causal inference is the
following: We obtain data from an unobserved DAG G. From this data we infer a set
of CI relations C. Under the faithfulness assumption, which we will assume throughout
this section, C coincides with the gaussoid of G. The goal is to learn G from C. This
problem is ill defined since d-separation does not uniquely identify a DAG. So instead
the problem is to learn G up to Markov equivalence, or, in other words, to learn from
C the essential graph, which is a partially directed graph with the same skeleton as G
where an edge is directed if and only if it is directed the same way in every DAG in
the Markov equivalence class.

A popular algorithm for learning the Markov equivalence class of a DAG is Greedy
Equivalence Search (GES) [Mee97, Chi02b], a greedy algorithm that searches through
the space of DAGs by maximizing a scoring criterion such as the Bayesian Information
Criterion (BIC). Under the faithfulness assumption GES is known to be consistent;
i.e., it learns the correct essential graph with probability approaching 1 as the sample
size goes to infinity [Mee97, Chi02b]. To reduce computation time, Teyssier and
Koller [TK05] suggested replacing the greedy search in DAG space by a greedy search
in the space of all orderings; a scoring criterion such as BIC is optimized by performing
a walk on the edges of the permutohedron. Although no consistency guarantees
were given for this greedy algorithm, simulations suggest that the greedy ordering-
based search has a similar performance and lower computational costs as compared
to GES [TK05]. In the following, we use our geometric insight on DAG associahedra
to develop a new greedy ordering-based search with consistency guarantees.

Let F be a coarsening of the Sn fan. Each cone in F is defined by inequalities
of the form xi ≤ xj and can be labeled a poset on [n]. Then we get a map from
permutations of [n] to the set of partial orders on [n], derived from the map sending
a maximal Sn cone to the maximal cone F containing it. The preimage permutation
(total order) is a linear extension of its image partial order. Hence the maximal cones
of the coarsened Sn fan—or the vertices of the generalized permutohedron if the fan
is polytopal—can be labeled by posets so that every permutation is a linear extension
of exactly one of the posets. If two permutations π and τ are mapped to the same
partial order, then we denote this by π ∼ τ .
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Algorithm 1 Greedy SP algorithm on the permutohedron
Input: A set of CI relations C on n random variables and a starting permutation
π ∈ Sn.

Output: An essential graph G.
1. Set t := 0 and π(0) := π.
2. Set t := t+ 1. Randomly select a permutation π(t) that differs from π(t−1)

in a single adjacent transposition such that Gπ(t) is at least as sparse as
Gπ(t−1) .

3. Iterate 2 until convergence to the sparsest Markov equivalence class and
output the corresponding essential graph.

A semigraphoid C on [n] also gives a map from Sn to the set of DAGs on nodes [n]
as described in [RU14]: To every permutation π we associate a DAG Gπ with

(8) (πi, πj) ∈ Gπ ⇐⇒ i < j and πi⊥6⊥πj | {π1, . . . , πmax(i,j)} \ {πi, πj}.

In other words, the edge directions in the graph must be compatible with the ordering
π = (π1|π2| · · · |πn), and the existence of an edge means that the two nodes are not
independent given all the nodes that come before them in the ordering. Gπ is also
known as a minimal I-map or a directed independence graph.

We call π a topological ordering of G if any edge (i, j) in G implies that i � j in
π. Note that if the semigraphoid comes from a DAG G and π is a topological ordering
of G, then G = Gπ.

In [RU14], it was proposed to use the number of edges of Gπ as a scoring criterion.
It was shown that an algorithm that outputs the Markov equivalence class of Gπ with
the fewest number of edges is consistent, i.e., it outputs the correct Markov equivalence
class, under strictly weaker conditions than faithfulness. A permutation π giving a
sparsest DAG is called a sparsest permutation. However, the sparsest permutation
(SP) algorithm is problematic from a computational point of view since it requires
searching over all permutations. Instead, similarly as suggested in [TK05], we can
perform a greedy search by traversing the edges of the permutohedron, using the
number of edges of Gπ as a scoring function (see Algorithm 1).

Algorithm 1 requires searching through neighboring permutations even when they
give rise to the same DAG. For example, the neighboring permutations π = (1|2|3|4)
and τ = (2|1|3|4) in Example 3.4 give rise to the same DAG Gπ = Gτ = G shown in
Figure 3 (left). We next discuss how to reduce the search space and hence computation
time by performing the greedy search on the smaller DAG associahedron instead of
the full permutohedron. The difficulty is that this needs to be done without having
access to the DAG G on which the DAG associahedron is based. In order to do this,
we give a description of the vertices and edges of a DAG associahedron in terms of
the DAGs Gπ that are associated to its vertices.

Theorem 8.1. For any fixed graphoid and two permutations π and τ , we have

π ∼ τ ⇐⇒ Gπ = Gτ .

Moreover, the equivalence class of π consists of all topological orderings of Gπ.

Proof. Suppose π ∼ τ . We may assume that

π = (a1| · · · |ak|i|j|b1| . . . |bn−k−2) and τ = (a1| · · · |ak|j|i|b1| . . . |bn−k−2),
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where i ⊥⊥ j | {a1, . . . , ak}, since any pair of equivalent permutations is connected by
a sequence of such pairs. Now let us compare the edges in Gπ and Gτ . There is no
edge between i and j in either DAG. Between any two nodes in [n]\{i, j}, it is clear
that Gπ and Gτ coincide.

Now suppose that (a`, j) is not an edge in Gπ for some `. LetK = {a1, . . . , ak}\{a`}.
Then by applying the intersection property (INT) of graphoids from section 2 we ob-
tain

i ⊥⊥ j | Ka` and j ⊥⊥ a` | Ki
(INT)
=⇒ j ⊥⊥ a` | K.

Thus (a`, j) is not an edge in Gτ either. Similarly, if (a`, j) is not an edge in Gτ , then
applying the semigraphoid property (SG2) we obtain

j ⊥⊥ a` | K and i ⊥⊥ j | K ∪ {a`}
(SG2)
=⇒ j ⊥⊥ a` | Ki.

Thus (a`, j) is not an edge in Gπ either.
We can check in a similar fashion by setting K = {a1, . . . , ak} that for any

b` ∈ [n]\({a1, . . . , ak} ∪ {i, j}) the edge (j, b`) is in Gπ if and only if it is in Gτ . The
same claims also hold for i by switching π and τ .

For the converse, suppose τ is a topological ordering of Gπ. In particular, this
holds when Gπ = Gτ . We wish to prove that π ∼ τ . Without loss of generality we
may assume that τ = (1|2| · · · |n). Let π = (π1|π2| · · · |πn). If π 6= τ , then there is an
i ∈ [n − 1] such that πi > πi+1. Since πi and πi+1 appear with opposite orders in π
and τ , and τ is a topological ordering of Gπ, there is no edge between πi and πi+1 in
Gπ. By construction of Gπ, we must have πi ⊥⊥ πi+1 | {π1, . . . , πi−1} in the graphoid.
Let π′ = (π1| · · · |πi−1|πi+1|πi|πi+2| · · · |πn). Then π′ ∼ π by definition, so Gπ′ = Gπ
as shown above. Since τ is also a topological ordering of Gπ′ , the statement τ ∼ π
follows by induction on the number of inversions in π.

In the following example we illustrate Theorem 8.1 and show how the vertices of
a DAG associahedron can be labeled by posets or by DAGs.

Example 8.2. We return to Example 3.4. Compared to the permutohedron, the
DAG associahedron corresponding to G has six new vertices, namely

(a) (1|2|3|4), (2|1|3|4),
(b) (1|2|4|3), (2|1|4|3),
(c) (1|3|2|4), (1|3|4|2),
(d) (2|3|1|4), (2|3|4|1),
(e) (3|4|1|2), (3|1|4|2), (3|1|2|4),
(f) (3|4|2|1), (3|2|4|1), (3|2|1|4).

The posets representing these vertices and the corresponding DAGs are shown in
Figure 8. Each of the other vertices of the DAG associahedron corresponds to a single
permutation, and the corresponding DAG has no missing edges.

If we have a description of the vertices of a DAG associahedron in terms of posets,
then we know the maximal cones in the normal fan, so we can directly obtain all
other normal cones by intersecting the maximal cones. In the following, we give an
alternative description of the edges of the DAG associahedron in terms of the DAGs
Gπ,Gτ corresponding to the vertices adjacent to an edge (π, τ).

Chickering [Chi95] introduced the notion of a covered edge: a directed edge (i, j)
in G is covered if

pa(i) = pa(j) \ {i}.
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Figure 8. Posets and their corresponding DAGs representing the new (compared
to the permutohedron) vertices of the DAG associahedron discussed in Examples 3.4
and 8.2.

In the following example we illustrate Theorem 8.1 and show how the vertices of a DAG associ-
ahedron can be labeled by posets or by DAGs.

Example 8.2. We return to Example 3.4. Compared to the permutohedron, the DAG associahe-
dron corresponding to G has six new vertices, namely:

(a) (1|2|3|4), (2|1|3|4),
(b) (1|2|4|3), (2|1|4|3),
(c) (1|3|2|4), (1|3|4|2),
(d) (2|3|1|4), (2|3|4|1),
(e) (3|4|1|2), (3|1|4|2), (3|1|2|4),
(f) (3|4|2|1), (3|2|4|1), (3|2|1|4).

The posets representing these vertices and the corresponding DAGs are shown in Figure 8. Each
of the other vertices of the DAG associahedron corresponds to a single permutation and the corre-
sponding DAG has no missing edges. �

If we have a description of the vertices of a DAG associahedron in terms of posets, then we
know the maximal cones in the normal fan, so we can directly obtain all other normal cones by
intersecting the maximal cones. In the following, we give an alternative description of the edges of
the DAG associahedron in terms of the DAGs Gπ,Gτ corresponding to the vertices adjacent to an
edge (π, τ).

Chickering [Chi95] introduced the notion of a covered edge: a directed edge (i, j) in G is covered
if

pa(i) = pa(j) \ {i}.
We denote by G the skeleton of a DAG G. In addition, for two undirected graphs G and G′ we say
that G is a subset of G′, i.e., G ⊆ G′, if G and G′ have the same node set and every edge in G is
also an edge in G′.

The following result shows that given a DAG label of a vertex of a DAG associahedron, we can
find neighboring vertices whose underlying graph is not bigger by flipping the direction of a covered
edge. We will prove this result more generally for gaussoids.

Fig. 8. Posets and their corresponding DAGs representing the new (compared to the permuto-
hedron) vertices of the DAG associahedron discussed in Examples 3.4 and 8.2.

We denote by G the skeleton of a DAG G. In addition, for two undirected graphs G
and G′ we say that G is a subset of G′, i.e., G ⊆ G′, if G and G′ have the same node
set and every edge in G is also an edge in G′.

The following result shows that given a DAG label of a vertex of a DAG associahe-
dron, we can find neighboring vertices whose underlying graph is not bigger by flipping
the direction of a covered edge. We will prove this result more generally for gaussoids.

Theorem 8.3. Let F be a coarsened Sn fan corresponding to a gaussoid. Suppose
the equivalence classes of π = (π1|π2| · · · |πn) and τ = (π1|π2| · · · |πi+1|πi| · · · |πn) are
adjacent maximal cones in F . Then Gτ ⊆ Gπ if and only if (πi, πi+1) is a covered
edge in Gπ.

Proof. First, note that (πi, πi+1) is an edge in Gπ, since otherwise Gπ = Gτ by
Theorem 8.1. We now prove the “if” direction. Without loss of generality we assume
that π = (1|2| · · · |n), τ = (1|2| · · · |i− 1|i+ 1|i|i+ 2| · · · |n), and (i, i+ 1) is a covered
edge in Gπ. Note that from the definition of Gπ and Gτ the only difference between
these two DAGs can be in the presence or absence of edge (`, i) or (`, i + 1) with
` < i. In order to prove that Gτ ⊆ Gπ, we need to show that any missing edge (`, i)
or (`, i+ 1) in Gπ is also not present in Gτ . Now suppose that (`, i) is a missing edge
in Gπ for some ` < i. Since the edge (i, i + 1) is covered in Gπ, then (`, i + 1) is also
a missing edge in Gπ. Let K = {1, . . . , i− 1}\{`}. By the definition of Gπ and Gτ we
get that

` ⊥⊥ i | K and ` ⊥⊥ i+ 1 | Ki,
and hence by the semigraphoid property (SG2) we obtain that ` ⊥⊥ i + 1 | K and
` ⊥⊥ i | K ∪ {i + 1}. Therefore, (`, i) and (`, i + 1) are also missing edges in Gτ , and
we conclude that Gτ ⊆ Gπ.

For the “only if” direction suppose that Gτ ⊆ Gπ. We want to show that the edge
(πi, πi+1) is a covered edge in Gπ. Assume, on the contrary, that it is not.

We first consider the case when there is an a < i with (a, i+1) ∈ Gπ but (a, i) /∈ Gπ.
Then (a, i) /∈ Gτ , and hence

(9) a ⊥⊥ i | K ∪ {i+ 1},

where K = {1, . . . , i−1}\{a}. We claim that (a, i+1) ∈ Gτ . Otherwise we would have
a ⊥⊥ i+ 1 | K, which together with (9) implies a ⊥⊥ i+ 1 | Ki by (SG2), contradicting
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(a, i+ 1) ∈ Gπ. From (a, i+ 1) ∈ Gτ , we have

(10) a⊥6⊥ i+ 1 | K.

Next we claim that

(11) i⊥6⊥ i+ 1 | K.

Otherwise, together with (9) we would have i ⊥⊥ i + 1 | Ka by (SG2), contradicting
the assumption that π and τ lie in adjacent cones of the fan F . Finally, from the
weak-transitivity axiom (G2) for gaussoids we obtain

(12) i⊥6⊥ i+ 1 | K and a⊥6⊥ i+ 1 | K (G2)
=⇒ a⊥6⊥ i | K or a⊥6⊥ i | K ∪ {i+ 1}.

Combining (9) and (12), we obtain a⊥6⊥ i | K, that is, (a, i) ∈ Gπ, contradicting the
assumption that (a, i) /∈ Gπ.

Now we consider the case where (a, i) ∈ Gπ, but (a, i+ 1) /∈ Gπ, so (a, i+ 1) /∈ Gτ .
Then

(13) a ⊥⊥ i+ 1 | Ki and a ⊥⊥ i+ 1 | K.

By the gaussoid axiom (G1), we have

(14) i+ 1⊥6⊥a | Ki or i+ 1⊥6⊥ i | Ka ⇒ a⊥6⊥ i+ 1 | K or i⊥6⊥ i+ 1 | K.

Since π and τ are in adjacent cones of the fan F , we have i + 1⊥6⊥ i | Ka, so by (13)
and (14),

(15) i⊥6⊥ i+ 1 | K.

Since by assumption (a, i) ∈ Gπ, then a⊥6⊥ i | K. This together with (15) and weak
transitivity (G2) gives us a⊥6⊥ i+ 1 | Ki or a⊥6⊥ i+ 1 | K, which contradicts (13).

This result directly gives rise to an improved version of Algorithm 1, which corre-
sponds to performing a greedy search on the DAG associahedron instead of the permu-
tohedron and does not require knowing the underlying true DAG (see Algorithm 2).
In this algorithm, we are given a set of CI relations C that are induced from a fixed but
unknown DAG G. In each iteration the algorithm outputs an auxiliary DAG, whose
skeleton contains the skeleton of G. In a statistical follow-up work [SWMU17] we
show the importance of the geometric results obtained in this paper for applications
to causal inference. In particular, we prove that Algorithm 2 is consistent under the
faithfulness condition, i.e., that it converges to G under the faithfulness assumption.
We end by providing a sketch of the proof. Let G denote the true DAG. Then G = Gπ
for some π (any topological ordering of G). Let τ ∈ Sn. Then every independence
relation that holds for Gτ also holds for G [RU14, Lemma 2.1]. This implies G ⊆ Gτ .
If a permutation π differs from τ only in the reversal of a covered edge in Gτ , then
by Theorem 8.3 we have Gπ ⊆ Gτ . At a high level, the proof follows from a result
by Chickering [Chi02b, Theorem 4] which says that using such edge reversals one can
go from any DAG Gτ to any DAG Gπ with Gπ ⊆ Gτ . The difficulty lies in showing
that there exists such a Chickering sequence which corresponds to a walk on the DAG
associahedron, which is proven in [SWMU17].
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Algorithm 2 Greedy SP algorithm on the DAG associahedron
Input: A set of CI relations C on n random variables and a starting permutation
π ∈ Sn.

Output: An essential graph G.
1. Set t = 0 and π(0) = π.
2. Set t := t + 1. Randomly select a covered edge (π(t−1)

i , π
(t−1)
j ) in Gπ(t−1)

and reverse its direction. Let π(t) denote the resulting permutation and
Gπ(t) the corresponding DAG.

3. Iterate 2 until convergence to the sparsest Markov equivalence class and
output the corresponding essential graph.

Appendix A. Polytopes and fans. Most of the following definitions can
be found in [Zie95]. A polyhedron is a subset of a real vector space Rn defined by
finitely many linear inequalities. A polytope is a bounded polyhedron. Equivalently, a
polytope is the convex hull of a finite set of points in Rn. The Minkowski sum of two
polyhedra P and Q is defined as P +Q = {x+ y | x ∈ P and y ∈ Q}. A (polyhedral)
cone is a polyhedron that is closed under addition and scaling by a nonnegative real
number. A face of a polyhedron P is a subset of P that maximizes some linear
functional. A face F of a nonempty polyhedron P is proper if F 6= P . A facet is an
inclusion maximal proper face of P .

A fan is a family F of nonempty polyhedral cones such that
1. every face of a cone in F is also a cone in F ;
2. the intersection of any two cones in F is a face of both.

A fan in Rn is complete if the union of its cones is equal to Rn. A wall in a complete
fan in Rn is an (n− 1)-dimensional cone in the fan.

For each face F of P , the outer normal cone NF is the set of all linear functionals
that are maximized on F , i.e.,

NF = {c ∈ (Rn)∗ | F ⊆ {x ∈ P | c · x = max
y∈P

(c · y)}}.

The outer normal fan of a polytope P is the collection {NF : F is a face of P}, which
is a complete fan in (Rn)∗. We identify (Rn)∗ and Rn using the usual dot product.
The inner normal cones and fans are defined analogously by replacing “max” with
“min.” For two faces F and F ′ of P , we have F ⊆ F ′ if and only if NF ⊇ NF ′ .
In particular, the smallest cone in the normal fan of P is a linear space, namely the
orthogonal complement of P . The normal cones of facets are inclusion-minimal cones
that strictly contain the smallest cone. The maximal full-dimensional cones in the
normal fan are normal cones of the vertices of P .

Appendix B. A proof of Lemma 2.3.

Lemma 2.3. A polytope P ⊆ Rn is a generalized permutohedron if and only if
there exists a submodular function ω : 2[n] → R with ω(∅) = 0 such that
(3)

P =
{
x ∈ Rn :

∑

i∈I
xi ≤ ω(I) for each nonempty I ⊆ [n], and

∑

i∈[n]

xi = ω([n])
}
.

A wall in the Sn fan corresponding to i ⊥⊥ j | K is missing in the normal fan of P
defined by ω as above if and only if ω(Ki) + ω(Kj) = ω(Kij) + ω(K). In particu-
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lar, a coarsened Sn fan is polytopal if and only if the corresponding semigraphoid is
submodular.

Before proving the lemma, we first recall a general construction of the normal fan
of a polytope from a halfspace description. See also [DLRS10, Theorem 9.5.6].

Let P = {x ∈ Rn : Ax + b ≥ 0} be a polytope, where A is a k × n matrix and
b ∈ Rk is a column vector. Let us assume that P is nonempty but is not necessarily
full-dimensional. Also assume that all inequalities are tight but possibly redundant.
In particular, if ai = aj , then bi = bj , where (ai, bi) and (aj , bj) are rows of [A|b].
Let C∗ be the cone in Rn×R generated by the rows of the concatenated matrix [A|b]
and the vector (0, 1). The row (ai, bi) of [A|b] is called a lift of the vector ai ∈ Rn.
Since P is bounded, for any z ∈ Rn we have Az ≥ 0⇒ z = 0; otherwise P would be
unbounded in direction z. Then the rows of A cannot be all contained in a halfspace
{x : x · z ≥ 0} for any nonzero z, so the rows of A positively span Rn, and the cone
C∗ projects surjectively onto Rn.

The dual cone of C∗ is

C :={v ∈ Rn+1 : u · v ≥ 0 for all u ∈ C∗}
={v ∈ Rn+1 : [A|b]v ≥ 0 and vn+1 ≥ 0}
= cone{(x, 1) : x ∈ P},

(16)

where cone{·} denotes the conical hull. All nonzero vectors in the cone C have positive
last coordinates, and hence all proper faces of C∗ are on the lower hull of C∗; that is,
they have inward pointing normal vectors with positive last coordinate. In particular,
if a vector (a, b) lies on the boundary of C∗, then (a, b+ε) does not lie on the boundary
of C∗ for any ε > 0. Since each inequality aix+ bi ≥ 0 is assumed to be tight, there
is a point xi ∈ P satisfying aixi + bi = 0, so the vector (ai, bi) belongs to a proper
face of C∗ that minimizes the linear functional u 7→ (xi, 1) · u.

We claim that the projections of proper faces of C∗ onto Rn form the inner normal
fan of P . Let p be a point in P , and consider the inner normal cone

Np := {c ∈ Rn : c · p ≤ c · q for all q ∈ P}.

We will show that Np is the projection of the following face of C∗ that minimizes the
dot product with (p, 1):

face(p,1)(C∗) := {u ∈ C∗ : u·(p, 1) ≤ u′·(p, 1) for all u′ ∈ C∗} = {u ∈ C∗ : u·(p, 1) = 0}.

Let c ∈ Np, and let u = (c,−c · p). Then u · (p, 1) = c · p − c · p = 0 and
u · (q, 1) = c · q + un+1 ≥ c · p + un+1 = u · (p, 1) = 0 for any q ∈ P ; so we have
found a vector u ∈ face(p,1)(C∗) whose projection is c. For the other inclusion, let
u ∈ face(p,1)(C∗). Then (u1, . . . , un) ·p+un+1 = 0, while (u1, . . . , un) ·q+un+1 ≥ 0 for
all q ∈ P , and hence (u1, . . . , un)·p ≤ (u1, . . . , un)·q. Thus the projection (u1, . . . , un)
belongs to Np. This shows that normal cones of P are precisely the projections of
proper faces of C∗.

In summary, a complete fan F in Rn is the normal fan of a polytope if and
only if there exists a cone K ⊂ Rn × R with (0, 1) ∈ K whose proper faces project
precisely onto cones of F . Given such a cone K, the desired polytope is obtained
by slicing the dual cone C of K with the hyperplane xn+1 = 1 and projecting out
xn+1. Given a polytope P , the desired cone K can be obtained two ways: either as
K = (cone{(x, 1) : x ∈ P})∗, or from an inequality description Ax + b ≥ 0 of P by
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lifting the rows of A to height b and taking the conical hull of these lifted rows together
with the vector (0, 1). Tightness of an inequality means that the corresponding vector
is lifted to the boundary of K.

For any collection of vectors {(a1, b1), . . . , (ak, bk)} that spans K as a conical hull,
we can consider the polytope {x ∈ Rn : ai ·x+ bi ≥ 0 for all i}. The arguments above
show that this polytope is equal to P .

Proof of Lemma 2.3. Let F be a coarsened Sn fan which is the normal fan of a
polytope P . Every cone in F contains a line in direction (1, 1, . . . , 1) and is generated
by this line together with some 0/1 vectors. Then F consists of the projection of
faces of a cone in Rn × R generated by lifts of the 0/1 vectors and ±(1, . . . , 1). By
the paragraph preceding the proof, P must have a tight halfspace description with
normal vectors from the set V = {eI | ∅ 6= I ⊆ [n]} ∪ {−e[n]}. The “right-hand
sides” of the inequalities give a lift ω : V → R such that the proper faces of the cone
C∗ = cone{(v, ω(v)) | v ∈ V } project precisely onto the cones of F and every lifted
vector is on the boundary of C∗. Since all cones in F contain the line (1, 1, . . . , 1),
we must have ω(e[n]) = −ω(−e[n]). Such lifts can be identified with functions on 2[n]

with value 0 on ∅. We will show that ω is submodular.
For any I, J ⊆ [n], the vectors eI , eI∩J , eI∪J lie in a common cone in the Sn

fan. Since F coarsens the Sn fan, they also lie in a common cone in F . Similarly,
eJ , eI∩J , eI∪J lie in a common cone of F . First, consider the case when eI and eJ
are lifted to the same proper face of C∗. Then this cone also contains eI∩J and eI∪J .
Since we assumed that all lifted vectors lie on the boundary, hence a proper face, of
C∗, and ω is linear on this face, we must have that ω(eI)+ω(eJ) = ω(eI∩J)+ω(eI∪J).

Now suppose that eI and eJ are not lifted to the same proper face of C∗. Then
ω is not linear on the vectors eI , eJ , eI∩J , and eI∪J . We must then have that ω(eI) +
ω(eJ) > ω(eI∩J) + ω(eI∪J), because ω(eI) + ω(eJ) < ω(eI∩J) + ω(eI∪J) would imply
that

(eI∩J + eI∪J , ω(eI∩J) + ω(eI∪J)) > (eI + eJ , ω(eI) + ω(eJ)),

contradicting the fact that eI∩J and eI∪J are lifted to the same cone in the lower hull
of C∗.

For the converse, suppose ω is a submodular function on 2[n] with ω(∅) = 0,
and consider the lift of eI to ω(I) for each I ⊆ [n] and −e[n] to −ω([n]). Let F be
the projection of the lower hull of the lifted cone C∗. The submodularity inequality
ω(eI) + ω(eJ) ≥ ω(eI∩J) + ω(eI∪J) ensures that whenever eI and eJ are lifted to
the same cone in the lower hull of C∗, then so are eI∩J and eI∪J . In other words,
whenever a cone of F contains both eI and eJ , then it must also contain both eI∩J
and eI∪J , showing that F is a coarsening of the Sn fan.

Now suppose that the coarsened Sn fan F is polytopal and defined by a submod-
ular function ω as above. Consider a wall of the Sn fan corresponding to the adjacent
permutations

(a1| · · · |ak|i|j|b1| · · · |bn−k−2) and (a1| · · · |ak|j|i|b1| · · · |bn−k−2),

where {a1, . . . , ak} = K and {b1, . . . , bn−k−2} = [n]\(K ∪ {i, j}). This wall is not
contained in a wall of F if and only if the two adjacent maximal cones are contained
in the same cone of F . In particular, this happens if and only if eKi and eKj are in
the same cone where K = {a1, . . . , ak}. This is equivalent to having

ω(Ki) + ω(Kj) = ω(Kij) + ω(K).
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Let P be the polytope defined by (3). Its inner normal fan is obtained by lifting
the rays −eI to height ω(I) for nonempty I ⊆ [n] and e[n] to height −ω([n]). This is
the negation of the fan F , which is obtained by lifting eI to ω(I) and −e[n] to −ω([n]).
This shows that F is the outer normal fan of P .

Appendix C. Dictionary. The statements or data in each row are equivalent.

CI relations Fans Polytopes

CI relation i ⊥⊥ j | K
where i, j ∈ [n], K ⊆
[n] \ {i, j}

the set of walls in the Sn fan
of the form σ|i j|τ where σ and
τ are permutations of K and
[n]\Kij, respectively

the set of edges of a permutohedron
connecting two permutations of the
form σ|i|j|τ and σ|j|i|τ where σ and
τ are permutations of K and [n]\Kij,
respectively

a collection of CI re-
lations that satisfy the
semigraphoid axioms

removing the walls in the Sn

fan corresponding to the inde-
pendence relations gives a fan

the set of edges of the permutohe-
dron corresponding to the indepen-
dence relations satisfies the square and
hexagon axioms [MPS+09]

a semigraphoid that
arises from a submod-
ular function

a coarsening of Sn fan that is
polytopal or regular

there is a generalized permutohedron
that realizes contraction of edges in
the permutohedron corresponding to
the CI relations

a union of dependence
relations of a semi-
graphoid

a common refinement of fans a Minkowski sum of polytopes (if the
semigraphoid is submodular)
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